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MODELING OF SOIL WATER FLOW AND ROOT UPTAKE 

Abstract 

Velupillai. Rasiah 

Under the supervision of Dr. C. G. Carlson. 

The soil water pressure head, h, versus soil water 

content, 9, and the hydraulic conductivity, K, versus Q, 

relationships appear as functional coefficients in the 

non-linear partial differential water flow model. 

iv 

Before the flow equation can be used to simulate the flow 

of water through soils, the h versus Q and K versus 9 

relationships must be established. This requires the 

estimation of the parameters that describe the h versus Q 

and K versus 9 functional relationships. 

In-situ water retention and hydraulic conductivity 

measurements were determined from the knowledge of 

initial and boundary conditions and water content 

profiles during drainage. This information obtained in 

the greenhouse was used to estimate the parameters of the 

non-linear h(9) and K(Q) empirical functions. The 

estimates were obtained through the first and second 

order least square best fit procedures for the 

logarithmically linearized h(Q) and K(0) functions. The 

estimates, when combined with the flow model, SWATRE, 

estimated soil moisture content profile, e, which did not 

agree well with the observed data. 
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In the second method, the flow model was linearized 

using the Taylor series expansion. The same parameters 

mentioned above were estimated using two iterative 

procedures, Marquardt (1964) and Taylor. The 

simulations, 8, for the fitted estimates from both 

procedures, agreed well with the observed data. The 

convergence of the estimates in Marguardt's maximum 

neighborhood method of iterative fitting was more stable 

than that in the Taylor method. Marquardt's method 

converged more slowly. 

Similar procedures were followed for fitting the 

root uptake function parameters. The parameters in the 

root uptake function, estimated and fitted individually 

for each compartment, produced better solutions than when 

single function parameters were defined for the whole 

profile. To obtain a satisfactory solution from the flow 

model, including root uptake, the parameters in the h(8) 

and K(8) functions were estimated for the range of 8 in 

which the root water uptake took place. 
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A= area (cm) 
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b = parameter in the soil water pressure head function 

c = parameter in the soil water pressure head function 
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f(a,b) = function of the variables a and b 

H = hydraulic head (cm of water) 
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ix 
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er= residual wetness 

Gest= estimated volumetric water content 

Gobs= observed volumetric water content 
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INTRODUCTION 

The general laws of fluid motion govern the flow of 

water through porous media like soils. Mathematically 

these laws are stated as: (1) the equation of continuity 

(2) the equation of state, and (3) the dynamical equation 

of motion. Combining these 3 equations for liquid phase 

flow in the vertical direction results in a non-linear 

partial differential model in which time, t, and position 

in space, z, are the independent variables. The 

dependent variable is volumetric water content, 9, or 

soil water pressure head, h. The functional coefficients 

in the flow model are h versus Q and hydraulic 

conductivity, K, versus 9 relationships. 

A solution exists for the flow model at t> 0, 

provided the (a) h versus 8 and (b) K versus 8 

relationships are established for the particular 

situation. The emprical equations that describe the h 

versus 9 and K versus 8 relationships are non-linear. 

Because of the strong non-linearity in it's terms, the 

flow model is difficult, if not impossible, to solve 

analytically. Thus the first objective in this study was 

to solve the flow model numerically for specific initial 

and boundary conditions. 

Because the h versus 9 and K versus 0 relationships 

appear as functional coefficients in the flow model, the 
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accuracy of the model solution or the agreement of the 

model solution with the experimental data is largely 

determined by the parameter estimates that describe the 

functional relationships. Thus the second objective in 

this study was to estimate the parameters in the h(9) and 

K(0) functions so that the model simulation agrees well 

with observed data. 

Theoretically, a well defined root water uptake 

function, when included in the flow model, should 

accurately describe flow along with root uptake. 

Therefore, the third objective in this study was to 

modify and solve the flow model along with root uptake. 

To obtain simulations that would agree with the observed 

data the parameters in the K(9), h(9) and the root uptake 

function were estimated and fitted into the flow model. 
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THEORY 

Flow through porous media like soil is limited by 

numerous constrictions or "necks", and occasional "dead 

end" spaces. Therefore, the actual geometry and flow 

pattern is too complicated to be described in detail. 

For this reason the detail flow pattern is often ignored 

and the conducting body is treated as though it were a 

uniform medium with the flow spread out over the entire 

cross section. Henri Darcy (1831) enunciated a law to 

satisfy the above condition for steady state flow. This 

law states that the flow rate, Q, is directly 

proportional to the difference in hydraulic head, H, area 

of cross section, A, and inversely proportional to the 

length, L, of the soil column. This is mathematically 

expressed as, 

or 

A~H 
Q c,C ---­

L 

K A~H 
Q = ------

L 
( 1) 



where the proportionality constant K is called the 

hydraulic coductivity of the material. Rearranging 

equation (1) would produces either, 

Q �H 
= K -.--

A L 

�H 
or q = K 

L 

where q is the Darcian flux and � H/L is the hydraulic 

gradient. 

4 

(2) 

Mathematically Darcy's law is similar to linear 

transport equations in classical physics, including Ohm's 

law. This law states that the current I or the flow rate 

of electricity is proportional to the electric potential 

gradient, E, 

where, 

E 
I = -

R 

L 
R = s -

A 

I =  Ke 

The subcript, 

E A  

L 

,and s = 1/Ke 

R is the electric resistance, 

s is the specific resistance, 

( 3) 
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Ke is the electrical conductivity of 

the material, 

A is the area of cross section,and 

L is the length of the material. 

Equation 3 is similar to equation (2). 

If the flow is unsteady or the soil is nonuniform, 

both the hydraulic gradient and the conductivity of the 

material are variables. Therefore, the localized 

gradient, flux, and conducitvity values rather than the 

overall values of the system must be considered. This 

requires a more generalized expression of Darcy's law. 

Slitcher (1899) generalized Darcy's law to satisfy the 

above conditions using a three dimensional macroscopic 

differential equation of type, 

q = -K y'H (4) 

where y' is the operator 'del' of the gradient of the 

hydraulic head, H, in three-dimensional space. For a one 

dimensional system, equation (4) takes the form, 

q = - K (5) 

Bernoulli's theorem for pure water states that the 

total hydraulic potential, H, is the sum of the gravity, 

z, pressure, h, and velocity, v,heads. 

H = z + h + V 



6 

If salts are present in the water, then the 

pressure due to osmotic head is also added. His now 

called the total hydraulic head. However, the order of 

magnitude of the velocity and osmotic heads are small 

compared to the other components and are usually 

neglected. Thus the total head is assumed to be, 

H = z + h 

The law of conservation of mass applied to a 

noncompressible fluid in an unsteady condition states 

(6) 

that the difference between inflow and outflow in a unit 

soil volume is equal to the change in volumetric water 

content, 9. For a dynamic system with flow in one 

direction, this is mathematically expressed as, 

Inflow - Outflow= (g .OXAY] - { (g + (ag / az) AZ] -'lX6Y} 
z z z 

Inflow - Outflow = (7) 

where ox, AY and 6 z are directional components ( cm) and g 

is the flux term (cm/day) in the z direction. 

For a general case which includes compressible 

fluids, equation (7) needs to be multiplied by the fluid 

density, (' (g/cm3 ), to yield 

Inflow - Outflow - - I' {~ }AxAy t>. z (8) 
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When the flow is considered in three dimensional space 

equation (8) becomes, 

{

ag 
Inflow - Outflow= - p -­

ax 

For a time dependent situation equation (8) becomes, 

Inflow - Outflow = - r { ~~} .O.x L> y 6 z 

where 9 is the volumetric water content. Combining 

equations (9) and (10) yields, 

()9 {ag ag ~~} = f -- + -- + 
at ax c)y c)z 

For the flow in the vertical direction, z, and the 

density of water as 1 g/cm 3 equation ( 11) becomes, ' 

ae ag 

(9) 

(10 ) 

(11 ) 

= (12 ) 
at az 

Substituting for flux g in equation (12) yields, 

= - ------------ ( 13) 
at az 

Substituting the components of Hin equation (13 ) 

produces, 



ae ac -K 3(h + z)/ az) 
= 

at az 

Equation (14) was first presented by Richards (1931). 

Manipulation of equation (14) would produce the form 

oe 3K( oh/3z + 1)) 

= ----------------at az 

8 

(14) 

(15) 

The variables hand 0 in equation (15) could be reduced 

to one by multiplying and dividing the left hand side of 

the equation by 3h, 

3K ( 3h/3z + 1)) 
= ------------------- (16) 

az 

Redefining 30/3h as C(h), equation (16) becomes, 

= (17) 
C(h) az 

where C(h) is the water capacity of the soil ( slope of 

the water retention curve). Equation (17) is called the 

pressure head form of the flow equation in the vertical 

direction. 

Equation (17) needs to be modified with a root 

extraction sink term, S, to accurately represent the flow 

in soils with growing plants. Thus equation (17) 

becomes, 



at 

1 { a c K ca- h/ a z + · 1 > >} = --- ----------------
c (h) oz 

9 

- s (18) 

Solutions to the one dimensional flow equation of 

the type 17 requires a knowledge of the relationship 

between, (a) soil water pressure head, h, and volumetric 

water content, e, and (b) hydraulic conductivity, K, and  

0 or h. As yet, no satisfactory theory exists for the 

prediction of the h versus 8 relationship from basic soil 

properties. However, several empirical equations have 

been proposed which apparently describe the h versus e 

relationship. Therefore, for a specific soil, the h 

versus e relationship must be determined from 

experimental data. The prediction of K from basic or 

easily obtainable soil properties is not possible. 

Therefore, the K versus e relationship must also be 

described from experimental data. However, the 

measurements of K values at low soil moisture contents is 

difficult, if not impossible. As a result several 

investigators have recently explored the possibilty of 

predicting K from pore size distribution data for a 

particular soil. 

Solutions to equation (18) requires that the root 

water uptake function, S, be defined along with h versus 

e and K versus 9 relationships. The soil-root- water-
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atmosphere continuum is too complex to describe the root 

water uptake function by a universal equation. However, 

several empirical equations have been developed during 

the recent past, that apparently describe the root water 

uptake. Therefore, to describe the root water uptake for 

a specific soil and a specific crop, the relationship has 

to be obtained from experimental data. 
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LITERATURE REVIEW 

The subject of water flow in soils has received 

considerable and detailed study over the past three or 

four decades. Solutions to the theoretical flow 

equation (17) for practical field situations have been a 

major concern of the physical scientists working in 

soil-water phenomena. There are three known methods to 

solve the non-linear differential equations : (a) 

analytical, (b) electrical analog, and (c) numerical 

methods. 

ANALYTICAL METHOD : 

In order to obtain analytical solutions to the 

non-linear partial differential equation (17) certain 

assumptions are necessary. First by assuming K (8) to be 

a constant and neglecting oK/az in equation (17) , the 

resulting flow is horizontal. Second, by allowing K to 

be a variable and neglecting oK/oz the flow will still 

be in the horizontal direction. Vertical flows do not 

follow the above assumptions. 

A powerful method in mathematics used to solve 

equations of type 17 is the use of perturbation. 

However, this method is applicable only when the degree 

of non-linearity associated with the non-linear term is 

small. In such cases, the original non-linear equation 



is first separated into one part with a linear equation 

that has an exact solution. The second part has the 

non-linear term plus all additional terms that are 

difficult to solve. The part with the linear equation 

can be solved easily, thus providing a zero-order or 

generating solution, which is then employed in some way 

with the non-linear term to produce the first order 

correction term. Next, the first order correction term 

is combined with the generating solution to yield a 

first order corrected solution which would be an 

approximate solution to the original non-linear 

equation. If the degree of non-linearity is not very 

small, the procedure is repeated to obtain a second 

order correction term. This term is then combined with 

the first order corrected solution to provide a second 

order corrected solution. However, the repeated 

application of this procedure produces great 

mathematical difficulties without assuring an increase 

in accuracy. Moreover, the evaluation of the error is 

very difficult. Therefore, this procedure is seldom 

used for practical situations. 

ELECTRICAL METHOD: 

The similarity between Darcy's law and Ohm's law 

allows the use of electrical analogs or models to obtain 
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solutions to the flow equation. Using electrical 

analogs Childs (1950) worked out a series of solutions 

for the flow equation. However, this method is 

applicable only to uniform soil profiles. Luthin 

(1953), and Bouwer and Little (1959) used modified 

electrical analogs to solve the flow equation in 

non-uniform profiles. However, the analog was limited 

to the specific geometry of the profile for which it was 

constructed. Nevertheless, electrical analogs are 

fairly simple to build and could be used to solve 

problems that cannot be solved analytically. 

NUMERICAL METHOD 

Because of the aforementioned difficulties in using 

analytical and/or electrical analog methods to solve the 

flow equation, many researchers have turned to numerical 

methods. With the availability of computers, numerical 

methods are now widely used to obtain solutions to flow 

equations. In the numerical procedure, the differential 

equation is transformed to a "finite difference" form, 

which later is solved as a system of equations. The 

finite difference method consists of replacing each of 

the derivatives in the differential equation by an 

appropriate difference quotient approximation. These 

quotients are obtained by using Taylor expansion. The 
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function is expanded about a point "x", first in the 

forward direction and then in the backward direction as 

follows: 

AX df 
f(x + ~x) = f(x) + + --------

2 ! dx 2 
(19) 

dx 

AX df 
f(x -Ax)= f(x) - + --------

dx 2 ! dx 2 
(20) 

Subtracting equation (20) from 19, truncating both after 

the third term, and solving for df/dx, will yield: 

df f (X + ~ X) - f (X - ~ X) 
= --------------------- (21) 

dx 2 AX 

The term on the right hand side of the equation is 

called the central difference approximation. By using a 

very similar analysis, truncating all the terms to the 
2 2 

right of the third term, d f/dx can be solved by adding 

equations (19) and (20) : 

f(x+~x) + f(x-~x) - 2f(x) 
(22) 

Truncation errors are introduced in equations (21) and 

(22) when the terms in the series beyond the second 

order (the third term) are dropped. 

Richtmyer et al. (1967) describe 14 implicit finite 



difference methods for the heat flow problem. They 

concluded the general equation for finite differences 

as: 

n+1 n 
fj - f. 

15 

df 

dx 
= _______ _] (23) 

X 

2 n n n n+l n+1 n+1 
d f oc (fj+l - 2fj +fj-1) (1-oc.) (fj+r2fj +fj- 1 ) 
--z = -------· z------- + -----------�-------
dx ( x) ( x) 

(24) 

Crank and Nickelson (1947) obtained numerical 

solutions for equations of type (24) by setting e< =l/2 
n 

The equation is explicit when aC =O. and f may be 
j n 

found directly in terms of the known values of fj 

However, wheno<'� O, a system of linear equations is 
n+l 

developed to obtain the values of fj , and the system is 

called implicit. 

Klute (1952) , using the Boltzman's transformation 

technique, numerically solved the flow equation for 

horizontal flow: 

ae acae) 
= -----

at ax(ox) 
( 25) 

In the Boltzman's transformation procedure the partial 

differential equation is first transformed into a 

differential equation, which is later converted to a 

solvable form. However, Klute•s method requires a 
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uniform medium with uniform initial moisture content in 

the profile. Staple and Lehane (1954), Day and Luthin 

(1956) and Gardner (1959) also utilized Boltzman's 

transformation to obtain solutions for the horizontal 

flow equation. Philip (1957), using Boltzman's method, 

numerically solved the flow equation in the vertical 

direction in uniform profiles. 

Hanks and Bowers (1962) were the first to 

numerically estimate the solutions for vertical flow in 

layered soils with nonuniform initial moisture contents. 

They used the Crank-Nickelson finite difference 

approach. The flow equation was linearized with 

predictive values for K(h) and C(h). The critical part 

of the solution depends on the choice of values for K,C 

and .6t. They suggested a method for determining t, 

with, 

where, 

j+l/2 
.6t = 

Q 

j-1/2 
I 

is the next time period 

a constant for water entering 

the soil 

infiltration rate from the 

previous time. 

( 26) 

K(e) was estimated using predictive terms fore, with, 



j+l 
~ = 

j 
< e. 1 

j-1 
~ )b 

17 

(27) 

i+1 i+.33 
where b =0.7 or ~t /t whichever is greater. 

They report excellent agreement when compared with 

solutions obtained by Phillip (1957) or Scot (1962). 

There are several other reports using the finite 

difference method of solutions for vertical flow. 

Haverkamp (1977) compared six of them in terms of 

execution time, accuracy, and programming consideration. 

He concluded that the (a) h-based explicit models 

require more computer time than the implicit models, (b) 

implicit schemes with implicit or explicit evaluation of 

K(9), and C(h) functions appear to have the widest range 

of applicability both for unsaturated and saturated 

conditions. 

The above mentioned models do not have a root sink 

term to accurately describe the flow interacting with 

root water uptake. Nimmah and Hanks (1973) added a sink 

term A(z,t) or root water uptake function to the flow 

equation (17) and solved the model numerically. Feddes 

et al. (1978) and Hoogland et al. (1981) proposed 

another model for the root water uptake function to 

numerically solve the flow equation with a root sink. 

The problem is defining a universally acceptable root 

water uptake function. Thus, as indicated earlier, the 



solution to the flow equation depends not only in 

defining the h versus 8 and K versus 9 functions but 

also the root water uptake function. 

SOIL WATER PRESSURE HEAD, h, VERSUS 
CONTENT, e, RELATIONSHIP : 

SOIL WATER 

18 

The functional relationship between soil water 

pressure head, h, and volumetric soil water content, 9, 

is usually described by a plot of h versus e. The curve 

obtained is called the soil moisture retention curve 

(Childs, 1950) or soil moisture characteristic curve. 

However, the curve obtained for a specific soil is not 

unique. This is because the curve obtained through the 

wetting cycle will differ from that obtained in the 

drying cycle. The curve obtained through the wetting 

cycle is called the sorption curve and that from the 

drying cycle is the desorption curve. The dependence of 

the h versus Q curve upon the direction and history of 

the process is called hysteresis. The two complete 

characteristic curves, from saturation to dryness and 

vice versa, are called the main branches of the 

hysteristic curve. The desorption curve for partially 

wetted soil or the sorption curve of a partially dry 

soil follows intermediate curves called scanning 

curves. Because of the complexity involved, the 

------------·--------------------



hysteresis phenomena is often neglected, and the soil 

moisture characteristic curve is often represented by 

the desorption curve. 

The absorbtion and pore-geometry effects are often 

too complex to describe the h versus Q relations from 

basic soil properties. Therefore, several empirical 

relationships have been proposed. Visser's (1966) 

relationship for h versus Q is, 
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b c 
h(Q) = a(f - Q)/ Q (28) 

where, f is the porosity of the soil, and a, band care 

empirical constants to be estimated from the best fit of 

experimental data. Brooks and Corey (1964) proposed 

another equation, 

where, 

[
0 - 9r] -------
Qs - 8r-

le is the air entry potential 

A is the pore-size distribution index 

9r- is the residual wetness considered 

to be confined to the small pores 

8
5 

is saturation wetness. 

Gardner et al. (1970) suggested a simplified 

relationship, 

(29) 



-b 
h = a 9 
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( 30) 

Here a and bare emprical constants. Campbell's (1974) 

equation for this relationship is 

-b 
h = h ( 9 / Q.8 ) ( 31 ) 

Here bis an emprical constant. This relationship is 

valid provided the log h versus log (9/9s ) plot 

produces a linear graph. Haverkamp et al. (1977) 

developed another equation for h versus 9 relationship, 

Q = 
(85 + ~) 
-----,rr--

a +fhl 
+ 8r (32) 

Here a and bare emprical constants. Van Genuchten's 

(1979) equation for h(9) function is, 

(8 -i) 
------ = (33) 
(~ - 'l,) 

The parameters m,n, and~ depends on the shape of the h 

versus 9 curve. It is evident from the foregoing 

equations that the empirical relationships are 

non-linear. 

HYDRAULIC CONDUCTIVITY, K, VERSUS SOIL 
WATER CONTENT, 8, RELATIONSHIP: 

In-situ K versus e determinations are time 
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consuming and expensive. Therefore, several 

investigators have developed empirical equations from 

water retention data (Brooks and Corey, 1964; Green and 

Corey, 1971; Marshall, 1958;Millington and Quirk, 1961; 

Campbell, 1974; and Van Genuchten, 1979). However, if 

the K(9) function is to be defined from the h(9) 

function, in-situ data is preferred to define the h(9) 

function rather than data from core samples. The 

discussion on K(9) emprical relationship is restricted 

to the latter two models, Campbell's and Van Genuchten's 

equations. Campbell's equation is 

2b+-3 

K(9) = I<,; t+} 
s 

(34) 

Van Genuchten's equation is 

K(9) = 

1/2 

[
8 - 9J { [ 9 - Q 1 ----:i+ 1 - ----..:it 
% - ·Ir 8s - eJ + 

The parameters band mare obtained from the respective 

h(9) functions. Van Genuchten's equation is used to 

calculate the relative K(9) values, whereas Campbell's 

equation is for actual K(0) values. It should also be 

noticed that Van Genuchten's equation is considerably 

more complex. 
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PARAMETER ESTIMATION : 

Solutions to the non-linear partial differential 

equation (14) require the definition of the h(9) and 

K(9) relationships. If Campbell's or Van Genuchten's 

equations are assumed to describe relationships, the 

parameters which describe the relationships must be 

found. Results found when solving the model are largely 

determined by the parameters that describe the 

functional relationships of h(9) and K(9). 

The parameters are usually estimated by the least 

squares sum, ss, procedure, using experimental data. 

The SS procedure requires that the function be linear. 

The most obvious method of linearization is by 

logarithmic transformation. However, the estimates 

obtained for the transformed equations need not strictly 

represent the least squares solution for the original 

equation. On the other hand, the function may be 

linearized by expanding it as a Taylor series. The 

parameters are then iteratively estimated until a 

desired minimum SS is achieved. The minimum SS could 

also be traced by following the path of steepest-descent 

or Marquardt's (1963) compromise method. 

The convergence with the Taylor expansion method is 

fast, but divergence is common. The convergence with 

the steepest-descent method is consistent but is 



agonizingly slow. Marguardt's algorithm makes use of 

the good qualities of both methods and is a hybrid. 
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Since Marquardt's method combines Taylor and the 

steepest-descent methods a brief description of it is 

included. Let the parameters Bl,B2 .... Bk, be fitted to 

a model,Y. 

Y = f(Bl,B2 .... Bk) (36) 

where B's are population values of k parameters. The 

problem is to compute those estimates of the parameters 

which will give the minimum sum, 55. Using the 

principle of least squares sum, we have: 

55 = l (Yo -Ye) 2 

where Yo and Ye are observed and predicted solutions for 

the population parameter values and estimates 

respectively. Definig Ye as a function of the 

estimates and expanding f(Bl,B2 .•. ) as a Taylor series, 

we have: 

L 
af. 

f(b +et)= f(b).+ --1 

I a\ 
where the converged value of 's 

(et) (37) 

being the least squares 

estimate for B's. The vector, e, is a small correction 

term to the estimate b, and t refers to Taylor series 

estimation. The et now appears linearly and can be 

found by setting the ass/aet = o for all et. Thus et is 

found by solving, 

A et= G 
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where A and Gare kxk and kxl matrices. (38) 

The A and G matrices are computed as follows: 

[kxk] T 
A = p p (39) 

where, p j = 1,2, .•. k ( 40) 

'I' 
and P is the transpose of P matrix. Where T denotes 

the matrix transposition. 

[kxl] 
G = { l [Yo - Ye] 3f/aq} 

J 
( 41) 

In the steepest descent method the trial vector e 

is designated as eg and moves in the negative gradient 

of ss, 

eg = - { a ss/3bl, ass/ab2, •... } (42) 

or 

eg = G 

In Marguardt's method an optimum interpolation is 

carried out between Taylor series and Steepest-descent 

methods, the interpolation being based upon the maximum 

neighborhood in which the truncated Taylor series gives 

an adequate representation of the non-linear model. 

ROOT WATER UPTAKE 

During the last two to three decades a fair amount 

of information has appeared in the literature that 



describes root water uptake by crops grown under 

different environmental conditions. Gardner (1966) 

defined the root water uptake or the sink, S, as a 

function of soil water pressure head, h, root water 

pressure head, hr, hydraulic conductivity, K, and 

rooting depth, L. However, the proportionality 

constant, B(z), that describe the functional 

relationship in Gardner's equation, equation (43) is a 

function of either root surface area, a, or root mass, 

m, 
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S(h) = K(h - hr 

where, B(z) = c(m or a) 

L) B ( z) ( 43 ) 

Nimmah and Hanks (1973) improved equation (43) by 

adding a term for the influence of soil salts in the 

soil water. Although the potential evapotranspiration, 

ETP, is a major factor in dertermining the sink, it was 

not included in the above sink functions. Feddes et al. 

(1978), in trying to include ETP as a variable in 

determining the sink, proposed another model, 

oc: (h) ETP 
S(h ) = (44) 

L 

whereoe(h) is a water shortage factor in the soil. 

The information available on root water uptake 

patterns suggest that the water uptake rate per unit 
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root length is generally small at the top of the profile 

and increases with depth (Arya et al. 1973, and 

Allmaras et al. 1975). However, the total uptake from 

deeper layers appears to depend on the environmental 

demand, the depth of rooting, root density, and soil 

water pressure head (Willatt and Taylor 1978). There is 

also evidence to suggest that there is upward flow from 

layers below the root zone (Feddes et al. 1978, and Van 

Bavel 1976 ). In addition, root water uptake rates vary 

with time - of day (Parsons and Kramer 1974) and 

environmental demand of the plant(Brouwer 1953). It is 

also reported that as the soil dries through the growing 

season, the zone of maximum uptake moves from shallower 

to deeper depths (Reicosky et al 1973, Willatt 1975). 

From the foregoing it is evident that the root water 

uptake process is complex. However, oversimplification 

of the water uptake process would lead to poor 

simulation capability. Therefore a compromise has to be 

reached. 

Hoogland et al. (1981) modified Feddes et al. 

(1978) model to satisfy some of the above conditions. 

Their model is 

s (h) = oe (h) Smax 

where, Smax = (p - qL) 

(45) 

( 46) 

The te.rm (p-qL) accounts for the decrease in uptake with 
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depth at maximum pressure head. They defined this as 

the Smax. function. In this function L could be the 

entire rooting profile and not necessarily the rooting 

depth. Although this model is very crude to describe 

all the variables of root water uptake, it has the 

advantage that it could be used with the least amount of 

information on root data. 



MATERIALS AND METHODS 

EXPERIMENTAL ARRANGEMENT 
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The experiments were conducted in the Plant Science 

Department greenhouse at South Dakota State Universaity, 

Brookings, SD. Five steel cylindrical tanks, 1. 5 m 

height and 0. 91 m internal diameter were placed 0. 45 m 

apart with their closed bottoms resting on the floor. 

These tanks, when filled with the soil, served as 

non-weighing type lysimeters. A drainage outlet was 

made on the side of the tank, about 0. 3E-1 m above the 

closed bottom. The internal diameter of the outlet was 

0. 45E-1 m .  A cylindrical pipe 0. 5E-1 m length and 

diameter equal to that of the drainage outlet was welded 

onto the outlet such that the pipe is outside the tank. 

A piece of glass wool was inserted into the pipe before 

the tank was filled with soil to reduce clogging by fine 

soil material. The pipe was closed by a rubber stopper 

with a glass tube 0. 3E-2 m diameter through it, to carry 

the drainage water. A vertical, transparent PVC tube 

was attatched to the glass tube to indicate the water 

table level in the tank. 

SOIL COLUMN PACKING 

A neutron access tube 1. 6 m long, with the sealed 

end resting on the bottom of the tank was positioned at 

-----------------



the center of the tank before the tank was filled with 

soil. The open end of the tube was kept closed during 

column packing so that neither soil nor water would 

enter. Volumetric water content, 8, was monitored in 

this tube by the neutron scattering method. 

The tanks were filled with top soil from the top 

0.10 m of a silt loam soil. The air dried soil was 

passed through a 0.lE-1 m screen. Packing and settling 

was accomplished as follows. A galvanized steel 

cylinder 0.60 min height and having an external 

diameter equal to the internal diameter of the tank was 

placed tightly inside the open end of the tank. This 

created an additional 0.45 m height above the top of the 

tank. The tanks were filled with the soil to a depth of 

1.85 to 1.90 m. The drainage outlets were closed. The 

columns were then saturated with water and allowed to 

settle under gravity. When no further settling was 

observed the drainage outlet was opened. The columns 

were allowed to drain and dry for several days. The 

galvanized ring was removed and the process of wetting 

and drying repeated several time. After three cycles 

of wetting and drying, no additional settling was 

observed. The final column height was kept at 1.45 m by 

removing any excess soil. 

For rooting depth observation in the columns a 
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mini-rhizotron ( Bohln et al. 1978) was constructed. 

This consisted of a bottom sealed pyrex glass tube 

internal diameter 0. 4E-1 m, and 1. 0 m length. The glass 

tube was positioned at 70 degrees to the surface of the 

soil with 0. 90 m of the tube in the soil column. The 

portion of the tube above the soil surface was covered 

on the outside by aluminum foil to reduce light entering 

the tube. The roots visible adjacent to glass tube were 

observed by using an oval shaped pocket mirror glued on 

to a thin steel rod. A 3-volt bulb focused close to the 

mirror provided sufficient light inside the tube for 

root observation. Normally the roots can be observed 

with the naked eye to 1 m depth. The rooting depths 

observed are approximate, used only as a guide in 

determining the root water uptake depth. 

The bulk density, saturation water content (9s) and 

drainable porosity determinations were made from settled 

column number 5. Although the profile was assumed to be 

uniform with respect to bulk density, the calculated 

soil densities suggest it was not (Table 2) . 

SOIL WATER CONTENT, e, AND SOIL WATER 
PRESSURE HEAD, h, MEASUREMENTS : 

The volumetric water content measurements in the 

soil columns, exclusive of the top 0. 15 m were monitored 



Figure 1. Lysimeter arrangeroont. 

a= Drainage experiment showing the stage recorder. 

b = Mercury manometer tensianeter. 

c = Vacuum gauge tension:eters. 
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by neutron scattering for every 0.15 m increment depth. 

Two different instrument were used throughout the study. 

Both were calibrated against soil samples from column 5. 

The R 2 values for the calibrations are 0.97 and 0.98 

respectively. During the last run, soil samples from 

the top 0.15 m were taken for gravimetric moisture 

content determination. 

The neutron readings were taken once in every third 

day during the first and second run and once every five 

to seven days during the last run. 

The soil water pressure head, h, was measured with 

tensiometers. Nine tensiometers were installed in each 

column so that the center of the ceramic cup was 

approximately at the predetermined nodal points of 0.08, 

0.24, 0.40, .... and 1.36 m. The neutron counts were also 

taken at these nodes. Two types of tensiometers, 

mercury manometer and vacuum gauge, were used to measure 

h. Column 1 had the mercury type and columns 2 and 3 

had the vacuum type gauges. All vacuum gauge 

tensiometers were checked for accuracy against a 

standard gauge. A few drops of copper carbonate 

solution was added to the tensiometers to reduce algal 

growth. The range of these tensiometers is within Oto 

- 650 cm of water. 

Tensiometer readings were taken at the same time as 



neutron readings. Air entry is a common problem with 

the tensiometers. This was kept at a minimum by 

removing the air bubbles on the day prior to the 

observation. However, very small air entrapment in the 

mercury tensiometers was unavoidable. Malfunctioning 

tensiometers were replaced with tested ones as soon as 

the malfunctioning was detected. 

The tensiometer neutron probe data were first used 

to establish the h versus 8 relationship. The data was 

fitted to Campbell's (1974) emprical equations. 

HYDRAULIC CONDUCTIVITY, K, DETERMINATION 

Saturated steady state flow requires that a (a) 

constant head be maintained above the soil surface, (b) 

the water input equal the output and (c) the outflow be 

maintained at a constant outflow elevation. 

The instrument arrangement for saturated hydraulic 

conductivity, Ks, measurement consisted of a (a) stage 

recorder (b) water source, a cylinder of water, to feed 

the soil column and (c) a small water float valve to 

control the water level (Figure 1). The water source, a 

PVC cylinder 1 m height and 0.19 m internal diameter, 

was kept at about 0.40 m above the surface of the soil 

column. The float in the cylinder was attached to the 

stage recorder which registered the amount of water 

leaving the source. The water leaving the cylinder 
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through a small outlet was carried to the soil column by 

a small PVC pipe which had a control float valve at the 

end. The control float valve maintained a constant 

depth of water 0.7E-1 above the soil column. The 

drainage from the soil column was collected in a 

container at a constant out flow elevation, 0.30 m above 

bottom of the column. 

The determination of unsaturated K is more 

difficult than that of the Ks determination. For 

unsaturated K determinations the water supply was 

eliminated. The drainage outlet was opened and the 

drainage volume collected. Neutron readings for 9 were 

taken at regular intervals. Equation (2) was used in 

the calculation of unsaturated K with the assumption 

that the hydraulic gradient in equation (2) to be unity. 

The data collected in the unsaturated K 

determination could also be used to cross check the 

neutron probe calibration. The total change in e in the 

soil column monitored by the neutron probe during a 

specific time period was equal to the drainage collected 

in that period. 

CROP MANAGEMENT : 

Corsoy/79 soybeans were grown in the lysimeters 

throughout the study. Seeds were sown in 0.15 m rows. 

The plant population was thinned to 55 to 60 seedlings 



per column at ten days after planting, OAP. The plant 

population around 30 OAP was maintained between 26 to 

28. This would represent the plant density per unit 

area found in the field. 

35 

Two columns were planted simultaneously at each 

run. Another pair was planted two weeks later. Each 

pair of col_umns was planted three times, making a total 

of six runs. The beans were removed at 110 to 120 OAP. 

The column 5 was kept as a standby. 

SOIL WATER MANAGEMENT : 

The soil water content in the top 0.45 m of the 

profile was allowed to be depleted to about 650 cm of 

water during the first 60 OAP. A known amount of water 

was added to the column, when the hat 0.45 m reached 

- 650 cm of water. Any drainage that occured was 

collected. Sixty days after planting irrigation was 

withdrawn from one of the soil columns in a run to allow 

root water uptake from lower sections of the soil 

column. 

GREEN HOUSE TEMPERATURE ; 

Although the influence of temperature in water flow 

is recognized, it is not taken into consideration in 

this study to avoid complexity in the flow equation. 

The fall, winter and spring temperatures in the green 



a 
house were maintained between 20 to 23 c. The daytime 

summer temperatures inside the green house varied from 
0 

20 to 40 c. 

BOUNDARY CONDITIONS IN THE LYSIMETERS 

Equation 17 was solved subject to defined boundary 

conditions, - L < Z < 0 and t > 0. Here Z, distance 

,positive above the soil surface, L,depth of soil 

profile and Z=0, at the surface. The flow through the 

soil columns was simulated for the following initial and 

boundary conditions: 

e . (z,o) = 0.36 

Q(0,t) = 0 

ah/dz= 1. 

-1.44 m < z < o 

0 < t < 5d 

z = -1.44 m 

Here 8(z,0) the soil moisture content at the begining; 

Q(0,t), the outflow at the surface at any time; z depth 

of the soil column, negative down; t, time in days, 

where the initial and final times are 0 and 5 

respectively. 

Although no fixed time interval can be specified 

for successive monitoring of profile water content, it 

would seem reasonable to assume larger t values for 

slow draining profiles. 

The SWATRE flow model (Belman et al. 1981), used in 

the present study, has seven alternate lower boundary 

conditions. However, only two of them are selected in 
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this study, 

1. the constant water table level and 

2. zero flux at the bottom of an 

unsaturated zone. 

The upper boundary condition, the potential 

evapotranspiration ,. ETP, can be calculated by three 

alternate methods in the model. However, ETP is set 

equal to the actual evapotranspiration in this study. 

The actual evapotranspiration in this study is 

calculated from the soil column water balance. 

During a specific time period both boundary 

conditions are assumed to be constant in the model but 

could be varied between periods. 

, 
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RESULTS AND DISCUSSION 

I. FITTING THE FLOW MODEL PARAMETERS 

The Richard's flow equation, equation (14), 

describes the flow of water through soils. Solution to 

this equation requires that the relationship between h 

versus 8 and K versus 9 be known or established because 

both h versus 9 and K versus 9 appear as functional 

coefficients in the flow equation. The parameters that 

describe the functional relationship between h versus 9 

and K versus 0 thus become the flow model parameters. 

Their estimation was carried out as follows. First, 

empirical equations were assumed to describe the 

functional relationships. Campbell's (1974) equations 

(31) and (34) were selected in this study to describe 

the h versus 8 and K versus 9 relationships. 

In order to obtain good agreement between solutions 

from the flow equation and observed data the parameters 

must be estimated for the particular soil profile. The 

estimates can be obtained from experimental data 

provided the assumed empirical equations are linear. If 

the empirical equations are non-linear, the equations 

must be linearized before the estimations can be made. 

There are two approaches by which the non-linear 

equations can be linearized. The linearization can be 

carried out by using logarithmic transformations. The 

38 
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parameters can then be estimated from experimental data 

using the traditional least squares best fit, LSBF, 

procedure. Or the linearization can be carried out by 

the Taylor series expansion. In this procedure, the 

flow equation solution is defined as an objective 

function of the parameters to be fitted to the flow 

model. The objecitve function is then expanded as a 

Taylor series. The parameters in the expanded series 

are then iteratively estimated by changing the estimates 

at each iteration and solving the flow equation until 

the solution obtained agrees with the observed data. In 

this study, the objective function is eest which is 

estimated by the flow model, SWATRE. The parameters to 

be estimated are b, he and Ks from Campbell's equations 

(31) and (34) . The parameter, b, a term that describes 

the pore geometry in soils is identical both in 

equations (31) and (34) . The parameter he in equation 

(34) is called the air entry potential and Ks is the 

saturated hydraulic conductivity. 

The data required for the LSBF parameter estimates 

in Campbell's equations are h, e, and K. The 

tensiometer and neutron meter readings collected 

throughout the experimental period provided the data for 

h and i, respectively. The data for the K versus e 

relationship was obtained from the drainage experiments. 
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The K value was computed by using equation (2.). The 

hydraulic gradient in equation (2) was assumed to be 

unity. However, this assumption is not valid because 

the depth, L, is constant whereas H changed with changes 

in e. The LSBF estimation results are discussed in 

Method 1 A and B. 

The iterative estimation and fitting using Taylor 

expansion and Marquardt's (1964) methods is discussed in 

Method 2 A and B. 

The computer program, SWATRE (Belmans et al. 1983), 

for the Richard's flow equation is in Fortran code. 

This program was used to obtain the solution of 8est. 

METHOD lA. FIRST ORDER LEAST SQUARES BEST FIT 

Logarithmic linearization of Campbell's equations, 

equations (31) and (34), would produce 

log h(8) = -b log(8/8s) +log (he) (4 7) 

log K(8) = (2b+3) log(8/8s) +log Ks. ( 48) . 

For simplicity the antilog of log(he) is renamed as c. 

The parameters b, Ks and c in equations (47) and ( 48) 

are estimated, through the first order LSBF procedure. 

Theoretically, one would anticipate that the LSBF 

of equations (47) and (48) would produce identical 

values of b because it is a term that accounts for pore 

geometry in both equations. Also the intercept, Ks, 

from the LSBF of equation (48) should be approximately 



equal to the experimentally determined value from the 

drainage experiments. 

The LSBF estimates for b were 5.81 and 7.17 for 

equations (47) and (48) resp~ctively. 2 The R value for 

the best fit was 0.81 and 0.79 for equations (47) and 

(48) respectively. The transformed intercept of 

equation (48) was 78.4, whereas the calculated Darcy's 

Ks's ranged from 6.0 to 34.9, with a mean of 8.4. Thus 

we are not only faced with the problem of selecting a 

value for b, but also for Ks. 

While fitting equation (48) we assumed unit 

hydraulic gradient in the calculation of unsaturated 

hydraulic conductivities, K. However, this assumption 

is not valid for reasons mentioned elsewhere. So, we 

may disregard the b estimate from the LSBF of equation 

( 48) . Further, if we select the b estimate from the 

LSBF of equation (48), then the question araises as to 

what value should be used for c. Also the R value for 

the LSBF of equation (47) is slightly greater than that 

of equation (48). For these reasons, we selected the 

estimates from the LSBF of equation (47). 
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Using the selected estimates for band c, and Ks as 

8.4, the 9 profile in the draining column 3 was 

simulated by the SWATRE flow model. The simulation 

along with the observation is shown in figure 2, for the 
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for the parameter estimates in the 

different estimation methods. 
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Table l. Observed and predicted 9 profiles in the 
different parameter estimation and optimization 
methods • 

...;.--..,_~~~------.-.--.---.------------------.-wm------------------------
Method l Method 2 

Comp. Obsn. A B A B 
t l 

l 
2 
3 
4 
5 
6 
7 
8 
9 

l 
2 
3 
4 
5 
6 
7 
8 
9 

l 
2 
3 
4 
5 
6 
7 
8 
9 

.260 

.264 

.264 

.280 

.283 

.304 

.323 

.322 
• 321 

.250 

.252 

.261 

.263 

.280 

.296 

.319 

.318 
• 321 

.240 

.246 

.254 

.262 

.279 

.291 

.307 

.303 

.321 

2 3 

.275 

.289 

.313 

.339 

.330 

.329 

.312 

.326 

.321 

.254 

.269 

.274 

.282 

.287 

.298 

.281 

.275 
• 321 

.250 

.265 

.271 

.277 

.280 

.299 

.289 

.267 

.321 

.263 

.276 

.282 

.288 

.292 

.312 

.302 

.347 
• 321 

.247 

.254 

.260 

.265 

.276 

.297 

.283 

.273 
• 321 

.244 

.251 

.257 

.263 

.273 

.294 

.276 

.268 

.321 

4 

DAY l 

.258 

.263 

.269 

.274 

.282 

.305 

.299 

.346 
• 321 

DAY 3 

.237 

.244 

.250 

.257 

.269 

.292 

.272 

.262 

.321 
DAY 5 

.235 

.242 

.247 
• 256 
• 267 
.289 
.266 
.256 
• 321 

Copm #=Compartment number 
Obsn = Observed e. 

5 6 

.257 

.264 

.270 

.274 

.282 

.307 

.321 

.328 
• 321 

.248 

.255 

.260 
• 267 
.277 
.296 
.312 
.315 
• 321 

.244 

.249 

.255 

.262 

.273 

.291 

.307 

.308 

.321 

.259 

.265 

.272 

.280 

.292 

.316 
• 325 
.325 
.321 

.245 

.250 

.257 

.265 

.276 

.292 

.309 

.313 

.321 

.243 

.249 

.255 

.263 

.274 

.289 

.308 

.311 

.321 

7 

.259 
• 265 
.271 
.278 
.288 
.311 
.323 
.328 
.321 

.246 

.251 

.257 
• 265 
.275 
.291 
.309 
.313 
.321 

.244 

.249 

.256 

.263 

.273 

.288 

.307 

.310 

.321 
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Table 2. Bulk density (g/cm3 ), saturation a5 and drainable 
porosity in the soil columns. 

Compartment 
number 

1 
2 
3 
4 
5 
6 
7 
8 
9 

Bulk 
density 

1.04 
1.11 
1.10 
1.12 
1.12 
1.13 
1.14 
1.14 
1.15 

Saturation 
8s 

.420 

.385 

.382 

.378 

.370 

.365 

.360 

.360 

.356 

Drainable 
porosity 

.249 

.221 

.220 

.222 

.200 

.218 

.213 

.213 

.211 



45 

data presented in table 1, columns 3 and 2, 

respectively. The agreement between them is very poor. 

This indicates that the estimates have failed to 

simulate the flow satisfactorily. This may be due to 

the fact that the estimates obtained for the transformed 

equation need not strictly represent the approximation 

for the original equation. 

The simulated 9 increased with depth to 0.96 m 

(Table 1 and Figure 2). An abrupt decrease in 8 between 

0.96 and 1.12 m depth suggests that there is a change in 

the uniformity in the soil column, at least with respect 

to hydraulic properties. The tendency for the bulk 

density to increase with depth and the decrease in the 

saturation 9 with depth (Table 2) lends support to the 

fact that the soil column may not be uniform with 

respect to hydraulic properties. Therefore, we decided 

to treat the soil column as a two layered profile. The 

layer boundary was chosen at 0.96 m. The top 0.96 m of 

the column is the first layer, and 0.96 to 1.44 m the 

second layer. 

The failure of the first order LSBF parameter 

estimates to satisfactorily simulate solutions for the 

flow equation suggested that better estimates might be 

obtained through the second order procedure. 

METHOD 1B. SECOND ORDER LEAST SQUARES BEST FIT 
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The soil column is now treated as two layered, 

having six parameters for estimation, three for each 

layer. However, the estimation was carried out only for 

4 parameters, bl,b2,cl and c2. For the other two 

parameters, Ksl and Ks2 we assumed that the 

experimentally determined values were dependable. Using 

the second order LSBF procedure the parameters were 

estimated independently for each layer. 

The estimates for band c, for layers one and two 

were, 6.41 and 5.23 and 4.19 and 2.49 respectively. 

The R 2 value for the best fit was 0.98 for both layers. 

The SWATRE e simulation for these estimates is shown in 

figure 2 for the data in table 1, column 4. It is 

obvious that the agreement improved compared to that in 

method lA, but was still not satisfactory. 

In the previous two parameter estimation methods we 

assumed that the Ks values calculated from experimental 

data are more dependable. However, the estimates for b 

and c obtained either in method 1, A or B, along with 

the observed Ks values failed to simulate thee profile 

that agrees with the observation. The estimate for Ks 

as a parameter in equation (48) is 78.4, whereas we took 

the mean observed value, 8.4, for the 0v simulation in 

method lA. The 0 simulation in method 1B, was obtained 

with Ks values of 34.9 and 8.4 for layers one and two, 
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respectively. The estimates in method 1B overpredict 

the 8 profile in the upper section of the column on the 

first day and underpredict it on days 3 and 5 at most of 

the nodes (Table 1, column 4). The overpredicting 

tendency at relatively high soil wetness suggests that 

the assigned Ks value for the top layer is low for 

drainage near saturation. Thus we decided to resimulate 

e with the Ks estimate from equation (48) for the top 

layer along with the estimates for band c from method 

1B. The simulation is shown in Table !,column 5. The 

agree~ent with the observed data is still poor and the 

model, in general, underpredicts the 8 profile. The 

foregoing observations suggest that we may have to 

estimate a different Ks value along with other 

parameters to better describe the flow in the particular 

situation. The fact that Ks is a parameter in equation 

(34) lends support to the above decision. Since the 

estimates obtained through the logarithmic linearization 

failed to simulate the 8 profile satisfactorily, we 

decided to fit the parameters using Taylor expansion and 

Marguardt's methods. 

METHOD 2A. TAYLOR EXPANSION METHOD : 

In this method, as mentioned earlier, we define the 

objective function as 9est. For the two layered soil 

column the objective function is defined as follows: 
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eest = f(bl,b2,cl,c2,Ksl,Ks2) (49) 

Using Taylor series procedure to linearize the objective 

function, we have: 

f(bl,cl,Ksl,b2,c2,Ks2) = f(bl,cl,Ksl,b2,c2,Ks2) 

+f'(bl ••• )(bl-bl) + f'(cl ... ) 

( c 1-c 1) + f ' ( Ks 1 ••• ) ( Ks 1 - Ks 1) 

+f' (b2 .• ) (b2-b2)+f' (c2 .. ) 

(c2-c2)+ f' (Ks2 .. ) (Ks2-Ks2) (50) 

The terms beyond the first order were dropped from the 

series. The initial estimates for bl,b2,cl and c2 were 

obtained from method 1B, and Ksl and Ks2 were obtained 

from experimental data. The derivatives in the series 

were approximated by the difference quotient technique. 

For example, the derivative with respect to bl is: 

f(bl .. + .1) - f(bl .• - .1) 
f'(bl .. ) = --------------------------- ( 51) 

.20 

The derivatives for the other parameters were 

approximated in a similar way. The value of 0.10 which 

is added to or subtracted from a parameter was found by 

trial and error such that the difference between the 

eest for f(bl + .1) and f(bl - .1) was minimum. 

By substituting equation (51) into (50), equation 

(50) into (49) and equation (49) into (52) to compute 

the deviation sum squares, ss, we have: 
2 

SS = l: ( Sobs - 8est] (52) 
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The optimum values for the parameters are found when the 

SS in equation (52) is minimum. Taking the partial 

dervative of the SS in equation (52) with respect to 

each one of the parameters and setting dss/abi equal to 

zero, would produce six equations with six unknowns, the 

parameter estimates. This system of equations was then 

solved by the Gauss elimination method with complete 

pivoting. The estimates thus obtained were used in an 

iterative procedure to minimize the SS such that the 

mean minimum deviation tolerance was less than or equal 

to O.lOE-2. The mean minimum deviation, was computed as 

follows: 
2 

Tolerance = l [0obs - eest] /n (53) 

where n is the number of observations and Oest is the 

model simulation. 

A brief description of the modeling procedures 

developed in this study for the Taylor expansion method 

of fitting the parameters to the flow equation is 

appropriate now. 

COMPUTER PROGRAMMING : 

All the programs used in this study are in Fortran 

code. The principle, the procedures, the inputs 

required and the outputs from the programs are described 

briefly below. 

The SWATRE flow model is described elsewhere 



(Belmans et al, 1981). However, a brief description of 

the h(9) and K(9) table of values required as an input 

by this program needs special attention. This input 

table should contain hand K values for every 0.01 

increment in 8 from 0.05 to 0.36. This table of values 

is used in the computation of the solution. The maximum 

9 is the mean saturation 9 in the soil column. The 

minimum is an arbitrary minimum 9 that would be expected 

in the soil columns. 

The program PK3.FOR computes the hand K table of 

values using Campbell's equations (31) and (34). The 

inputs required are the initial estimates for 

bl,b2,cl,c2,Ksl and Ks2 and the saturation 9. The 

program will first compute hand K for the initial 

estimates for every 0.01 increment in 9 from 0.05 to 

0.36. Next, it will add 0.10 to the first estimate 

while keeping the other estimates unchanged and repeat 

the computation. Then it will subtract 0.10 from the 

original estimate of the first parameter and repeat the 

computation. The computation will be repeated for the 

other 5 estimates. Since there are 6 parameters there 

will be 12 such tables of values plus one for the 

initial estimates. 

These tables of values are entered one at a time to 

the SWATRE model to simulate the corresponding 9est. A 
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total of 13 9est will be simulated. 

The program named S12.FOR, for Taylor series 

linearization of equations (50) and (51) require 13 sets 

of 9est, Sobs and the initial estimates as input. The 

program first computes the solutions for equations (51) 

and (52). Using the computed values it will generate 

the coefficients for a 6x7 matrix. A subroutine for the 

Gauss elimination method of solution for a system of 

linear algebraic equations, ELIM.FOR, takes the matrix 

coefficients and solve them for the parameters. The 

calculated ss was used to compute the minimum deviation 

by using equation (52). If the mean deviation is 

greater than the tolerance, the process is repeated for 

the new set of estimates obtained in ELIM.FOR. The 

above programs are executed by the batch file program, 

RA.BATCH. The programming is schematically shown below. 

RA.BAT 

~ 
S12.FOR•~---)~ ELIM.FOR PK3.FOR 

f l 
eest~ SWATRE------- h(9),K(9) 

Although a tolerance limit was set to terminate the 

iterations, the iterations could also be terminated 

either when the SS repeated or the parameter estimates 

are very close. In this study, the SS repeated after 
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six iterations (Table 3) . We assumed the function 

converged to solutions in the seventh iteration. The ss 

repeated in the seventh and eighth iterations. Frequent 

divergence and oscillations were observed throughout the 

iterations (Table 3)' . The computed mean minimum 

deviation, o. �4E-3, is less than the tolerance limit, 

O. lOE-2. The estimates in column 7 or 8 of table 3 

could be used to describe h ( 8) and K ( 0) functions. The 

8 simulation for the estimates in table 3, column 7 is 

shown in figure 2 for the data in table 1, column 6. 

The simulated e profile correlated well with the 

observed data. However, it should be noted that the 

estimate for Ks1, 85. 60, is greater than the observed 

value, 34. 9. Dane et al. (1983) reported that the 

fitted Ks estimates could vary by one order of 

magnitude. 

Initial estimates for the parameters need not be 

close to the actual estimates since the system converges 

rapidly to the minimum sum·. The validity of the above 

statement was tested by assigning an a·rbitary value of 5 

to each parameter and the fitting was repeated. The 

results are presented in table 4. The function appeared  

to have coverged in the tenth iteration. Although the 

ss at convergence is greater than that obtained 

previouly ( Table 3 and 4) , the mea� deviation, O. 93E-3, 



Table 3 .  Parameter estimates and the sum squares during the 
iterations in method 2A , Taylor expansion method . 

I teration bl b2 cl c2 Ksl Ks2 ss 

number Parameter values . 
------------------------------------------------------------

1 6 . 41 4 . 59  5 . 2 3 2. 4 9  3 4 . 9 0  8 . 4 0 . 7 3 7 E-2  
2 5 . 8 8 7

.
19 8 . 3 8 5 . 60 5 7 . 3 6 1 1 . 00 . 5 00E-3 

3 6 . 00 9 . 2 3 9 . 56 5 . 4 2 7 7 . 04 1 4 . 3 6  . 3 7 0E-3  
4 6 . 1 3 1 0 . 9 9  7. 9 3  2 . 69 7 9 . 7 5 2 0 . 64 . 3 8 0E-3  
5 6. 3 4  11 . 5 3  8 . 04 3 . 9 1 1 0 1 . 66 2 3 . 68 . 2 9 0E-3 
6 6 . 6 6 10 . 87  4 . 4 2 1 . 8 1 6 9 . 9 8 2 0 . 8 3  . 4 2 0E-3  
7 6 . 50 10 . 4 6 6 . 3 0 2 . 7 3 8 5 . 6 1 1 9 . 6 1 . J O OE-3  
8 6 . 15 12 . 4 3 7 . 68 2 . 7 1 8 2. 14  2 8 . 2 5 . J O OE-3 
9 6 . 3 9 15 . 2 3 6 . 4 0 0 . 99 8 2 . 05 4 6 . 7 7 . 5 1 0E-3  

10  6 . 7 7 14. 4 4  6 . 2 6 1. 4 7  1 1 2 . 63 4 6 . 67 . 2 9 0E-3  
1 1  6. 97  18 . 5 3 4 . 9 2 0 . 2 0 1 1 2 . 4 8 9 5 . 16 . 7 8 0E-3  

------------------------------------------------------------

The procedure failed a fter 11 iterations generating negat ive 
values for c2 . 

CJl w 



Table  4. Parameter estimates and the sum squares during the 
iterations in Taylor expansion method for an initial 
guess to the parameters. 

Iteration b l  
number 

1 

2 

3 

4 

5 

6 

7 

8 

9 

1 0  

5. 00  
3. 67 
5. 68 
5. 57  
6. 12  
6. 2 5  
5. 7 5  
6. 04  
5. 9 6  
6. 3 0  

b2 cl c2 
Parameter values 

5. 00 
7. 67  
13. 1 0  
1 1. 8 3 
13. 3 2  
1 3. 18  
1 1. 8 6  
13. 5 0  
14. 19  
14. 60  

5. 0 0  
12. 1 6  

3. 3 3  
4. 9 6  
4. 9 9  
8. 5 8  
9. 8 5  
9. 68  

1 1. 8 4  
8. 9 6  

5. 0 0  
10. 8 6  

2. 2 6  
1. 8 2  
2. 06  
1. 9 9  
2. 6 1  
2. 5 1  
3. 64  
2. 3 0  

Ksl 

5. 0 0  
6. 7 3  

1 5. 6 0  
2 0. 17  
2 8. 69  
4 1. 3 3 
4 5. 3 9  
60. 9 8  
8 0. 2 8  
8 0. 5 9  

Ks2 

5. 0 0  
8. 8 7  

2 3. 3 6  
2 5. 8 2  
3 1. 5 3 
3 4. 5 1  
4 0. 6 3  
3 1. 1 1 
2 3. 9 7  
2 9. 5 4  

ss 

. 14 5E-1 

. 8 5 1E-2 

. 4 7 8E-2 

. 2 3 4 E-2 

. 18 2 E-2 

. 16 1E-2 

. 12 5E-2 

. 8 9 0E-3 

. 7 5 0E-3 

. 65 0E-3 

The procedure failed after 1 0  iterations generating negative 
values for c2. 

� 
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is less than the tolerance limit . The SS decreased 

progressively during the iterations (Table 4) unlike the 

oscillations found earlier (Table 3 ) . The e simulation 

for the converged estimates is as good as the previous 

one (Table 1, column 6 and 7) . This raises the question 

as to whether or not we need initial estimates from 

experimental data to fit the parameters . Although a 

definite answer is not possible at present, it should be 

noted that the values from experimental data suggested 

the order-of-magnitude values for the estimates. 

METHOD 2 B. MARGUARDT ' S  METHOD 

The theory for Marguardt ' s  (1963 )  algorithm is 

discussed in the literature review. A brief description 

of the programs, principles, inputs required and outputs 

from the programs is appropriate. 

The first step in the alogorithm is Taylor series 

computations which are similar to those in method 2A. 

The program PK3. FOR is used to generate 13  tables of 

values for h(8) and K(8). These tables of values are 

used to simulate 13 sets of evest. 

The program S15. FOR, using the 1 3  sets of Qest and 

initial estimates will compute the partial, P matrix 

(equation 40) and the independent vector matrix, G 

(equation 41). The computed matrices are passed on to 

program MAR. FOR. 

. . 



.  The subroutine TRANS . FOR in MAR . FOR takes the 

transpose of P and passes the transpose to another 

subroutine TRANSP . FOR . This subroutine converts the 

P-transpose and the independent vector to a 6x7 matrix . 

The matrix coefficients are then passed to the program , 

STEEP . FOR . 
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The program STEEP . FOR performs the steepest descent 

method (equation 4 2 )  computations and produces 2 sets of 

trial vectors , equation (4 2 ) .  The trial vectors are 

passed to the progarm NPARA . FOR , which computes 2 new 

sets of estimates by adding the trial vectors to the 

initial estimates . The h and K table of values for the 

2 new sets of estimates are generated by the program 

PK . FOR . These tables of values are then supplied to 

the SWATRE model to simulate the corresponding eest . 

The three sets of parameter estimates , the initial 

and the two new sets , the corresponding eest , and the 

0obs are passed on to the program SUM . FOR . This program 

computes the ss ( equation 52)  for each set of Oest 

versus Qobs . It selects the minimum sum of the three . 

The minimum mean deviation computed { equation 53) is 

compared with the tolerance , 0 . 10E-2 . I f  the mean 

deviation is less than or equal to tolerance then the 

programming is terminated ; otherwise it proceeds through 

another iteration . The programs are executed by the 



Table 5. Parameter estimates and sum squares during the 
iterations for Marguardt's method. 

---------------------------------------------------------------
Iteration bl b2 cl c2 Ksl Ks2 ss 
number Parameter values 
----------------------------------------------------------------

1 6.49 7.96 5.75 2.64 46.88 9.60 .200E-2 
2 6.41 11.56 4.96 0.78 45.37 15.19 .219E-2 
3 6.90 12.13 5.23 1.82 52.24 13.36 .143E-2 
4 7.04 13.08 4.71 0.99 66.79 15.42 .195E-2 
5 5.83 9.38 6.90 2.57 37.76 10.06 .173E-2 
6 6.56 10.78 8.03 3.82 62.29 10.69 .106E-2 
7 5.87 12.69 9.80 3.42 57. 83 16.19 .752E-3 
8 6.02 14.69 10.13 2.51 69.57 26.82 .739E-3 
9 6.42 13.12 8.82 2.92 91.92 16.53 .593E-3 

10 6.58 13.83 8.56 2.84 113.07 17.68 .580E-3 
11 6.4 13.88 9.22 2.90 110.90 20.92 .565E-3 
12 6.79 13.76 7.30 2.50 100.67 15.52 .691E-3 
13 6.77 14.00 7.38 2.44 98.68 19.95 • 552E-3 
14 6.74 12.92 7.11 2.40 101.57 15.03 .694E-3 
15 6.73 13.11 7.56 2.60 101.91 16.59 .514E-3 
16 6.75 13 .01 7.54 2.66 102.84 17.84 .525E-3 
17 6.73 12.97 7.53 2.61 100.18 18.09 .521E-3 
18 6.73 12.94 7.51 2.58 98.90 17.94 .522E-3 
19 6.73 12.98 7.52 2.59 98.69 17.95 .519E-3 

----------------------------------------------------------------
t., 
...J 

- - -----
... ·-- ·- - . - ... - . ·---· -- -~--- ... -- ··----·---· - ~ -"--
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modified batch file program, RA.BAT. 

The function converged to solutions after 19 

iterations (Table 5). The SS at convergence is 

0.519E-3. The corresponding mean deviation is 0.844E-3, 

which is less than the tolerance limit. The 8 

simulation for the converged estimates is shown in 

figure 2 for the data in table 1,column 8. The 

agreement with the obseved data is good indicating the 

converged estimates fit the flow model well. 

COMPARISON OF THE ESTIMATION PROCEDURES 

The minimum ss, 0.29E-3, during the fitting 

procedures was obtained with the Taylor expansion 

method, method 2A, with the initial estimates from 

experimental data. However, the frequent divergence 

(Table 3) found during the iterations in this method 

suggests it is difficult to come to a conclusion. 

Nevertheless, when the function does converge it 

converges to solutions faster than Marguardt's method. 

Although the convergence in Marguardt's procedure is 

slower, the diverging tendency was eliminated. The 

estimates near convergence remained relatively stable 

for changes in SS, in the range, 0.514E-3 to 0.525E-3 

(Table 5,row 15 through 19). For similar changes in SS 

the changes in the estimates in method 2A are high 

(Table 3, column 6,7 &8). 
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The 8 simulations for the converged estimates from 

both methods 2A and 2B agreed well with the observed 

data, indicating that these estimates fit the flow model 

well. However, the stability of the estimates near 

convergence in Marguardt's procedure suggests that the 

estiamtes obtained in this procedure are better than 

those obtained in method 2A. Therefore, the estimates 

obtained in method 2B are selected to describe the h(S) 

and K(0) functions. Soil water pressure head, h, versus 

the soil moisture, 8, relationship for the converged 

estimates in Marguardt's procedure along with the 

observations are shown in figure 3. Although the data 

points suggests hysteresis, the simulated curve is 

assumed to be unique. 

The first and second order LSBF estimates failed to 

describe the flow satisfacotrily. The high R2 value, 

0.98, obtained in method 1B suggests that 98% of the 

variability in the h(0) and K(9) functions is explained 

bye. However, the simulated 0 profile was not 

satifactory. This is anticipated because the estimates 

for the original non-linear equations (31) and (34) 

could differ siginificantly from that obtained for the 

logarithmically transformed linear equations (47) and 

(48). 

The progressive improvement in the agreement 
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Figure 3. Soil moisture characteristic curve. 



between the observed 9 values and simulations is shown 

in figure 2. The linearization through Taylor series 

expansion, methods 2 A and B ,and subsequent fitting 

through an iterative technique produced the estimates 

that best described the flow. 

Marguardt's algorithm was developed for solutions 

to non-linear algebraic equations. However, in this 

study, the linearization and fitting is carried out for 

a partial differential model which has two non-linear 

functions in it. Marguardt's procedure is, thus, 

successfully implemented for a non-linear partial 

differential model which has been solved numerically. 
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II. MODELING ROOT UPTAKE 

Equation (18 ) , the Richard's flow equation modified 

to describe the flow of water along with root water 

uptake, RWU, has three functions in it as coefficients. 

The 3 functions are, h(9 ) ,  K ( 8 ) , and S(h, L ) . The 

parameters that describe the functional relationships in 

these 3 functions thus become the modified flow model 

parameters. The h(8 ) and K(8 )  function parameters have 

already been fitted to the flow model. Thus the problem 

now is to determine the best estimates for the S(h, L)  

function parameters. Hoogland's (1980) RWU function, 

equation (45 ) , is selected in this study to describe 

root uptake. 

Hooglands (1980) RWU function is linear. The 

parameters in this equation are p and q. The parameter 

p is a term associated with root density and uptake 

rates per unit root length. The parameter q describes 

the rate of decrease in uptake with respect to depth, L. 

There are two approaches by which the parameters in 

the RWU function can be estimated and fitted to the flow 

model. Since the RWU function is linear, the parameters 

can be estimated from experimental data through the LSBF 

procedure and put into the flow model. On the other 

hand, because the modified flow model is non-linear the 

parameters can be fitted directly to the flow model by 
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using the Taylor series linearization technique. 

In order to fit the parameters through the LSBF 

procedure we need information on maximum RWU at 

different depths in the soil column. Soil water 

depletions are usually equated to RWU. Equating soil 

water depletions to RWU is not always valid, because the 

fluxes within the rooting profile and that just below 

the root zone are disregarded in RWU computation . 

Assuming uptake to be equal to depletion could be 

misleading in situations where the root zone is just 

above the water table and/or when part of the profile is 

quite wet. Parameter estimation using experimental 

results and soil water depletions is discussed in method 

1. 

In fitting the parmeters to the flow model through 

the Taylor series linearization technique, the estimated 

volumetric water content, eest, was defined as an 

objective function of the parameters to be fitted. The 

fitting procedure is discussed in method 2. 

METHOD 1. LEAST SQUARES BEST FIT 

The LSBF of the maximum uptake from the soil 

column compartments versus the uptake depth produced, 

0. 21E-1, and -0. 73E-05 as the estimates for p and q 

respectively . The R 2 value for the LSBF is 0. 09 . 

The above estimates were fitted to the flow model 
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Figure 4. Observed and simulated moisture profiles 

for the parameter estimates in the different 

estimation methods. 
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Table 6. The Observed and simulated 9 profiles for the 
different parameter estimation methods . 

comp. Obs 
# 

1 
2 
3 
4 
5 
6 
7 
8 
9 

1 
2 
3 
4 
5 
6 
7 
8 
9 

1 
2 
3 
4 
5 
6 
7 
8 
9 

. 2 2 0  

. 2 3 3  

. 2 3 5  

. 2 5 4  

. 2 5 3  

. 2 7 0  

. 3 2 3  

. 3 4 0  

. 3 6 0  

. 1 8 0  

. 18 9  

. 2 1 8  

. 2 3 2  

. 2 4 6  

. 2 6 2  

. 2 6 7  

. 3 5 1  

. 3 6 0  

. 1 6 0  

. 17 8  

. 2 1 1  

. 2 3 1  

. 2 3 9  

. 2 4 5  

. 2 5 9  

. 3 3 2  

. 3 6 0  

Method 1 Method 2 

. 18 9  

. 2 0 9  

. 2 2 9  

. 2 4 5  

. 2 5 7  

. 2 6 9  

. 2 9 6  

. 3 17 

. 3 6 0  

. 1 4 9  

. 1 5 8  

. 1 78  

. 2 12  

. 2 3 5  

. 2 4 7  

. 2 8 8  

. 3 1 6  

. 3 6 0  

. 1 3 8  

. 14 3  

. 1 5 5  

. 17 5  

. 2 0 9  

. 2 3 2  

. 2 8 4  

. 3 1 6 -

. 3 6 0 

A B 

Day 3 

. 16 3  

. 2 19  

. 2 3 8  

. 2 5 0  

. 2 6 1  

. 2 7 3  

. 2 9 8  
• 3 17 
. 3 6 0  

Day 8 

. 12 0  

. 1 3 3  

. 18 8  

. 2 2 8  

. 2 4 3  

. 2 5 5  

. 2 9 0  

. 3 17 

. 3 6 0  

Day 11 

. 1 16  

. 11 6  

. 1 3 2  

. 19 7  

. 2 3 0  

. 2 4 4  

. 2 8 7  

. 3 1 6  

. 3 6 0  

. 2 2 1  

. 2 2 5  

. 2 3 0  

. 2 3 7  

. 2 4 7  

. 2 5 8  

. 2 9 2  

. 3 1 7  

. 3 6 0  

. 17 8  

. 18 3  

. 19 1  

. 2 0 4  

. 2 17 

. 2 3 2  

. 2 8 2  

. 3 1 6  

. 3 6 0  

. 1 6 2  

. 1 6 5  

. 17 1  

. 18 2  

. 1 9 7  

. 2 1 1  

. 2 7 5  

. 3 1 6  

. 3 6 0  

. 2 3 1  

. 2 3 5  

. 2 4 3  

. 2 5 3  

. 2 6 4  

. 2 7 6  

. 2 8 1  

. 3 2 2  

. 3 6 0  

. 2 0 3  

. 2 1 1  

. 2 2 6  

. 2 4 2  

. 2 5 7  

. 2 7 0  

. 2 7 8  

. 3 2 1  

. 3 6 0 

. 1 9 4  

. 2 0 3  

. 2 1 7  

. 2 3 7  

. 2 5 3  

. 2 6 7  

. 2 7 5  

. 3 2 1  

. 3 6 0  

C 

. 2 1 1  

. 2 1 5  

. 2 2 7  

. 2 4 0  

. 2 5 3  

. 2 6 5  

. 2 9 4  
• 3 1 7 
. 3 6 0  

. 1 6 3  

. 1 6 6  

. 19 2  

. 2 0 9  

. 2 2 2  

. 2 3 9  

. 2 8 6  

. 3 1 6  

. 3 6 0  

. 1 5 0  

. 1 5 2  

. 17 0  

. 18 4  

. 1 9 6  

. 2 17 

. 2 7 9  

. 3 1 6  

. 3 6 0  

D 

. 2 1 3  

. 2 1 7  

. 2 3 1  

. 2 4 5  

. 2 6 0  

. 2 7 6  

. 2 6 0  

. 3 3 8  

. 3 6 0  

. 1 6 7  

. 1 7 5  

. 2 0 9  

. 2 3 2  

. 2 5 0  

. 2 7 0  

. 2 5 8  

. 3 3 8  

. 3 6 0  

. 1 5 5  

. 1 6 5  

. 1 9 9  

. 2 2 5  

. 2 4 6  

. 2 6 7  

. 2 5 6  

. 3 3 8  

. 3 6 0  
---------------------------------------------------------

Obs = Observed 0 profile 
Comp. # = Compartment number 
# = Number . 



Tabl e  7. Observed and simulated data on evapotranspiration , 
Et ( cm/day ) , and root water uptake depths (m ) . 

--------------------------------------------------------------

Step # Et Obsd. Et Pred. Depth of root water uptake 
* Observed 

------ -------- ------- ---------

1 . 8 5 . 8 5 . 64 - 1 . 2 8 
2 . 8 5 . 8 5 . 64 - 1 . 2 8  
3 . 8 5 . 8 5 . 64 - 1 . 2 8 
4 . 8 5 . 8 5 . 64 - 1 . 2 8 
5 . 8 5 . 8 5 . 64 - 1 . 2 8 

* Et Obsd. = Calculated Evapotranspiration. 

* Et Pred. = Evapotranspiration predicted . 

Step # = Step number. 

Predicted 
---------

. 4 8 - . 8 0 

. 3 2 - . 64 

. 9 6 - 1 . 14 

. 8 0 - 1 . 14 

. 8 0 - . 9 6 

0) 

0) 

• 



to simulate the 0 profile and root uptake. At the 

beginning of the simulation, July 28, 1985, the beans 

were 63 days old. The 0 simulation along with the 

67 

- --olSserved data on specific days during a 11 day period 

are shown in figure 4 for the data in table 6, columns 2 

and 3. The simulated g profile did not agree very well 

with the observed data. Belman et al. (1983) , the model 

developers, recognized this weakness but did not attempt 

to correct it. 

The evapotranspiration, Et, was accurately 

predicted - by the model { Table 7) . The uptake depth 

predicted by the model ranged from 0. 48 to 0. 80 m, but 

the observed soil water depletion depths ranged from 

0. 64 to 1. 28 m (Table 7) . The observed rooting depth 

was 0. 96 m. 

The inabilty of the model to accurately predict the 

e profile for the estimates is attributed to the 

following reasons. First, the low R 2 value obtained 

for the LSBF suggests that either the RWU function was 

inadequately described and/or more experimental data is 

reqiured to improve the R 2 value. Second, the magnitude 

of the slope, q, suggests that the independent variable, 

depth, is not a strong variable in the RWU function. 

Third, the soil water redistribution may be quite 

significant and must be considered in the fitting 



Table 8. Th~mean observed root water uptake (cm3 of water/ 
cm of soil/day) in the soil columns. 

----~aw~---•--•----ws "1!!9!!-WWW -----
Compt.# Column I Column II Column III Column IV 
------ ------- --------- ---------- --------
1 .015 .013 . 020 .018 
2 .016 .020 . 022 .027 
3 . 014 .018 .016 . 020 
4 . 017 .012 . 014 .013 
5 . 014 .016 .019 .016 
6 .016 .019 .017 . 014 
7 . 012 .011 
8 .011 .011 
9 ~ 

Compt.# = Compartment number. 
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. Using the Taylor series expansion procedure to linearize 

the obj ective function , f(p , q) ,  we have : 

f(p , q) = f(p , q) + f '  (p . .  ) (p - p) + f '  (q • . ) (q - q) . . .  (59) 

The terms beyond the first order were dropped from the 

series . Substituting equations (58) in (57) and taking 

the partial derivative of the SS with respect to each 

one of the parameters would produce a system of 

equations . Setting dss/dp and dss/dq equal to zero , 

would produce two equations with two unknowns . These 

equations were then solved simultaneously for the 

unknowns . The SS was minimized through an iterative 

technique by continuously changing the estimates and 

fitting to the flow model . A set of programs in Fortran 

code was written to estimate and fit the parameters . 

The programming principles and procedures are very 

similar to those described in section I ,  method lA . 

The increment and decrement in the parameters p and 

q ,  to compute the corresponding derivatives were 

generated by the program , ABl . FOR . The generated values 

were entered one at a time into the input file of the 

SWATRE model to simulate the corresponding 8 profile. 

There were five Q sets . The program S16. FOR reads the 5 

0 sets , the initial estimates , and then proceeds to 

compute the SS and the new estimates . The process was 

repeated until the desired minimum SS was achieved . The 



minimum ss was set, such that the mean e deviation 

tolerance was < ±  O. lOE-2. The ss computed at each 

iteration will indicate whether the function is 

converging or diverging. 
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Unfortunately, the procedure failed after two 

iterations in this study, generating positive values for 

the parameter, q. The positive estimates for q mean a 

negative root uptake. The partially optimized estimates 

for p and q are 0. 61E-1 and -0. 21E-2, respectively. The 

8 simulation for these estimates is shown in figure 4 

for the data in table 6 column 4. The agreement between 

the simulated and observed 0 is still poor. The 

simulated water depletion depth ranged from 0. 32 to 0. 64 

m (Table 7) . 

Failure to simultaneously fit the parameters p and 

q in method 2A and the lesser dependence of the RWU 

function on uptake depth, as indicated earlier, suggests 

that the consideration of depth may be dropped from the 

RWU function. Therefore, we decided to fit only the 

parameter , p, to the flow model. 

METHOD 2B. FITTING THE PARAMETER p 

The principles and procedures used here are very 

similar to those used in section II, method 2A, the 

Taylor series expansion and iterative fitting. The 

objective function, 0est, is a function of only one 

: 
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parameter, p. The programs AB2. FOR and S17. FOR are 

modifications of AB1. FOR and S16. FOR, respectively, to 

estimate a·nd fit the parameter, p. The function 

converged at the fifth iteration with monotonously 

decreasing ss (Table 9) . The p estimate at convergence 

was O. lOE-1. The 0 simulation for this estimate is 

shown in figure 4 for the data in table 6 column 5. It 

is obvious that the agreement between the observed and 

simulated 8 profiles improved compared to those in 

method 2A, but still are not satisfactory. It appears 

that the converged estimate doesn't describe the RWU 

satisfactorily. This may be due to the fact that when 

we dropped the parameter, q, from the RWU function we 

assumed that the parameter, p, was independent of depth. 

In other words we say that Smax, equation (46) , is 

independent of depth. However, this might not be true. 

The experimental data on soil water depletion (Table 7) 

from this study did not support the hypothesis that the 

Smax is independent of depth. The maximum RWU from the 

various compartments in the soil columns are similar but 

not equal. In other words, p varied with depth. 

Therefore, we hypothesized that individual p values 

should be defined for each individual compartment. 

METHOD 2C. FITTING p(i) PARAMETERS : 

Soil water depletion was observed from only eight 



� , 
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Table 9. Parameter , p , estimates during the iterations in 
method 2B. 

Iteration 
number 

1 
2 

3 

4 

5 

Parameter 
estimate 

• 2 1E-Ol 
. 7 8E-02  
. 9 5E-02  
.lOE-0 1  
.lOE-0 1  

Sum squares 
ss 

. 3 17 3E - O l  
. 19 17E-Ol 
. 18 7 2 E- Ol 
. 18 60E-Ol 
. 18 6 0E-Ol 

'1 w 



diverging tendency. The initial b, k, and c estimates 

were from section I, method 2B. The RWU function 

parameters were from section II, method 2C. 

The function converged to solutions after 21 

iterations. The estimates and the ss for the last four 

iterations are presented in table 12. The SS remained 

unchanged after twenty one iterations. The mean 

deviation was 0. 2E-2. The simulated 9 profile agreed 

well with the observed data (Figure 4) . The predicted 

depth of uptake ranged from 0. 80 to 0. 96 m (Table 7) . 

The e underpredicting tendency was greatly reduced 

(Table 6, column 8) . However, the agreement between 

observed and predicted e profile was not as close as 

that obtained in the drainage run. This is anticipated 

because of the complex nature of the root uptake 

process, which, in this study, was approximated by only 

two variables. However, the results obtained with a 

simple uptake function is better than the earlier 

complex models (Nimmah and Hanks, 1973) . 

Does the RWU function parameters have to be fitted 

for all the compartments individually? The question may 

be now asked whether the refitted estimates for the h(e) 

and K(0) functions along with the p-estimate in section 

II, method 2B would satisfactorily describe the uptake. 

In order to check the above statement the e profile was 

74 
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Table  10 . Parameter p ( i ) estimates during the iterations in 
method 2C . 

---------------------------------------------------------------

Parameter Iteration number 
--------- ----------------------------------------------------

p ( i )  1 2 3 4 5 6 
----- ----- ----- ----- ----- ----- ----------

Parameter valuse 

p ( 1 )  . 3 0E-l . 57E-2 . 12E-1 . 14E-1  . 14 E-1  . 1 3 E-1  
p ( 2 )  . 2 0E-1 . 17E-1 . 19E-1 . 19E-1 . 19E-1  . 19E-1  
p ( 3 )  . lOE-1 . 9 1E-2 . l lE-1 . l lE-1 . l lE-1 . llE-1 
p ( 4 )  . S OE-2 . 13E�2 . l lE-1 . 99E-2 . 98E-2 . 9 9E-2 
p ( 5 )  . S OE-2 . 7 6E-2 . 14E-1 . 17E-1 . 17E-l  . 17E-1  
p ( 6 )  . S OE-2 . 17E-1 . 7 8E-2 . 7 9E-2 . 7 9E-2 . 7 9E-2 
p ( 7 )  . 3 0E-2 . 7 9E-2 . 84E-2 . lOE-1  . l lE-1 . l lE-1 
p ( 8 )  . lOE-1 . 2 5E-1 . 3 2E-l . 4 7E-l  . 50E-l . 52E-1  

ss . 2 4 7E-2 . 2 5 3E-2 . 4 50E-3 . lS OE-3 . 14 0E-3  . 14 0E-3 

� 
C)l 
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compartments in the soil columns. The estimation and 

fitting was therefore carried out for 8 p's. Using the 

same principles and procedures used in section II, 

method 2B, we define the objective function, Oest now 

as, 

eest = f [ pl, p2, . . • • . p8 ] (59) 

The flow model SWATRE, AB2. FOR, and S17. FOR, were 

modified to handle eight p parameters. The function 

converged to solutions in the sixth iteration (Table 

10 ) . The 8 simulation for the converged estimates is 

shown in figure 4 for the data in table 6 column 7. 

The agreement between the observed and simulated e 

profiles showed improvement, but still was not 

satisfactory. The mean deviation caluculated from the 

minimum ss suggests that it should be <±. 0. l0E-2. 

However, the difference between the observed and 

predicted e at some nodes differs by one order of 

magnitude (Table 6) , particularly in the upper sections 

of the column. 

At relaively high soil water content, during the 

first three days, the flow model underpredicted the ij 

profile at the first 4 nodes in methods 1 and 2 (Table 

6 ) . A similar trend was observed during the whole 

simulation period at the other nodes too but not at node 

7, where it overpredicted. Since the model predicted 
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the Et accurately the differences between the 0 profiles 

was attributed to the fluxes upward from the saturated 

zone . The mean observed flux during this period was 

0 . 24 cm/day, whereas the model prediction was 0 . 09, 

0 . 07, 0 . 13 and 0 . 11 cm/day respectively in method 1 and 

2A, 2B, and 2C . This suggests that the h(S) an K(9) 

functions were not describing the flow along with root 

uptake . 

When the parameters for the h(e) and K(9) functions 

were originally fitted, it was during a five day 

drainage cycle beginning with profile saturation (Table 

1) . However, the RWU function parameters were fitted in 

a drier soil (Table 6) . Thus it appears that the 

parameters in the h(9) and K(8) functions fitted for a 

wet soil were not working well in the drier end . 

Therefore, we decided to refit the parameters in the 

h(9) and K(S) functions in the ev range in which uptake 

took place . To minimize the complexity in programming 

we kept the p(i) parameters obtained in method 2C 

unchanged while refitting the h(9) and K(0) function 

parameters . 

METHOD 20 . FITTING THE b, Ks, AND c PARAMETERS : 

The programs developed in section I, method 2B 

(Marquardt's method) were used to fit the parameters . 

The Taylor series procedure was avoided because of it ' s  



Table 11 . Root water uptake ( 1/day) in the s o i l  
compartments 

Com . Observed 
depln . 

1 
2 
3 
4 
5 
6 

1 
2 
3 
4 
5 
6 
7 

1 
2 
3 
4 
5 
6 
7 
8 

. lOE- 1 
. 2 0E-2 
. O OE-0 
• lOE-2 

. lOE-1 
. 8 8E-2 
. 3 4E-2 
. 44E-2 
. 14E-2 
. 16E-2 
. llE-1 

. llE- 1  

. 59E-2 

. 3 7E-2 

. S SE- 2  
• 3 7 E- 2 -
. 8 0E-2 
. 40E-2  
. 69E- 2 

Predicted uptake 
Mehtod 1 Method 2 

. 2 2 E-l 
. 2 3 E- 1  
. 8 8E-2 

. 49E-2 
. 76E-2 
. 18E-1 
. 2 3 E-1 

. 2 9E-2 
. 3 9E-2 
. 6 9E-2 
. 17E-l 
. 2 3 E-2 

A B 

Day 3 

. 3 2E-l 
. 2 1E-l 

Day 8 

. 42E-2  
. llE-1 
. 3 8E-l 

Day 11 

. O OE+O 

. O OE+O 

. 15E- 1  

. 3 9E-l 

. lOE-1 

. lOE-1 

. lOE-1 

. lOE- 1 

. lOE-1 

. 3 1E-2 

. 75E-2  

. 8 8E-2 

. lOE-1 

. lOE- 1 

. lOE- 1 

. 6 9E-2 

. 40E-2 
. 45E-2  
. 58E- 2  
. 8 7E-2 
. lOE- 1 
. lOE- 1 
. lOE- 1 

C 

. lJ E- 1  
. 19E-l 
. llE-1 
. 9 7E-2 
. 63 E- 2  

. 5 4E- 2 

. 8 8E-2 
. llE- 1 
. 9 7E-2 
. 17E- 1 
. 1 2 E-2 

. 3 2E- 2 

. 48E- 2  

. 6 0E-2 

. 9 0E-2 

. 17 E-2  
. 7 9E-2  
. 48E-2 
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D 

. 13E-l 
. 19E-l 
. llE-1  
. 9 7E-2 
. 6 3E-2 

. 6 0E-2 

. 12E-l 

. llE- 1  

. 97E-2  

. 15E- l 

. 36E-2 

. 7 2E-2 

. llE- 1  

. 9 7E-2  

. 17E- l 

. 46E-2 

---------------------------------------------------------

Com. # = Compartment number 
Depln = Depletion 

i 
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Table 12. Parameter b, k, and c estimates during the root water 
uptake model ing iterations in mehtod 2 D. 

-----------------------------------------------------------------

Iteration Parameter estimates sum square 
nummber bl b2 kl k2 cl c2 ss 

------ ---- ---- ----- ----- ---- ---- ---------

1 6. 62  13. 4 2  99. 8 8  10. 08 7. 4 9  2. 7 3  . 67 2 E-2 
2 6. 4 5  13. 67 101. 99 7. 30 7. 4 9  2 .. 7 6  . 57 9 E-2  
3 6. 8 3  7. 04 104. 7 8  3 7. 7 5  7. 59 6. 07 . 4 31E-2 
4 8. 81 7. 3 6  111. 4 8  19. 3 2  7. 7 2  6. 5 2  . 2 70E-2 

* The sum squares remained uchanged at . 2 70E-2 . 

-...J en 



simulated for these estimates. The agreement between 

the observed and simulated 0 profiles was very poor 

(Table 6, column 6) , confirming that the p-parameters 

have to be fitted for each compartment individually. 

ROOT UPTAKE DISTRIBUTION 

80 

Although the observed soil water depletion 

distribution need not strictly represent root uptake 

distribution, it does provides some information 

regarding the depth and distribution of uptake. During 

the first three days, at relatively higher soil water 

content, the uptake distribution was apparently masked 

by the fluxes in the rooting profile (Table 11, column 

2) . The total uptake computed from soil water depletion 

data during this period, exclusive of the flux from the 

water table, was about 0. 13 cm/day, but the actual Et 

was 0. 85 cm/day. However, at relatively lower soil 

water content, on day 11, the masking was greatly 

reduced. The results from the uptake for the first 3 

days lends support to the fact that uptake and 

redistribution occur simultaneosly. 

The soil water depletion depths in time indicate 

that the uptake depth increased with time (Table 11, 

column 2) . Disregarding the first 3 days of 

observation, the depletion depth during the simulation 

period ranged from 1. 12 to 1. 28 m. The observed rooting 

. . 
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depth during this period was 0. 96 m. The simulated 

uptake depths in methods 1 and 2 A, B, C and D were 0. 80, 

0. 64, 1. 14, 1. 14, and 0. 96 m respectively. Thus, it is 

reasonable to conclude that the RWU function estimates 

from method 2C along with the h(0) and K(S ) function 

estimates in method 2D, are satisfactorily simulating 

the uptake depths. This implies that uptake 

distribution is also satisfactorily described by the 

fitted estimates. The uptake distribution in the soil 

column on day 11 for the estimates obtained by the 

different methods is shown figure 5. 

The observed soil water depletion distribution for 

the 11 day period, exclusive of the top compartment 

tends to suggests that decreased uptake rate with time 

in the upper section of the column was compensated for 

by increased uptake from the lower section (Table 

6, column 2) . However, this trend in uptake distribution 

with time is better illustrated by the model simulation 

than the observed data (Table 11, columns 2 ,  and 7, and 

figure 6) . Thus, we conclude that a properly defined 

RWU function with it's parameters fitted to the flow 

model will describe the uptake distribution 

satisfactorily. 

MODEL VERI FICATION 

The question now araises as to whether the refitted 

83 
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Table 13. The 9 simulation for the drainage run and for 
a low Et rate, obtained with the new 
parameter estimates for b,k,and c. 

_,... ___________________ ~------------------------------------
comp. Obsd.8 Simul.8 
# For drainage -~---- ------------------

1 
2 
3 
4 
5 
6 
7 
8 
9 

1 
2 
3 
4 
5 
6 
7 
8 
9 

1 
2 
3 
4 
5 
6 
7 
8 
9 

.260 

. 264 

.264 

.280 

.283 

.304 

.323 

.322 

.321 

.250 

.252 

.261 

.263 

.280 

.296 
• 319 
• 318 
.321 

.240 

.246 

.254 

.262 

.279 

. 291 
• 307 
• 303 
.321 

Day 1 

Day3 

Day 5 

• 258 
• 263 
• 269 
.275 
.283 
.297 
.309 
.314 
.321 

.244 

.254 

.260 
• 267 
.267 
.277 
.288 
• 298 
.312 

.243 

.247 

.252 

.258 

.265 

.276 

.286 

.297 

.312 

Obsd.9 Simul.8 
For Et =.45 

.150 
• 193 
.232 
.263 
.272 
.286 
.317 
.360 
.360 

.140 

.190 

.242 

.264 

.281 

.301 

.334 

.360 

.360 

.140 

.193 

.235 

.261 

.278 

.279 

.324 

.360 

.360 

Day 7 

Day 14 

Day 23 

• 160 
• 193 
.230 
.250 
.266 
.283 
.318 
.360 
.360 

.158 

.190 

.230 

.254 

.266 

.283 
• 318 
.360 
.360 

.156 

.188 
• 229 
.249 
.265 
.282 
.318 
.360 
• 360 

----------------------------------------------------
Comp#= Compartment number 
Obsd 9 = Observed 9 
Simul 9 = Simulated 9 
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h(0) and K(0) function estimates obtained in method 2D 

would satisfactorily describe the saturated flow and the 

root uptake for any other Et rate. The simulated 9 

profile for the same drainage period in section I 

agreed with the observed data (Table 13) • However, the 

agreement is not as good as that obtained with the 

estimates in the drainage run. The 9 at nodes 6 and 7 

is slightly underpredicted by the new estimates. This 

is anticipated, because the new Ks2 estimate is greater 

than that obtained in section II, method 2D. 

Root uptake and 0 profiles were simulated for the 

beans transpiring at 0 . 45 cm/d. At the begining of the 

simulation, January 3, 1986, the beans were 53 days old. 

The simulated Q profile agreed well with the observed 

data (Table 13) . However, the slight underpredicting 

tendency in the 0 continued to be observed at lower Et 

rates also. 

• 
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SUMMARY AND CONCLUSION 

The Fortran coded program, SWATRE, was used in this 

study to numerically solve the Richards' flow equation 

for two lower and two upper boundary conditions. The 

model solution, soil water content (8), was validated 

against measured O from green house experiments. The 

validation required that the parameters which describe 

the soil water pressure head, h, versus the soil water 

content, 0, and the hydraulic conductivity ,K, versus 0 

relationships should be fitted to the flow model. The 

non-linearity associated with the h(0) and K(0) 

empirical functions required that the equations be 

linearized before the estimations could be carried out. 

The h(0) and K(9) functions were first linearized by 

using a logarithmic transformation. The estimates from 

the first order least squares best fit, LSBF, procedure 

when fitted to the flow model, produced very poor 

solutions. The second order LSBF estimates produced 

solutions better than those obtained with the first 

order, but were not satisfactory. We concluded that the 

estimates obtained from the logarithmically linearized 

functions were not satisfactory. 

In the second method of linearization we defined 

the flow model solution, e, as an objective function of 

the parameters in the h(9) and K(9) emiprical equations. 

) 
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The objective function was then expanded as a Taylor 

series. The parameters in the expanded series were 

estimated and fitted to the flow model through two 

iterative techniques, Marquardt's and Taylor methods. 

The fitted estimates produced solutions that agreed well 

with observed data. The estimates near convergence in 

Marguardt's method were more stable than those in the 

Taylor method. Although frequent divergence was 

observed with the Taylor method of estimation the 

function converged to a solution faster than Marquardt's 

method. This is the first study that utilizes Taylor 

and Marquardt's methods to fit the parameters in the 

flow model. 

The programs developed in this study for the 

estimation of parameters in the h(0) and K(0) functions 

could be used to develop more reliable h versus 0 curves 

for field conditions. The capability of the SWATRE flow 

model is now enhanced through the programs developed in 

this study. 

In order to solve the flow equation along with root 

water uptake, we used similar procedures to estimate and 

fit the root uptake function parameters to the flow 

model. Here too, the LSBF procedure estimates failed to 

simulate satisfactory solutions. The estimates obtained 

through the Taylor series linearization and subsequent 

) 



iterative fitting procedure produced satisfactory 

solutions. 

A single uptake function defined to describe the 

uptake from the whole profile failed to simulate 

satisfactory solutions. Instead, independent functions 

defined for individual soil compartments simulated 

better solutions. However, to obtain satisfactory 

uptake simulations from the flow model, the parameters 

in the h(8) and K(9) functions should be estimated and 

fitted for the moisture regime in which the root water 

uptake place. 

88 

The programs developed in this study could be 

modified to include solute transport in the flow model. 

The thermodynamic constants of solute transport could be 

estimated in a similar manner to those utilized for the 

parameter estimation in this study. This is an area the 

weed scientists, the pollution control agencies and 

plant nutrient specialists could consider. 

Although the mathematical models would 

saisfactorily describe a dynamic system, they are no 

cure-all. 
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