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ABSTRACT 

A HYDROLOGIC CLIMATE STUDY FOR AN ARID REGION 

ALI ALSUBEAI 

2021 

Water is the most precious natural resource in arid regions due to the limitation of 

water resources, expanding population, and increasing volumes of industrial and 

domestic waste. The purpose of this research was to evaluate methods to estimate water 

quantity in an arid region. The research consisted of three separate studies. 

In the first study, hydrologic models used to estimate water quantity were 

evaluated for suitability of use in arid regions. Most hydrologic models that have been 

used in arid regions were originally developed for humid regions. Rainfall events in arid 

regions can be characterized as short-term, high intense rainstorms causing severe runoff 

in arid regions. This study provides an assessment various rainfall-runoff models and a 

comparison of methods and/or modifications used by researchers to adapt these models to 

arid regions. Mike 11, Sacramento, Pitman, and the IHACRES models have been used in 

arid regions with mixed results.   

The second study evaluated the annual rainfall for the Tabuk region obtained from 

observed datasets for the period 1978–2013. The objective of this study was to determine 

Tabuk catchment climate characteristics in terms of precipitation. The Tabuk region has 

common aridity characteristics in terms of the small precipitation amounts and high 

temperature rate. There is a drop in the annual rainfall from (25-30) mm to (5-10) mm 
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(1978-2004). The lowest annual rainfall (0-6.0 mm) occurred in the year 2004, which is 

the driest year in 35-year period. The mean annual rainfall is less than 33.5 mm.  

The third study analyzed flash floods caused by short-intense rainstorms. The 

objective of this study was to determine flood risk related to identified precipitation 

depths. The project quantized the runoff corresponding to different design storms and 

used hydraulics and geospatial data to determine flood elevations. The study constructed 

hydrologic and hydraulic models to quantify flood hazards in the adjacent area of Wadi 

Abu Nashayfah. Peak discharges for the wadi were computed by using observed rainfall 

data, and the output of this process was applied to compute water surface elevations 

within the flow channel. The depth of precipitation at which the channel was overtopped 

was determined in several locations. The predicted overtopping was compared to historic 

events with good agreement. 
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CHAPTER 1: INTRODUCTION 

 

“A drop of water, if it could write out its own history, would explain the universe to us” 

(Larcom 1824 - 1893). 

1.1 Background 

Understanding, measuring, and forecasting rainfall spatial patterns and quantities may be 

useful for a variety of human, social, economic, hydrological, and ecological practices 

such as agricultural planning, water supply management, flood control, groundwater 

recharge, forest management, industry, and the health of the human community and the 

national economy. The annual and seasonal patterns, as well as the overall amount of 

precipitation, are critical components of any water balance study. Human activities affect 

runoff characteristics. Specifically, declines in base flow, erosion, changes in floodplain 

area, peak flow rate and runoff amounts, are all changes seen in areas that have 

experienced urbanization, with flooding being the most destructive outcome 

(Niemczynowicz 1999).  

Urbanization in arid regions requires the design of storm water runoff quantity 

control structures because of the high-intensity, short-duration rain spells in these 

regions. Such high-intense storms, combined with the poor drainage potential of desert 

soils, can contribute to floods, property damage and loss of life. As a result, storm water 

control systems were built in the 1960s to handle flooding in arid regions (Baxter 1985). 

Flooding regimes in arid and semi-arid regions are heavily influenced by climate change 

and water shortage, water regulations, and increased water demands.  
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Floods are very rare and infrequent in arid regions, are hard to predict and can 

cause severe harm to people lives and infrastructure as well. The low amount of annual 

precipitation due to the desert climate may lead to false estimations of flooding hazards. 

Rainfall events in arid regions is characterized as short term-high intensity events where 

there is a shortage of time for water to enter soil layers, so most of water generates 

surface flow or runoff.  

 

1.2 Surface Runoff 

Early hydrologists have measured a surface runoff with minimal data and basic 

analytical techniques. The first commonly used runoff method was the Rational Method, 

which used the precipitation rate, the drainage area, and the runoff coefficient to calculate 

the peak discharge in the drainage basin (Xu 2002). The rational method equation is as 

follows (Dooge 1957). 

 

𝑄 = 𝑘𝐶𝑖𝐴     (1) 

Where: 

Q = Peak discharge (cfs)  

k = 1.008 account for unit conversions 

C = runoff coefficient  

i = rainfall intensity (inch/hr) 

A = watershed area (acres)  
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The method has many limitations and is based on the following assumptions: 

(1) Rain falls evenly through the drainage area. 

(2) The rainfall level averaged over a time span equal to the time of concentration of 

the drainage area will represent the peak rate of runoff. 

(3) The time taken for flow to hit the point in question from the hydraulically most 

distant point is referred to as the time of concentration. 

(4) The frequency of runoff is equal to the frequency of rainfall in the equation. 

Runoff coefficient (C) variable represents the ratio of runoff to rainfall (Table 1.1). It 

is the most difficult input variable to estimate. It represents the interaction of many 

complex factors, including the storage of water in surface depressions, infiltration, 

antecedent moisture, ground cover, ground slopes, and soil types. The coefficient may 

vary with respect to prior wetting and seasonal conditions.  

Table 1.1 Rational method runoff coefficient (Chin 2000). 

Ground Cover Runoff Coefficient 

Lawns 0.05 - 0.35 

Forest 0.05 - 0.25 

Cultivated land 0.08-0.41 

Meadow 0.1 - 0.5 

Parks, cemeteries 0.1 - 0.25 

Unimproved areas 0.1 - 0.3 

Pasture 0.12 - 0.62 

Residential areas 0.3 - 0.75 

Business areas 0.5 - 0.95 

Industrial areas 0.5 - 0.9 

Asphalt streets 0.7 - 0.95 

Brick streets 0.7 - 0.85 

Roofs 0.75 - 0.95 

Concrete streets 0.7 - 0.95 
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The rational method is based on assumptions that have been made where humid 

climate is more likely dominating. Runoff coefficient have been assumed to be based on 

several climatic factors that vary from one region to another. For example, average 

temperature, precipitation amount, duration and intensity are not the same in humid and 

arid regions.   

 Even though this method has frequently come under academic criticism for its 

simplicity, no other practical drainage design method has evolved to such a level of 

general acceptance by the practicing engineer.  

Another technique used to estimate runoff is the curve number method established 

by USDA in 1954 (Rallison 1980). The curve number is based on the area’s hydrological 

soil group, land use, and hydrologic condition. The method was developed for the 

estimation of direct runoff from storm rainfall. Curve number method is widely used 

because of its convenience, its simplicity, its authoritative origins, and its responsiveness 

to four readily grasped catchment properties: soil type, land use, surface condition, and 

antecedent condition. The SCS runoff equation is as follows: 

𝑄 =  
(𝑃−𝐼𝑎)2

(𝑃−𝐼𝑎)+𝑆
     (2) 

Where: 

Q = direct runoff (in) 

P = rainfall (in) 

The initial abstractions Ia is a percentage of S as follows: 
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𝐼𝑎 = 0.2 𝑆                                 (3) 

Noting that S is the potential max retention which can be computed as:  

𝑆 =
1000

𝐶𝑁
− 10             (4) 

 

The curve number method has been widely used in different regions for a variety 

of purposes, but there are concerns in using this model, which was developed for humid 

regions, in arid regions. This method was designed based on one climate dataset, taking 

into consideration the natural characteristics of a humid region. With this bias, the CN 

procedure is less accurate when runoff is less than 0.5 in., which is the case in arid 

regions, where precipitation is typically low with exceptions for some high intensity 

events.  

The Initial Abstraction parameter accounts for all losses prior to runoff and 

consists mainly of interception, infiltration, evaporation, and surface depression storage. 

This parameter is assumed as 0.2 of potential maximum retention based on watersheds 

studied in humid regions. Accordingly, vegetation cover in humid regions is larger 

compared to arid regions which have a lower potential of intercepting high runoff 

volumes which may lead to flooding.  

 

1.3 Surface Runoff Impacts on Arid Regions 

In arid regions, rainfall is sporadic and varies spatially and temporally. Short but 

intensive thunderstorms of highly intense rainfall usually take place early in the rainy 
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season and at the end of the season (Pilgrim 1988). Therefore, flash flooding occurs 

quickly on a timescale of minutes to a few hours usually over small drainage areas on the 

order of a few hundred square kilometers. These are the most dangerous floods because 

they can occur with little or no warning and are often associated with fast-moving waters 

that can negatively impact human life, urban infrastructures, and agriculture. 

Floods affect large areas, particularly in arid regions, with thousands of human 

casualties causing significant damage. For example, it has been recorded in Jordan that a 

flash flood occurred in March 1966, leading to around 200 deaths and 250 injuries. 

Approximately half of the houses in the town of Ma'an were demolished, in addition to 

3,000 residents being left homeless (Al-Qudah 2011). In addition, more than 113 people 

have lost their lives in Saudi Arabia and 10,000 homes have been destroyed in the last 5 

years because of devastating flash flood events (Youssef. 2016). In 2013, Sudan 

experienced flash flood events causing 48 deaths and over 210,000 affected people 

(UNOCHA 2013). 

Urban projects such as transportation networks are impacted by flash flooding.  

Heavy rainfall and devastating floods may cause road closure, traffic volume growth, 

damages to road structure and destroy bridges. For instance, the expressway between two 

large cities in Saudi Arabia, Jeddah and Makkah, was closed on Nov 25, 2009, due to 

extreme flooding. The highway remained close on the following day, Nov 26 amid fears 

that the Jamia “University” bridge would collapse completely (Daoudi 2019).  

Agricultural industries are affected differently by flash floods. Certainly, Sudan 

has been extremely affected by floods that have caused agricultural losses. According to 

the Food and Agriculture Organization of the United Nations almost one-third of 
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cultivated land has been flooded, affecting three million people in agricultural 

households. FAO estimates that 108,000 head of livestock have been destroyed and 5.4 

million acres (2.2 million hectares) of cropland have been flooded (FAO 2017). 

 

1.4 Research Objectives 

This study discusses how hydrological models can be used to simulate rainfall-runoff 

in arid regions where there is a lack of historic data. The essential research question is: 

Due to a lack of historic data in arid regions, what are the applicable hydrological 

models that can be used to assess flood risk potential and how can a flood risk study be 

carried out?  

Furthermore, some concerns and questions addressed by this PhD research: 

• What is the prevalence of rainfall-runoff modeling in arid regions?  

• Do existing rainfall-runoff models sufficiently estimate arid regions streamflow? 

• How has climate variability impacted precipitation trends at annual and monthly 

scales?  

• What approach is necessary to determine flood risks in arid regions? 

 

1.5 Overview of Dissertation 

This dissertation is comprised of five chapters. Chapter One is the overall introduction 

and includes the background and research objectives of the study. Chapter Two is the 

literature review of relevant topics in hydrological modeling in arid regions. This chapter 
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includes a literature review of runoff models for arid regions. Chapter Three covers the 

climate study of a specific arid region which is Tabuk region. Chapter Four includes 

assessments of flood risks produced from extreme events to actual channel 

characteristics. Chapter Three and Four, with their respective abstracts, research 

questions, materials and methods, results and discussions, and conclusions, are related to 

the overall goal of evaluating methods to estimate water quantity in an arid region by 

determining the effects of climate variability on generating extreme floods. Chapter Five 

is a summary of the overall conclusions and suggestions for further research, 

respectively.
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Chapter 2. Rainfall- Runoff Modelling in Arid Regions: case 

study Middle East 

 

Abstract 

Developing models relating the rainfall incident upon a watershed to the stream 

flow originating from the watershed has been a major focus of surface water hydrology 

for years. Models’ configuration was originated to work with limited input parameters, so 

not necessarily valid unless the model has been tested in different situations. Most models 

were designed for humid regions that receive high amounts of precipitation compared to 

arid regions as well as other differences. For instant, vegetation cover is extensive in 

humid areas compared to arid areas. In addition, there are very intense rainfall events that 

occur during the year causing runoff in both humid and arid regions but the nature of the 

events in arid regions is different compared to humid regions in terms of timing and 

vegetation conditions. This chapter will provide an assessment and demonstration of the 

suitability of using rainfall-runoff models particularly in arid regions. The ideal location 

representing arid lands is the Middle East which is characterized by very low 

precipitation, poor vegetation, and high rates of evaporation.  
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Introduction 

A scientific approach for the management of natural resources like water requires 

a periodical revision of the database. Revision involves checking and changing 

information to reflect the situation in the field. Modeling enables a quantitative 

assessment of the consequences of heterogeneity in ecological systems over a broad 

range of spatial and temporal scales. Integration of several surface features that indicate 

groundwater potentialities in a systematic way is an important aspect in water 

management studies. 

 A database designed to support water resource decisions must contain a variety 

of thematic information because of the interdisciplinary nature of water problems. 

Geographic Information Systems (GIS) technology provides a means of integrating 

information and knowledge from other data sources into the decision-making process and 

helps to handle and analyze remotely sensed data (Adinarayana 1996).  

Some researchers have shown that the application of multi-thematic Earth charts, 

remote sensing and GIS is useful for the detection of reliable water zones for exploration 

and for the creation and management of water supplies. (Sidhu 1989, Mattikalli 1995, 

Kamaraju 1996).  

Hydrological runoff- rainfall model was developed by using GIS and remote 

sensing (Lynn 1989). Numerous studies have been conducted to show the capabilities of 

remote sensing and GIS systems in natural resource applications and growth planning. 

Wherefore, improving water management is a necessary mission to conserve water 
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especially for places where there is existed water scarcity (Smith 1980, Hellden 1982, 

Trotter 1991, Kushwaha 1993). 

The purpose of this chapter is to be providing an assessment and demonstration of 

how suitable of using rainfall-runoff models particularly in arid regions. Middle East 

region (Figure 2.1) represents the true case of water shortage and poor management. 

Middle East contains 18 countries divided into four major subregions, Arabian Peninsula, 

Cacaos, Iran, and Near East. 

Figure 2.1 Middle East geography region (ESRI 2017). 
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2.1 Desertification in Middle East 

Water cycle impacts environment components in various ways. The circulation of 

humidity and heat between the atmosphere and Earth's surface has a significant influence 

on the dynamics and thermodynamics of climate system. Even though, water can occur in 

three states, vapor, liquid and gas, the transition between the three states impacts heating 

and cooling the climate. Water vapor is the largest contributor to the Earth’s greenhouse 

effect (Evans 2012). 

However, the temperature of the planet is not regulated by water vapor, but 

instead by temperature pressure. This is because the temperature of the ambient 

atmosphere restricts the overall volume of water vapor that the atmosphere can contain. 

As well as clouds regulate the atmosphere by changing the Earth's radiation budget.  

Rainfall generation is generally seen as the beginning of the Earth's hydrological 

cycle. Rainfall can be in the form of rain or snow. However, rain or melt water may be 

intercepted by vegetation cover, or may penetrate soil layers, or run over the surface of 

the soil into streams.  

Accordingly, infiltrated water may be deposited in the soil as soil moisture or may 

percolate to deeper levels to be stored as groundwater. Along with a portion of the water 

intercepted by vegetation, deposited in soil surface depressions and stored in the soil 

profile, water can return to the atmosphere because of evaporation. Plants remove a large 

amount of soil moisture from the root zone and evaporate much of this water from their 

roots. 
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Desertification is the diminution or destruction of the biological potential of the 

land and can lead ultimately to desert-like conditions. This global problem has received a 

great amount of attention in the past few decades since many countries in the world have 

suffered its effects and consequences (UNCOD 1977). 

Desertification responds to both long-term climatic conditions and human impact. 

High temperature, low humidity, and high values of evapotranspiration, as well as the 

impact of overgrazing and woodcutting have contributed to the reduction of biological 

productivity and the spread of arid zones. The combination of human activities and the 

occasional series of dry years has led to vegetation reduction in arid environments 

(Goudie, 1986). 

Water is the most precious natural resource in arid regions due to the limitation of 

water resources, expanding population, and increasing volumes of industrial and 

domestic waste. Rainwater, surface water, and groundwater are the main natural 

resources of water. Many hydrologists have investigated the impact of temperature and 

precipitation change on hydrology. Average temperature and precipitation both increased 

during the 20th century, mostly due to an increase in intense rainstorms (Muttiah 2002).  

The increasing pressure on water resources in those regions could lead to severe 

situations. For instance, arid regions are highly affected by drought phenomena since they 

have limited water resources. Drought is defined as the period of abnormally dry weather 

sufficiently prolonged for the lack of precipitation to cause a serious hydrological 

imbalance (WMO 1992).  
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There are nine countries listed as the poorest places with natural resources of 

water located in Middle East. Middle East receives the lowest average annual 

precipitation comparing to other regions and Kuwait state recorded the lowest 

precipitation rate (Table 2.1).  

 

Table 2.1 Middle East water resources, by subregion (FAO 2003). 

 Annual Precipitation Annual Internal Renewable Water Resources 

Subregion Height 

(mm) 

Volume 

(Million m3) 

Volume 

(Million m3) 

% Of Middle 

East 

Per Inhabitant 

2005 (m3) 

Arabian Peninsula 117 362,041 6,110 1 108 

Caucasus 702 130,582 73,104 15 4,597 

Iran 228 397,894 128,500 27 1,849 

Near East 439 673,531 276,376 57 1,964 

Total region 238 156,4048 484,090 100 1,711 

 

Subregions in Middle East receive variant amount of precipitation, Arabian 

Peninsula has highly potential of drought occurrences due to the total population, and 

area covered comparing to average precipitation, which is the lowest. As mentioned 

earlier, population growth continues, energy use increases, and standard of living 

increases all requiring more water. Therefore, establishing ways and techniques to 

preserving water resources in arid and semi-arid is essential for sustainability and life 

quality.  

Growth in population has led to rapid urbanization, marked by agricultural, 

manufacturing, and residential land grading; vegetation removal; and soil compaction. 

Such landscaping changes improve the impervious surface area and greatly affect the 
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quality and quantity of storm water runoff. (Foley 2005; Hatt 2004; Walsh 2000). In turn, 

the hydrological impacts of urbanization include declines in base flow and erosion and 

changes in floodplain area, peak flow rate and runoff level, with flooding being the most 

destructive outcome (Niemczynowicz 1999).  

Urbanization in arid regions requires the use of storm water runoff quantity 

control structures because of the high-intensity, short-duration rain spells in these 

regions. Such high-intense storms, combined with the poor drainage potential of desert 

soils, can contribute to floods, property damage and loss of life. As a result, storm water 

control systems were built in the 1960s to handle flooding in arid regions (Baxter 1985). 

Flooding regimes in arid and semi-arid regions are heavily influenced by climate change 

and water shortage, water regulations, and increased water demands. 

Accordingly, most potential of water scarcity due to shortage of resources is 

assimilate in Middle East. By far, countries in good financial stand can provide drinking 

water to its people but with high operation cost which rise a concern of the ability of the 

existed process of dissention to stay or sustain.  

 

2.2 Water Resources and Use in Middle East  

Middle East has suffered from poor water resources and water management over 

past years. The Middle East is the first region of the world to effectively run out of water. 

Countries such as Saudi Arabia, Iraq, Jordan, and Yamen are facing serious issues, which 

require immediate attention from world community (Allan 2001).  
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Middle East contains six percent of world’s population and keeps raising (Table 2.2), 

(Figure 2.2), yet just one percent of freshwater resources locates in the region (World 

Bank 2017). 

 

Table 2.2 Population growth in Middle East (2005-2020) (FAO 2003). 

 Total Area Population (millions) (2005 & 2020) 

Subregion km2 % Of Middle East 2005 2020 % Change   

Arabian Peninsula 310,029,0 47 56.8 87.3 53.69 

Caucasus 186,100 3 15.9 16.7 5.0 

Iran 174,515,0 27 69.5 83.4 20 

Near East 153,303,0 23 140.8 171.4 21.7 

Total region 656,457,0 100 283.0 358.8 - 

 

 

Figure 2.2 Population growth (million) in Middle East 2005-2020 (FAO 2003). 
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Countries suffer from absolute water scarcity when their annual water supply 

from natural sources drops below 500 cubic meters per person to satisfy household, 

agricultural and industrial needs (FAO 2003).  

Accordingly, the lack of agriculture lands lead to serious problem, which is 

increasing desertification in the region. In addition, wastewater treatment production 

grows slowly in Middle East. The annual volume of wastewater discharged in untreated 

form in Middle East and North Africa countries are 7.5 km3, which is 57% of the total 

wastewater produced in the region. In addition to about 83% of treated wastewater used 

in agriculture, urban and peril-urban farmers to grow a range of crops use most of the 

partly treated, diluted or untreated wastewater (FAO 2003). 

On the other hand, Gulf countries depends on the desalination to cover up the 

shortage in water supplies but as mentioned earlier misusing seawater could lead to 

severe issues to environment and health in long run. Middle East and North Africa 

accounts for almost half of the total world’s desalination capacity. With the fact of water 

shortage and lack of sustainability there must be reconsider of the existed water 

management in the region and suggest proper solution could reduce harm to water 

resources (World Bank 2017). 

 

2.3 Modeling of Watershed Hydrology  

A watershed describes an area of land that contains a common set of streams and 

rivers that all drain into a single larger body of water, such as a larger river, a lake, or an 

ocean. There are elements affecting watershed processing such as climate, topography, 

geology, soils, land cover, and land use and are related to the basin size. Many smaller 
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watersheds are included within larger watersheds. It all depends on the outflow point; the 

watershed for that outflow area includes all of the land that drains water to the outflow 

point. Watersheds are critical because what happens in the land area "above" the river's 

outflow point affects the streamflow and water quality of the river. 

Watersheds may be classified by its cover. The form and pattern we see in the 

landscape are the product of extensive human activity. Analyzing land use, patterns, and 

developments is standard practice in all areas of environmental conservation, particularly 

watershed protection. Since multiple uses exist in many places and some land uses are 

not recognizable landscape features in and of themselves, mappers often use the word 

land cover to characterize the delineation of landscape structure and pattern created by 

dominant land uses and residual vegetation groups. Urban land (residential, agricultural, 

manufacturing, mixed), farmland (row crops, field crops, pasture), transportation (roads, 

railroads, airports), rangelands, silviculture, and mining/extractive areas are several 

typical land cover categories. Land use patterns in a watershed, including plant patterns, 

may be analyzed using GIS data or maps.  

Watershed models are representations of natural water system by using 

mathematical equations providing assessment technique for planners and designers. They 

are, for example, used to evaluate the quantity and quality of streamflow, maintain certain 

level in water reservoir, provide sustainability to groundwater, surface water and 

groundwater conjunctive use management, water distribution systems, water use, and a 

range of water resources management activities (Wurbs 1998).  

Accordingly, human activity’s paly role in defining parameters such as biological 

population, and economic response. In addition, Models are helping to estimate the value 
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of instream water use that allows tourism, ecological and biological issues to compete 

with conventional use uses, irrigation, hydropower, communities, and industry (Hickey 

1999). 

 

2.4 Floods Simulation in Arid Regions 

Flood is resulting of high-intense rainfall events when water flows from upstream 

to downstream in natural or constructed channel. Upstream is the source when water 

flows from high elevated places such as mountains towards places with lower elevations 

which defined as downstream. The water collected in the stream channel flows to lakes, 

seas, and oceans. In the global hydrological cycle, the primary mechanism is the 

circulation of water in between the atmosphere, the surface, and the oceans. In this 

situation, precipitation on land and seas, evaporation from land and oceans, and drainage 

from land to oceans are the main components.  

The flow of water through the hydrological cycle is related to the degradation and 

transfer of sediments and chemicals. The erosion and depositional effects of streams, 

tides, and ice have created a variety of Earth's landscapes that make the Earth's surface 

distinct from any other planet.  

Floods are very rare and infrequent in arid and semi-arid regions, which are hard 

to predict, and can cause severe harm to people lives and infrastructure as well. Floods 

are divided into four categories depending on the features of the flood occurrence: flash 

floods that last a few hours, single-event floods that last longer, multiple event floods, 
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and seasonal floods. Flash flooding are most common in small headwater basins during 

short-duration convective, frontal, or orographic storms with high-intensity rain cells.  

The economic, social, and environmental consequences of flash floods are close 

to those of other forms of "river floods," with the only exceptions being that flash floods 

often occur with little, if any, notice and are usually confined to comparatively small 

areas. The consequences of flash flooding, on the other hand, are often devastating and 

depending on construction and land use in the affected basins, may result in significant 

loss of life due to the abrupt onset of the flood events. 

Modeling methods have been widely used for over 40 years for a variety of 

purposes, but almost all modeling tools have been primarily developed for humid area 

application. Accordingly, there are concerns in using models, which were developed for 

humid areas in arid areas due to increasing differences in climate conditions, and 

parameters, which have been developed in the models (Wheatear 2008). 

Rainfall- runoff relations play a major role in any hydrological study examining 

or evaluating effects on a catchment area, drainage basin or watershed. Rainfall is the 

primary hydrological input, but rainfall in arid areas is commonly characterized by 

extremely high spatial and temporal variability. However, in arid, the runoff generation is 

extremely high due to the combination between intense rainfall events and the lack of 

vegetation cover (Wheatear 2008). 

The disparity in precipitation rate, which is minimal in arid regions due to desert 

conditions, is characterized as harsh climate (Table 2.3). Arid hydrology has recently 

become an important topic of research. With half the countries of the world facing 
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problems of aridity. There is an increasing demand of developing hydrological 

parameters occurring in catchments located in arid regions (UNESCO 1979). 

Accordingly, lack of water resources and high-water consumption could lead to 

sever impact in long term. One of the most important and immediate effects of global 

warming would be the changes in local and regional water availability since the climate 

system is interactive with the hydrologic cycle.  

 

Table 2.3 worldwide climate conditions. 

Climate classification Precipitation High - Low Average Temp °F 

Tropical 60 – 160 inch/ year 64.4 

Temperate 30 – 60 inch/ year 27 – 64.4 

Continental 24 – 47 inch/ year 25 – 71 

Dry < 14 inch/ year, mostly in summer & spring 68 

Polar < 10 inch/ year, mostly in summer < 50 

 

Such effects may include the magnitude and timing of runoff, the frequency and 

intensity of floods and droughts, rainfall patterns, extreme weather events, and the quality 

and quantity of water availability; these changes, in turn, influence the water supply 

system, power generation, sediment transport and deposition, and ecosystem 

conservation. Table 2.4 summaries the similarities and differences between arid and non-

arid regions in terms of rainfall, runoff, evaporation, transpiration, time of concentration, 

and data availability. 
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Table 2.4 Arid and non-arid regions hydrological similarities and differences. 

 Arid Regions Non-Arid Regions 

Rainfall Intensive short events, with low 

annual rainfall amount. Rainfall tends 

to be more variable than other regions. 

Low intense rainfall events occur 

evenly through the year. 

Runoff Extreme rainfall events cause severe 

stream flows with irregular infiltration 

capacity. 

Occurrence when rain falling on 

saturated areas. Uniform infiltration 

capacity 

Evaporation 

and 

Transpiration 

High evaporation rate from bare soil 

and low transpiration due to low 

vegetation cover. Most of rainfall 

occurs in summer. 

Potential Evatranspiration is less 

than arid regions cause rainfall 

occurs when temperature is low 

(Winter). 

Time of 

concentration 

Both can be measured by 

1) SCS Method 

2) Velocity Method 

Data 

availability 

Very rare Widely available 

 

Not all of these effects are negative, but due to progression of water consumption 

which affect other natural resources they need to be studied and revised in soon future. In 

addition, vegetation cover is extensive in humid regions compared to arid regions. 

Definitions of aridity depend on the purpose of the classification. They may relate to 

features of the Earth's surface, such as geomorphology, soil science or natural vegetation, 

which are effects of climate and tend to correspond with common perceptions of aridity. 

Most formal definitions are in terms of the causes of aridity and are often based on 

comparisons between precipitation and some measure of potential evaporation.  
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2.5 Summary 

Rainfall-runoff models have parameters that been created for specific climate set. 

Most models are based on estimated parameters where the humid climate is dominating.  

Time of concentration, rainfall intensity, soil and land cover are tools help predicting 

flow intensity and direction. These parameters could differ from region to another. 

Climate variability impacts hydrological modeling performance. Rainfall events 

are more intense and occurring in short duration in arid regions than humid regions. 

Some models are designed to analyze continuous event of precipitation, which is 

contrasting of what occurring in arid lands. Accordingly, vegetation cover is variant in 

both humid and arid regions.  

However, plans in arid lands featuring with ability of water retention. The 

evaporation rate mostly is high in arid regions, which represent huge amount of the 

precipitation due to the high rate of temperature and soil group. Presenting data through 

hydrograph in both regions is very similar but rainfall intensity and short duration 

occurrence makes it flashier in arid regions.   

Streamflow simulations and predictions, physical-based hydrological models have 

been widely applied. Among the numerous types of physically based models, fully 

distributed hydrological models, which can account for the geographic variability of the 

watershed landscape as well as its atmospheric forcing, are regarded the gold standard for 

hydrological modeling and have been used in ungauged basins. Physically based 

distributed hydrological models, on the other hand, have high computational costs and 

require high levels of hydrological expertise for modelers and users due to their complex 
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model structures and extensive calculation requirements, limiting their application in 

water resource management. 

 

2.5.1 Mike 11 

The MIKE 11 is an implicit finite difference model for one-dimensional unstable 

flow computing that may be extended to looping networks and quasi-two-dimensional 

floodplain flow simulation. The model was created to undertake extensive river 

modeling, including the treatment of floodplains, road overtopping, culverts, gate 

openings, and weirs. MIKE 11 is a modelling package for the simulation of surface 

runoff, flow, sediment transport, and water quality in rivers, channels, estuaries, and 

floodplains (Mike 11 2005). 

Mike 11 model parameters include: surface, root zone, snow melt data, ground 

water data, initial conditions, and irrigated area. MIKE 11 can solve vertically integrated 

mass and momentum equations that are kinematic, diffusive, or completely dynamic. The 

implicit finite difference approach is used to solve the continuity and momentum 

equations. This technique is designed to be independent of the wave description provided. 

Boundary types include water level (h), Discharge (Q), Q/h relation, wind field, dam 

break, and resistance factor. In the model, the water level boundary must be applied to 

either the upstream or downstream border condition. The discharge boundary can be used 

to define either the upstream or downstream boundary condition, as well as the side 

tributary flow. Runoff is represented by the lateral inflow. Only the downstream 

boundary can be used with the Q/h relation border. (Mike 11 2005). 
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2.5.2 Sacramento  

SAC-SMA theoretically describes the hydrologically active zone of the soil as 

two layers, a thin top layer and a considerably larger bottom layer. Each layer consists of 

tension and free water storages that interact to generate soil moisture states and a total of 

five components of runoff. The free water components are mostly driven by gravity 

forces, whereas the tension water (slow) components are mostly driven by 

evapotranspiration and diffusion. (Burnash 1995). 

The partitioning of rainfall into surface runoff and infiltration is limited by upper 

layer soil moisture levels and lower layer percolation potential. There is no surface runoff 

before the top layer's tension water capacity is filled. The content of the upper layer free 

water storage, as well as the insufficiency of lower layer tension water and free water 

storages, then influence surface runoff production.  

The tension water component storages of SAC-SMA are related to plant-

extractable soil moisture, while free water components are related to gravitational soil 

moisture (Koren 2000). Occurrence of these soil properties directly in SSURGO data is 

unpredictable (data records in these fields are frequently unpopulated), so the assumption 

made by Koren is used frequently. They estimated these properties by using STATSGO 

dominant texture grids available for eleven soil layers (Miller 1998). 

 

2.5.3 Pitman 

The modeling component's primary goal is to establish the hydrological baseline 

river basin discharge. The Pitman model includes explicit procedures for simulating 

interception, infiltration of surplus surface runoff, soil moisture (or unsaturated zone) 
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runoff, groundwater recharge and drainage to stream flow, evaporative losses from the 

unsaturated zone, and groundwater storage (in the vicinity of the river channel). As a 

result, the model has a rather high number of parameters, and it is often hard to build 

parameter sets that provide unique results using traditional calibration methods 

(Kapangaziwiri 2008). 

The model's potential benefit is that it can assess the various contributions to 

stream flow and should be responsive to changes that occur within sub-basins. Climate, 

land use, and land cover changes, as well as different forms of abstractions and water 

consumption, may all be affected by these changes (Kapangaziwiri 2008). 

 

2.5.4 IHACRES 

The IHACRES model is a simple model for simulating rainfall-runoff that 

requires 5 to 7 parameters to calibrate the results. This model runs simulations over a 

wide range of regions (up to 5000 square kilometers) and time frames. The IHACRES 

model, according to the majority of studies which applied the model, is an efficient and 

simple model for rainfall-runoff simulation that requires little data (Croke 2007). 

The performance of IHACRES revealed certain flaws, although the flow 

comparison between calibrated stream flow findings and actual stream flow data in HEC-

HMS fits well.  

 

2.6 Impacts of Climate Variability on Hydrological Models  

The fundamental problem in the simulation of rainfall-runoff in arid and semi-arid 

regions is due to climatic conditions. Models been used in arid lands are lacking some 
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parts affect the accuracy and reliability of outcome results. Such as using models been 

created in mostly humid area with unfit parameters as an analyzing tool in arid area. 

There are models that have been widely used for simulating rainfall-runoff in arid 

regions. For instance, Mike 11 Nam was originally developed in Denmark, where the climate 

describes as temperate (moderate). However, this model has been applied in three different 

countries, Turkey, Iraq, and Iran where the climate varies. In addition, Sacramento, Pitman and 

IHACRES are models that been applied in many countries in middle east with lacking 

modification in parameters. Table 2.5 summaries four common rainfall-runoff models, their 

origins, where they are been applied and in which climate classification. 

 

Table 2.5 Models widely used in different climates and locations. 

Rainfall-

Runoff 

Models 

Developed at: 

(Climate Region) 

Studies and Locations  

 (2004-2021) 

Climate 

Classifications 

 

 

Mike 11 

NAM 

Mike 11 NAM was 

originally developed in 

Denmark, where the 

climate describes as 

temperate (moderate) 

* Turkey (Keskin et al. 2008) 

* Iraq (Kamel. 2008) 

* Iran (Hafezparast et al. 2013) 

* Mediterranean 

* Subtropical aridity 

* Semi-arid 

 

 

Sacramento 

Sacramento model was 

developed in Sacramento, 

CA, USA, where the 

Mediterranean climate 

dominates. 

* Jordan (Abdulla et al. 2007) 

* Thailand (Yang et al. 2020) 

* Greece (Bournas et al. 2021) 

* Hot Dry 

* Tropical 

* Mediterranean 

 

 

Pitman 

Pitman model was 

mostly developed and 

applied in South Africa 

where the climate is 

temperate. 

* Nigeria (Owolabi et al. 2012) 

* Angola (Hughes et al. 2006) 

* Zambia (Mwelwa. 2004) 

* Warm tropical 

* Tropical 

* Arid or semi-arid 

 

IHACRES 

IHACRES model was 

originally developed by 

the Australian National 

University 

* Australia (Wheater et al. 2008) 

* Jordan (Abushandi et al. 2011) 

* Iran (Ahmadi et al. 2019) 

* Tropical 

* Hot Dry 

* Semi-arid 

 

The presented models demonstrating models were developed in humid regions, 

yet they have been used in arid and semi-arid widely regardless of the different 
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parameters may or may not be suitable for those regions as mentioned earlier. In addition, 

the complexity of arid climate and its phenomena of precipitation intensity and land use 

and cover lead to put contribution in developing parameters to be used in models fitting 

with arid conditions. 

 

2.7 Conclusions 

This paper demonstrated that there is a process been applied for years to analyze 

data in arid regions that does not lead to the right results. Due to population growth with 

water shortage, different climate set, extreme nature of land use/cover, and rainfall 

intensity/duration. Modeling in arid regions is a challenge due to shortage of significant 

data and lack of suitable simulation software. The causes presented could be beneficial to 

engineers who are responsible for runoff prediction, the design of arid modeling tool, and 

maintenance and improvement projects in Middle East region. 
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Chapter.3 Analysis of Precipitation over Tabuk Region, Saudi 

Arabia 

 

Abstract 

In this chapter, rainfall over Tabuk, Saudi Arabia is analyzed using data from available 

meteorological stations. The data obtained displaying the annual rainfall climatology over 

the Tabuk region (1978 - 2013); this period is chosen due to the high-quality observed 

rainfall data being available. This data set period is divided into three main groups as wet, 

average, and dry based on annual rainfall occurs periodically over the Tabuk region. The 

analysis of these data shows that the highest amount of rainfall occurs during the wet 

years was in January over Tabuk area. Whereas the highest amount of rainfall occurs 

during dry years was in January over the same area. The month of the lowest amount of 

rainfall over Tabuk during the dry years was June, when the amount of rainfall is very 

small. The objective of this chapter is to present Tabuk catchment climate which has 

common aridity characteristics in terms of the small precipitation magnitudes and 

temperature rate that been analyzed annually and monthly over 35-year period. 
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Introduction 

Hydrology is a study of the process of the hydrological cycle, its temporal and 

spatial variations, and the interaction between water and other subsystems, such as 

ecology, the environment and society, in the Earth system. Construction engineering for 

water conservation, energy sources and transport is also essential. Hydrological 

phenomena are the products of interactions between atmospheric processes and land 

surface conditions (McCuen 2005).  

Water is the most precious natural resource in arid regions due to the limitation of 

water resources, expanding population, and increasing volumes of industrial and 

domestic waste. Rainwater, surface water, and groundwater are the main natural 

resources of water. Preserving current resources from water depletion and limiting usage 

are challenge task for governments and people live in the region.  

In addition to facing water resource shortages on both ground and surface water, 

the Kingdom of Saudi Arabia faces the issue of flash flooding almost every year. One of 

the main aspects of maintaining the water sector in the kingdom is excess water 

management. Tabuk, like many other cities in Saudi Arabia, suffers from flash floods as 

it belongs to an arid climate, which is exacerbated by surface water scarcity.  

With its associated high demand for agricultural water, unexpected floods and 

strong population growth would increase the pressure on water supplies, in Tabuk, on 

groundwater. Water supplies are limited, however, and therefore a comprehensive 

understanding of potential flooding scenarios in Tabuk is a key to sustainable future 

management of water resources. Furthermore, a method for spatially distributed surface 

flow estimation for the Tabuk region is still lacking.  
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Actions to minimize flood risk in the Kingdom of Saudi Arabia, especially in 

urbanized cities such as Tabuk, require accurate predictions. In addition, accurate flash 

flood forecasts are crucial to surface water harvesting, which is a promising, although 

difficult, approach to sustainable management of water supplies in the Kingdom of Saudi 

Arabia.  

Accurate flash flood predictions in the Tabuk area are challenging for several 

reasons, such as, recorded rainfall data and topographic information, which are inputs to 

flood prediction models, are often not available in the required spatial-temporal 

resolution due to a sparse observation network. Spare and unknown precipitation 

knowledge greatly decreases the predictive efficiency of flood prediction models.  

The present-day climate of the desert and semi-desert areas is known to have 

changed on various temporal (interannual, interdecadal multidecadal and intersessional) 

and spatial scales (particularly for rainfall), which represents a major challenge for the 

climate forecasting and modelling of these climatic variables in these areas 

(Lioubimtseva 2004). 

In Saudi Arabia, some areas receive their total annual rainfall in only a few days, 

from intense bursts of rain over a short duration such as 3 to 5 h in a day. In addition, 

Tabuk area, Saudi Arabia has heterogeneous hydrological characteristics that are 

different from those of humid and even other arid areas, particularly in terms of 

topography, rainfall, and flash flood patterns. The objective of this chapter is to present 

Tabuk catchment climate which has common aridity characteristics in terms of the small 

precipitation magnitudes and temperature rate that been analyzed annually and monthly 

over 35-year period. 
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3.1 Water Resources in Middle East 

The Middle East has suffered from poor water resources and water management 

over past years. The Middle East is the first region of the world to effectively run out of 

water. Countries such as Saudi Arabia, Iraq, Jordan, and Yamen are facing serious issues 

which require immediate attention from world community (Allan 2001). 

Middle East contains six percent of world’s population yet just one percent of 

freshwater resources locates in the region. Countries suffer from absolute water scarcity 

when their annual water supply from natural sources drops below 500 cubic meters per 

person to satisfy household, agricultural and industrial needs (World Bank 2017). 

The lack of agriculture lands lead to serious problem, which is increasing 

desertification in the region. In addition, wastewater treatment production grows slowly 

in Middle East. The annual volume of wastewater discharged in untreated form in Middle 

East and North Africa countries are 7.5 km3, which is 57% of the total wastewater 

produced in the region. In addition to about 83% of treated wastewater used in 

agriculture, most of the partly treated, diluted or untreated wastewater is used by urban 

and peril-urban farmers to grow a range of crops.  

On the other hand, Gulf countries depends on the desalination to cover up the 

shortage in water supplies but as mentioned earlier misusing seawater could lead to 

severe issues to environment and health in long run. Middle East and North Africa 

accounts for almost half of the total world’s desalination capacity. With the fact of water 

shortage and lack of sustainability there must be reconsider of the existed water 

management in the region and suggest proper solution could reduce harm to water 

resources (World Bank 2017). 
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3.2 Study Area, Tabuk, Saudi Arabia 

3.2.1 Geography and Location  

 The Tabuk region is located in the extreme northwest of Saudi Arabia, with 

Jordan bordering on the north and the Gulf of Aqaba and the Red Sea bordering on the 

west (Figure 3.1). Surrounding it are three other administrative regions; Al Jouf, Hael, 

and Madinah. Evidently, the strategic position of the region is considered to be one of the 

most significant elements of economic growth due to its long sea front in the Red Sea.  

 

Figure 3.1 Tabuk geography region (Esri 2017).  
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In addition, being a border area allows a large proportion of trade access to Egypt, 

Jordan, Syria, Lebanon, and Turkey, as well as the movement of passengers and pilgrims 

from those countries and other countries in North Africa. The area of the Tabuk Region is 

139,000 square kilometers or about 6.2% of the total area of the Kingdom. The Tabuk 

Region stretches from North to South covering over 580 kilometers and extends over 480 

kilometers from East to West (UN-Habitat 2019). 

 

3.2.2 Demographic background  

According to the estimations of the Central Department of Statistics and 

Information, the total population of the region was projected at 887,000 people, 

representing about 2.88% of the total population of the Kingdom, in 2014. The Saudi 

population in the region is estimated to be 732,000 and 155,000 are made up of non-

Saudis. The Tabuk Governorate has 72% of the total population of the region, followed 

by Amlaj with 7.7%, Diba with 6.6%, Wajeh with 5.6%, Taima with 4.6%, and finally 

Haql governorate with 3.5% of the total population. In 2004, the urbanization rate for the 

region was 85%, noting that this rate differs from one governorate to another (UN-

Habitat 2019). 

 

3.2.3 Land use  

Land use plans were proposed based on the Regional Development Plan selected 

until the target year 1450H, which was the basis on which detailed studies of the 

Regional Sectoral Plans for services, infrastructure, and the economic base of the Tabuk 

Region were developed. The general framework of land use for the Regional Plan for the 
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Tabuk Region in 1450H noted that agricultural areas would increase to 156% of the 

current area of agricultural areas. For urban agglomerations, it will increase to 90% of the 

current status.  

For industrial zones, there are two industrial cities in Duba and Tabuk as well as 

the industrial areas in each of the cities of Tabuk, Wajh, Dabaa, Tayma, and Amlaj. As 

for the tourist areas, it is spread in Tabuk and the five governorates of the region. The 

plan was supported by a regional road network and a head to serve the main development 

axes, linking the National Growth Centre with Regional Growth Centers and Local 

Growth Centers while supporting sub-development hubs to link regional and local growth 

centers with rural growth centers. 

 

3.2.4 Environmental Aspects  

Tabuk City lies at the junction of the Hejaz Mountains and the plains in the North. 

It is settled at an altitude of 778 meters bordered by large mountainous systems to the 

South as well as large areas of agriculture to the South, East, and North, and protected 

areas and hunting reserves further east. All these elements make Tabuk´s immediate 

natural surroundings a varied and characteristic environment. The region, as well as the 

rest of the country, has a semiarid to hyper-arid climate, characterized by high 

temperatures, deficient rainfall, and extremely high evapotranspiration (Saudi Ministry of 

Information, 1992). 

Tabuk region is also characterized by its northerly cooling influences and by 

having the lowest winter temperature average in the country. Winter temperatures usually 

range between 6°C and 18°C, occasionally dropping below zero at night, and summer 
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temperatures vary from 28°C to 40°C. Prevailing winds coming from the West also 

influence these temperatures.  

 

3.2.5 Climate and Topography  

The Kingdom of Saudi Arabia represents 80% of the Arabian Peninsula. 

Environmentally, the country is mainly formed by large sandy and rocky deserts with big 

mountainous systems. It also has many structural features such as 2,410 kilometers of 

seacoasts, 2.7 million hectares of forest land, over 171 million hectares of rangelands, 35 

square kilometers of mangroves, and 1,480 square kilometers of coral reefs. These 

ecosystems have an incalculable value; not only do they structure the territory, but they 

are also key elements for the national economy and welfare of the population. Saudi 

Arabia has a mid to high rate of population growth, one of the few in the world, standing 

at 2.52% by the year 2017. If not well managed, this growth can impact and deteriorate 

natural systems, affecting biodiversity and ecosystems’ dynamics (Saudi Ministry of 

Information, 1992). 

 In the case of both the Tabuk Region and the city of Tabuk different drivers of 

environmental degradation have been identified. On the one hand, unsustainable growth 

patterns and inadequate infrastructure are challenging future economic development and 

compromising existing natural resources. On the other hand, the burden on the 

environment is exacerbated by climate change, which is currently driving the already 

severe climate to more extreme conditions (UN-Habitat 2019). 
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3.3 Precipitation 

The dominant contribution to the low annual average rainfall in arid regions is 

short, high intensity rainstorms. Rainfall in the Tabuk region (Figure 3.2) appears to 

differ considerably from year to year, with an erratic distribution in time and space.  

As an illustrative example of the extreme yearly variability, Tabuk rain gauge 

measured the annual rainfall to be 6.8, 13.70, 21.90, 13.00, 39.60, 51.10, and 13.50 mm 

over seven years. On one single day, 76.60 mm of rainfall occurred, even though the total 

annual rainfall in the same year was 92.20 mm observed data from Tabuk rain gauge. 

These types of rainfall events can lead to substantial surface runoff, resulting in severe 

soil erosion. Weather behavior and topographical characteristics play important roles in 

this variation. Around 70% of the total annual rainfall occurs during November, 

December, January, February, and March. 
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Figure 3.2 Tabuk watershed area and stream flows (Esri 2017). 
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3.4 Temperature 

The entire Tabuk region investigated here currently has one climatic station. 

Tabuk station, that has complete climatic data, is located in Tabuk City. Tabuk climate is 

characterized by warm and dry summers (May to September) with mean degree 28.54, 

32.43, 34.48, 34.67, and 31.26 °C respectively. In addition to moderate cold and wet 

winters (October to April) (Table 3.1). The average annual temperature is 23.52 °C 

(1999–2018). 

 

Table.3.1 Temperature description for the period of 1999–2018 (Tabuk Meteorological 

Station). 

Month Jan Feb Mar Apr May Jun 

Average °C 10.59 13.40 17.96 23.66 28.54 32.43 

Month Jul Aug Sep Oct Nov Dec 

Average °C 34.48 34.67 31.26 25.64 17.31 12.25 

 

3.5 Surface runoff 

Tabuk catchment is exemplified by ephemeral wadis, where a stream runs fully 

for a short period of time, usually during and after heavy rain events, and is dry most of 

the year. Flash floods events fill desert dams and may recharge groundwater resources. 

The complex relationship between rainfall and streamflow is influenced by many factors, 

such as catchment slope, land cover type and density, soil type and infiltration rate, and 

evapotranspiration. Moreover, the quality and quantity of streamflow are strongly 

affected by urbanization and agricultural activity. 
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3.6 Methodology  

Define precipitation data between the years 1978 and 2013 at daily time intervals 

have been gathered, including historical and real-time observations. In addition, daily 

data for the selected years were available. Detection and filtering of abnormal and 

missing data were automated using statistical routines. The data set includes annual and 

monthly precipitation were provided by Tabuk meteorological station. However, the 

application of any climate model requires a validation process to make sure that the 

results are in an acceptable range. 

 

3.7 Statistical Analysis  

Statistics are used to display and analyze the remote sensing data. The remote 

sensing data of this study consist of the Tabuk watershed for 1978 and 2013. The 

objective of using these statistics in this research is to provide the descriptive analyses to 

identify the general magnitude of all observations in a data set. The mean or average was 

the statistical measure used in this study. The standard deviation, also an important 

measurement, can be used to measure how closely the values of a data set are near the 

mean. In addition, the minimum, maximum, and range are a group of measurements that 

help in describing the data set. 
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3.7.1 Mean 

The mean of a list of numbers is the sum of the list divided by the number of 

items in the list (Yamen 1967). The mean is the most commonly used type of average and 

is often referred to as simply the average. The mean (μ) is defined as: 

𝜇 =  
1

𝑛
∑ 𝑥𝑖

𝑛

𝑖=1

 

The mean calculation is used to calculate the average monthly rainfall. In Microsoft® 

Excel, the function ‘= AVERAGE (N1:N2)’ is used to calculate the mean for a list of 

data. 

 

3.7.2 Standard Deviation 

The standard deviation measures the degree to which data are concentrated 

around the mean. A small standard deviation means that the values in a statistical dataset 

are close to the mean of that dataset, on average. The standard deviation (σ) of a data set 

is the square root of its variance. 

𝜎 =  √
1

𝑛
∑(𝑥𝑖 − μ)2

1

𝑖=1

 

The standard deviation was used to define the climate classification for the annual 

analysis. In Microsoft® Excel the function ‘= STDEV (N1:N2)’ is used to calculate the 

standard deviation for a list of data. 
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3.7.3 Coefficient of Variance 

 The coefficient of variance was applied, using the following formula: 

CV =  
σ

𝜇
 

Where o is the standard deviation and p. is the mean of the data set (Mann, 1998). This 

equation reveals the relative variability of the rainfall data and the many differences of 

rainfall values.  

 

3.7.4 Skewness 

In probability and statistics, skewness is a measure of the degree of asymmetry of 

a distribution (Yamane 1967). A distribution is considered to be skewed if the tail on one 

side of the distribution is longer than the tail on the other side. If the data is skewed in the 

direction of higher values, it is positive skewed. If the opposite is true, it has a negative 

skewness. In a perfect distribution there will be no skewness and the skew value will be 

zero. The skewness was used to determine whether the data fit a normal or log normal 

distribution. In Microsoft® Excel the function ‘= SKEW (N1:N2)’ is used to calculate the 

skewness for a list of data. 
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3.8 Climate Classification 

In this study, climate classification divides climates into three main climate 

groups, with each group being divided based on annual precipitation. The three main 

groups are wet, average, and dry. The mean and standard deviation are two statistical 

tools involved in cataloging climate. The parameters listing below (Table 3.2) 

demonstrating how data is shifting form its mean which creates the three groups of 

climate classification.  

 

Table 3.2 Boundaries for climate classification Based on Precipitation (Ruppert 2019) 

 Parameter Classification 

Above Average + 0.5* Standard Deviation Wet 

Between Average + 0.5xStandard Deviation & Average - 0.5xStandard Deviation Average 

Below Average - 0.5* Standard Deviation  Dry 
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3.9 Results 

This study evaluated the annual rainfall for the Tabuk region obtained from 

observed datasets for the period 1978–2013. Over the region (1978-2004), there is a drop 

in the annual rainfall for the observed datasets, from approximately 25-30 mm to 

approximately 5-10 mm (Figure 3.3). The lowest annual rainfall (0 – 6.0 mm) occurs 

over the Tabuk region in the year 2004, which is mainly the driest year in 35-year period. 

Across the region, the mean annual rainfall is less than 33.5 mm, thus classifying the 

climatic conditions of the Tabuk region.  

However, rainfall in the year 2013 of the region ranges from 90 -100 mm which is 

the highest recorded in the dataset. These results for annual rainfall in the Tabuk region 

are consistent with the available reported information. Table 3.3 displays the annual 

rainfall climatology over the Tabuk region for the period 1978 - 2013; this period is 

chosen due to the high-quality observed rainfall data being available.  

Similarly, the period 1978–2013 discussed earlier, the data set period (year) is 

divided into three main groups as wet, average, and dry based on annual rainfall occurs 

periodically over the Tabuk region. The dry years (1978, 1981, 1983, 1990, 1995, 1998, 

2002, 2003, 2004, 2008, 2011) and wet years (1979, 1982, 1985, 1986 1987, 1988, 1989, 

1991, 1994, 2010, 2013) representing the first degree of shifting the data from its mean. 

Thus, the results produced by the observed rainfall patterns over Tabuk region encourage 

the use of these datasets for studying the rainfall characteristics of the region. The 

average rainfall for Tabuk over different time scales is obtained from the observational 

datasets and are summarized (Tables 3.5, 3.6, and 3.7).  
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3.9.1 Annual Analysis 

The plot in Figure 3-3 presents the annual rainfall of the Tabuk, Saudi Arabia 

from 1978 to 2013. Note that the total rainfall in the figure is observed data from Tabuk 

metrological gauge. 

 

 

Figure 3.3 Annual precipitation data for Tabuk region over 35 year. 

 

The results indicate that the year with the highest annual rainfall was 1988, with a 

total annual rainfall of 100.90 mm. whereas, 2004 had the lowest total annual rainfall of 

6.20 mm. 

The average annual rainfall was 33.54 mm and standard deviation was 25.33. Any 

year with average annual rainfall higher that the average plus a half times the standard 
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deviation is considered to be a wet year. Years with average annual rainfall that falls 

between the average plus half the standard deviation and the average minus half the 

standard deviation are considered average years. Years with average annual rainfall that 

fall between the average minus half the standard deviation are considered to be dry years. 

Table 3.3 shows the years sorted into the climate classifications and Table 3.4 shows the 

cut-off values used in the analysis. 

 

Table 3.3 Wet, Average, Dry, Climate Classification. 

Climate Classification (Years) 

Wet Average Dry 

1979 1980 1978 

1982 1984 1981 

1985 1992 1983 

1986 1993 1990 

1987 1996 1995 

1988 1997 1998 

1989 1999 2002 

1991 2000 2003 

1994 2001 2004 

2010 2005 2008 

2013 2006 2011 

 2007  

 2009  

 2012  
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Table 3.4 Cutoff Values for the Climate Classification of Annual Precipitation (1978-

2013) 

Analysis of Annual Rainfall of the Tabuk (1978-2013) 

Parameter Log Transformed (mm) Non-Log Transformed (mm) 

Average - 1/2 STDEV 1.27 20.83 

Average 1.41 32.11 

Average + 1/2 STDEV 1.56 43.38 

 

3.9.2 Monthly Analysis 

From the information gained in the annual analysis of annual rainfall, the monthly 

analysis (Figure 3.4) could then be conducted. The main information needed from the 

annual analysis was the climate classification of wet, average, dry for each year (Table 

3.3). Each year was normally distributed into 12 months a year. Month of the year in 

order from January to December were presented in the graphs. The years were separated 

into 3 different tables depending on their climate classification (wet, average, dry) and 

then the average and total rainfall for each month was found, along with the standard 

deviation for each group (Tables 3.5, 3.6, and 3.7). 
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Figure 3.4 Monthly Rainfall Record for Tabuk 1978-2013. 
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Table 3.5 Total, Average, Standard Deviation and Coefficient of Variance for each year 

Classified as Wet Year. 

Wet Years 

Rainfall mm 

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

1979 0.10 24.60 0.10 0.10 13.60 0.10 0.00 0.00 0.00 17.50 0.30 4.50 

1982 2.00 2.10 0.50 25.60 20.90 0.00 0.00 0.00 1.00 1.00 15.50 0.00 

1985 0.30 1.50 3.10 4.30 0.60 0.00 0.00 0.00 0.00 0.10 10.90 59.40 

1986 0.70 0.00 18.50 12.70 0.00 0.00 0.00 0.00 0.00 1.00 17.00 0.00 

1987 0.00 0.50 0.40 0.00 0.20 0.00 0.00 0.30 0.00 26.30 0.00 14.40 

1988 9.50 0.20 1.10 13.00 2.20 0.00 0.00 0.00 0.00 52.70 0.00 22.20 

1989 21.00 0.00 6.00 1.50 0.50 0.00 0.00 0.00 0.00 0.00 19.50 18.10 

1991 36.20 0.20 24.20 0.00 0.00 0.00 0.00 0.00 0.00 6.00 0.00 1.10 

1994 5.20 0.60 0.00 0.20 1.50 0.00 0.00 0.00 1.90 25.00 13.40 0.30 

2010 38.80 0.00 0.70 0.10 5.00 0.00 0.00 0.00 0.00 0.00 0.00 4.30 

2013 75.60 5.50 0.00 0.00 0.50 0.00 0.00 0.00 0.10 0.00 0.00 9.80 

Total 189.40 35.20 54.60 57.50 45.00 0.10 0.00 0.30 3.00 129.60 76.60 134.10 

Mean 17.22 3.20 4.96 5.23 4.09 0.01 0.00 0.03 0.27 11.78 6.96 12.19 

STDEV 24.15 7.28 8.39 8.40 6.86 0.03 0.00 0.09 0.62 17.06 8.21 17.49 

CV 1.40 2.28 1.69 1.61 1.68 3.32 0.00 3.32 2.26 1.45 1.18 1.43 

Max 75.60 24.60 24.20 25.60 20.90 0.10 0.00 0.30 1.90 52.70 19.50 59.40 

 

Table 3.5 presents that January had the highest average rainfall for wet years with 

an average rainfall value of 17.22 mm. The highest monthly rainfall value for January 

was 75.60 mm in 2013 and it approximate represents 65.0% of the total rainfall occurred 

in January during the wet years. The lowest January monthly rainfall occurred in 2009, 

2014, 2015, 2017 and it was zero. The month with the lowest average annual rainfall for 

wet years was September with an average rainfall value of 0.33 mm. In wet years, there is 

one dominating rain season (Oct-Jan) with total rain of 529.70 mm which is 73% from 
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the total rain 725.30 mm while the total rain in period of (Feb-May) is set to be 192.30 

which is only 26%.  

 

Table 3.6 Total, Average, and Standard Deviation and Coefficient of Variance for each 

year Classified as Average Year.  

Average Years 

Rainfall mm 

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

1980 0.80 13.80 0.80 0.10 0.50 0.00 0.00 0.00 0.10 4.10 2.20 7.10 

1984 0.10 0.10 2.60 0.00 0.00 0.00 0.00 0.00 0.00 18.70 6.80 0.00 

1992 2.00 1.40 0.00 0.00 0.00 0.00 0.00 20.00 0.00 0.00 2.40 0.70 

1993 1.40 1.40 0.30 4.80 0.90 0.00 0.00 0.00 0.00 9.50 0.00 17.70 

1996 0.70 0.00 1.40 0.10 0.00 0.00 1.60 1.00 1.00 0.00 12.10 4.20 

1997 21.10 0.10 2.50 0.00 2.80 0.00 0.00 0.00 0.00 6.60 0.00 0.30 

1999 2.60 14.00 11.40 0.00 0.20 0.00 0.00 0.00 0.00 0.00 0.00 0.20 

2000 7.60 2.50 0.00 0.00 0.20 0.00 0.20 0.00 0.00 1.10 7.70 4.00 

2001 2.30 0.20 1.90 12.60 1.80 0.00 0.00 0.00 0.00 0.00 0.00 0.40 

2005 7.90 2.00 4.10 1.00 2.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

2006 0.00 6.00 8.40 0.00 5.70 0.00 0.00 0.00 0.00 0.10 0.10 0.00 

2007 7.50 2.30 3.00 1.20 2.40 0.00 0.00 0.00 0.00 1.30 0.00 0.00 

2009 0.00 1.30 0.00 0.00 23.50 8.00 0.00 0.00 0.00 0.00 4.10 0.00 

2012 0.10 5.30 0.10 8.50 0.00 0.00 0.00 0.00 0.10 16.80 1.10 0.00 

Total  54.10 50.40 36.50 28.30 40.00 8.00 1.80 21.00 1.20 58.20 36.50 34.60 

Mean 3.86 3.60 2.61 2.02 2.86 0.57 0.13 1.50 0.09 4.16 2.61 2.47 

STDEV 5.76 4.73 3.40 3.92 6.15 2.14 0.43 5.33 0.27 6.47 3.78 4.90 

CV 1.49 1.31 1.31 1.94 2.15 3.74 3.32 3.55 3.10 1.56 1.45 1.98 

Max 21.10 14.00 11.40 12.60 23.50 8.00 1.60 20.00 1.00 18.70 12.10 17.70 
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However, in Table 3.6, Jan had the highest average rainfall for the average years with an 

average rainfall value of 3.86 mm. The highest monthly rainfall value for the Jan was 

21.10 mm and it approximate represents 39% during the average years. The lowest Jan 

rainfall occurred in 2006 and 2009. These years having an average rainfall of zero. The 

month with the lowest average rainfall for average years was the Sep with an average 

rainfall value of 0.09 mm. 1996 had the highest Sep rainfall with a value of 1.00 mm.  
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Table 3.7 Total, Average, Standard Deviation and Coefficient of Variance for each year 

Classified as Dry Year. 

Dry Years 

Rainfall mm 

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

1978 0.00 1.40 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.00 8.40 

1981 0.00 1.00 2.20 0.60 2.00 0.00 1.00 2.20 0.00 0.30 0.00 0.00 

1983 2.00 3.00 1.90 0.00 3.60 1.00 0.00 0.10 0.00 0.00 0.00 2.50 

1990 2.00 0.00 0.00 2.00 0.00 0.00 0.00 0.00 0.00 3.20 0.00 1.90 

1995 0.20 0.40 10.90 0.20 1.00 0.00 0.00 0.00 0.10 0.10 0.20 0.40 

1998 3.40 1.60 3.20 0.20 2.20 0.00 0.00 0.10 0.00 0.00 0.10 0.00 

2002 1.70 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.50 2.60 0.00 

2003 1.00 0.00 0.00 0.00 3.00 0.00 0.00 3.00 0.00 0.10 0.00 1.20 

2004 5.00 0.60 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.40 0.10 0.10 

2008 8.50 1.00 0.20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.50 0.50 

2011 3.80 3.20 0.20 4.60 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Total   27.60 13.20 18.60 7.60 11.80 1.00 1.00 5.40 0.10 5.70 4.50 15.00 

Mean 2.51 1.20 1.69 0.69 1.07 0.09 0.09 0.49 0.01 0.52 0.41 1.36 

STDEV 2.57 1.07 3.26 1.43 1.38 0.30 0.30 1.06 0.03 0.99 0.85 2.49 

CV 1.02 0.89 1.93 2.06 1.29 3.32 3.32 2.16 3.32 1.91 2.08 1.82 

Max 8.50 3.20 10.90 4.60 3.60 1.00 1.00 3.00 0.10 3.20 2.60 8.40 

 

January had the highest average rainfall in dry years with an average rainfall 

value of 2.51 mm (Table 3.7). The highest monthly rainfall value for the January was 

8.50 and it represents 30% of the total rainfall during the dry years. The lowest January 

rainfall occurred in 1978 and 1981 having a rainfall value of zero. In addition, Sep was 

the month with the lowest average rainfall for dry years with an average rainfall value of 
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0.01 mm. 1995 had the highest Sep rainfall with a value of 0.10 mm. The lowest rainfall 

value was with a rainfall value of zero. In dry years, there are two equal rain seasons with 

52.80 mm (Oct-Jan) and 51.20 mm (Feb-May). These two seasons equally represent 50% 

of the total rainfall during dry years.  

 

3.10 Discussion 

Tabuk climate behavior has wide rang in both space and time, thus causing and 

affecting the precipitation magnitudes. For this reason, Tabuk arid catchments are more 

open to simplified models.  

The results have wide-ranging practical and scientific significance. First of all, 

they will provide a modelling framework for a regional climate classification in the 

Tabuk Region, based on a detailed observed data presented monthly and annually. The 

modelling framework may assist future water resource management, which will face 

increasing water scarcity in the study region. In addition, this study successfully tested 

the existing applicability of climate and precipitation models in arid regions, which are 

usually not in the focus of hydrological model development (Wheater 2008).  

To explore the links between climate and rainfall intensity in Tabuk region, this 

study analyzed 35-year of detailed rainfall data monthly measured from a meteorological 

station. In Tabuk catchment, most rainfall events are based on one or two incidents which 

contains high percentage of the total rainfall recorded. Those short and intense events are 

mainly the reason of flash flooding besides lacking vegetation cover and poor 

infrastructure facilities.  
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The total annual rainfall showed an increase above the normal occurring once in 

four or five years. Also, total annual rainfall is an excellent indicator of whether the year 

experienced an acute rainfall deficiency (less than 60 mm). For the past four decades 

rainfall has been recorded in the study area (Figure 3.3). Rainfall was considered as the 

main factor in dealing with understanding whether the study area has suffered an above 

or below normal receipt of atmospheric moisture.  

Initially, climatic analysis of rainfall showed that the study area has climatic 

characteristics of an extreme arid environment. Nevertheless, the study area has the 

advantage of rainfall occurring in the winter season, which increases moisture 

effectiveness and the availability of existing vegetation to maximize the life-supporting 

impact of small amounts of water. However, the summer season receives little rainfall 

comparing to winter season.  

The Tabuk area has the typical arid environment, characterized by low rainfall 

that may cause temporary and long-term deterioration in the natural landscape. Rainfall, 

prior to the 1988 was much higher or above normal, compared to the last twenty years of 

data set, which means that the wet condition was dominating in that period. On the other 

hand, the rainfall data for the period between 1990 and 2010 indicates that the Tabuk area 

has been subjected to limited rainfall.  

The preliminary analysis of rainfall data revealed that the annual average rainfall 

in the region varies from 6 mm/year to 100 mm/year, with a weighted average rainfall of 

33.54 mm/year for the entire command area. A total of 60% of total annual rainfall 

occurs in the wet years. 
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Most of wet years were placed in the first 20-year of the data set. This divided 

data into two subjected pattern which represents a series of wet years occurrence with 

total annual precipitation above the average. As expected, we found that statistically 

defined wet years have occurred more frequently in more earlier decades relative to 

recent decades. With this pattern evident nine years of the total wet years occurred in 

(1979-1994). No such decadal patterns were evident in the occurrence of extreme dry 

years. Furthermore, when each climate classification was analyzed separately, differences 

among years in these precipitation regimes also were significant. When comparing wet 

vs. dry years, the total amount of precipitation that was most important for distinguishing 

these two types of years.  

The variability of annual and seasonal rainfall and rainy days was evaluated using 

the CV. The Coefficient of Variation indicated the relative variability of annual rainfall is 

higher for 1978, 1984, 1985, 1987,1992, 1995, 2004, 2008, 2010, and 2013 and these 

years have showed great variability in rainfall for all months. The CV for weighted mean 

seasonal rainfall of the command area is approximately 2.04. A data series with smaller 

variation will have lower CV, and the numerical value of the CV depends on the value 

range of the data series. Ideally annual rainfall or seasonal rainfall should not show any 

variation; however, the annual or seasonal rainfall does exhibit variation.  

In wet years, there are high variations in June and August (3.32). whereas January 

and November calculated as 1.40 and 1.18 respectively which are the lowest. This shows 

that there is high variation during summer season which may be due to some intense 

rainstorms. These rainstorms are the primary cause of generating floods during summer 

season in wet years.  
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Average years have similar case to wet years when high variations occur in June 

and August. whereas February and March were calculated as 1.31 which is the lowest. 

This shows that there is high variation during summer season which may cause some 

intense rainstorms. These rainstorms are the primary cause of generating floods during 

summer season in average years. 

In dry years, there are high variations in June and August (3.32) which the case in 

wet years. whereas January and February calculated as 1.02 and 0.89 respectively which 

are the lowest. This shows that there is high variation during summer season which may 

cause some intense rainstorms. These rainstorms are the primary cause of generating 

floods during summer season in wet years.  

Overall, there is a significant variation in wet and dry years during summer season 

when there is high potential of flooding occurrence compared to average years. This sort 

of floods is difficult to predict and can cause severe harm to people lives and 

infrastructure as well. The low amount of annual precipitation due to the desert weather 

may lead to false estimation of flooding hazards. Rainfall events in arid regions is 

characterized as short-high intense which means most of water turns to generate surface 

flow. 

This chapter presents a hydrologically motivated alternative to traditional climate 

classification schemes, accounting for gradual changes in climate and the influence that 

has on flow regimes and streamflow signatures. We find that the wide range and high 

variation in wet years are the primary cause of generating floods during winter season 

while the variation in average and dry years extended to cover the summer in addition to 

the winter.  
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3.11 Conclusion 

In this chapter, the climatology of monthly and annual rainfall in the Tabuk region 

has been analyzed using the available data from Tabuk meteorological station. The mean 

amount of annual rainfall seems to be homogeneous.  

Analysis of these data shows that the highest amounts of rainfall occur during 

November in the wet years. While the highest amounts of rainfall occur during the 

average years in March. Dry years are the lowest annual rainfall in Tabuk, when the 

climate is harsh and temperature degree gets to its maximum in Jun, July, and August.  
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Chapter.4 Assessment of Flood Hazards over Tabuk City, 

Saudi Arabia 

 

Abstract 

In this Chapter, flooding phenomena over Tabuk, Saudi Arabia was analyzed using 

rainfall data from available meteorological stations. The data obtained displaying the 

daily, monthly, and annual rainfall climatology over the Tabuk region (1978 - 2013); this 

time period is chosen due to the high-quality observed rainfall data being available. This 

paper constructed hydrologic and hydraulic models to quantify flood hazards in the city 

of Tabuk. The catchment was divided into sub-catchments in the urban portion of the 

catchment. The hydrologic/hydraulic model simulations quantified the runoff 

corresponding to different storms and helped delineate the resulting flood inundation 

maps. The results of this study can be utilized for planning purposes and in the design of 

flood control project as it has quantized the runoff corresponding to different design 

storms and used hydraulics and geospatial data in delineating the flood zones.  

 

 

 

 

 



69 
 

Introduction 

Annually, the Kingdom of Saudi Arabia experiences flash flooding risks in 

addition to confronting water resource limitations in both surface and groundwater. 

Flooding regime generates from short intense precipitation events in arid region where 

Tabuk is located.   

Floods are a climatic phenomenon that can occur at any time. Compared to 

riverine floods, which occur when water levels increase to the point that they overflow 

riverbanks and inundate floodplains, flash floods are more severe since they occur 

suddenly and with violent water motions, resulting in more deaths of unprotected 

citizens. (Montz 2002; Ruin 2008; Pollak 2009; Ruin 2009; Calianno 2013).  

The degree of urbanization and growth of the built environment; the demographic, 

social, cultural, and political economic circumstances of its people; and its political 

ecology and government action plan on climate governance, as well as measures for 

coping, adaptation, and prevention of hazards determine a city's vulnerability to flash 

flooding. (Hewitt 1983; Liverman 1990; Blaikie 1994; Bohle 1994; Liverman 2015).  

Tabuk's flash flooding is not an exception to this pattern. Rapid population 

development, urbanization, and the transformation of vast areas of sandy desert into 

concrete constructed impervious surfaces that delay rainwater runoff have significantly 

increased the risk of dangerous flash flooding events in Tabuk for the next 25 years due 

to the lack of a river and drainage outlets to the sea (Sharif 2014). Hence, flash flood 

mitigation has now become a major challenge for the Tabuk’s city planners 

(Nahiduzzaman 2015). It is critical to recognize the city areas and residents that are 
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vulnerable to flash flooding in order to prepare effective flood mitigation plans for the 

city. (Ewea 2010; Alamri 2011; Saud 2012). The purpose of this study is providing an 

assessment and evaluating flood hazards for Tabuk region.  

 

4.1 Flood modeling in arid region 

Rainfall- runoff relations play a major role in any hydrological study examining 

or evaluating effects on a catchment area, drainage basin or watershed. Rainfall is the 

primary hydrological input, but rainfall in arid and semi-arid areas is commonly 

characterized by extremely high spatial and temporal variability (Wheater 2008).  

However, in arid region, the runoff generation is extremely high due to the 

combination between intense rainfall events and the lack of vegetation cover. Flow 

regime from a catchment is the result of a dynamic combination of climatologic and 

catchment characteristics, and this interaction affects runoff's spatial and temporal 

variability. Furthermore, watershed attributes such as area, catchment size, slope, channel 

network, soil, vegetation cover, and underlying geology are all influencing runoff 

generation.  

Understanding the spatial and temporal variance of model inputs and controls, as 

well as their use in distributed modeling, improves our understanding and ability to 

simulate diverse hydrological processes. The remote sensing and Geographic Information 

System (GIS) developments are now well-established methods for producing and 

interpreting spatially dispersed data for use in distributed hydrological models. 
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Runoff modeling clarify different components of hydrologic phenomena and how 

changes affect the hydrological cycle (Xu 2002). Runoff models visualize what occurs in 

water systems due to changes in pervious surfaces, vegetation, and meteorological events. 

Runoff model is defined as a set of equations that aid in the estimation of the amount of 

rainfall that turns into runoff as a function of various parameters used to describe the 

watershed (Devi 2014).  

Modeling surface runoff can be difficult, for the calculation is complex and 

involves many interconnected variables. General components of a model include inputs, 

governing equations, boundary conditions or parameters, model processes, and outputs 

(Singh 1995). Surface runoff modeling is used to understand catchment yields and 

responses, estimate water availability, changes over time, and forecasting (Vaze 2012).  

Most rainfall–runoff models are developed primarily for scientific purposes in 

order to formalize information about hydrological processes. The demonstration of such 

awareness is a crucial step in the development of a scientific field. We normally benefit 

the best when a model or hypothesis is found to be in disagreement with accurate 

evidence, necessitating a change in the interpretation upon which the model is based. 

However, the ultimate goal of prediction using models must be to enhance decision 

making regarding a hydrological issue, whether in water supply preparation, flood 

control, pollution prevention, abstraction licensing, or other fields.  
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4.2 Study area 

The Tabuk Region is located in Saudi Arabia's extreme northwest, with Jordan to 

the north and the Gulf of Aqaba and the Red Sea to the west (Figure 4.1). The area of the 

Tabuk Region is 139,000 square kilometers or about 6.2% of the total area of the 

Kingdom. The Tabuk Region stretches from North to South covering over 580 kilometers 

and extends over 480 kilometers from East to West (UN-Habitat 2019). The region, as 

well as the rest of the country, has an arid climate, characterized by high temperatures, 

deficient rainfall, and extremely high evapotranspiration.  

Tabuk region is also characterized by its northerly cooling influences and by 

having the lowest winter temperature average in the country. Winter temperatures usually 

range between 6°C and 18°C, occasionally dropping below zero at night, and summer 

temperatures vary from 28°C to 40°C. Prevailing winds coming from the West also 

influence these temperatures.  
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Figure 4.1 Tabuk geography region (Esri 2017).  

Tabuk catchment is exemplified by ephemeral wadis, where a stream runs fully 

for a short period of time, usually during and after heavy rain events, and is dry most of 

the year. Flash floods events fill desert dams and may recharge groundwater resources. 

The complex relationship between rainfall and streamflow is influenced by many factors, 

such as catchment slope, land cover type and density, soil type and infiltration rate, and 
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evapotranspiration. Moreover, the quality and quantity of streamflow are strongly 

affected by urbanization and agricultural activity.  

In Tabuk, precipitation events are generated by short, high intensity rainstorms 

which account for the dominant contribution to the low annual total rainfall in arid 

regions. Rainfall in Tabuk region tends to vary markedly from year to year with an 

irregular distribution in time and space. As an illustrative example of the extreme yearly 

variability in Tabuk region. (Figure 4.2). 

 

 

Figure 4.2 annual precipitation data for Tabuk region over 35 year (1978-2013). 

 

The annual and seasonal patterns, as well as the overall amount of precipitation, 

are critical components of water balance equation. With harsh climate in arid regions, 

0.00

20.00

40.00

60.00

80.00

100.00

120.00

1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012

P
re

ci
p

it
at

io
n

 m
m

Year

Annual Precipitation 1978-2013



75 
 

when there is a serious scarcity of available water, preserving natural resources is 

essential for the continuation of life. For this reason, modeling the real water system by 

combining these two sciences, geography and hydrology is important to observing water 

movement and distribution on earth.  

Tabuk has several rainy seasons which can be investigated from annual observed 

data. There are three scenarios describing Tabuk precipitation occurrence pattern. First, in 

wet years when the annual total rainfall is above 40 mm, the potential of rain occurrence 

is starting from October and ending in January which representing one heavy rain season. 

The potential of having two rainy seasons (Oct-Jan and Feb-May) is high where the mean 

of annual rainfall is below 36 mm which classified as average and dry years.  

 

4.2.1 Wadi Abu Nashayfah 

The downstream control point is located at Wadi Abu Nishayfah, which is the 

longest wadi crossing the city of Tabuk at 25 km long (Figure 4.3). This wadi has an arid 

climate. The city of Tabuk's culverts and bridges are specifically designed to avoid 

ephemeral flash flood incidents. Wadi Abu Nishayfah was measured and divided into 

three essential sections based on cross sectional characteristics mainly the width of 

channel (Wadi). This channel is 25 km long. This channel was divided into three sections 

based on channel width. First section is 90 m width at upstream along with second 

section 130 m and last section 160 m at downstream (Figures 4.4, 4.5, and 4.6). 
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Figure 4.3 Wadi Abu Nishayfah path from upstream to downstream (Google Map 2017) 
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Figure 4.4 Aerial photo of first section (channel width is 90 m). 
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Figure 4.5 Aerial photo of second section (channel width is 130 m). 
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Figure 4.6 Aerial photo of third section (channel downstream width is 160 m). 

 

4.3 Methodology and Data collection 

Defined precipitation data between the years 1978 and 2013 at daily time intervals 

have been gathered, including historical and real-time observations. In addition, daily 

data for the selected years were available. Detection and filtering of abnormal and 

missing data were automated using statistical routines. The data set includes annual and 

monthly precipitation were provided by Tabuk meteorological station. However, the 

application of any climate model requires a validation process to make sure that the 

results are in an acceptable range (Figure 4.7). 
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4.3.1 ArcGIS 

Fitting spatial statistical models to stream network data is challenging because it 

requires multidisciplinary skills in aquatic ecology, geographic information science, and 

spatial statistics. In addition, specialized geographic information system in ArcGIS tools 

is needed to generate the spatial information needed to fit spatial models to stream 

network data. ArcGIS different versions geoprocessing toolboxes have been provided to 

help users generate these spatial data: the functional linkage of water basins and stream 

flows toolbox and the spatial tools for the analysis of river systems. The flows toolbox is 

a set of graph theoretic-based analysis tools that functionally link aquatic and terrestrial 

components of the landscape based on hydrologic processes. These tools provide an 

efficient framework for navigating throughout the network, which makes it possible to 

calculate a variety of attributes related to network distance, flow direction, and terrestrial 

contributing areas. 

 

4.3.2 HEC-HMS 

HEC-HMS is the updated version of the USACE rainfall-runoff model USACE-

HEC 1998. It utilizes a graphical user interface to build a watershed model and to set up 

the precipitation and control variables for simulation. The watershed model created in 

HEC-HMS follows the form of the Sacramento District Corps office HEC-1 forecast 

model of the basin USACE 1987. This model utilizes one sub basin above designated 

reservoir that provides runoff into the reservoir. Below the reservoir, there is a routed 

channel reach and another sub basin that provides runoff to downstream. 
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4.3.3 HEC-RAS 

HEC-RAS is an integrated system of software, designed for interactive use in a 

multi-tasking, multi-user network environment. The system is comprised of a graphical 

user interface (GUI), separate hydraulic analysis components, data storage and 

management capabilities, graphics and reporting facilities. The system contains three 

one-dimensional hydraulic analysis components for: (1) steady flow water surface profile 

computations; (2) unsteady flow simulation; and (3) movable boundary sediment 

transport computations. A key element is that all three components use a common 

geometric data representation and common geometric and hydraulic computation 

routines. In addition to the three hydraulic analysis components, the system contains 

several hydraulic design features that can be invoked once the basic water surface 

profiles are computed. 
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Figure 4.7 Flowchart showing the process applied in this study. 
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The hydrologic, hydraulic, and floodplain models in this study were built using 

HEC-HMS and HEC-RAS. Accordingly, HEC-HMS is the updated version of the 

USACE rainfall-runoff model USACE-HEC 1998. It employs a graphical user interface 

to build a watershed model as well as to configure the precipitation and control variables 

for simulation. This model was created to simulate rainfall-runoff processes in a variety 

of watershed forms. HEC-HMS employs a number of sub-models to describe various 

components of the runoff process, including neuromas penetration methods, unit 

hydrographs, and flood routing techniques (USACE 2010). The SCS curve number 

method is the most commonly used method for estimating infiltration potential and runoff 

for different configurations of soil land use/cover type (US. SCS 1986). 

HEC-RAS is a window-based hydraulic model also developed by the U.S Army 

Corps of Engineers and the Hydrologic Engineering Center. The model calculates and 

analyzes floodplain hydraulics using the output hydrograph from HEC-HMS as an input. 

(USACE 2010). A hydraulic analysis, which is often conducted after a hydrologic 

analysis, determines water elevation. The model is used to simulate steady, gradually 

varied, rapidly varied and unsteady one-dimensional flow and to delineate flood zones, 

which is the most common application of the model. This computation makes use of the 

continuity, momentum, energy, and Manning equations. 

The major steps followed in this study include generating a digital elevation 

(DEM) for the study area, delineate the watershed, use HEC-HMS to develop a 

hydrological model for the watershed, and use HEC-RAS model to develop one 

dimensional (1D) hydraulic model and generate flood risk maps for Wadi Abu 

Nashayfah.  
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4.4 Basin model input parameters 

Basin characteristics such as area, CN number, and streams parameters were 

extracted from ArcGIS. The required input parameters for basin and streams are shown in 

Table 4.1. 

 

Table 4.1 HEC-HMS model parameters 

Model Method Parameters 

Loss SCS Curve Number Initial abstraction (mm), CN, Imperviousness (%) 

Transform SCS Unit Hydrograph Lag time (min) 

Routing Muskingum Channel length (m), Slope, Manning’s n, Channel width 

 

4.5 Losses calculations 

There are many options available for loss calculations, including initial and 

constant loss rate, and SCS curve number method. In this analysis, the SCS curve number 

approach is used to calculate runoff losses. The rainfall excess is calculated using the 

SCS formula as a function of total precipitation, soil cover, land use, and antecedent 

moisture content. 

 

The SCS runoff equation is as follows.  

𝑄 =  
(𝑃−𝐼𝑎)2

(𝑃−𝐼𝑎)+𝑆
     (1) 

 



85 
 

Where: 

Q = direct runoff (in) 

P = rainfall (in) 

The initial abstractions Ia is a percentage of S as follows: 

𝐼𝑎 = 0.2 𝑆      (2) 

Noting that S is the potential max retention which can be computed as:  

𝑆 =
1000

𝐶𝑁
− 10                (3) 

Initial Abstraction is a parameter that accounts for all losses prior to runoff and 

consists mainly of interception, infiltration, evaporation, and surface depression storage. 

This parameter assumed as 0.2 of potential max retention based on watersheds studied in 

humid regions. Accordingly, vegetation cover in humid regions is larger compered to arid 

regions which low the potential of intercepting flooding in arid regions. Another 

example, evaporation rates are higher at higher temperatures because as temperature 

increases. In sunny, warm weather the loss of water by evaporation is greater than in 

cloudy and cool weather.  

The CN method involves CN values, initial abstraction, and impervious area 

details. Using the soil map, as well as the land use and land cover maps, the CN layer was 

generated in GIS. The soil layer has four major hydrological groups such as A, B, C, and 

D and interpreted in GIS for developing the CN layer. After developing the CN map in 

GIS, it was found that the CN varies at different locations from a maximum of 81 to 
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minimum of 58 (Table 4.2). The average CN for the sub basins is 72 which represent the 

majority of Wadi Abu Nashayfah catchment curve number.  

 

Table 4.2 Curve number calculated for subbasins in study area.  

Tabuk Watershed 

Subbasin  Area 

km2 

Curve 

Number 

Subbasin  Area 

km2 

Curve 

Number 

Subbasin  Area 

km2 

Curve 

Number 

470 3.98 77 630 19.11 73 780 9.92 77 

480 4.28 74 640 6.6 78 790 9.98 70 

490 5.72 80 650 3.87 73 800 13.1 71 

500 5.51 80 660 12.73 73 810 21.36 66 

510 14.72 81 670 3.99 75 820 4.85 69 

520 11.58 78 680 4.34 79 830 23.37 71 

530 6.68 81 690 13.68 76 840 7.98 70 

540 2.93 75 700 4.91 75 850 13.97 58 

550 11.73 75 710 9.44 75 860 7.7 58 

560 17.41 80 720 5.68 66 870 6.02 58 

570 12.38 76 730 4.7 70 880 5.98 58 

580 13.91 72 740 6.42 71 890 4.87 72 

590 14.52 72 750 11.43 65 900 6.59 72 

600 6.25 75 760 6.29 70 910 4.52 59 

610 11.72 71 770 6.68 79 920 6.1 59 

620 19.17 71 
      

 

4.6 Direct runoff calculation 

There are many different methods to calculate the direct runoff. In this study, SCS 

Curve Number was implemented for finding the direct runoff in Tabuk basin. The lag 

time is the input parameter required for direct runoff measurement. Lag time for SCS unit 

hydrograph for each sub-basin was calculated by Eq.4 as follows: 
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𝐿𝑎𝑔 =
𝐿0.8(𝑆+1)0.7

1900∗ 𝑌0.5
 (4) 

where,  

Lag = basin lag time (hours) 

S = maximum retention 

L = hydraulic length of watershed (longest flow path) 

Y = basin slope (%) 

 

4.7 Estimation of flow losses 

The total flow losses in the stream network of the catchment are the sum of flow losses 

per stream. The total discharge exiting the catchment is the sum of routed flows 

originating at the upstream side and is calculated as:  

𝑄 = ∑ 𝑄𝑖
𝑛
𝑖=1   (5) 

 

Where,  

Q = total discharge exiting the catchment,  

Qi= routed discharge of stream i the individual discharge  

Qi for each stream is estimated from the contributing drainage area of that stream and is 

computed as: 
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𝑄 =  
𝐴𝑖

𝐴
𝑄  (6) 

Where,  

Ai = drainage area of stream i,  

A = total catchment area.  

 

4.8 Results and Discussion 

Table 4.3 presents the runoff volumes and peak discharge at the outlet of Wadi 

Abu Nashayfah watershed. Figure 4.8 shows the relationship between precipitation and 

peak discharge for the watershed. This trend shows increasing in peak discharge and 

runoff volume following the raising of precipitation depth which reflect the natural 

relationship between rainfall and runoff. Precipitation values ranged between 0 to 50 mm 

which is the dominating case in arid region and certainly Wadi Abu Nashayfah. While 

peak discharge and runoff volume ranged in 0.10-120 m3/s and 0.02-13.8 m3 respectively.   
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Table 4.3 Runoff volumes and peak discharges at the outlet for Tabuk watershed. 

N Precipitation 

 (mm) 

Runoff Volume  

(x1000 m3) 

Peak Discharge  

(m3/s) 

1 0.10 0.02 0.10 

2 0.20 0.03 0.30 

3 0.50 0.08 0.70 

4 1.00 0.17 1.50 

5 2.00 0.34 3.00 

6 3.00 0.51 4.40 

7 5.00 0.85 7.40 

8 8.00 1.36 11.80 

9 10.00 1.69 14.80 

10 15.00 2.55 22.20 

11 20.00 3.50 30.50 

12 25.00 4.67 40.60 

13 30.00 6.08 52.90 

14 35.00 7.72 67.20 

15 40.00 9.57 83.30 

16 45.00 11.60 101.00 

17 50.00 13.81 120.20 
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Figure 4.8 Peak discharge interacting with precipitation over Wadi Abu Nashayfah. 

 

HEC-RAS was run to compute water surface elevation corresponding to the peak 

discharge computed by HEC-HMS at the defined cross sections. There are three types of 

cross sections applied in this 1D simulation. As a matter of fact, channel cross sections 

have several dimensional measurements which can be categorized into three main shapes. 

Accordingly, W 90, W 130, and W 160 are sorted based on variations on channel width 

(Table 4.4).  

Peak discharges for Wadi Abu Nashayfah were computed by using observed 

precipitation data from Tabuk metrological station, the output of this process was applied 

to compute water surface elevation. At upstream, there is high potential of flooding when 

Wadi Abu Nashayfah receives minimum of 25 mm of rain which generates 40.60 m3/s of 

peak discharge, thus, at this point the stream will overtop its banks and risking the 
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adjacent area. In second case, flow will overtop its banks when the channel receives at 

least 35 mm of rain and peak discharge level to 67.20 m3/s. While flow will reach bank 

full point if wadi Abu Nashayfah receives 10.00 mm of rain and generates 14.80 m3/s of 

streams at downstream. The high flow depth is within this channel is essentially based on 

the topography of the channel and location of Tabuk city which is located at low 

elevation. 
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Table 4.4 Precipitation, Peak Discharge, and Water Surface Elevation for Wadi Abu 

Nashayfah Catchment.   

Tabuk Watershed 

N Precipitation 

mm 

Peak Dis 

m3/s 

WS Elevation 

(Section 1) 

WS Elevation 

(Section 2) 

WS Elevation 

(Section 3) 

1 0.10 0.10 792.18 755.14 735.14 

2 0.20 0.30 792.30 755.22 735.23 

3 0.50 0.70 792.45 755.33 735.34 

4 1.00 1.50 792.64 755.47 735.48 

5 2.00 3.00 792.89 755.65 735.66 

6 3.00 4.40 793.06 755.78 735.79 

7 5.00 7.40 793.35 755.99 736.01 

8 8.00 11.80 793.68 756.24 736.25 

9 10.00 14.80 793.87 756.37 736.39 

10 15.00 22.20 794.26 756.66 
 

11 20.00 30.50 794.63 756.93 
 

12 25.00 40.60 795.01 757.21 
 

13 30.00 52.90 
 

757.50 
 

14 35.00 67.20 
 

757.80 
 

15 40.00 83.30 
   

16 45.00 101.00 
   

17 50.00 120.20 
   

*Marked values are bank full points.  

Table 4.4 summaries HEC-RAS and HEC-HMS results corresponding to 

precipitation data. Again, water surface elevation ranges between 735-795 m in different 

sections of Wadi Abu Nashayfah (Table 4.4). Elevation levels were obtained from 10m  -

DEM. Stream flow direction downhill from upstream where mountains are dominating, 

flowing along to downstream which is location at lower elevation.  

To develop the flood hazard map, the peak flows for each sub-catchment 

simulated by HEC-HMS were inputted into HEC-RAS and the solution generated by 
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HEC-RAS model was imported and read by Geographic Information System (GIS). The 

process was repeated for different cross section shapes. Each time, a new scatter point file 

containing the water depths resulting from the HEC-RAS simulation was read into GIS as 

Two-dimensional scatter points that are connected to delineate the flood inundation.  

By analyzing the flooding and the water surface elevation for the different 

hydraulic modelling results (Table 4.4), some selection criteria can be set up for 

determining the type of DEM to be used. The 10-meter DEM has a low resolution; 

however, the effectiveness for its use in hydraulic modelling has been illustrated for the 

Tabuk study. The model improves as precipitation depth and peak discharge data are 

added, making it more expensive but also introducing the variation between cross-

sections. 

 

Modeling first section (Figure 4.9) shows that the results (water surface elevation) 

are affected by cross section variations. Water surface elevations were obtained from 

DEM and they vary from 792.18 to 796.84 m. While peak discharge has a range of 0.10-

120.20. The result of this simulation indicates that the channel bank is full when 

watershed receives 25 mm or above and peak discharge is 40.60 m3/s. At this point the 

channel reaches its maximum capacity and the stream overtop to reach the adjacent area. 

 



94 
 

 

Figure 4.9 Water surface corresponding to peak discharge for section 1.  

 

Similarly, modeling second section (Figure 4.10) shows that the results (water 

surface elevation) are affected by cross sections variations. Water surface elevations were 

obtained from DEM and they vary from 755.14 to 758.65 m. While peak discharge has a 

range of 0.10-120.20. The result of this simulation indicates that the channel bank is full 

when watershed receives 35 mm or above and peak discharge is 67.20 m3/s. At this point 

the channel reaches its maximum capacity and the stream overtop to reach the adjacent 

area. 
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Figure 4.10 Water surface corresponding to peak discharge for section 2.  

 

Modeling third section (Figure 4.11) shows that the results (water surface 

elevation) are affected by cross sections variations. Water surface elevations were 

obtained from DEM and they vary from 735.14 to 738.67 m. While peak discharge has a 

range of 0.10-120.20. The result of this simulation indicates that the channel bank is full 

when watershed receives 10 mm or above and peak discharge is 14.80 m3/s. At this point 

the channel reaches its maximum capacity and the stream overtop to reach the adjacent 

area. 
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Figure 4.11 Water surface corresponding to peak discharge for section 3.  

 

Wadi Abu Nashayfah watershed was delineated form DEM by using ArcGIS. The 

delineated DEM was exported HEC-HMS to calculating peak discharges at different 

points on the watershed. HEC-RAS was mainly used for simulation stream data to locate 

at which point the channel exceeds its capacity and their high potential of flooding 

occurrence.  

This influence increases as precipitation data and peak discharges are 

incorporated into the model and leads to greater water level variations. The variation in 

cross sections based on width, depth and length of channel produce larger variability but 

they are maintained when DEM data are added. For each precipitation depth, the smaller 

variations are for the lowest discharges. In general, it can be noted that for any discharge, 

the more detailed the water surface model represented, the greater sensitivity of the 
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hydraulic results to roughness coefficient variations. The analysis of the water surface 

model at 10-meter DEM resolution shows variations of between three sections, indicating 

little significant difference between them.  

 First and second section were affected by channel width showing increasing in 

water surface elevation along with precipitation death and peak discharge. On the other 

hand, third section simulation presents decreasing in water surface elevation while the 

channel is characterized with 160 m width which is the maximum width for Wadi Abu 

Nashayfah basin. This downstream section has the maximum possibility of flooding 

when it receives only 10 mm of rain. The adjacent area of this downstream section is 

mainly characterized as open spaces where there are significant dangers of occurring 

flash flooding to the transportation system, agriculture lands, and wildlife. 

Section 3 has the least elevation when channel bank is full after receiving 10 mm 

of precipitation. At this point, streamflow overtops the channel edges to the adjacent area 

which is mostly urban area including residential houses, roads, and properties. Tabuk has 

suffered from high intense storm events in last decades. Those events are the primary 

cause of generating severe floods.  

 

Storms of high intensity and varying durations occur from time to time.  

However, the probability of these heavy rainfalls varies with locality. The first step in 

designing engineering projects dealing with flood control, and gully control is to 

determine the probability of occurrence of a particular extreme rainfall. This information 

is determined by the frequency analysis of point rainfall data. 
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Weibull formula is the most commonly used plotting position formula. Having 

calculated P and T for all the events in the series, the variation of rainfall magnitude is 

plotted against the corresponding T on semi-log or log-log paper. The rainfall magnitude 

for any recurrence interval can be determined by extrapolating the plot between 

magnitude and recurrence interval. Empirical procedures can give good results for small 

extrapolations, but the errors increased with the amount of extrapolation. For more 

accurate results, analytical methods using frequency factor are used. 

However, the 36 annual total rainfall depths were subsequently ranked from high 

to low and the corresponding probabilities of exceedance were estimated with Weibull 

method (Table 4.5) (Weibull 1939). 
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Table 4.5 Probabilities of recurrence flooding events exceeded 10 mm estimated with 

Weibull method.  

Rank Max Rainfall (mm) Weibull Prob % 

1.00 48.30 2.70 

2.00 38.80 5.41 

3.00 38.00 8.11 

4.00 36.00 10.81 

5.00 34.50 13.51 

6.00 26.10 16.22 

7.00 23.70 18.92 

8.00 22.20 21.62 

9.00 18.10 24.32 

10.00 18.00 27.03 

11.00 17.10 29.73 

12.00 12.80 32.43 

13.00 12.60 35.14 

14.00 12.40 37.84 

15.00 12.20 40.54 

16.00 11.40 43.24 

17.00 11.00 45.95 

18.00 10.30 48.65 

19.00 9.80 51.35 

20.00 9.50 54.05 

21.00 9.00 56.76 

22.00 8.00 59.46 

23.00 7.70 62.16 

24.00 7.40 64.86 

25.00 6.50 67.57 

26.00 5.80 70.27 

27.00 4.90 72.97 

28.00 4.50 75.68 

29.00 4.10 78.38 

30.00 3.30 81.08 

31.00 3.20 83.78 

32.00 2.50 86.49 

33.00 2.50 89.19 

34.00 2.00 91.89 

35.00 1.20 94.59 

36.00 1.10 97.30 

 

 It can be noted that all of the relationships give similar values near the center of 

the distribution but may vary somewhat in the tails. The probability of events that 

exceeded 10 mm is 50% which means that half of rainfall events in Tabuk may cause 

flooding over the wadi channel (Figure 4.12). 
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Figure 4.12 Probability plot of the total annual rainfall for Wadi by using linear scales for 

both axes. 

This plot (Figure 4.12) is showing that half of rainfall events probability occurring 

is above 10 mm with high risk of generating floods. The section 3 which has the lowest 

capacity and high potential of flooding would reach its maximum when the rainfall depth 

is 10 mm which represent 50% of all events in 35-year period.  

Tables 4.6 and 4.7 summarize precipitation events that are above 10 mm in last 

three decades (1978-2013). Those precipitation events were the main cause of flooding. 

From the information gained in the annual analysis of annual rainfall (Table 3.3), Tabuk 

climate has three climate classifications as wet, average, and dry. The years sorted into 

the climate classifications base on criteria shown in Table 3.4.  
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Table 4.6 History of precipitation events above 10 mm in 35 years corresponding with 

peak discharge and climate classification.  

N Date Precipitation mm Peak Dis m3/s Climate Classification 

1 02/08/1979 12.2 16.4 Wet 

2 05/04/1979 12.6 16.6 Wet 

3 04/26/1982 23.7 35.0 Wet 

4 05/09/1982 16.0 24.0 Wet 

5 11/09/1982 15.3 22.5 Wet 

6 10/31/1984 12.4 16.5 Average 

7 12/17/1985 11.0 15.3 Wet 

8 12/18/1985 48.3 145.0 Wet 

9 04/25/1986 12.4 16.5 Wet 

10 11/28/1986 12.8 17.0 Wet 

11 10/17/1987 26.1 43.6 Wet 

12 10/16/1988 34.5 65.2 Wet 

13 10/17/1988 18.2 28.2 Wet 

14 12/24/1988 12.7 16.8 Wet 

15 11/05/1989 15.0 22.2 Wet 

16 12/26/1989 18.1 28.0 Wet 

17 01/01/1991 36.0 70.0 Wet 

18 03/22/1991 16.6 25.2 Wet 

19 05/10/2009 22.2 33.2 Average 

20 01/18/2010 38.8 80.3 Wet 

21 01/27/2013 38.0 79.2 Wet 

22 01/28/2013 26.0 42.0 Wet 

 

 Most precipitation events that cause flooding were occurred in this period (1979-

1991). This period was dominated by wet climate which represents the natural correlation 

between rainfall and runoff. In other words, high intense rainstorms during wet years are 

likely to generate severe flooding which can lead to danger the around area of Wadi Abu 

Nashayfah. 
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Table 4.7 Number of events above 10 mm correlating with climate classification (1978-

2013). 

Year # Of events above 10 

mm 

Climate 

Classification 

Year # of events above 10 

mm 

Climate 

Classification 

1978 0 Dry 1996 0 Average 

1979 2 Wet 1997 0 Average 

1980 0 Average 1998 0 Dry 

1981 0 Dry 1999 0 Average 

1982 3 Wet 2000 0 Average 

1983 0 Dry 2001 0 Average 

1984 1 Average 2002 0 Average 

1985 2 Wet 2003 0 Dry 

1986 2 Wet 2004 0 Dry 

1987 1 Wet 2005 0 Average 

1988 3 Wet 2006 0 Average 

1989 2 Wet 2007 0 Average 

1990 0 Dry 2008 0 Dry 

1991 2 Wet 2009 1 Average 

1992 0 Average 2010 1 Wet 

1993 0 Average 2011 0 Dry 

1994 0 Wet 2012 0 Average 

1995 0 Dry 2013 2 Wet 

 

Most floods events occur in years classified as wet years. There is a correlation 

between wet years and flooding. In Tabuk, flooding events occurred in 

(1979,1982,1985,1986,1987,1988,1989,1991,2010, and 2013). These years are 

representing wet years in 35-year data set with exception to 1994 when there was no 

flooding event in that particular year. The maximum occurring of flooding events was in 

1982 and 1988 with 3 events recorded. While 1984 and 2009 were classified as average 

years, there was single event recorded in each year. Dry years are insignificant in case of 

analyzing flooding in this watershed due to there is no event occurring in those years. 
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However, the first and second WS cross sections are located in high residential 

area (Figure 4.13). Stream flow in this channel has intercepted by some built up areas. 

These areas need to be removed due to the high potential of flooding and prevents 

properties from washing away.  

 

 

Figure 4.13 A path of Wadi Abu Nashayfah cross Tabuk City (Google map 2017). 

 

This critical area is highly affected by different intense rainstorm in the past. For 

instance, Wadi Abu Nashayfah received 38.8 mm/day in Jan 18, 2010. This amount of 

rain exceeded water surface elevation for the wadi which allow water to overtop its 

banks. This extreme event has generated sever flood which harm the adjacent area. Such 

event caused economic loss, property damages because the adjacent area of Wadi Abu 
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Nashifah is mostly residentials. Flash floods created damages to properties such as, 

homes, businesses, vehicles, belongings, equipment (Figures 4.14 and 4.15). 

 

 

 Figure 4.14 The adjacent area of Wadi Abu Nashayfah after a storm event (01/18/2010).  
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Figure 4.15 Road collapse and one vehicle was sent off the road after intense rainstorm 

(01/18/2010). 
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These photos are showing how severely flash floods can be in Tabuk city. When rain 

depth exceeded the water surface elevation as shown in Table 4.4. This kind of tragedy 

can be occurring in short time right after rain occurring.  

 A major key to protecting properties is to maintain, stabilize, and expanding 

channel capacity in most critical spots. This wadi edge is the bulwark that stands in the 

soil and prevents properties from washing away and can be supported by some 

constructed walls. It is an essential part of the whole channel ecosystem. 

Bank degradation leads to property damage or loss, sedimentation of in-stream 

structures, water quality deterioration, aquatic habitat damage, channel widening, and 

more. In Tabuk, floods are infrequent but severely damaged when they occur. It is 

understood that current built-up stock of flood-prone areas must be protected against 

flood disasters. A rigorous flood disaster prevention strategy will include steps such as 

limiting additional construction or operations in the flood plain, removing some physical 

infrastructure from the floodway, and regulating land use patterns within the basin.  

Furthermore, a comprehensive catchment planning strategy for flood adaptation is 

needed. The basin must be used as the primary planning unit for reducing flood damages. 

To that end, constructive collaboration between local/regional governments and water 

agencies is a top priority. This collaboration must be made possible by establishing a 

regulatory system that incorporates natural hazards into the spatial planning process. The 

key consequences of the presented strategy can be divided into two categories. First 

category, it makes ex-ante flood risk mapping as a result of urban growth easier. another 

factors, Changes in the occurrence and severity of extreme flooding, for example, may 



107 
 

also be implemented. Second, it will aid in the practical evaluation of urban development 

activities that are synergized with spatial and technological flood control strategies. 

 

4.9 Conclusion 

 This chapter constructed hydrologic and hydraulic models to quantify flood 

hazards in the city of Tabuk. The catchment was divided into sub-catchment in the urban 

portion of the catchment. The hydrologic/hydraulic model simulations quantified the 

runoff corresponding to different storms and helped delineate the resulting flood 

inundation maps. 

 The results of this study can be utilized for planning purposes and in the design of 

flood control project as it has quantized the runoff corresponding to different design 

storms and used hydraulics and geospatial data in delineating the flood zones.  
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Chapter 5. Summary and Conclusions and 

Recommendations 

5.1 Summary and Conclusions 

The Tabuk area has the unique spatial location of being at the north gate of Saudi 

Arabia. Several geographic factors have played a major role in forming the 

environmental ensemble of the Tabuk area. By using multiple geographic techniques in 

describing, analyzing, and interpreting the data, this study significantly reveals that 

intense rainstorms causing flash floods have been occurring there. These rainstorms have 

been caused by several processes; each process has received considerable attention in this 

research.  

This study clearly demonstrates that annual rainfall decreasing is one of the main 

desertification indicators in arid environments. A combined methodology, consisting of 

remote sensing methods, climatic analysis, disturbance analysis, fieldwork, and statistical 

analysis was adopted for this study. Models in the study area was studied and analyzed 

based on where it was originally created and designed. Noting that most of existed 

models were programmed for humid climate, yet they have been used in arid climate.  

Rainfall variability was the main factor presenting climate variability in the study 

area. Several statistical techniques were used to measure its variability and similarity. The 

Tabuk area has the typical arid environment, characterized by low rainfall that may cause 

temporary and long-term deterioration in the natural landscape. Rainfall, prior to the 1988 

was much higher or above normal, compared to the last twenty years of data set, which 

means that the wet condition was dominating in that period. On the other hand, the 
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rainfall data for the period between 1990 and 2010 indicates that the Tabuk area has been 

subjected to limited rainfall. The Coefficient of Variation indicated the relative variability 

of annual rainfall is higher for 1978, 1984, 1985, 1987,1992, 1995, 2004, 2008, 2010, and 

2013 and these years have showed great variability in rainfall for all months.  

This study constructed hydrologic and hydraulic models to quantify flood hazards 

in the city of Tabuk. The catchment was divided into sub-catchment in the urban portion 

of the catchment. The hydrologic/hydraulic model simulations quantified the runoff 

corresponding to different storms and helped delineate the resulting flood inundation 

maps. Peak discharges for Wadi Abu Nashayfah were computed by using observed 

precipitation data from Tabuk metrological station, the output of this process was applied 

to compute water surface elevation. At upstream, there is high potential of flooding when 

Wadi Abu Nashayfah receives minimum of 25 mm of rain which generates 40.60 m3/s of 

peak discharge, thus, at this point the stream will overtop its banks and risking the 

adjacent area. In second case, flow will overtop its banks when the channel receives at 

least 35 mm of rain and peak discharge level to 67.20 m3/s. While flow will reach bank 

full point if wadi Abu Nashayfah receives 10.00 mm of rain and generates 14.80 m3/s of 

streams at downstream. The high flow depth is within this channel is essentially based on 

the topography of the channel and location of Tabuk city which is located at low 

elevation. 
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5.2 Recommendations for future research 

 The approaches utilized in this study, as well as the results given, give potential 

worth studying in the future. Following the examination of rainfall distribution, further 

research should concentrate on rainfall intensity trends in the basin. This information 

would be valuable in better understanding recharge patterns and the likely occurrence of 

floods and drought events. 

In terms of water resource components, future research should concentrate on 

characterizing the lag time between rainfall and water level response, intermittent 

recharging, and water table forecasting in the context of climate change. 

Data shortage from two perspectives was a key issue encountered throughout this 

investigation. The data needed was available yet unreachable. In contrast, the required 

data was available but of poor quality. Future study in the region should explore high 

quality data gathering efforts throughout the basin as well as building methods for data 

collecting, quality assurance, and archiving. Researchers should have access to data. 

 




