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Implied Measures of Relative Fund Performance∗

Steve Hogan†and Mitch Warachka‡

September 18, 2006

Abstract

We evaluate the relative performance of funds by conditioning their returns on the

cross-section of portfolio characteristics across fund managers. Our implied procedure

circumvents the need to specify benchmark returns or peer funds. Instead, fund-specific

benchmarks for measuring selection and market timing ability are constructed. This

technique is robust to herding as well as window dressing and mitigates survivorship bias.

Empirically, the conditional information contained in portfolio weights defined by industry

sectors, assets and geographical regions is critically important to the assessment of fund

management. For each set of portfolio characteristics, we identify funds with success at

either selecting securities or timing-the-market.

∗The comments of Bill Ding, Wayne Ferson, Bruce Grundy, Laura Starks and Sheridan Titman along with

participants at the European Finance Association 2005 annual meeting significantly improved earlier versions

of this paper. All remaining errors are our own. We also thank Morningstar for providing us with the required
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grateful for financial support from the SMU-Wharton Research Center, Singapore Management University.
†Lehman Brothers, 745 75th Avenue, New York, N.Y., 10019. Email: stevenchogan@gmail.com
‡Please address correspondence to: Mitch Warachka, #04-01 L.K.C. School of Business, Singapore Manage-

ment University, 50 Stamford Road, Singapore, 178899.

Email: mitchell@smu.edu.sg Phone: (65) 6828-0249 Fax: (65) 6828-0777
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1 Introduction

To circumvent the exogenous specification of benchmarks when evaluating fund managers, we

examine their relative performance by constructing fund-specific benchmarks conditioned on

class portfolio weights. Any characteristics capable of being expressed in terms of portfolio

weights can define a class. For example, classes may pertain to investments in distinct industry

sectors (healthcare vs. energy), assets (equity vs. bonds) or geographical regions (United States

vs. Europe).

Our methodology begins by inferring class-specific returns and variances through a cross-

sectional regression of fund returns on class-specific portfolio weights whose residuals also de-

pend on these portfolio weights. An individual fund’s portfolio weights then convert these

implied class-specific returns and variances into a fund-specific benchmark return and variance

for evaluating its selection and market timing ability. Selectivity is related to a fund’s choice of

individual securities within a class, while market timing ability is concerned with a fund man-

ager’s portfolio allocation between the classes.1 Therefore, at every portfolio disclosure date,

separate t-statistics for these two attributes are created. An individual fund’s performance is

then evaluated by examining its time series of implied t-statistics. In particular, overperforming

fund managers have selectivity and market timing statistics that are consistently positive.

Mamaysky, Spiegel and Zhang (2005) document that performance rankings involving alpha

intercepts from a factor model actually reflect the estimation error of their beta coefficients.

Relative evaluation avoids this difficulty since classes are not necessarily associated with sources

of risk. Instead, our implied returns reflect any risk premiums corresponding to their respective

classes.2 Therefore, any criteria an investor considers relevant to fund selection may define the

class portfolio weights. For example, if an investor is seeking to allocate their investments inter-

nationally, then the analysis would condition on geographical portfolio weights.3 A diagnostic

test is provided to summarize the importance of conditioning on a particular set of portfolio

1For convenience, we refer to funds and fund managers interchangeably although Baks (2003) reports that

the former are more important to performance.
2Similarly, no-arbitrage pricing focuses on the relative relationship between security prices to avoid imposing

assumptions on investor preferences and utility specifications.
3Ferson and Schadt (1996) as well as Christopherson, Ferson and Glassman (1998) condition on macroeco-

nomic information when evaluating mutual funds and pension funds respectively.
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characteristics.

Our relative evaluation approach is robust to herding and window dressing. Intuitively,

herding behavior prevents fund managers from distinguishing themselves from any relative

benchmark. Furthermore, transactions between individual securities within a class leave the

portfolio weights underlying our analysis unaltered. Therefore, our selectivity measure is in-

variant to herding and window dressing. By construction, implied returns and variances are

free from survivorship bias as they are computed cross-sectionally at a single timepoint. More

importantly, provided survival is related to having invested (or not having invested) in certain

classes, survivorship bias is mitigated over longer horizons.

Daniel, Grinblatt, Titman and Wermers (1997) list several advantages of using portfolio

characteristics to evaluate fund performance, while Chan, Chen and Lakonishok (2002) confirm

their superiority over traditional factor sensitivities when predicting returns. The “hypothet-

ical” peer funds in Daniel, Grinblatt, Titman and Wermers (1997) are defined by book-to-

market, size and past return quintiles. However, none of these portfolios are traded in the mar-

ket.4 In contrast, our methodology is designed for selection decisions between fund managers.

Furthermore, conditioning on fund portfolio weights enables us to examine the performance

implications of portfolio characteristics with greater precision than classifications derived from

quintiles or deciles. Chan, Chen and Lakonishok (2002) report that funds have book-to-market

and size properties which are closely aligned with the S&P 500. However, exogenously specify-

ing an appropriate benchmark is a highly contentious issue when evaluating fund performance.

For example, the S&P 500 is inappropriate for funds consisting of both equity and bonds (bal-

anced funds), international securities (global or emerging market funds) or those concentrated

in specific industries (technology funds). Indeed, the existing literature often invokes bench-

marks that imply the majority of fund managers, potentially all of them, can underperform or

overperform.

By exploiting the “overlap” in fund investments, the approach of Cohen, Coval and Pástor

(2005) motivates our relative evaluation framework. Indeed, commonality in the portfolio

weights of different fund managers is the basis for both our procedures. However, we introduce

4Appendix A discusses the difference between average returns from characteristic portfolios versus our implied

returns in greater detail.
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implied performance measures for selection and market timing ability, while Cohen, Coval and

Pástor (2005) augment existing performance metrics such as Jensen’s alpha. Furthermore, by

utilizing class-specific portfolio weights, our methodology is more robust to fluctuations in the

holdings of individual assets between disclosure dates.

An empirical illustration of our methodology utilizes a survivorship bias-free set of Morn-

ingstar data that consists of portfolio weights for different industry sectors, assets and geo-

graphical regions. Of the 1,754 unique funds in our sample, 30% emphasize their global or

international focus, while the majority have non-equity investments. Fund investments are also

widely distributed over several industry sectors.5 Daniel and Titman (1997) posit that the

relationship between an asset’s expected return and its book-to-market ratio results from firms

having similar underlying properties such as common industry or regional exposures. Empiri-

cal evidence in Griffin and Karolyi (1998) confirms earlier results by Heston and Rouwenhorst

(1994) regarding the distinct roles of industrial and geographical diversification.

Moderate selection and market timing ability is consistently displayed by a small but sta-

tistically significant subset of fund managers. However, the “intersection” of moderately over-

performing funds across the industry, asset and geographical classifications is nearly empty.

Therefore, selection and market timing ability is not diffused across the portfolio characteris-

tics since individual funds rarely overperform across all three criteria. Funds that focus their

investments in a small number of classes are more likely to exhibit selectivity at the expense

of market timing ability. Overall, fund management skill appears to be specialized. We also

document the critical importance of conditioning on portfolio weights when evaluating fund

management as our implied performance measure has little in common with its unconditional

counterpart that ignores industry, asset and geographical characteristics.

The remainder of this paper begins with the introduction of our evaluation framework in

Section 2. Our estimation procedure is then described in Section 3, while properties of the

implied performance metrics are discussed in Section 4. Section 5 contains our empirical study

5The proposed methodology can refine the performance assessment of fund managers adhering to value (or

growth) strategies if classes are defined by book-to-market and industry characteristics. Alternatively, our

evaluation procedure could condition on industry portfolio weights but restrict its attention to the cross-section

of value (or growth) fund managers.
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with Section 6 concluding and offering suggestions for further research.

2 Implied Metrics and Performance Measurement

We begin by highlighting the economics underlying our implied statistics for selection and

market timing ability. Classes are designated c = 1, . . . , C while the funds themselves are

indexed by p = 1, . . . , P . Note that we only require class portfolio weights. The holdings of

individual securities are unnecessary.

2.1 Simple Regression Interpretation

The intuition behind our relative evaluation procedure is illustrated below with two classes

whose portfolio weights are labeled wp,1 and wp,2. Consider the cross-sectional regression of the

aggregate return for fund p on the two portfolio weights

rp = β1wp,1 + β2wp,2 + εp , (1)

where the expected value of εp is zero under the null hypothesis of no investment skill. This

regression infers β̂1 and β̂2 which represent implied class returns.6 These estimates yield a

corresponding fund-specific benchmark return

r̂p = wp,1 β̂1 + wp,2 β̂2 . (2)

This benchmark is customized to the fund’s allocation between the two classes through its

dependence on wp,1 and wp,2.

A time series of fund-specific return deviations, ε̂p = rp − r̂p, is available since equation

(1) yields P residuals, one per fund, at each point in time. Therefore, an individual fund’s

performance may be assessed by analyzing its ε̂p time series. As with standard factor models, a

fund manager’s skill is assessed by analyzing deviations between their observed and “expected”

returns. However, instead of calibrating the benchmark expected return using time series data,

6Throughout the paper, we adopt the standard convention of denoting parameter estimates with hats. As a

result, implied class-specific returns (and variances) are accompanied with hats.
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we utilize a cross-sectional procedure which conditions on fund portfolio weights. Overall, the

average and standard deviation of the deviations form the ratio

average of ε̂p

standard deviation of ε̂p
. (3)

This simple performance measure is conditioned on fund portfolio weights. Moreover, the

relative nature of this technique arises from the cross-sectional estimates β̂1 and β̂2 underlying

the fund-specific benchmark return in equation (2).

The above analysis imposes several restrictions on performance measurement which are

overcome by our enhanced methodology. First, there is no distinction between selectivity and

market timing ability. Second, the β̂ coefficients are independent of the class variances. Third,

the variance of the ε̂p residuals is assumed to be constant. However, suppose the first class

is cash while the second is equity. Attempts to time-the-market by altering the wp,1 and wp,2

portfolio weights over time are ignored by the denominator of equation (3).

Before introducing the selectivity and market timing measures, we briefly examine the issue

of short-selling implicit in our relative benchmark. Specifically, the β̂1 coefficient in equation

(2) can be expressed as a linear combination {x1, x2} of the fund returns

β̂1 = x1r1 + x2r2 (4)

= x1 (β1w1,1 + β2w1,2 + ε1) + x2 (β1w2,1 + β2w2,2 + ε2)

= β1 (x1w1,1 + x2w2,1) + β2 (x1w1,2 + x2w2,2) + (x1ε1 + x2ε2) , (5)

where the second equality follows from substituting in equation (1). In order for β̂1 to be

unbiased, the first and second sums in equation (5) are subject to the following constraints

x1w1,1 + x2w2,1 = 1 (6)

x1w1,2 + x2w2,2 = 0 , (7)

while an unbiased estimate for β̂2 requires equations (6) and (7) to equal zero and one respec-

tively. With wp,1 and wp,2 being positive, a negative value for either x1 or x2 is needed to

satisfy these constraints. According to equation (4), this property is equivalent to short-selling

a fund. However, conditional on knowing the portfolio weights for each fund, this feature of our

implied relative benchmark reduces to short-selling individual stocks. Therefore, our relative
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benchmark return is similar to the HML and SMB factors of Fama and French (1993) or the

momentum factor of Carhart (1997) which are constructed using short positions.7

2.2 Selectivity Metric

Our first cross-sectional metric evaluates a fund manager’s selection ability. We begin our

analysis by introducing some additional notation:

• W : a C × P matrix of observed portfolio weights in class c for fund p.

• R̂: a C dimensional implied vector of returns r̂c for each class.

• Θ̂: a C × C implied matrix of variances and covariances σ̂c,c′ for each class.

Conditional on portfolio weights in each class, a cross-sectional procedure described in the

next section infers the R̂ and Θ̂ parameters. These implied class-specific quantities are the

fundamental “building-blocks” of our technique. Therefore, the underlying economic structure

of our relative evaluation framework is presented assuming they have been calibrated.

Let wp,c denote the portfolio weight of fund p in class c, with rp,c signifying the unobservable

return of the fund manager in this class. Although the rp,c returns are not disclosed by funds,

their unavailability has no bearing on our analysis since they only serve an intermediary role.

More importantly, a fund-specific implied benchmark return

r̂p =
C∑

c=1

wp,c r̂c (8)

is formed by combining a fund’s portfolio weights with the implied class-specific returns r̂c from

the R̂ vector. The implied returns r̂c are obtained from a cross-sectional estimation procedure

described in the next section, and are critical to the return decompositions which follow below.

Although these decompositions may appear trivial at first glance, when combined with our

statistical methodology for calibrating R̂ and Θ̂, they enable us to evaluate a fund manager

against a time-varying fund-specific relative benchmark return.

7Book-to-market, size and momentum factors which equally-weight individual stocks essentially underweight

or overweight a subset of stocks relative to their value-weighted position in the market portfolio. For example,

small growth stocks could be sold-short.
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Using the benchmark return in equation (8), the observed aggregate return of a fund is

decomposed as8

rp =
C∑

c=1

wp,c rp,c =
C∑

c=1

wp,c r̂c +
C∑

c=1

wp,c (rp,c − r̂c)

= r̂p + (rp − r̂p) (9)

= implied benchmark without selection ability + selection ability .

Each rp,c − r̂c deviation results from a fund manager’s selection of securities within class c,

and ultimately yields the weighted difference rp − r̂p. In economic terms, a fund manager

skilled at selecting individual securities within the various classes has a positive deviation from

their implied benchmark. However, the decomposition in equation (9) does not require the

unobservable returns rp,c as these terms only serve an intermediary role. The implied benchmark

return in equation (8) is written more succinctly as

r̂p = wT
p R̂ , (10)

where wp is the vector of portfolio weights for fund p in each class. Specifically, wp is a column

of W containing the portfolio weights wp,c in each of the C classes. Using standard operations

from portfolio theory, the corresponding variance of the fund’s benchmark return equals

σ̂2
p =

C∑
c=1

wp,c σ̂2
c +

C∑
c=1

C∑
c′ �=1

wp,c wp,c′ σ̂c,c′

= wT
p Θ̂wp . (11)

Observe that equations (10) and (11) condition r̂p and σ̂2
p on a fund’s investments in each class

since both quantities are functions of wp. However, σ̂p does not directly reflect variability in a

8When applying our procedure to funds which engage in short-selling, the classes may distinguish between

long and short positions. Although short-selling results in negative portfolio weights, the absolute value of

the portfolio weights sum to one. For example, suppose wp,c consists of $2 and $1 worth of long and short

positions respectively. This portfolio weight is then subdivided into wp,c,L = 2/3 wp,c and wp,c,S = −1/3 wp,c

with |wp,c,L| + |wp,c,S| = wp,c. Distinct implied returns for the long and short positions are then inferred.
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fund’s return or the returns of individual securities. Instead, σ̂p is related to the cross-section of

fund returns. For example, if every fund holds an identical position in each individual security,

σ̂p equals zero even when the securities are highly volatile since all fund managers earn the

same return. With variability conditioned on class portfolio weights rather than the return

fluctuations of an individual fund, equation (11) is appropriate for ascertaining the significance

of a fund’s deviation from its benchmark return. Therefore, for each fund, the selectivity

statistic

Sp =
rp − r̂p

σ̂p
(12)

is formed. This metric evaluates the deviation between a fund’s return and its benchmark,

normalized by the benchmark’s volatility. Under the null hypothesis of no selection ability,

Sp
d∼ N (0, 1) with positive (negative) values indicating overperformance (underperformance).9

In comparison to the denominator of equation (3), observe that σ̂p in equation (11) is time-

varying. Consequently, a fund may alter its class portfolio weights over time without biasing

these cross-sectional metrics. Furthermore, several important differences between the Sharpe

ratio and the Sp metric in equation (12) are worth emphasizing. First, the implied benchmark

return r̂p replaces the riskfree rate. Second, r̂p and σ̂p involve implied parameters. Third,

both these quantities are conditioned on a fund’s class portfolio weights, hence the return and

volatility of the benchmark are fund-specific. Fourth, σ̂p refers to variability in the cross-section

of fund returns, not the volatility of individual fund or security returns.

2.3 Market Timing Metric

Besides selecting securities within a class, fund managers also allocate their portfolio across

the various classes. In particular, funds that successfully time-the-market earn higher returns

by deviating from benchmark portfolio weights denoted wB,c which are discussed later in this

subsection.

Conditional on fund and benchmark portfolio weights, the benchmark return r̂p is decom-

9More formally, our test statistics have a t-distribution when the number of available funds is insufficient to

invoke normality.
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posed as

r̂p =
C∑

c=1

wp,c r̂c =
C∑

c=1

wB,c r̂c +
C∑

c=1

(wp,c −wB,c) r̂c

= r̂B + (r̂p − r̂B) . (13)

The term r̂B represents the return of a fund manager without market timing or selection ability

who simply earns the benchmark return in each class and holds the benchmark portfolio weights.

Extending the decomposition in equation (9) using equation (13), a fund’s aggregate return is

expressed as follows

rp =
C∑

c=1

wB,c r̂c +
C∑

c=1

(wp,c − wB,c) r̂c +
C∑

c=1

wp,c (rp,c − r̂c)

= r̂B + (r̂p − r̂B) + (rp − r̂p) (14)

= implied benchmark without market timing or selection ability

+ market timing ability + selection ability .

For emphasis, selectivity evaluates the deviation rp − r̂p conditional on an individual fund’s

portfolio characteristics, while market timing considers the difference r̂p−r̂B by also conditioning

on a set of benchmark portfolio weights. Furthermore, observe that selectivity is independent

of the benchmark portfolio weights which define market timing ability. This property ensures

a clear distinction between these two attributes.

The benchmark return and variance of the market timing measure, denoted r̂B and σ̂2
B

respectively, equal

r̂B =
C∑

c=1

wB,c r̂c

= wT
B R̂ , and (15)

σ̂2
B =

C∑
c=1

(wp,c − wB,c) σ̂2
c +

C∑
c=1

C∑
c′ �=1

(wp,c −wB,c) (wp,c′ − wB,c′) σ̂c,c′

= (wp −wB)
T

Θ̂ (wp − wB) . (16)
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Equations (15) and (16), when combined with equation (13), yield the following Tp statistic for

market timing ability

Tp =
r̂p − r̂B

σ̂B

. (17)

Under the null hypothesis of no market timing ability, this metric has a N (0, 1) distribution.

For clarification, the variance-covariance matrix Θ̂ is identical for each fund at a particular

point in time. By implication, no fund is assumed to possess a more accurate assessment of

the covariances between different class returns. This property is consistent with the absence of

market timing ability under the null hypothesis since no fund is assumed to have an informa-

tional advantage regarding future class performance.10 Furthermore, when analyzing a fund’s

selectivity and market timing ability, the return decomposition in equation (14) utilizes the

same implied returns. Therefore, a single estimation procedure is sufficient for evaluating both

attributes.

Combining portfolio weights with returns to measure market timing ability has also been in-

vestigated in Becker, Ferson, Myers and Schill (1999). However, the existing literature examines

the correlation between changes in portfolio weights and future returns of individual securities

rather than decomposing fund returns as in equation (14). As emphasized in Grinblatt and

Titman (1993), this approach is problematic when fund managers exploit return correlation,

alter their portfolio’s risk across time, or target securities whose expected return and risk have

recently risen. These limitations are addressed in Ferson and Khang (2002) who determine a

set of benchmark portfolio weights by incorporating publically available information on fund

holdings.

The flexibility to specify benchmark portfolio weights is important since wB,c may depend

on an investor’s objective. As discussed in Chan, Chen and Lakonishok (2002), investors

seeking diversification are not well-served by fund managers who attempt to time-the-market

by concentrating their investments in a small subset of classes. In the interests of relative

evaluation, we consider benchmark portfolio weights defined as

wB,c =
1

P

P∑
p=1

wp,c for c = 1, . . . , C (18)

10We thank Wayne Ferson for highlighting to us this property of the null hypothesis as well as motivating the

later material on the subject of unconditional versus conditional fund correlation.
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which equal the average portfolio weights across funds at a point in time. Regardless of the exact

specification for wB,c, the return decomposition in equation (14) utilizes implied parameters.

As seen in the next subsection, a time series of selectivity and market timing metrics enables

us to measure a fund manager’s performance over longer horizons.

2.4 Performance Measurement of Individual Funds

Intuitively, evidence of investment skill requires a fund to consistently exhibit overperformance.

For brevity, our current exposition focuses on the selectivity attribute but the statistical tech-

nique is immediately applicable to market timing. Let np denote the number of observations

for fund p during the sample period. As seen from equation (12), each Sp,i metric has an i.i.d.

N (0, 1) distribution under the null hypothesis of no selection ability.

In practice, a fund manager is often compared to a benchmark index whose volatility is

ignored. This situation corresponds to the K = 0 threshold since overperformance is indicated

by positive rp − r̂p deviations, regardless of their variance. Conversely, for K = 1, a fund’s

return is required to exceed its fund-specific benchmark return by one standard deviation in

order to exhibit overperformance. More formally, under a binary classification scheme, the

number of occurences where Sp,i exceeds K is defined as

Xp =

np∑
i=1

1{Sp,i>K} , (19)

implying Xp has a binomial distribution. As a result, our multiperiod test statistic parallels

the approach of Agarwal and Naik (2000) when K = 0.11

Let α represent the probability that Sp,i > K. Given the distribution of Sp,i under the null,

the relationship between α and K is available from the standard normal cumulative distribution

function as α equals the percentile associated with N (0, 1) ≥ K. Hence, K and α are used

interchangeably to signify the performance threshold.

The associated null hypothesis of no performance is H0 : p ≤ α, where p denotes the

sample probability that Sp,i > K, estimated as p̂ =
Xp

np
. Thus, p̂ equals the proportion of

11The simplest performance measure would compute the time series average of the implied cross-sectional

metrics for an individual fund. However, the time series average is not robust to outliers and cannot ascertain

whether an individual fund’s Sp,i metrics are consistently positive (or above a certain performance threshold).
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the selectivity statistics that exceed the threshold. The resulting test statistic for selectivity

is denoted Bp(Sp,i|α, np) with a binomial distribution, Bin(α, np), under the null. Thus, the

corresponding p-value of the performance measure equals the probability that Bin(α, np) ≥ Xp,

implying the test statistic is rejected whenever

p-value of Bp(Sp,i|α, np) =

np∑
j=Xp

⎛
⎝ np

j

⎞
⎠ αj (1 − α)

np−j
(20)

is below its specified Type I error. Equation (20) differentiates between investment skill and

luck by requiring a fund manager to consistently exceed their customized benchmark return.

In particular, an individual fund’s performance is determined by its sequence of implied Sp,i

metrics.

For large np, the following approximation of equation (20) is applicable

Bp(Sp,i|α, np) =
p̂ − α√
α (1−α)

np

d∼ N (0, 1) . (21)

To examine an individual fund’s market timing ability, a Bp(Tp,i|α, np) test statistic is formed

from its time series of Tp,i metrics in an identical fashion.12

Having introduced the implied selection and market timing metrics as well as their perfor-

mance measure, the next section details our statistical methodology for inferring class returns

and variances.

3 Estimation Procedure

Intuitively, our cross-sectional technique may be expressed in terms of the following “regression”

rp = wT
p R̂ + ε̂p where ε̂p

d∼ N
(
0,wT

p Θ̂wp

)
, (22)

which is summarized as

rp = r̂p + N (
0, σ̂2

p

)
. (23)

12To ensure later statistical tests are of the stated significance level when employing the discrete binomial

distribution, a randomization correction is incorporated with details in Casella and Berger (1990).
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Equation (23) emphasizes the relative nature of our evaluation procedure as only 50% of the

funds are able to exceed their benchmark return at a particular point in time. In contrast

to equation (1), the ε̂p residuals in equation (22) are conditioned on class portfolio weights.

Furthermore, the σ̂2
p variances are computed cross-sectionally to ensure they are not biased by

market timing activity that alters the class portfolio weights over the sample period.

3.1 Likelihood Function

The vector of observed fund returns denoted RP is assumed to be normally distributed as

N
(
W T R̂, diag

{
W T Θ̂W

})
where diag

{
W T Θ̂W

}
denotes the diagonal of the W T Θ̂W matrix,

written explicitly as

Λ̂ =

⎡
⎢⎢⎢⎢⎢⎢⎣

wT
1 Θ̂w1 0 . . . 0

0 wT
2 Θ̂w2

...
...

. . . 0

0 . . . 0 wT
P Θ̂wP

⎤
⎥⎥⎥⎥⎥⎥⎦

.

After conditioning on portfolio weights, the residuals ε̂p in equation (22) are independent but

not identically distributed due to their dependence on fund portfolio weights. As emphasized in

the next subsection, the conditional independence of the residuals is consistent with considering

the diagonal elements of W T Θ̂W , and found to be appropriate in a later robustness test.

Furthermore, this diagonal structure simplifies the maximum likelihood estimation (MLE) of

benchmark returns and variances for each class.

Maximizing the conditional log-likelihood of observed fund returns involves maximizing the

function

lnL(R̂, Θ̂) = −P

2
ln(2π) − 1

2

P∑
p=1

ln
(
wT

p Θ̂ wp

)
− 1

2

P∑
p=1

(
rp − wT

p R̂
)2

wT
p Θ̂wp

, (24)

or simply minimizing

P∑
p=1

ln
(
wT

p Θ̂wp

)
+

P∑
p=1

(
rp − wT

p R̂
)2

wT
p Θ̂wp

(25)
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with respect to R̂ and Θ̂. Since their solutions are intertwined, an iterative procedure related

to the two-stage Fama-MacBeth (1973) regression is necessary.13 First, given Θ̂, the solution

for R̂ equals

R̂ =
(
W T Λ̂−1 W

)−1

W T Λ̂−1 RP , (26)

which resembles a weighted least-squares estimator. Second, conditional on R̂, elements of the

variance-covariance matrix are obtained by minimizing equation (25) with respect to Θ̂. Thus,

the following iterative scheme is available:

1. Given Θ̂j, solve for R̂j using equation (26).

2. Given R̂j, solve for Θ̂j+1 by minimizing equation (25) using non-linear optimization.

3. Repeat steps 1 and 2 for j = 0, 1, 2, . . . until convergence is achieved.

The class-specific benchmark parameters r̂c and σ̂2
c incorporate the returns of any fund with

an investment in class c. In other words, every fund which invests in this class contributes

to their estimation. By conditioning on class portfolio weights, there is no need to specify

peer funds nor are funds required to have their entire portfolio invested in one class. Unlike

benchmark returns computed as the average return of individual securities, our implied returns

r̂c are conditioned on actual fund investments. Furthermore, to clarify, the implied return and

variance parameters are independent of the benchmark portfolio weights.

3.2 Unconditional versus Conditional Fund Returns

For emphasis, our framework’s empirical calibration imposes no structure on the unconditional

covariances between observed fund returns, Cov (rp, rp′) for p �= p′. Only the conditional co-

variances between fund return deviations (residuals),

Λ̂p,p′ = Cov (rp − r̂p, rp′ − r̂p′ | wp,wp′) , (27)

13Although estimating Λ̂ simultaneously from the deviations rp − r̂p is circular since r̂p is conditioned on Λ̂,

the off-diagonal entries of the Λ̂ matrix may be calibrated from a time series of R̂ vectors over the sample period.

These elements could then be employed as a weighting matrix. As reinforced by equation (26), this procedure

parallels a generalized least squares (GLS) calibration exercise. However, the average pairwise correlation

between fund deviations is found to be nearly zero (0.002) in our dataset, while fewer than ten percent of these

coefficients are significant at the 5% level according to their bootstrapped confidence intervals and p-values.
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are assumed to be zero by the assumption that Λ is diagonal.14 An identical situation arises in

standard linear regression models where the residuals are uncorrelated after having conditioned

on independent variables. In our context, the rp − r̂p terms are independent while fund returns

rp are allowed to be correlated.

To clarify, the C ×C variance-covariance matrix denoted Θ̂ applies to class returns, while Λ̂

has a P ×P structure whose off-diagonal elements represent residual correlation between fund

returns after having conditioned on their portfolio weights.

3.3 Active versus Passive Fund Management

The value of active fund management may be assessed by our relative evaluation procedure. The

Bayesian studies of Pástor and Stambaugh (2002a, 2002b) utilize passive investments to better

distinguish fund management skill from model inaccuracy. In our context, two alternatives are

available to determine the contribution of active management.

First, passive investments such as exchange-traded funds (ETF’s) or index funds may be

incorporated into the cross-sectional estimation of R̂ and Θ̂. In fact, passive investments could

be utilized exclusively when inferring these class-specific returns and variances. A performance

comparison between passive versus active management is then facilitated by investigating the

subset of overperforming funds. If the overperforming funds are actively managed, then there

exist fund managers who possess investment skill.

Second, the implied class returns may be compared with available passive alternatives. For

example, if there exists an ETF for class c (such as an industry sector), then comparing this

instrument’s return with r̂c would gauge the value of active management.

14By definition, the non-random benchmark returns are uncorrelated,

Cov ( r̂p, r̂p′ | wp, wp′) = Cov (E [rp | wp] , E [rp′ | wp′ ]|wp, wp′ ) = 0 .
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4 Properties of Implied Performance Measures

Relative performance is an appropriate criteria for selecting between fund managers which

circumvents the need to specify benchmark returns or peer funds. Cohen, Coval and Pástor

(2005) also recognize the importance of exploiting “overlap” in fund investments by augmenting

existing performance metrics with the portfolio weights of individual securities. However, our

class portfolio weights are robust to fluctuations in the holdings of individual securities between

portfolio disclosure dates.

Risk premiums associated with the class definitions are captured by our implied estimation

procedure, which also avoids the difficulties associated with calibrating time-varying risk pre-

miums. Typically, factor coefficients are calibrated as constants over rolling windows of one

to five years. However, Mamaysky, Spiegel and Zhang (2005) document the erroneous fund

performance assessments arising from estimation error in the factor coefficients.

Wermers (1999) reports that growth orientated funds often herd. Conflicting empirical ev-

idence on this phenomena is contained in Lakonishok, Shleifer and Vishny (1992) as well as

Grinblatt, Titman and Wermers (1995). Fund managers may also engage in window dressing

by selling “embarrassing” positions prior to a portfolio disclosure date as documented in Lakon-

ishok, Shleifer, Thaler and Vishny (1991), Musto (1997, 1999) and Carhart, Kaniel, Musto and

Reed (2002).

However, the class portfolio weights in our analysis are unaltered by transactions within a

class. Thus, our selectivity measure is invariant to herding and window dressing. Indeed, only

a small subset of funds could successfully window dress their class portfolio weights without

the implied benchmarks being adjusted.15 Furthermore, selling securities in low return classes

and purchasing their high return counterparts compromises a fund’s market timing assessment.

Specifically, the market timing benchmarks for these funds would condition on high return

characteristics despite the relatively low return arising from the fund’s actual investments.

Thus, window dressing undermines a fund manager’s capacity to display market timing ability.

Moreover, the tendency for fund managers to misspecify their style after poor performance,

15Consequently, even if funds are willing to disclose investments in classes with poor returns, they cannot

“reverse” window dress since this behavior would modify the relative benchmarks.
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highlighted in Brown and Goetzmann (1997) as well as Chan, Chen and Lakonishok (2002), is

alleviated by our approach since fund portfolio weights provide greater objectivity into a fund’s

investment characteristics.

Although survivorship bias is inherently a database issue, our approach can reduce its impact

on performance measurement. As discussed in Brown, Goetzmann, Ibottson and Ross (1992)

as well as Carpenter and Lynch (1999), persistence in fund performance may be overstated

as a result of heteroskedastic volatility since funds with greater volatility should offer higher

returns, provided they survive. However, our methodology is independent of individual fund

return volatility since we calibrate cross-sectional return variability.

In contrast, multiperiod persistence tests are biased towards reversals as funds with poor

previous performance can only survive by improving. Brown and Goetzmann (1995) as well as

Carhart (1997) find empirical evidence consistent with multiperiod survival criteria. However,

our selection and market timing ability metrics are inferred from a cross-section of returns and

portfolio weights at a single point in time. More importantly, provided survival depends on

having invested (or not having invested) in specific classes, our performance measures mitigate

survivorship bias since survival is manifested in the time series of Sp and Tp metrics through

the portfolio weights. In addition, Brown and Goetzmann (1995) among others find empirical

evidence that fund attrition is a consequence of poor returns. Thus, the attrition of poor funds

would actually induce a higher implied benchmark return and reduce the likelihood of obtaining

overperformance due to survivorship bias.

5 Data and Empirical Results

To illustrate our proposed test procedures, mutual fund data from Morningstar is utilized.

Although Morningstar removes defunct funds (as if they never existed) from their published

products, our sample is constructed from the original databases and includes all funds with

available portfolio weight information.16 Our sample period is from December 1992 to December

2001. The Morningstar data is ideal for our purposes as fund portfolios are classified according

to their weights in specific industries, assets and geographical regions.

16We thank Stephen Murphy at Morningstar for constructing the database in this manner.
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For industry sectors, Morningstar provides 12 different classes while the original asset cate-

gories are reduced to 4 by combining US and non-US equity positions as well as US and non-US

bond holdings. Thus, our asset classifications are cash, equity, bonds and a separate class for

preferred shares along with convertibles. Morningstar also reports portfolio weights for different

geographical regions although very small entries are associated with Central and Latin Amer-

ica, Canada, Africa, Central and Eastern Europe as well as Australia. Therefore, three mergers

are enacted to form 5 distinct classes. First, the United States, Canada as well as Central

and Latin America are combined into an America class. Second, a Europe class is created by

combining Western Europe with Eastern and Central Europe. This class also contains Africa

but excludes the United Kingdom which remains a separate entity. Third, Asia is merged with

Australia to yield an Asian class which is distinct from Japan.

Since we are interested in evaluating managerial ability, the usual convention of considering

gross fund returns without adjustments for fees and expenses is adopted. Performance is com-

puted for each fund with at least 20 observations. For the cross-sectional inference of R̂ and

Θ̂, a total of 1,601, 1,754 and 1,551 unique funds are available for the respective industry, asset

and regional analyses. A summary of the portfolio weights underlying the three classifications

is contained in Table 1, which reveals that portfolio weights are evenly distributed across the

industry sectors. In contrast, the asset and region portfolio weights are dominated by equity

and America respectively.17

Additional information is also provided by Morningstar on the expense ratio, size and

turnover of each fund. These variables are augmented by a fund’s focus, defined as the disparity

between its portfolio weights

Focusp = max
c=1,...,C

wp,c − min
c=1,...,C

wp,c , (28)

which is an element of the [0, 1] interval. Funds which invest equal amounts in each class have

zero focus, while those invested exclusively in a single class have a focus measure equaling one.

The time series of class portfolio weight wp,c also has an associated standard deviation σp,c

computed over the sample period. The extent to which a fund alters their class portfolio weights

17The industry and region portfolio weights only pertain to a fund’s equity investments. Adjusting for the

amount invested in the remaining three asset classes produces nearly identical results.
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is defined as the average

σ̄p =
1

C

C∑
c=1

σp,c . (29)

Thus, σ̄p supplements the fund’s reported turnover by only accounting for transactions that

alter their class portfolio weights. Indeed, transactions within a class have no influence on

equation (29).

To reduce the number of parameters requiring calibration, the off-diagonal entries of Θ̂ are

set to zero. In economic terms, this simplification implies that deviations from the benchmark

return in one class, say software, are independent of deviations in another class such as finan-

cial services.18 A later robustness test justifies this simplification. Our iterative estimation

procedure terminates when the difference in implied parameters between successive iterations

is less than 10−6. Starting values for the class-specific returns are the coefficients from a linear

regression of the fund’s return on its portfolio weights. For the return variances, the regression’s

standard error serves as the common starting value.

As seen in Table 1, implied returns vary considerably across the various classes. Conse-

quently, the conditional information in these portfolio weights exerts a significant influence on

performance evaluation. Interestingly, the regression approach in equation (1) produces less

reliable implied class returns whose averages are often extremely small or large. Thus, it is

imperative to account for differences between the variances of distinct classes by utilizing our

iterative estimation procedure.

Funds in our sample typically have quarterly disclosures causing some variability in the

number of funds available each month. Nonetheless, selectivity and market timing statistics

are computed monthly. A visual illustration in Figure 1 reveals no discernible differences within

the quarterly horizon and confirm our assumption of (conditional) normality.

18To clarify, the diagonal assumption imposed on Θ̂ is unrelated to the diagonal nature of Λ̂. In particular,

Θ̂ pertains to the variance-covariance matrix of class-specific implied returns while Λ̂ refers to deviations in

individual fund returns from their fund-specific implied benchmarks.
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5.1 Multiple Fund Analysis

The interpretation of our empirical results has to account for multiple Type I errors. For

example, if one tests 1,000 funds for investment skill at the 5% level, then 50 false rejections

of the null are expected. Therefore, we also test whether the subset of overperforming fund

managers is statistically significant.

For a specified threshold, let Percent denote the percentage of funds (out of P ) with signif-

icant test statistics at the γ level. Thus, Percent represents the subset of funds with p-values

in equation (20) below γ, and is inserted into the following test statistic

Percent − γ√
γ (1−γ)

P

d∼ N (0, 1) . (30)

For clarification, the performance measure in equation (20) evaluates an individual fund. When

examining multiple funds, equation (30) determines whether the subset of overperforming funds

is statistically significant.

Statistically, it is possible for funds to overperform at K = 1 but underperform at K = 0.

For example, a fund’s return may be below its benchmark in 75% of the periods but one

standard deviation above its benchmark in the remaining periods. This fund’s performance is

highly variable with frequent underperformance interspersed with dramatic success. To measure

consistency in fund performance, funds which overperform when K = 1 are required to also

overperform at the K = 0 threshold.

5.2 Fund Performance

Table 2 reports that selection and market timing ability are detected after conditioning on all

three portfolio weight classifications when K = 0. Thus, a statistically significant subset of

funds exhibit moderate investment skill in both attributes. However, at the higher K = 1

threshold, selection ability dissipates, while market timing ability is only detected amongst

industry classes.

Correlation between securities within a class may be partially responsible for the decrease in

selection ability. Specifically, higher correlation between securities implies greater difficulty in

selecting investments that overperform. For example, if securities within the software industry
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are highly positively correlated, then selectivity is difficult to demonstrate in the software class.

One potential explanation for the large decline in market timing ability between the asset

and region classes at the higher performance threshold is that fund managers are unwilling

(or unable) to dramatically alter their exposure to equity. Indeed, given the dominance of

the equity class, Table 2 offers reassurance that our market timing methodology is performing

appropriately.19

Another interesting feature of Table 2 is that as γ increases from 1% to 10%, the percentage

of overperforming funds increases by less than a factor of ten. This insensitivity indicates that

investment skill is concentrated in a small number of “exceptional” fund managers. In unre-

ported results available upon request, the magnitude of overperformance for funds exhibiting

investment ability ranges from 2.7% to 4.2% per annum on average.

The intersection of significant overperformers across the three characteristics is also studied.

According to Table 2, these intersections are nearly empty for both selectivity and market

timing. In other words, a fund manager able to successfully select securities (time-the-market)

in different industry sectors cannot replicate this skill amongst the asset and regional criteria.

We also examine the intersection between selection and market timing ability. Since only

moderate investment skill is detected, and overperformance is insensitive to γ, we focus on the

K = 0 and γ = 0.10 subsets. Table 3 reports that selection and market timing ability are

unrelated. This evidence supports the notion that fund managers specialize in either selecting

securities within a sector or allocating their portfolio between various sectors. Later in this

section, a Logit analysis offers more insight into the relationship between these attributes in

terms of fund characteristics.

The “power” of the test statistic in equation (30) is studied using simulation. This simulation

experiment has three objectives. First, correlation between the implied returns of different

classes is studied. Second, we examine residual correlation between the rp − r̂p deviations of

different funds when the ε̂p errors in equation (22) are not independent. Third, the ability

of equation (30) to appropriately account for the Type I errors associated with investigating

19A robustness test identifies funds which are most likely to display market timing ability, defined as those

with σ̄p values in equation (29) above the industry, asset and regional averages. However, the market timing

results for this subset of funds parallel those in Table 2.
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multiple funds is analyzed.

Scenarios are examined where the null hypothesis of no overperformance is true as well as

false, with further details regarding the simulation procedure in Appendix B. In unreported

results available upon request, our procedure is found to be insensitive to correlated class returns

or residual correlation among fund returns, while the test statistic accepts and rejects the null

hypothesis appropriately.

5.3 Importance of Conditional Information

To examine the importance of a particular set of class portfolio weights to relative fund perfor-

mance, a naive selection statistic S∗
p defined as

S∗
p =

rp − r̄

σ
(31)

is formed, where r̄ and σ denote the unconditional mean and standard deviation of fund returns.

Unlike the Sp metric in equation (12), S∗
p does not incorporate class portfolio weights or implied

returns.20

Formally, for a chosen significance level, we define the common performance ratio (abbrevi-

ated CPR) as

CPR =
2 × Funds with both Bp(Sp,i|α, np) and Bp(S∗

p,i|α, np) being significant
Funds with significant Bp(Sp,i|α, np) + Funds with significant Bp(S∗

p,i|α, np)
. (32)

The CPR lies within the [0, 1] interval and divides the number of funds in an intersection,

which have common conditional and unconditional evaluations, by their sum. If the Sp,i and S∗
p,i

metrics yield identical funds, then the CPR equals one. Conversely, when the conditional and

unconditional performance measures have no funds in common, this ratio equals zero. Thus,

a lower CPR indicates that the portfolio classification contains more important conditional

information. Alternatively, (1 - CPR)% of the funds have their evaluations misspecified when

a particular set of portfolio characteristics are ignored.

20Investigating the importance of conditional information on market timing ability is difficult as this would

involve an allocation between undefined classes. Consequently, we focus our attention on the importance of

conditional information to the measurement of selection ability.
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We focus our CPR results on the 10% significance level as the overperforming subsets are not

sensitive to γ. At the K = 0 threshold, few funds have common unconditional and conditional

performance measures. In particular, there is only a 27.4% chance that a fund’s performance

evaluation conditioned on industry characteristics coincides with its unconditional counterpart.

The CPR increases slightly for assets to 36.2% and equals 47.2% for regions. Thus, without

conditioning on class portfolio weights, the majority of funds would have incorrect performance

evaluations.21

5.4 Fund Characteristics and Performance

Grinblatt and Titman (1994) find that fund performance is positively related to portfolio

turnover but unrelated to size and expenses. Carhart, Carpenter, Lynch and Musto (2002)

examine the influence of similar variables on fund performance and report limited evidence of

any relationships. We augment this set of variables with Focusp and σ̄p defined in equations

(28) and (29) respectively.

A fund’s average expense ratio, size, turnover, focus and fluctuations in its portfolio weights

σ̄p in relation to its performance measures are studied using a Logit model

yp =
exp

{
γ0 + γ1 Expensep + γ2 Sizep + γ3 Turnoverp + γ4 Focusp + γ5 σ̄p

}

1 + exp
{
γ0 + γ1 Expensep + γ2 Sizep + γ3 Turnoverp + γ4 Focusp + γ5 σ̄p

} + εp , (33)

where yp denotes the p-value of either the selectivity or market timing measure in equation

(20) at the K = 0 performance threshold. Since the dependent variables are probabilities, and

smaller entries coincide with greater overperformance, a positive t-statistic in Table 4 implies

an increase in this variable corresponds to a reduction in performance.

Empirically, we find the expense ratio, turnover and size have little influence on fund per-

formance. However, focused funds appear to have greater selectivity within an industry but

less ability to time-the-market between different industries. These intuitive conclusions are

21The common performance ratios increase for K = 1 but remain below 50%. This property is intuitive since

funds with higher unconditional overperformance have a greater likelihood of remaining an overperformer after

conditioning on the class portfolio weights than those with marginal unconditional overperformance.
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supported by the negative and positive t-statistics for selectivity and market timing ability

respectively. In addition, focused funds which concentrate their investments in a small number

of asset and regional classes are less able to time-the-market which confirms the reasonableness

of our market timing formulation.

Besides focus, the other fund characteristic unique to the proposed evaluation framework

is σ̄p, defined in equation (29) to capture time variation in a fund’s class portfolio weights.

In agreement with our intuition, its negative t-statistic for market timing ability indicates

that funds which alter their industry positions more aggressively have a higher likelihood of

exhibiting this attribute.22

6 Conclusion

This paper offers a methodology to evaluate the relative ability of fund managers to select

securities and time-the-market. Selection and market timing metrics are inferred from a cross-

section of fund returns, conditional on portfolio weights in different classes across all fund

managers. A separate procedure assesses an individual fund’s performance over longer horizons.

The class definitions may represent any criteria capable of being expressed in terms of portfolio

weights that investors deem relevant to fund selection. A common performance ratio is provided

to gauge the importance of conditioning on a specific set of portfolio weights.

Our implied statistics measure relative performance and circumvent the need to specify

benchmark returns or peer funds. The resulting performance measure is robust to herding and

window dressing by fund managers. Over longer horizons, the effect of survivorship bias on

performance measurement is also mitigated, while the calibration of risk premiums associated

with time-varying benchmark returns is circumvented.

We investigate classes defined with respect to portfolio weights for different industry sectors,

assets and geographical regions. A fund’s ability to generate returns that exceed its implied

22The lack of significance for σ̄p in explaining market timing ability is explained by its significant negative

correlation with focus, -0.441 and -0.678 respectively for assets and regions. When focus is removed from equation

(33), the t-statistics for σ̄p become positive and significant (p-values below 10−3). Therefore, as expected, funds

with larger σ̄p values have a higher likelihood of timing-the-market which justifies our earlier use of σ̄p in the

robustness test of market timing ability.
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benchmark and one standard deviation above this threshold are examined. For all three sets of

conditional information, empirical evidence finds moderate selection and market timing ability

is concentrated in a small number of fund managers. However, funds cannot overperform across

all three portfolio classifications, and few funds possess selection as well as market timing ability.

Thus, investment skill is specialized. The implied performance metrics appear to be unrelated

to a fund’s expense ratio, size and turnover. Instead, funds that restrict their investments to

a small number of classes and vary their class portfolio weights infrequently are less able to

time-the-market, but more likely to exhibit selectivity. Moreover, the conditional information

contained in portfolio weights is critically important when evaluating fund performance. Indeed,

a failure to condition on industry, asset and regional portfolio characteristics yields highly

inaccurate fund evaluations.

Avenues for future research include modifying the proposed statistical methodology for

applications to book-to-market, size and past return characteristics. In addition, passive in-

vestments such as index funds may also be utilized to assess the value of active management.

26



References

[1] Agarwal, V., and N. Y. Naik, 2000. Multi-period performance persistence analysis of hedge

funds. Journal of Financial and Quantitative Analysis 35, 327-342.

[2] Baks, K. P., 2003. On the performance of mutual fund managers. Working Paper, Emory

University.

[3] Becker, C., W. E. Ferson, D. H. Myers, and M. J. Schill, 1999. Conditional market timing

with benchmark investors. Journal of Financial Economics 52, 119-148.

[4] Brown, S. J., and W. N. Goetzmann, 1997. Mutual fund styles. Journal of Financial

Economics 43, 373-399.

[5] Brown, S. J., and W. N. Goetzmann, 1995. Performance persistence. Journal of Finance

50, 679-698.

[6] Brown, S. J., W. N. Goetzmann, R. G. Ibbotson, and S. A. Ross, 1992. Survivorship bias

in performance studies. Review of Financial Studies 5, 553-580.

[7] Carhart, M. M., 1997. On persistence in mutual fund performance. Journal of Finance 52,

57-82.

[8] Carhart, M. M., R. Kaniel, D. K. Musto, and A. V. Reed, 2002. Learning for the tape:

Evidence of gaming behavior in equity mutual funds. Journal of Finance 52, 1035-1058.

[9] Carhart, M. M., J. N. Carpenter, A. W. Lynch, and D. K. Musto, 2002. Mutual fund

survivorship. Review of Financial Studies 15, 1439-1463.

[10] Carpenter, J. N., and A. W. Lynch, 1999. Survivorship bias and attrition effects in measures

of performance persistence. Journal of Financial Economics 54, 337-374.

[11] Casella, G., and R. L. Berger, 1990. Statistical Inference. Duxbury Press.

[12] Chan, L. K. C., H. L. Chen, and J. Lakonishok, 2002. On mutual fund investment styles.

Review of Financial Studies 15, 1407-1437.

27



[13] Christopherson, J. A., W. E. Ferson, and D. A. Glassman, 1998. Conditioning manager

alphas on economic information: Another look at the persistence of performance. Review

of Financial Studies 11, 111-142.
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[31] Pástor, L., and R. F. Stambaugh, 2002b. Investing in equity mutual funds. Journal of

Financial Economics 63, 351-380.

[32] Speigel, M. I., H. Mamaysky, and H. Zhang, 2005. Improved forecasting of mutual fund

alphas and betas. Working Paper, Yale University.

[33] Wermers, R., 1999. Mutual fund herding and the impact on stock prices. Journal of Finance

54, 581-622.

29



Appendices

A Utilizing Information on Individual Securities

Suppose class c consists of Nc individual securities indexed by k = 1, 2, . . . , Nc whose returns

are denoted rk. This appendix highlights the difference between class-specific expected returns

and variances computed as

r̄c =
1

Nc

Nc∑
k=1

rk and (34)

σ2
c =

1

Nc − 1

Nc∑
k=1

(rk − r̄c)
2 , (35)

versus r̂c and σ̂2
c obtained from our implied statistical procedure. In particular, the above

estimates fail to measure relative performance for three reasons. First, r̄c and σ2
c in equations

(34) and (35) are not conditioned on the portfolio weights of actual funds. For example,

individual securities that are not held by any fund can nonetheless influence these estimates.

Second, by implication, the majority of funds could overperform (underperform) any benchmark

constructed from the r̄c estimates in equation (34). Third, the variance in equation (35) is not

between fund returns but pertains to the variability of individual securities. For example, σ2
c

is positive even if all fund managers maintain identical portfolios and produce identical returns

as a consequence.

Nonetheless, given market values for the individual securities, class portfolio weights can be

constructed from the portfolio weights of individual securities after sorting them according to

a specified criteria such as industry SIC codes. Once this initial step is completed, our implied

estimation procedure is applicable.

B Simulation Study

The simulation analysis has C = 12 classes with a matrix W of portfolio weights sampled from

the data for one thousand funds, P = 1, 000. Random class-specific returns denoted R are

drawn from a N (RC , ΘC) distribution, which creates the vector of fund returns RP = W T R.
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Under the null hypothesis, scenarios in which the matrix ΘC is both diagonal and dense are

evaluated. In the latter case, correlated class returns are instilled into the analysis. Correlation

between individual fund returns, which exists even after conditioning on portfolio weights, is

also introduced by augmenting the Rp vector as follows

R∗
P = RP + ε∗ where ε∗ ∼ N (0, ΛP ) .

Thus, R∗
P represents fund returns generated by portfolio weights as well as a random component

determined by the variance-covariance matrix denoted ΛP . Along with W and RC, the diagonal

elements of ΘC as well as ΛP originate from the industry data and are fixed throughout the

simulation study. Three separate structures for ΘC and ΛP are investigated. In the first

instance, both of these variance-covariance matrices are diagonal. In the second and third

scenarios, ΘC and ΛP are dense matrices respectively with a full complement of off-diagonal

(covariance) terms. However, in all three cases, variances along the diagonal are identical.

A time series of np = 24 return vectors are simulated. The estimation procedure then

produces R̂ and Θ̂ estimates under the previous assumptions that Θ̂ and Λ̂ = diag
{

W T Θ̂W
}

are both diagonal as detailed in Section 3. These estimates are then converted into selectivity

metrics before applying the performance measure in equation (20) to all 1,000 funds, yielding

a Percent subset. The simulation process is repeated N = 1, 000 times. Finally, each of the

N subsets is then tested according to equation (30) for γ equal to 0.05 and 0.10. Besides

simulating under the null hypothesis of no selection ability, 15% of funds have their returns

increased by a factor of 1.25. In this case, the null hypothesis of no selection ability is false at

the K = 0 threshold and its rejection is anticipated.
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Figure 1: Implied distributions of selectivity statistics for three consecutive months during the
sample period. The exact dates correspond to October, November and December of 2000. A
normal distribution (with the same mean and variance) is superimposed on each histogram for
ease of comparison.



Table 1: Summary statistics for Morningstar data on industries, assets and regions. The mean
and median of the class portfolio weights across all funds are reported, along with their standard
deviation representing variability across funds. Note that the average portfolio weights sum to
one. The annualized mean and median of the implied fund returns for each class are also
presented over the December 1992 to December 2001 sample period.

Class Portfolio Weights wc Implied Returns r̂c

Industries 12 Classes Mean Median Std. Dev. Mean Median

1. Software 4.1 2.9 1.7 30.22 20.30
2. Hardware 13.5 11.3 4.9 30.94 26.20
3. Media 4.0 3.0 1.6 24.21 22.32
4. Telecommunications 6.2 4.7 2.3 39.71 31.32
5. Healthcare 10.7 10.0 2.8 16.52 17.87
6. Consumer Services 8.0 7.1 2.5 14.18 13.30
7. Business Services 6.4 4.8 2.1 16.68 10.93
8. Financial Services 17.2 15.5 3.5 9.49 3.57
9. Consumer Goods 9.1 8.4 2.7 14.77 15.94
10. Industrial Materials 11.7 10.1 2.8 9.80 11.52
11. Energy 5.6 5.0 2.0 8.87 9.88
12. Utilities 3.5 1.5 1.4 14.52 14.65

Assets 4 Classes

1. Cash 5.4 3.6 4.2 5.70 3.75
2. Equity 87.8 94.2 5.0 20.23 14.99
3. Bonds 4.7 6.0 1.7 5.58 5.13
4. Preferreds and Convertibles 2.1 1.8 1.7 15.08 14.60

Regions 5 Classes

1. America 82.3 97.3 1.4 15.70 19.66
2. United Kingdom 3.1 3.4 0.7 7.84 8.35
3. Europe 7.7 1.4 1.2 4.07 8.15
4. Japan 3.3 3.5 0.6 1.07 3.26
5. Asia 3.6 4.2 0.6 3.26 9.68



Table 2: Summary of selection and market timing performance with classes defined in terms of
industries, assets and regions. For K = 0, a fund’s ability to exceed its fund-specific implied
benchmark return is examined, while K = 1 ascertains performance one standard deviation
above this threshold. The percentages reported below document the proportion of funds that
exhibit investment skill by having p-values for the performance measure in equation (20) below
the stated significance levels. The asterices *, ** and *** indicate statistical significance of these
subsets at the 10%, 5% and 1% level respectively according to equation (30). The row entitled
“All Criteria” corresponds to an intersection over all three sets of conditional information, and
examines the existence of funds capable of overperforming across each portfolio characteristic.

Percentage of Overperforming Funds

K = 0 Performance Threshold
Selectivity Market Timing

Significance Level Significance Level
Conditional Information 10% 5% 1% 10% 5% 1%

Industry 13.0*** 11.2*** 8.6*** 11.5* 9.4*** 5.5***

Asset 11.5* 10.3*** 7.2*** 36.7*** 29.0*** 14.9***

Region 7.3 6.2 4.6*** 9.1 7.7*** 7.3***

All Criteria 0.5 0.5 0.0 0.7 0.5 0.0

K = 1 Performance Threshold
Selectivity Market Timing

Significance Level Significance Level
Conditional Information 10% 5% 1% 10% 5% 1%

Industry 2.7 1.9 1.3 4.1 3.2 2.0***

Asset 3.2 2.2 1.5* 0.0 0.0 0.0

Region 2.0 1.3 0.4 0.9 0.9 0.9

All Criteria 0.2 0.2 0.0 0.0 0.0 0.0



Table 3: Success of funds in selecting securities and timing-the-market conditional on industry,
asset and regional portfolio weights. The results below examine the intersection of individual
funds with significant performance measures for selection and market timing ability at the
10% level. This analysis determines whether a fund’s success in selecting securities within the
classes is duplicated by their allocation decisions between classes. The reported percentages
below correspond to the K = 0 performance threshold which evaluates a fund manager’s ability
to exceed their fund-specific benchmark return. None of these entries are significant at the 10%
significance level.

Intersection of Selection and Market Timing Ability Subsets

Selectivity

Industry Asset Region
Market Timing

Industry 2.1 3.9 1.6

Asset 5.9 7.7 2.9

Region 2.2 1.6 0.7



Table 4: Relationships between selection and market timing ability versus fund characteristics.
The results displayed below are reported for the Logit model in equation (33). Focus and σ̄p

are defined in equations (28) and (29) respectively. The p-values are reported in parentheses
below the t-statistics with *, ** and *** denoting significance at the 10%, 5% and 1% level
respectively. Since the dependent variables are the p-values of the performance metrics, smaller
p-values imply more significant overperformance. Therefore, a positive (negative) t-statistic
implies that larger variables coincide with a decreased (increased) likelihood of overperformance.

Selection Ability

Intercept Expense Size Turnover Focus σ̄p

Industry 2.14** -1.91* 1.39 1.27 -3.47*** 0.35
(p-value) (0.032) (0.056) (0.166) (0.205) (0.000) (0.725)

Asset -1.40 -1.19 0.83 0.39 1.16 3.96***
(p-value) (0.163) (0.235) (0.401) (0.695) (0.245) (0.003)

Region -0.48 -0.39 1.76* 0.90 0.24 0.21
(p-value) (0.632) (0.695) (0.080) (0.371) (0.811) (0.834)

Market Timing Ability

Intercept Expense Size Turnover Focus σ̄p

Industry 2.39*** -0.98 0.38 -0.15 3.79*** -10.08***
(p-value) (0.017) (0.328) (0.700) (0.883) (0.000) (0.000)

Asset 116.15*** 0.31 0.74 1.06 -40.20*** -1.57
(p-value) (0.000) (0.755) (0.460) (0.289) (0.000) (0.116)

Region 47.40*** -1.76 0.23 0.58 -6.37*** -0.34
(p-value) (0.000) (0.173) (0.818) (0.395) (0.000) (0.735)
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