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ABSTRACT 

CASCADED DEEP LEARNING NETWORK FOR POSTEARTHQUAKE BRIDGE 

SERVICEABILITY ASSESSMENT 

YOUJEONG JANG 

2021 

 

Damages assessment of bridge is important to derive immediate response after 

severe events to decide serviceability. Especially, past earthquakes have proven the 

vulnerability of bridges with insufficient detailing. Due to lack of a national and unified 

post-earthquake inspection procedure for bridges, conventional damage assessments are 

performed by sending professional personnel to the onsite, detecting visually and 

measuring the damage state. To get accurate and fast damage result of bridge condition is 

important to save not only live but also costs.  

There have been studies using image processing techniques to assess damage of 

bridge column without sending individual to onsite. Convolutional neural networks 

(CNNs) have shown state-of-art results in object detection and image classification tasks. 

This study proposed cascaded deep learning network for post-earthquake bridge 

serviceability assessment. Major target deficiency components (crack, spalled area, 

transverse bar, and longitudinal bar) were used to determine the proposed damage states 

to assess serviceability of bridge. Cascaded network is composed by Mask R-CNN and 

MobileNet v2 which have been proved as powerful network for each instance 

segmentation and image classification.  



xi 

 

In this study, proposed network successfully detected target deficiency 

components and measured each damage state by following 5 stages. Column area is 

detected as first step, and counting exposed bars, finding maximum distance in spalled 

region within column area are followed to decide damage state. To determine deficiency 

of crack in bridge column, crack patch classification module is attached in proposed 

network. Counting diagonal and horizontal cracks with angle measurement are used to 

analyze type of cracks. 
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CHAPTER 1. INTRODUCTION 

1.1 Introduction 

Damages assessment of bridge is important to derive an immediate response after 

severe events to decide serviceability. Especially, past earthquakes have proven the 

vulnerability of bridges with insufficient detailing. Even modern reinforcement concrete 

(RC) bridge columns, which are detailed properly to serve as the main source of ductility 

in a bridge, may exhibit cover spalling, exposure of transverse and longitudinal bars, and 

buckling of longitudinal bars.  To completely assess a bridge column performance during 

an earthquake, both capacity of and demand on the columns are needed, which are 

usually in the form of displacements.  

Due to lack of a national and unified post-earthquake inspection procedure for 

bridges, conventional damage assessments are performed by sending professional 

personnel to the onsite, detecting visually and measuring the damage state. Although 

human-based assessment procedure may be effective, this procedure can take a lot of 

time and days after events and can miss critical time for rescue operations. And the 

correctness and accurate records of the decision for damaged bridge may be different 

from subjectivity of the inspector. Also, several bridge structural health monitoring 

(SHM) [1-2] are capable to detect large-scale damages in structure but used to be 

required with sensors or other instrumentals which are hard to install and not cost 

efficient.  

To get an accurate and fast damage results of a bridge condition is important to 

save not only lives but also costs. With the increasing demand of a computer vision-based 

method, automated damage detection has been developed more to help and make 
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decision faster than past. However, as figure 1.1 shows, the task is non-trivial because in 

most sites, the damage appears with different shape and size, and usually mixed with 

noisy background which is hard to detect the parts which are needed to decide damage 

level.  

  

(a)     (b) 

Figure 1. 1 Post earthquake bridge column damage examples 

(Failure due to spalling and exposed bars [3], (b) Failure due to spalling [4]) 

 

 In an early stage, there have been studies with heuristic filters to detect objects. 

Image processing methods with edge detection [5-6], threshold methods [7] and 

traditional detectors [8-9] were very popular in object detection. Paal et al. [10] presented 

a computer vision-based method for determination of damage states of the column by 

localizing and quantifying each component (crack, spalling and exposed steel bar) 

properties of distinct textures of the region with Canny operator. Nishikawa et al. [11] 

applied the multiple sequential image filtering for estimating property and detection. 

Yeum et al. [12] used region localization of object detection and filtering to detect fatigue 

cracks in steel bar. But those heuristic methods are time-consuming and cannot be 

operated in noisy background image.  
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Due to those limitations, using deep learning-based techniques have been studied 

and applied to damage detection. Deep learning-based methods have been known for 

improving traditional vision-based damage detection by extending not only one 

component but also multiple defects. Image classification methods have been used for 

damage detection. Kim et al. [13] proposed the classification models using convolutional 

neural network (CNN) and speeded-up robust features (SURF) for crack detection. 

AlexNet [14] and GoogleNet [15] which both are state-of-art neural network models, 

have been applied to classify each crack and spalled image. Object detection methods 

have recently studied for a damage detection tasks. Object detection methods have 

improved an image classification tasks which classify entire images. Yeum et al. [16] 

used Regions with CNN features (R-CNNs) for detecting and indicating objects with 

bounding boxes. Cha et al. [17] used Faster R-CNN which developed with a region-based 

method for detecting different shape and size of delamination.  

Besides those object detection methods, in our study, it is also important to 

quantify the damage to derive an accurate deficiency level. Semantic segmentation with 

object detection methods has been used to not only detect object with bounding 

rectangular box but also measure shape of the damage. Mask R-CNN [18] has been 

adapted for detection of cracks, spalling and exposed bars. This method not only 

segments detected objects, but also provides the exact location of each instance in image 

[19]. Using fully convolutional networks (FCN) [20] also have been adapted to segment 

damages and based method to implement Mask R-CNN.  

We notice the importance of detecting damage in structural level since this task 

can be a mixture of classification, object detection and semantic segmentation tasks. And 



4 

deep learning-based methods have been studied to get state-of-art result for analyzing 

damages in bridge column. In this study, we proposed cascaded damage detection 

network with Mask R-CNN [18] for segmenting major damage components (column, 

spalling and exposed bars) and MobileNet v2 [21] for detecting and classifying cracks. 

Also, image augmentation techniques applied to enhance the network training and testing 

results will be explained detailed in following chapeter.  

 

Figure 1. 2 Damage detection results using FCN [20] 

 

1.2 Objectives and Scope 

This research proposes a cascaded damage detection network with Mask R-CNN 

[18] and MobileNet v2 [21] for assessing post-event serviceability of RC bridge column.  

It is an important study to understand deep learning-based model and high performance 

of object detection and instance segmentation problem. Since object detection module 

with Mask R-CNN is not sufficient to detect small cracks in from the entire image and 
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there is no evaluation criteria of quantifying width of crack, we adapt MobileNet v2 [21] 

to improve performance results in detecting deficiency components. 

This main product will accomplish this these objectives: (1) all the test datasets 

will be obtained by SDSU, (2) propose cascaded deep learning-based network to detect 

each deficiency components, and (3) analyzing object detection and instance 

segmentation results to determine final damage state of bridge serviceability.  

1.3 Document Outline 

In Chapter 1, there is presented the study and the scope of the work. Chapter 2 

reviews the deep learning image segmentation and classification for our proposed 

cascaded network. In Chapter 3, detailed our cascaded network methods and data 

preparation will be addressed. And detection experimental, and results are shown in 

chapter 4 with each component (column, crack, spalling, longitudinal/transverse bars) 

detection phase and bridge column damage state determination. Analysis for those results 

and summary of this study will be discussed in Chapter 5. It is an important study for 

future damage assessment systems and object detection and instance segmentation 

problem. 
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CHAPTER 2. LITERATURE REVIEW 

In this chapter, major literatures which describe how convolutional neural 

network developed and worked in deep learning, are reviewed. And deep learning-based 

segmentation and classification models including Mask R-CNN [18] and MobileNet v2 

[21], which are two main components of our proposed cascaded model.  

2.1 Convolutional Neural Network (CNN) 

 Convolution Neural Network (CNN) has been making a great achievement in 

many applications. CNN is a class of deep neural network in deep learning and has been 

used to solve not only computer vision tasks but also other tasks like natural language 

processing or time-series forecasting. CNN has emerged from Artificial Neural Networks 

(ANN) [22], which proposed concept of neurons.  

Figure 2. 1 Visual concept of neuron 

 

Figure 2.1 shows the concept of neuron, and 𝑔 takes an input 𝑥1 ⋯ 𝑥𝑛 and performs 

calculation which aggregates input values while 𝑓 is decision function deriving 𝑦 value 

between 0 to 1. Neural network is consisted of multiple neurons and functions of 

aggregation and decision. Single-layer perceptron network [23] and multi-layer 

𝑥1 

𝑥2 

𝑥𝑛 

⋯ 

𝑦 ൜
𝑥𝑛 ∈ {0,1}
𝑦  ∈ {0,1}

 𝑓 𝑔 
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perceptron network [24] have been introduced to develop more complex networks to 

solve problematic tasks. CNN has been constructed based on those developments and 

many studies. LeCun et al. [25] showed performance of CNN in classifying hand-writing 

digit dataset and the term “convolution” was first used. LeNet-5 [26] is one of the earliest 

CNNs and the network was shallow model which only has 1 or 2 hidden layers. After 

advent of LeNet-5 [26], many state-of-art networks has been inspired and created to solve 

complex classification and object detection tasks. Chapter 2.2 and 2.3 will introduce 

various version of CNN in classification and object detection tasks. To help 

understanding future chapters, figure 2.2 and figure 2.3 show visualized concept of a two-

dimensional CNN which has been developed from basic concept of neuron in figure 2.1.  

 

Figure 2. 2 Concept of convolution network 

 

CNN is a feedforward network to extract features with convolutional formations. In 

figure 2.2 above, there is a general 3 × 3 convolutional kernel and 5 × 5 input image. 

CNN performs element-wise multiplication with input and convolution kernel and the 

results is called as a feature map. CNN kernels represent a different receptor that extract 

and derive useful features from the input source. Li et al. [27] stated many advantages of 

using CNN. First, there is a local connection which is different from previous multi-layer 

Input 

Conv Kernel 

° 

Feature Map 
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networks and these connections are very cost and time efficient by reducing the number 

of parameters. Second, a group of local connection shares the same weights, which 

accelerates to reduce calculation process. And lastly, pooling layer after feature map can 

reduce dimension of feature maps. Down-sampling in pooling layer can reduce less-

important data and remains only useful information.  

 

Figure 2. 3 Procedure of a two-dimensional CNN [27] 

  

Figure 2.3 above is a sample of procedure of a two-dimensional CNN from [27]. 

When we set the certain size of kernel, the border information can be lost. So, padding 

with certain value (in this example is 0) is applied to keep the border information and 

stride is applied to reduce calculation steps in convolving. After each convolution 

operation, it derives high dimension of features. But these feature maps can cause 

overfitting which has possibility of ending up where network only works with training 

data. So, pooling layer (down-sampling) is used to reduce overlapping information and in 

this example, max pooling which only keeps the maximum value in 2 × 2 window is 

introduced. And those hyperparameters (kernel size, max pooling window size, etc.) are 

designed and adjusted by each network configuration.   
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2.2 Image classification in deep learning 

CNNs have achieved a great performance in image classification tasks. In figure 

2.4, He et al. [28] described standard convolutional neural network architecture. Image as 

an input source goes through the first convolutional layer and reduce the dimensionality 

with pooling layer. As explained in previous section, the number of layer and dimension 

of convolutional kernel can be different and adjusted. Also depending on which 

architecture chose, the number of convolutional layers is different. Figure 2.4 shows the 

standard convolutional neural network architecture. There are two convolutional layers 

and two pooling layers, and the multiplication operation steps are same as explained in 

section 2.1 with figure 2.3. Feature maps from last pooling layer, are transferred to fully 

connected layer which flattens those feature maps to make one dimension before going to 

activation (output) layer. In output layer, there are a number of states which corresponds 

the number of classes and activation functions like sigmoid or softmax are applied to 

determine final value of the input.  

 

Figure 2. 4 Standard Convolutional Neural Network Architecture [28] 
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 AlexNet [14] has been proposed in 2012, which won the first place in the 

ImageNet2012 competition. This network is composed with 5 convolutional layers and 

three fully connected layers. Also, AlexNet addressed the gradient vanishing problem 

which resulted no learning of models and introduced dropout techniques to resolve this 

issue. VGGNets [29] won the ImageNet2014 competition by building deep convolutional 

neural network. VGGNets have multiple series of models, VGG-14, VGG-16 and VGG-

19. Those numbers state the number of convolutional layers and showed improved 

performance by building deep layers. Inception network series [15, 30-32] introduced 

batch normalization to make network more stable and won the ILSVRC 2014 image 

classification algorithms. He et al. [33] proposed Residual Network in 2016 and 

outperformed the Inception network performances. Inception network and Residual 

network has contributed to Deep Neural Networks (DNN) and those proposed methods 

are outperforming previous shallow networks. But those DNN models have large 

calculations which can derive time consuming procedure.  

To resolve these problems, MobileNets have been proposed as a lightweight 

models. MobileNet v1 [34] introduced depth-wise separable convolutions which 

decompose standard convolutions into depth-wise to reduce number of channels of each 

layer. Figure 6 shows MobileNet v1 proposed method and figure 2.5 (a) shows standard 

convolution filters. The standard convolving process is replaced by depth-wise 

convolution and pointwise convolution in figure 2.5 (b) and figure 2.5 (c). 𝑀 indicates 

the number of input channels and 𝑁 is number of output channels. And 𝐷𝑘 × 𝐷𝑘 is 

dimension of kernel and 𝐷𝐹 × 𝐷𝐹 is dimension of feature map. By writing down the 

equations for calculating the number of parameters used in convolution multiplication, 
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standard convolution has cost of (1) from figure 2.5 (a). 

𝐷𝑘 ∙ 𝐷𝑘 ∙ 𝑀 ∙ 𝑁 ∙ 𝐷𝐹 ∙ 𝐷𝐹      (1) 

𝐷𝑘 ∙ 𝐷𝑘 ∙ 𝑀 ∙ 𝐷𝐹 ∙ 𝐷𝐹 + 𝑀 ∙ 𝑁 ∙ 𝐷𝐹 ∙ 𝐷𝐹     (2) 

But, by decomposing standard convolution with depth-wise and pointwise, the network 

computation cost can be (2) which can reduce number of computations significantly. 

 

 

Figure 2. 5 MobileNet v1 convolution architecture [31] 

(a) Standard convolution filters, (b) depth-wise convolution and 

(c) point-wise convolution 

 

MobileNet v2 [21] has improved this previous model by introducing inverted 

residual blocks. Figure 2.6. Shows how MobileNet v2 residual blocks are designed. 

These blocks widen the network using 1 × 1 convolution (pointwise) and following 

3 × 3 depth-wise convolution reduces number of parameters. Afterwards, another point-

wise convolution squeezes the network to match the initial number of channels. And 

residual connection prevents the performance of inverted block which can lose 

information from the activation function ReLU. So, the authors put a linear output where 
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last convolutional layer before adding with initial input. Both networks have achieved 

state-of-art results in ImageNet classification dataset by stating Top-1 accuracy as 71.8, 

70.9 each (v1, v2) and Top-5 accuracy as 91.0, 89.9. 

 

 

Figure 2. 6 MobileNet v2 residual blocks [21] 
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2.3 Image segmentation in deep learning 

In this study, it is important to not only evaluate and classify those damage 

elements, but also to detect and quantify damages such as bridge column, spalling and 

rebar exposure. With the rapid development in deep learning, are introduced to address 

the problems existing in traditional architectures. 

Fully Convolution Networks [35] was proposed for semantic image segmentation 

tasks. FCNs is composed of convolutional layers and can be applied to multiple size of 

images. Figure 2.7 shows the FCNs structure and how this network was trained for end-

to-end pixelwise prediction and supervised pre-training. This method has been used in a 

variety of segmentation problems like brain tumor detection. 

 

Figure 2. 7 Fully Convolution Networks [35] 

 

Region-based convolution network (R-CNN) and its extensions (Fast R-CNN, 

Faster R-CNN and Mask R-CNN) have shown state-of-art results in object detection. 

Faster R-CNN [36] proposed region proposal network (RPN) to propose interest of 

region and derive bounding box candidates. This RPN network extract region of interest 

(RoI) and RoIPool layer in figure 2.8, calculates features from those RoIs and classify 

object and regress bounding boxes. 
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Figure 2. 8 Faster R-CNN architecture [36] 

 

Mask R-CNN [18] showed state-of-art results in instance segmentation tasks 

which detect and classify each object of interest in image. Mask R-CNN are composed 

with 3 stages: region proposal, classification, and segmentation. In first stage, network 

takes an image as an input and extracts features with back- bone CNN network, high 

feature extractor ResNet101 [33]. The input image size is 1024 × 1024 and image can 

be resized with keeping ratio of original size. And the Region Proposal Network (RPN) 

select candidate areas for objects in an image from the features map which is the output 

of backbone network. And the selected candidate areas are called “anchor boxes” and 

each box is extracted with different aspect ratios and scored. Scored boxes indicate 

likelihood of containing object. If the box does have low score which means less 

possibility to contain object, then the RPN refines size and ratio of anchor boxes so the 

network can find better fit of object. After scoring, the boxes go to the classification and  
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Figure 2. 9 The overall network architecture of Mask R-CNN [18] 

 

bounding box regression module to classify each object in the box and get coordinate of 

box. The classification module classifies object into 𝑛 + 1 classes which  𝑛 is the number 

of class and background class. And the box regression module operates similar as box 

refinement in RPN network, but it is more fitted to each object and detailed to get exact 

bounding coordinate which states location of each object in an image. Lastly, the mask 

network takes selected and classified boxes from the classification network and generate 

masks to indicate each instance (object) in the image and estimate shape of object from 

the previous procedure. And mask network process pixel-to-pixel classification since this 

network should represent estimated shape and outline of the object. According to original 

paper [30], this branch works regardless of classification network accuracy, which means 

it is not affected by instance’s class. 
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CHAPTER 3. MATERIALS AND METHOD 

3.1 Overview 

 In this study, we propose cascaded damage detection network with Mask R-CNN 

[18] and MobileNet v2 [21] for assessing post-event serviceability of RC bridge column. 

To successfully assess and quantify serviceability of the bridge, we design and define 

damage states for RC bridge column in Table 1. Based on the review of past studies on 

RC column damage definitions and available RC column performance database [37-43], 

a new damage state (DS) definition but consistent with past studies [40-41, 44] is 

recommended for RC bridge columns to be used in our proposed model.  

Table 3. 1 Proposed Damage States for RC Bridge Columns 

Damage 

State 

Qualitative 

Performance 

Description 

Quantitative Damage Description for Computer 

Vision 

1 Hairline cracks  
Horizontal cracks each with an angle (|| > 80°) 

(Fig. 3.2) 

2 
Theoretical first yielding 

of longitudinal bars  

At least three diagonal cracks each with an angle 

of || < 70° (Fig. 3.3) 

3 
Extensive cracks and 

spalling  

Length of spalled region in any direction at any 

direction at any column face is greater than 0.1Dcol 

but smaller than 0.3Dcol  (Fig. 3.4) 

4 

Visible transverse and/or 

longitudinal 

reinforcement  

Length of spalled region in any direction at any 

column face is greater than 0.5Dcol and detect one 

transverse bar and/or one longitudinal bar 

(Fig. 3.5) 

5 

First buckling and/or 

rupture of longitudinal 

bar(s), crushing of core 

concrete  

Detect the first buckling and/or rupture of 

longitudinal bar(s), and/or detect at least two 

longitudinal bars and three transverse bars 

 (Fig. 3.6) 

6 

Total collapse in which 

the permanent drift ratio 

exceeds 20%  

The angular change of the line connecting the 

column ends with respect to the column initial 

position exceeds 10° (|𝛼| > 10°) 
Note: 

α  = The angle between the column axial directions before and after the deformation (see the figure 3.1 below) 

  = The angle between the crack and the column axial direction (see the Figure 3.1 below) 

Dcol  = The undamaged column diameter or the largest side dimension 

 = Inspected   = Limited Use   = Unsafe 
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Figure 3. 1 Column axial direction 

 

From figure 3.2 to 3.6, each damage state and target deficiency component has 

been described. Figure 3.2 indicates damage state 1 (DS-1) by showing horizontal cracks 

which are greater than 80 degrees. Also, figure 3.3 has horizontal cracks, but diagonal 

cracks have been found closed to horizontal cracks and counted more than 3. Figure 3.4 

shows damage state 3 (DS-3) by indicating spalled regions which is less than 30% of 

column width. Damage state 4 (DS-4) are described in figure 3.5 with larger spalled 

regions compared to DS-3. Damage state (DS-5) shows exposed bars (longitudinal, 

transverse) in figure 3.6.  

 
 

Figure 3. 2 Samples of RC Bridge Column Condition at DS-1 [45], [46] 
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Figure 3. 3 Samples of RC Bridge Column Condition at DS-2 [45], [46] 

 

 

 
 

Figure 3. 4 Samples of RC Bridge Column Condition at DS-3 [45], [46] 

 

 

  

Figure 3. 5 Samples of RC Bridge Column Condition at DS-4 [45], [46] 
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Figure 3. 6 Samples of RC Bridge Column Condition at DS-5 [45], [46] 

 

Before going over next sections, Figure 3.7 describe the overview of cascaded 

damage detection network. From stage 1 to stage 4, Mask R-CNN is a main network for 

instance segmentation for detecting target deficiency, column, longitudinal bars, transvers 

bars and spalled area. For last stage 5, MobileNet v2 is a main network to classify and 

segment crack from image. In figure 3.7, crack detection uses different network  

 

Figure 3. 7 Overview of proposed cascaded damage detection network 
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compared to other deficiency target detection network. In this study, crack deficiency is 

evaluated with number of horizontal and vertical cracks and their angles. But another 

deficiency module which is based on Mask R-CNN, focuses on detecting each 

component and dimension of column, spalled area, which is not necessary in crack 

evaluation. So, proposed network shows two different modules for crack and other 

deficiencies to determine accurate damage state. 

 In this section, detailed study about proposed model following the steps in figure 

3.6 will be covered. First, we explain how the data for training and evaluating the 

proposed model is prepared in section 3.2, and second, two main modules and their 

processing are described in section 3.3. 
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3.2 Dataset 

In the general computer vision tasks, a large amount data and high-resolution 

images are required to drive state-of-art result. An insufficient number of data and low-

quality images can lead poor performance and give hard time to train network model. 

In this study, approximately 216 images were used for training and evaluation purpose of 

proposed network and divided into 80:20 ratios. Total training image number is 170 and 

the number of evaluation image is 46. Each image has size is different, but the image 

resolution is at least 2000 × 1980 and contains each deficiency component (column, 

spalling, rebar, and crack). In addition, for generating extra data, data augmentation 

technique has been adapted to increase network training. Each image was augmented 

with left/right-side flip and Gaussian blur operation of standard deviation value 0.5. 

Figure 3.8 shows the samples of image in training dataset and how we augmented those 

images to increase the number of images.  

   

(a) (b) (c) 

Figure 3. 8 Samples of data augmentation 

(a) original image, (b) right-side flip, (c) Gaussian blur with standard deviation 𝜎 = 0.5 
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3.2.1 Crack data 

For MobileNet v2 [21] classification module, each crack patch was generated by 

cropping dataset image with size of 64 × 64. For training classification model, both non-

crack (figure 3.9 a, b) and crack patches (figure 3.9 c, d) were generated. As stated above, 

entire dataset images were counted as 216 and cropped crack patches from those images 

were counted as total 20,458 of 11,458 crack patch and 9,000 non-crack patches.  

 

    

(a)                   (b)                    (c)                  (d)   

Figure 3. 9 Sample image of crack dataset (a,b are non-crack and c, d are crack) 

 

3.2.2 Bridge column, spalling and exposed rebar data 

To instance segmentation module, it is important to annotate each instance and 

classify before feeding to Mask R-CNN module. The outline of each target deficiency 

was labeled by polygon shape and the coordinate information of polygon was saved in 

annotation file. And each instance was annotated into 4 classes (column, spalling, 

transverse bar, and longitudinal bar).  

 

Figure 3. 10 Sample image of annotation 
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3.3 Bridge column, spalling and exposed rebar detection 

 As described in proposed network overview of figure 3.7, Mask R-CNN was 

used to detect deficiency components except crack. As reviewed Mask R-CNN [30] in 

chapter 2.3 and showed how this module works and derive a high performance of 

instance segmentation tasks. In this study, Mask R-CNN has been adapted to this 

proposed network to segment each target deficiency. Figure 3.11 is a detailed procedure 

of stage1 to stage4 in Figure 3.7.  

 

 

Figure 3. 11 Target deficiency object analysis 

 

Once the image is fed to the Mask R-CNN module, each targeted 

deficiency object in an image is segmented and masked. From this result, proposed 

network will follow those analysis steps to determine damage state. The results from this 

module contain each target deficiency's location, class, and mask. First, column instances 

are analyzed. Column instances are important since all damage states are evaluated by 

measuring and quantifying deficiencies within column area. From column’s location 

(coordinate), it contains left-top x, y and right-bottom x, y and the area needed to inspect 

is narrowed by the box with that coordinate. Second, transverse and longitudinal bar 

analysis are followed by column detection phase. Proposed model counts the number of 

each detected bars and determine if counted number is matching with proposed damage 
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state DS-5 or DS-4. If the model cannot find any components which match DS-5 and DS-

4, spalled region analysis step begins. In this step, the longest line inside of spalled region 

is used to determine damage state DS-4 or DS-3. For measuring longest line, mask 

information of spalled instance spalled region and measure the longest line inside 

of mask. For DS-3 and DS-4, column width is required to analyze those stages. Since 

there is a column mask information from the results of Mask R-CNN module, RANSAC 

[47] algorithm is used to calculate those two-vertical line of column. RANSAC algorithm 

is useful to fitting a line in two dimensions to a set of observations. Form masked column 

information, extract left-most-side coordinates and right-most-side coordinates. 

And RANSAC fit a line of each side and we can get a line equation for left and right side 

of column mask. And column width can be calculated by putting first y value of spalled 

region bounding box [𝑦1 𝑥1 𝑦2 𝑥2]. And with this calculated width, the proportion 

between column width and longest distance is derived by simply dividing two values.   

3.4 Crack detection 

From the above procedure, if instance segmentation module cannot find those 

deficiency components, the network temp to find the last component crack. It is hard to 

detect crack in the image compared to other components which has relatively bigger 

instance area and more meaningful features and we only need the number of cracks and 

their angle value. So, we approach crack detection as a classification problem by 

cropping masked column area with 64 × 64 size patch. 
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Figure 3. 12 Crack detection analysis 

 

 As MobileNet v2 state-of-art performance is described from section 2.2, 

MobileNet v2 has a light-weight computation compared to other existing models in same 

task but keep the high classification accuracy. MobileNet v2 will take cropped crack 

patches and determine either crack or non-crack. Once patch is classified as crack, the 

coordinate of patch is saved to segment patches which are connected in same crack.  

 

 

 

 

 

 

(a) (b) 

Figure 3. 13 (a) Segmented crack patches, (b) Measuring angle result 
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(a) (b) 

Figure 3. 14 (a) Segmented crack patches, (b) Measuring angle result 

 

Segmentation step decides that patches are corresponded to one crack if those two 

patches are close than patch size which is 64. In figure 3.13, segmented crack patch 

image is used to measure angle by histogram of oriented gradients (HOG) [9] algorithm. 

This algorithm computes a histogram of oriented gradients in each cell so we can find out 

which direction the cell’s magnitude has been changed. And this step is followed by each 

segmented crack patches and pick the highest angle value to determine which direction 

crack is pointed out. 
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CHAPTER 4. EXPERIMENTAL AND RESULTS 

 From previous chapter, proposed cascaded deep learning model was explained 

detailed. In this chapter, training and evaluation of proposed model will be described and 

experimental and results of this study will be shown following by the steps in overview in 

Figure 3.7. 

4.1 Damage Detection Results 

For training Mask R-CNN module, each image was labeled with 4 classes 

(column, spalling, transverse, and longitudinal bar) and 1 background class. And the 

weight was initialized by pre-trained weight of COCO dataset [48] with batch size of 2 to 

fine-tune the network with our own dataset. And the model was trained with NVIDIA 

GeForce GTX 1080 Ti and process 2 images per GPU. Backbone architecture is 

ResNet101, and train epoch is 70 with learning rate of 0.02.  During the training, Mask 

R-CNN weight had been updated by multi-task loss function below. ℒ𝑐𝑙𝑠 is the log loss 

function over two classes (classification loss) and ℒ𝑏𝑜𝑥 is difference between localization 

of ground truth and output result. And ℒ𝑚𝑎𝑠𝑘 is defined as the average binary cross-

entropy loss, only considering associated with the ground truth classes.  

ℒ = ℒ𝑐𝑙𝑠 + ℒ𝑏𝑜𝑥 + ℒ𝑚𝑎𝑠𝑘𝑠                                                (3) 

MobilNet v2 for crack detection has been trained with our own dataset and this 

module takes input size of 224 × 224. As same as Mask R-CNN, MobileNet v2 resized 

the crack patches for feeding module and same GPU has been used with batch size of 96. 

Also, batch normalization was used between each layer and activation function is ReLU6. 

The loss function of this network is categorical cross entropy loss with learning rate of 

0.0001. 
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In testing, three shapes of RC column (circular, octagonal and rectangular) were 

tested. Currently, rectangular column dataset does not have images for DS-1 to DS-3 so 

only DS-4 and DS-5 results are provided in this document. And octagonal column does 

not have image for testing DS-5. Figure 4.1 – Figure 4.11 shows detected component 

results from our proposed model and Table 4.1 – Table 4.11 recorded our analysis results 

from the damage definition table in Table 2.1. From DS-3 to DS-5, each detected 

component has been marked with specific colors (red=column, green=spalled region, 

blue=transverse bar, purple=longitudinal bar).  
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Table 4. 1 Analysis of figure 4.1 

Analysis Component Result 

Number of Horizontal Crack 11 

Number of Vertical Crack 2 

Maximum length of spalled region (px) N/A 

Column Width (px) N/A 

Number of Transverse (Horizontal) bar N/A 

Number of Longitudinal (Vertical) bar N/A 

Damage state (DS) 1 

 

 

Figure 4. 1 Result sample of DS-1 (1) 
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Table 4. 2 Analysis of figure 4.2 

Analysis Component Result 

Number of Horizontal Crack 5 

Number of Vertical Crack 2 

Maximum length of spalled region (px) N/A 

Column Width (px) N/A 

Number of Transverse (Horizontal) bar N/A 

Number of Longitudinal (Vertical) bar N/A 

Damage state (DS) 1 

 

 

 

 Figure 4. 2 Result sample of DS-1 (2) 
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Table 4. 3 Analysis of figure 4.3 

Analysis Component Result 

Number of Horizontal Crack 9 

Number of Vertical Crack 4 

Maximum length of spalled region (px) N/A 

Column Width (px) N/A 

Number of Transverse (Horizontal) bar N/A 

Number of Longitudinal (Vertical) bar N/A 

Damage state (DS) 2 

 

 

Figure 4. 3 Result sample of DS-2 (1) 
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Table 4. 4 Analysis of figure 4.4 

Analysis Component Result 

Number of Horizontal Crack 2 

Number of Vertical Crack 5 

Maximum length of spalled region (px) N/A 

Column Width (px) N/A 

Number of Transverse (Horizontal) bar N/A 

Number of Longitudinal (Vertical) bar N/A 

Damage state (DS) 2 

 

 

Figure 4. 4 Result sample of DS-2 (2) 
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Table 4. 5 Analysis of figure 4.5 

Analysis Component Result 

Number of Horizontal Crack N/A 

Number of Vertical Crack N/A 

Maximum length of spalled region (px) 537.23 

Column Width (px) 1610.2 

Number of Transverse (Horizontal) bar N/A 

Number of Longitudinal (Vertical) bar N/A 

Damage state (DS) 3 

 

 

Figure 4. 5 Result sample of DS-3 (1) 
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Table 4. 6 Analysis of figure 4.6 

Analysis Component Result 

Number of Horizontal Crack N/A 

Number of Vertical Crack N/A 

Maximum length of spalled region (px) 491.62 

Column Width (px) 1610.23 

Number of Transverse (Horizontal) bar N/A 

Number of Longitudinal (Vertical) bar N/A 

Damage state (DS) 3 

 

 

Figure 4. 6  Result sample of DS-3 (2) 
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Table 4. 7 Analysis of figure 4.7 

Analysis Component Result 

Number of Horizontal Crack N/A 

Number of Vertical Crack N/A 

Maximum length of spalled region (px) 1748.14 

Column Width (px) 1809.67 

Number of Transverse (Horizontal) bar 6 

Number of Longitudinal (Vertical) bar N/A 

Damage state (DS) 4 

 

 

Figure 4. 7  Result sample of DS-4 (1) 
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Table 4. 8 Analysis of figure 4.8 

Analysis Component Result 

Number of Horizontal Crack N/A 

Number of Vertical Crack N/A 

Maximum length of spalled region (px) 870.13 

Column Width (px) N/A 

Number of Transverse (Horizontal) bar 8 

Number of Longitudinal (Vertical) bar N/A 

Damage state (DS) 4 

 

 

 

Figure 4. 8 Result sample of DS-4 (2) 
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Table 4. 9 Analysis of figure 4.9 

Analysis Component Result 

Number of Horizontal Crack N/A 

Number of Vertical Crack N/A 

Maximum length of spalled region (px) 1020.81 

Column Width (px) 856.64 

Number of Transverse (Horizontal) bar 3 

Number of Longitudinal (Vertical) bar 1 

Damage state (DS) 4 

 

 

Figure 4. 9 Result sample of DS-4 (3) 
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Table 4. 10 Analysis of figure 4.10 

Analysis Component Result 

Number of Horizontal Crack N/A 

Number of Vertical Crack N/A 

Maximum length of spalled region (px) 1741.91 

Column Width (px) N/A 

Number of Transverse (Horizontal) bar 6 

Number of Longitudinal (Vertical) bar 2 

Damage state (DS) 5 

 

 

Figure 4. 10 Result sample of DS-5 (1) 
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Table 4. 11 Analysis of figure 4.11 

Analysis Component Result 

Number of Horizontal Crack N/A 

Number of Vertical Crack N/A 

Maximum length of spalled region (px) 1317.08 

Column Width (px) N/A 

Number of Transverse (Horizontal) bar 3 

Number of Longitudinal (Vertical) bar 2 

Damage state (DS) 5 

 

 

Figure 4. 11 Result sample of DS-5 (2) 
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4.2 Evaluation of Performance 

 The Mask R-CNN performance has been evaluated with precision and recall. 

Precision and recall (PR) is calculated by true positives (TPs), false positives (FPs), and 

false negatives (FNs). Precision is a ratio of true positive and overall positive results (true 

and false), and recall is a ratio of true positive and sum of true positive and false negative. 

Each number of true/negative is determined from overlapping between resulted masks 

and ground truth (our 42 validation images). Figure 4.12 shows the concept of 

Intersection over Union (IoU) and red box is ground truth and blue box is predicted 

output of each object. Each object is classified as TP over 0.5 and less than 0.5 as FP. 

When a network failed to detect the object stated in ground truth image it is classified as 

false negative (FN). 

 

Figure 4. 12 Intersection of Union (IoU) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
#𝑇𝑃𝑠

#𝑇𝑃𝑠 + #𝐹𝑃𝑠
                                                                (4) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
#𝑇𝑃𝑠

#𝑇𝑃𝑠 + #𝐹𝑁𝑠
                                                                (5) 
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 Instance segmentation module is analyzed of two parts of performance: 

localization and segmentation. Table 4.12 shows precision/recall results of average of 

each category (column, spalling and exposed bars). In testing images (42 validation 

images), there are 41 columns, 72 spalled areas, 56 transverse bar and 31 longitudinal 

bars. The PR table values were measured by overlapping pixels in each category. In this 

table below, the values of each component resulted above 90 percent for localization 

performance and have similar results for segmentation task but less than localization. The 

network performance for detecting target deficiency has above 90 percent overall but, 

column segmentation results are lower than any other components.  

 

Table 4. 12 Evaluation results of target deficiency detection for each component 

Component Localization 

Precision (%) 

Localization 

Recall (%) 

Segmentation 

Precision (%) 

Segmentation 

Recall (%) 

Column 90.13 90.91 88.90 89.23 

Spalled area 95.28 95.88 93.97 88.71 

Transverse bar 95.27 95.82 92.71 93.14 

Longitudinal 92.31 92.79 91.83 92.17 

Average 93.24 93.85 91.10 90.81 

 

 

Also, crack classification network is evaluated with same equation (4), (5). Total 

4210 images (crack + non-crack) have been tested to get PR table and it has been 

reported with confusion matrix. Table 4.12 shows precision/recall results. PR score was 

measured for each classification (crack, non-crack). Total image is counted as 4,842 with 

2,320 as crack and 2,522 as non-crack. And the network has slightly higher results in 
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detecting non-crack image. But overall results show this network high performance for 

classifying crack image with 97 percent. 

Table 4. 13 Evaluation results of crack classification network 

Component Precision (%) Recall (%) 

Crack 96.32 95.28 

Non-Crack 98.45 96.94 

Average 97.38 96.11 

 

 

Figure 4. 13 Real scene test result 

 

As discussed, our overview of proposed network in figure 3.7, it is important to 

detect each component through the process. But if the input image is too close or too far 

to detect the column, the network cannot go over to detect rest of components. Figure 

4.13 showed the test results from real scene. Proposed network can detect the object but 

the boundary is not accurate for column due to noise background like leaves around the 

spalled region. Also, Figure 4.14 shows few examples of failed detection. Those sample 
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images below are hard to detect entire column instance which is our first step in proposed 

network. So, it is important to make sure the entire image has bottom or top part of 

column border to see shape of column. Since neural network performance has dependent 

of dataset which has been trained only certain case. For example, the proposed network 

has been trained with our own dataset, so it is hard to derive state-of-art result if variety 

of dataset is not fed in model. So, data augmentation in figure 3.8 is important to derive 

high detection performance from the model. 

 

Figure 4. 14 Samples of failed detection case 

 

  



44 

CHAPTER 5. SUMMARY AND CONCLUSIONS 

 This study presented cascaded deep learning network for post-earthquake bridge 

serviceability with our own analysis method. Mask R-CNN is composed of three stages 

(region proposal, classification, and segmentation) and MobileNetV2 has a light-weight 

residual block with depth-wise separable convolution. For instance segmentation of 

column, spalling and rebar, Mask R-CNN is trained with backbone network ResNet101, 

and MobileNetV2 is trained for crack detection and segmentation. Both networks have 

been trained with 216 images of 100 epoch each and 43 images for evaluation purpose. 

And analysis for each damage state has followed by postprocessing like measuring 

column width, counting diagonal/horizontal cracks and exposed transverse/longitudinal 

bars. 

In future studies, the class or post-processing can be extended to buckling of bars, 

total collapse of structures which has been described in damage state 6. Also, crack patch 

generation can be modified to fit crack and column width ratio for pre-processing of data 

for crack detection phase so advanced classification results can be expected. In addition, 

Mask R-CNN has more computational cost than MobileNet v2, the backbone of Mask R-

CNN can be replaced with cost-efficient network to reduce heavy computation during 

training and testing. 

  



45 

LITERATURE CITED 

[1] Jeong, S., Hou, R., Lynch, J.  P., Sohn, H., & Law, K.  H. (2017).  

An Information Modeling Framework for Bridge Monitoring.  

Advances in Engineering Software. 114,11-31. 

doi: https://doi.org/10.1016/j.advengsoft.2017.05.009 

[2] Zhou, G., Li, A., Li, J. & Duan, M. Structural Health Monitoring and  

Time-Dependent Effects Analysis of Self-Anchored Suspension Bridge with  

Extra-Wide Concrete Girder. (2018). Appl. Sci.. 8, 115, doi:10.3390/app8010115. 

[3] Kawashima, K., Kosa, K., Takahashi, Y., Akiyama, M., Nishioka, T., Watan-abe, G., 

Koga, H., Matsuzaki, H. (2011). Damage of Bridges during 2011 Great East 

Japan Earthquake. 

[4] Li, Y.-F., & Sung, Y.-Y. (2011, 02). Seismic Repair and Rehabilitation of a  

Shear-failure Damaged Circular Bridge Column using Carbon Fiber Reinforced 

Plastic Jacketing. Canadian Journal of Civil Engineering. 30, 819-829. 

doi:10.1139/l03-042  

[5] Jahanshahi R, M. & Masri F, S. (2013). A new Methodology for Non-contact 

Accurate Crack Width Measurement through Photogrammetry for 

Automated Structural Safety Evaluation. Smart Mater. Struct. 22(3). 

[6] Kim, J., Kim, A. & Lee, S. (2020). Artificial Neural Network-based Automated 

Crack Detection and Analysis for the Inspection of Concrete Structures.  

Applied Sciences, 10(22):8105. https://doi.org/10.3390/app10228105 

 

 



46 

[7] Otsu, N. (1979). A Threshold Selection Method from Gray-Level Histograms.  

IEEE Transactions on Systems, Man, and Cybernetics. 9(1):62-66.  

doi: 10.1109/TSNC,1979.4310076 

[8] Ge, S., Yang, R., Wen, H., Chen, S., & Sun, L. (2014). Eye Localization based on 

Correlation Filter Bank. In 2014 IEEE International Conference on Multimedia 

and Expo (ICME). p.1-5. doi:  10.1109/ICME.2014.6890249 

[9] Dalal, N. and Triggs, B. (2005). Histograms of oriented gradients for human  

detection. IEEE Computer Society Conference on Computer Vision and Pattern 

Recognition. 1:886-893. doi: 10.1109/CVPR.2005.177. 

[10] Paal, S., Jeon, J., Brilakis, I. and Desroches, R. (2015). Automated Damage Index 

Estimation of Reinforced Concrete Columns for Post-Earthquake Evaluations.  

Journal of Structural Engineering. 141.  

doi:04014228. 10.1061/(ASCE)ST.1943-541X.0001200. 

[11] Nishikawa, T., Yoshida, J., Sugiyama, T. & Fujino, Y. (2012). Concrete Crack  

Detection by Multiple Sequential Image Filtering. Comp.-Aided Civil and 

Infrastruct. Engineering. 27, 29-47. 10.1111/j.1467-8667.2011.00716.x. 

[12] Yeum, C., & Dyke, S. (2015). Vision-Based Automated Crack Detection for Bridge  

Inspection. Comput. Aided Civ. Infrastructure Eng., 30, 759-770. 

[13] Kim, H., Ahn, E., Shin, M., & Sim, S. (2019). Crack and Noncrack Classification  

from Concrete Surface Images Using Machine Learning. Structural Health 

Monitoring, 18, 725 – 738. 

[14] Krizhevsky, A., Sutskever, I., & Hinton, G.E. (2012). ImageNet classification with  

deep convolutional neural networks. Communications of the ACM, 60, 84 - 90. 



47 

[15] Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S.E., Anguelov, D., Erhan, D.,  

Vanhoucke, V., & Rabinovich, A. (2015). Going deeper with convolutions. 2015 

IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 1-9. 

[16] Yeum, C., Dyke, S. & Ramirez, J. (2018). Visual data classification in post-event  

building reconnaissance. Engineering Structures. 155. 16-24. 

10.1016/j.engstruct.2017.10.057. 

[17] Cha, Y.J., Choi, W., Suh, G., Mahmoudkhani, S. and Büyüköztürk, O. (2018).  

Autonomous Structural Visual Inspection Using Region-Based Deep Learning for 

Detecting Multiple Damage Types. Comput.-Aided Civ. Infrastruct. Eng. 2018, 

33, 731–747 

[18] He, K., Gkioxari, G., Dollár, P. & Girshick, R. (2017). Mask R-CNN.  

[19] Yein, L., Kim, B., & Cho, S. (2018). Image-based Spalling Detection of Concrete  

Structures Using Deep Learning. Journal of The Korea Concrete Institute, 30, 91-

99. 

[20] Guillamón, J.R. (2018). Bridge Structural Damage Segmentation Using Fully  

Convolutional Networks. 

[21] Sandler, M., Howard, A.G., Zhu, M., Zhmoginov, A., & Chen, L. (2018).  

MobileNetV2: Inverted Residuals and Linear Bottlenecks.  

2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition,  

4510-4520. 

[22] Mcculloch, W. S., & Pitts, W. H. (1942). A logical Calculus of Ideas Immanent in  

Nervous Activity. The Bulletin of Mathematical Biophysics. 5, 115-133. 

 



48 

[23] Rosenblatt, F. (1958). The Perceptron: A Probabilistic Model for Information  

Storage and Organization in the Brain. Psychological Review. 368-408. 

[24] Rumelhart, D., Hinton, G.E., & Williams, R.J. (1986). Learning representations by  

back-propagating errors. Nature, 323, 533-536. 

[25] LeCun, Y., Boser, B., Denker, J., Henderson, D., Howard, R., Hubbard, W., &  

Jackel, L. (1989). Backpropagation Applied to Handwritten Zip Code  

Recognition. Neural Computation, 1, 541-551.  

[26] LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning  

applied to document recognition. 

[27] Li, Z., Yang, W., Peng, S., & Liu, F. (2021). A Survey of Convolutional Neural  

Networks: Analysis, Applications, and Prospects. IEEE transactions on neural 

 networks and learning systems, PP. 

[28] He, Z. (2020). Deep Learning in Image Classification: A Survey Report. 2020 2nd  

International Conference on Information Technology and Computer Application 

(ITCA). 174-177, doi: 10.1109/ITCA52113.2020.00043. 

[29] Simonyan, K., & Zisserman, A. (2015). Very Deep Convolutional Networks for  

Large-Scale Image Recognition. CoRR, abs/1409.1556. 

[30] Ioffe, S., & Szegedy, C. (2015). Batch Normalization: Accelerating Deep Network  

Training by Reducing Internal Covariate Shift. ArXiv, abs/1502.03167. 

[31] Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., & Wojna, Z. (2016). Rethinking  

the Inception Architecture for Computer Vision. 2016 IEEE Conference on 

Computer Vision and Pattern Recognition (CVPR), 2818-2826. 

 



49 

[32] Szegedy, C., Ioffe, S., Vanhoucke, V., & Alemi, A.A. (2017). Inception-v4,  

Inception-ResNet and the Impact of Residual Connections on Learning. AAAI. 

[33] He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep Residual Learning for Image  

Recognition. 2016 IEEE Conference on Computer Vision and Pattern 

Recognition (CVPR), 770-778. 

[34] Howard, A.G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T.,  

Andreetto, M., & Adam, H. (2017). MobileNets: Efficient Convolutional Neural 

Networks for Mobile Vision Applications. ArXiv, abs/1704.04861. 

[35] Shelhamer, E., Long, J., & Darrell, T. (2017). Fully Convolutional Networks for  

Semantic Segmentation. IEEE Transactions on Pattern Analysis and Machine 

Intelligence, 39, 640-651. 

[36] Ren, S., He, K., Girshick, R.B., & Sun, J. (2015). Faster R-CNN: Towards  

Real-Time Object Detection with Region Proposal Networks. IEEE Transactions 

on Pattern Analysis and Machine Intelligence, 39, 1137-1149. 

[37] Kawashima, K. (2000). Seismic Performance of RC Bridge Piers in Japan-An 

Evaluation after the 1995 Hyogo-ken Nanbu Earthquake. Progress in Structural 

Engineering Materials. 82-91. 

[38] Kawashima, K. (2001). Damage of Bridges Resulting from Fault Rupture in the 

1999 Kocaeli and Duzce, Turkey Earthquakes and the 1999 Chi-Chi, Taiwan  

Earthquake. Seismic Fault-Induced Failures, 171-190. 

 

 



50 

[39] Berry, M., Parrish, M., & Eberhard, M. (2004). PEER Structural Performance 

 Database. Pacific Earthquake Engineering Research Center, University of 

 California, Berkeley, 43 

[40] Veletzos, M., Panagiutou, M., Restrepo, J., & Sahs, S. (2008). Visual Inspection and 

Capacity Assessment of Earthquake Damaged Reinforced Concrete Bridge  

Elements. California Department of Transportation Report No. CA08-0284,  

Sacramento, CA, 392 

[41] Vosooghi, A., & Saiidi, M.S. (2010). Seismic Damage States and Response 

Parameters for Bridge Columns. ACI Special Publication, 271(2), 29-46.  

[42] EERI Archive. (2020). Learning from Earthquakes Reconnaissance Archive. 

Retrieved on February 11, 2020 from < https://www.eeri.org/projects/learning 

from-earthquakes-lfe/lfe-reconnaissance-archive/>. 

[43] Ghannoum, W., Sivaramakrishnan, B., Pujol, S., Catlin, A.C., Fernando, S., Yoosuf,  

N., & Wang, Y. (2015). NEES: ACI 369 Rectangular Column Database.  

https://datacenterhub.org/resources/255.  

[44] Hose, Y.D. (2001). Seismic Performance and Flexural Behavior of Plastic Hinge 

Regions in Flexural Bridge Columns. PhD Dissertation, University of California, 

San Diego, 493. 

[45] Haber, Z.B., Saiidi, M.S., & Sanders, D.H. (2013). Precast Column-Footing 

Connections for Accelerated Bridge Construction in Seismic Zones. 

Center for Civil Engineering Earthquake Research, Department of Civil and 

Environmental Engineering, University of Nevada, Reno, Nevada, 13-08, 612. 

 

 



51 

[46] Sjurseth, T. (2021). Mechanically Spliced Precast Bridge Columns.  

South Dakota State University, 197. https://openparairie.sdstate.edu/etd/5252 

[47] Fischler, M. & Bolles R. (1981). Random Sample Consensus: A Paradigm for 

Model Fitting with Applications to Image analysis and Automated  

Cartography. Communications of the ACM, 24(6):381-395. 

https://doi.org/10.1145/358669.358692. 

[48] Lin, T., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P. &  

Zitnick, C. (2014). Microsoft COCO: Common Objects in Context.  

 


	Cascaded Deep Learning Network for Postearthquake Bridge Serviceability Assessment
	Recommended Citation

	tmp.1628189693.pdf.Eeli1

