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Abstract

We test a frog-in-the-pan (FIP) hypothesis that predicts investors are inattentive to informa-

tion arriving continuously in small amounts. Intuitively, we hypothesize that a series of frequent

gradual changes attracts less attention than infrequent dramatic changes. Consistent with the

FIP hypothesis, we find that continuous information induces strong persistent return continu-

ation that does not reverse in the long run. Momentum decreases monotonically from 5.94%

for stocks with continuous information during their formation period to -2.07% for stocks with

discrete information but similar cumulative formation-period returns. Higher media coverage

coincides with discrete information and mitigates the stronger momentum following continuous

information.
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Limited cognitive resources can prevent investors from immediately processing all available in-

formation.1 Motivated by the notion that a series of gradual changes attracts less attention than

sudden dramatic changes, we develop and test a frog-in-the-pan (FIP) hypothesis that originates

from limited investor attention. This hypothesis predicts that investors are less attentive to infor-

mation arriving continuously in small amounts than to information with the same cumulative stock

price implications that arrives in large amounts at discrete timepoints.

According to the frog-in-the-pan anecdote, a frog will jump out of a pan containing boiling water

since the dramatic temperature change induces an immediate reaction. Conversely, if the water in

the pan is slowly raised to a boil, the frog will underreact and perish. In the psychology literature,

Gino and Bazerman (2009) conclude that small gradual changes induce less critical evaluation than

large dramatic changes. Their study found a greater acceptance of unethical behavior, defined as

instances of cheating, when behavior gradually erodes compared to abrupt shifts in behavior. The

authors interpret this finding as evidence of a slippery slope.

With the exception of Hou, Peng, and Xiong (2008), the role of limited attention in generating

momentum has not been explored.2 The existing limited attention literature implicitly assumes

the existence of an upper attention threshold that constrains the maximum amount of information

on all firms that investors can process during a short horizon. For example, Hirshleifer, Lim, and

Teoh (2009) find greater post-earnings announcement drift following days with a large number of

earnings announcements. They conclude that investors are overwhelmed by large amounts of infor-

mation. We posit the existence of a lower attention threshold, with the FIP hypothesis predicting

an underreaction to information that arrives continuously in small amounts over a long horizon.

Intuitively, this continuous information is beneath the radar screens of investors. Specifically, the

FIP hypothesis predicts that investors process continuous information with a delay.

Appendix A provides an illustrative model that formalizes the FIP hypothesis. Signals whose

magnitudes are below a lower threshold k are processed with a delay by FIP investors. Momentum

is stronger when the k threshold is higher since more signals and larger signals are temporarily

“truncated” by FIP investors and incorporated into the stock price with a delay.

1Hirshleifer and Teoh (2003), Sims (2003), Peng and Xiong (2006), as well as DellaVigna and Pollet (2007) provide
theoretical foundations that allow limited attention to influence asset prices.

2Rational explanations for momentum are offered by Johnson (2002) and Sagi and Seasholes (2007) while behav-
ioral explanations include Daniel, Hirshleifer, and Subrahmanyam (1998) among others.
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The model illustrates that momentum originates from the truncation of small signals whose

signs are the same as the formation-period return. Conditional on a specific formation-period

return, momentum strengthens with the frequency of these small signals. Therefore, to test the

FIP hypothesis, we construct a proxy for information discreteness denoted ID that captures the

relative frequency of small signals (below k). ID identifies time series variation in the daily returns

that culminate in formation-period returns.3 Specifically, ID is defined exclusively by the sign of

daily returns underlying this cumulative formation-period return. For example, a high percentage of

positive daily returns relative to negative daily returns implies that a past winner’s high formation-

period return is attributable to many small positive returns. Intuitively, as the formation-period

return accumulated gradually over many days, the flow of information is continuous. In contrast,

if the majority of the formation-period return accumulated over a few days, then the flow of

information is discrete.

Figure 1 provides a visual illustration of continuous versus discrete information. Empirically,

discrete information coincides with increased turnover as well as higher media coverage, more

management press releases, and larger earnings surprises. These relationships suggest that discrete

information attracts attention.

The FIP hypothesis predicts that ID has a conditional relationship with momentum. Therefore,

only after conditioning on formation-period returns is the influence of ID on momentum relevant.

We first investigate whether ID influences holding-period returns using sequential double-sorted

portfolios that condition on formation-period returns, then ID. Consistent with the FIP hypothe-

sis, continuous information induces stronger and more persistent return continuation than discrete

information after conditioning on the magnitude of formation-period returns. Over a six-month

holding period, momentum increases monotonically from -2.07% in the discrete information port-

folio to 5.94% in the continuous information portfolio. Independent double-sorts reveal a similar

monotonic increase in return continuation that remains significant after adjusting for risk using the

three-factor model.

Momentum following continuous information persists for eight months while the momentum

profit following discrete information becomes insignificant after two months. Nonetheless, the eight-

3Although daily stocks returns measure information with error because of market frictions and behavioral biases,
this error is small relative to the large amount of cumulative information underlying extreme formation-period returns.
In addition, a modified version of ID based on analyst forecast revisions instead of returns yields similar results.
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month horizon corresponding to continuous information’s return predictability is easier to reconcile

with limited attention than risk. Moreover, the return predictability associated with continuous

information does not reverse. The lack of long-term return reversal following continuous information

is consistent with an investor underreaction, and therefore supports the FIP hypothesis.

The investor attention constraint, which is represented by the k parameter in the model, is

responsible for return continuation under the FIP hypothesis. Therefore, the FIP hypothesis pre-

dicts that momentum strengthens when the investor attention constraint is more likely to bind

(higher k parameter). We examine this novel prediction using cross-sectional as well as time series

regressions. Intuitively, stocks with low institutional ownership, disperse institutional ownership,

small market capitalizations, low analyst coverage, and low media coverage are associated with

less attentive investors and a higher k threshold. In support of the FIP hypothesis, ID explains

more cross-sectional variation in momentum among stocks in these subsets. We also examine the

returns from an enhanced momentum strategy that buys past winners and sells past losers following

continuous information. The k threshold is higher when more stocks are available for investment

since the amount of investor attention allocated to an individual stock is lower, on average. In

support of the FIP hypothesis, the enhanced momentum strategy produces higher returns when

more stocks are available for investment. Furthermore, as predicted by limited attention, increased

media coverage of past winners and past losers coincides with weaker momentum (Peress, 2009).4

As with any empirical proxy, ID is not a perfect measure for information discreteness. In

particular, since ID does not depend on the magnitude of daily returns, counterexamples can be

constructed where discrete and continuous information flows have the same value of ID. However,

such counterexamples occur less frequently as the number of daily returns increases. A simulation

of the illustrative model in the appendix demonstrates ID’s ability to capture the FIP effect and

explain cross-sectional differences in momentum. In addition, we explicitly examine a modification

of ID that does depend on the magnitude of daily returns. Additional simulation and empirical

evidence both suggest that overweighing small daily returns better captures the truncation of

signals below the k threshold. However, these truncations are small in magnitude and consequently

4We utilize media coverage throughout the paper as a proxy for investor attention but acknowledge that media
coverage is not exogenous. For example, large firms are more likely to appear in the financial press. In unreported tests,
we address this endogeneity concern by orthogonalizing media coverage with respect to several stock characteristics.
The residual media coverage resulting from this regression was found to provide similar results.
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contribute less to return continuation. Therefore, ID provides a parsimonious proxy for information

discreteness that is sufficiently accurate for testing the FIP hypothesis.

Despite similarities in their construction, the economic motivation underlying ID differs consid-

erably from the return consistency measure of Grinblatt and Moskowitz (2004). Return consistency

is a dummy variable equaling one if a stock’s monthly returns are positive (negative) for at least

eight months of the twelve-month formation period and its formation-period return is also positive

(negative). Return consistency is motivated by the disposition effect’s prediction that investors

are more likely to sell stocks in their portfolio that have unrealized capital gains than those with

unrealized capital losses.

A battery of empirical tests indicate that the disposition effect is not responsible for the return

predictability of continuous information. First, although the disposition effect does not apply to

analysts, their forecast errors are larger following continuous information. Consequently, continuous

information fails to attract analyst attention. This failure cannot be attributed to the disposition

effect. Instead, consistent with the FIP hypothesis, it provides a channel through which analyst

inattention causes investors to process continuous information with a delay.

Second, post-formation order flow imbalances contradict the disposition effect’s prediction that

investors are more likely to sell past winners than past losers. Instead, following continuous in-

formation, past winners have positive order flow imbalances while past losers have negative order

flow imbalances. These imbalances support the FIP hypothesis since investors appear to delay the

processing of continuous information.

Third, in time series tests, neither unrealized capital gains nor return consistency explain the

returns from an enhanced momentum strategy that conditions on continuous information. Instead,

momentum is weaker among stocks with higher media coverage. Hence, media coverage appears to

mitigate investor inattention, although this finding is subject to the critique that media coverage is

endogenous. Conversely, in cross-sectional tests, the ability of return consistency to predict returns

is limited to past winners, while ID explains the return continuation of both past winners and past

losers.5 In addition, the interaction between ID and formation-period returns remains a significant

predictor of price momentum in every Fama-MacBeth regression specification, even after controlling

5ID is also a stronger predictor of momentum than return consistency. Within the subset of stocks with consistent
returns (return consistency dummy variable equals one), portfolio double-sorts confirm that continuous information
induces stronger momentum than discrete information.
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for unrealized capital gains, return consistency, and the capital gains overhang variable in Frazzini

(2006) that is derived from mutual fund holdings.

Besides proxies for the disposition effect, the prior literature has identified several firm char-

acteristics that are related to the strength of price momentum such as turnover (Lee and Swami-

nathan, 2000), firm size and analyst coverage (Hong, Lim, and Stein, 2000; Brennan, Jegadeesh,

and Swaminathan, 1993), idiosyncratic return volatility (Zhang, 2006), and book-to-market ratios

(Daniel and Titman, 1999). Fama-MacBeth regressions confirm that the return predictability of

continuous information interacted with formation-period returns is not attributable to these firm

characteristics. Moreover, the economic significance of the Fama-MacBeth regression coefficients il-

lustrates the greater return predictability of ID relative to characteristics in the existing momentum

literature.

In aggregate, a myriad of firm characteristics (size, book-to-market ratios, turnover, idiosyn-

cratic volatility, analyst coverage, institutional ownership, absolute formation-period returns) in-

cluding return consistency only explain about 14% of the cross-sectional variation in ID. This

property is consistent with the lack of persistence in ID at the firm-level, which justifies its abil-

ity to proxy for time-varying information flows at the firm-level. Indeed, this lack of persistence

distinguishes the FIP hypothesis from theories of momentum that predict its strength is related to

persistent firm characteristics such as firm size.

For emphasis, the FIP hypothesis depends on the cumulative importance of a sequence of small

signals. Provided a signal is sufficiently large to attract investor attention, its exact magnitude is

irrelevant. This property distinguishes ID from skewness and proxies for extreme returns (Bali,

Cakici, and Whitelaw, 2011) measured over the same formation period.

As a final robustness test, we construct ID using signed monthly analyst forecast revisions

instead of daily returns. This analyst-forecast based ID proxy confirms that continuous information

induces stronger momentum than discrete information. Thus, the momentum implications of the

original return-based ID proxy are robust to the noise in daily returns.

The growing limited attention literature includes important contributions by Cohen and Frazz-

ini (2008) on supplier-customer linkages, Corwin and Coughenour (2008) on liquidity provision, Da,

Engelberg, and Gao (2011) on web-search-based attention, as well as Bae and Wang (2012) on the

stock ticker name. This literature has recognized the need for information to attract investor atten-
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tion with Barber and Odean (2008) reporting that small investors buy attention-grabbing stocks.

However, the prior literature has not distinguished between the continuous and discrete arrival of

information, which is the focus of our paper. This focus involves the flow of information over time

rather than its diffusion across investors (Hong and Stein, 1999). Our paper also complements the

emerging literature that studies the media’s role in asset pricing (Tetlock (2007), Engelberg and

Parsons (2011), and Gurun and Butler (2012) among others) since our findings suggest that media

coverage alleviates the underreaction of investors to information.

1 Proxy for Information Discreteness

We obtain return data from CRSP after adjusting for delistings and firm-level accounting data

from COMPUSTAT. We then eliminate negative book values from the sample, which ends in 2007.

The starting dates for the sample period range from 1927 to 1992 depending on the availability of

certain firm characteristics. The exact starting dates are listed above each panel when our empirical

results are reported.

Our benchmark ID proxy is determined by the sign of daily returns and ignores their magnitude

by equally-weighting each observed return. The percentage of days during the formation period

with positive and negative returns are denoted %pos and %neg, respectively.6 ID is defined as

ID = sgn(PRET) · [%neg −%pos] , (1)

where the cumulative return during the formation period is denoted PRET. Specifically, PRET is

defined as a firm’s cumulative return over the past twelve months after skipping the most recent

month. The sign of PRET is denoted sgn(PRET) and equals: +1 when PRET > 0 and -1 when

PRET < 0.

As emphasized in Appendix A, ID enables us to examine conditional momentum where the

conditioning is conducted on PRET. In particular, our model demonstrates that momentum origi-

nates from the initial truncation of signals below the minimum attention threshold k. Conditional

on PRET, momentum becomes stronger when more signals (and larger signals) with the same sign

as PRET are truncated. The ID definition in equation (1) captures this initial truncation.

6We obtain similar results if %pos and %neg are defined using market-adjusted daily returns.
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A large ID measure signifies discrete information while a small ID measure signifies continuous

information.7 For emphasis, ID is interpreted after conditioning on the magnitude of formation-

period returns, PRET. For past winners with a high PRET, a high percentage of positive returns

(%pos > %neg) implies that PRET is formed by a large number of small positive returns. According

to equation (1), a high percentage of positive returns culminating in a positive PRET yields a low

value for ID and corresponds to continuous information. Indeed, if the series of daily returns are

all positive, then ID equals its minimum value of -1. In contrast, if a few large positive returns

are responsible for PRET being positive while the remaining daily returns are negative, then ID

is closer to +1 and information is discrete. The same intuition applies to past losers with a low

PRET.

Figure 1 provides a visual illustration of ID. Both stocks in this figure have the same PRET

over 250 “daily” periods in a year. The stock with continuous information during the formation

period achieves this cumulative return with many small positive daily returns while the stock with

discrete information has a few large positive daily returns.

As ID does not depend on the magnitude of daily returns, counterexamples can be formulated.

For example, sequence A={2, 2, 2, 2, 2, 2} and sequence B={1, 1, 1, 1, 1, 7} both have an ID of -1

and PRET of 12, although sequence B may be considered more “discrete” than sequence A due to

its last element, which also results in sequence B having more volatility. However, counterexamples

of this nature are less likely to occur as N increases. Furthermore, the implications of ID for return

continuation are robust to controlling for return volatility in the empirical analyses.

While ID is not a perfect measure for information discreteness, equation (1) is simple, parsi-

monious, and motivated by the illustrative model in the appendix. Furthermore, ID is robust to

whether PRET is near zero or large in absolute value. ID also does not contain any apparent biases

capable of inducing a spurious inverse relationship with momentum that is predicted by the FIP

hypothesis.

A simulation exercise with N=250 in the appendix verifies that ID explains cross-sectional

differences in momentum. This simulation demonstrates that for stocks with a large absolute

PRET (past winners and past losers), ID is negatively correlated with momentum. Specifically, the

7Morck, Yeung, and Yu (2000) estimate a similar measure to capture cross-sectional commonality in the returns
within individual countries. In contrast, ID is estimated from a time series of returns for individual firms.
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correlation between ID and return continuation is -0.65 for past winners and -0.67 for past losers.

Therefore, as predicted by the FIP hypothesis, more continuous information (low ID) is associated

with greater return continuation. In contrast, when PRET is near zero, the correlation between ID

and return continuation is negligible. Overall, ID is a robust proxy for information discreteness that

captures the economic motivation underlying the FIP hypothesis in subsequent empirical tests.

We also construct a modified ID measure denoted IDMAG that depends on the magnitude of

daily returns. Specifically, IDMAG is formed by sorting daily returns into firm-specific quintiles

based on their absolute value. The first quintile contains the smallest daily returns while the fifth

quintile contains the largest returns. The decision to define “small” and “large” returns using

quintiles rather than fixed thresholds allows for heterogeneity across firms and over time. We then

assign monotonically declining weights wi of 5/15, 4/15, 3/15, 2/15, and 1/15 to the respective

|Returni| quintiles. These weights, which sum to one, ensure that small daily returns are assigned

more weight than large daily returns in the following definition

IDMAG = − 1

N
sgn(PRET) ·

N∑
i=1

sgn (Returni) · wi , (2)

where N denotes the number of days in the formation period. While the linear declining weighting

scheme is somewhat arbitrary, other monotonically declining weighting schemes yield similar results.

Observe that if daily returns have the same absolute magnitude, then IDMAG reduces to the original

ID measure.

We consider another alternative ID measure to account for the occurrence of zero return days.

Recall that the %neg−%pos difference that defines ID is implicitly normalized by one since %pos+

%neg + %zero = 1, where %zero denotes the percentage of zero return days. While the frequency

of zero daily returns has been interpreted as a measure of illiquidity by Lesmond, Ogden, and

Trzcinka (1999), incorporating a one-month interval between the formation period and holding

period mitigates the impact of short-term return reversals due to illiquidity. Nonetheless, we

investigate the impact of zero return days using the following modification of ID

IDZ = sgn(PRET) · [%neg −%pos]

[%neg + %pos]
, (3)
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which is identical to ID whenever %zero = 0.

Our later empirical tests carefully distinguish between ID and idiosyncratic return volatility

denoted IVOL. As in Fu (2009), IVOL is estimated using the residuals from a four-factor model

applied to daily returns during the formation period. IVOL often proxies for the incorporation of

firm-level information into stock prices. Hou and Moskowitz (2005) estimate a distinct price delay

measure for the incorporation of market-level information in stock prices by regressing firm-level

weekly stock returns on contemporaneous market returns and lagged market returns over the prior

four weeks. The R-squared is denoted R2
L when lagged returns are included in this time series

regression while the R-squared without lagged market returns is denoted R2
C . The price delay

measure is then defined as

D = 1−
R2

C

R2
L

. (4)

Intuitively, if a firm’s stock price rapidly incorporates market-level information, then lagged market

returns are unimportant and R2
C is near R2

L, with D being closer to zero as a consequence. However,

if the firm’s stock price slowly incorporates market-level information, then D is closer to one. Hou

and Moskowitz (2005) report that this delay measure is a persistent firm characteristic that identifies

“neglected” stocks.

Finally, to control for the disposition effect, we investigate return consistency (RC) and unre-

alized capital gains (UCG). Recall that Grinblatt and Moskowitz (2004) define RC as a dummy

variable equaling one if a stock’s monthly returns are positive (negative) for at least eight months

of the twelve-month formation period and its formation-period return is also positive (negative).

Grinblatt and Han (2005) estimate reference prices from prior returns, turnover, and market capi-

talizations and then use these estimates to define UCG. We also examine the capital gains overhang

variable (CGO) in Frazzini (2006) that is derived from mutual fund holdings. This proxy for the

disposition effect computes reference prices by calculating the amount of previously purchased

shares that are held by a fund under the first-in / first-out assumption. The difference between the

current stock price and the reference price is normalized by the current price to produce CGO.

Table 1 summarizes the main variables in our study. To examine the autocorrelation of each

characteristic, we compute the firm variables over calendar year horizons every June. We then

11
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compute first-order autocorrelation coefficients using a pooled regression of each characteristic on

its lagged value from the previous year. The summary statistics in Panel A indicate that ID

has a mean near zero. Unlike the delay measure, IVOL and other firm characteristics, ID is not

persistent since the average firm-level autocorrelation coefficient is 0.033. The lack of persistence

is consistent with the notion that ID reflects time-varying flows of firm-specific information. In

contrast, UCG and CGO are more persistent than ID with autocorrelations of 0.668 and 0.681,

respectively. Intuitively, ID varies over time for individual firms while the disposition effect is

determined by persistent unrealized capital gains.

According to Panel B of Table 1, UCG and PRET have a 0.747 correlation since past returns

are a major determinant of unrealized capital gains. This high correlation complicates empirical

tests that attempt to link the disposition effect with momentum. UCG also has a 0.659 correlation

with CGO. In contrast, ID is not highly correlated with PRET, UCG, or CGO. The non-negative

correlation between ID and D suggests that continuous information does not result from the slow

incorporation of market information into stock prices. Instead, ID is determined by the flow of

firm-specific information.

According to the FIP hypothesis, discrete information attracts attention. To examine this

notion, we estimate the following Fama-MacBeth regression

IDi,t = β0 + β1 ∆TURNi,t + β2 ∆MEDIAi,t + β3 ∆PRi,t + β4 ∆COVi,t + β5 | ¯SUE|i,t + εi,t ,(5)

using firm-month observations for several attention proxies. ∆TURN denotes the change in turnover.

This change is defined as average turnover from month t to month t − 11, which corresponds to

the period in which a firm’s ID is computed, minus the average turnover in month t− 12 to month

t− 23. This definition is in spirit similar to the abnormal turnover computed in Barber and Odean

(2008) as well as Gervais, Kaniel, and Mingelgrin (2001). ∆MEDIA and ∆PR refer to changes

in the number of articles in the financial press and the number of press releases regarding a firm,

respectively. These changes are defined using the same procedure as ∆TURN. Similarly, ∆COV

corresponds to firm-level changes in analyst coverage. A firm’s SUE is computed by comparing its

realized earnings in the most recent quarter with its realized earnings in the same quarter of the

prior year. This difference is then normalized by the standard deviation of the firm’s earnings over
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the prior eight quarters.
∣∣ ¯SUE

∣∣ corresponds to the absolute value of the average SUE during month

t to t − 11. Due to the correlations between media coverage, press releases, and analyst coverage,

the above specification is estimated separately for each of these variables as well as jointly.

Data on media coverage is obtained from Factiva, which contains media reports from several

sources. We focus on the most comprehensive financial news service, the Dow Jones Newswire. To

match news articles with firms, we use ticker symbols and firm names in CRSP using procedures

outlined in Gurun and Butler (2012). Specifically, a web crawler is used to search name variants

by singular and plural versions for the following abbreviations of company names: ADR, CO,

CORP, HLDG, INC, IND, LTD, and MFG. Press release data is obtained from PR Newswire. The

source identifier provided by PR Newswire includes the name and address of the firm, which is

matched with the company information in COMPUSTAT. To further improve the match quality,

we use the soundex algorithm in SAS to match the firm names in the press releases with those in

COMPUSTAT. Due to the availability of the press release data, the sample period for this test

ranges from 2000 to 2007.

The positive β1 through β3 coefficients in Panel C of Table 1 indicate that discrete information

is associated with increased turnover as well as higher media coverage and more press releases. Intu-

itively, the β1 coefficient indicates that discrete information initiates trades by market participants.

Discrete information regarding a firm also coincides with more articles about the firm appearing

in the financial press and more press releases being issued by its management. While the finan-

cial press appears to increase their coverage of a firm in response to discrete information, analyst

coverage does not increase significantly. Instead, larger earnings surprises (in absolute value) are

associated with discrete information as the β5 coefficient is positive. Overall, these results support

the key assumption underlying the FIP hypothesis that discrete information attracts attention.

More comprehensive analyses involving media coverage are reported in Table 3 and Table 4.

These later results test cross-sectional and time series predictions from the illustrative model.

Consequently, the endogeneity surrounding media coverage and firm characteristics such as size

is mitigated by these later tests, which nonetheless provide suggestive evidence that continuous

information attracts less investor attention.
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2 Information Discreteness and Momentum

To examine the importance of ID to momentum (Jegadeesh and Titman, 1993), we form double-

sorted portfolios sequentially that first condition on formation-period returns, then ID during the

1927 to 2007 sample period. Specifically, after imposing a $5 price filter at the beginning of each

month, we sort stocks into quintiles according to their PRET and then subdivide these quintiles

into ID subportfolios. Post-formation returns over the next six-months and three-years are then

computed. These holding-period returns are risk-adjusted according to the three-factor model of

Fama and French (1993) that includes market, book-to-market, and size factors. In unreported re-

sults, the inclusion of the Pástor and Stambaugh (2003) liquidity factor does not alter our empirical

results.

Panel A of Table 2 reports that momentum, the six-month return from buying winners and

selling losers, decreases monotonically from 5.94% in the low ID quintile containing stocks with

continuous information to -2.07% in the high ID quintile containing stocks with discrete information.

This 8.01% difference in momentum has a t-statistic of 8.54 during the post-1927 sample period.

Similar results are obtained during the post-1980 sample period. We examine this more recent

subperiod since later empirical tests, involving residual ID for example, often use variables that are

only available after 1980.

Figure 2 plots the momentum profits following continuous and discrete information from one

to ten months after portfolio formation during the post-1927 sample period. These momentum

profits are not cumulative but represent “marginal” momentum profits within each month. The

figure indicates that momentum profits following continuous information persist for eight months.

In particular, the momentum profit of 46bp (t-statistic of 2.08) in the eighth month after portfolio

formation decreases to an insignificant 21bp (t-statistic of 0.97) by month nine. In contrast, for

stocks in the discrete information portfolio, the 31bp momentum profit is insignificant by the third

month after portfolio formation (t-statistic of 1.30). Therefore, momentum is stronger and more

persistent following continuous information than discrete information. Nonetheless, the relatively

short eight-month horizon associated with the return continuation of continuous information is more

compatible with limited attention than risk since the return predictability of continuous information

does not require high transaction costs to be incurred as a result of frequent portfolio re-balancing.
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Recall that ID is defined by raw daily returns since momentum strategies condition on the raw

formation-period returns of individual firms. However, Cooper, Gutierrez, and Hameed (2004) find

evidence that momentum profits depend on market returns. Therefore, we also construct ID using

market-adjusted daily returns that subtract daily value-weighted market returns from the daily

returns of individual stocks. This market-adjusted ID measure produces similar empirical results.

The sequential double-sorts in Panel A examine the marginal impact of ID on momentum

after conditioning on the most extreme formation-period returns (PRET). Since ID and PRET are

positively correlated, the second sort on ID may generate further variation in PRET that explains

the difference in momentum following continuous versus discrete information. Therefore, as a

robustness test, Panel B reports the momentum profits from independent double-sorts on PRET

and ID. The results in Panel B display the same pattern as those in Panel A, with momentum

increasing monotonically from an insignificant -0.63% to a highly significant 5.72% over the six-

month holding period as information during the formation period becomes more continuous during

the post-1927 period. A similar pattern is observed during the post-1980 period. Thus, the impact

of ID on return continuation is insensitive to whether the double-sorts are formed sequentially or

independently.

Panel C contains the results for IDZ in equation (3) that accounts for the percentage of zero daily

returns since a higher percentage is associated with lower liquidity. The results for IDZ parallel those

from the original ID measure. Specifically, the difference in momentum between continuous and

discrete information is 4.75% (t-statistic of 4.11) during the post-1927 sample period. After a three-

factor adjustment, this difference widens to 5.66% (t-statistic of 5.85). Consequently, illiquidity does

not appear to be responsible for the stronger return continuation following continuous information.

Panel D investigates the performance of modified ID measure that depends on the magnitude of

the daily returns. In particular, by overweighting small daily returns, the difference in momentum

between continuous information and discrete information is 9.62% (t-statistic of 6.02) using IDMAG

in equation (2) during the post-1927 period. This difference is significantly larger than the 8.01%

difference in Panel A, although the marginal increase in momentum attributable to weighting daily

returns by their magnitude is limited. Observe that the risk-adjusted momentum spreads increase

monotonically as information during the formation period becomes more continuous during both

the post-1927 and post-1980 sample periods.
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More complicated proxies for information discreteness that assign larger weights to smaller daily

returns are unable to dramatically improve upon the economic implications of ID for momentum.

In unreported results, we examined three alternative weighting schemes for IDMAG and replicated

the double-sort in Panel D of Table 2 for each alternative during the post-1927 period.

The first alternative assigned more weight to smaller returns using the following weighting

scheme; 25/55, 16/55, 9/55, 4/55, 1/55. As predicted by the FIP hypothesis, exerting more

emphasis on the smallest daily returns induced a greater difference in momentum; 11.05% versus

9.62%.

The second alternative weighting scheme examined daily return deciles (10/55, 9/55, ..., 2/55,

1/55) while the third alternative assigned weights to daily return terciles (5/9, 3/9, 1/9). However,

these alternative weights for daily returns produced similar results as those reported in Panel

D of Table 2. Overall, the additional complexity associated with weighting daily returns by their

magnitude is of limited economic value. The appendix provides additional justification and intuition

for using ID as the primary proxy for information discreteness.

An underreaction to information does not predict long-term return reversals. The three-year

holding-period returns in Panel E indicate that long-term return reversals are not associated with

continuous information in the formation period. In particular, stocks with continuous information

in the formation period have higher long-term returns than stocks following discrete information.

Therefore, consistent with an underreaction to continuous information, strong short-term return

continuation does not precede long-term return reversal. Overall, ID appears to identify variation

in return predictability over different horizons.8

The remainder of this section tests novel predictions of the FIP hypothesis that links investor

attention to momentum. It also differentiates between ID, which is motivated by limited attention,

and return consistency whose motivation lies with the disposition effect. Finally, we examine

alternative explanations and the ability of ID to explain cross-sectional variance in momentum

using Fama-MacBeth regressions that control for an array of firm characteristics in the existing

momentum literature.

8George and Hwang (2004) also cast doubt on the link between short-term return continuation and long-term
return reversals.
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2.1 The Role of Investor Limited Attention

The lower bound on investor attention is responsible for the FIP effect and is represented by the k

parameter in the illustrative model. Specifically, the model predicts that the FIP effect strengthens

when this investor attention constraint is higher. We first test this prediction in the cross-section

using institutional ownership, firm size, analyst coverage, and media coverage as firm-level proxies

for the k parameter.

Intuitively, more investor attention is received by firms that have high levels of institutional

ownership than low levels of institutional ownership. Besides having greater incentives to monitor,

institutional investors with concentrated portfolio positions in a firm are considered to be more

attentive to its fundamentals than institutional investors with disperse portfolio positions. To

define institutional ownership concentration, we follow Hartzell and Starks (2003) by examining

the proportion of institutional ownership accounted for by the five largest institutional investors

in a firm. Institutional ownership data is obtained from the portfolio holdings reported in 13f

filings with the SEC. These holdings are normalized by the total number of shares outstanding to

compute the percentage of shares held by institutions (IO). Large firms are also associated with

more attentive investors than small firms. High media coverage and high analyst coverage of a firm

are associated with more attentive investors, while low media coverage and low analyst coverage

are associated with less attentive investors and a higher k threshold. Analyst coverage is defined

as one plus the log number of analysts issuing forecasts for a particular firm.

The thresholds that determine high versus low institutional ownership as well as concentrated

versus disperse institutional ownership are the top 30% and bottom 30% of these characteristics

at the beginning of the formation period, hence one year before portfolio formation. Similarly,

the thresholds that define large and small firms are the top 30% and bottom 30% of market

capitalizations at the beginning of the formation period. As many firms do not have analyst

coverage, median analyst coverage during the formation period serves as the threshold between

high and low. Indeed, using the cross-sectional median for analyst coverage instead of top 30% and

bottom 30% thresholds ensures that a similar number of stocks are available in each subset. High

media coverage for a firm is defined by the number of news articles in a quarter being four or above

since four is the cross-sectional median for quarterly firm-level media coverage. Consequently, low
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media coverage is defined by the number of news articles in a quarter being three or less. Peress

(2009) finds evidence that media coverage of quarterly earnings announcements mitigates post-

earnings announcement drift. This finding is compatible with a lower attention bound provided

earnings announcements that fail to attract media coverage also fail to attract investor attention.

Consistent with the limited attention motivation of the FIP hypothesis, the results in Panel

A of Table 3 indicate that ID is better at explaining cross-sectional differences in momentum

among firms with low institutional ownership than high institutional ownership. In particular, the

disparity in six-month momentum profits following continuous versus discrete information is 8.79%

among stocks with low institutional ownership while this disparity is 5.48% among stocks with high

institutional ownership. The 3.31% different is significant with a t-statistic of 2.41.

Furthermore, the results in Panel B indicate that ID is better at explaining cross-sectional

differences in momentum among firms with disperse institutional ownership. In particular, the

disparity in six-month momentum profits following continuous versus discrete information is 11.23%

among stocks with disperse institutional ownership. This difference is more than double the 5.44%

disparity among stocks with concentrated institutional ownership. The 5.79% difference between

these subsets is significant with a t-statistic of 2.41. Therefore, the FIP hypothesis is most relevant

to firms having disperse institutional ownership (high k parameters).

Panel C and Panel D provide confirming evidence since ID is better able to explain cross-

sectional variation in momentum among small firms and firms with low analyst coverage in com-

parison to large firms and those with high analyst coverage, respectively. In particular, with small

stocks, the return disparity between having continuous versus discrete information during the for-

mation period is 7.17%, which decreases to 4.92% among large stocks. Similarly, within the subset

of stocks with low analyst coverage, the return disparity of 6.83% exceeds the 3.41% disparity

among stocks with high analyst coverage. The differences in these disparities, which equal 2.25%

and 3.42%, are both significant with t-statistics of 2.18 and 2.24, respectively.

The results in Panel E for media coverage indicate that the ID measure is better at explaining

cross-sectional differences in momentum among firms that receive less media coverage. In partic-

ular, the disparity in momentum between continuous and discrete information is 5.89% for firms

with low media coverage, which is nearly 60% greater than the 3.75% difference for stocks with

high media coverage. After applying the three-factor model, the disparity in momentum following
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continuous and discrete information increases from 1.96% to 5.94%, with this difference of 3.98%

being significant (t-statistic of 2.09). Therefore, the FIP hypothesis is most relevant to firms that

receive low media coverage (high k parameters). This finding is consistent with the evidence in

Peress (2009) that media coverage mitigates earnings momentum.

The results in Panel E may appear to contradict those in Chan (2003). Chan (2003) reports

that media coverage leads to return continuation for past winners and past losers. Conversely, in

the absence of media coverage, Chan (2003) finds evidence of short-term reversals for past winners

and past losers. However, our empirical methodology differs from Chan (2003) in several important

aspects. First, Chan (2003) examines returns and media coverage over a relatively short formation

period of one month. Second, Chan (2003) does not insert a one-month interval between the

formation and holding periods. Third, Chan (2003) focuses on unconditional momentum.

For completeness, we investigated the importance of these methodological differences by sorting

stocks according to their returns, then ID measures in each month. Specifically, ID was computed

using daily returns during the one-month formation period. This double-sort procedure was per-

formed separately for stocks with and without media coverage during the one-month formation

period. For each ID quintile, momentum profits were computed from one to seven months after

portfolio formation without the usual one-month interval separating the formation and holding

periods.

Consistent with the results in Panel E, unreported results indicate that the FIP effect is stronger

in stocks without media coverage. Moreover, starting from the second month after portfolio for-

mation, the FIP effect is present in both subsets. Overall, we are able to replicate Chan (2003)’s

unconditional results and verify that the FIP effect is present, after the first post-formation month,

in stocks with and without media coverage.

Unreported results confirm that the disparity in six-month momentum following continuous and

discrete information for the “middle” 40% of firms in Panel A through Panel C lies between the

reported subsets. Thus, the disparity in momentum profits increases monotonically from high to

low levels of institutional ownership, from concentrated to disperse institutional ownership, and

from small to large firms. Recall that the firm subsets with analyst coverage and media coverage

are divided by their respective medians rather than their 30th and 70th percentiles.

Overall, empirical support for the FIP hypothesis is stronger among firms that are associated
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with less attentive investors that have higher k parameters.

2.2 Disposition Effect

While ID is a continuous variable based on daily returns, return consistency in Grinblatt and

Moskowitz (2004) is a discrete variable based on monthly returns and contingent on the eight-

month threshold. When evaluating the disposition effect, unrealized capital gains (losses) are

usually computed relative to reference prices that are unobservable at the investor level. Return

consistency is intended to supplement the unrealized capital gains variable in Grinblatt and Han

(2005) that estimates firm-level reference prices using prior returns and turnover. With consistent

returns, these firm-level estimates are more representative of the true but heterogeneous investor-

specific reference prices.

Furthermore, the respective economic motivations underlying ID and return consistency are

distinct since ID is based on limited attention while return consistency is based on the disposition

effect. Therefore, this subsection investigates whether the ability of ID to explain cross-section

differences in momentum can be attributed to the disposition effect.

To distinguish between the economic implications of ID and return consistency, our first em-

pirical test examines their respective impacts on past winners and past losers separately. Limited

attention predicts that ID explains the return continuation of past winners as well as past losers.

Therefore, signed versions of ID denoted PosID and NegID are defined using daily returns as follows

PosID =

 %pos−%neg if PRET > 0

0 otherwise

and

NegID =

 %neg −%pos if PRET < 0

0 otherwise.

Recall that %pos and %neg denote the percentage of days during the formation period with positive

and negative returns, respectively. PosRC and NegRC refer to positive and negative RC dummy

variables, respectively. As in Grinblatt and Moskowitz (2004), both PosRC and NegRC are defined

using monthly returns with PosRC (NegRC) requiring eight of the twelve monthly returns during
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the formation period to have the same positive (negative) sign as PRET.9

Using six-month returns, the following Fama-MacBeth regression examines the return pre-

dictability of signed ID and signed return consistency

ri,t+1,t+6 = β0 + β1 PRETi,t + β2 NegPRETi,t + β3 PosRCi,t + β4 NegRCi,t

+β5 PosIDi,t + β6 NegIDi,t + β7 SIZEi,t + β8 BMi,t + εi,t , (6)

where NegPRET is defined as min{0,PRET}. For ease of comparison with Grinblatt and Moskowitz

(2004), we include SIZE and BM characteristics as control variables in the post 1980 period. BM

ratios are computed in July using firm-level book equity and market capitalization for the fiscal year

ending in the preceding calendar year. SIZE is defined as the log of a firm’s market capitalization.

The results in Panel A of Table 4 indicate that both signed ID measures predict returns.

Specifically, the positive β5 coefficient and negative β6 coefficient for PosID and NegID, respectively,

indicate that limited attention explains the return continuation of both past winners and past

losers. This finding applies to both the sample period starting in 1927 as well as 1980 and is not

dependent on the inclusion of BM and SIZE controls. Overall, the significance of the PosID and

NegID coefficients across the three regression specifications highlights the robustness of the FIP

hypothesis.

As with their signed ID counterparts, PosRC and NegRC are predicted to have a positive β3

coefficient and negative β4 coefficient, respectively. However, the β3 coefficient for PosRC is not

positive in the post 1927 period. Moreover, with controls for BM and SIZE, the β4 coefficient for

NegRC is not negative in the post 1980 period and positive (t-statistic of 2.05) in the absence of

these controls. Overall, return consistency does not explain the return continuation of past losers.

Grinblatt and Moskowitz (2004) attribute this failure to tax-loss selling in December, which leads

to purchases in January that offset the return continuation of past losers.

In unreported results, the subsample of stocks for which RC equals one comprises 17.24% of the

firm-month observations in the original dataset. Within this subset of stocks with consistent returns,

momentum continues to increase monotonically as information during the formation period becomes

9Gutierrez and Kelley (2008) report that return consistency cannot predict returns when this measure is con-
structed using weekly instead of monthly returns.
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more continuous, resulting in a significant disparity between discrete and continuous. Thus, the

marginal return predictability of continuous information is significant after controlling for return

consistency. However, since RC is only an indirect proxy for the disposition effect, we implement

additional tests to differentiate the FIP hypothesis from the disposition effect.

The next test implements a time-series “horse-race” between the disposition and FIP effects to

determine which explanation is better at accounting for time series variation in the momentum prof-

its following continuous information. We denote the three-factor adjusted six-month holding-period

returns from a momentum strategy that conditions on continuous information as FIPRett+1,t+6 and

estimate the following time series regression

FIPRett+1,t+6 = β0 + β1 Trend + β2 AGG MKTt−1 + β3 AGG UCGt−1 + β4 AGG RCt−1

+β5 Log(NUMST)t−1 + β6 ∆Log(MEDIA)t−1 + εt . (7)

The independent variables include the aggregate market return (AGG MKT), aggregate unrealized

capital gains (AGG UCG), and aggregate return consistency (AGG RC) during the formation period

ending in month t− 1. Unrealized capital gains and return consistency are included to account for

the disposition effect. AGG UCG is constructed by equally-weighting the difference between the

unrealized capital gains of past winners and past losers following continuous information during

the formation period. AGG RC is the equally-weighted sum of RC for past winners and past losers

following continuous information. The disposition effect predicts that AGG UCG and AGG RC

have positive β3 and β4 coefficients, respectively.

In contrast, the FIP hypothesis predicts higher FIPRet following periods when the lower bound

on investor attention is more likely to bind. The log number of listed stocks during the formation

period denoted Log(NUMST) is the first proxy for limited attention. Indeed, the allocation of

investor attention to each stock is lower, on average, when the number of stocks available for

investment is greater. This time series regression also examines changes in the formation-period

media coverage of stocks involved in the enhanced momentum strategy through the ∆Log(MEDIA)

variable. Lower media coverage provides another proxy for limited attention. As this regression

specification involves media coverage, the sample period begins in 1992 with the TREND variable

starting at 1 in January of 1992.
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The use of ∆Log(MEDIA) and Log(NUMST) as proxies for investor attention can be attributed

to Barber and Odean (2008). These authors implicitly distinguish between passive and active in-

vestor attention. Active attention originates from investor decisions to analyze firm-level funda-

mentals. Passive attention originates from an external source such as the media leading investors to

analyze a firm. Greater media coverage increases passive investor attention for a firm while having

fewer stocks available for investment increases the amount of active investor attention per firm.10

Investors are confronted by more firm-specific information, such as the release of earnings, when

the number of stocks available for investment increases. Consequently, the amount of attention

devoted to an individual stock decreases. Therefore, the FIP hypothesis complements the “driven-

to-distraction” hypothesis in Hirshleifer, Lim, and Teoh (2009) since k increases, and the FIP effect

strengths, with the number of stocks available for investment .

Panel B contains the results of the above time series regression. The β5 coefficient for Log(NUMST)

equals 22.5052 (t-statistic of 3.86). Therefore, as predicted by the FIP hypothesis, this positive co-

efficient indicates that during periods when more stocks are available for investment, the enhanced

momentum strategy that conditions on continuous information produces higher risk-adjusted re-

turns. Conversely, the negative β6 coefficient suggests that these returns are lower in periods where

past winners and past losers receive increased media coverage. Therefore, subject to the critique

that media coverage is endogenous, the negative β6 coefficient provides empirical support for the

ability of media coverage to mitigate the limited attention of investors (Peress, 2009).

In contrast, unrealized capital gains and return consistency cannot explain time series variation

in momentum following continuous information since both β3 and β4 are insignificant. Conse-

quently, the disposition effect is less relevant to the FIP hypothesis than limited attention. Fur-

thermore, the insignificant β2 coefficient indicates that momentum profits following continuous

information are independent of market returns while the insignificant β1 coefficient indicates that

the profits from the enhanced momentum strategy have not declined during the past two decades.

The third test uses order flow imbalances to differentiate between the predictions of the FIP

hypothesis and the disposition effect. Chordia, Goyal, and Jegadeesh (2011) utilize order flow

imbalances to investigate the disposition effect. Specifically, when studying the disposition effect,

10The proxies for active and passive attention are not necessarily orthogonal. For example, the amount of media
coverage per stock may decrease when the number of stocks increases.
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they examine whether investors are more likely to initiate sell trades for past winners than for

past losers. In contrast to the disposition effect, the FIP hypothesis predicts that investors are

more willing to initiate buy trades for past winners than for past losers. In particular, positive

and negative order flow imbalances, respectively, for past winners and past losers are consistent

with the FIP hypothesis since positive and negative signals below the k threshold are processed

with a delay according to the model. Therefore, the FIP hypothesis and the disposition effect have

distinct empirical predictions regarding order flow imbalances.

Post-formation order flow imbalances (OIB) in month t to month t+ 2 are investigated where

t denotes the one-month interval between the formation and holding periods. We use tick-by-tick

transactions from 1983 to 1992 in the Institute for the Study of Security Markets (ISSM) database

and from 1993 to 2004 in the Trades and Quotes (TAQ) database. The data ends in 2004 since

the Lee and Ready (1991) algorithm is required to sign trades and create firm-level order flow

imbalances

OIB =
# of Share Purchases - # of Share Sales

Total Volume
× 100 (8)

that are aggregated within each month. These OIB figures are then adjusted by subtracting the

average OIB imbalance across firms in each month.

The OIB plots in Figure 3 are consistent with the FIP hypothesis but not the disposition

effect. Specifically, for past winners following continuous information, OIB is positive instead of

negative. Furthermore, for past losers following continuous information, OIB is negative instead of

zero. In contrast to the disposition effect, investors are unlikely to sell past winners and hold past

losers if they anticipate further gains and losses, respectively. Instead, according to Ben-David and

Hirshleifer (2012), unrealized capital gains predict returns by focusing investor attention. Figure 3

also supports Birru (2012)’s findings based on trade-level data. The empirical results in Birru (2012)

indicate that the disposition effect around share splits, when inattentive investors may confuse the

winner versus loser status of their holdings by failing to properly adjust their reference prices, is

insufficient to explain momentum.

Overall, the evidence in Table 4 and Figure 3 indicates that limited attention instead of the

disposition effect is responsible for the return continuation in low ID stocks. Later evidence derived
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from cross-sectional regressions and analyst forecasts provides additional empirical support for

limited attention.

2.3 Alternative Explanations

Besides the disposition effect, we also examine whether investor conservatism is responsible for

the return predictability of ID. The conservatism bias can cause investors to ignore disconfirming

continuous information until discrete information forces them to re-evaluate their prior beliefs. We

proxy for the prior beliefs of investors using long-term analyst earnings growth forecasts denoted

LTG.

Confirming information corresponds to past winners with high LTG and past losers with low

LTG. Conversely, disconfirming information corresponds to past winners and past losers with low

LTG and high LTG, respectively. High and low LTG correspond to above-median and below-median

LTG, respectively, before the formation period (months t− 25 to t− 13). We then implement the

enhanced momentum strategy that conditions on continuous information but separate stocks into

confirming and disconfirming portfolios before computing holding-period returns.

The conservatism bias predicts that disconfirming information leads to stronger momentum

than confirming information since conservatism predicts that investors underreact to disconfirm-

ing information. However, the returns in Panel A of Table 5 indicate that momentum following

disconfirming continuous information is lower at 5.14% than the momentum following continuous

confirming information at 8.02%. This evidence is inconsistent with the conservatism bias being

responsible for the return continuation following continuous information.

Zhang (2006) concludes that momentum is stronger in stocks with higher idiosyncratic return

volatility. However, the positive correlation between ID and IVOL in Panel B of Table 1 suggests

that continuous information corresponds to low idiosyncratic volatility. Therefore, our finding that

momentum is stronger following continuous information may appear to contradict Zhang (2006)’s

conclusion. Although Zhang (2006) examines a shorter sample period and a shorter holding period,

unreported results confirm that return continuation is stronger in high IVOL stocks using a portfolio

double-sort that first conditions on idiosyncratic volatility, then formation-period returns. However,

this increase in momentum may be mechanical if the extreme returns that define past winners and

past losers also induce high idiosyncratic volatility. Indeed, provided high IVOL stocks are more
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likely to be extreme past winners or losers, momentum profits will be stronger among high IVOL

stocks even if IVOL is irrelevant to return continuation.

To address the influence of formation-period returns on idiosyncratic return volatility, we com-

pute residual idiosyncratic volatility (RES IVOL) that is orthogonal to the absolute value of

formation-period returns using the following cross-sectional regression

IVOLi,t = γ0,t + γ1,t |PRET|i,t + εIV OL
i,t . (9)

The εIV OL
i,t residual for firm i defines its RES IVOL in month t. A double-sort that conditions on

RES IVOL, then PRET parallels the procedure in Zhang (2006) except that IVOL is replaced with

RES IVOL to remove the confounding influence of formation-period returns.

According to Panel B of Table 5, stocks with high RES IVOL produce a six-month momentum

return of 6.30% while those with low RES IVOL produce a momentum return of 6.28%. This

0.02% difference is insignificant. Indeed, the t-statistic of 0.25 indicates that momentum is not

stronger in high idiosyncratic volatility stocks. In summary, after controlling for the influence of

formation-period returns on idiosyncratic volatility, higher idiosyncratic volatility is not associated

with stronger momentum.

2.4 Fama-MacBeth Regressions

The momentum literature identifies many firm characteristics that explain cross-sectional differ-

ences in momentum. Therefore, we estimate several Fama-MacBeth (1973) regression specifications

to evaluate the impact of ID on return continuation

ri,t+1,t+6 = β0 + β1 PRETi,t + β2 IDi,t + β3 (PRET · ID)i,t

+αXi,t + αI (PRET · X)i,t + εi,t . (10)

The momentum literature implies a positive β1 coefficient. More importantly, a negative β3 coeffi-

cient for the interaction variable ID·PRET indicates that continuous information results in stronger

momentum than discrete information. In particular, discrete information (high ID) corresponds

with weaker return continuation if β3 is negative. Consequently, a negative β3 coefficient supports
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the FIP hypothesis.

The X vector contains an array of control variables. Besides controlling for UCG and RC to

account for the influence of the disposition effect, the capital gain overhang (CGO) variable in

Frazzini (2006) based on reference prices derived from mutual fund holdings provides an additional

control for the disposition effect. As noted in Table 1, CGO is highly correlated with UCG.

The most recent quarterly earnings surprises (SUE) is included to control for post-earnings

announcement drift (Bernard and Thomas, 1990). BM and SIZE are included in the cross-sectional

regression since these characteristics are the basis for the Fama-French factors. Zhang (2006) also

finds that momentum is stronger in small firms while Daniel and Titman (1999) document a negative

relationship between the value premium and momentum.

We also include turnover (TURN) during the formation-period in the Fama-MacBeth regression

since Hou, Peng, and Xiong (2009) interpret low turnover as evidence of investor inattention while

Lee and Swaminathan (2000) interpret high turnover as an indication of investor sentiment.

The inclusion of IVOL is motivated by Zhang (2006) that reports stronger momentum in stocks

with high IVOL. Analyst coverage is also included since Hong, Lim, and Stein (2000) as well as

Brennan, Jegadeesh, and Swaminathan (1993) document stronger momentum in stocks with low

analyst coverage (COV).

Amihud’s measure (AMI) controls for cross-sectional differences in liquidity, while the delay

measure D controls for the possibility that continuous information is more common in neglected

stocks.

To account for extreme returns, we include the maximum daily return over the prior month

(MAX), as in Bali, Cakici, and Whitelaw (2011), as well as the conditional skewness variable

(CSKEW) in Harvey and Siddique (2000). Conditional skewness is computed over a five-year

horizon each month.

In summary, the X vector is defined as

[RC, UCG, CGO, SUE, BM, SIZE, TURN, IVOL, COV, AMI, D, MAX, CSKEW]

with all of these characteristics computed before month t.

Panel A of Table 6 contains the coefficient estimates from the Fama-MacBeth regression in
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equation (10). Most importantly, the β3 coefficient is negative in every specification. Indeed,

the addition of interaction variables involving PRET does not diminish the significance of the β3

coefficient. In contrast, the sign of the coefficients for RC and UCG interacted with PRET differ

across the last two regression specifications. Similarly, the coefficient for the interaction between

PRET and CGO is not significant (t-statistic of 1.29) when proxies for the disposition effect are

examined in conjunction with ID. Overall, ID appears to be a more robust predictor of momentum

than proxies for the disposition effect.

The positive β2 coefficient indicates the presence of a return premium for jump risk or skewness.

The positive coefficients for SUE and BM are consistent with post-earnings announcement drift and

the value premium while the negative coefficient for SIZE is consistent with the size premium. High

turnover is not associated with lower returns as the coefficient for TURN is negative. Less liquid

stocks with higher Amihud measures also have higher average returns. According to the D metric,

stocks that are slower at incorporating market-level information have higher returns even after

controlling for analyst coverage. Finally, large returns in the prior month are associated with

short-term return reversals as the coefficient for MAX is negative. High conditional skewness is

also associated with a lower return, albeit insignificant.

For emphasis, IVOL is computed during the formation period. Therefore, it is not directly

comparable to the idiosyncratic volatility computed by Ang, Hodrick, Xing, and Zhang (2006)

based on returns in the most recent month that are omitted from the formation period. However,

in unreported results, computing IVOL using daily returns in the month prior to portfolio formation

does not alter the β3 coefficient.

The economic significance for a subset of the interaction coefficients in Panel A are reported

in Panel B for past winners as well as past losers. As an example, for ID, denote one standard

deviations above and below the mean as ID+1 and ID−1, respectively. Conditional on the β3

coefficient for the interaction with ID, the resulting return difference attributable to variation in

ID equals

β3 · ¯PRET · (ID+1 − ID−1) ,

where ¯PRET averages 1.122 for past winners and -0.276 for past losers. Past winners and past

losers are examined separately given the large difference in their average PRET. The β coefficients
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used in this analysis are from the bottom row of Panel A for each variable’s interaction with PRET.

The absolute return difference relative to ID normalizes the amount of return variation that

can be attributed to fluctuations in each variable by the absolute return difference of ID. This

normalization assesses the economic importance of each variable relative to the FIP effect.

Relative to RC and UCG, fluctuations in ID exert a far greater influence on returns. For past

winners, the economic significance of RC and UCG are 17.59% and 41.02%, respectively, of ID. For

past losers, these percentages are lower at 13.41% and 63.21%, respectively. Similarly, the return

implications of size, turnover, idiosyncratic volatility, and analyst coverage are weaker than ID.

Although BM explains more return variation than ID for past losers, the FIP hypothesis is not

intended to explain the value premium.

Finally, ID in equation (10) is replaced with IDMAG to determine whether small returns exert a

greater influence on return continuation, as predicted by the FIP hypothesis. In unreported results,

the β3 coefficient for the interaction between IDMAG · PRET is -0.1121 (t-statistic of -7.27) in the

post-1927 period and -0.2653 (t-statistic of -5.94) in the post-1980 period. These coefficients are

larger than their respective counterparts, -0.0634 and -0.2118, reported in Panel A of Table 6.

2.5 Residual Information Discreteness

To ensure that our findings regarding ID are distinct from the existing momentum literature, we

compute residual ID denoted RES ID from a cross-sectional regression of ID on the absolute value

of PRET along with firm characteristics that have been associated with cross-sectional differences

in momentum

IDi,t = δ0,t + δ1,t |PRET|i,t + δ2,t RCi,t + δ3,t BMi,t + δ4,t SIZEi,t + δ5,t TURNi,t

+δ6,t IVOLi,t + δ7,t COVi,t + δ8,t IOi,t + εIDi,t . (11)

In unreported results, the adjusted R2 of this regression is 0.141, indicating that ID is distinct from

other predictors of momentum. The low adjusted R2 is not unexpected since ID is designed to

capture the nature of time-varying information flows at the firm level rather than persistent firm

characteristics.

RES ID is defined as εIDi,t for firm i in month t. As RES ID is orthogonal to the absolute value
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of PRET, low RES ID is not associated with more extreme formation-period returns. Observe

that several of the control variables in the X vector of equation (10) are independent variables

in the computation of RES ID in equation (11) since firm characteristics such as SIZE have been

documented to predict returns as well as explain cross-sectional variation in momentum.

According to Panel A of Table 7, momentum profits are monotonically increasing across the

RES ID portfolios from 0.98% to 6.73%. This 5.75% difference is highly significant (t-statistic

of 4.86). This evidence confirms that ID explains cross-sectional differences in momentum after

controlling for existing variables in the momentum literature.

We also replace ID with RES ID in the Fama-MacBeth regressions specified in equation (10).

Panel B of Table 7 confirms the ability of RES ID to explain cross-sectional variation in momentum.

Once again, the negative β3 coefficient indicates that momentum is stronger when information dur-

ing the formation period is continuous, even after controlling for turnover, idiosyncratic volatility,

analyst coverage, and proxies for the disposition effect. The other coefficients are broadly consistent

with the results in Table 6. Overall, the ability of continuous information to predict returns is not

driven by firm characteristics in the existing momentum literature.

3 Analyst Forecasts and Information Discreteness

The FIP hypothesis is applicable to analysts as well as investors due to its limited attention origin.

In contrast, the disposition effect does not influence analysts since their forecasts are not conditioned

on reference prices. Therefore, we examine whether continuous information induces larger analyst

forecast errors than discrete information as a final test to differentiate between limited attention

and the disposition effect.

To examine whether continuous information leads to larger earnings surprises, we begin by ob-

taining annual earnings per share forecasts from the Institutional Brokers Estimate System (IBES)

Summary unadjusted file. Unadjusted IBES forecasts are not adjusted by share splits after their

issuance date. Following Livnat and Mendenhall (2006), analyst-based earnings surprises denoted

SURP are defined as the difference between a firm’s actual earnings per share and the analyst

consensus forecast. This difference is then normalized by the firm’s share price on its earnings

announcement date. The consensus forecast is defined as the median of analyst forecasts issued
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within 90 days before an earnings announcement.

To test whether continuous information yields larger SURPs, we regress analyst forecast errors

on ID and its interaction with PRET. This regression includes other variables that may affect the

accuracy of analyst forecasts such as their dispersion (DISP). Furthermore, analysts may expend

more effort on their earnings forecasts for stocks with high past returns and high turnover as

well as growth stocks and large stocks if this information is in greater demand by institutional

investors (O’Brien and Bhushan, 1990) and consequently can generate larger trading commissions.

Consequently, to test the FIP hypothesis using analyst forecast errors, we estimate the following

regression

SURPi,t = β0 + β1 IDi,t + β2 PRETi,t + β3 (ID · PRET)i,t + β4 DISPi,t + β5 COVi,t

+β6 BMi,t + β7 SIZEi,t + β8 TURNi,t + β9 IOi,t + εi,t . (12)

Once again, a negative β3 coefficient for the interaction between ID and PRET provides support for

the FIP hypothesis. In particular, the negative β3 coefficient implies that continuous information

leads to larger analyst forecast errors. As an example, large positive earnings surprises are expected

for past winners. However, a negative β3 coefficient indicates that discrete information is associated

with smaller positive forecast errors provided analysts underreact less to discrete information. In

contrast, continuous (good) information is associated with larger positive forecast errors.

Panel A of Table 8 contains the coefficient estimates from equation (12). Consistent with the

FIP hypothesis, the β3 coefficient is negative with a t-statistic of -2.19. This finding indicates

that analysts are slower to incorporate continuous information into their forecasts than discrete

information. Therefore, analyst forecast biases can be partially attributed to limited attention.

The underreaction of analysts to continuous information identifies a specific channel through which

continuous information can induce a corresponding investor underreaction. For emphasis, this

channel cannot be attributed to the disposition effect whose predictions are limited to the trading

decisions of investors.

To guard against the possibility that the return-based ID results are driven by noise in daily

returns, we construct an alternative ID measure using signed monthly analyst forecast revisions.

Although the evidence in Panel A indicates that analyst forecasts are biased due to an apparent
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underreaction by analysts to continuous information, their forecast revisions are more informative

for stock prices than the level of their forecasts.

The analyst forecast-based ID measure is denoted IDf and equals

IDf = sgn(CUMREV) · [%downward−%upward] , (13)

where %upward and %downward are defined by the percentage of upward and downward revisions,

respectively, for the current fiscal year’s forecasted earnings. The cumulative revision during the

formation period is denoted CUMREV. The sign of CUMREV denoted sgn(CUMREV) equals +1

when CUMREV > 0 (upward revision), -1 when CUMREV < 0 (downward revision), and 0 when

CUMREV = 0. For every firm-fiscal year, we define CUMREV as the difference between the last

consensus forecast before an annual earnings announcement and the first forecast. As with the

original ID measure, IDf in equation (13) is lower when information arrives continuously.

According to Panel B of Table 8, sequential double-sorts that condition on PRET, then IDf ,

reveal that momentum increases as IDf ranges from discrete to continuous. In particular, the

difference of 10.93% over a six-month holding period is highly significant (t-statistic of 11.02).

Furthermore, momentum following discrete information is insignificant.

We also repeat the cross-sectional regression in equation (10) with IDf replacing ID. The results

from this regression is reported in Panel C of Table 8. Once again, the β3 coefficients for the inter-

action variable involving IDf and PRET is negative. Consequently, continuous information defined

by analyst forecast revisions results in greater momentum than discrete information. Overall, the

implications of the original ID measure are robust to the noise in daily returns.

4 Conclusions

We test a frog-in-the-pan (FIP) hypothesis that predicts investors underreact to small amounts

of information that arrive continuously. This hypothesis is motivated by limited attention. To

formalize the role of limited attention, we provide a two-period illustrative model with two types

of investors. Signals whose magnitudes are below a lower attention threshold are processed with a

delay by FIP investors while rational investors process all signals immediately. The FIP hypothesis
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predicts stronger momentum after continuous information that is defined by the frequent arrival of

small signals that are beneath investors’ radar screens.

An illustrative model motivates the construction of a proxy for information discreteness, and

is defined using signed daily returns. Intuitively, information discreteness identifies time series

variation in the daily returns that comprise the cumulative formation-period returns of momentum

strategies. Continuous information is defined by the frequent arrival of small amounts of information

that, despite their initial failure at attracting investor attention, can nonetheless have important

cumulative stock price implications.

Consistent with the FIP hypothesis, investors appear to underreact to continuous information.

Moreover, despite inducing stronger short-term return continuation, continuous information is not

associated with long-term return reversals. This lack of return reversal is consistent with limited

attention causing investors to underreact to continuous information.
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Appendix A: Illustrative Model

A1: Economy

Our two-period illustrative model parallels Hirshleifer and Teoh (2003) as well as Tetlock (2011).

Consider a stock that pays a liquidating dividend at the end of the second period. This dividend

equals the sum of N independent signals (si for i = 1, . . . , N) received during the first period and

another independent signal denoted s2 at time 2. All the signals are assumed to have zero mean.

Therefore, the stock price at time 0, P0, equals 0. Let s1 equal the sum of all N signals during the

first period, s1 =
∑N

i=1 s
i. The stock price at time 2, P2, equals s1 + s2.

There are two types of agents. The first type (rational investors) do not have an attention

constraint and process all N signals during the first period. The second type (FIP investors) are

influenced by the FIP hypothesis. Specifically, any signals during the first period whose absolute

values are below a lower threshold k are not processed by FIP investors until time 2 when the

dividend is realized. FIP investors account for a fraction m of the economy while rational investors

account for the remaining 1−m. Based on si realizations, they value the stock differently at time

1 with their respective demands determining the stock price P1.

To compute P1, we make several simplifying assumptions. First, we assume that both investors

have CARA utility over next period’s wealth with an identical absolute risk-aversion parameter.

Second, the stock is assumed to be in zero net supply and the interest rate is normalized to zero.

Third, the N signals during the first period are drawn from an i.i.d. uniform distributions over

[−L,L] with L > k.

Under these assumptions, the optimal demand for the stock from each type of investor is

computed and the aggregate demand then set to zero to obtain

P1 = s1 −m
N∑
i=1

si 1{|si|<k} . (14)

Intuitively, small signals are only partially incorporated into P1 because of FIP investors.
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A2: Unconditional Momentum

According to equation (14), the covariance for price changes between the first and second periods

equals

Cov (P1 − P0, P2 − P1) = Cov (P1 − 0 , s2 + s1 − P1)

= Cov (P1 , s1 − P1)

= Cov

(
s1 −m

N∑
i=1

si 1{|si|<k} , m
N∑
i=1

si1{|si|<k}

)

= Cov

(
(1−m)

N∑
i=1

si1{|si|<k} , m

N∑
i=1

si 1{|si|<k}

)

= m (1−m)V ar

(
N∑
i=1

si 1{|si|<k}

)
= m (1−m)N V ar

(
si 1{|si|<k}

)
. (15)

Define x as the truncated signal si 1{|si|<k}. Although the probability density function of si is

1
2L , the x variable is zero over the [−L,−k] and [k, L] intervals. Thus, the variance in equation

(15) equals

V ar
(
si 1{|si|<k}

)
=

∫ k

−k

1

2L
x2 dx

=
1

2L

2 k3

3
. (16)

Substituting the above variance in equation (16) into equation (15) yields the following expression

for the covariance

Cov (P1 − P0 , P2 − P1) = m (1−m)N
k3

3L
. (17)

The covariance in equation (17) is positive for 0 < m < 1. Intuitively, provided FIP investors do

not dominate the economy, their failure to process small signals induces price changes in both the

first and second periods that are positively correlated, which results in price momentum. Indeed,

signals whose absolute values are below k are processed by rational investors in the first period

and then by FIP investors in the second period. In addition, an increase in k leads to stronger
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momentum since more signals and larger signals (in absolute value) are truncated. Finally, the

momentum effect is decreasing in L since signal truncations are less likely when L is higher.

A3: Conditional Momentum: Frog-in-the-Pan Effect

Having demonstrated the ability of FIP investors to generate price momentum unconditionally,

we also explore the intuition behind ID’s ability to influence price momentum conditional on past

returns (PRET=P1). In the illustrative model, the expected price change in the second period at

time 1 is simply the net truncation during the first period defined as:

E1[P2 − P1] = m
N∑
i=1

si 1{|si|<k} . (18)

Consider two past winners with an identical PRET > 0 but different ID measures. The first stock

has a negative ID near -1 that implies more positive than negative signals were realized during

the first period with the positive signals likely to be small on average. Consequently, the net

truncation is also likely to be positive when PRET is positive and ID is negative. Conversely, if the

second stock has a positive ID near 1 but the same PRET, then more negative than positive signals

are realized during the first period. For the second stock to have the same positive PRET, the

positive signals are required to be large on average while the negative signals are small in absolute

value. Therefore, the net truncation is likely to be negative for the second stock with a positive

ID. Consequently, although PRET is equivalent for both stocks, stronger return continuation is

predicted for the first stock with a negative ID. The same intuition applies to past losers.

Overall, a negative ID yields a high percentage of small signals whose sign is the same as

PRET. In other words, conditional on PRET, ID provides a simple non-parametric proxy for the

net truncation. As such, ID predicts future price changes and explains cross-sectional differences

in momentum.

The above implications are confirmed in simulations. We use the following parameter values:

m=0.5, k=0.02, L=0.05, and N=250 to simulate 10,000 paths of daily signals simulated using

draws from the Uniform distribution. We then compute price changes in the first period (PRET)

based on P1 in equation (14) and expected price changes in the second period (FRET) based on

s1 − P1 in equation (18).
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ID is also computed based on the sign of the N draws. We then sequentially double-sort the price

paths into PRET and ID quintiles. This double-sort procedure parallels the procedure underlying

Panel A of Table 2. The corresponding FRET for each of the 25 “PRET by ID” double-sorts is

recorded in the following table

PRET = P1 FRET = s1 − P1

ID winner 2 3 4 loser winner 2 3 4 loser momentum

discrete 51.19 22.20 0.84 -21.57 -50.74 -5.01 -5.70 -0.62 5.73 4.08 -9.09

56.08 24.06 -0.69 -22.39 -55.15 -1.10 -2.14 0.57 1.92 0.62 -1.72

59.67 23.99 -0.14 -24.71 -58.24 1.41 0.46 0.35 -0.44 -1.45 2.86

70.71 23.97 -1.52 -26.10 -68.73 2.85 3.11 -0.06 -2.76 -2.89 5.74

continuous 80.50 26.06 -0.75 -27.44 -82.20 6.88 6.28 -0.44 -6.45 -6.27 13.15

average 63.63 24.06 -0.45 -24.44 -63.01 1.01 0.40 -0.04 -0.40 -1.18 2.19

correlation between ID and FRET -0.65 -0.75 -0.02 -0.75 -0.67

The simulation results confirm the model’s ability to generate unconditional momentum, which

equals 2.19%. Moreover, momentum increases monotonically as ID becomes more continuous.

Following continuous information, the momentum profit is 13.15% relative to the -9.09% reversal

following discrete information.11

The above simulation justifies using ID as a proxy for information discreteness in later empirical

tests. In particular, the correlations between ID and FRET are -0.65 and -0.67 for past winners

and past losers, respectively. These inverse relationships demonstrate that, despite its simple

specification, ID captures the truncation of small signals provided formation-period returns are

large in absolute value. Conversely, when PRET is near zero (third quintile), the correlation is

a negligible -0.02. In this case, small positive and small negative signals are equally likely to be

truncated, which results in the stock price P1 being near its true value, s1.

A4: The Lower Bound on Investor Attention

The lower bound on investor attention yields the FIP effect and is represented by the k parameter.

A higher k parameter implies that FIP investors are more likely to truncate signals and delay their

incorporation into the stock price.

11The simulation exercise is not intended to match the empirical results in Panel A of Table 2 exactly due to the
simplistic assumptions underlying the illustrative model.
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Equation (17) predicts that a higher k parameter increases momentum unconditionally. Condi-

tionally, holding PRET constant, a higher k also predicts a stronger FIP effect since more signals

are temporarily truncated, especially when information is continuous and small signals arrive fre-

quently. Unreported simulation results confirm these unconditional and conditional predictions.

Furthermore, as the lower bound on investor attention varies over time and across stocks, we

empirically test these predictions using proxies for k that also vary over time and across stocks.

A5: Magnitude of Daily Returns

The above simulation exercise is extended by replacing ID with IDMAG in equation (2) where

monotonically declining weights wi of 5/15, 4/15, 3/15, 2/15, and 1/15 to the respective |Returni|

quintiles of daily returns. Therefore, the IDMAG modification emphasizes smaller daily returns at

the expense of larger daily returns. Although this emphasis is consistent with the FIP effect, the

simulation results below indicate that this modification offers a limited improvement over ID.

PRET = P1 FRET = s1 − P1

IDMAG winner 2 3 4 loser winner 2 3 4 loser momentum

discrete 56.14 23.29 -0.01 -23.13 -57.14 -5.10 -5.47 -0.19 5.55 4.29 -9.39

59.38 24.40 -0.27 -24.09 -61.12 -1.33 -2.04 0.30 2.05 1.16 -2.49

64.69 23.39 -0.63 -24.22 -62.57 0.98 0.58 0.09 -0.66 -0.99 1.98

66.55 24.07 -0.31 -25.11 -63.69 3.11 2.83 0.12 -2.73 -3.35 6.46

continuous 71.39 25.15 -0.75 -25.65 -70.53 7.37 6.12 -0.52 -6.21 -7.02 14.39

average 63.63 24.06 -0.39 -24.44 -63.01 1.01 0.40 -0.04 -0.40 -1.18 2.19

correlation between IDMAG and FRET -0.71 -0.72 -0.02 -0.73 -0.72

Observe that the correlation between IDMAG and momentum is -0.71 for past winners and -0.72

for past losers. These correlations are only slightly larger in absolute value than the respective -0.65

and -0.67 correlations with ID. The increase in the resulting momentum profit is also marginal. For

stocks with continuous information during the formation period, the momentum profit is 14.39%

with IDMAG compared to 13.15% with ID. The intuition for this limited improvement is apparent

from the model: while certain weighting schemes emphasize small signals that are truncated (below

the unknown k parameter), these truncations are small in magnitude and contribute less to return

continuation.
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Table 1: Summary Statistics

Panel A of this table reports summary statistics for the information discreteness proxy (ID), formation-
period returns (PRET) and their absolute value (|PRET|), idiosyncratic volatility (IVOL), the price
delay measure (D) of Hou and Moskowitz (2005), the return consistency dummy variable (RC) defined
in Grinblatt and Moskowitz (2004), the unrealized capital gains variable (UCG) defined in Grinblatt and
Han (2005), and the capital gains overhang variable (CGO) in Frazzini (2006). Summary statistics include
the mean, standard deviation, and autocorrelation along with the 25th, 50th, and 75th percentiles. The
first-order autocorrelations are computed over non-overlapping calendar-time horizons starting and ending
in June using a pooled regression involving lagged values for each firm-level characteristic. ID is defined
as sgn(PRET) · [%neg −%pos] in equation (1) where %pos and %neg denote the respective percentage of
positive and negative daily returns during the formation period. ID captures the distribution of daily returns
across the formation period. Continuous information arrives frequently in small amounts while discrete
information arrives infrequently in large amounts. PRET corresponds to a firm’s formation-period return
in the prior twelve months after skipping the most recent month, while IVOL is estimated according to Fu
(2009) within the formation period. D is defined in equation (4) while RC equals one if a stock’s monthly
returns are positive (negative) for at least eight months of the twelve-month formation period and PRET
is also positive (negative). Grinblatt and Han (2005) estimate the UCG variable at the firm-level using
reference prices defined by prior returns and turnover. CGO is defined in Frazzini (2006) using mutual funds
holdings. The sample period ranges from 1980 to 2007. Panel B contains the cross-sectional correlations
between the variables in Panel A. Panel C reports on the results from the Fama-MacBeth regression in
equation (5), IDi,t = β0 + β1 ∆TURNi,t + β2 ∆MEDIAi,t + β3 ∆PRi,t + β4 ∆COVi,t + β5 | ¯SUE|i,t + εi,t,
which examines the firm-level determinants of ID. ∆TURN denotes the change in turnover from month t to
month t − 11, the period in which ID is computed, minus the average turnover in month t − 12 to month
t− 23. ∆MEDIA and ∆PR refer to changes in the number of articles in the financial press and the number
of press releases, respectively, using the same procedure. Similarly, ∆COV corresponds to firm-level changes
in analyst coverage. A firm’s SUE is computed by comparing its realized earnings in the most recent quarter
with its realized earnings in the same quarter of the prior year. This difference is then normalized by the
standard deviation of the firm’s earnings over the prior eight quarters.

∣∣ ¯SUE
∣∣ corresponds to the absolute

value of the average SUE during month t to t− 11. The sample period is 2000-2007 for the tests in Panel C
due to the availability of the press release data.

Panel A: Summary statistics

Percentiles Standard Auto-
Mean 25th 50th 75th deviation correlation

ID -0.035 -0.067 -0.032 0.000 0.054 0.033
PRET 0.165 -0.211 0.065 0.354 0.932 -0.045
|PRET| 0.434 0.125 0.282 0.531 0.841 0.078
IVOL 0.552 0.056 0.147 0.412 4.554 0.843
D 0.565 0.297 0.573 0.851 0.303 0.381
RC 0.180 0.000 0.000 0.000 0.329 0.047
UCG -0.158 -0.185 0.062 0.200 0.782 0.668
CGO 0.262 0.043 0.083 0.216 0.480 0.681

Panel B: Correlations

ID PRET |PRET| IVOL D RC UCG CGO
ID 1.000
PRET 0.167 1.000
|PRET| -0.332 0.387 1.000
IVOL 0.085 -0.182 0.347 1.000
D 0.048 -0.065 0.045 0.261 1.000
RC -0.307 0.121 0.339 -0.057 0.005 1.000
UCG 0.061 0.747 0.109 -0.455 -0.113 0.108 1.000
CGO -0.022 0.671 0.041 -0.210 0.245 0.066 0.659 1.000

44

Electronic copy available at: https://ssrn.com/abstract=2370931



Panel C: ID and investor attention

intercept ∆TURN ∆MEDIA ∆PR ∆COV
∣∣ ¯SUE

∣∣ Adj. R2

coefficient -0.0413 0.3137 0.0033 0.1034 0.005
t-stat -41.19 4.77 2.87 8.54
coefficient -0.0415 0.3103 0.0510 0.1038 0.006
t-stat -41.03 4.73 3.05 8.59
coefficient -0.0414 0.3307 0.1274 0.1036 0.005
t-stat -41.47 5.07 1.10 8.57
coefficient -0.0414 0.2882 0.0035 0.0576 0.1215 0.1035 0.008
t-stat -40.80 4.35 3.05 3.05 1.05 8.55
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Figure 1 This figure provides a visual illustration of the difference between continuous information

versus discrete information. Both firms have the same starting and ending stocks prices but with

different intermediate returns over the 250 “daily” periods. ID is defined in equation (1) to cap-

ture the distribution of daily returns across the formation period. Continuous information arrives

frequently in small amounts while discrete information arrives infrequently in large amounts. In

this figure, ID equals -0.136 for the stock with continuous information and 0.072 for the stock with

discrete information.
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Figure 2 This figure plots risk-adjusted momentum profits in the continuous and discrete informa-

tion portfolios from one to ten months after portfolio formation during the post-1927 sample period.

ID is defined in equation (1) to capture the distribution of daily returns across the formation pe-

riod. Continuous information arrives frequently in small amounts while discrete information arrives

infrequently in large amounts. Momentum profits in month t + x, where x ranges from 1 to 10,

based on double-sorted portfolios formed in month t according to formation-period returns and ID.

These momentum profits are not cumulative. Instead, they are time series averages of holding-period

returns in a single month after portfolio formation, with the month of portfolio formation varying

across the sample period.
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Figure 3 This figure plots post-formation order flow imbalances for past winners and past losers

following continuous information during the 1983 to 2004 period. Continuous information arrives

frequently in small amounts and is defined by a low ID. ID is defined in equation (1) to capture

the distribution of daily returns across the formation period of a momentum strategy. A twelve-

month formation period is examined that ends in month t− 1. The three post-formation months in

which firm-level order flow imbalances are computed are denoted month t, t + 1, and t + 2. These

imbalances are adjusted to account for the cross-sectional average of the order flow imbalances each

month. Order flow imbalances are computed using the Lee and Ready (1991) algorithm.
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