# South Dakota State University

# Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange

Agronomy, Horticulture and Plant Science Faculty Publications Department of Agronomy, Horticulture, and Plant Science

4-2020

# Soil Sample Timing, Nitrogen Fertilization, and Incubation Length Influence Anaerobic Potentially Mineralizable Nitrogen

Jason Clark

Kristen S. Veum

Fabian G. Fernandez

Newell R. Kitchen

James J. Camberato

See next page for additional authors

Follow this and additional works at: https://openprairie.sdstate.edu/plant\_faculty\_pubs

# Authors

Jason Clark, Kristen S. Veum, Fabian G. Fernandez, Newell R. Kitchen, James J. Camberato, Paul R. Carter, Richard B. Ferguson, David W. Franzen, Daniel E. Kaiser, Carrie A.M. Laboski, Emerson D. Nafziger, Carl J. Rosen, John E. Sawyer, and John F. Shanahan

DOI: 10.1002/saj2.20050

#### NUTRIENT MANAGEMENT & SOIL & PLANT ANALYSIS

# Soil sample timing, nitrogen fertilization, and incubation length influence anaerobic potentially mineralizable nitrogen

Jason D. Clark<sup>1</sup> | Kristen S. Veum<sup>3</sup> | Fabián G. Fernández<sup>2</sup> | Newell R. Kitchen<sup>3</sup> | James J. Camberato<sup>4</sup> | Paul R. Carter<sup>5</sup> | Richard B. Ferguson<sup>7</sup> | David W. Franzen<sup>6</sup> | Daniel E. Kaiser<sup>2</sup> | Carrie A. M. Laboski<sup>8</sup> | Emerson D. Nafziger<sup>9</sup> | Carl J. Rosen<sup>2</sup> | John E. Sawyer<sup>10</sup> | John F. Shanahan<sup>11</sup>

<sup>1</sup>South Dakota State University, 1148 Medary Ave., Brookings, SD, 57007

<sup>2</sup>University of Minnesota, 1991 Upper Buford Circle, St. Paul, MN, 55108

<sup>3</sup>USDA-ARS Cropping Systems and Water Quality Research Unit, Columbia, MO, 65211

<sup>4</sup>Purdue University, 915 W. State St., West Lafayette, IN, 47907

<sup>5</sup>Independent Agronomist, 13801 Summit Dr., Clive, IA, 50325

<sup>6</sup>North Dakota State University, PO Box 6050, Fargo, ND, 58108

<sup>7</sup>University of Nebraska, Keim 367, Lincoln, NE, 68583

<sup>8</sup>University of Wisconsin-Madison, 1525 Observatory Dr., Madison, WI, 53706

<sup>9</sup>University of Illinois, 1102 S. Goodwin, Urbana, IL, 61801

<sup>10</sup>Iowa State University, 3208 Agronomy Hall, 716 Farm House Lane, Ames, IA, 50011

<sup>11</sup>Soil Health Institute, 6807 Ridge Rd., Lincoln, NE, 68512

Correspondence

J.D. Clark, South Dakota State University, 1148 Medary Ave., Brookings, SD 57007 Email: Jason.D.Clark@sdstate.edu

**Funding information** DuPont Pioneer

#### Abstract

Understanding the variables that affect the anaerobic potentially mineralizable N (PMN<sub>an</sub>) test should lead to a standard procedure of sample collection and incubation length, improving PMN<sub>an</sub> as a tool in corn (*Zea mays* L.) N management. We evaluated the effect of soil sample timing (preplant and V5 corn development stage [V5]), N fertilization (0 and 180 kg ha<sup>-1</sup>) and incubation length (7, 14, and 28 d) on PMN<sub>an</sub> (0–30 cm) across a range of soil properties and weather conditions. Soil sample timing, N fertilization, and incubation length affected PMN<sub>an</sub> differently based on soil and weather conditions. Preplant vs. V5 PMN<sub>an</sub> tended to be greater at sites that received < 183 mm of precipitation or < 359 growing degree-days (GDD) between preplant and V5, or had soil C/N ratios > 9.7:1; otherwise, V5 PMN<sub>an</sub> tended to be greater in unfertilized vs. fertilized soil in sites with clay content > 9.5%, total C < 24.2 g kg<sup>-1</sup>, soil organic

Abbreviations: AWDR, Abundant and well-distributed rainfall; GDD, Growing degree-day; PMN<sub>an</sub>, Anaerobic potentially mineralizable N; SDI, Shannon diversity index; SOM, Soil organic matter.

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

© 2020 The Authors. Soil Science Society of America published by Wiley Periodicals, Inc. on behalf of Soil Science Society of America

matter (SOM) < 3.9 g kg<sup>-1</sup>, or C to N ratios < 11.0:1; otherwise, PMN<sub>an</sub> tended to be greater in fertilized vs. unfertilized soil. Longer incubation lengths increased PMN<sub>an</sub> at all sites regardless of sampling methods. Since PMN<sub>an</sub> is sensitive to many factors (sample timing, N fertilization, incubation length, soil properties, and weather conditions), it is important to follow a consistent protocol to compare PMN<sub>an</sub> among sites and potentially use PMN<sub>an</sub> to improve corn N management.

# **1 | INTRODUCTION**

Nitrogen mineralization can supply 20 to 100% of crop N needs depending on several factors (Khan, Mulvaney, & Hoeft, 2001; Ros, Temminghoff, & Hoffland, 2011; Yost, Coulter, Russelle, Sheaffer, & Kaiser, 2012). Knowledge of the N supplied from soil organic matter (SOM) mineralization may improve N fertilizer guidelines. The N mineralization estimated from the PMN<sub>an</sub> test was used, along with preplantand presidedress-nitrate tests, to improve N management decisions in Argentina (Orcellet, Reussi, Sainz Rozas, Wyngaard, & Echeverría, 2017; Sainz Rozas, Calvino, Echeverría, Barbieri, & Redolatti, 2008). The use of the PMN<sub>an</sub> test also improved the predictability of N needs of winter wheat (Triticum aestivum L.) in the U.S. Pacific Northwest and corn in the U.S. Southeast (Christensen & Mellbye, 2006; Williams, Crozier, White, Sripada, & Crouse, 2007). Therefore in the U.S. Midwest, the use of the PMN<sub>an</sub> test may also be able to improve N guidelines for corn. However, we need to consider various sampling and methodological conditions in order to determine a standardized PMN<sub>an</sub> protocol that will optimize the utility of the PMN<sub>an</sub> test in predicting corn N requirements in the U.S. Midwest.

First, most soil samples collected for PMN<sub>an</sub> analysis are obtained early in the spring when limited mineralization has taken place. These mineralization rates increase through the spring as temperatures increase and change throughout the remainder of the growing season (Culman, Snapp, Green, & Gentry, 2013; Fernández, Fabrizzi, & Naeve, 2017; Kuzyakova, Turyabahika, & Stahr, 2006; Sierra, 1996). However, the differences between early and later season soil and weather conditions and their influence on PMN<sub>an</sub> have not been investigated. Another important aspect of soil sample timing to consider in the U.S. Midwest is that N mineralized early in the season (April to approximately mid-June) is susceptible to loss (denitrification or leaching) because of greater spring precipitation and limited N uptake by young corn (Randall & Vetsch, 2005; Struffert, Rubin, Fernández, & Lamb, 2016). Moving PMN<sub>an</sub> soil sampling to later in the season when N loss potential is less and corn N uptake is increasing may improve the accuracy of the N amount that will be available to the corn crop, potentially improving the ability to predict corn N needs.

#### **Core Ideas**

- Soil parameters and weather influence how sampling time, N fertilization, and incubation length affect N mineralization.
- Nitrogen mineralization at preplant > in-season timing 27% of the time; in-season timing > preplant 23% of the time.
- Nitrogen fertilization reduced N mineralization 31% of the time and increased it 7% of the time.
- Sites with fine-textured soils and higher SOM had the greatest change in N mineralization from extended incubations.

Second, most soil samples collected for PMN<sub>an</sub> analysis are obtained before spring N fertilizer application. However, the application of N fertilizer before soil sampling results in greater variability of N mineralization (Fernández et al., 2017; Kuzyakova et al., 2006; Ma, Dwyer, & Gregorich, 1999). Understanding the influence of N fertilizer application on N mineralization has important practical implications because most agricultural fields receive some N fertilizer before or at planting to optimize corn yield. The greater variability of N mineralization after N fertilizer application in the spring may be partially attributed to the interaction of N fertilizer with the quality of soil organic matter (i.e., C to N ratio) (Chen et al., 2014; Conde et al., 2005; Hamer & Marschner, 2005). The rate of mineralization early in the season may be more influenced by N fertilization in soils with high C to N ratios compared to soils with C to N ratios that are already low enough to promote mineralization without additional N inputs. Because of the potential for N fertilizer to influence N mineralization, mineralization estimates obtained from soil before spring N fertilization might result in an inaccurate estimate of how much N the soil can supply to a crop. Therefore, the measurement of the effect of early-season N fertilization on PMN<sub>an</sub> requires further research. Increasing our understanding of the effect of N fertilizer on PMN<sub>an</sub> would also likely improve N management guidelines.

Third, the standard incubation length for the PMN<sub>an</sub> test is 7 d. Extending the incubation allows for more mineralization and often results in greater PMN<sub>an</sub> (Angus, Ohnishi, Horie, & Williams, 1994; Smith, McNeal, Owens, & Klock, 1981). Increasing the anaerobic incubation beyond 7 d may be difficult for commercial soil testing labs that prefer highthroughput analytical methods, unless the benefits outweigh the extra costs associated with longer incubations. Clark et al. (2019) showed that PMN<sub>an</sub> from longer than 7-d incubations (e.g., 14 or 28 d) related better to soil properties such as SOM, total N, and clay content in soils that have been fertilized with N and other studies observed improved correlations with crop biomass and N uptake of rice (Oryza sativa) with PMN<sub>an</sub> from longer than 7-d incubations (Russell, Dunn, Batten, Williams, & Angus, 2006). While limited at present, those studies hint that longer incubation lengths may be more representative of N mineralization in the field, which could improve the accuracy of fertilizer-N guidelines. The potential for longer incubations to explain the variability of N mineralization in relation to contrasting soil properties and weather conditions deserves further inquiry. Therefore, the objective of this paper was to evaluate the effect of soil sample timing, N fertilization, and incubation length on PMN<sub>an</sub> across a range of soil properties and weather conditions in the U.S. Midwest. Specific research findings regarding the relationships between PMN<sub>an</sub> from different sampling methodologies and PMN<sub>an</sub> incubation lengths with plant available N, N uptake, and yields will come in future papers.

### 2 | MATERIALS AND METHODS

#### 2.1 | Experimental design

This study was conducted as a coordinated effort with uniform treatments and measurement methodology across eight U.S. Midwestern states (Illinois, Indiana, Iowa, Minnesota, Missouri, Nebraska, North Dakota, and Wisconsin). Kitchen et al. (2017) contains information regarding general soil characteristics and precipitation and temperature patterns across the study region along with specific details of experimental site descriptions, agronomic practices, and research protocols. Briefly, two sites were selected in each state in 2014 and 2015 for 32 site-years total that varied in soil properties and weather conditions (Table 1). An unfertilized check and an N rate that was considered representative of the optimal N rate (180 kg N  $ha^{-1}$ ) was selected in this study for measuring  $PMN_{an}$ . Ammonium nitrate (340 g N kg<sup>-1</sup>) was broadcast applied on the soil surface at planting. As stated in Kitchen et al. (2017), ammonium nitrate was used because it was expected to perform more similarly across the environmental conditions represented in the study region, provide a uniform broadcast application that would allow for soil  $NO_3$ -N and  $NH_4$ -N evaluation shortly after application, and be suitable for surface application.

#### 2.2 | Soil sampling and analysis

Soil characterization was performed before spring tillage and planting at each experimental site by obtaining two, 120-cm deep soil cores (3.8 to 4.0 cm i.d.) from every replicate and dividing them by horizons to measure physical and chemical properties including a taxonomic description; bulk density (bulk density-measured), soil texture, total C, total organic C, SOM, total N, cation exchange capacity, and pH (1:1 soil/water) as described in Kitchen et al. (2017). Saxton bulk density (bulk density-Saxton) was also calculated using the soil texture and SOM measurements (Saxton & Rawls, 2006). Weighted averages were calculated for the top 30 cm using the depth of each horizon within the 0- to 30-cm soil depth.

The preplant soil samples were obtained each spring 2 to 4 wk before planting and fertilization using a ten core (1.9 to 4.0 cm i.d.) composite soil sample from each replication at 0to 30-, 30- to 60-, and 60- to 90-cm soil depths. In addition, a six-core composite (1.9-cm i.d.) soil sample (0- to 30- and 30to 60-cm depth) was obtained at the V5 corn development stage from the 0 and 180 kg N ha<sup>-1</sup> treatments. All soil samples were dried ( $\leq 32^{\circ}$ C) and ground to pass through a 2-mm sieve. Soil NO<sub>3</sub>–N was extracted using 0.2 mol  $L^{-1}$ KCl (Saha, Sonon, & Biswas, 2018) and quantified by the cadmium reduction method (Gelderman & Beegle, 2012) with a modified Technicon AutoAnalyzer (SEAL Analytical, Inc., Fareham, UK). For PMN<sub>an</sub> analysis, only the surface soils (0-30 cm in this study) were analyzed to maintain consistency with depth used when the PMN<sub>an</sub> test was originally calibrated (Bundy & Meisinger, 1994). Anaerobic potentially mineralizable N was quantified by combining 4.0 g of dried soil with 20 ml of ultrapure water in 50 ml Falcon tubes (Corning Inc., Corning, NY), capped, and subjected to an incubation length of 7, 14, and 28 d at 40°C (Keeney & Bremner, 1966). After incubation, 20 ml of 4 mol  $L^{-1}$  KCl was added for a final extractant concentration of 2 mol  $L^{-1}$  KCl and samples were shaken for 30 min. Next, the solution was passed through a washed 0.45-µm syringe filter disk and stored in a microtube at -80°C to await NH<sub>4</sub>-N analysis. Extracted NH<sub>4</sub>-N was determined by the Berthelot method (Rhine, Mulvaney, Pratt, & Sims, 1998) using a Glomax-Multi Detection System plate reader (Promega Biosystems, Inc., Sunnyvale, CA, USA). An initial NH<sub>4</sub>-N value was determined for each soil sample following the above extraction procedure with 2 mol  $L^{-1}$  KCl and subtracted from the incubation results to obtain net NH<sub>4</sub>-N produced or PMN<sub>an</sub>.

**TABLE 1** Minimum, maximum, mean, standard deviation, and coefficient of variation of soil properties and weather conditions across 32 site-years

| Property <sup>a</sup>                              | Min. | Max. | Mean | SD   | CV   |
|----------------------------------------------------|------|------|------|------|------|
| Soil properties                                    |      |      |      |      |      |
| Sand, g kg $^{-1}$                                 | 20   | 930  | 260  | 250  | 950  |
| Silt, g kg <sup>-1</sup>                           | 40   | 790  | 500  | 190  | 390  |
| Clay, g kg <sup>-1</sup>                           | 20   | 610  | 240  | 110  | 470  |
| BD-measured, g cm $^{-3}$                          | 1.0  | 1.7  | 1.4  | 0.1  | 9.8  |
| BD-Saxton, g cm <sup>-3</sup>                      | 1.1  | 1.6  | 1.3  | 0.1  | 10.0 |
| TC, g kg <sup><math>-1</math></sup>                | 4.4  | 55.5 | 14.6 | 7.6  | 51.8 |
| TOC, g kg $^{-1}$                                  | 4.4  | 47.8 | 14.2 | 6.9  | 48.5 |
| SOM, g kg <sup><math>-1</math></sup>               | 7.7  | 71.0 | 25.7 | 10.0 | 38.9 |
| TN, g kg $^{-1}$                                   | 0.4  | 4.3  | 1.4  | 0.6  | 41.8 |
| C to N ratio                                       | 7.2  | 12.7 | 10.0 | 1.0  | 10.4 |
| CEC, $\text{cmol}_{c} \text{ kg}^{-1}$             | 3    | 44   | 20   | 9    | 46   |
| pH-salt                                            | 4.4  | 7.8  | 6.1  | 0.8  | 13.6 |
| pH-water                                           | 5.1  | 8.8  | 6.7  | 0.8  | 11.4 |
| Soil-N at $PP_{0N}$ , mg kg <sup>-1</sup>          |      |      |      |      |      |
| NH <sub>4</sub> -N 0-30 cm                         | 3    | 19   | 8    | 4    | 44   |
| NO <sub>3</sub> –N 0–30 cm                         | 1    | 18   | 6    | 3    | 53   |
| NO <sub>3</sub> –N 0–60 cm                         | 1    | 12   | 5    | 2    | 42   |
| NO <sub>3</sub> –N 0–90 cm                         | 1    | 9    | 4    | 2    | 40   |
| Soil-N at V5 <sub>0N</sub> , mg kg <sup>-1</sup>   |      |      |      |      |      |
| NH <sub>4</sub> -N 0-30 cm                         | 1    | 14   | 7    | 3    | 47   |
| NO <sub>3</sub> –N 0–30 cm                         | 3    | 27   | 8    | 4    | 58   |
| NO <sub>3</sub> –N 0–60 cm                         | 2    | 21   | 7    | 4    | 49   |
| Soil-N at V5 <sub>180N</sub> , mg kg <sup>-1</sup> |      |      |      |      |      |
| NH <sub>4</sub> -N 0-30 cm                         | 2    | 34   | 9    | 5    | 63   |
| NO <sub>3</sub> –N 0–30 cm                         | 7    | 75   | 32   | 12   | 38   |
| NO <sub>3</sub> –N 0–60 cm                         | 9    | 58   | 24   | 9    | 35   |
| Precipitation, Preplant-V5                         |      |      |      |      |      |
| Max precipitation, mm                              | 19   | 95   | 39   | 18   | 46   |
| Sum of precipitation, mm                           | 85   | 331  | 175  | 68   | 39   |
| Mean precipitation, mm                             | 2    | 5    | 3    | 0.6  | 17   |
| SDI                                                | 0.5  | 0.7  | 0.6  | 0.1  | 8    |
| AWDR                                               | 47   | 242  | 110  | 47   | 43   |
| Temperature, Preplant-V5                           |      |      |      |      |      |
| Mean max temperature, °C                           | 19   | 27   | 22   | 2    | 8    |
| Mean min temperature, °C                           | 6    | 13   | 10   | 2    | 1    |
| Mean temperature, °C                               | 13   | 20   | 16   | 2    | 10   |
| GDD                                                | 228  | 543  | 347  | 84   | 24   |

<sup>a</sup>BD, bulk density; TC, total carbon; TOC, total organic carbon; SOM, soil organic matter; TN, total nitrogen; CEC, cation exchange capacity; SDI, Shannon diversity index; AWDR, abundant and well-distributed rainfall; GDD, growing degree-day.

#### 2.3 | Weather

Weather data was collected at each experimental site with a HOBO U30 automatic weather station (Onset Computer Corporation, Bourne, MA, USA). Precipitation and temperature measurements were recorded every five min. These measurements were used to determine the daily minimum, maximum, and mean temperatures, and the daily cumulative precipitation. These daily weather measurements were quality checked by comparing the weather station measurements against interpolated temperature data from Multi-Radar/Multi-Sensor rainfall data (National Severe Storms Lab, NOAA). Outliers

| Weather parameter                      | Definition                                                                                                                                                                                                                                                                                                                                                                   |
|----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Mean min temperature                   | Tmin = Minimum daily temperature                                                                                                                                                                                                                                                                                                                                             |
| Mean max temperature                   | Tmax = Maximum daily temperature                                                                                                                                                                                                                                                                                                                                             |
| Mean temperature                       | MeanTemp = (Tmax + Tmin)/2                                                                                                                                                                                                                                                                                                                                                   |
| Growing degree-days                    | GDD = [(Tmax + Tmin)/2] − 10°C, where Tmax = Tmax if 10 ≤ Tmax ≤ 30, if Tmax ≤ 10 then<br>Tmax = 10, if Tmax ≥ 30 then Tmax = 30; Tmin = the minimum daily temperature if Tmin ≥ 10, if<br>Tmin ≤ 10 then Tmin = 10; all temperatures were measured in degrees Celsius, °C                                                                                                   |
| Sum of precipitation                   | $SP = \Sigma(Rain)$ , where rain is the daily precipitation (mm)                                                                                                                                                                                                                                                                                                             |
| Mean precipitation                     | MP = SP/n, where n is the number of days in that period.                                                                                                                                                                                                                                                                                                                     |
| Max precipitation                      | MP = Maximum amount of rain in a single day in that period                                                                                                                                                                                                                                                                                                                   |
| Shannon diversity index                | $SDI = [-\Sigma pi \ln(pi)]/\ln(n)$ , where $pi = rain/SP$ is the fraction of daily precipitation relative to the total precipitation in a given time period and n is the number of days in that period. $SDI = 1$ implies complete evenness (i.e., equal amounts of precipitation in each day of the period); $SDI = 0$ implies complete unevenness (i.e., all rain in 1 d) |
| Abundant and well-distributed rainfall | AWDR = SP(SDI)                                                                                                                                                                                                                                                                                                                                                               |

TABLE 2 Weather variables used and their definitions

**TABLE 3**Minimum, maximum, mean, standard deviation, andcoefficient of variation of anaerobic potentially mineralizable N(PMN<sub>an</sub>) as influenced by soil sample timing, N fertilization andincubation length across 32 site-years

|                              |      | PMN <sub>an</sub>   |      |      |      |  |  |
|------------------------------|------|---------------------|------|------|------|--|--|
| <b>Property</b> <sup>a</sup> | Min. | Max.                | Mean | SD   | CV   |  |  |
|                              | -    | mg kg <sup>-1</sup> |      |      |      |  |  |
| PP <sub>0N</sub> , 7 d       | 0.7  | 84.0                | 26.7 | 15.1 | 56.8 |  |  |
| PP <sub>0N</sub> , 14 d      | 2.4  | 94.5                | 37.8 | 18.9 | 50.0 |  |  |
| PP <sub>0N</sub> , 28 d      | 6.0  | 125.3               | 48.9 | 25.4 | 51.9 |  |  |
| V5 <sub>0N</sub> , 7 d       | 0.2  | 99.9                | 28.3 | 15.0 | 53.1 |  |  |
| V5 <sub>0N</sub> , 14 d      | 2.1  | 122.7               | 37.0 | 17.4 | 47.0 |  |  |
| V5 <sub>0N</sub> , 28 d      | 4.0  | 136.7               | 48.5 | 23.2 | 47.8 |  |  |
| V5 <sub>180N</sub> , 7 d     | 0.9  | 92.2                | 23.2 | 15.2 | 65.4 |  |  |
| V5 <sub>180N</sub> , 14 d    | 6.9  | 109.9               | 32.4 | 17.5 | 53.9 |  |  |
| V5 <sub>180N</sub> , 28 d    | 8.1  | 130.7               | 43.1 | 23.6 | 54.7 |  |  |

<sup>a</sup>PP<sub>0N</sub>, PMN<sub>an</sub> from preplant soil sampling with 0 kg N ha<sup>-1</sup>; V5<sub>0N</sub>, PMN<sub>an</sub> from V5 corn development stage with 0 kg N ha<sup>-1</sup>; V5<sub>180N</sub>, PMN<sub>an</sub> from V5 corn development stage with 180 kg N ha<sup>-1</sup> applied at planting.

and/or missing values were replaced by the interpolated temperature or Multi-Radar/Multi-Sensor rainfall estimates (Kitchen et al., 2017). The daily measurements were then used to calculate growing degree-days (GDD), mean precipitation, Shannon diversity index (SDI) of daily cumulative precipitation following Bronikowski and Webb (1996), and abundant and well-distributed rainfall (AWDR) following Tremblay et al. (2012) for the time period between the two soil sample timings (preplant to V5). These weather parameters were calculated using equations contained in Table 2. Water provided as irrigation in four of the 32 experimental sites was treated as natural precipitation in these calculations. These weather measurements were used to evaluate the effect of weather on PMN<sub>an</sub> from the two sample timings.

#### 2.4 | Statistical analysis

The effect of soil sample timing, N fertilization, and incubation length on PMN<sub>an</sub> were evaluated using the MIXED procedure of SAS (SAS Institute Inc.). The experimental design was a randomized complete block design with four replications (blocks). Residuals within each experimental unit showed normality and constant variance assumptions were met. Block was considered a random effect. Experimental site, sample timing and N rate, incubation length, and their interactions were considered fixed effects. Least squares means were calculated for each effect and their interactions using the LSMeans statement and the differences between them were determined using Tukey's adjustment for multiple comparisons when needed. Within the three sample timing and N fertilization treatments, contrasts were used to determine the significance  $(P \le .05)$  of the effect of soil sample timing (preplant vs. V5 with no N fertilization), N fertilization (0 vs. 180 kg N ha<sup>-1</sup> applied at planting and soil sampled at V5), and their interaction with site on PMN<sub>an</sub> (Crossa et al., 2015). When the site by fixed effects interactions were significant, sites were evaluated individually. Soil sample timing was evaluated at only 30 sites due to missing preplant soil samples. All 32 sites were used to evaluate the effect of N fertilization and incubation length (except at two sites where incubation length was evaluated only using the V5 soil samplings due to missing preplant soil samples).

The effect of soil properties and weather conditions on the site-year to site-year differences in the effect of soil sample timing, N rate, and incubation length on PMN<sub>an</sub> were evaluated using covariate analysis in the MIXED procedure of SAS (SAS Institute Inc., Cary, NC). Soil properties, weather measurements, sample timing and N rate, incubation length, and their interactions were considered fixed effects with

**TABLE 4** Statistical analysis of fixed and random effects and their interactions for anaerobic potentially mineralizable N (PMN<sub>an</sub>) across 32 site-years

|                                                                        | Fixed effects  |                |                |           |  |
|------------------------------------------------------------------------|----------------|----------------|----------------|-----------|--|
| Covariance parameters                                                  | Numerator df   | Denominator df | <b>F-value</b> | $\Pr > F$ |  |
| Site                                                                   | 31             | 96             | 14.3           | <.0001    |  |
| Sample timing and N rate (STNR)                                        | 2              | 750            | 34.8           | <.0001    |  |
| Incubation length (Inc.)                                               | 2              | 750            | 383.8          | <.0001    |  |
| Site × STNR                                                            | 60             | 750            | 6.6            | <.0001    |  |
| Site $\times$ Inc.                                                     | 62             | 750            | 3.9            | <.0001    |  |
| $STNR \times Inc.$                                                     | 4              | 750            | 0.8            | 0.5200    |  |
| Site $\times$ STNR $\times$ Inc.                                       | 120            | 750            | 0.5            | 1         |  |
| Contrasts                                                              |                |                |                |           |  |
| Preplant (PP) vs. V5                                                   | 1              | 720            | 1.1            | 0.3000    |  |
| 0 kg N ha $^{-1}$ vs. 180 kg N ha $^{-1}$                              | 1              | 750            | 45.8           | <.0001    |  |
| Site $\times$ (PP vs. V5)                                              | 29             | 720            | 8.2            | <.0001    |  |
| Site $\times$ (0 kg N ha <sup>-1</sup> vs. 180 kg N ha <sup>-1</sup> ) | 31             | 480            | 4.7            | <.0001    |  |
|                                                                        | Random effects |                |                |           |  |
|                                                                        | Estimate       | Standard error | Z value        | $\Pr > Z$ |  |
| Block (Site)                                                           | 44             | 8.1            | 5.4            | <.0001    |  |
| Residual                                                               | 106            | 5.5            | 19.4           | <.0001    |  |

block, site, and site by fixed effect interactions as random effects. This analysis method allowed us to determine what soil properties and weather conditions were likely responsible for the site-year to site-year variations of the effect of soil sample timing, N fertilization, and incubation length on PMN<sub>an</sub>. The slope and intercept coefficients from regressing soil characteristics and weather measurements against each PMN<sub>an</sub> treatment combination were also determined using this covariate analysis. These coefficients were then used to determine the critical value of the soil or weather variables at which PMN<sub>an</sub> from the preplant sample timing became greater or less than the V5 sample timing where no N fertilizer was applied, and PMN<sub>an</sub> at V5 from the unfertilized soil became greater or less than the soil fertilized with 180 kg N ha<sup>-1</sup>. The intercept and slope coefficients were also used to compare the effect of soil and weather variables on PMN<sub>an</sub> as incubation length increased from 7 to 14 and 28 d.

#### **3 | RESULTS AND DISCUSSION**

The wide range in soil properties and weather conditions (Table 1) across all sites prior to soil sample collection led to a wide range of  $PMN_{an}$  values (0.2 to 137 mg N kg<sup>-1</sup>) (Table 3). The 7 d  $PMN_{an}$  incubation results of this study (0.7 to 100 mg N kg<sup>-1</sup>) were similar to other reported  $PMN_{an}$  values (12 to 87 mg N kg<sup>-1</sup>) in Pennsylvania and western Oregon, USA (Christensen & Mellbye, 2006; Fox & Piekielek, 1984) and generally lower than  $PMN_{an}$  values from Argentina (71

to 222 mg N kg<sup>-1</sup>) (Reussi, Rozas, Echeverría, & Berardo, 2013). Lower mean PMN<sub>an</sub> in our study may be related to our overall smaller mean SOM value (25.7 g kg<sup>-1</sup>) from a greater range of lower SOM values (7 to 71 g kg<sup>-1</sup>) or deeper soil samples (30 cm) relative to the SOM values (44 to 68 g kg<sup>-1</sup>) and shallower sampling depth (20 cm) of the Argentina study.

#### 3.1 | Soil sample timing effect on PMN<sub>an</sub>

The effect of soil sample timing on PMN<sub>an</sub> varied from siteyear to site-year (Table 4). Time of soil sampling did not affect PMN<sub>an</sub> in 15 of the 30 sites evaluated (50%) (Figure 1; Supplemental Table S1). In the 15 sites where PMN<sub>an</sub> was affected by soil sample timing, eight sites (27%) had greater PMN<sub>an</sub> at V5 than preplant while in the other seven sites (23%), PMN<sub>an</sub> from preplant was greater than V5 (preplant vs. V5 contrast analysis,  $P \leq .05$ ). Soil properties and early season weather conditions influenced the effect of soil sample timing on PMN<sub>an</sub>, namely precipitation amount and evenness of distribution, temperature, C to N ratio, and V5 soil NO<sub>3</sub>-N concentration (Figure 2). The strength of the relationships between PMN<sub>an</sub> from preplant and V5 with soil properties and early weather conditions shown in Figure 2 were significant but not strong (mean  $R^2 = 0.05$ ). However, these relationships help determine how soil properties and weather conditions likely influenced the effect of sample timing on PMN<sub>an</sub>.

Preplant and V5 PMN<sub>an</sub> were likely to be similar at sites that received approximately 183 mm of precipitation, rainfall distribution of 0.6 SDI or 115 AWDR, or accumulated



**FIGURE 1** Percentage and number of sites where anaerobic potentially mineralizable N (PMN<sub>an</sub>) was affected ( $P \le .05$ ) by soil sample timing in the 0 kg N ha<sup>-1</sup> treatment (preplant [PP] vs V5), fertilizer-N rate applied at planting and soil sampled at V5 (0 [0N] vs. 180 kg N ha<sup>-1</sup> [180N]), and incubation length (7, 14, and 28 d) when averaged across all treatments

359 GDD between the preplant and V5 sample timings (Figure 2a–d). These were the critical values where (1) above these threshold values, PMN<sub>an</sub> from V5 tended to be greater than preplant, or (2) below these threshold values, PMN<sub>an</sub> from preplant tended to be greater than at V5. Greater than normal early season temperatures and more evenly distributed precipitation between the preplant and V5 soil samplings likely increased the breakdown of organic materials into more easily decomposable materials by the V5 sample timing (Cabrera, Kissel, & Vigil, 2005; Culman et al., 2013; Fernández et al., 2017; Goulding et al., 1998; Kuzyakov, Friedel, & Stahr, 2000; Ma & Wu, 2008). This greater abundance of easily decomposable material available at V5 sampling likely led to the increase of V5 PMN<sub>an</sub> over preplant PMN<sub>an</sub>.

The C to N ratio and V5 soil  $NO_3$ –N concentration also influenced the effect of sample timing on  $PMN_{an}$ (Figure 2e,f). The critical values where  $PMN_{an}$  from preplant and V5 were similar were 9.7:1 for C to N ratio and 8.2 mg kg<sup>-1</sup> for V5 soil  $NO_3$ –N. Specifically, the  $PMN_{an}$ from preplant tended to be greater than V5 at C to N ratios and V5 soil  $NO_3$ –N values above these critical values and  $PMN_{an}$  from preplant tended to be greater than V5 below



**FIGURE 2** Anaerobic potentially mineralizable N (PMN<sub>an</sub>) from a 7-d incubation that was soil sampled before planting (PP) and at the V5 corn development stage as a function of soil properties (a) and weather conditions (b to e). Critical values represent the intersection point where PMN<sub>an</sub> from the preplant and V5 sample timing became greater or less than the other. Only those weather conditions and soil properties that had a significant interaction ( $P \le .05$ ) with soil sample timing were included

CLARK ET AL.

these critical values. These results indicate  $PMN_{an}$  is not consistent throughout the growing season and that soil and weather conditions influence the effect soil sample collection timing has on  $PMN_{an}$ . Therefore, the timing of obtaining soil samples to complete  $PMN_{an}$  analysis should remain consistent from year to year to make appropriate comparisons. In addition, because  $PMN_{an}$  is sensitive to sample timing, further research is needed to determine the timing of soil sampling that best relates to crop N requirement before a standard protocol can be recommended.

# 3.2 | Nitrogen fertilization effect on $PMN_{an}$ at the V5 corn development stage

The effect of N fertilization on PMN<sub>an</sub> varied from site-year to site-year (Table 4). Nitrogen fertilization did not affect PMN<sub>an</sub> in 20 of the 32 sites evaluated (63%) (Figure 2; Supplemental Table S1). In the 12 sites where N fertilization affected PMN<sub>an</sub>, 10 sites (31%) had greater PMN<sub>an</sub> from unfertilized compared to fertilized soil while in the other two sites (6%), PMN<sub>an</sub> from fertilized soil was greater than unfertilized soil (0 vs. 180 kg N ha<sup>-1</sup> applied at planting and soil sampled at V5 contrast analysis,  $P \leq .05$ ). These results indicate that N fertilization does not consistently influence PMN<sub>an</sub> and when it does, it most often reduces PMNan. The variable effect of N fertilization on PMN<sub>an</sub> in this study is similar to the findings of others (Fernández et al., 2017; Kuzyakova et al., 2006; Ma et al., 1999). Furthermore, soil properties influenced the effect of N fertilization on PMN<sub>an</sub>, namely total C, total organic C, SOM, C to N, clay content, and V5 soil NO<sub>3</sub>-N concentration (Figure 3). The strength of the relationships between PMN<sub>an</sub> from fertilized and unfertilized soil with soil properties shown in Figure 3 were significant but not strong (mean  $R^2 = 0.16$ ). However, similar to the N timing evaluations, these relationships help determine how soil properties likely influenced the effect of N fertilization on PMN<sub>an</sub>.

The PMN<sub>an</sub> from unfertilized soil was generally greater than fertilized soil at sites with low amounts of total C, total organic C, SOM, or C to N ratio (Figure 3a-d). The reduction in PMN<sub>an</sub> from fertilized relative to unfertilized soil is likely the result of the N fertilizer stimulating mineralization of the labile organic matter in the soil and depleting the amount of SOM available for mineralization by the V5 sample timing (Chen et al., 2014; Conde et al., 2005; Hamer & Marschner, 2005; Kuzyakov et al., 2000). The differences in PMN<sub>an</sub> due to N fertilization became less pronounced as total C, total organic C, SOM, or C to N ratio increased toward the high end of the range measured across the sites. The similarity in PMN<sub>an</sub> values from fertilized and unfertilized soil with these characteristics is likely the result of a reduction in the stimulation of N mineralization from the addition of N fertilizer as soil C content increased, as reported in other studies (Chen et al., 2014; Conde et al., 2005). Since only two sites had statistically greater  $PMN_{an}$  from fertilized compared to unfertilized soils, it is difficult to establish what soil parameters or critical values may help explain this response. We observed only a trend, suggesting that  $PMN_{an}$  from fertilized relative to unfertilized soil became greater when total C, total organic C, SOM, or the C to N ratio increased above 24.2 g kg<sup>-1</sup>, 21.1 g kg<sup>-1</sup>, 37.9 g kg<sup>-1</sup>, 11.0:1, respectively.

The clay content and V5 soil NO<sub>3</sub>-N concentrations also influenced the similarities and differences between PMN<sub>an</sub> from unfertilized and fertilized soil (Figure 3e,f). The PMN<sub>an</sub> from unfertilized relative to fertilized soil was generally greater at those sites with the greatest amounts of clay content and V5 soil NO<sub>3</sub>-N concentrations. The PMN<sub>an</sub> from unfertilized and fertilized soils became similar as clay content and V5 soil NO<sub>3</sub>-N decreased toward the low end of the range measured in our study. These results indicate N fertilization can affect PMN<sub>an</sub> and that soil properties influenced the effect N fertilizer application has on PMN<sub>an</sub>. Therefore, soil samples collected for PMNan analysis should always be obtained before or after N fertilization from year to year to make appropriate comparisons. In addition, because PMN<sub>an</sub> is sensitive to N fertilization, further research is needed to determine whether PMN<sub>an</sub> from fertilized or unfertilized soil best relates to crop N requirements before a standard protocol can be recommended.

#### 3.3 | Incubation length effect on PMN<sub>an</sub>

Extending the incubation length beyond 7 d generally increased PMN<sub>an</sub> at all sites (Figure 1; Supplemental Table S1), which is similar to the findings of Angus et al. (1994). The magnitude of the increase in PMN<sub>an</sub> with longer incubations varied from site to site (Table 4), depending on soil properties such as silt and clay content, cation exchange capacity, total C, total organic C, SOM, total N, or preplant NH<sub>4</sub>-N concentration (30-cm depth) (Table 5). The greater PMN<sub>an</sub> from longer incubations increased (greater slope and intercept values) as these soil properties increased across the sites. In contrast to this result, PMN<sub>an</sub> increased at a reduced rate (reduced slope but greater intercept values) with longer incubation lengths as sand content or bulk density values increased across the sites. Precipitation and temperature did not impact the effect of incubation length on PMN<sub>an</sub>. Cation exchange capacity, total C, total organic C, SOM, total N, and bulk density were the soil measurements that interacted with incubation length and accounted for the greatest variation in PMN<sub>an</sub> (mean F-value of 13) (Table 5). These soil properties also reduced the estimate of variance the most for site (mean decrease = 73) and the site by incubation length interaction (mean decrease = 12) (Supplemental Table S3). All other significant interactions between incubation length and soil variables had a weaker influence on PMN<sub>an</sub> (mean F-value of 4.7) (Table 5). These results indicate that cation exchange



**FIGURE 3** Anaerobic potentially mineralizable N (PMN<sub>an</sub>) from a 7-d incubation that was soil sampled at the V5 corn development stage where 0 (0N) or 180 kg N ha<sup>-1</sup> (180N) was applied as a function of soil properties (a to f). Critical values represent the intersection point where PMN<sub>an</sub> from the unfertilized and fertilized soil became greater or less than the other. Only those soil properties that had a significant interaction ( $P \le .05$ ) with N fertilization were included

| TABLE 5          | Change in slope and intercept of | anaerobic potentially mineral    | izable N (PMN <sub>an</sub> ) as a | function of soil properties   | when incubation      |
|------------------|----------------------------------|----------------------------------|------------------------------------|-------------------------------|----------------------|
| length increased | from 7 to 14 and 7 to 28 d. Only | those soil properties that had a | a significant interaction          | $(P \le .05)$ with incubation | length were included |

|                                        | Change in slope coefficient from 7-d incubation |             | Change in intercept from 7-d<br>incubation |           |                 |
|----------------------------------------|-------------------------------------------------|-------------|--------------------------------------------|-----------|-----------------|
| Variable <sup>ª</sup>                  | 14 d                                            | 28 d        | 14 d                                       | 28 d      | <b>F-value</b>  |
| Sand, g kg $^{-1}$                     | -0.01 <sup>b</sup>                              | $-0.02^{*}$ | +12*                                       | +27*      | 9 <sup>*</sup>  |
| Silt, g kg <sup>-1</sup>               | +0.01                                           | +0.02*      | +4                                         | $+10^{*}$ | 4*              |
| Clay, g kg <sup>-1</sup>               | +0.02                                           | +0.05*      | +6                                         | $+10^{*}$ | $8^*$           |
| BD-measured, g cm <sup>-3</sup>        | -8.23                                           | -33.50*     | +21                                        | +67*      | 9 <sup>*</sup>  |
| BD-Saxton, g cm <sup>-3</sup>          | -19.89*                                         | -51.73*     | +36*                                       | +90*      | 16 <sup>*</sup> |
| TC, g kg <sup><math>-1</math></sup>    | +0.23                                           | +0.62*      | +6*                                        | +12*      | 8*              |
| TOC, g kg <sup><math>-1</math></sup>   | +0.28                                           | +0.79*      | +6*                                        | $+10^{*}$ | 11*             |
| SOM, g kg <sup><math>-1</math></sup>   | +0.22                                           | +0.60*      | +4                                         | +5        | $14^{*}$        |
| TN, g kg <sup><math>-1</math></sup>    | +3.48                                           | +9.28*      | +5                                         | $+8^{*}$  | $11^{*}$        |
| CEC, $\text{cmol}_{c} \text{ kg}^{-1}$ | +0.22                                           | +0.63*      | +5                                         | +9*       | $10^{*}$        |
| $PP_{0N} NH_4$ –N, 0–30 cm             | +0.14                                           | +1.00*      | +8*                                        | +12*      | 4*              |

\*Significant at  $P \leq .05$ .

<sup>a</sup>BD, bulk density; TC, total carbon; TOC, total organic carbon; SOM, soil organic matter; TN, total nitrogen; CEC, cation exchange capacity.

<sup>b</sup>Change in slope coefficient and intercept when moving from 7 to 14 or 28 d of incubation. (Sand content example: 7 d PMN<sub>an</sub> = (slope coefficient)(sand content) + intercept. When PMN<sub>an</sub> incubation length moves from 7 to 14 d, the slope coefficient decreases by 0.01 and the intercept increases by 12.

capacity, total C, total organic C, SOM, total N, and bulk density were likely the soil properties that were driving most of the differences in the increase of PMN<sub>an</sub> with longer incubations from site to site.

### **4** | **CONCLUSIONS**

Soil properties (especially cation exchange capacity, soil C content, SOM, total N, and bulk density) and early season weather conditions (especially evenness of early season precipitation) had a large influence on the effect of soil sample timing, N fertilizer application, and incubation length on PMN<sub>an</sub> Therefore, careful consideration as to the time of soil sampling, N fertilization status, and incubation length should be made when comparing PMN<sub>an</sub> values among sites. Producers and scientists should follow a consistent protocol when obtaining soil samples and analyzing them for PMN<sub>an</sub> to make comparisons related to N mineralization capacity of soils and for guiding fertilizer-N rates. There are tradeoffs with the sampling methodologies and incubation lengths evaluated in this study. For example, commercial soil testing labs may not want to incubate soil samples for 28 d because they prefer high-throughput analytical methods that reduce costs and provide rapid results to producers. Therefore, a better understanding of the relationship between crop N availability, N uptake, yields, and PMN<sub>an</sub> from these different soil sampling methodologies and incubation lengths are needed before we can determine the protocol that best relates to crop N management.

#### ACKNOWLEDGMENTS

We thank DuPont Pioneer for funding this research. The authors thank the supporting scientists (Matt Yost; Dan Barker [Iowa]; Lakesh Sharma, Amitava Chatterjee, and Norm Cattanach [North Dakota]; Todd Andraski [Wisconsin]; and Tim Hart [DuPont Pioneer]), field technicians (Matt Volkmann [Missouri]; Jason Niekamp and Joshua Vonk [Illinois]; Glen Slater [Nebraska]; Andrew Scobbie, Thor Sellie, Nicholas Severson, Darby Martin, and Erik Joerres [Minnesota]), and cooperating farmers and research farm personnel for their help in completing this project. Mention of trade names or commercial products in this publication is solely for the purpose of providing information and does not imply recommendation or endorsement by the affiliated Universities or the U.S. Department of Agriculture.

#### ORCID

Jason D. Clark (b) https://orcid.org/0000-0001-7793-6411 Kristen S. Veum (b) https://orcid.org/0000-0002-6492-913X David W. Franzen (b) https://orcid.org/0000-0003-4862-8086 Daniel E. Kaiser (b) https://orcid.org/0000-0002-8478-701X John E. Sawyer (b) https://orcid.org/0000-0003-4080-9616

#### REFERENCES

- Angus, J. F., Ohnishi, M., Horie, T., & Williams, R. L. (1994). A preliminary study to predict net nitrogen mineralization in a flooded rice soil using anaerobic incubation. *Australian Journal of Experimental Agriculture*, 34, 995–999.
- Bronikowski, A., & Webb, C. (1996). A critical examination of rainfall variability measures used in behavioral ecology studies. *Behavioral Ecology and Sociobiology*, 39, 27–30. https://doi.org/10.1007/ s002650050263
- Bundy, L. G., & Meisinger, J. J. (1994). Nitrogen availability indices. In R. W. Weaver (Ed.), *Methods of soil analysis: Biochemical and microbial properties* (pp. 951–984). SSSA Monogr. 5. Madison, WI: Soil Science Society of America.
- Cabrera, M. L., Kissel, D. E., & Vigil, M. F. (2005). Nitrogen mineralization from organic residues: Research opportunities. *Journal of Environmental Quality*, 34, 75–79. https://doi.org/10.2134/ jeq2005.0075
- Chen, R., Senbayram, M., Blagodatsky, S., Myachina, O., Dittert, K., Lin, X., ... Kuzyakov, Y. (2014). Soil C and N availability determine the priming effect: Microbial N mining and stoichiometric decomposition theories. *Global Change Biology*, 20, 2356–2367. https://doi.org/10.1111/gcb.12475
- Christensen, N. W., & Mellbye, M. E. (2006). Validation and recalibration of a soil test for mineralizable nitrogen. *Communications in Soil Science and Plant Analysis*, 37, 2199–2211. https://doi.org/10.1080/ 00103620600817416
- Clark, J. D., Veum, K. S., Fernández, F. G., Camberato, J. J., Carter, P. R., Ferguson, R. B., ... Shanahan, J. F. (2019). United States Midwest soil and weather conditions influence anaerobic potentially mineralizable nitrogen. *Soil Science Society of America Journal*, 83, 1137– 1147. https://doi.org/10.2136/sssaj2019.02.0047
- Conde, E., Cardenas, M., Ponce-Mendoza, A., Luna-Guido, M. L., Cruz-Mondragón, C., & Dendooven, L. (2005). The impacts of inorganic nitrogen application on mineralization of 14C-labelled maize and glucose, and on priming effect in saline alkaline soil. *Soil Biology & Biochemistry*, 37, 681–691. https://doi.org/10.1016/j.soilbio. 2004.08.026
- Crossa, J., Vargas, M., Cossani, C. M., Alvarado, G., Burgueño, J., Mathews, K. L., & Reynolds, M. P. (2015). Evaluation and interpretation of interactions. *Agronomy Journal*, 107, 736–747. https://doi.org/10. 2134/agronj2012.0491
- Culman, S. W., Snapp, S. S., Green, J. M., & Gentry, L. E. (2013). Shortand long-term labile soil carbon and nitrogen dynamics reflect management and predict corn agronomic performance. *Agronomy Journal*, 105, 493–502. https://doi.org/10.2134/agronj2012.0382
- Fernández, F. G., Fabrizzi, K. P., & Naeve, S. L. (2017). Corn and soybean's season-long in-situ nitrogen mineralization in drained and undrained soils. *Nutrient Cycling in Agroecosystems*, 107, 33–47. https://doi.org/10.1007/s10705-016-9810-1
- Fox, R. H., & Piekielek, W. P. (1984). Relationships among anaerobically mineralized nitrogen, chemical indexes, and nitrogen availability to corn. *Soil Science Society of America Journal*, 48, 1087–1090. https://doi.org/10.2136/sssaj1984.03615995004800050027x
- Gelderman, R. H., & Beegle, D. (2012). Nitrate-nitrogen. Recommended chemical soil test procedures for the North Central Region. North Central Regional Res. Publ. no. 221 (revised Oct 2012). Columbia, MO: Missouri Agricultural Experiment Station.
- Goulding, K. W. T., Bradbury, N. J., Hargreaves, P., Howe, M., Murphy, D. V., Poulton, P. R., & Willison, T. W. (1998). Nitrogen

deposition and its contribution to nitrogen cycling and associate soil processes. *New Phytologist*, *139*, 49–58. https://doi.org/10.1046/j. 1469-8137.1998.00182.x

- Hamer, U., & Marschner, B. (2005). Priming effects in different soil types induced by fructose, alanine, oxalic acid and catechol additions. *Soil Biology & Biochemistry*, 37, 445–454. https://doi.org/10.1016/j. soilbio.2004.07.037
- Keeney, D. R., & Bremner, J. M. (1966). Comparison and evaluation of laboratory methods of obtaining an index of soil nitrogen availability. *Agronomy Journal*, 58, 498–503. https://doi.org/10.2134/ agronj1966.00021962005800050013x
- Khan, S. A., Mulvaney, R. L., & Hoeft, R. G. (2001). A simple soil test for detecting sites that are nonresponsive to nitrogen fertilization. *Soil Science Society of America Journal*, 65, 1751–1760. https://doi.org/ 10.2136/sssaj2001.1751
- Kitchen, N. R., Shanahan, J. F., Ransom, C. J., Bandura, C. J., Bean, G. M., Camberato, J. J., ... Shafer, M. (2017). A public-industry partnership for enhancing corn nitrogen research and datasets: Project description, methodology, and outcomes. *Agronomy Journal*, 109, 2371–2388. https://doi.org/10.2134/agronj2017.04.0207
- Kuzyakov, Y., Friedel, J. K., & Stahr, K. (2000). Review of mechanisms and quantification of priming effects. *Soil Biology* & *Biochemistry*, 32, 1485–1498. https://doi.org/10.1016/S0038-0717(00)00084-5.
- Kuzyakova, I. F., Turyabahika, F. R., & Stahr, K. (2006). Time series analysis and mixed models for studying the dynamics of net N mineralization in a soil catena at Gondelsheim (S-W Germany). *Geoderma*, 136, 803–818. https://doi.org/10.1016/j.geoderma. 2006.06.003
- Ma, B. L., Dwyer, L. M., & Gregorich, E. G. (1999). Soil nitrogen amendment effect on seasonal nitrogen mineralization and nitrogen cycling in maize production. *Agronomy Journal*, 91, 1003–1009. https://doi.org/10.2134/agronj1999.9161003x
- Ma, B. L., & Wu, T. Y. (2008). Plant-available nitrogen in the soil: Relationships between pre-plant and pre-sidedress nitrate tests for corn production. *Journal of Plant Nutrition and Soil Science*, 171, 458– 465. https://doi.org/10.1002/jpln.200700091
- Orcellet, J., Reussi, Calvo, N. I., Sainz Rozas, H. R., Wyngaard, N., & Echeverría, H. E. (2017). Anaerobically incubated nitrogen improved nitrogen diagnosis in corn. *Agronomy Journal*, 109, 291–298. https://doi.org/10.2134/agronj2016.02.0115
- Randall, G. W., & Vetsch, J. A. (2005). Nitrate losses in subsurface drainage from a corn-soybean rotation as affected by fall and spring application of nitrogen and nitrapyrin. *Journal of Environmental Quality*, 34, 590–597. http://www.ncbi.nlm.nih.gov/ pubmed/15758112
- Reussi, Calvo, N. I., Rozas, H. Sainz, Echeverría, H., & Berardo, A. (2013). Contribution of anaerobically incubated nitrogen to the diagnosis of nitrogen status in spring wheat. *Agronomy Journal*, 105, 321–328. https://doi.org/10.2134/agronj2012.0287
- Rhine, E. D., Mulvaney, R. L., Pratt, E. J., & Sims, G.K. (1998). Improving the Berthelot Reaction for determining ammonium in soil extracts and water. *Soil Science Society of America Journal*, 62, 473–480. https://doi.org/10.2136/sssaj1998.036159950062 00020026x
- Ros, G. H., Temminghoff, E. J. M., & Hoffland, E. (2011). Nitrogen mineralization: A review and meta-analysis of the predictive value of soil tests. *European Journal of Soil Science*, 62, 162–173. https://doi.org/10.1111/j.1365-2389.2010.01318.x

- Russell, C. A., Dunn, B. W., Batten, G. D., Williams, R. L., & Angus, J. F. (2006). Soil tests to predict optimum fertilizer nitrogen rate for rice. *Field Crops Research*, 97, 286–301. https://doi.org/10.1016/j. fcr.2005.10.007
- Saha, U. K., Sonon, L., & Biswas, B. K. (2018). A comparison of diffusion-conductimetric and distillation-titration methods in analyzing ammonium- and nitrate-nitrogen in the KCl-extracts of Georgia soils. *Communications in Soil Science and Plant Analysis*, 49, 63–75. https://doi.org/10.1080/00103624.2017.1421647
- Sainz Rozas, H., Calvino, P. A., Echeverría, H. E., Barbieri, P. A., & Redolatti, M. (2008). Contribution of anaerobically mineralized nitrogen to the reliability of planting or presidedress soil nitrogen test in maize. *Agronomy Journal*, 100, 1020–1025. https://doi.org/ 10.2134/agronj2007.0077
- Saxton, K. E., & Rawls, W. J. (2006). Soil water characteristic estimates by texture and organic matter for hydrologic solutions. *Soil Science Society of America Journal*, 70, 1569–1578. https://doi.org/10.2136/ sssaj2005.0117
- Sierra, J. (1996). Nitrogen mineralization and its error of estimation under field conditions related to the light-fraction soil organic matter. *Australian Journal of Soil Research*, 34, 755–767. https://doi.org/10. 1071/SR9960755
- Smith, J. L., McNeal, B. L., Owens, E. J., & Klock, G. O. (1981). Comparison of nitrogen mineralized under anaerobic and aerobic conditions for some agricultural and forest soils of Washington. *Communications in Soil Science and Plant Analysis*, 12, 997–1009.
- Struffert, A. M., Rubin, J. C., Fernández, F. G., & Lamb, J. A. (2016). Nitrogen management for corn and groundwater quality in Upper Midwest irrigated sands. *Journal of Environmental Quality*, 45, 1557–1564. https://doi.org/10.2134/jeq2016.03.0105
- Tremblay, N., Bouroubi, Y. M., Bélec, C., Mullen, R. W., Kitchen, N. R., Thomason, W. E., ... Ortiz-Monasterio, I. (2012). Corn response to nitrogen is influenced by soil texture and weather. *Agronomy Journal*, 104, 1658–1671. https://doi.org/10.2134/agronj2012.0184
- Williams, J. D., Crozier, C. R., White, J. G., Sripada, R. P., & Crouse, D. A. (2007). Comparison of soil nitrogen tests for corn fertilizer recommendations in the humid southeastern USA. *Soil Science Society of America Journal*, 71, 171–180. https://doi.org/10.2136/ sssaj2006.0057
- Yost, M. A., Coulter, J. A., Russelle, M. P., Sheaffer, C. C., & Kaiser, D. E. (2012). Alfalfa nitrogen credit to first-year corn: Potassium, regrowth, and tillage timing effects. *Agronomy Journal*, 104, 953– 962. https://doi.org/10.2134/agronj2011.0384

### SUPPORTING INFORMATION

Additional supporting information may be found online in the Supporting Information section at the end of the article.

How to cite this article: Clark JD, Veum KS, Fernández FG, et al. Soil sample timing, nitrogen fertilization, and incubation length influence anaerobic potentially mineralizable nitrogen. *Soil Sci. Soc. Am. J.* 2020;84:627–637. https://doi.org/10.1002/saj2.20050