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ABSTRACT 

 
REVEGETATING SALT-IMPACTED SOILS IN THE NORTHERN GREAT PLAINS 

 
ABIGAIL P. BLANCHARD 

2021 

 
 

In the northern Great Plains (NGP), an estimated 10.6 million hectares of land are 

affected by naturally occurring salt-impacted soil. Naturally occurring salt impaction 

results when rainfall causes salts in parent material to move upward through the soil 

profile and remain in the root zone causing osmotic and ionic stress, negatively affecting 

seed imbibition, germination, and plant growth. Common methods to remediate salt- 

impacted soils were developed in the irrigated soils of the Southwestern U.S., are 

ineffective in the non-irrigated soils of the NGP, and can exacerbate the problem. 

Therefore, new methods to remediate salt-impacted soil in the NGP are needed. In this 

study, two objectives were assessed: 1) identification of native species that exhibit salt 

tolerance during imbibition and germination, and 2) evaluation of the performance of 

native species used to revegetate a salt-impacted site. To address objective 1, the 

response of 16 native plant species to seed treatment (mechanical scarification) and four 

soil solutions (deionized water, and soil solutions with high, medium, and low salt 

concentrations) was evaluated. The effects of soil solution and seed treatment were 

species-specific for imbibition and germination, and eight species (Asclepias speciosa, 

Desmodium canadense, Elymus canadensis, E. trachycaulus, Gaillardia aristata, 

Helianthus maximiliani, Pascopyrum smithii, and Sporobolus airoides) exhibited salt 
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tolerance. To address objective 2, eight species (identified in objective 1) were planted in 

a salt-impacted field and survival and performance were evaluated. Survival and 

performance results indicated that most species tolerated the medium and low salt 

concentrations, except S. airoides, which increased survival in high salt conditions. 

Results of our study provide native plant species recommendations for revegetating salt- 

impacted soil in the NGP. 
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CHAPTER 1: INTRODUCTION 
 
 

Salt-impacted soil is found worldwide, primarily in arid and semi-arid landscapes 

where evapotranspiration is greater than precipitation for most of the year (Jurinak 1990). 

Worldwide, approximately 900 million hectares (ha) of land are salt-impacted, which is 

6% of land area or 20% of cultivated land (Flowers 2004). An estimated 0.3 to 1.5 

million ha of agricultural land may be lost worldwide annually as salt impaction increases 

resulting in a 20 to 46 million ha reduction in yield potential (FAO and ITPS 2015). The 

northern Great Plains (NGP) contains an estimated 10.6 million ha, with approximately 

3.4 million ha in South Dakota (Seelig 2000; Millar 2003; Hopkins et al. 2012; Carlson et 

al. 2013; Soil Survey Staff). From 2008 to 2012, over 500,000 ha, or approximately 13% 

of South Dakota’s cropped land showed a 1 dS/m electrical conductivity (EC) increase 

(Kharel 2016). 

Salt impaction causes severe economic impacts worldwide. Annually, land 

degradation from salt impaction results in a loss of $441 per ha as of 2013, which is up 

from $264 per ha in 1990 due to lower yields (Qadir et al. 2014; UNU-INWEH 2014). 

This loss per ha equates to a projected worldwide annual loss of $27.3 billion (Qadir et al. 

2014). In South Dakota counties Beadle, Brown, and Spink, 113,000 ha of salt impaction 

resulted in an estimated $26.2 million per year economic loss (NRCS 2012). Further, the 

cost of remediation generally increases as the degree of salinity increases (Murtaza 

2013). 
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Salt-impacted Soil: Cause and Classification 
 

Salt-impacted soils occur by anthropogenic or natural means. Anthropogenic 

activities that contribute to salt impaction include the application of fertilizers and other 

soil amendments (Rengasamy 2010), irrigation with saline water (Maas and Grattan 

1999), application of roadway deicers (Dudley et al. 2014), and oil and gas production, 

where saltwater is unearthed during drilling (Merrill et al. 1990). Naturally occurring salt- 

impacted soils result when salts are deposited into the soil through wind or rain, seawater 

intrusion, or parent material (Maas and Grattan 1999), and can fluctuate due to season 

and rainfall (Rengasamy 2002). In the NGP, marine sediments in parent material have 

high salt concentrations and vary in depth from <1 m to >100 m. Salts are transported 

upward through the soil profile by capillary action as the water table rises (Rhoades and 

Halverson 1976; Seelig 2000; Carlson et al. 2016) due to increased precipitation and 

temperature (Lobell et al. 2010). After evaporation, salts remain near the soil surface 

affecting seed imbibition, germination, and plant growth. 

Salt-impacted soils are categorized into three classes: saline, saline-sodic, or 

sodic, and are based on two measurements: sodium adsorption ratio (SAR) and electrical 

conductivity (EC). Saline soil has high amounts of salts (such as chlorides and sulfates of 

sodium, calcium, magnesium, and potassium), sodic soil has high amounts of 

exchangeable sodium ions, and saline-sodic soil has high amounts of salts and 

exchangeable sodium ions (Rhoades and Halverson 1976). SAR measures sodicity by 

comparing the amount of sodium relative to the amount of calcium and magnesium. EC 

measures salinity by determining the absence or presence of salts in the soil. Saline and 

saline-sodic soil have EC values greater than 4 dS/m whereas sodic soils have EC values 
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less than 4 dS/m. Saline soils have SAR values less than 13 whereas sodic and saline- 

sodic have larger SAR values (Brady and Weil 2000). However, these SAR values are 

used in many parts of the world except in the NGP where percent sodium (%Na), or 

relative sodium content, is typically used and the relationship between SAR and %Na has 

been determined as SAR = 1.04 x %Na - 0.35 (DeSutter et al. 2015). %Na values of 4 are 

considered the threshold of sustainability in the NGP for crop production (Carlson et al. 

2016). 

 
 

Impacts on Seeds and Plants 
 

Salts affect seeds or plants in two ways: osmotic stress and ionic stress (Ryan et 

al. 1975). Osmotic stress reduces the osmotic potential of the soil water, which is the 

amount of available water in the soil that seeds or plants can uptake. In salt-impacted 

soils, salts lower the osmotic potential and restrict water uptake by seeds and plants 

(Nishida et al. 2009). Imbibition, or water uptake, begins the germination process 

(Bewley and Black 1994). In salt-impacted soils, the lower osmotic potential makes it 

difficult for seeds to imbibe sufficient water to begin germination. Low osmotic potential 

can affect plants as well and results in plants having reduced water uptake and decreased 

root and leaf growth (Munns and Tester 2008). Ionic stress is the accumulation of a high 

concentration of salts that can result in salt toxicity and occurs after water uptake is 

reduced, usually with long-term effects (Munns and Tester 2008). Ionic stress can result 

in lower germination (Qadir et al. 2003; Greenberg et al. 2008). Plants begin to 

accumulate salt within their leaves, leading to reduced growth and possible plant death 

(Munns and Tester 2008). 
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Excess salt decreases rangeland forage production and agricultural crop yield 

(Choukar-Allah 1996) and increases habitat loss for native flora and fauna on non- 

agricultural land (McFarland et al. 1987; Auchmoody and Walters 1988). Plants 

experience reduced growth, nutrient imbalance, and poor soil structure in salt-impacted 

soil. Due to reduced plant growth, salt-impacted soils have low soil organic matter. 

Dispersion and erosion caused by salt impaction also contribute to lower soil organic 

matter, which leads to reduced soil organic carbon (Hubble et al. 1983). Dispersion also 

affects water movement and results in reduced water infiltration, which makes salt 

leaching and water retention/drainage difficult. Further, salt-impacted soil affects soil 

microbial activity. The effects of osmotic stress and ionic stress cause a nutrient 

imbalance, which affects microbial growth and enzyme synthesis (Batra and Manna 

1997). Salt-impacted soil has little to no fungi present which creates a microbiome 

distinct from non-impacted soil (Jakubowski 2021). Salt-impacted soil has disrupted soil 

structure and poor aggregation due to the dispersive properties of sodium ions (Bronick 

and Lal 2005). Soil structure is an important part of ecosystem function by affecting soil 

processes, nutrient cycling, productivity (Bronick and Lal 2005), root growth (Lal 1991), 

and water uptake (Rampazzo et al. 1998, Pardo et al. 2000). 

 
 

Plant Salt Tolerance Mechanisms 
 

At some point of increasing salt concentration, all plants will be negatively 

impacted and extirpated from a site. However, species-specific mechanisms allow some 

plants to have greater tolerance to increasing salt concentrations. Physiological 

mechanisms for salt tolerance include osmotic stress tolerance, sodium exclusion, and 



5 
 

tissue tolerance (Munns and Tester 2008). Some plants respond less severely and can 

achieve greater leaf growth, root growth, and photosynthesis capacity due to osmotic 

stress tolerance. Some plant species have roots that stop salts from being absorbed. This 

ensures that salts do not accumulate in plant tissue and cause negative impacts (Munns 

and Tester 2008). Plant species with roots unable to stop the absorption of salts can 

respond by storing them in older leaves. Unlike plants that use the exclusion mechanism, 

plants that store sodium ions and salts have delayed effects of salt toxicity (Munns and 

Tester 2008). 

Plants can be classified by their response to salt as halophytes, salt-tolerant non- 

halophytes, and salt-sensitive non-halophytes (Barrett-Lennard 2002). Halophytes are 

highly tolerant of salt-impacted soils and exhibit increased growth at low salt 

concentrations using three salt tolerance mechanisms: salt-excluding, salt-evading, and 

salt-enduring (Waisel 1972). Salt-excluding halophytes secrete salts from their roots 

before salts accumulate and salt toxicity begins. Salt-evading halophytes neither absorb 

nor transport salts to their leaves, which lowers the risk of salt toxicity. Salt-enduring 

halophytes fully tolerate salt accumulation in their cells (Waisel 1972). Salt-tolerant non- 

halophytes maintain growth in low salt concentrations whereas salt-sensitive non- 

halophytes decrease growth at low salt concentrations. The physiology of salt-tolerant 

non-halophytes allows them to be somewhat tolerant in salt-impacted soil, with 

moderately restricted water uptake and salt toxicity. Salt-sensitive non-halophytes lack 

mechanisms for salt tolerance, with severely restricted water uptake and salt toxicity 

(Barrett-Lennard 2002). 
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Although plants have adapted several growth responses and physiological 

mechanisms for salt tolerance, seeds have also developed mechanisms for tolerating 

adverse environmental conditions, including salt impaction. Seed dormancy is a 

mechanism that allows seeds to prevent germination until environmental conditions 

improve which increases the probability of survival and reduces possible recruitment 

failure (Venable 2007; Childs et al. 2010). The five classes of seed dormancy include 

physiological, morphological, morphophysiological, physical, and physical and 

physiological or combinational (Table 1). Differences among classes are due to 

differences in the type of internal and external stimuli necessary for imbibition and 

germination, such as chemical, thermal, or mechanical scarification (Baskin and Baskin 

2004). Mechanical scarification may promote imbibition and germination in three classes 

of seed dormancy: physiological, physical, and combinational. Physiological dormancy is 

characterized by a water-permeable seed coat and seed embryos with low growth 

potential, which restricts radicle emergence. Scarification can enhance imbibition and 

germination by breaking the seed coat and allowing physiologically dormant seeds to 

germinate. Physical dormancy is characterized by water-impermeable seed coats and 

mechanical scarification may benefit imbibition and germination by breaking the water- 

impermeable seed coat. Seeds with combinational dormancy have characteristics of 

physiological and physical dormancy and therefore require both types of dormancy to be 

broken before imbibition and germination. Scarification may benefit the imbibition and 

germination of seeds with combinational dormancy by breaking through the water- 

impermeable seed coat and removing the surrounding embryo structure (Baskin and 

Baskin 2014). For our imbibition and germination experiments, mechanical scarification 
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was chosen as the method of breaking dormancy. By using mechanical scarification to 

break physiological, physical, and combinational dormancy, seeds in salt-impacted areas 

may imbibe and germinate easier. 

 
Common Restoration Methods 

 
Common methods of treating salt-impacted soil include tile drainage, soil 

amendments, and salt leaching with low salt-concentrated water. Tile drainage is a 

common strategy to improve soil drainage. By removing excess groundwater, dissolved 

salts in the groundwater are also leached from the soil. Soil amendments, including the 

application of calcium sources such as gypsum and lime, help improve soil structure. 

Since sodium acts as a dispersive agent, the application of a calcium source replaces the 

sodium and restores the soil structure. The application of low salt-concentrated water 

helps leach salt from the soil, similar to tile drainage (Seelig 2000; Carlson et al. 2013). 

However, these strategies were developed in the arid, irrigated regions of the 

Southwestern U.S. and are ineffective in the semi-arid, non-irrigated regions, such as the 

NGP, due to differences in soil properties, gypsum concentration, and soil drainage 

(Birru et al. 2019) and using these methods to remediate salt-impacted soil may even 

worsen the degree of salt impaction. Because of high bulk densities and low drainable 

porosities, tile drainage in the NGP is ineffective for many salt-impacted soils. Most soils 

in the NGP already have high concentrations of gypsum so additional application may 

not be effective. In addition to low drainable porosities, salt-impacted soils of the NGP 

typically occur in areas of low elevation without natural water drainage (Birru et al. 

2019). Therefore, new methods of remediation, including revegetation, are being 

researched. 
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Autogenic recovery can be initiated by revegetation that increases soil structure 

and improves water movement. Plants produce soil organic matter that can benefit soil 

structure and water movement by increasing plant residue and aggregation. Plant roots 

increase aggregation by enmeshing soil particles and releasing compounds that help 

aggregate soil particles (Bronick and Lal 2005). Plant roots also create macropores, 

which improve gas exchange and water movement by creating alternate wetting and 

drying cycles. Once new plants establish and old roots decay, more macropores form and 

new plants use the pores for root growth (Elkins et al. 1977). The ability of plants to 

initiate autogenic recovery suggests revegetation can be an effective method of 

remediating salt-impacted soils. 

Using native plants for revegetation further benefits the remediation of salt- 

impacted soil in the NGP. Native plants provide numerous ecosystem services including 

water regulation, carbon sequestration, wildlife habitat and forage, and pollinator forage 

(Oldfield et al. 2019). The NGP is an endangered ecosystem (Samson et al. 2004); 

therefore, remediating salt-impacted soil using native plants is crucial because it has the 

opportunity to remediate the landscape and reintroduce ecosystem services to these 

degraded areas. 

 
 

Research Overview 
 

The purpose of this study was to identify native plants suitable for the 

revegetation of salt-impacted soil. Our first objective was to identify which native plant 

species exhibit salt tolerance during imbibition and germination with and without 

mechanical scarification. Imbibition and germination experiments were conducted and 
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differences in species response to seed treatment and soil solution were analyzed. We 

hypothesized that mechanical scarification would increase imbibition and germination by 

breaking the seed coat and ending seed dormancy, allowing seeds in salt-impacted areas 

to imbibe or germinate easier. 

Our second objective was to use the eight species that demonstrated salt tolerance 

during imbibition and germination and determine which species are better suited for 

revegetation. Plants were grown in a greenhouse and planted into salt-impacted soil. 

Survival and several transplant performance variables were measured to analyze the 

differences in species response to salt impaction. 
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Table 1. Classes of seed dormancy with the type of dormancy, cause of dormancy, and conditions necessary to break dormancy 

(Baskin and Baskin 2014). 

Classes of Seed Dormancy 
    Type of Dormancy  Cause of Dormancy  Dormancy Break  
 
Physiological 

 
Internal 

Physiological Inhibiting 
Mechanism (PIM) 

Scarification, Warm/Cold 
Stratification 

 
Morphological 

 
Internal 

Underdeveloped Seed 
Embryo 

Conditions for Embryo 
Growth/Germination 

 
Morphophysiological 

 
Internal 

PIM + Underdeveloped 
Seed Embryo 

 
Warm/Cold Stratification 

 
Physical 

 
External 

Water-Impermeable Seed 
Coat 

 
Scarification 

 
Combinational 

 
Internal + External 

PIM + Water- 
Impermeable Seed Coat 

Scarification, Warm/Cold 
Stratification 
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CHAPTER 2: EFFECTS OF SALT IMPACTION ON IMBIBITION AND 

GERMINATION OF NATIVE SEEDS 

 
 

Abstract 
 

In the northern Great Plains (NGP), salt-impacted soil occurs naturally as salts in 

marine sediments move upward as the water table rises. To remediate salt-impacted soils 

using native plants, identification of suitable native species is important. Our objective 

was to identify native plant species that could tolerate salt impaction during imbibition 

and germination and if mechanical scarification was beneficial. Therefore, our study 

evaluated the imbibition and germination of sixteen plant species to high, medium, and 

low salt concentrations with and without mechanical scarification. Seeds were left intact 

or mechanically scarified and soil solutions were derived from field-collected soil. Two 

seed treatments (control and scarified) and four soil solutions (deionized water, and high, 

medium, and low salt concentrations) were used for imbibition and germination 

experiments. Results indicated that the effects of seed treatment and soil solution were 

species-specific for imbibition and germination; however, eight species showed promise 

as suitable species for the revegetation of salt-impacted soil. Additionally, results 

indicated that mechanical scarification was beneficial for imbibition and germination in 

salt-impacted conditions. Seven of the eight species experienced moderate salt tolerance 

during imbibition and germination, similar to salt-tolerant non-halophytes whereas S. 

airoides exhibited halophytic salt tolerance during imbibition and germination. Overall, 

we recommend these species as suitable candidates for the revegetation of salt-impacted 

soil in the NGP and suggest further experimentation with these species in field studies. 
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We also recommend mechanical scarification as a beneficial practice of breaking seed 

dormancy for imbibition and germination in salt-impacted areas. 
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Introduction 
 

Salt-impacted soil is found worldwide, with approximately 900 million hectares 

affected globally (Flowers 2004). Almost 11 million hectares of salt-impacted soil occur 

within the northern Great Plains (NGP) region of North America, with over 3 million 

hectares in the state of South Dakota alone (Seelig 2000; Millar 2003; Hopkins et al. 

2012; Carlson et al. 2013; Soil Survey Staff). Salt impaction occurs primarily in arid and 

semi-arid landscapes where evapotranspiration rates exceed precipitation for most of the 

year (Jurinak 1990) and affects all soil types (Rengasamy 2006). In the NGP, salt- 

impacted soil is a naturally occurring phenomenon. Salt from marine sediments moves 

upward through the soil profile as the water table rises and remains in the root zone after 

evaporation (Rhoades and Halverson 1976; Seelig 2000; Carlson et al. 2016). Although 

salts are natural components of soil and are essential micronutrients, elevated salt 

concentrations lead to salt impaction. 

Salt-impacted soil can decrease seed imbibition and germination by restricting 

water uptake and causing salt toxicity (Ryan et al. 1975). Before seedling growth, seeds 

first undergo imbibition and germination. Imbibition, or water uptake, initiates 

germination. Germination continues until radical emergence, which signifies the end of 

germination and the beginning of seedling growth (Bewley and Black 1994). In salt- 

impacted soil, water uptake is restricted due to changes in osmotic potential and a lower 

amount of available water (Ryan et al. 1975). The osmotic stress caused by restricted 

water uptake can affect seed development, specifically by limiting necessary hormonal 

and enzymatic processes (Thiam et al. 2013; Yacoubi et al. 2013). Salt toxicity increases 

the amount of sodium and chloride ions within seeds, which can also alter seed 
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development (Gupta and Huang 2014; Maathius et al. 2014); however, the magnitude of 

the effects depends on the number of ions absorbed (Sharma 1973). As a result, seeds 

struggle to successfully imbibe and germinate (Qadir et al. 2003; Greenberg et al. 2008). 

Seeds possess mechanisms to improve their survival in adverse environmental 

conditions, including salt-impacted soil. Seed dormancy is one such mechanism that 

allows seeds to prevent germination until conditions are optimal, increasing the 

likelihood of survival and reducing possible recruitment failure (Venable 2007; Childs et 

al. 2010). Five classes of seed dormancy occur: physiological, morphological, 

morphophysiological, physical, and physical and physiological (combinational), with 

each class differing in the type of internal and external stimuli necessary for imbibition 

and subsequent germination (Baskin and Baskin 2004). Mechanical scarification may 

promote imbibition and germination in three classes of seed dormancy, including 

physiological, physical, and combinational. 

Physiological dormancy is characterized by water-permeable seed coats and 

embryos with low growth potential, making the seed coat restrictive for radicle 

emergence (Baskin and Baskin 2004). Scarification may increase the imbibition and 

germination of seeds with physiological dormancy by removing the seed coat and 

allowing the once restricted embryo to fully imbibe and germinate. Seeds with physical 

dormancy have a water-impermeable seed coat (Baskin and Baskin 2004) and 

scarification may increase imbibition and germination of seeds with physical dormancy 

by breaking through the water-impermeable palisade layer of cells. Finally, 

combinationally dormant seeds have water-impermeable coats and dormant seed 

embryos, characteristics of both physical and physiological (Baskin and Baskin 2004). 
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Scarification may increase the imbibition and germination of seeds with combinational 

dormancy by breaking through the water-impermeable seed coat and removing the 

surrounding embryo structure (Baskin and Baskin 2014). By breaking seed dormancy 

through scarification, seed in salt-impacted areas may imbibe and germinate easier. 

Plants can be classified by their growth responses to salt impaction as halophytes, 

salt-tolerant non-halophytes, and salt-sensitive non-halophytes (Barrett-Lennard 2002). 

Halophytes are plants that are highly salt tolerant and capable of increasing growth as salt 

impaction increases. Salt-tolerant non-halophytes are plants that are moderately salt 

tolerant, with maintained growth in low salt concentrations and decreased growth in high 

salt concentrations. Salt-sensitive non-halophytes have poor salt tolerance. Their growth 

decreases in even the lowest salt concentrations (Barrett-Lennard 2002). 

To remediate salt-impacted soils in the NGP using native plants, the identification 

of halophytes and salt-tolerant non-halophytes is crucial. In this study, we evaluate the 

response of sixteen plant species to high, medium, and low salt concentrations. Our 

objective was to identify which native plant species can tolerate salinity during imbibition 

and germination with and without mechanical scarification. We hypothesized that 

mechanical scarification would increase imbibition and germination by breaking seed 

dormancy and allowing seeds to imbibe and germinate easier in salt-impacted conditions. 

 
 

Methods 
 

This research occurred in the Rangeland Plant Ecology Lab at South Dakota State 

University in the fall of 2019. Imbibition and germination experiments were conducted 

using two seed treatments (control and scarified seed) and four soil solutions (deionized 
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water [control], and soil solutions derived from soils that had high, medium, and low salt 

concentrations. 

 
 

Study Species and Seed Source 
 

Sixteen plant species including 7 native grasses, 8 native forbs, and one non- 

native forb were chosen for this study. Species were chosen via expert opinion, literature 

review, fact sheets (USDA NRCS 2007), and a Northern Great Plains Herbaria search. 

Keywords ‘salt’ and ‘saline’ were included in the search in the Northern Great Plains 

Herbaria Network (Great Plains Herbaria 2021). Fifteen species with these keywords in 

the description of their collection location that were native to South Dakota (USDA, 

NRCS) were identified. Native grass species included perennials Distichlis spicata 

(Inland saltgrass), Elymus canadensis (Canada wildrye), Elymus trachycaulus (Slender 

wheatgrass), Panicum virgatum (Switchgrass), Pascopyrum smithii (Western 

wheatgrass), Spartina pectinata (Prairie cordgrass), and Sporobolus airoides (Alkali 

sacaton; Poaceae). Native forb species included Asclepias speciosa (Showy milkweed), 

Asclepias syriaca (Common milkweed; Asclepiadaceae), Desmodium canadense (Showy 

ticktrefoil; Fabaceae), Gaillardia aristata (Blanketflower), Helianthus maximiliani 

(Maximilian sunflower), Solidago missouriensis (Missouri goldenrod; Asteraceae), 

Sphaeralcea coccinea (Scarlet globemallow; Malvaceae), and Symphyotrichum ericoides 

(White heath aster; Asteraceae). Non-native forb species Trifolium fragiferum 

(Strawberry clover; Fabaceae) was also included. All forbs are perennial except S. 

coccinea, which is both biennial and perennial. Seed for all species was purchased and 

seed viability was not tested (Table 1). 



17 
 

Seed Treatments 
 

Two seed treatments were used for imbibition and germination experiments: 

control (no scarification) and mechanical scarification. We mechanically scarified seeds 

using a Forsberg Seed Cleaning Machine (Fred Forsberg & Sons, Inc., Thief River Falls, 

MN). Six hundred grit sandpaper (3M) lined the scarifier drum. The sandpaper was 

removed between each species treatment to clean the sandpaper and remove any seeds or 

debris. Seeds were treated at 10-second intervals until scratching or seed cracking was 

visible under a dissecting microscope. Due to a prolonged winding down period, the 

scarifier was run for 4 seconds with 6 seconds left for winding down, for a total of 10- 

second intervals. Scarification times varied from 10-270 seconds depending on the 

species (Table 1). 

 
 

Soil Solutions 
 

Soil solutions from field-collected soil were used for imbibition and germination 

experiments. The soil was collected (0-15 cm depth) from three landscape positions in 

Clark County, South Dakota. Soil samples were sent to Ward Laboratories, Inc. 

(Kearney, NE) for analysis. Based on paste EC (electrical conductivity) values and SAR 

(sodium absorption ratio), soils were classified as high (EC = 19.9 dS/m, SAR = 19.3), 

medium (EC = 10.1 dS/m, SAR = 12.2), low (EC = 4.3 dS/m, SAR = 0.9) salt 

concentrations. To make the soil solutions, a 1:1 slurry (g to ml) by weight was made 

using field-collected soil and deionized water. The slurry was mixed to remove any 

aggregates and left to sit overnight. The mixture was strained through a 230-mesh sieve 

to separate the soil from the soil solution. This process was repeated for all three salt 
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concentrations. Deionized water served as the fourth soil solution (control). EC values, 

from high salt to low salt concentrations, were 14.2, 7.9, and 3.2 dS/m whereas SAR 

values were 15.8, 10.3, and 0.7. 

 
 

Imbibition 
 

Imbibition experiments consisted of 640 seeds per species [10 seeds * 8 

replications * 4 soil solutions (high, medium, low, and control) * 2 seed treatments 

(scarified and control)], except A. ericoides, S. missouriensis, and S. airoides, which used 

100, 80, and 70 seeds per replication respectively. Seed weights for these species were 

sufficiently smaller than the other species, leading to more seeds needed per replication. 

Total imbibition experiments n = 1,024 [16 species * 8 replications * 4 soil solutions * 2 

seed treatments]. Seeds were counted and weighed before imbibition. Seeds were 

immersed in 5 ml of the appropriate soil solution for 24 hours. After 24 hours of 

immersion, excess soil solution was vacuumed off (Rocker 300 Vacuum, Rocker 

Scientific Company, New Taipei City 244, Taiwan), and to ensure all excess soil solution 

was removed, seeds were also blotted dry. Seeds were weighed again to determine their 

weight after imbibition. Imbibition was calculated using the following equation: 

Imbibition = (wa-wb)/(wb) 
 

where wa is weight (g) after imbibition and wb is weight (g) before imbibition 
 
 

Germination 
 

Germination experiments consisted of 1,600 seeds per species [25 seeds * 8 

replications * 4 soil solutions (high, medium, low, and control) * 2 seed treatments 
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(scarified and control)] with total germination experiments n = 1,024 [16 species * 8 

replications * 4 soil solutions * 2 seed treatments]. Twenty-five seeds per species per 

replicate were placed on moistened germination paper (Regular Weight Seed 

Germination Paper, Anchor Paper Company, St. Paul, Minnesota) and enclosed in 

labeled plastic bags (L.D. Poly Seal-Top Bags 2 mil 6 in. x 9 in., Elkay Plastics 

Company, Chicago, Illinois). The germination paper was moistened with one of the four 

soil solutions. Seeds were placed in a growth chamber at a 15 ℃ nighttime/ 24 ℃ 

daytime temperature regime, with 12 hours of nighttime and 12 hours of daytime. 

Germination was checked every 3 days for radicle emergence and bags were randomized 

when placed back in the growth chamber to ensure similar irradiance and temperature. 

Germination papers were moistened as needed, with their appropriate soil solution, to 

ensure adequate moisture. After 48 days, all germination experiments had concluded. 

Germination had concluded for most species after 30 days, which was the initial length of 

time chosen for the germination experiments. However, species D. spicata and S. 

coccinea were slow to germinate and given more time. Three germination indices were 

used for analysis: total germination, mean germination time, and mean germination rate. 

Total germination (TG) is the percentage of seeds that germinate (0 ≤ TG ≥ 100; %). 

Mean germination time (MGT) is the mean number of days seeds take to germinate (0 ≤ 

MGT ≥ k; time) and mean germination rate (MGR) is the reciprocal of mean germination 

time (0 ≤ MGR ≥ 1; time-1). Total germination, mean germination time, and mean 

germination rate was calculated by the following formula using R package GerminaR 

(Lozano-Isla et al. 2019): 

∑𝑘𝑘 𝑛𝑛1 

Total Germination = ( 𝑖𝑖 = 1 
𝑁𝑁 

) 𝑥𝑥 100 
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∑𝑘𝑘  𝑛𝑛 𝑡𝑡 
Mean Germination Time =    𝑖𝑖=1 𝑖𝑖 𝑖𝑖 

𝑘𝑘 
𝑖𝑖=1 𝑛𝑛𝑖𝑖 

 
∑𝑘𝑘     𝑛𝑛 

Mean Germination Rate = 𝑖𝑖=1 𝑖𝑖  
𝑘𝑘 
𝑖𝑖=1 𝑛𝑛𝑖𝑖𝑡𝑡𝑖𝑖 

 

where ni is the number of seeds germinated on the ith day, ti is the number of days 

between the beginning of the experiment to the ith observation, N is the total number of 

seeds per replicate, and k is the last day of the experiment. 

 
 

Statistical Analysis 
 

Statistical analyses were conducted using ANOVA, with imbibition and 

germination as response variables, and species, seed treatment, and soil solution as 

explanatory variables. Species D. spicata and S. coccinea were excluded from the 

germination analysis due to low germination. D. spicata had 16 seeds germinate and S. 

coccinea had 134, which corresponds to 1% and 8% total germination respectively. Initial 

analysis indicated that species was significant for imbibition (F = 132.09, df = 15, p < 

0.001), total germination (F = 310.08, df = 13, p < 0.001), mean germination time (F = 

48.54, df = 13, p < 0.001), and mean germination rate (F = 43.97, df = 13, p < 0.001); 

therefore, subsequent analysis was conducted separately for each species. Seed treatment 

was not significant for mean germination time (F = 0.35, df = 1, p = 0.554); therefore, 

analysis for mean germination time included soil solution as the explanatory variables for 

each species. Interaction effects included seed treatment x soil solution. The imbibition 

data and germination data did not meet the assumptions of normality or equal variance 

and were transformed. However, neither response variable could be transformed to meet 

the assumptions of normality, therefore, least-square means were used to estimate 

∑ 

∑ 
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population marginal means. The post-hoc test, Student’s t-test, was performed to 

determine differences in explanatory variable effects. RStudio (RStudio Team 2020) and 

JMP (JMP Pro, Version 14, SAS Institute Inc., Cary, NC) software were used for 

statistical analysis. 

 
 

Results 
 

Imbibition 
 

Three species (A. speciosa, D. canadense, and G. aristata) had a significant 

response (p < 0.05) to seed treatment only, with increased imbibition for scarified seed 

(Table 2, Figure 1). Two species (E. canadensis and S. ericoides) had a significant 

response to soil solution but not seed treatment nor the interaction (Table 2, Figure 2). 

For E. canadensis, imbibition was similar among soil solutions except in the deionized 

water and high salt soil solution, and for S. ericoides, imbibition was significantly higher 

in the deionized water and medium and low salt soil solutions compared to imbibition in 

the high salt soil solution. Seed treatment and soil solution but not the interaction had a 

significant effect on two species: D. spicata and T. fragiferum (Table 2, Figures 1 and 2). 

Both species had higher imbibition with scarified seed and similar imbibition in the 

deionized water and medium salt soil solution. Imbibition (g) for P. smithii (μ = 0.416, 

SD = 0.072) had no significant response to seed treatment, soil solution, or their 

interaction (Table 1). The remaining eight species had a significant response to the 

interaction, with similar imbibition in the high, medium, and low salt soil solutions 

compared to deionized water (Table 2, Figure 3). 
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Germination 
 

Total germination (%) for A. speciosa (μ = 87.56, SD = 7.65), E. trachycaulus (μ 
 

= 82.19, SD = 10.46), and H. maximiliani (μ = 37.00, SD = 10.61) had no significant 

response (p < 0.05) to seed treatment, soil solution, or their interaction (Table 3). One 

species, D. canadense, had a significant response to seed treatment only, with higher 

germination for scarified seed (Table 3, Figure 4). Two species (G. aristata and P. 

virgatum) had a significant response to seed treatment and soil solution only (Table 3, 

Figure 4 and 5), and germination was higher for scarified seed for both species. The 

remaining eight species had a significant response to the interaction (Table 3, Figure 6). 

Species response was variable, but four species (E. canadensis, P. smithii, S. airoides, 

and T. fragiferum) had high germination (> 60%). All species except D. canadense had a 

significant response to soil solution for mean germination time (Table 4). Several species 

(A. speciosa, E. trachycaulus, G. aristata, H. maximiliani, and S. airoides) had the lowest 

mean number of days until germination among soil solutions (< 6 days). All species had a 

significant response to the interaction for mean germination rate (Table 5, Figure 7) and 

S. airoides had high mean germination rates. 
 
 
 

Discussion 
 

Our results suggest that A. speciosa, D. canadense, E. canadensis, E. 

trachycaulus, G. aristata, H. maximiliani, P. smithii, and S. airoides, are species that can 

imbibe and germinate in salt-impacted soil solutions and may be candidates for the 

restoration of salt-impacted soils in the NGP. Each species exhibited varying degrees of 

salt tolerance that could be used to restore salt-impacted areas. A. speciosa provides 
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pollinator forage and habitat, D. canadense and H. maximiliani provide wildlife forage 

and cover, and G. aristata provides both (USDA, NRCS). E. canadensis, E. trachycaulus, 

and S. airoides provide wildlife forage and P. smithii provides erosion control (USDA, 

NRCS). 

Our first objective was to identify which native plant species can tolerate salt 

impaction. Eight species were not affected (or were affected the least) by salt impaction. 

Most of these species exhibited moderate salt tolerance in the imbibition and germination 

experiments, similar to salt-tolerant non-halophytes. Most species had similar imbibition 

and germination in the soil solutions compared to deionized water. Our results are similar 

to previous research on roadway deicers that found E. canadensis exhibited high 

germination in salt concentrations (Harrington and Meikle 1992), and E. trachycaulus 

had consistent germination in high, medium, and low concentrations of roadway deicer 

salt solutions (Dudley et al. 2014). P. smithii exhibited high germination in salt 

concentrations when exposed to brine-induced salinity (Green 2019). However, S. 

airoides exhibited salt tolerance similar to halophytes, with imbibition in soil solutions 

similar to deionized water and germination higher in soil solutions. High germination of 

S. airoides in a similar study made it a recommended species for the restoration of 

saline/saline-sodic soils (Rock 2008). Imbibition studies involving the salt tolerance of 

the grass species (E. canadensis, E. trachycaulus, P. smithii, and S. airoides) and 

imbibition and germination studies involving the salt tolerance of A. speciosa, D. 

canadense, G. aristata, and H. maximiliani could not be found in the literature, therefore 

these results are novel and provide essential information for the restoration and 

remediation of salt-impacted soil in the NGP. 
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Our second objective was to investigate if mechanical scarification was beneficial 

during imbibition and germination in salt-impacted conditions. We hypothesized that 

mechanical scarification would increase imbibition and germination. Several species 

responded positively to scarification in saline conditions. For example, 8 species 

responded to scarification for imbibition, 7 species for total germination, and 7 species 

for mean germination rate in saline conditions when scarified. However, responses to 

scarification decreased imbibition and germination in some conditions. Many of the seed 

performance responses were not consistent within species. For example, scarification 

decreased imbibition for A. syriaca, S. airoides, and S. pectinata in deionized water, P. 

virgatum for the low salt soil solution, and E. trachycaulus for the medium salt soil 

solution. Similar responses occurred for total germination and mean germination rate. 

Overall, response to seed treatment was not consistent across species. For example, seed 

treatment increased imbibition and germination rate but did not affect total germination 

for A. speciosa. However, seed treatment increased imbibition, total germination, and 

mean germination rate for D. canadense. 

Imbibition or water uptake is the first of a chain reaction of cellular events that 

continue until radicle emergence, which signifies the end of germination. Therefore, we 

might expect a positive relationship between imbibition and germination. Surprisingly, 

we found species that imbibed more were not necessarily the species with higher 

germination. Interestingly, S. coccinea, the species with the highest mean imbibition 

across soil solutions was excluded from the germination analysis due to low germination. 

Additionally, D. spicata, a native grass species with saline soil tolerance (USDA, NRCS), 

had moderate imbibition across soil solutions and was also excluded from the 
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germination analysis due to low germination. Overall, most species had similar 

imbibition between seed treatments and among soil solutions. Most had the highest 

imbibition in deionized water, with imbibition in the salt concentrations lower but with 

similar values. This could be due to lower water potential from salt ions, which disrupts 

water uptake and inhibits germination (Katembe et al. 1998). 

Seed dormancy can prohibit imbibition and subsequent germination until optimal 

environmental conditions arise. To successfully restore salt-impacted areas, 

understanding the dormancy of the restoration species and effective methods to break 

dormancy are necessary. Based on the results of our study, mechanical scarification can 

be recommended as an effective practice. Additionally, the use of a scarifier for 

mechanical scarification was effective. As was found in one study, using a scarifier could 

be potentially beneficial for ecological restoration by breaking physical dormancy for 

native legumes, including D. canadense (Olszewski et al. 2010). Further, another study 

found that mechanical scarification (using a Forsberg seed cleaner) is more effective and 

feasible for commercial scarification than acid scarification of a legume, Ruby Valley 

pointvetch (Oxytropis riparia Litv.) (Hicks et al. 1989). The effectiveness of the Forsberg 

seed cleaner in this study, for scarifying other forbs and grasses, suggests it could be used 

for large-scale restoration efforts, including the restoration of salt-impacted areas. 

Responses to scarification varied among species and soil solutions; however, several 

species responded positively to scarification. Species A. speciosa, D. canadense, and G. 

aristata imbibition increased with scarification. D. canadense and G. aristata also 

responded positively to scarification for total percent germination. Interestingly, a similar 

study found that mechanical scarification of D. canadense with a scarifier damaged the 
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seed (Olszewski et al. 2010). However, in our study, no seed damage was observed after 

scarification, and several species benefitted from scarification for imbibition and 

germination. 

Some limitations for this study exist including the use of purchased seed and the 

lack of seed standards for native plant species (Cross et al. 2020). Some species had low 

or no germination even in the control deionized water nor with scarification suggesting 

that perhaps the seeds were not viable (although we did not test seed viability). Seeds 

were purchased from regional seed distributors therefore future studies have the 

opportunity to use field-collected seed to investigate if imbibition and germination differ. 

Currently, there are limited seed standards for native seeds whereas agricultural and 

forestry seeds have regulatory seed standards (Cross et al. 2020). Protocols for native 

seed handling for this project were informed by the best-known practices. Future studies 

might involve field-collected seed and recognized native seed standards. 

Overall, we conclude that species response to seed treatment and soil solution was 

variable. Species response varied between seed treatments and among soil solutions. 

However, several species showed promise for salt-impacted soil remediation: A. 

speciosa, D. canadense, E. canadensis, E. trachycaulus, G. aristata, H. maximiliani, P. 

smithii, and S. airoides. Due to differences in salt tolerance, some species would be better 

suited for areas with lower salt concentrations whereas other species would be better 

suited for areas with higher salt concentrations. For example, A. speciosa, D. canadense, 

E. canadensis, E. trachycaulus, G. aristata, H. maximiliani, P. smithii might be better 

suited to revegetate areas with lower salt concentrations. These species tended to 

germinate quicker at medium or low soil solutions. S. airoides might be better suited to 
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revegetate salt-impacted areas with higher salt concentrations. Total germination, mean 

germination time, and mean germination rate was greater for the soil solutions than the 

deionized water, especially with the high and medium soil solutions for S. airoides. 

Results from this study are important for land managers and producers to identify what 

species are suitable for the revegetation of salt-impacted areas. Additionally, results 

suggested that mechanical scarification increased imbibition and germination in saline 

conditions for some species. This further informs land management, making seeding of 

salt-impacted areas more effective. 
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Table 1. Seed distributors where seeds were purchased and the scarification time 

for each species. 

Scientific Name Common Name Seed Distributor Scarification 
(sec) 

Asclepias speciosa Showy milkweed Prairie Moon Nursery, Inc. 
(Winona, MN) 

20 

Asclepias syriaca Common milkweed Prairie Moon Nursery, Inc. 
(Winona, MN) 

20 

Desmodium 
canadense 

Showy ticktrefoil Prairie Moon Nursery, Inc. 
(Winona, MN) 

60 

Distichlis spicata Inland saltgrass Great Basin Seed (Ephraim, 
UT) 

40 

Elymus canadensis Canada wildrye Prairie Restorations, Inc. 
(Princeton, MN) 

20 

Elymus 
trachycaulus 

Slender wheatgrass Millborn Seeds, Inc. 
(Brookings, SD) 

20 

Gaillardia aristata Blanketflower Millborn Seeds, Inc. 
(Brookings, SD) 

70 

Helianthus 
maximiliani 

Maximilian 
sunflower 

Prairie Moon Nursery, Inc. 
(Winona, MN) 

40 

Panicum virgatum Switchgrass Prairie Moon Nursery, Inc. 
(Winona, MN) 

20 

Pascopyrum smithii Western wheatgrass Millborn Seeds, Inc. 
(Brookings, SD) 

20 

Solidago 
missouriensis 

Missouri goldenrod Prairie Legacy (Western, NE) 30 

Spartina pectinata Prairie cordgrass Prairie Moon Nursery, Inc. 
(Winona, MN) 

40 

Sphaeralcea 
coccinea 

Scarlet globemallow Prairie Moon Nursery, Inc. 
(Winona, MN) 

120 

Sporobolus airoides Alkali sacaton Great Basin Seed (Ephraim, 
UT) 

270 

Symphyotrichum 
ericoides 

White heath aster Millborn Seeds, Inc. 
(Brookings, SD) 

120 

Trifolium 
fragiferum 

Strawberry clover Millborn Seeds, Inc. 
(Brookings, SD) 

10 
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Table 2. F-values and p-values of seed treatment, soil solution, and their interaction on 

imbibition. Degrees of freedom (df) values = (variable, total). Bold p-values are 

significant to p < 0.05. 

Imbibition 
 

Seed Treatment Soil Solution Seed Treatment x 
                                                                           Soil Solution  

 F(df) p F(df) p F(df) p 
A. speciosa 78.87(1,56) <0.001 1.56(3,56) 0.210 0.82(3,56) 0.487 
A. syriaca 7.86(1,56) 0.007 21.07(3,56) <0.001 14.61(3,56) <0.001 
D. canadense 72.16(1,54) <0.001 1.15(3,54) 0.339 1.26(3,54) 0.296 
D. spicata 15.46(1,56) <0.001 3.12(3,56) 0.033 0.174(3,56) 0.919 
E. canadensis 1.93(1,56) 0.170 3.08(3,56) 0.035 2.56(3,56) 0.064 
E. trachycaulus 4.46(1,56) 0.039 1.55(3,56) 0.211 3.54(3,56) 0.020 
G. aristata 18.48(1,56) <0.001 2.75(3,56) 0.051 0.15(3,56) 0.926 
H. maximiliani 3.59(1,56) 0.063 1.13(3,56) 0.346 2.93(3,56) 0.042 
P. virgatum 1.38(1,56) 0.245 1.46(3,56) 0.235 6.12(3,56) 0.001 
P. smithii 0.30(1,56) 0.589 1.72(3,56) 0.173 1.02(3,56) 0.391 
S. missouriensis 0.75(3,56) 0.391 4.23(3,56) 0.009 7.17(3,56) <0.001 
S. pectinata 0.20(1,56) 0.658 7.64(3,56) <0.001 5.73(3,56) 0.002 
S. coccinea 10.68(1,56) <0.001 2.20(3,56) 0.099 6.94(3,56) <0.001 
S. airoides 0.08(1,54) 0.772 1.18(3,54) 0.325 2.84(3,54) 0.046 
S. ericoides 0.88(1,56) 0.353 6.66(3,56) <0.001 2.69(3,56) 0.055 
T. fragiferum 25.19(1,55) <0.001 4.31(3,55) 0.008 0.48(3,55) 0.695 
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Table 3. F-values and p-values of seed treatment, soil solution, and their interaction on 

the total percent germination. Degrees of freedom (df) values = (variable, total). Bold p- 

values are significant to p < 0.05. 

Total Germination 
 Seed Treatment Soil Solution Seed Treatment x 

                                                                              Soil Solution  
 F(df) p F(df) p F(df) p 
A. speciosa 0.00(1,56) 0.949 0.30(3,56) 0.823 1.74(3,56) 0.169 
A. syriaca 12.68(1,56) <0.001 5.39(3,56) 0.003 9.41(3,56) <0.001 
D. canadense 255.63(1,56) <0.001 0.74(3,56) 0.532 1.29(3,56) 0.285 
E. canadensis 2.15(1,56) 0.148 2.10(3,56) 0.110 6.88(3,56) <0.001 
E. trachycaulus 2.78(1,56) 0.101 1.86(3,56) 0.152 2.40(3,56) 0.078 
G. aristata 10.99(1,56) 0.002 4.91(3,56) 0.004 2.64(3,56) 0.058 
H. maximiliani 0.03(1,56) 0.854 1.46(3,56) 0.236 0.45(3,56) 0.717 
P. virgatum 22.11(1,56) <0.001 10.49(3,56) <0.001 1.12(3,56) 0.349 
P. smithii 0.06(1,56) 0.802 0.70(3,56) 0.559 4.95(3,56) 0.004 
S. missouriensis 12.23(1,56) <0.001 28.26(3,56) <0.001 5.20(3,56) 0.003 
S. pectinata 53.49(1,56) <0.001 3.69(3,56) 0.017 5.22(3,56) 0.003 
S. airoides 11.01(1,56) 0.002 1.66(3,56) 0.186 3.60(3,56) 0.019 
S. ericoides 2.01(1,56) 0.162 4.50(3,56) 0.007 8.72(3,56) <0.001 
T. fragiferum 0.69(1,56) 0.411 9.89(3,56) <0.001 11.87(3,56) <0.001 
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Table 4. F-values and p-values of soil solution on the mean germination time. Mean 

number of days until germination concluded. Degrees of freedom (df) values = (variable, 

total). Bold p-values are significant to p < 0.05. 

Mean Germination Time 
 Soil Solution Mean Number of Days  
 F(df) p DI Water High Medium Low 

A. speciosa 18.29(3,56) <0.001 2.20 5.93 3.11 3.00 
A. syriaca 21.76(3,56) <0.001 4.22 8.75 11.17 3.82 
D. canadense 0.97(3,56) 0.413 5.69 6.90 6.75 5.47 
E. canadensis 7.21(3,56) <0.001 4.78 8.06 8.41 7.27 
E. trachycaulus 3.42(3,56) 0.023 4.32 5.81 4.70 5.11 
G. aristata 17.56(3,56) <0.001 1.79 3.37 5.75 5.63 
H. maximiliani 5.16(3,56) 0.003 3.33 4.90 4.09 3.04 
P. virgatum 13.96(3,56) <0.001 5.77 10.91 18.79 3.52 
P. smithii 11.33(3,56) <0.001 5.39 7.84 6.25 6.20 
S. missouriensis 6.56(3,56) <0.001 14.53 8.60 9.02 6.44 
S. pectinata 6.48(3,56) <0.001 15.11 14.37 22.67 15.39 
S. airoides 5.56(3,56) 0.002 1.92 3.23 2.62 4.43 
S. ericoides 10.05(3,56) <0.001 6.12 12.41 8.73 9.65 
T. fragiferum 19.60(3,56) <0.001 1.51 9.24 8.49 6.44 
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Table 5. F-values and p-values of seed treatment, soil solution, and their interaction on 

the mean germination rate. Degrees of freedom (df) values = (variable, total). Bold p- 

values are significant to p < 0.05. 

Mean Germination Rate 
 Seed Treatment Soil Solution Seed Treatment x 

                                                                            Soil Solution  
 F(df) p F(df) p F(df) p 
A. speciosa 77.29(1,56) <0.001 88.75(3,56) <0.001 32.78(3,56) <0.001 
A. syriaca 0.56(1,56) 0.447 60.05(3,56) <0.001 17.69(3,56) <0.001 
D. canadense 375.02(1,56) <0.001 20.99(3,56) <0.001 15.84(3,56) <0.001 
E. canadensis 0.00(1,56) 0.960 27.89(3,56) <0.001 38.58(3,56) <0.001 
E. trachycaulus 99.31(1,56) <0.001 12.27(3,56) <0.001 9.01(3,56) <0.001 
G. aristata 15.69(1,56) <0.001 92.10(3,56) <0.001 15.17(3,56) <0.001 
H. maximiliani 1.06(1,56) 0.301 9.13(3,56) <0.001 5.93(3,56) 0.001 
P. virgatum 0.65(1,56) 0.425 23.79(3,56) <0.001 6.84(3,56) <0.001 
P. smithii 29.90(1,56) <0.001 14.74(3,56) <0.001 5.90(3,56) 0.001 
S. missouriensis 1.70(3,56) 0.198 14.34(3,56) <0.001 18.23(3,56) <0.001 
S. pectinata 1.89(1,56) 0.175 5.83(3,56) 0.002 3.80(3,56) 0.015 
S. airoides 144.07(1,56) <0.001 13.81(3,56) <0.001 8.95(3,56) <0.001 
S. ericoides 13.67(1,56) <0.001 18.08(3,56) <0.001 6.41(3,56) <0.001 
T. fragiferum 2.51(1,56) 0.119 80.03(3,56) <0.001 10.88(3,56) <0.001 
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Figure 1. Imbibition (amount of water absorbed) of study species with significant 

responses to seed treatment only. Black bars = control seeds and gray bars = scarified 

seeds. Asterisks indicate significant differences in seed treatment response. 
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Figure 2. Imbibition (amount of water absorbed) of study species with significant 

responses to soil solution treatment only. Black bars = deionized water, light gray bars = 

high, medium gray bars = medium, and dark gray bars = low for the soil solutions. 

Letters indicate significant differences among soil solutions. 
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Figure 3. Imbibition (amount of water absorbed) of study species with significant 

responses to the interaction between seed treatment and soil solution. Black bars = 

control seeds and gray bars = scarified seeds. Soil solution is indicated by DI = deionized 

water, H = high, M = medium, and L = low. Letters indicate significant differences in 

interaction response for all species. 
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Figure 4. Total percent germination of study species with significant responses to seed 

treatment. Black bars = control seeds and gray bars = scarified seeds. Asterisks indicate 

significant differences between seed treatment response for all species. 
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Figure 5. Total percent germination of study species with significant responses to soil 

solution. Black bars = deionized water, light gray bars = high, medium gray bars = 

medium, and dark gray bars = low for the soil solutions. Letters indicate significant 

differences among soil solutions for all species. 
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Figure 6. Total percent germination of study species with significant responses to the 

interaction between seed treatment and soil solution. Black bars = control seeds and gray 

bars = scarified seeds. Letters indicate significant differences in interaction response for 

all species. 
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Figure 7. Mean germination rate of study species with significant responses to the 

interaction between seed treatment and soil solution. Black bars = control seeds and gray 

bars = scarified seeds. Letters indicate significant differences in interaction response for 

all species. 
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CHAPTER 3: REVEGETATION OF NATIVE PLANTS IN SALT-IMPACTED SOIL 
 
 

Abstract 
 

Salt-impacted soils are formed through anthropogenic or natural causes. In the 

northern Great Plains (NGP), salts naturally occur in the parent material and move 

upward through the soil profile. Common methods for remediating salt-impacted soil 

were created to remediate irrigated soils of the Southwestern U.S. Non-irrigated soils of 

the NGP are unaffected by these methods therefore new remediation strategies are 

necessary. The objective of this study was to determine which native plant species are 

better suited for revegetation. This study evaluated the survival and performance of eight 

native plant species in high, medium, and low salt concentrations. Survival was evaluated 

at mid-season and end-of-season sampling and performance variables (plant height, basal 

diameter, number of flowering heads, number of tillers/stems, and aboveground biomass) 

were evaluated at end-of-season sampling. Our results indicate that all species except D. 

canadense exhibited some salt tolerance and could be suitable for the revegetation of salt- 

impacted soil. Survival was highest in medium and low salt concentrations for most 

species; however, S. airoides was the exception, with greater survival as the salt 

concentration increased. Our transplant performance results mirrored survival, with most 

species, except S. airoides, exhibiting growth responses similar to salt-tolerant non- 

halophytes. S. airoides growth response was similar to halophytes, with increased growth 

in high salt concentrations. Overall, we suggest using A. speciosa, G. aristata, and H. 

maximiliani in minimally salt-impacted soils, E. canadensis, E. trachycaulus, and P. 

smithii in moderately salt-impacted soils, and S. airoides in highly salt-impacted soils to 

revegetate affected areas of the NGP. 
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Introduction 
 

Soils are formed by the chemical and physical weathering of geological material 

and accumulation of organic material and contain inorganic and organic compounds, 

including salt (Jenny 1941). All soil types can be affected by salt (Rengasamy 2006) 

because although salt is a natural component of soil, high levels of salt lead to salt 

impaction. Salt-impacted soils occur due to anthropogenic or natural causes. 

Anthropogenic activities that contribute to salt impaction include the application of 

fertilizers and other soil amendments (Rengasamy 2010), irrigation with saline water 

(Maas and Grattan 1999), the application of roadway deicers (Dudley et al. 2014), and oil 

and gas production, where saltwater is unearthed during drilling (Merrill et al. 1990). 

Naturally occurring salt-impacted soils develop when salts accumulate in the soil through 

wind deposition, rain, seawater intrusion, or parent material (Maas and Grattan 1999). In 

the northern Great Plains (NGP), marine sediments in parent material have high salt 

concentrations. Salts are transported upward through the soil profile by capillary action as 

the water table rises (Rhoades and Halverson 1976; Seelig 2000; Carlson et al. 2016) due 

to increased precipitation and temperature (Lobell et al. 2010). After evaporation, salts 

remain near the soil surface where they can affect plant growth. 

Common remediation methods for salt impaction include tile drainage, gypsum 

application, and salt leaching with low salt-concentrated water. Tile drainage improves 

soil drainage and helps leach salt from the soil. The application of calcium sources (i.e. 

gypsum and lime) helps counteract the dispersive properties of sodium in salt-impacted 

soil. Similar to tile drainage, the application of low salt-concentrated water helps leach 

salt from the soil (Seelig 2000; Carlson et al. 2013). Although these methods are 
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beneficial in the arid, irrigated soils of the Southwestern U.S., they are ineffective in the 

semi-arid, non-irrigated soils of the NGP, possibly aggravating the problem due to 

differences in soil properties, gypsum concentration, and soil drainage (Birru et al. 2019). 

Because these methods are ineffective in the NGP, other methods are under investigation, 

including revegetation. 

Revegetation can initiate the autogenic recovery of a salt-impacted site. 
 

Autogenic recovery is the process by which plants, through their growth and senescence, 

gradually improve conditions. For example, plants stabilize soil structure and improve 

water movement in the soil. Soil structure is an important part of ecosystem function, 

influencing water movement, soil processes, nutrient cycling, and productivity (Bronick 

and Lal 2005). Root growth, development (Lal 1991), distribution, and water uptake 

(Rampazzo et al. 1998, Pardo et al. 2000) are directly affected by soil structure. Salt- 

impacted soil has disrupted soil structure and poor aggregation since sodium ions act as a 

dispersive agent that breaks up aggregates. Plants can improve soil structure and water 

movement with root production. Plant roots enmesh soil particles and release compounds 

that help aggregate soil particles (Bronick and Lal 2005). Plant roots also create 

macropores that improve gas exchange and water movement through the creation of 

cycles of alternate wetting and drying. As roots decay, macropores are formed and new 

plants use the pores for root growth (Elkins et al. 1977). The revegetation of plants on 

salt-impacted soil can improve soil health, and consequently, be an effective method of 

remediating salt-impacted soils. 

To establish plants on salt-impacted soil and begin autogenic recovery, plant 

species with salt tolerance need to be identified. Salt stresses plants in two ways: roots 
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experience restricted water uptake and leaves accumulate salt causing salt toxicity (Ryan 

et al. 1975). Plant have varying tolerances to salt, with some using salt-specific 

physiological mechanisms to manage salt stress, including osmotic stress tolerance, 

sodium exclusion, and tissue tolerance (Munns and Tester 2008). Growth responses to 

salinity range from halophytes (that exhibit increased growth in soils with higher salt 

concentrations) or salt-tolerant non-halophytes (that maintain growth in salt-impacted 

soils) compared to salt-sensitive non-halophytes that do not maintain growth in salt- 

impacted soils (Barrett-Lennard 2002). Unfortunately, in some salt-impacted soils, salt- 

sensitive native species are replaced by non-native plants that are halophytes or salt- 

tolerant non-halophytes (Fischer 2001). For example, non-native species Bassia 

scorparia and weed Hordeum jubatum were abundant at the study site (personal 

observation), likely due to high salt tolerance since B. scorparia and H. jubatum are often 

found on saline/sodic soils (Ungar 1966). Therefore, investigating which native plant 

species exhibit salt tolerance will help inform revegetation practices necessary to 

remediate salt-impacted soil in the NGP without the negative ecological effects of non- 

native species or weeds (Santos et al. 2010). 

The identification of native plant species suitable for the revegetation of salt- 

impacted soil in the NGP is important. In this study, we evaluated the response of eight 

native plant species to high, medium, and low salt concentrations at a field site with salt- 

impacted soil. Mid-season and end-of-season survival and end-of-season performance 

variables, including plant height, basal diameter, number of flowering heads, number of 

tillers/stems, and number of new tillers were measured, with aboveground biomass 
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sampling occurring after senescence. Our objective was to determine which native plant 

species are better suited for revegetation. 

 
 

Methods 
 

Study Area 
 

The study occurred in Clark County, South Dakota on private cropland previously 

managed in a conventional corn/soybean rotation. Surrounding cropland was primarily 

corn and soybeans, with some grass pasture for cattle grazing. Clark County is located in 

northeastern South Dakota, characterized by a temperate, continental climate with semi- 

humid summers and cold, dry winters. Average annual temperatures include a high of 

11.9°C and a low of 0.0 °C. The average annual precipitation is 571 mm, with June - 

October experiencing 60% of the precipitation (U.S. Climate Data). During the field 

season, from June – October 2019, the total precipitation was over 584 mm, 13 mm 

higher than the average annual precipitation of Clark County (National Oceanic and 

Atmospheric Administration) making it an unusually wet season. The soil was primarily 

Cavour-Ferney loams, which are characterized by moderately good drainage and a water 

table depth of 1 to 1.5 meters below the soil surface. The maximum salinity in the soil 

profile is slight to moderate salinity for Cavour (4.0-10.0 dS/m) and moderate to strong 

salinity for Ferney (8.0-16.0 dS/m) (Soil Survey Staff). 

 
 

Transplants 
 

Based on the previous germination study, eight perennial plant species (A. 

speciosa (Asclepiadaceae), D. canadense (Fabaceae), E. canadensis, E. trachycaulus 
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(Poaceae), G. aristata, H. maximiliani (Asteraceae), P. smithii, and S. airoides (Poaceae)) 

were chosen. Seeds were planted in 2.54 x 16.10 cm (66 ml) Ray Leach Pine Cell Cone- 

Tainers (Stuewe & Sons, Inc., Tangent, Oregon) filled with potting media (Miracle-Gro 

potting mix). Seeds were planted in each tube and were thinned to one individual plant 

per tube. Seeds were misted twice daily until germination and subsequent establishment 

occurred. Transplants were then watered twice daily, to ensure adequate moisture 

throughout the tube. Greenhouse temperature fluctuated between 10-25 °C with ambient 

lighting. Two weeks before planting in the field, transplants were moved outside for 

hardening. 

Before planting, existing vegetation was mowed and Dewitt woven ground cover 

was placed onto the 10 x 120 m plot over the three landscape positions: high, medium, 

and low salt concentrations (which correspond to the footslope, midslope, and summit, 

respectively). Electrical conductivity was 7.90 dS/m (high salt), 3.22 dS/m (medium salt), 

and 0.32 dS/m (low salt). Six strips per landscape position were designated for planting 

with surrounding unplanted buffers for walking and data recording. Slits were cut into the 

ground cover in 1 x 1 ft spacing. A total of 2,016 transplants were planted. The placement 

of transplants was predetermined using a random number generator, with 84 transplants 

per species per landscape position. Transplants started in the greenhouse (March 2019) 

were transplanted in the field (June 2019) with one plant per slit. A soil core was used to 

make an approximately 16 cm deep hole. Light watering during planting was the only 

assistance given to the transplants for the duration of the study. 

Mid-season (July 2019) and end-of-season survival (October 2019) were recorded 

and end-of-season performance was assessed with plant height (cm), basal diameter (cm), 
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number of flowering heads, and number of tillers or stems. Additionally, aboveground 

biomass (g) sampling occurred after plant senescence and end-of-season data recording 

occurred (November 2019). Biomass samples were dried until a constant weight was 

achieved and weighed. Due to the Covid-19 pandemic and restricted travel, transplant 

survival and performance could not be recorded the following year (2020). 

 
 

Statistical Analysis 
 

Statistical analysis for mid-season and end-of-season survival was conducted 

using logistic binomial regression, with mid-season and end-of-season survival as 

response variables and species and salt concentration as explanatory variables. Initial 

analysis for mid-season survival indicated that species (χ2= 592.92, df = 7, p < 0.001) and 

salt concentration (χ2 = 157.98, df = 2, p < 0.001) were statistically significant. Initial 

analysis for end-of-season survival indicated that species (χ2 = 781.70, df = 7, p < 0.001) 

and salt concentration (χ2 = 81.43, df = 2, p < 0.001) were statistically significant. 

Statistical analyses for transplant performance were conducted using ANOVA, with end- 

of-season performance variables (plant height, basal diameter, number of flowering 

heads, number of tillers or stems, and aboveground biomass) as response variables, and 

species and salt concentration as explanatory variables. Of the 2,016 transplants, 13 were 

misplanted, therefore statistical analysis was conducted on 2,003 transplants. Initial 

analysis indicated that species was significant for plant height (F = 15.52, df = 2, p < 

0.001), basal diameter (F = 55.88, df = 7, p < 0.001), and aboveground biomass (F = 

22.14, df = 7, p < 0.001); therefore, subsequent analysis was conducted separately for 

each species, except for number of flowering heads and number of tillers or stems. Salt 
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concentration was not statistically significant for those two performance variables: 

number of flowering heads (F = 1.23, df = 2, p = 0.282) and number of tillers or stems (F 

= 2.06, df = 2, p = 0.128). Plant height (p = 0.05) and aboveground biomass (p = 0.880) 

met the assumptions of normality but basal diameter (p = 0.008) did not. However, basal 

diameter could not be transformed to meet the assumptions of normality or equal 

variance; therefore, a non-parametric test, Kruskal-Wallis, was run. The post-hoc test, 

Student’s t-test, was performed to determine differences in explanatory variable effects. 

RStudio (RStudio Team 2020, PBC, Boston, Massachusetts, USA) and JMP (JMP Pro, 

Version 14, SAS Institute Inc., Cary, NC, USA) software were used for statistical 

analysis. 

 
 

Results 
 

Transplant Survival 
 

One thousand and fourteen (51%) transplants survived to mid-season (July 2019). 
 

By end-of-season sampling (October 2019), 288 more transplants died resulting in an 

overall transplant survival of 35% (701 transplants) among all salt concentrations. Mid- 

season survival was significantly (p < 0.05) affected by salt concentration for all species 

whereas end-of-season survival was significantly affected by salt concentration for all 

species except H. maximiliani (Table 1, Figure 1). Transplants of all the grasses (E. 

canadensis, E. trachycaulus, P. smithii, and S. airoides) survived in all salt 

concentrations for mid-season and end-of-season sampling (Figure 1). Mid-season 

survival for the forb transplants resulted in two species (A. speciosa and D. canadense) 

with surviving transplants in all salt concentrations and the other two species (G. aristata 



48 
 

and H. maximiliani) with surviving transplants in the medium and low salt 

concentrations. For end-of-season sampling, A. speciosa, G. aristata, and H. maximiliani 

had surviving transplants in the medium and low salt concentrations and D. canadense 

had surviving transplants in the low salt concentration only (Figure 1). 

 
 

Transplant Performance 
 

Transplant performance variables plant height, basal diameter, and aboveground 

biomass had significant responses to salt concentration (p < 0.05) for all species except 

D. canadense, which did not have surviving transplants for analysis. Only A. speciosa, P. 

smithii, and S. airoides had a significant response to salt concentration for plant height 

(Table 2). Mean plant height was lower (cm) in the medium salt concentration (μ = 12.31, 

SE = 3.20) than the low salt concentration (μ = 28.97, SE = 3.38) for A. speciosa. Plant 

height also increased as salt concentration decreased for P. smithii: high salt (μ = 19.48, 

SE = 1.78), medium salt (μ= 27.27, SE = 1.39), and low salt (μ = 30.15, SE = 1.45). S. 

airoides plant height (cm) was lowest in the high salt concentration (μ = 47.03, SE = 

2.48) and highest in the medium salt concentration (μ=59.60, SE = 2.66), with plant 

height in the low salt concentration (μ=55.79, SE = 3.23) in-between. All species except 

E. trachycaulus and H. maximiliani had a significant response to salt concentration for 

basal diameter (cm), with basal diameter decreasing as salt concentration increased 

(Table 2, Figure 2). Only one species, G. aristata, had a significant response to salt 

concentration for aboveground biomass (Table 2). Mean aboveground biomass (g) 

increased from the medium salt concentration (μ = 2.38, SE = 4.29) to the low salt 

concentration (μ = 12.37, SE = 1.85). 
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Discussion 
 

Four of our study species, E. canadensis, E. trachycaulus, P. smithii, and S. 

airoides, showed promise as candidates for the revegetation of salt-impacted soils based 

on their survival and performance in the field. Three species, A. speciosa, G. aristata, and 

H. maximiliani, also showed promise as candidates for revegetation, but only for areas 

with medium to low salt impaction. D. canadense did not have great survival or field 

performance and therefore cannot be recommended. Along with their ability to survive 

transplanting into salt impacted soils, E. canadensis, E. trachycaulus, and S. airoides 

provide wildlife forage and P. smithii is beneficial for erosion control (USDA, NRCS). 

For our forb species with the ability to survive transplanting into moderately salt- 

impacted soils, A. speciosa provides pollinator forage and habitat, H. maximiliani 

provides wildlife forage and cover, and G. aristata provides both (USDA, NRCS). 

Our objective was to determine which native plant species are better suited for 

revegetation. Our survival results suggest that all species, except D. canadense, exhibited 

some salt tolerance and could be suitable for revegetation. E. canadensis, E. 

trachycaulus, P. smithii, and S. airoides, survived in all salt concentrations, with E. 

canadensis, E. trachycaulus, and P. smithii survival significantly higher in the medium 

and low salt concentrations compared to the high salt concentration. The salt tolerance of 

these species makes them suitable candidates for all salt concentrations, especially for 

medium to low salt concentrations. E. canadensis exhibited high survival and 

germination in an experiment studying the suitability of native vegetation to roadway 

deicers (Harrington and Meikle 1992). E. trachycaulus and P. smithii exhibited salt 

tolerance and weed control when used seeded into invaded saline soils to control salt- 
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tolerant weeds H. jubatum and Bromus tectorum (Steppuhn et al. 2017). E. trachycaulus 

also responded positively to salt impaction in germination studies, with consistent 

germination in high, medium, and low concentrations of roadway deicer salt solutions 

(Dudley et al. 2014). S. airoides survival increased as the salt concentration increased, 

which was the only species to exhibit higher survival in higher salt concentrations. 

Therefore, the salt tolerance of S. airoides makes it a suitable species for areas with high 

salt impaction. Interestingly, one study found that S. airoides transplanted into non-salt- 

impacted soil had low survival 1-year post-planting (Abella et al. 2012). High survival in 

our study for S. airoides could be due to a reliance on salt impaction, similar to 

halophytes. 

A. speciosa, D. canadense, G. aristata, and H. maximiliani survival was more 

affected by salt concentration. Most survived only in the medium and low salt 

concentrations. No forb species survived in the high salt concentration at end-of-season 

sampling and of the A. speciosa and D. canadense transplants that survived in the high 

salt concentration at mid-season sampling, both only had a few individuals. The salt 

tolerance of A. speciosa, G. aristata, and H. maximiliani made them suitable candidates 

for areas with medium to low salt impaction. G. aristata exhibited similar salt tolerance 

to our field study under greenhouse conditions (Niu and Rodriguez 2006). Studies 

involving the salt tolerance of A. speciosa and H. maximiliani could not be found in the 

literature. 

Salt-tolerant non-halophytes are expected to maintain growth in salt-impacted soil 

and halophytes are expected to perform better in salt-impacted soil compared to normal 

(non-salt-impacted) soil (Barrett-Lennard 2002). Transplant performance (plant height, 
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basal diameter, and aboveground biomass) results indicate that most of our species had 

growth responses similar to salt-tolerant non-halophytes, except D. canadense, which had 

growth responses similar to salt-sensitive non-halophytes and S. airoides, which had 

growth responses similar to halophytes. For the remaining species, the response of plant 

height, basal diameter, and aboveground biomass to salt impaction could classify those 

species as salt-tolerant non-halophytes. This result is similar to previous research that 

examined the relative growth rate of Distichlis spicata, a salt-tolerant species, compared 

to the growth rate of P. smithii (Aschenbach 2006). These results suggested that the 

relative growth rate of P. smithii was greater than D. spicata in all experimental salt 

concentrations, making it a comparable restoration candidate to D. spicata for salt- 

impacted areas (Aschenbach 2006). Our study yielded similar results, with P. smithii 

survival and performance making it a suitable candidate for salt-impacted soil 

revegetation. 

S. airoides survival increased as the salt concentration increased and performance 

(plant height, basal diameter, and aboveground biomass) was among the greatest among 

salt concentrations compared to the other species, a response expected of halophytes. 

This result agrees with previous research that examined the growth responses of a S. 

airoides cultivar to salt impaction in drylands (Pessarakli et al. 2017). Results indicated 

high salt tolerance and suitability as a revegetation candidate in a dryland system 

(Pessarakli et al. 2017), similar to the results of our study in a temperate to semi-arid 

system. Further, S. airoides promise as a suitable restoration candidate increases with 

demonstrated invasion resistance. Populations of S. airoides were assessed for lineages 

with and without historic invasions and found that the lineage with historic invasions 
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demonstrated invasion resistance, with greater germination and plant growth (Sebade et 

al. 2012). For the NGP, the salt tolerance and potential invasion resistance of S. airoides 

make its restoration suitability even more promising. 

Compared to the forb species, our grass species had greater survival and growth 

responses to salt concentration, which indicates that these grass species could be more 

suitable for the revegetation of salt-impacted soils, even in high salt concentrations. In 

another study looking at the effects of roadway deicers on forb and grass germination, 

results indicated that their selected forb species (Linum lewisii) and (Penstemon strictus) 

germination was least affected by the high salt concentrations (Dudley et al. 2014). 

However, these forb species were selected due to their mixed elevation tolerance giving 

them a broad ecological niche and perhaps an increased salt tolerance. Interestingly, E. 

trachycaulus was also selected for this study due to its mixed elevation tolerance and was 

one of the species least affected by high salt concentrations as well. Increased S. airoides 

survival in higher salt concentrations makes its revegetation ability especially promising. 

Perennial plant cover is recommended as a management strategy to lower the water tables 

of saline soils within the NGP (Black et al. 1981). All species selected for this study were 

perennial. In particular, perennial grasses have more expansive root systems than 

perennial forbs, possibly lowering the water table or allowing grassroots to reach soils 

lower in the soil profile with lower salt impaction. 

Some limitations for this study exist, including the above-average precipitation, 

uneven salinity throughout the plot, and the use of ground cover. Our field season 

experienced above-average precipitation. In the footslope landscape position (high salt 

concentration), water would pool, potentially affecting the salt concentration and 
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subsequently transplant survival and performance. Future studies could extend the study 

over multiple seasons to examine transplant survival and performance across time and 

season. Salt-impacted soil is not consistent across the landscape and salt concentrations 

vary throughout the plot. Future studies could use field-collected soil to grow plants in 

controlled salt concentrations although natural environmental conditions are more 

ecologically informative. Ground cover was used to minimize B. scorparia and H. 

jubatum growth and their competition with the study species; however, it could have 

affected transplant survival and performance. Future studies could use other weed 

prevention or no weed prevention to better simulate natural environmental conditions. 

Overall, we can conclude that almost all species selected for this study are 

suitable for the revegetation of salt-impacted soil via transplants, particularly E. 

canadensis, E. trachycaulus, P. smithii, and S. airoides. Responses to salt impaction were 

species-specific, with some species having greater salt tolerances than other species. In 

general, the grass species (E. canadensis, E. trachycaulus, P. smithii, and S. airoides) had 

greater survival and performance across salt concentrations than the forb species (A. 

speciosa, G. aristata, and H. maximiliani). D. canadense showed little suitability for the 

revegetation of salt-impacted soils because of low survival and growth responses similar 

to salt-sensitive non-halophytes. All remaining species, besides halophytic S. airoides, 

had similar growth responses to salt-tolerant non-halophytes. Therefore, A. speciosa, G. 

aristata, and H. maximiliani can be recommended for minimally salt-impacted soils, E. 

canadensis, E. trachycaulus, and P. smithii can be recommended for moderately salt- 

impacted soils, and S. airoides can be recommended for highly salt-impacted soils. We 
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suggest using these species to revegetate salt impacted areas and continuing research to 

find other native species to revegetate salt-impacted soils in the NGP. 
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Table 1. Chi-Square values and p-values of the salt concentrations at mid-season and end- 

of-season survival. Bold p-values are significant to p < 0.05. 

 

  Survival  
 Mid-Season End-of-Season 
 χ2

(df) p χ2
(df) p 

A. speciosa 67.82(2) <0.001 28.12(2) <0.001 
D. canadense 72.81(2) <0.001 15.27(2) <0.001 
E. canadensis 38.84(2) <0.001 53.66(2) <0.001 
E. trachycaulus 54.50(2) <0.001 85.97(2) <0.001 
G. aristata 70.42(2) <0.001 27.20(2) <0.001 
H. maximiliani 18.23(2) <0.001 4.26(2) 0.119 
P. smithii 12.07(2) 0.002 20.33(2) <0.001 

  S. airoides  14.93(2)  <0.001  31.39(2)  <0.001   
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Table 2. F-values, Chi-Square values, and p-values of salt concentration on end-of-season 

performance variables plant height, basal diameter, and aboveground biomass. Bold p- 

values are significant to p < 0.05. 

 

End-of-Season Performance 
  

Plant Height 
 

Basal Diameter 
Aboveground 

biomass 
 F(df) p χ2 (df) p F(df) p 

A. speciosa 12.78(1) 0.001 10.10(1) <0.001 2.46(1) 0.129 
D. canadense 0 0 0 0 0 0 
E. canadensis 0.57(2) 0.570 6.51(2) 0.039 1.41(2) 0.249 
E. trachycaulus 0.77(2) 0.463 5.81(2) 0.055 2.65(2) 0.074 
G. aristata 1.10(1) 0.302 6.18(1) 0.013 4.57(1) 0.041 
H. maximiliani 0.28(1) 0.623 1.23(1) 0.268 0.11(1) 0.759 
P. smithii 11.08(2) <0.001 23.94(2) <0.001 2.23(2) 0.111 
S. airoides 6.29(2) 0.002 7.18(2) 0.028 0.31(2) 0.734 
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Figure 1. Mid-season and end-of-season survival based on salt concentration. Bars 

indicate standard error. Salt concentration is abbreviated H = high, M = medium, and L = 

low. Significance is based on Student’s t-test by salt concentration and within species 

(mid-season significance is indicated by lowercase letters and end-of-season significance 

is indicated by uppercase letters). 
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Figure 2. Mean basal diameter of the species based on salt concentration. Bars indicate 

standard error. Salt concentration is abbreviated H = high, M = medium, and L = low. 

Significance is based on Student’s t-test by salt concentration and within species. 
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CONCLUSION 

The overall purpose of our research was to identify suitable native plant species to 

revegetate salt-impacted soils of the NGP. Our specific research objectives included 

identifying native plant species that could tolerate salt impaction during imbibition and 

germination, assessing the effectiveness of mechanical scarification during imbibition 

and germination in saline conditions, and determining native plant species that are 

suitable for the revegetation of salt-impacted soil via transplants. We identified eight 

native plant species that could tolerate salt impaction during imbibition and germination 

and of those eight, seven species that were suitable for the revegetation of salt-impacted 

soil via transplants. Additionally, we determined that mechanical scarification was an 

effective strategy. 

Seed responses to soil solutions and mechanical scarification were species- 

specific as were plant responses to salt concentrations. Of the eight species selected for 

salt tolerance from the imbibition and germination studies, seven were moderately salt 

tolerant and one was highly salt tolerant. Of those eight species, six species exhibited 

moderate salt tolerance and one species exhibited high salt tolerance as transplants in 

salt-impacted soil. A. speciosa, E. canadensis, E. trachycaulus, G. aristata, H. 

maximiliani, and P. smithii would be best suited for moderately salt-impacted soils and S. 

airoides would be best suited for revegetation in highly salt-impacted soils. We cannot 

recommend D. canadense due to poor survival and transplant performance in salt- 

impacted soils. 

From our results, we suggest revegetating salt-impacted soils of the NGP using 

our recommended species and continuing research to find other suitable native plant 
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species. Additionally, we suggest using mechanical scarification when seeding salt- 

impacted soils. With a better understanding of which native species are suitable in salt- 

impacted soil, land managers in the NGP can make more informed decisions. 
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