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ABSTRACT
CHARACTERIZATION OF THE GROWTH FACTOR RECEPTOR NETWORK
ONCOGENES IN LUNG CANCER

by Ashley H. Duche

Lung cancer remains the leading cause of cancer related deaths worldwide, reportedly
contributing to 1.8 million of the 10.0 million mortalities documented in the year 2020. Although
advancements have been made in therapeutics and diagnostic methods, formulation of effective
treatments and development of drug resistance continues to be a challenge. These challenges arise
from our lack of understanding of intricate signaling pathways, such as the Growth Factor Receptor
Network (GFRN), which contributes to complex lung tumor heterogeneity allowing for drug
resistance development. In this study, gene expression signatures of six GFRN oncogenes
overexpressed in human mammary epithelial cells (HMECSs) were generated to interrogate this
pathway’s downstream crosstalk, beyond initial mutation status. Utilization of this method may
reveal novel phenotypic patterns that could be used to improve targeted therapies for lung cancer.
Thus, using computational analysis tools, gene expression signatures were generated of BAD
(BAD), HER2 (ERBB2), IGF1R (IGF1R), RAF (RAF1), and KRAS (G12V), using the Bioconductor
package, Adaptive Signature Selection and InteGratioN (ASSIGN). Gene lists of various lengths
were generated ranging from 5 to 500 genes produced in 25 gene increments. Pathway activation
estimates were predicted in 541 lung adenocarcinoma (LUAD) tumors acquired from The Cancer
Genome Atlas (TCGA). Each gene signature underwent validation using proteomics data from
The Cancer Proteome Atlas (TCPA) and gene expression. Following thorough analysis, optimal

gene signatures were determined for the genes BAD, HER2, IGF1R, RAF and KRAS. In all, the



optimized GFRN pathway-specific gene signatures were able to distinguish upregulated pathway
activity within TCGA patient tumor samples. With the use of drug response data, novel phenotypic
patterns may be revealed identifying drug targets to improve individualized drug targeted therapy

for lung cancer.
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CHAPTER 1
INTRODUCTION

Lung cancer remains the leading cause of cancer related deaths despite progressive
advancements in therapeutic and diagnostic methods worldwide. According to the American
Cancer Society (ACS), it is estimated that of the 608,570 cancer related mortalities projected to
occur in the United States in 2021, 131,880 cases will be due to lung cancer [1]. Similar to other
cancers, lung tumors develop due to epigenetic factors causing genetic alterations, such as somatic
mutations, gene amplifications and chromosomal rearrangements/translocation, affecting a cell's
regulatory mechanisms and normal functions[1, 2]. With traditional methods, lung tumors can be
classified into two major types, including small cell lung cancer (SCLC) and non-small cell lung
cancer (NSCLC)[3]. Within NSCLC there are three main subtypes - squamous cell carcinoma,
adenocarcinoma, and large cell carcinoma. Although through the advancements of diagnostic
methods with the incorporation of molecular profiling, further tumor heterogeneity has emerged
revealing diversification of lung tumors within the same histological subtype [2]. Such molecular
profiling methods include immunohistochemistry (IHC), chromogenic/fluorescence in situ
hybridization (CISH/FISH), next-generation sequencing, sanger and pyrosequencing, as well as
quantitative polymerase chain reaction (qPCR) and fragment analysis (FA/Frag.Analysis) [4].
These methods allow for specific genetic alterations, referred to as biomarkers, to be identified
within a tumor and used to make improved diagnosis, prognosis and therapeutic treatments.
Although, a challenge continually faced is targeted mutations do not always respond to oncological
treatments and consequently form mechanisms that allow resistance to therapeutic treatments [5].
This can result from unknown downstream signaling that remains uncharacterized in complex

oncogenic networks such as the Growth Factor Receptor Network (GFRN) [7].



1.1 Overview

The GFRN is a known driving oncogenic network in lung cancer consisting of parallel
signaling pathways responsible for regulating developmental and growth processes within the cell
(Figure 1.1) [6]. Two stimulated growth factor pathways comprising of this network include the
phosphatidylinositol-3-kinase (PI3K)/protein kinase B (AKT)/ mechanistic target of rapamycin
kinase (mMTOR) as well as the RAS/serine-threonine protein kinase (RAF)/ mitogen-activated
protein kinase (MAPK) pathway [7, 8]. The PISBK/AKT/mTOR pathway is commonly associated
with NSCLC responsible for controlling cell survival, metabolism and proliferation [7]. Within
this pathway, upstream activation of receptor tyrosine kinases (RTKs) such as EGFR, HERZ2, and
insulin-like growth factor receptor (IGF1R), initiates a complex signaling cascade leading to the
activation of PI3K lipid kinases [7]. A signal is then relayed resulting in the activation of AKT, in
turn activating serine/threonine (Ser/Thr) kinase mTOR [9]. Many negative feedback regulators
are associated with this pathway such as the inactivation of AKT through phosphatase and tensin
homolog (PTEN) tumor suppressor, as well as the inhibition of IGF1R signaling by downstream
products of mTOR [9]. To bypass these negative feedback mechanisms, the PISK/AKT/mTOR
pathway interacts with the neighboring pathway RAS/RAF/MAPK [9, 10]. The RAS/RAF/MAPK
pathway is also associated with tumorigenesis initiated through the phosphorylation of RTKs, such
as EGFR [9]. Following receptor mediated activation, a signaling cascade is initiated activating
the GTPase protein KRAS, transmitting a signal activating the Ser/Thr-protein kinase RAF1, also
known as c-RAF [10]. Subsequent activation leads to phosphorylation of MEK1/2 resulting in
activation of Ser/Thr kinases, ERK1/ERK[8, 10]. What ultimately makes this pathway difficult for
formulation of effective drug targeted treatments is the alternate pathway activation that can occur

between these parallel signaling pathways. For instance, alternate pathway activation of PI3K can



be transduced through RAS signaling, mTOR can be activated through ERK, and AKT can inhibit
activation of RAF as well as BAD (BCL2 Associated Agonist of Cell Death)[11, 12]. Therefore,
simultaneous characterization of the GFRN is warranted for applying targeted therapies in lung

cancer.

To begin to characterize the network of complex signaling pathways within lung cancer,
gene expression signatures can be utilized to interrogate GFRN activity within lung tumors. A
gene expression signature is a gene, or a combined group of genes expressing aberrant or normal
pathway activity associated with causing a disease or biological process [13, 14]. Signatures
consist of selected genes quantitatively expressing varying levels of gene expression in respect to
the biological state of the pathway being explored [13, 14]. They can be used to represent a
single pathway or be leveraged in conjunction to explore multiple activated pathways
simultaneously [5]. This allows for a comprehensive profile of interconnecting signaling networks
to be explored which can potentially be used to make improved prognostic, diagnostic, and

therapeutic treatment decisions [6].

In summary, the utilization of generated gene expression signatures can be leveraged to
explore complex signaling pathways using selected genes of possible significance to reveal
underlying molecular mechanisms of a disease. Applying this concept, the objective of my
research was to generate GFRN pathway-specific gene expression signatures of the pathways BAD
(BAD), HER2 (ERBB2), IGF1R (IGF1R), RAF (RAF1), and KRAS (KRAS, G12V mutation). It was

hypothesized that if pathway-specific gene expression signatures of GFRN activity can be



generated, representing the oncogenic state of that pathway, GFRN activity can be characterized

within lung tumors to reveal novel phenotypic patterns to make drug response predictions.

1.2 Relevance of Exploration for Selected GFRN Oncogenes

Proven by previous studies, the GFRN has played a critical role in driving oncogenic
processes leading to lung tumor formation. As referenced in Figure 1, the pro-apoptotic protein
BAD, is one of the many signaling pathways comprising this network. BAD plays an important
role in promoting apoptotic cell death, which has made it a predictive biomarker within lung
cancer[11, 12]. Low levels of BAD expression have been associated with tumorigenesis across
many other cancers as well, indicating its importance in anti-cancer cellular functions [11].
Inhibition of this pathway, as previously mentioned, stems from the activation of PI3K signaling
activating AKT, which in turn inhibits the pro-apoptotic protein [6, 7, 12]. Having the knowledge
of BAD’s anticancer characteristics, and its role in tumor progression, studies have suggested that
overexpression of this protein can also allow BAD to act as a tumor suppressor [11, 12]. This

makes BAD a promising target for future use of formulating effective therapeutic treatments.

Another associated GFRN pathway is the protein tyrosine kinase HER2. HER?2 is a cell
surface receptor associated with PI3K pathway activation initiating tumorigenesis [15]. In recent
studies, the presence of HER2 mutations within NSCLC patients may be correlated with lower
survival rates [15, 16]. Additionally, utilization of molecular profiling methods may have revealed
further intrinsic subtypes, showing a correlation with HER2 mutations with the presence of EGFR
mutations, and ALK translocations[9, 15, 16]. Although there has been conflicting evidence of

HER?2’s involvement in lung cancer making further exploration of this pathway essential.



In addition to BAD and HERZ2, another GFRN pathway associated with lung tumor
development is IGFR. This RTK has shown correlations of overexpression linked to increased cell
survival and proliferation of malignant cells [17]. Acquired resistance to therapies such as gefitinib
and erlotinib have been observed with possible intrinsic subtypes such as the presence of EGFR
mutations as well as ALK arrangements, similar to HER2 [17]. Additionally, IGF1R intrinsic
subtypes may have also been correlated with the development of resistance to EGFR targeted
treatments[17]. Benefits of further exploration of this pathway may lead to the development of
effective therapeutic treatments against EGFR drug resistance mechanisms using molecular

profiling to reveal cancer promoting cellular mechanisms.

As revealed in prior studies, the proto-oncogene RAF, has shown associations with the
RAS signaling pathway within the GFRN [10]. Also known as RAF1 or c-RAF, the full
characterization of this pathway’s activation remains unclear, as well as its role in lung tumor
development [10]. Although, studies have supported c-RAF activation is required for the initiation
of tumorigenesis through KRAS transduction [10]. Within lung cancer, the development of KRAS
drug resistance has continually been a challenge due to the ineffectiveness of current therapeutic
treatments, as well as efficacy issues with targeted treatments of ERK/MAPK inhibition[10].
Possible leverage of targeting the c-RAF pathway, as well has further exploration revealing its
molecular mechanisms, mays be used to develop novel effective treatments targeting KRAS with

reduced drug resistance development.



Previously mentioned, a common mutation associated with lung cancer development is the
RAS Family, proto-oncogene KRAS. Various variants of KRAS mutations have been identified
including G12C, G12B, and G12V, classified based upon their amino acid substitution. The
significant prevalence of this mutation within lung cancer presses the need for effective therapeutic
treatments. Although, due to the complex signaling and alternate pathway activations, formulation
of effective therapeutic treatments continues to be a challenge (Figure 1.1)[10, 18]. In an attempt
to formulate targeting treatments for KRAS combating drug resistance development, exploration
of coinciding mutations has been performed in previous studies[18]. Possible associations between
the presence of KRAS coinciding with EGFR was revealed but little significance was observed
pertaining to prognosis [18]. Although, additional studies have showed promise applying this
method leading to further subtyping of KRAS using co-existing mutations revealing novel drug

susceptible targets.

In all, our lack of understanding of underlying GFRN molecular mechanisms and intricate
signaling pathways, stems our need for enhanced characterization methods such as gene expression
signature exploration. Through the utilization of this method, a comprehensive profile of the
GFRN, beyond initial mutation status, can begin to be developed and utilized to improve current

therapeutic treatments to fight the development of drug resistance observed in lung cancer.



CHAPTER 2

METHODS

2.1 Generation of GFRN-Specific Gene Expression Data

To begin GFRN pathway analysis, previously processed RNA sequencing gene expression
data generated from a published study was acquired [6]. Briefly, the cells used to produce the
biological replicates were human mammary epithelial cells (HMECs) acquired from non-
cancerous breast tissue. HMECs were transfected using recombinant adenovirus of GFRN-specific
oncogenes BAD (BAD), HER2 (ERBB2), IGF1R (IGF1R), RAF (RAF1), and KRAS (G12V) to
capture a transcriptional profile of aberrant pathway activity. Cells used to produce the biological
replicates were produced using 0.25% serum-free mammary epithelial basal medium (MEBM) in
conjunction with a Lonza “bullet kit” as referenced in the protocol [7]. HMECs expressing GFRN
oncogenes BAD (BAD), HER2 (ERBB2), IGF1R (IGF1R), RAF (RAF1) or GFP (control) were
incubated for 18 hours to capture the initial transcriptional profile. HMECs transfected with KRAS
(G12V) along with its GFP respective controls were treated for 36 hours. Western blot analysis
was then performed using corresponding protein antibodies to each GFRN oncogene to ensure
successful overexpression of GFRN oncogenes within HMECs. Following validation mRNA was
extracted from cells to generate 6 biological replicates for BAD (BAD), IGF1R (IGF1R), and RAF
(RAF1), with 5 produced for HER2 (ERBB2). For the separately treated HMECs expressing KRAS
(G12V), 9 biological replicates were produced along with 9 GFP respective controls. The generated
biological replicates of the overexpressed GFRN oncogenes from HMECs were then sequenced
and aligned computationally using Rsubread R package (Version 1.14.2) to produce the gene

expression RNA-Seq datasets.



2.2 Obtained RNA Sequencing Datasets

To begin gene signature generation and analysis, various databases were used to acquire
the publicly available RNA-sequencing data (Table 2.1). From the National Center for
Biotechnology Information (NCBI), Gene Expression Omnibus (GEO), the previously mentioned
gene expression data was collected containing the 6 overexpressed GFRN oncogenes and their
respective controls from 2 separate datasets [7]. The first dataset included the genes BAD (BAD),
HER2 (ERBB2), IGF1R (IGF1R), RAF (RAF1), with the GFP samples (the control) treated for 18
hours (GSE83083). The second dataset included the gene KRAS (G12V) with GFP samples (the
control) treated for 30 hours (GSE83083). From TCGA, 541 LUAD patient tumor samples were
collected along with a separate dataset used to classify and specify the cancer type (GSM1536837,

GSE62944). Lastly, to perform validation, proteomics data was collected from TCPA.

2.3 Data Refinement

Utilizing the prcomp function from the stats R package, the collected gene expression data
along with the TCGA patient tumor samples, were visualized using Principal Component Analysis
(PCA) within Rstudio (Version 1.2.5019) (Figure 2.1 a-d). PCA is a statistical procedure used to
produce principal components representative of the greatest variation occurring in the
multidimensional data [12]. The first principal component produced represents the greatest
variation, while the second represents the second greatest variation in the multidimensional data
and so on (Figure 2.1 a and c) [12]. Due to the datasets being separately processed, significant
batch effects and confounding variables were observed (Figure 2.1 a-b). This could be due to many
external factors, such as tissue mishandling when producing the samples, varying lab protocols

and conditions, as well as human error. Such variability can negativity affect the generation of our



signatures and its ability to predict pathway activity within the tumor samples. To begin to reduce
variations, the datasets underwent refinement to remove technical artifacts from the gene
expression datasets. This included filtering of rows containing a certain percentage of zero values
to capture genes with most variance in the dataset. PCA was then utilized throughout the study to

ensure optimization of the data and signature generation.

2.4 Batch Adjustment

Following refinement of the RNA seq. data, the significant variances and confounding
batch effects were adjusted for using the ComBat function from sva R package (Version 3.34.0)
and visualized using PCA (Figure 2.1 c-d). This included specifying the gene expression data and
patient tumor samples into 3 separate batches and performing a two-step batch adjustment. First,
the appropriate training model was specified which included the 6 biological replicates for each
oncogene including BAD (BAD), IGF1R (IGF1R), RAF (RAF1) and 5 for HER2 (ERBB2); along
with its 12 GFP controls treated for 18 hours (control). The second batch, also specified as the
training data, included the 9 biological replicates for KRAS (G12V) with its respective 9 GFP
replicates, pre-treated for 36 hours (control). The first batch adjustment was then performed only
including the training data, with the first batch specified as the reference used to compare and
optimize data similarity. Following the first adjustment, the third batch was then specified as the
541 LUAD patient tumor samples from TCGA, classified as the test data. The second combat
adjustment was then performed using the combat adjusted gene expression data (training data)
combined with the TCGA patient tumor sample (test data) with the first batch selected as the
reference batch. A PCA was then performed to confirm variances and confounding batch effects

were removed to improve data similarity (Figure 2.1 c-d).



2.5 Gene Expression Signature Generation

With the adjusted data, gene expression signatures were generated representing pathway
specific GFRN activity. This was performed using the “All-in-one” assign.wrapper function from
the “semi-supervised pathway profiling toolkit”, Adaptive Signature and InteGratioN (ASSIGN;
Version 1.9.1). Within each pathway-specific gene expression signature, genes quantitatively
expressing varying levels of expression were selected by ASSIGN to define a phenotypic pattern
representative of aberrant GFRN-specific pathway activity. This included creating two distinctive
patterns of expression within the signature to represent pathway activity turned on versus pathway
activity turned off. For each GFRN specific pathway, this was produced internally by comparing

the GFP gene expression data (control) to the specified overexpressed oncogene expression data.

2.6 ASSIGN Gene Expression Signature Output

Various gene lists of specified lengths were then generated ranging from lengths of 5 to
500 genes produced in 5 or 25 gene increments using the assign.wrapper function; utilizing asingle
pathway setting. The Bayesian variable selection approach was used to select genes expressing the
greatest fold-change of differential expression from normal pathway activity to generate the
signature. These genes selected displayed the highest signal strength and signal weights
representing their possible contribution to the overall development of the disease. Additionally, an
anchor gene was selected for the genes as follows BAD (BAD), HER2 (ERBB2), IGF1R (IGF1R)
RAF(RAF1), and KRAS (KRAS). This ensures the overexpressed oncogene specific to the pathway
being investigated is included in each gene signature output. Additional ASSIGN criteria were also
specified including adaptive signature background parameters. This included the adaptive_ B =

TRUE, default parameter, which allows ASSIGN to adjust the test data baseline measures. Next,

10



adaptive_S = FALSE was specified, preventing the adaptability of the gene signatures to adhere
to the test data. Additional default parameters were also included specifying probability measures
such as p_beta = 0.01, theta0=0.05, thetal=0.9. Next, the iteration was increased from the default
parameter of iter = 2,000 to iter = 100,000 to increase the number of Markov Chain Monte Carlo
(MCMC) simulations. Lastly, the number of burn-in iterations was increased from the default of
burn_in = 1,000 to burn_in = 50,000 to optimize gene signature output. From the produced output,
those that passed the internal leave-one-out cross validation (LOOCV) then underwent external

validation using proteomics and gene expression data.

2.7 External Validation

Using the cor.test function from the stats package (Version 4.0.3) correlations were
performed to validate the generated pathway activation estimates from ASSIGN. First, using
proteomics data, Pearson pairwise correlations were calculated between Reverse Phase Protein
Array (RPPA) data from The Cancer Proteome Atlas (TCPA) with the generated pathway
activation estimates. This was performed using the cor.test function from the R stats package
(Version 4.0.3), using the Pearson method. Pathway activation estimates were considered to be
validated if the “Pearson’s product moment”, calculated using a 95% confidence interval, had a p-
adjusted value of < 0.002. The p-adjusted value was calculated due to the high quantity of TCGA
patient tumor samples. The same parameters and cor.test function were used to validate the
pathway activation predictions correlated to the TCGA patient tumor sample gene expression data.
Lastly, using the function boxplot2 from the package gplots (Version 3.1.1), boxplots were
produced expressing predicted pathway activity levels within the TCGA patient tumor samples.

The data was first scaled to optimize boxplot generation along with specification of pathway

11



activity levels by low, intermediate, and high percentiles. Samples with expression in the 10th
percentile or below were classified as “low” expressing. Samples with expression in the 90th
percentile or above were classified as “high” expressing. Samples with the expression above the
10th percentile and below the 90th percentile were classified as “intermediate” expressing samples.
Pathway-specific boxplots were considered to be validated if higher predicted pathway activity
could be seen within the patient tumor samples categorized in the “high” expressing percentile in

comparison to the “intermediate” and “low” expressing percentiles.

CHAPTER 3

RESULTS

3.1 Pathway-Specific Gene Expression Signature Generation

With the use of RNA sequencing data of HMECs overexpressing GFRN oncogenes, gene
expression signatures of varying gene list lengths were generated using Rstudio (Version 1.2.5019)
(Table 3.1-3.5). Pathway activation estimates were also produced by projecting the signatures onto
the 541 LUAD patient tumor samples to predict levels of pathway activity. These signatures were
produced by comparing the overexpressing HMECs to its respective GFP (control) HMEC
samples. To ensure the signatures’ ability to capture the levels of pathway activity are expressed
within the HMEC samples, pathway-specific cross-validation scatterplots of the training data was
assessed. Produced scatterplots of each GFRN pathway-specific oncogene that accurately
displayed low levels or no level of pathway activity for GFP (control) versus high levels of activity

for the overexpressed GFRN HMECs were considered to be internally validated. This included the

12



gene lists lengths with the corresponding GFRN pathway being investigated as follows BAD
(BAD), 475; HER2 (ERBB2), 5; IGF1R (IGF1R), 25; RAF (RAF1), 275; and KRAS (KRAS, G12V),
500 (Table 3.1-3.5). External validation was then performed using proteomics and gene expression
data to determine if the generated gene expression signatures accurately predicted levels of

pathway activity within the LUAD patient tumor samples from TCGA.

3.2 Proteomics Validation

First, using proteomics data from TCPA pathway activation estimates were validated
through statistical analysis. This included performing Pearson pairwise correlations between the
produced pathway-specific gene expression signatures and their predicted pathway activity to
RPPA protein expression data from TCPA (Table 3.6). For the signature validation of BAD, the
TCPA protein expression of PDK1 pS241 phosphoprotein was correlated to the predicted levels
of pathway activation for BAD. Due to the upstream signaling of PDK1 leading to the activation
AKT which in turn inhibits BAD, negative correlations were observed as anticipated. Strongest
negative correlations for BAD were most optimally seen using the 475-gene signature list (cor = -
0.247206, p-value = 1.63E-06, optimal gene list = 475). For the signature validation of HER2, the
phosphoprotein HER2_pY 1248 showed a strong positive correlation to the predicted pathway
activity using the 5-gene signature list (cor = 0.3180165, p-value =4.54E-10, optimal gene list =
5). Next, for RAF the phosphoprotein of CRAF_pS338 showed a significant positive correlation
using the 275-signature gene list (cor = 0.3176497, p-value = 4.77E-10, optimal gene list = 275).
Lastly, for the signature validation of KRAS the phospho-protein MEK1 pS217S221 was utilized
due to downstream activation of MEK1 as a consequence of KRAS upstream activation. The

highest positive correlation was observed using the KRAS 500-gene signature list (cor =

13



0.1643924, p-value = 0.001577, optimal gene list = 500). All gene expression signatures were able

to be validated using protein expression levels, except for IGF1R, as referenced in Table 3.6.

3.3 Gene expression Validation

Next, Pearson pairwise correlations were performed between the signature predicted
pathway activity of the respective GFRN pathway to the expression levels of the gene of interest
within the LUAD patient tumor samples from TCGA (Table 3.7). For the validation of BAD, the
estimated pathway levels predicted by the BAD 475- gene signature showed a positive correlation
to the patient samples expressing higher levels of bad activity indicating accurate signature
predictability (cor = 0.1127843, p-value = 0.008649, optimal gene list = 475). Next, for HER2
validation, the 5-gene signature showed a strong positive correlation to HER2 mutated levels of
activity within the patient tumor samples (cor = 0.4114047, p-value = < 2.2e-16, optimal gene list
= b). Lastly, IGF1IR was validated using the IGF1R oncogene test gene expression with the
strongest positive correlation being seen using the 25-gene signature list (cor = 0.178464, p-value
= 2.98E-05, optimal gene list = 25). Overall, with the corresponding oncogene expression from
the patient tumor samples, the pathways BAD, HER2, and IGF1R were validated with the

exceptions of RAF and KRAS, summarized in Table 3.7.

3.4 Gene Expression Boxplot Validation

Additionally, gene expression box plots were generated to distinguish levels of pathway
activity within patient tumor samples using the predicted pathway activity levels from the gene
expression signatures (Figure 3.1). As mentioned, prior, patient tumor samples were classified into

“low”, “intermediate”, and “high” percentiles based upon their levels of expression. As
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summarized in Table 3.8 and Figure 3.1, this method was able to validate the GFRN pathways

BAD, HER2, IGF1R with the exception of RAF and KRAS.

3.5 Optimal Gene Signature Selection

In all, optimal gene list lengths were determined through statistical analysis by cross
referencing proteomics and gene expression correlations (Table 3.8). For the GFRN pathway
BAD, proteomics, gene expression, and gene expression box plots validated the 475-signature
gene list (Table 3.1). For HERZ2, all three methods were also used to validate the HER2’s 5-
signature gene list (Table 3.2). Next, for IGF1R, only the gene expression and generated gene
expression boxplot was used for validation of the 25-signature gene list (Table 3.3). For the GFRN
RAF, only protein expression was used for the validation of its 275- signature gene list (Table 3.4).
Lastly, for KRAS, only protein expression was used for the validation of the 500-signature gene

list (Table 3.5).
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CHAPTER 4

DISCUSSION

4.1 Significance of Findings and Future Implications

In this study, GFRN-specific gene expression signatures, represented of aberrant pathway
activity, were generated to interrogate GFRN pathway activity within lung tumors. Optimal gene
expression signatures were then determined for the GFRN pathways BAD (BAD), HER2 (ERBB2),
IGFIR (IGF1R), RAF (RAF1), and KRAS (G12V) using proteomics and gene expression
data (Figure 4.1). For the signatures HER2(ERBB2), IGF1R(IGF1R), RAF(RAF1l) and
KRAS(G12V), predicted pathway activity showed a positive correlation with downstream protein
expression levels, indicating downstream pathway activation of the investigated pathways. For the
signature BAD, protein expression representing downstream activation of the AKT pathway,
activated upstream by PDK1, showed corresponding negative correlations indicating inhibition of
the BAD pathway activity, as anticipated. Next, corresponding higher levels of gene expression
were observed in HER2 and IGF1R when correlated with mutated levels of gene expression
supporting aberrant pathway activation of the two pathways. In addition, upregulated levels of
AKT pathway activity were used to validate BAD’s signature representing abnormal pathway
activity, in which negative correlations were seen, accurately depicting the inhibition of BAD by
AKT activation. In addition, boxplots were used to validate signature generation for the pathways
BAD, HER2, and IGF1R. A percentage of the tumor samples were distinguished to have higher
levels of pathway activity signifying the gene expression signatures ability to characterize mutated

levels of pathway activity. In all, it was concluded that the generated GFRN-pathway specific gene
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expression signatures, representative of aberrant GFRN activity, accurately distinguished higher

levels of pathway activity within LUAD patient tumor samples.

In future studies, a multiple pathway analysis will be performed using the generated gene
expression signatures to begin to comprehend underlying molecular mechanisms of the GFRN.
Through the projection of these signatures, simultaneously onto lung cancer cell lines, hierarchical
clustering can be utilized to reveal patterns of gene expression. These gene expression patterns, or
phenotypic patterns, can be characterized to reveal drug sensitive or resistant phenotypes by
performing drug response predictions. Potential intrinsic subtypes could also be revealed exposing
sensitivity patterns within this complex network. Overall, with the use of multiple-pathway
analysis with the GFRN pathway-specific gene expression signatures, a potential comprehensive
profile of the GFRN can be built to reveal novel phenotypic patterns and identify drug sensitivities.
This in turn, can be used to enhance prognostic, diagnostic, and therapeutic treatment decisions
against lung cancer, overall enhancing precision medicine approaches to combat drug resistance

development.
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Table 2.1 Publicly available datasets acquired for gene signature generation and analysis consisting of
gene expression signature data along with LUAD patient tumor samples and proteomics validation

dataset.

Dataset

Accession
GSES83083

Accession
GSE83083

Accession
GSE59765

Accession

GSM1536837

Accession
GSE62944

Source

NCBI
GEO

NCBI
GEO

NCBI
GEO

NCBI
GEO

NCBI
GEO

TCPA

Content

Gene expression data of overexpressed HMECs
e GFP18: 6 controls IGF1R: 6 samples
e BAD (BAD): 6 samples RAF (RAF1): 6
samples
o HER2(ERBB2): 5 samples

Gene expression data of overexpressed HMECs
e GFP30: 9 controls
o KRAS_GV (G12V): 9 samples

Gene expression data of overexpressed HMEC:s:
e Control: 6 EGFR controls
o EGFR (EGRL1): 6 samples

TCGA Patient Tumor Samples gene expression:
e LUAD: 541 samples

TCGA Cancer Type Samples TCGA tumor sample barcode with
corresponding sample classification.

Proteomics expression levels of corresponding GFRN
downstream pathway activations.
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Table 3.1 Optimal signature gene list generated for BAD pathway listing all 475 genes and their

associated weight in the signature in predicting BAD pathway activity.

BAD 51 [Cl190rf48 0.38941 101 | FEZ1 0.33632
1 BAD 6.560065645 52 | NME4 0.36788 102 | SELRC1 0.33302
2 |KLF2 0.896897565 |[53 |RRSI 0.38186 103 | SULF1 0.40323
3 |DLEU1 0.589595681 |[54 |[PRMT3 0.37803 104 | LYAR 0.37589
4 |RFC3 0.582063363 | [55 |[SFRPI1 0.37573 105 | SORD 0.35204
5 |BOLA3 0.54764417 56 |EGFLAM [0.37521 106 | METTLI 0.35508
6 |PTGES 0.539467137 |[57 |ISCAL 0.37763 107 | PLA2G7 0.41767
7 [CB8orf84 0.571311546 |[58 [PRPS1 0.37212 108 | MBLAC2 0.34881
8 |SLC16A9 0.505061378 |59 [LSM2.00 0.37693 109 | RUVBL1 0.33966
9 [MTIG 0.544815128 |[60 [FARSB 0.36791 110 | POLR3K 0.357
10 |LOC100506844 |0.540441129 61 NEFL 0.38586 111 | C9orf46 0.34612
11 | MRPS12 0.485129258 |62 | NEFM 0.36482 112 | C1QBP 0.33355
12 | OSR1 0.628557699 | g3 | RPP40 0.40272 113 | LINC00162 0.34944
13 [SLC25A15 0.472846808 | [24 [SSR3 038821 Tia TNCL 533858
14 | COTL1 0443472213 | M5~ [ CCNBI 0.39635 115 | FAMI98B 0.3545
12 EF}I?E g-j:gzggzgg 66 | ALDHIL2 |0.40522 116 | TLN2 0.33093
: 67 | THBS2 0.39777 117 | CYB5B 0.33738
}g Sg 5%16506395 g-j:gﬁjgﬁi 68 | CYCS 0.40335 118 | TOMMS5 034348
: 69 |MYL9 0.41488 119 | GPATCH4 0.34146
19 |FAM216A 0.50461772
>0 T TIPIN 0253302804 | L10_[AIMP2 0.39289 120 | C3orf26 0.34506
71 |FLJ39051 |0.41155 121 | CHCHD3 0.34022
21 |NOP16 0404070107 | =55 5RRE2 1039225 122 | TGFBR2 0.33432
22 | PIK3R3 0.416120296 : :
>3 RBBPS 042313350 | L73__| PPIF 0.34739 123 | 1SOC2 0.37066
1 TINCo0239 0537361417 1 74| FBNI 0.45889 124 | SIGMARI 0.33393
5 TSRM 0.417898966 | L75__| RRP9 0.35714 125 | MAPK4 0.37875
3¢ [PAICS 0400280524 | |.76__| Cllorf24 0.37328 126 | SUV39H2 0.37757
27 | CKS2 0443824993 ||/ |MTIF 0.48172 127 | EMP3 0.42488
28 VM 0459530812 | |78 | RPPHI 0.65401 128 | TMED2 0.3358
29 |ALDHIBI 0453712311 | |79 | TFAP4 0.37545 129 | MIR302A 0.68678
30 | LIXIL 0.446481904 80 LOC401397 [0.39584 130 | IL1IRAP 0.34619
31 INETO2 0412896253 | [ 81| MKI67IP 0.35876 131 | TUBAIC 0.31954
32 | SLC25A10 0.407847975 | |82 |ZDHHC14 |0.43873 132 | CMC2 0.34573
33 | GBP6 0.406075519 83 RADS1AP1 [0.43246 133 | LOC100506305 | 0.34187
34 | C200r227 0430584962 | |84 |TMEM231 [0.36644 134 | CLEC2D 0.34109
35 |DOK7 0473675544 | |85 |LCEIF 0.89491 135 | Clorf53 0.42937
36 |[MPV17L2 0437380514 | |86 [ZNF593 0.41305 136 | FLJ42351 0.59824
37 |PYCRL 0.441725008 | |87 |CDK4 0.34039 137 | ACN9 0.36092
38 [POLR3G 0.423064652 | |88 |PDSSI1 0.41623 138 | THEM4 0.34003
39 [Clorf135 0416353557 | |89 |MRPS2 0.35474 139 | TIMM9 0.35329
40 |RASSF6 0.43530071 90 |NMEI 0.33704 140 | MAD2L1 0.42082
41 |DCTPPI 0386154011 | |91 [NPMI 0.34899 141 | C170rf58 0.37407
42 | PMM2 0379169038 | |92 [Cl1orf83 0.36033 142 | TUBAIB 0.32304
43 [PRADCI 0.445139438 |93 [Cllorf82 0.48853 143 | ACTG2 0.41584
44 |MIR4671 1426316561 | {94 [C2lorf63 0.43069 144 | SF3B5 0.33075
45 | FAMBGEP 0.40588634 95 |KCTDI2 0.39951 145 | MMACHC 0.34968
46 |MAB21LI1 0.473890471 |[96 [GEMINS 0.36229 146 | CISD2 0.34076
47 | POLRIE 0.409545428 |97 |RWDD2B 0.34344 147 | POLR3H 032112
48 | CHCHDS 0.380449949 |98 |LYRM4 0.36945 148 | RHOB 0.3618
49 | SPINK6 0.38647293 |99 [EHD3 0.34566 149 | PDK1 0.33483
50 | Cldorfl 0400221211 |[700 [RGS10 034668 150 | MTHFD2 033562
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BAD 201 | RRP15 0.31651 251 | KRT10 13727
151 | FKSG29 0.33031 202 | KDELR2 0.29509 | | 252 [ IL17C -1.3045
152 | GAPDH 0.30838 203 | PNOI 033598 | | 253 | KRT23 -1.227
153 | cDC20 0.41351 204 | METTLS 029712 | | 254 | DSG1 12722
154 | LHFP 0.34696 205 | LTV1 0.31921 255 | CFB -1.2321
155 | pOP7 0.30358 206 | MRPLI12 035476 | | 256 | TNFAIP2 -1.2318
156 | COQ2 0.33965 207 | SNRPF 0.33101 257 | EGR1 -1.1879
157 | CDT1 0.36604 208 | APRT 028466 | | 258 | DUSP2 -1.1708
158 | ORC6 0.40206 209 | LPARI 033898 | | 259 | FOS -1.1559
159 | MRPL17 0.30942 210 | ATPSE 0.4379 260 | CXCL2 -1.1492
160 | CT62 0.42331 211 | IGFBP5 0.3668 261 | SAA2 -1.1292
161 | RWDD1 0.34693 212 | FAMSSA 0.30059 262 | NPR3.00 -1.1545
162 | RHOJ 0.34622 213 | GTF3A 0.2931 263 | BNIPL -1.0906
163 | PPP1RI4A 0.41562 214 | ARHGAPI8 | 03147 264 GRHL1 1.0445
164 [ RPSAPS2 0.44641 215 | CBY1 0.3006 265 | S100A7 -1.0601
165 | MYL7 0.39286 216 | GEMING 0.33669 266 | ATF3 _1.0605
166 | PPAT 0.34922 217 | NHP2L1 0.28701 267 | DLC1 20,9997
167 [ MRPL3 0.31069 218 | NOL10 0.27936 268 | NFKBIZ ~0.9868
168 | TMEM241 03439 219 | PPILI 030875 | [269 | FAM25A 21,0538
170 | TMEMS 0.33865 221 | STAMBPLI | 0.3485 571 | SGPP2 20,9625
171 | ERVMER34-1 | 0.35836 222 | CKSIB 0.38696 572 | MYO5C 0.9207
172 | RANBPI 0.30885 223 | RAB36 031147 | [ 373 | CXCL3 09163
173 | PRKCDBP 0.46157 524 | PRRI1 034222 | (374 | PRSST2 )
174 | PDXP 034874 225 | ZNF556 042574 | 575 | BMF ~0.8954
175 | NAT14 032723 726 | TINMI3 029779 -
276 | LCE3D 1.012
176 | SUMO3 0.30041
227 | PUS7 0.29613 -
277 | Cl100rf99 0.9154
177 | NME2 0.37872
228 | B7H6 0.30915 578 | ERREII 0.3882
178 | EIF4EBP1 0.33727 :
229 | CHAC2 0.32236 -
179 | LRRIM2 036414 279 | MMP3 0.886
- 230 | RRM2 0.3558 280 | 1MO1L 08753
180 | DCBLD2 0.32848 :
231 | PEMT 0.31289 | 587 TLIF 08663
181 | ENC1 0.30618 :
232 | THAP4 030744 | 587 | ATHLI T0.8646
182 | CLN6 0.30249 -
183 | NOBI1 0.3145 -
234 | ECE2 030208 | (534 T FoSB 0.8346
184 | TRIB3 0.30554 .
235 | PEX3 029952 | g5 | TMEMA45B 0.8517
185 | NEGR1 0.36164 -0.
236 | PINXI1 0.33205
186 | TIMMI17A 0.32168 286 | GABRE -0.8566
237 | TSPANI 028017 | (57 | CDRTI 18513
187 | GIAS 0.34432 0.
238 | HSPA7 -2.8076 788 | RRAD 08617
188 | PFDN2 0.30095 -0.
239 | IL8 2.3871
189 | SLC25A38 0.30684 590 T HSPATA 4550 289 | STONI -0.8495
190 | ZNF689 0.30237 : 290 | AKAP12 -0.8401
241 | DNAJA4 2.1219
191 | RABEPK 0.30724 242 | HSPAIB 2.0748 D1 | FGRS 08248
192 | Clorfs1 0.34836 47 TKRTI Yie 292 | TMPRSS13 -0.8337
193 | ACAT2 0.31639 e 1'5741 293 | CXCL6 -0.8438
194 | LSM4.00 0.30677 245 | FOXQI '1 008 294 | LYPD3 -0.8503
195 | UBIAD1 0.30868 e T GDETS '1 '488 295 | INHBA -0.8284
196 | MRPL30 0.30089 i T oxcis '1 ALl 296 | DUSPI -0.821
197 | UBE2N 0.31953 5 T KRIDAD '1 '4195 297 | GSDMC -0.8151
198 | PADI3 0.37054 529 | CRYAB '1 o8 298 | IFNK 0.8217
199 | MP4 0.29509 5o sBsN '1 '424 299 | IL20 -0.8786
200 | MEST 031219 o 300 | EPHBG6 -0.8072
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BAD 351 DFNB31 -0.6395 401 | CITED2 -0.546512043
301 | DSC1 -0.8057 352 OLFML2A -0.6429 402 | DNAJC6 -0.54131458
302 | PDZK1IP1 -0.8027 353 IFRD! -0.6401 403 | KLF6 -0.543920213
303 | HSP90AAL -0.8045 354 CAPNS2 -0.6442 404 | ANG 0.572609921
304 | CXCL1 -0.804 355 FBXWI10 -0.6439 405 | TMEM2 0.547173357
305 | ZFAND2A -0.7836 356 PVRL4 -0.6327 406 | ABCA1 -0.590029574
306 | MMP7 -0.788 357 STARDI13 -0.6356 407 | PLEKHMIP | -0.541015423
307 | PLA2G4F -0.8051 358 GGTS6 -0.6407 408 | IL7R -0.560042503
308 | GRB7 -0.7733 359 SLCO4Al -0.6252 409 | RB1CCI1 -0.5416114
309 | HMOX1 -0.7868 360 TGMI1 -0.6278 410 | LIMCHI1 -0.53602323
310 | SELENBPI -0.7571 361 MMP13 -0.7688 411 | JHDM1D -0.54938032
311 | GSDMB -0.763 362 LOC146880 -0.6184 412 | LOC283174 | -0.538117539
312 | BIRC3 -0.7478 363 C170rf103 -0.6124 413 | SOCS3 -0.53187086
313 | OVOLL1 -0.7565 364 NFKBID -0.6401 414 | MAFF -0.558654828
314 | PIM1 -0.7501 365 IER5 0.6137 415 | PLEKHAG6 | -0.523475627
315 | SLC34A2 -0.7465 366 SLC5A1 -0.6063 416 | Céorfl41 -0.529266397
316 | GAB2 -0.732 367 c3 -0.598 417 | GCNT2 -0.539075823
317 | PPP2R2C -0.7468 368 PNLDC1 20.6361 418 | SEMA6C -0.606539153
318 | NPNT -0.7415 369 IER3 205992 || 419 | CLDN4 -0.546292088
319 | LTF -0.728 370 BIK 0.6147 || 420 | FBXL20 -0.531235542
320 | HSPHI -0.7268 371 DUSP5 05985 | [ 421 | DNAJBI -0.521818797
321 | HSPOOAA4P -0.7413 372 GDF6 -0.5888 422 | TSLP -0.589758944
322 | FERMT3 0.7261 373 ERBRB3 -0.6068 423 | MB21D1 -0.666220105
323 | LCN2 0.7174 374 FAM43A -0.7264 424 | PRODH -0.634864813
324 | AQP3 -0.7242 375 | FNIP2 205858 | | 425 | TBCIDS | -0.527704318
i;g ]étg(L:ff 83(1)(1)2 376 SAAL -0.5939 426 | FAM59A -0.558627458
27 TBAGS 57075 377 EDN2 -0.8265 427 | PCDH7 -0.534398737
325 | DEDD2 05949 378 ALDH2 -0.6367 428 | SERPINB4 | -0.670101339
329 TDAPKI 06973 379 DNER -0.5793 429 | AGAPILI -0.51546475
330 | T1SPBS 07052 380 ZC3H12A -0.5738 430 | PVRIG -0.63926593
231 | KRTg0 7013 381 OTUD1 0.6074 431 | SEC31B -0.578292306
332 | INFRSFIIB 06894 382 TNFSF14 05767 432 | SLC6A14 -0.565985459
333 | DNAJE4 0.6871 383 GPRCSA 05718 433 | TTCY -0.530293846
384 NYNRIN -0.5679 434 | CACHD1 -0.501482911
ig: EE:E;J ggi;g 385 ENGASE -0.5653 435 | BIN2A3P | -0.52425662
336 | MUMILI 06726 386 PDZD2 -0.5557 436 | CA8 -0.63590865
337 | TIAMD 0.6649 387 PPPIRISA -0.5572 437 | MGAT4A -0.54686226
388 NCF2 -0.6592 438 | HBEGF -0.539871734
ggg gﬁﬁiA _8:22:6 389 MIR614 0.7163 439 | INSR -0.513491805
320 | EEFIAZ 06776 390 PARMI 10.588 440 | BMP6 -0.738044179
341 | ID4 06527 391 SATB1 -0.5729 441 | SLC24A6 -0.496981111
342 | BCORLI 0.6469 392 CSorf41 -0.5719 442 | LPL -0.501864709
343 | PLA2G4C -0.6518 393 NLRP10 -0.6026 443 MYH14 -0.562429327
344 | TLR2 0.6475 394 MIR5047 -0.6988 444 | FILIPIL -0.52264068
345 | Clorf63 -0.6463 305 LY6D -0.654 445 CYP24A1 -0.511903219
346 | SLC28A3 -0.6888 396 PTGS2 -0.6109 446 | ULK1 -0.633205267
347 | PRDM1 0.6399 397 TRERF1 205597 447 | PSAPL1 -0.53763688
348 | LOC100288077 | -0.6733 398 GM2A -0.5555 448 | EFS -0.57825175
349 | ETS1 -0.637 399 HERC2P2 -0.5816 449 | PROC -0.563859271
350 | OXTR 0.6451 400 MXD1 -0.5437 450 | ZNF488 -0.541178786
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BAD

451 VAV3 -0.492

452 MY -0.5054
453 CNNM3 -0.4932
454 HRHI1 -0.5087
455 SLC38A2 -0.5098
456 CEBPA -0.7024
457 DDIT3 -0.4963
458 ABTB2 -0.5134
459 ARID5B -0.4783
460 IRAK2 -0.5479
461 BRD3 -0.4808
462 SOD2 -0.485

463 LRG1 -0.5531
464 FGF2 -0.5402
465 DNASEI1L2 -0.5879
466 ARHGEF10L -0.5666
467 ZNF217 -0.476

468 LOC100292680 | -0.4751
469 EPHA4 -0.4689
470 ILI7RB -0.5387
471 CTorf53 -0.5596
472 ARHGAP19 -0.5219
473 ZSWIM4 -0.4857
474 YPEL3 -0.559

475 RAD21 -0.4625
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Table 3.2 Optimal signature gene list generated for HER2 pathway listing all 5 genes and their associated
weight in the signature in predicting HER2 pathway activity.

HER2

1 ERBB2 5.686081061
2 PNMA2 1.312930065
3 HSPAG6 -2.680576704
4 HSPA7 -2.474209257
5 KRT1 -1.981228451

Table 3.3 Optimal signature gene list generated for IGF1R pathway listing all 25 genes and their
associated weight in the signature in predicting IGF1R pathway activity.

IGFIR

1 IGF1R 8.525634545
2 BHLHALS 3.202744382
3 CHACI1 3.135541725
4 DDIT3 3.10746006

5 ZSCAN12P1 2.906537779
6 RND1 2.594313108
7 CRELD2 2.402183201
8 PDIA4 2.40050773

9 Cl12orf39 2.407646919
10 HSPAS 2315617188
11 ZNF165 2315904376
12 STC2 2.25359694
13 DNAJA4 -1.883129308
14 HSPAIA -1.727407854
15 HSPA7 -1.338637533
16 HSPA6 -1.892293571
17 ACTBL2 -1.225838276
18 CRYAB -1.167020295
19 FAM25A -1.125409225
20 HSPAIB -1.066714135
21 OXTR -1.037646134
22 CXCLé -1.016686736
23 Cdorf26 -0.923011983
24 ATHLI1 -0.87031362
25 HSP90AAL -0.88199813
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Table 3.4 Optimal signature gene list generated for RAF pathway listing all 275 genes and their associated
weight in the signature in predicting RAF pathway activity.

RAF 51 CXCL17 1.17047 101 | PPBP 0.91086
1 RAF1 5.19694664 52 SERPINB3 | 1.14 102 | CHST6 0.91145
2 DHRS9 4.138116981 || 53 EEF1A2 1.15659 103 | SHF 0.89682
3 CA6 3.269758367 || 54 TMPRSS4 | 1.1265 104 | Cl50rf62 0.89673
4 SPRR2D 2.765557533 || 55 EMP! 1.12501 105 | GLRX 0.894
5 PRSS22 2.691804582 || 56 CXCRI1 1.12025 106 | RASSF8 0.88546
6 S100A7 2.560453392 || 57 WFDC3 1.12806 107 | ANPEP 0.88707
7 STC1 2541628315 || 58 RLBP1 1.1205 108 | APOAL 0.89359
8 ILIRL1 2324959675 || 59 SULT2B1 1.09112 109 | CLEC2B 0.88681
9 PAEP 2271125095 || 60 LCEIE 1.09822 110 | KCNJI5 0.89554
10 BMP6 2.13900959 61 TMCC3 1.08563 111 IRAK2 0.89017
11 LCE3D 2.145346451 || 62 SBSN 1.05807 112 | MALL 0.87917
12 HAS2 2.026133464 || 63 SPRR3 1.07034 113 | TMEM158 0.87483
13 FGFBP2 1.976288223 || ¢4 SMOX 1.05076 114 | RTKN2 0.8753
14 CEACAMI 1.920816312 |1 45 WNTIA 1,031 115 | PITPNCI 0.87251
15 AGPATY 1.898383965 | [ 66 SHC4 1.02211 116 | SLC26A9 0.87847
16 DIO3 1.82706596 | [ 47 ADAMS 1.0199 117 | ceNAl 0.87318
17 SPP1 1.828808606 | [“6g CEACAM3 | 1.0232 118 | DOK7 0.86194
18 | DIRAS3 1.804728998 |69 | HPSE 1.00847 119 | MAPIB 0.86256
1 1LOCI00131726 | 1.747339441 179 | sNTBI 1.00641 120 | ITGA2 0.86098
;? ]I)nggl i ;f;gégggf} 71 GUCYIB3 | 100775 121 | CLDNIO 0.86107

- 72 RPSAPS2 | 1.01542 122 | PLAUR 0.84498
22 | TNFRSFIIB | 1712124681 |17 hu6an [ 09973 123 | SDR16CS 0.85109
23 | SERFINBI 1693350995 | ™74 | 'NCR2 1.00287 124__| KCNN4 0.85034
24 CRTAM 1676547208 | ™55 TAGLN3 | 0.99432 125 | GABRA2 0.84525
;2 i%ljsz i ;Zi;ggzzg 76 | NAV3 0.987 126 | LOC100505839 | 0.84196

' 77 S0CS1 0.98574 127 | PGF 0.83863
27 FERMTI 1.521655491

78 PI3 0.96647 128 | ETVS 0.83752

28 ASPRVI 1498185838 | 1= NGEF 0.96069 129 | PMP22 0.83201
29 LY6D 1473138952 | PKIB 097706 130 | SERPINBA 0.82048
30 SRMS 1.468524674 |17, GPR110 0.9643 131 | TGFA 0.83133
3] CEACAMS6 1.47318052 % PADIL 0.97595 132 | ANOI 0.82429
32 FAMS3A 1450801413 =3 CD55 0.96142 133 | RAPHI 0.82102
33 CYBS5R2 1.455542059 ' '
) STOSAL 1257990025 | L84 LBH 0.95538 134 | CHRNA9 0.82147
% SERPINED 1 40198463 85 NOX5 0.96154 135 | RASA3 0.82216
Y TMEMASE 1385997678 | 186 FGF1 0.95553 136 | LRRCSC 0.81928
7 KLK6 1353349705 1187 PAPL 0.9484 137 | CSF2 0.82033
m T 1292592013 | 188 PLA2G4E | 0.9438 138 | HSPA7 -2.7224
39 SYTLS 1.29127749 89 SNX9 0.93598 139 | KRTI -2.1437
40 CRHRL 1262939543 | .20 S100A4 0.93362 140 | DNAJA4 -1.6897
1 GIB4 1258285675 | .91 GAL 0.94299 141 | HSPAIA -1.6377
) LveH 224296026 | .92 PLAU 0.93241 142 | WNT4 -1.5588
e CCL24 1250600555 | .93 FIBCD1 0.93539 143 | HSPAIB -1.5673
m SSTRI 216325083 | |94 EDNRA 0.922 144 | TNFAIP2 -1.4907
45 LCELF 1252990561 | 95 TMEM163 | 0.93326 145 | ACTBL2 -1.4082
47 KIAA1199 1.199258138 97 IL23A 0.91983 147 STEAP4 -1.3365
48 NTSR1 1.187096013 98 BPGM 0.91579 148 CD248 -1.3729
49 PNMA2 1.185822499 99 PLLP 0.92062 149 FAM46B -1.3149
50 SCNNID 1.188618039 100 B3GNT3 091167 150 KRT10 -1.3549
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RAF 201 CDRTI 09213 || 251 | MIRITHG -0.7415
151 MGC16121 -1.3131 202 SLC27A2 209218 [[ 252 | TLR1 20.7351
152 ATF3 -1.2822 203 LMO1 -0.9236 253 PCDH19 -0.7218
153 PIK3C2B -1.2554 204 NPR3.00 09329 |[ 254 | FBXW10 0.7239
154 RASD2 -1.2697 205 PDZKI1IP1 09137 | (555 [ TRiMS 0725
155 CRYAB -1.2914 206 RASDI -0.9046 | 256 | EFNAS 0.7317
156 IFIT1 -1.4294 207 KIT 20.9074
157 POU3FI 11,2468 208 CXCL2 09116 | L2271 _| PARPY 0.73
158 EDN2 -1.2541 209 MYOI8B 09189 | o | DUSP 07T
159 EPGN -1.2129 210 TF144L 09916 | 222 | SYTE2 07181
160 FILIP1L -1.2057 211 OXTR 20.8897 260 ADAMTSI -0.7336
161 EPHA4 -1.205 212 NFE2 -0.9028 261 FOSL2 -0.7178
162 ELF3 -1.2139 213 ZDHHCSP1 -0.8793 262 ENGASE -0.7113
164 BBOX1 -1.1913 215 KANK4 208568 || 264 | ZNFass 207149
165 CCL28 -1.1796 216 KMO 0852 |[265 | MTSSIL 0708
122 3211:2]33 : : igiz 217 DSCI 208745 |[ 266 | TNS3 07078
168 SLC47A2 -1 ' 1735 218 NEFM 08483 1267 [ vaiLs 0.7182
n 219 AMOT -0.8381 | M3¢8~ | EGFL6 20.7187
169 ETV7 -1.1448 :
220 IL6 -0.8617 | D6 [ sostDCI 07119
170 CXCR7 -1.1514 -0.
171 HS3ST6 1.1452 221 KCNIS 08354 11570 [ RN -0.7005
- 222 FERMT3 0.825 :
172 CFB -1.1101 Th PPIRGC 205 | [ 27| CoRos 20,7068
173 C100rf81 -1.0963 — 272 | FSTL4 20.692
224 TNNI2 -0.8364
174 ANGPTL? -1.094 273 | ANKRD2 -0.7042
225 PRRI15L -0.8205 :
175 EVPLL -1.0891 77 T ASADS 06575
226 TRIM22 -0.8087 -0.
176 riad 11376 227 C100rf67 0.7944 || 275 | FABPS -0.6994
177 IGFBP5 -1.0965 s FB;(IM '0'79 :
178 LOC285629 -1.0669 o SN '0'7877
179 GPR1 -1.0508 0 ECK '0'7943
180 CA2 -1.0388 .
231 SPINK -0.7852
181 SAA2 -1.0501
182 EPSTIL -1.0642 232 ADM -0.7824
183 EDNL 1032 233 NOTCHI -0.798
234 PROM1 -0.7671
184 USHIG -1.0443
185 LIMCH1 -1.0004 235 CD180 -0.7806
186 KLHDC7B -1.0207 236 MX1 -1.1257
187 EPHA3 -1.0033 237 DNAJC6 -0.7725
188 CXCL12 -0.9996 238 NKX1-2 -0.7663
189 SERPINBI13 -0.9904 239 SLC30A10 -0.7534
190 RARRES3 -1.027 240 SEMASB -0.7764
191 GRAMD?2 -0.9765 241 MAF -0.7579
192 OTUDI1 -0.9896 242 TMCC2 -0.7483
193 ADAP2 _1.0208 243 DNAJB4 -0.7584
194 CYPIBI 10.9691 244 MTUSI -0.7496
195 PAQR7 -0.9605 245 PLD6 -0.7497
196 RARB -0.953 246 ST6GALNACS | -0.7573
197 ATHL1 -0.9529 247 VAV3 -0.7467
198 APCDDI -0.9478 248 SYBU -0.7441
199 GABRE -0.9547 249 GBP6 -0.7421
200 DAPKI -0.937 250 BST2 -0.7377
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Table 3.5 Optimal signature gene list generated for KRAS pathway listing all 500 genes and their associated
weight in the signature in predicting KRAS pathway activity.

KRAS 51 PLA2GA4E 121643 || 101 LIF 0.8757
1 MAL 4.975401683 | | 52 TRPV3 1.19298 || 102 KRT18 0.87369
2 KRAS 4.567593537 | | 53 PADII 1.18888 | | 103 DOK7 0.87207
3 LCE3D 4312625314 | [ 54 S100P 118014 | | 104 PRDM1 0.86622
4 DHRS9 2721530728 | [ 55 LCEIA 120564 || 105 FGFBPI 0.8529
5 LCE3E 2.623009598 36 1SG20 1.18739 106 GSDMA 0.85062
6 NPTX1 2.331933505 | [ 57 SRMS 1.19a487 || 107 ATP2C2 0.87017
7 ILIRLI 2251303834 | [ 38 SH2D2A 115250 | | 108 SCGB2A2 | 0.84218
8 PRSS22 2.11804446 59 GJB4 1.15147 109 WFDC3 0.85547
9 DCLK1 2.005298202 | | 60 ADAMS 1.13774 110 LYPD5 0.86275
10 PRRY 2.026071415 | | 61 FAMS3A 1.12306 111 IVL 0.82789
11 AKAP12 1.934196875 62 CALBI 1.10494 112 RNASEl 0.81062
12 | S100A7 1.877277843 | [ 63 CRCTI 108772 | [ 113 MLPH 0.82862
13 FAM25A 1.886094154 | [ 54 EGR3 1.07935 114 GPR110 0.81939
14 | HAS2 1.819625572 | [ 45 CNFN 1.07221 || 115 PHLDA? 0.76218
15 PAPL 1723066676 | [ g6 HBEGF 1.05369 116 C2orf54 0.82081
16 | LOCI100131726 | 1.716884032 | |" 67 CXCL3 10685 117 KIAAL199 | 0.80278
17 | DIO3 1.702516246 | [ 45 SULT2B1 1.06767 || 118 MGP 0.78724
18 | KLK6 1.683248959 | ¢q GOS2 104513 || 119 SLC20A1 0.78789
19 | AGPATY 1.67347646 | [T, LCEIE 1.05893 | [ 120 CYGB 0.77495
20 | ARC 1.630521003 | =7y SERPINB2 1.04624 | | 121 ILIR2 0.78226
21 ] LY6D 1.584158225 | 7, FOS 1.04525 | [ 122 CXCL17 0.76704
22 | NKD2 1.583450247 | 773 ANOIL 10113 123 KLK12 0.77696
23 | PAEP 1603863513 | I, APOBEC3A 1.00733 | | 124 ATP6V0A4 | 0.76415
24 | DIRAS3 1.544455542 | 75 KCNN4 099995 | | 125 KLK11 0.75455
ig ii]ifPD : iggfggéz 76 RPSAP52 097737 | [ 126 NAV3 0.75356
T ove VO 77 LOC100505839 | 0.96569 | [ 127 KPRP 0.74849
| ceacAMI 1429761504 | |0 —pres 005575 | (129 T Clsorita | 07390
. or .

gg [S‘(Tjg 11 E i ::3;;32;2 80 EGRI 094125 | | 130 LPAR6 0.73682
31 T SERPINBI 380470200 ] 8! TFF1 092362 || 131 LYPD3 0.7261
32 THYALL 38074531 | |82 CYP4F22 094375 || 132 SOCS1 0.89322
33 | SPRRIA 1356933203 | L33 EMP1 093242 | [ 133 EMP3 0.70766
32 | AQPS 365304318 | 1% TGM2 092683 | | 134 SERPINB9 | 0.72736
as | SCNNID 354700541 | L85 PNMA2 0.9217 135 DUSPS 07113
3% | BvPs 1353905526 | |86 AGR2 091412 || 136 CRHR1 0.71496
37 | CA6 353760868 | |87 S100A1 0.907 137 TTYHI 0.72486
38 | FERMTL 133853796 88 SCNNI1G 0.92207 || 138 SOX10 0.70644
39 | TAGLN3 1340045352 | |89 SSTRI 0.91386 | [ 139 SPRR4 0.73225
40 LCEIC 1319520476 | |90 PAQRS 0.90625 140 SNCB 0.71409
21 | caLB? 1321249151 | [.91 SYTLS 091364 | | 141 SHC4 0.70304
42 ANGPTL4 1.297187349 | | 92 LOXLA4 0.91049 142 ENC1 0.6996
43 SOXS8 1.322782503 93 ZBED2 0.90172 143 ITGB7 0.694
44 ASPRV1 1.311452867 94 ROBO4 0.90032 144 GAL 0.70113
45 TMEM45B 1.31046715 95 DUSP6 0.90056 145 PDGFB 0.69968
46 SLC5A1 1.291881946 96 TMEM121 0.93094 146 SLC13A5 0.69126
47 | CEACAMS 1281807515 | | 97 CCNA1 0.89072 | | 147 MAB21L1 | 0.68592
48 | TNFRSF11B 1264906447 | | 98 WNT7B 0.8953 148 FAMI50B | 0.70426
49 | wNT9A 1251212566 | | 99 EGR2 0.88193 | [ 149 WNK2 0.68383
50 | EEF1A2 1219757472 | | 100 | NGEF 0.88352 | | 150 SEMATA 0.67977
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KRAS 201 ATGI6L1 0.5798 251 HSPALA 3.8795
151 TMPRSS4 0.6788 202 PTHLH 0.56531 252 HSPALB 3.5699
152 CDC20 0.67643 203 Cloorfi4 0.56848 253 HSPA7 3.1361
153 PIPN22 0.6847 204 FGEIS 0.60103 254 DNAJA4 2.6933
154 NR4AT 0.67316 205 Cl7orf28 0.57244 255 CCL26 26199
155 OSR1 0.65648 206 OSBP2 05679 256 CRYAB 2.2305
156 KIAA0754 0.6587 207 EMR2 0.55752 257 BAG3 -1.6267
157 CD55 0.64813 208 ATPI2A 057511 258 HISPB8 1.608
158 GDPD3 0.70112 209 CDCA2EP2 0.56594 259 HSPO0AAL 1.5994
159 NTSE 0.65586 210 PLCXDI 0.55885 260 HSP90A A4P -1.5663
160 PPPIRIB 0.64674 211 PLAT 0.54353 261 DNAJB1 -1.3923
161 FZD8 0.63076 212 DUSP4 0.54897 262 ATF3 -1.376
162 S100A4 0.64993 213 GPRC5A 0.54712 263 OXTR -1.344
163 COL13A1 0.66295 214 TRPV4 0.54794 264 SH3BGR -1.2492
164 TMEM163 0.65854 215 FGFBP2 0.59485 265 DNAJB4 1.2326
165 COL6A2 0.61233 216 SPONI 0.55303 266 CCL2 1.2195
166 PTK6 0.6349 217 KRTS 0.54167 267 HSPOOAAGP 12173
167 EDNRB 0.63641 218 TMPRSSIIE | 0.5529 268 ACTBL2 1.1013
168 MALL 0.65604 319 B3 353605 T O o554
169 SPRY4 0.63402 730 BMP2 054315 770 TF16 T1112
170 LOC646329 | 0.63555 231 SLCOASR2 053703 771 CHACT 1,000
171 PLEK2 0.62729 py) SERPINF2 0.56519 772 ZFANDZA ~0.9981
172 SMOX 0.63367 223 CLDN7 0.53619 273 7R ~0.9941
173 OLAH 0.63771 04 MFT2 0.53145 274 ULBPI 0.976
174 IGFN1 0.62946 225 SLCI0A6 0.65379 275 UBB -0.9525
175 GABRA2 0.63677 =5z AP 55T e SNATAT 5520
176 EREG 0.63136 227 CXCL1 0.5187 277 GLYATLZ 0.9777
g; iiﬁsNBB ggiggf 228 SPTBNS 0.52699 278 CDRT1 -0.9394
=5 S TS 229 MMP1 0.56046 279 UBC -0.9349
U S TS| | enT s [or— [P0
181 SHTCI 0.60283 232 UCAI 0.55714 282 BST2 0.9168
182 SHF 0.61369 233 S100A6 0:5188 283 HSPAR -0.8668
183 RUNDC3B 0.60537 :

T FIENTES e 234 CXCRI1 0.54057 284 HSPDI1 -0.8857
T e OBE 235 PIPRE 0.50595 285 LOCI00130238 | -0.8746
e 55T 559753 236 PLAU 0.49263 286 D4 -0.8648
T YPTBI 0.59918 237 GLRX 0.52822 287 TNFAIP2 -0.8629
8 TNCAD 559963 238 RAETIL 0.5207 288 TOC645638 0.8519
139 PLAUR 0.59369 239 BAIAP2L2 0.547 289 MGC16121 0.8717
190 FAMIOAS | 0.59652 249 SLC16A3 0.51242 290 MB21DI -0.8361
191 FIBCDI 13973 241 CBorfs4 0.51158 291 DUSPS -0.838
93 C6orTT5 0359348 242 ENDOU 0.52965 202 DLCI 0.8165
93 SNFI13 060719 243 PDEIC 0.50194 203 FILIPIL -0.8024
794 PPAPDCIA 10357577 244 SLCIAI 0.48819 204 SESN2 -0.802
95 THBST 057095 245 Cl20rf35 0.46702 205 CHORDCI -0.8019
196 PMP22 0.57659 246 IL1IA 0.49519 296 LOC727896 -0.7814
197 SLCO4A1 0.60859 247 KIF1A 0.52765 297 LAMP3 -0.8295
198 PYGB 0.57893 248 RFX8 0.53032 298 HSPE1 -0.7823
199 KRTIO 058324 249 TLANCL3 0.51748 769 KRT10 0.7951
200 TGFA 0.57524 250 RASALI1 0.52654 300 LOC285629 -0.7953

27




KRAS
301
BEX1
302 3
303 [FI34L -0.7987 3:l COLTAT
08 iNF323 '2-399 35§ SOD2 -0.6445 201
ACY -0.7778 F 0.5
305 BP 15 KBP4 5675 ZSCAN
- 3 40 16
306 ggpl g.zs 355 ABCBI 03686 40§ AMOT -0.5478
07 Ml:.cl)Xl 0.745:;7 356 MITF 05975 || 404 GM2A 04965
T =\, -
309 T 3 0751 358 NECAB2 -0.5643 || 406 PDGFD -0.4917
310 mgm _0-7405 - STORITH 06291 || 407 PARMI -0.5244
311 IFRDM27 75 i 360 CBorfd7 05687 || 408 GKAPI 20.5043
313 TFI44 ’ -0.7351 362 IDP2 -2'56“ 210 EPGN -0.4847
31 i -0.5 -
31: MORC4 -0.7679 363 EE;AS 5 5:(1) 411 E?C?, g:l 16
- C -0.5601 -0.
316 GREMI 0.7196 364 —= 3585 412 GPL 5 465
T TIMCHI 20,7107 365 . 2 s a3 R75 4825
— CFB 0.6971 366 S?FS _0'6424 13 MRPLI8 -0.506
319 ENGASE 206969 367 TRIIPL — 7 |[415 OLFML2A 04768
0 Cdorfd9 20.6905 168 - M22 _0'5583 T3 FNIP2 05122
1 CCDC117 -0.6949 369 N];IRPINBB _0-5568 i FABP5 '2-4888
5 ANGPTL7 -0.6959 370 < RAS2 _0'5433 418 LAYN -0.4984
IGR 20.70 3 OWAHB 452 NID1 -0.5021
124 DFNB31 -0.6956 372 A];PC’ >3 420 RIM16 -0.4798
Sl LS 06000 | oL - M2 L T MAP7 04543
326 LCN10 -0.6824 374 SR _0' 7 57 || 422 JUN -04519
327 SLC34A2 -0.662 375 HERC6 0' 492 | 423 MME -0.5599
o 06| |00 Seb MEEE | DAPKI 0.5016
75 CLU -0.6515 77 EML3 -0.7862 155 ASNS 204714
30 DIO2 -0.6615 378 ABHD4 '3'5436 16 GAB2 -0.5247
I SLCI6AL4 06| |0 ZSPYLZ 0558 [ 427 RGS2 10459
S E 06468 | | PTIC = 362 || 428 CXCL12 05889
3 CYFIP2 -0.6422 3R MEX3B 3357 [ 429 CCRN4L -0.489
33 ASAP3 -0.6513 TE) FAMS3D -0.7756 yEN .32 -0.4869
T OLFM4 0.623 5 IERS 053755 |[ 232 MDK 05757
- TO -0.5 _
37 EIC:II;IM 2-6314 385 - X > 535233 33 HIST1H4H 0.5372
338 AP 6319 386 LACZ 5 87 |[ 434 GPNMB 05219
139 SLC40A1 -0.6169 %7 HSPH1 -0.5151 5 NCALD 204927
340 ATHLI 0.6076 388 DNHDI1 -14223 [ 43 KRT80 -0.5094
i SECTMI1 -0.6182 39 DDIT3 -0.5029 433 SYNPO2 -0.4766
) ll:J/LARVELm -0.6161 o RND3 '2-5528 per TFIH1 20448
PNT -0.6019 DEDD -0.5134 TRI -0.54
343 301 2 239 M16L .5497
S R | e e 0459
345 CSRP2 0.6078 393 MXI 05158 1 441 LOC1005074 0.5
T PSG6 -0.6076 394 GABRE -1.0652 e MALATI 95 | -0.5215
= E/HCB 206086 5 CDKNZB 06457 || 443 OAS3 05
T LAM4aB 829 - OSGINT 04942 || 444 MAP2 205378
9 ZNHII::PLZ 0-5;7 1 57 CAPNG '8-2185 Vg PTGES3 -0.4459
7 -0.593 -0. -
350 FAM;I sl 398 ZYNM e 5395 246 ;RIMI'? 8-453 I
6E 05803 399 E:LSST“ -0'5251 YT PNF711 05172
700 1 .5265 73 LXNA2 -0.5192
HSPA -0.5318 BHL 2044
L 5 249 HB9 81
BLNK -0.5853
-0.6235
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KRAS

451 XAF1 -0.5916
452 NFIL3 0.4577
453 B3GNTI1 -0.4826
454 CREG2 05158
455 DNAJC6 -0.4191
456 GRAMD2 -0.4335
457 HISTIH3D ~0.5556
458 PLDI 04275
459 STOX2 04571
460 SIAH1 -0.4665
461 HSPOOABI ~0.4022
462 ANK3 -0.4245
463 FAMI129A 20.4753
464 GAMT -0.4972
465 MBNL2 -0.4265
466 VAV3 -0.4183
467 BRD3 -0.4179
468 TAF15 20.4281
469 SFMBT2 -0.4139
470 KLHL25 0.4533
471 ADRBK2 -0.4163
472 INPPSD ~0.4079
473 ELOVL5 -0.4129
474 EDNI 20.4641
475 L6 -0.5401
476 CIR -0.4441
477 CCDC84 -0.526

478 NMES 20.4401
479 MB21D2 20.434

480 DOCK10 -0.4252
481 LOC653513 -0.5228
482 MAPK4 -0.4509
483 NBPFI 20.448

484 NGF 20,6122
485 DDX60 20,6192
486 STC2 04182
487 ZNF117 -0.4531
488 GPR1 -0.4633
489 RBM24 -0.4383
490 CYP39A1 ~0.4766
491 PIK3C2B -0.4126
492 FBXW10 -0.4436
493 HMGN3 -0.4005
494 SAMHDI 20.4831
495 BTN2A2 -0.4324
496 ST13P4 -0.428

497 PPPIRI5A -0.3806
498 HSPO0AB3P | -0.4065
499 LOC284837 ~0.4228
500 PTN -0.4857
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Table 3.6 Optimal gene list selection using proteomics validation calculated with Pearson pairwise
correlations between predicted pathway activations and TCPA protein expression levels.

List length

Pathway
BAD
HER2
IGF1R
RAF
KRAS

475
5
25
275
500

Antibody
PDK1_pS241
HER2_pY1248
IGFIR_pY1135Y1136
CRAF_pS338
MEK1_pS217S221

cor p-value
-0.247206 1.63E-06
0.3180165 4.54E-10
X X
0.3176497 4.77E-10
0.1643924 0.001577

Table 3.7 Optimal gene list selection using gene expression validation calculated with Pearson pairwise
correlations between predicted pathway activations and TCGA patient tumor expression levels.

List length

Pathway

BAD
HER?2
IGF1R
RAF
KRAS

475
5
25
275
500

Validation Gene

BAD
ERBB2
IGF1R
RAF1
KRAS

cor p-value
X X
0.4114047 < 2.2e-16
0.178464 2.98E-05
X X

X X

Table 3.8 Summary table of gene signature selection and methods used for validation.
List length |Proteomics

Pathway
BAD
HER2
IGF1R
RAF
KRAS

Oncogene

BAD
ERBB2
IGF1R
RAF1
Glz2v

475
5
25
275
500

PDK1_pS241
HER2_pY1248

X

CRAF_pS338
MEK1_pS217S221
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Figure 1.1 Schematic overview of the driving oncogenic Growth Factor Receptor Network (GFRN)
responsible for cell survival, growth, and metastasis. Consist of two intercommunicating parallel signaling
pathways including RAS/RAF/MAPK pathway, shown in green, and the PI3K/AKT/mTOR, shown in blue.
RAS pathway activation can be initiated by EGFR receptor mediated signaling leading to activation of
RAF, in turn initiating MEK activation, as a result initiating tumorigenesis through ERK activation. Its
neighboring pathway PI3K can be initiated through HER2(ERBBZ2) receptor mediated signaling as well as
RAS activation. This then results in the inactivation of PDK1 activating AKT signaling which can inhibit
the BAD pathway and/or lead to activation of mTOR resulting in tumorigenesis. Additional, signaling
pathways can be initiated such as the inhibition of ERK leading to inhibition of RAF through mTOR
activation. Although various alternate pathways of activation leading to drug resistance remain
uncharacterized.
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Figure 2.1 (a)Principal component Analysis (PCA) expressing the first two PCAs representing the greatest
variations between the gene expression data and LUAD patient tumor samples from TCGA. Due to external
factors significant variances and confounding batch effects are observed. (b) PCA scatter plot displaying
the first two PCAs representing the greatest variations between the datasets. This included the gene
expression data, shown in green, and LUAD patient tumor samples from TCGA, shown in red, in which
significant confounding variables and variances were observed. (c) The PCA following adjustment and
refinement of gene expression data and patient tumor samples using the ComBat function resulting in
increased data similarity. (d) PCA scatter plot displaying the gene expression data, shown in red and LUAD
patient tumor samples, shown in green, following ComBat adjustment displaying significant improvement
in data similarity and reduction of variances and confounding batch effects.
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Figure 3.1 Gene expression box plots used for gene expression signature validation. (a) Generated box plot
used for validation of BAD displaying the signature’s ability, shown on the x-axis, to distinguish levels of
pathway activity within LUAD patient tumor samples shown on the y-axis. As a result, higher levels of
pathway activity were predicted in 55 samples classified as “HIGH” expressing, while 331 showed
“intermediate” pathway activity, and 155 showed low levels of BAD pathway activation classified as
“LOW” expressing samples. Concluding the signature’s ability to distinguished levels of aberrant activity
with TCGA samples. (b) In this figure, the generated gene expression signature of HER2 predicted higher
levels of pathway activity in 55 patient tumor samples classified as high expressing, 161 intermediate
expressing samples, and 125 low expressing samples distinguishing levels of pathway activity further
validating the signature. (c) Lastly, the gene expression signature of IGF1R was able to distinguish levels
of increased pathway activity within 55 patient tumor samples, classified as “HIGH” expressing, 176 were
identified as “intermediate” expressing, and 310 were characterized as low expressing. In all, validating the
signature’s ability to distinguish accurate levels of pathway activity.
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Figure 4.1 Complex heatmaps generated of optimized gene expression signatures representative of aberrant
pathway activity for the GFRN pathways (a) BAD, 475-gene signature (b) HER2, 5- gene signature
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(c)IGF1R, 25-gene signature (d) RAF, 275-gene signature, and (e) KRAS, 500 gene-signature. The black
bar indicates normal pathway activity or the respective GFRN pathway turned off, expressed using the
HMECs overexpressing GFP (control). The red bar is then used to represent aberrant pathway activity or
pathway activity turned on, generated by the HMECS overexpressing the GFRN-pathways respective
oncogene. Relative to the pathway’s state of activation, genes comprising the signature are shown on the
right expressing varying levels of activity, indicated in red or blue. Genes expressing upregulated levels of
expression are represented in red, and the brighter the red, the higher levels of activity while blue indicates
downregulated levels of activity and the darker the blue, the lower the level of activity.
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