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ABSTRACT 

UTILIZING EXTENDED CONTINENTAL SHELF (ECS) AND OCEAN 

EXPLORATION MAPPING DATA FOR STANDARDIZED MARINE ECOLOGICAL 

CLASSIFICATION OF THE U.S. ATLANTIC MARGIN 

by 

Derek C. Sowers 

University of New Hampshire 

Accurate maps of ocean bathymetry and seafloor habitats are needed to support effective 

marine ecosystem-based management (EBM) approaches. The central premise of this thesis was 

to synthesize geomorphological elements of large regions of the deep ocean seafloor to establish 

standards of characterization for ecosystem-based classification.  The approach was to apply 

semi-automated characterization techniques on seafloor bathymetric data that were originally 

collected for other purposes. The purpose of generating these maps is ultimately to apply to 

informing ecosystem-based management for large marine regions. While seafloor classification 

techniques for habitat classification have been applied in shallow water and generally over more 

local regions, these techniques have never before been applied at continental-margin scales in 

such deep water.  
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Over the past decade, the United States has made a substantial investment in seafloor 

mapping efforts covering over 2.5 million square kilometers of the nation’s potential extended 

continental shelf (ECS) regions, which extend into deep ocean areas beyond 200 nautical miles 

from the nation’s shoreline. The entire potential ECS region off the U.S. Atlantic margin has 

been mapped by researchers at the University of New Hampshire’s Center for Coastal and Ocean 

Mapping/Joint Hydrographic Center (CCOM/JHC). Extensive complimentary mapping datasets 

collected by the National Oceanic and Atmospheric Administration’s Office of Ocean 

Exploration and Research (NOAA OER) have been acquired in adjacent U.S. waters off the East 

Coast covering the continental slope submarine canyons region and a majority of the Blake 

Plateau. The focus of this thesis is on demonstrating that data gathered with the initial purpose of 

establishing a potential extended continental shelf claim can further be used to support EBM 

efforts and sound marine spatial planning. The approaches developed here could be effectively 

applied to ECS and ocean exploration data sets collected world-wide to leverage substantial 

additional value from broad-scale ocean mapping efforts.  

This thesis posited and tested three hypotheses: 1) Broad-scale bathymetric data of the 

U.S. Atlantic margin collected for ECS and deep sea exploration purposes are useful to 

consistently classify ecological marine units of the seafloor and generate value-added 

characterization maps of large regions. 2) Transparent, repeatable, and efficient semi-automated 

geomorphic analysis methods employing the Coastal and Marine Ecological Classification 

Standard (CMECS) as an organizational framework produce useful habitat characterization maps 

of the U.S. Atlantic margin. 3) Vulnerable cold-water coral (CWC) habitats are identifiable and 

able to be inventoried and characterized using geomorphic analysis and CMECS classification of 

bathymetric data. These three research hypotheses were tested through classification and 
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characterization studies of three distinct regions of the U.S. Atlantic margin at different scales 

(an individual seamount feature, the continental slope and abyssal plains, and a continental 

margin borderland) ranging across a diversity of marine habitats. An automatic segmentation 

approach to initially identify landform features from the bathymetry of these study areas was 

completed and then translated into CMECS classification terminology.  

Geomorphic terrain classification methods were applied to the continental slope and the 

abyssal plain of the U.S. Atlantic margin ECS region covering a 959,875 km2 area. Landform 

features derived from the bathymetry were then translated into complete coverage 

geomorphology maps of the region utilizing CMECS to define geoforms. Abyssal flats made up 

more than half of the area (53%), with the continental slope flat class making up another 30% of 

the total area. Flats of any geoform class (including continental shelf flats and guyot flats) made 

up 83.06% of the study area. Slopes of any geoform classes make up a cumulative total of 

13.26% of the study region (8.27% abyssal slopes, 3.73% continental slopes, 1.25% seamount 

slopes), while ridge features comprise only 1.82% of the total study area (1.03% abyssal ridges, 

0.63 continental slope ridge, and 0.16% seamount ridges).  

Using methods developed to classify the ECS dataset, bathymetric data from twenty 

multibeam sonar mapping surveys of the Blake Plateau region were used to derive a standardized 

geomorphic classification capable of quantifying cold-water coral (CWC) mound habitats. 

Results documented the most extensive CWC mound province thus far discovered and reported 

in the literature. Nearly continuous CWC mound features span an area up to 472 km long and 88 

km wide, with a core area of high density mounds up to 248 km long by 35 km wide. A total of 

59,760 individual peak features were delineated, providing the first estimate of the overall 

number of potential CWC mounds mapped in the Blake Plateau region to date. Five geomorphic 
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landform classes were mapped and quantified: peaks (342 km2), valleys (2,883 km2), ridges 

(2,952 km2), slopes (15,227 km2), and flats (49,003 km2). The complex geomorphology of eight 

subregions was described qualitatively with geomorphic “fingerprints” and quantitatively by 

measurements of mound density and vertical relief. Ground-truth from 23 submersible dive 

videos revealed coral rubble to be the dominant substrate component within the peak, ridge, and 

slope landforms explored, thereby validating the interpretation of these bathymetric features as 

CWC mounds. Results indicated that the Blake Plateau supports a globally exceptional CWC 

mound province of heretofore unprecedented scale (at least for now) and diverse morphological 

complexity.   

This dissertation has successfully characterized the geomorphology of vast regions of the 

deep ocean floor off the U.S. Atlantic margin for ecosystem-based management purposes. It has 

applied techniques and established standards of classification that can be applied to other regions 

throughout the World.  This latter point is critical as there are ongoing international efforts today 

to map the entirety of the World's oceans at meaningful scales and these techniques can 

synthesize this information in meaningful ways. Furthermore, the need for such syntheses is 

paramount in order to successful manage (conserve and preserve) the living and non-living 

resources of the ocean.  This thesis shows a way forward for such endeavors, and emphasizes 1) 

the applicability of data acquired for other purposes to be applied to this purpose, and 2) the need 

for standards to define and describe marine habitats so that all governments, managers, 

biologists, geoscientists, and other ocean stakeholders communicate using the same language. 
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Chapter 1 

Introduction 

Knowledge about deep sea environments is undergoing a revolution driven by technological 

advances, increases in financial and political commitments to ocean mapping and ocean 

observing capabilities, and global efforts by the scientific community to better standardize, 

manage, and synthesize massive datasets. There has been a veritable explosion in the gathering 

of deep sea ocean mapping data over the past twenty years driven forward by nations assessing 

the potential for extending their juridical continental shelves under Article 76 of the United 

Nations Convention on the Law of the Sea (UNCLOS) beyond 200 nautical miles – what will be 

referred to here as the Extended Continental Shelf (ECS). Along with government-sponsored 

ECS mapping, philanthropic ocean exploration initiatives and marine industries seeking to map 

areas for potential resource extraction or infrastructure placement continue to collect ocean 

mapping data. These trends in deep sea exploration are forecasted to continue expanding, and 

international recognition of the importance of exploring and mapping the deep sea is being 

formalized and accelerated through many partnerships including the Seabed 2030 initiative 

(Mayer, et al., 2018).   

At the same time that our knowledge of the deep sea is exponentially expanding, so are the 

stressors exerted on our oceans. The deep ocean is the largest ecosystem on Earth by far, 

comprising 90% of the livable volume on the planet (Levin and Le Bris, 2015). This ecosystem 
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is challenged with serious threats from pollution (Thevenon et al., 2014), overfishing (Norse et 

al., 2012), climate change impacts including ocean acidification (FAO, 2019), and the emerging 

potential impacts of deep sea mining (Miller et al., 2018).  

Addressing the conservation challenges facing the deep sea requires an ecosystem-based 

management (EBM) approach (McLeod et al., 2005), while leveraging the maximum value from 

newly acquired spatial datasets about these ecosystems. Marine habitat mapping provides the 

fundamental spatial framework for EBM (Harris and Baker, 2019). The focus of this thesis is 

therefore on determining pragmatic methods aimed at extracting useful marine habitat 

characterization information from ECS and exploration mapping bathymetry data – thereby 

dramatically leveraging the value of the millions of dollars spent on deep sea mapping efforts.     

1.1  Extended Continental Shelf (ECS) and Ocean Exploration Mapping Data 

off the U.S. Atlantic Margin 
 

Vast areas of the seafloor along Earth’s continental margins lay within zones beyond the 200 

nautical mile (nm) Exclusive Economic Zone (EEZ) within which coastal states may have 

sovereign rights over the resources of the seafloor and subsurface, if the coastal state can 

demonstrate that the morphology of the seafloor meets certain criteria outlined in Article 76 of 

UNCLOS. UNCLOS specifies a complex set of formulae that a coastal state must use to define 

the limits of  the “Extended Continental Shelf (ECS)” area. These formulae are based on the 

depth and shape of the seafloor as well as the sediment thickness. Two fundamental data 

requirements needed to delineate potential ECS areas are bathymetric maps and seismic 

reflection data (U.S. Extended Continental Shelf Project, 2020). As of October 29, 2020 eighty-

five submissions have been received by the Commission (U.N. Oceans & Law of the Sea, 2020). 
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Many of the countries that have provided submissions, or have interest in prospective future 

submissions, have undertaken broad data gathering efforts within potential ECS areas adjacent to 

their EEZs, in most all cases involving the acquisition of extensive acoustic seabed mapping 

data, including bathymetry, bottom backscatter, and seismic reflection.  

ECS data are gathered in areas that are typically very poorly explored, and certainly not well 

characterized from a marine habitat standpoint. While the purpose of collecting ECS data sets are 

typically focused only on the mapping information needed to address Article 76 requirements, 

these data sets also offer the opportunity to provide an initial baseline characterization of the 

seafloor. This baseline can be analyzed in combination with other physical and biological 

datasets as a first step in understanding the marine ecosystems in these areas thereby offering a 

tremendous value-added product from the original ECS data.   

While the United States Senate has not yet provided advice and consent for the United 

Nations Convention on the Law of the Sea, the U.S. has undertaken an ambitious campaign to 

collect and analyze the data required to define its potential ECS area. Over the past decade, the 

United States has made a substantial investment in seafloor mapping efforts covering over 2.5 

million square kilometers of the country’s potential ECS regions – an area the size of Alaska and 

Texas combined (U.S. Extended Continental Shelf Project, 2020). Data gathering with high 

resolution multibeam sonar data to define the foot of the continental slope and the 2500 m 

isobaths has been a major focus of effort (Center for Coastal and Ocean Mapping Joint 

Hydrographic Center, 2020). In the Atlantic, multibeam sonar data have been collected in ECS 

areas by the University of New Hampshire’s Center for Coastal and Ocean Mapping / Joint 

Hydrographic Center (CCOM/JHC) on eight cruises between 2004 and 2015, using 12-kHz 
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Kongsberg EM120 or EM122 multibeam sonars (bathymetry resolution of 100 m). Data were 

acquired with the initial purpose of supporting the determination of the outer limits of the U.S. 

juridical continental shelf consistent with international law. 

In addition to the ocean mapping datasets collected for ECS purposes, extensive 

complimentary mapping datasets have been acquired in deep sea regions off the U.S. Atlantic 

coast by the National Oceanic and Atmospheric Administration’s Office of Ocean Exploration 

and Research (NOAA OER) using NOAA Ship Okeanos Explorer. Data were collected during 

31 cruises using a 30-kHz Kongsberg EM302 multibeam sonar (with a bathymetric grid 

resolution of 20-50 m) between 2011 and 2019. The combined spatial coverage of Atlantic 

margin ECS and OER multibeam sonar bathymetry data collected through 2019 and used in this 

thesis is shown in Figure 1.1 (Johnson, 2020).  
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Figure 1.1 Coverage of combined color-coded bathymetry dataset of ECS and NOAA OER 

mapping efforts completed off the Atlantic Continental margin as of 2019 and used in this thesis. 

The data extends from the shelf break to the abyssal ocean, and from Florida to beyond the 

U.S./Canada border. Bathymetric synthesis credit: Paul Johnson, UNH CCOM/JHC.  

 

The completion of these high cost and high quality datasets presents a rich opportunity to 

utilize these data for supporting numerous other ocean research and management priorities facing 

the United States. The thesis presented here establishes a data synthesis and marine habitat 

classification approach that leverages and increases the value of existing ECS and ocean 

exploration data. This effort is focused on the Atlantic margin of the U.S., but can be applied to 

other ECS and deep ocean regions in the U.S. and abroad.   
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1.2  Ecosystem-Based Management and Approaches to Marine Habitat 

Mapping 
 

The 2003 Pew Ocean Commission report, America's Living Oceans: Charting a Course for 

Sea Change, and the 2004 U.S. Commission on Ocean Policy report, An Ocean Blueprint for the 

21st Century, provided a detailed roadmap of recommendations for improvements in many 

aspects of ocean and coastal policy. Both commissions articulated failures in current marine 

ocean management approaches and called for an integrated ecosystem-based approach referred 

to as “ecosystem-based management” (EBM). The Scientific Consensus Statement on Marine 

Ecosystem-Based Management (McLeod et al., 2005) defines EBM for the oceans as: 

an integrated approach to management that considers the entire ecosystem, including 

humans. The goal of ecosystem-based management is to maintain an ecosystem in a 

healthy, productive and resilient condition so that it can provide the services humans 

want and need. Ecosystem-based management differs from current approaches that 

usually focus on a single species, sector, activity or concern; it considers the cumulative 

impacts of different sectors. 

 

Actions consistent with EBM include: ecosystem-level planning, establishing cross-

jurisdictional management goals, regional area-based management and establishment of marine 

reserves, and support of long-term ocean research and monitoring programs (McLeod et al., 

2005). These policy changes are significantly altering how ocean management is conducted and 

dramatically increasing the need for accurate maps of ocean bathymetry and marine habitat that 

serve as the fundamental basis for understanding marine ecosystems and guiding marine spatial 

planning efforts.  

“Habitat” is a general term and is defined differently depending on whether one is seeking to 

map suitable areas for single species, distinct communities of species, or areas that represent a 

gradient of abiotic properties as a proxy for the actual distribution of organisms (Brown et al., 
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2011). Seafloor habitats can be defined as “physically distinct areas of seabed that are associated 

with particular species, communities, or assemblages that consistently occur together” (Harris 

and Baker, 2011a).  

The primary motivations for characterizing and classifying marine habitats are to: 

1) Synthesize diverse biological, physical, and chemical datasets into interpreted 

products that help to better understand and model marine ecosystems (often desirable 

for marine scientists); and 

2) Support marine management decisions that require spatially-relevant data (often 

desirable for management agencies, political entities, industries, and 

conservationists).  

Demand for marine habitat classification is being driven by increasing pressures on 

marine environments, the establishment of increasingly regional-scale management approaches 

to the oceans, and efforts to implement EBM practices.  

To produce benthic habitat maps continuous coverage environmental data is needed in 

combination with representative in situ “ground-truth” samples. Continuous coverage datasets 

can include directly measured data such as bathymetry and backscatter, as well as outputs from 

oceanographic models that are based on measured data (e.g. currents, temperature, salinity, 

productivity models). In situ samples routinely used to inform benthic habitat characterization 

include sediment grabs and cores, videos, photographs, and biological samples. As informed by 

the in-situ samples, the complete coverage data are then typically used as a proxy for the 

distribution of potential habitats (MESH, 2008a).  
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In a useful overview of the use of acoustic methods in support of benthic habitat 

mapping, Brown et al. (2011) summarized three basic strategies to producing benthic habitat 

maps:  

1) Utilize abiotic surrogates (unsupervised classification - limited or no ground validation) 

The abiotic surrogacy approach generates marine landscape (seascape) maps at broad spatial 

scales based on delineating physiographic features from continuous datasets. In the absence of 

perfect knowledge of marine biodiversity and species-habitat relationships (which is 

unachievable), in many settings coarser level classification of marine habits that support 

precautionary management of a diversity of habitat types can serve as a surrogate for protections 

and management schemes for individual species. The abiotic features are thereby used as proxies 

to infer potential habitat suitability. This approach can be effective for species or communities 

with distributions closely tied to remotely measured seafloor characteristics (e.g. coral reefs), but 

often poorly predicts species distribution at fine spatial scales.   

2) Assemble first, predict later (unsupervised classification) 

The “assemble first, predict later” approach is referred to as a “top-down” strategy where the 

environmental data is segmented into spatial units and then correlated with ground-truth data to 

examine statistical relationships between abiotic and biotic variables. Correlations can then be 

extrapolated to predict potential habitat over larger areas.  

3) Predict first, assemble later (supervised classification) 

The “predict first, assemble later” category is a bottom up strategy that uses the ground-truthing 

data as a means to segment the abiotic environmental data. By examining the environmental 
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conditions within which the habitat occurs, a species or habitat distribution model is developed 

and then used to classify the broader environmental data sets into areas that are most suitable to 

support that habitat type.  

Use of geological surrogates as coarse predictors of seafloor habitat (strategy 1) has shown 

promising results in several studies (e.g. Althaus et al., 2012; Kloser et al., 2007), and this 

approach is a highly active subject of research (Brown et al., 2011). Practically speaking, this 

approach is currently one of the only options when seeking to classify habitats at a regional scale 

with little available ground-truth data (i.e. much of the deep sea beyond the edge of the 

continental shelf).  

The thesis work presented here adopted strategy 1 given the vast spatial scale covered 

and the lack of accurate ground-truth information available for most of the area covered. In some 

areas where ground-truth data were collected by recent submersible dives with good 

georeferencing these data were used as part of the classification process.  

1.3  Standardized Classification of Marine Habitats  
 

Standardized classification methodologies for terrestrial and freshwater habitats have been 

robustly developed and are broadly used (FGDC, 1996, 2008).  By providing a standardized 

“common language” to describe habitats, these classification approaches have demonstrated their 

utility for informing landscape-scale management and conservation decisions. Generating full 

coverage remote sensing datasets and statistically-representative samples of marine habitats is 

more difficult than on land, and thus the field of marine habitat classification is comparatively 

nascent. 
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The development of interpreted ecological classification maps via the synthesis of diverse 

marine datasets is being undertaken in numerous countries around the world. In many cases this 

work is done on continental shelf habitats for relatively small areas of high management interest 

(Harris and Baker, 2011b). Notable examples of classification work covering larger and/or 

deeper areas of the ocean include Canada’s National Marine Mapping Strategy (Pickrill, 2007; 

Pickrill and Kostylev, 2007), Ireland and the United Kingdom (Conner et al., 2004), Norway 

(Kartverket, 2015), Europe (MESH, 2008), and Australia (Geoscience Australia, 2015).  

While there is much work going on in this field, there has been little agreement on 

standardized classification methodology among different studies (Harris and Baker, 2011b), 

which leads to difficulties in directly comparing the outcome of these efforts. Standardized 

ecological classification schemes offer a coherent way to structure knowledge gained about these 

areas. The benefits of standardized classification schemes become particularly important when 

synthesizing marine habitat information at the regional level covering many marine datasets and 

management jurisdictions. In Europe, efforts to promote standardization have resulted in the 

European Nature Information System (EUNIS) (EEA, 2004).   

In the United States, the Coastal and Marine Ecological Classification Standard (CMECS) 

has been adopted as the federal standard for classifying marine habitats (FGDC, 2012). CMECS 

provides a framework for organizing data about the marine environment so that ecosystems can 

be identified, characterized, and mapped in a standard way across regional and national 

boundaries (NOAA, 2015). The purpose of CMECS is to provide a common language to 

describe coastal and marine ecological features in order to:  

 classify the geological, physical, biological, and chemical components of the ocean 
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 integrate data from different sources and study areas 

 facilitate regional assessment 

As shown in Figure 1.2, CMECS is organized by six main components that characterize 

various aspects of the seascape: aquatic setting, biogeographic setting, water column, geoform, 

substrate, and biotic communities. Each component is a stand-alone construct that can be used on 

its own or in combination with other elements of the classification standard (FGDC, 2012). The 

geoform component describes the major geomorphic characteristics of the seafloor. Important 

pilot and case studies utilizing CMECS have been completed, but the standard is yet to be fully 

adopted in practice and fully utilized by researchers and managers throughout U.S. marine 

waters (personal communication, Mark Finkbeiner, May 28, 2015).  
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Figure 1.2 CMECS Settings and Components (Figure from FGDC, 2012) 

 

Given that the focus of this thesis is on seafloor classification, the geoform, substrate, and 

biotic (where ground-truth data of sufficient quality existed) components of CMECS were 

utilized. The water column component of CMECS was beyond the scope of this thesis. 

This thesis utilizes CMECS as an organizational framework to integrate and interpret 

diverse available marine datasets within a large region covering deep water habitats of the 

continental slope and abyssal areas both within the U.S. EEZ and in the potential ECS area of the 

Atlantic margin. This work fills a gap in the field of marine habitat mapping since few habitat 

mapping studies have been done in slope or abyssal habitats (Harris and Baker, 2011b). 
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Inasmuch as many nations are collecting acoustic mapping data for ECS purposes, the research 

presented here provides insights into the benefits and limitations of also using these data to 

inform deep sea habitat characterization and EBM.   

1.4  Challenges in Characterizing Marine Habitats  
 

While the demand for improved marine habitat maps is clear, determining effective 

approaches for generating these maps is still an area of active research that faces many 

challenges. Several of the key challenges in this field include: 

1. Technical challenges in fully utilizing acoustic backscatter intensity data to assess 

properties of the seafloor (Fonseca et al., 2009; Fonseca and Mayer, 2007; Hughes 

Clarke, 1994; Rzhanov et al., 2012). 

2. Assessing how well geologic properties of the seafloor serve as proxies for certain types 

of marine habitat (Beaman and Harris, 2007; Brown et al., 2001; McArthur et al., 2010). 

3. Recognition that the spatial and temporal scales of importance in structuring marine 

community assemblages are often poorly understood or unknown. (Census of Marine 

Life, 2010; FGDC, 2012).  

4. Difficulties in synthesizing data collected by various researchers, for different purposes, 

lacking a standardized classification scheme (Harris and Baker, 2011b).   

5. Determining appropriate methods to synthesize datasets of highly variable scale and 

resolution in order to generate maps (Dolan and Lucier, 2014). 

6. The limited availability of samples of seafloor habitats (particularly in the deep sea), and 

the cost of obtaining these samples (OBIS, 2013). 
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7. The lack of transparency of marine ecological classification efforts that employ “black-

box” geospatial analyses (Lecours, 2017), and the lack of repeatability for one-time 

classification methods that rely primarily on expert judgement. 

1.5  Purpose of the Study  
 

This dissertation was targeted to make contributions towards addressing aspects of 

challenges 4 to 7 described above in section 1.5 with respect to the field of marine habitat 

mapping.  

The primary research question of this thesis is: Can multibeam data from the deep water Atlantic 

margin, along with other existing ancillary datasets, be utilized to generate standardized marine 

ecological classification maps of the seafloor useful for supporting ecosystem-based 

management (EBM)? 

Specifically, this thesis posits the following hypotheses: 

1. Broad-scale bathymetric data of the U.S. Atlantic margin collected for ECS and deep sea 

exploration purposes are useful to consistently classify ecological marine units of the 

seafloor and generate value-added characterization maps of large regions.  

2. Transparent, repeatable, and efficient semi-automated geomorphic analysis methods 

employing the Coastal and Marine Ecological Classification Standard (CMECS) as an 

organizational framework produce useful habitat characterization maps of the U.S. 

Atlantic margin.    
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3. Vulnerable cold-water coral (CWC) habitats are identifiable and able to be inventoried 

and characterized using geomorphic analysis and CMECS classification of bathymetric 

data.  

These three research hypotheses were tested through classification and characterization studies 

of three distinct regions of the U.S. Atlantic margin at different scales ranging across a diversity 

of marine habitats.  Results of each of these applications are structured into three separate but 

tightly related research journal articles. Each of these journal articles represents a chapter in this 

dissertation (Chapters 2-4). Each article contains its own abstract, background context, study 

area description, detailed methods explanation, results, discussion, and conclusion. A brief 

synopsis of each paper, and how it relates to the central hypotheses of this dissertation, is 

described below. Chapter 2 and Chapter 3 have been published as a peer-reviewed book chapter 

and a scientific journal article, respectively. Chapter 4 is in preparation for submission to a peer-

reviewed journal. Chapter 5 provides a synthesis of the overall conclusions of the thesis based on 

insights from the articles in Chapters 2-4.  

Chapter 2 Title:  

Application of the Coastal and Marine Ecological Classification Standard to Gosnold Seamount, 

North Atlantic Ocean 

Synopsis: This paper is a case study completed on Gosnold Seamount in the New England 

Seamount Chain as a proof-of-concept over a relatively small area in order to develop and refine 

methods aimed at addressing the dissertation hypotheses. The paper developed analytical 

workflows that were refined in subsequent chapters and applied to larger study regions. A key 

advancement from this work was recognizing the utility of a new bathymetry and backscatter 
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spatial analysis tool called BRESS, the Bathymetry- and Reflectivity-based Estimator for 

Seafloor Segmentation (Masetti et al., 2018), for systematic delineation of terrain landforms 

suitable for translation to CMECS geoforms. The study also generated CMECS biotic and 

substrate component classifications based on fine-scale observations of biota and substrate from 

a remotely operated vehicle (ROV) dive on the seamount. The study largely validated the utility 

of using CMECS as a systematic classification framework for a deep sea seamount, but also 

proposed some new provisional CMECS units tailored for this setting. This paper was published 

as a chapter in the book Seafloor Geomorphology as Benthic Habitat, Second Edition (Harris and 

Baker, 2020).  

Chapter 3 Title:  

Standardized Geomorphic Classification of Seafloor Within the United States Atlantic Canyons 

and Continental Margin 

Synopsis: This study took insights learned from Chapter 2 and scaled the methods for systematic 

geomorphic classification to a dramatically larger region spanning the continental shelf break to 

the abyssal plains, from Canada to Florida. The study utilized input bathymetric data from eight 

ECS cruises and nine OER cruises to derive complete coverage standardized geomorphology 

maps of the region using CMECS to define geoforms. The study demonstrated the utility of this 

approach for inventorying and quantifying areas of each geoform class. The clear advantages of 

an automatic terrain segmentation approach (versus manual delineations) for classifying vast 

ocean areas was a fundamental highlight of this paper. The highly diverse terrain covered by this 

study led to new challenges in parameterizing the terrain analysis tool, and lessons learned from 

that experience can be used to guide future applications of the method to other ECS regions 
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spanning large depth and slope gradients. The study also demonstrated the time-and-effort 

efficiency of classifying such a large geography using a transparent and repeatable strategy. The 

paper was peer-reviewed by a United States Geological Survey geologist with specialized 

knowledge of the U.S. Atlantic Margin (Dr. Jason Chaytor), as well as by a well-recognized 

expert on large-scale geomorphic characterization of marine habitat (Dr. Peter Harris). This 

paper was published in the journal Frontiers in Marine Science (Sowers et al., 2020).  

Chapter 4 Title:  

Standardized Geomorphic Characterization of the Extensive Cold-Water Coral Mound Province 

of the Blake Plateau, USA 

Synopsis: Given that work completed for Chapters 2 and 3 established a working methodology 

for systematic classification of ecological marine units using CMECS terminology, Chapter 4 

focuses on the third hypothesis of the dissertation: testing the utility of these methods for 

identifying, inventorying, and characterizing vulnerable cold-water coral (CWC) habitats. The 

approach was proven to be highly effective at characterizing individual mound-forming 

scleractinian coral features exemplified by the morphologies encountered on the Blake Plateau. 

The approach was also effective at delineating high probability CWC features associated with 

scarp/ridge complexes in the region that have a mound morphology component to them, as 

validated by several submersible dives in the region.  

While this region has been well documented by other researchers as a globally important CWC 

mound hotspot, the nearly full extent and sheer number of features has only been revealed with 

the recent mapping expedition data synthesized and presented in this paper. The research 

completed in Chapter 4 revealed a total of 59,760 individual peak features, providing the first 
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estimate of the overall number of potential CWC mounds mapped in the region to date. The areal 

extent of densely aggregated CWC mounds was delineated and used to document the most 

expansive continuous CWC mound province thus far discovered worldwide. Cumulative areal 

coverages of geomorphic classes were quantified, and detailed morphological statistics were 

generated for eight subregions exhibiting highly diverse patterns of mound distribution and 

vertical relief. Two newly discovered large CWC mound subregions located outside existing 

coral protection zones were characterized by the study, and this information has been presented 

directly by the author to the South Atlantic Fishery Management Council. The study methods 

used were able to quantify characteristics of the CWC mound resources in ways that would have 

been difficult or impossible to do otherwise. This study therefore effectively demonstrated the 

usefulness of the standardized geomorphic maps and associated descriptive statistics for 

supporting ecosystem-based management (EBM) decisions pertaining to a large globally 

important deep-sea ecosystem.  
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Chapter 2 

Application of the Coastal and Marine Ecological Classification 

Standard to Gosnold Seamount, North Atlantic Ocean 

This article was published in Seafloor Geomorphology as Benthic Habitat: GeoHab Atlas of 

Seafloor Geomorphic Features and Benthic Habitats, 2nd Edition, Sowers, D., Dijkstra, J.A., G. 

Masetti, G., Mayer, L.A., Mello, K., Malik, M., pages 903-916, Copyright Elsevier (2020) 

2.1  Summary 
 

This case study applied the Coastal and Marine Ecological Classification Standard 

(CMECS) to initial characterization of a deep sea seamount by combining observations from a 

remotely-operated vehicle (ROV) and information derived from multibeam sonar bathymetry 

and backscatter. Spatial segmentation of the multibeam bathymetry was done using algorithms 

based on definition of bathymorphons (Masetti et al., 2018) resulting in six classes: flats, slopes, 

ridges, valleys, shoulders, and footslopes. These classes were modified to delineate CMECS 

“Level 1” geoform units for Gosnold Seamount. Further segmentation of landforms was 

completed using textural analysis of the sonar backscatter mosaic of the seamount to identify 

segments of the same landform type with similar reflectivity texture. ROV dive video of the 

seafloor was analyzed manually to create a spreadsheet of 933 georeferenced annotations of 

organisms and associated substrate types. The dominant sediment type over each 50m segment 

of the ROV track was also classified using substrate unit terminology from CMECS into four 
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classes: bedrock (10% of ROV track), fine unconsolidated sediments on bedrock (84%), coral 

rubble (1%), and sand (5%). Eleven genera of corals, 2 classes of sponges and 4 classes of 

echinoderms were observed along the track, with glass sponges dominating the annotation and 

abundance counts. Nominal regression revealed that depth, temperature and sediment type were 

significant predictors of individual coral along the ROV track (p < 0.001, p < 0.001, p < 0.001, 

respectively at the 0.01 significance level). In contrast, slope, sediment type and dissolved 

oxygen were significant predictors of sponge distribution along the track (p < 0.0001 for all at 

the 0.01 significance level). In summary, the application of CMECs to Gosnold Seamount 

provided a useful systematic framework for structuring geoform, substrate, and biotic 

classification of benthic habitat. This standard, in combination with the semi-automated seafloor 

segmentation approach utilized, provides a consistent and reproducible habitat classification 

approach for large regions and facilitate comparison of habitats among features.  

2.2  Introduction 
 

Gosnold Seamount (62.51072°N, 38.30238°W) is a prominent dual-peaked guyot rising 

over 3,350 meters from the abyssal plain as part of the New England Seamount Chain. The New 

England Seamount Chain consists of over 35 seamounts, and is the longest in the North Atlantic 

Ocean, extending southeast from Georges Bank about 1,300 km to the outer Bermuda Rise 

(Taras and Hart, 1987). Duncan (1984) used 40Ar-39Ar dating techniques on rock dredged from 

Gosnold Seamount and estimated its age at 90 Ma, which corresponds to the Late Cretaceous 

period. Gosnold Seamount is located 730 kilometers offshore from the New England coast of the 

United States and covers an area of about 3,780 km2, with the majority of the flat top of the 

feature located approximately 1,640 meters below sea level. The guyot is linear in overall form, 
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with a length of 85 km and width of 38 km trending in a northwest to southeast orientation 

(Figure 2.1). Water depths of the benthic habitats on Gosnold Seamount vary from 1,418 m to 

5,082 m.  

To our knowledge, a rigorous analysis of the naturalness, condition, and trends at 

Gosnold Seamount has not been completed and the data needed to support a thorough assessment 

is largely lacking. However, it is reasonable to assume (with medium confidence) that the 

condition is very good and likely steady. This is based on the geographic isolation of the 

seamount from land and the fact that the Northwest Atlantic Fisheries Organization (NAFO) has 

a Vulnerable Marine Ecosystems (VME) closure restricting bottom contact gear throughout the 

region of the New England Seamount Chain within their jurisdiction until at least 2020 (NAFO, 

2018).  Fourteen nations are NAFO contracting parties. Potential impacts from illegal bottom-

contact fishing and climate change related impacts are unknown.   

The first detailed multibeam mapping surveys and remotely operated vehicle (ROV) dive 

on Gosnold Seamount were completed in 2014 by NOAA’s Office of Ocean Exploration & 

Research (OER) with the NOAA vessel Okeanos Explorer as part of the EX-14-04L1 (Sowers et 

al., 2014) and EX-14-04L3 expeditions (McKenna and Kennedy, 2014). Analysis of the Okeanos 

Explorer multibeam sonar data and the high definition video obtained by the ROV Deep 

Discoverer are the subject of this case study. Bathymetry and backscatter data were collected 

using the 30 kHz Kongsberg EM 302 multibeam sonar. The 75m resolution multibeam sonar 

grid resulting from this survey is shown in Figure 2.1 as an inset to the location map of the study 

area.  
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Figure 2.1. Location map for Gosnold Seamount within the New England Seamount Chain in 

the North Atlantic Ocean. Call out box shows 3D 75m resolution gridded bathymetric terrain of 

the seamount at 3x vertical exaggeration and depth in meters. Background map generated in 

GeoMapApp: http://www.geomapapp.org. 

 

High resolution video for this study was obtained for Gosnold Seamount using NOAA 

OER’s 6,000 meter rated dual-body ROV system, the Deep Discoverer (D2) and Seirios during 

the EX1404L3 expedition on September 28, 2014. These ROVs are maintained and operated by 

the Global Foundation for Ocean Exploration. D2’s primary data set is high-definition video 

collected by six HD cameras. In addition, D2 carries a Sea Bird 9/11+ CTD with Light Scattering 

(LSS), Dissolved Oxygen (DO), Oxygen Reduction Potential (ORP), temperature, salinity and 

depth sensors. The second body of the system is the camera platform Seirios, which provides 

additional lighting and an “aerial” view while D2 investigates the seafloor. The dive track of 

ROV D2 on Gosnold Seamount is shown in Figure 2.2. 

http://www.geomapapp.org/
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An ultra-short baseline (USBL) system was used to obtain vehicle position relative to the 

ship during deployment. The ROV was also equipped with lights aimed at the seafloor for 

illumination. Two laser beams pointing 10 cm apart are projected onto the video image providing 

a scale to enable calculation of total area analyzed along each segment of the ROV track. The 

ROV track traversed approximately 800 meters (linear distance) up a distinct ridge feature on the 

northeast side of the seamount, until reaching the edge of the relatively flat top of the summit.  

Depths explored ranged from 2126 m to 1851 m (Figure 2.2). No physical biological or 

substrate samples were taken during the ROV dive.  

 

Figure 2.2 Location of the ROV dive track (white line) shown on the bathymetry grid for 

Gosnold Seamount at 3x vertical exaggeration. Depths shown are in meters.  
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An overall guiding objective of this study was to systematically apply the Coastal and 

Marine Ecological Classification Standard (CMECS) to a major deep-sea feature as part of an 

ongoing effort to refine methods for applying this standard to deep-sea habitats. The benefits of 

standardized classification schemes become particularly important when synthesizing marine 

habitat information at the regional level covering many marine datasets and management 

jurisdictions. CMECS was formally endorsed by the U.S. Federal Geographic Data Committee in 

2012 and provides a comprehensive framework of common terminology for classifying 

biological species, water column properties, and seafloor morphology and composition. For 

details on the hierarchical structure and units available in CMECS the reader is referred to the 

official adopted standard document (FGDC, 2012).  

Application of CMECS to deep sea habitats is still in the early phases with some 

important notable efforts completed by NOAA’s Deep Sea Coral Research and Technology 

Program utilizing data from three separate expeditions in the Pacific Ocean (Bassett et al., 2017), 

and by Ruby (2017) within the Gulf of Mexico. As a dynamic standard, CMECS incorporates the 

use of provisional units, which allow researchers to add proposed new units to the standard as 

they are discovered. This flexibility is especially valuable in the deep sea, where knowledge is 

increasing rapidly and new discoveries are commonplace. This case study shares results of a 

collaborative effort between NOAA OER and UNH/CCOM to advance pragmatic efforts to 

apply the standard to deep sea habitats in order to facilitate more meaningful characterization of 

the geomorphology, biology, substrate, and water column of these poorly-studied habitats.  
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2.3  Geomorphic Features and Habitats 
 

Utilizing CMECS as an organization framework, Gosnold Seamount was classified using 

the upper levels of the hierarchy as shown in Table 2.1.  

Table 2.1. CMECS units for Gosnold Seamount for biogeographic setting, aquatic setting, water 

column component, and geoform component. For definitions and details see FGDC, 2012. 

Biogeographic Setting: 

• Realm: Temperate Northern Atlantic  

• Province: Cold Temperate Northwest Atlantic  

• Ecoregion: n/a (not defined outside national maritime boundaries) 

Aquatic Setting:  

• System: Marine  

• Subsystem: Marine Oceanic 

• Tidal Zone: Subtidal  

Water Column Component: 

 • Water Column Layer: Marine Oceanic 

 • Salinity Regime: Euhaline Water (30 to <40 PSU) 

 • Temperature Regime: Very Cold (0 to <5 degrees C)  

Geoform Component:  

• Tectonic Setting: Abyssal Plain  

• Physiographic Setting: Marine Basin Floor  

• Geoform Origin: Geologic  

• Level 1 Geoform: Seamount 

 Geoform Type: Guyot  
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The key inputs to the geomorphic analysis of Gosnold Seamount were a cleaned and 

quality controlled 75-meter resolution bathymetric grid and a co-located 17 meter resolution 

multibeam backscatter mosaic of the seamount. The bathymetric grid was produced using Caris 

HIPS and SIPS software (version 9.0), and the backscatter mosaic was produced using QPS 

Fledermaus Geocoder Toolbox (version 7.8.1) and corrected for geometric and radiometric 

effects, with incident angles to the seafloor calculated from a background bathymetric reference 

grid.  

Terrain and acoustic reflectivity analysis in this study utilized the Bathymetry- and 

Reflectivity-based Estimator for Seafloor Segmentation (BRESS) approach developed by 

Masetti et al. (2018). The BRESS analytical approach implements principles of topographic 

openness, pattern recognition, and texture classification to identify a collection of homogeneous, 

non-overlapping seafloor segments of consistent morphology and acoustic backscatter texture. 

The algorithm first establishes geomorphic elements of the seafloor or “area kernels” based on 

“bathymorphons”, these latter derived from the “geomorphon” concept developed by Jasiewicz 

and Stepinski (2013). As a preliminary step, the BRESS algorithm classifies the terrain by 

landform type, using the calculated bathymorphons and a look-up table. The original 

geomorphon work proposes a ten-type landform classification: flat, peak, ridge, shoulder, spur, 

slope, pit, valley, footslope, and hollow. In addition, BRESS offers a simplified six-type 

landform classification which merges peaks, pits, spurs, and hollows with adjacent 

morphologies. The simplified option was used in this study, with the output of the bathymetric 

Digital Elevation Model (DEM) analysis resulting in a continuous landform map of Gosnold 

Seamount composed of six classes: flat, slope, ridge, valley, shoulder, and footslope (Figure 

2.3).  
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Figure 2.3. Map of landforms (“bathymorphons”) delineated for Gosnold Seamount. Note the 

accentuation of the distinct ridge features (yellow), the flat areas on the top of the guyot and 

abyssal plain (blue), and the shoulder features (light green) at the transition from the steep slopes 

to the guyot top.  

 

The landform classes shown in Figure 2.3 effectively delineated the major features of 

geomorphic interest on the seamount and can be considered comparable in many ways to the 

likely output of manual delineations performed by a skilled analyst. Key benefits of the 

automated classification completed with the BRESS approach are speed, computational 

efficiency, reproducibility of results (given the same input datasets and analysis parameters), and 

the ability to apply the same methods to similar features at the regional scale for consistency of 

results. The opportunity for consistency in the delineation of seafloor geoforms lends itself well 
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to large regional characterization efforts – especially when classification units and terminology 

can be implemented consistently through the use of an ecological classification standard such as 

CMECS.  

The landform raster output from BRESS was utilized as the basis to delineate CMECS 

“Level 1” geoform units for Gosnold Seamount. Level 1 geoforms are defined as generally larger 

than one square kilometer (FGDC, 2012) and correspond to Megahabitats in the Greene et al. 

classification system (2007). The raster of landform types was converted to a polygon layer in 

ArcGIS Pro 2.12 software to enable reclassification of homogenous units. It was necessary to 

reclassify the flats at the top of the guyot in order to distinguish them from the abyssal flats at the 

base of the seamount. The results of classifying Gosnold Seamount using CMECS units (existing 

and proposed) are shown in Table 2.2 and Figure 2.4. Of particular note are the proposals to 

recognize footslope and shoulder geoforms in the standard. Both of these terms are recognized 

and defined in terrestrial landscapes by the U.S. Department of Agriculture, Natural Resources 

Conservation Service (USDA, 2018). These geoforms also often have ecological importance in 

the terrain which make their identification useful. Footslopes are concave areas in the terrain and 

can form transitional habitats between slopes and flats. Shoulders represent the convex transition 

zone between steeps and summit flats – areas which have often been found to be biological 

hotspots on oceanic seamounts where sessile attached fauna take advantage of the combination 

of exposed hard substrates and food-supplying currents that can occur in these relatively rare 

topographic areas (see for example NOAA CAPSTONE expedition results in Raineault et al., 

2018).   
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Table 2.2. CMECS geoform classes for Gosnold Seamount as organized by CMECS hierarchical 

principles of moving to smaller size features and more detail from left to right. Boxes highlighted 

in grey are provisional units, meaning units that are not part of the standard but proposed for 

consideration to integrate into the standard in the next formal revision. These proposed units 

were deemed necessary since the standard lacked comparable existing units for a deep sea 

seamount.  

Tectonic 
Setting 

Physiographic 
Setting 

Geoform 
Origin 

Geoform Geoform Type 

Abyssal 
Plain 

Marine Basin 
Floor 

Geologic Seamount Guyot 

   Flat Provisional: Guyot Flat, 
Provisional: Abyssal Floor 

   Ridge Provisional: Seamount Ridge 

   Slope Provisional: Seamount Slope 

   Provisional Unit: Valley Provisional: Seamount Valley 

   Provisional Unit: 
Shoulder 

Provisional: Seamount Shoulder 

   Provisional Unit: 
Footslope 

Provisional: Seamount Footslope 

 

 
 

Figure 2.4. Map of geoforms delineated for Gosnold Seamount.  
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Since the bathymorphon approach to geomorphological classification employs a line-of-

sight approach within a search annulus around a DEM node (Yokoyama et al., 2002), it is less 

sensitive to changes in scale then neighborhood-based methods of terrain analysis employing a 

fixed search window. However, the minimum and maximum size of the search annulus radii 

parameters must be set appropriately depending on the scale of the feature that the analyst is 

seeking to identify within the DEM and the severity of “noise” (small scale artifacts) in the DEM 

grid. In the DEM analysis of Gosnold Seamount, the results also differed significantly depending 

on the flatness angle parameter, as this is a key determinant of how slopes and flats are 

classified. For the Gosnold Seamount with features having slopes approaching vertical in some 

areas, and a relatively flat summit to the guyot, a flatness angle of 5° was chosen as optimal. The 

optimal flatness parameter was selected through extensive experimentation with varying angles.  

 Once the landform mask was created within BRESS, the resulting area kernels were 

utilized by the seafloor segments algorithms in BRESS as a starting basis for the further 

segmentation of seafloor facies with similar acoustic backscatter response using the intensity-

levels of the pixel from the backscatter mosaic of Gosnold Seamount. By comparing histograms 

between kernels of the same seafloor landform type (e.g. “ridge”), areas are split or merged 

depending on the difference or similarity between the textural characteristics of the mosaic pixels 

associated with each kernel. A distinct segment class therefore represents an area that has been 

classified with the same landform type and similar reflectivity texture (Masetti et al., 2018). The 

resulting seafloor segmentation map for Gosnold Seamount is shown in Figure 2.5.  



Derek Sowers                                      Chapter 2   

       

31 

 

 

Figure 2.5. Seafloor segmentation map for Gosnold Seamount. Each distinct color represents a 

segment class with the same landform type and similar reflectivity texture. There are 336 

segments in the map, but the majority of the area is dominated by just a few large segments.   

 

Along with the segmentation of seafloor based on landforms and backscatter response 

texture, BRESS calculates thirteen spatial statistics for each node of the bathymetric grid – the 

full utility of which were not explored by this study. The output of the segmentation was not 

used to try to attempt a predictive classification of CMECS substrate types across the entire 

seamount feature, but does offer potential to be used this way in future research efforts. There 

was insufficient groundtruth data to attempt to classify substrate types based on backscatter 
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response texture. The identification of common landform types with similar acoustic textural 

response provides useful guidance on choosing where to gather substrate ground-truth data to aid 

in interpretation of the backscatter. This would inform either a strategic sampling plan aimed at 

getting samples thought to be representative of the largest area features on the seamount (i.e. the 

“biggest bang for the buck”) or in planning a more statistically robust stratified random sampling 

plan. Future work may seek to utilize the segmented areas to conduct theme-based angular range 

analysis to estimate sediment type from backscatter data, which could then ideally inform 

predicted CMECS sediment types over large regions of the deep sea.  

2.4  Biological Communities 
 

All of the ROV dive video of the seafloor was analyzed manually by a trained researcher 

at UNH/CCOM in order to create a spreadsheet of 933 georeferenced annotations of organisms 

and associated substrate types. NOAA OER has developed a set of customized publicly-available 

Python code scripts (M. Malik, personal communication, 2017) that were used to facilitate the 

playback and annotation of ROV video integrated with navigation and CTD data files (salinity, 

temperature, DO). Video imagery, environmental sensor data, and navigation/position data were 

integrated into a common annotation interface utilizing the shared time stamps associated with 

each dataset. The annotation tool was customized in order to easily add time/position stamped 

observations of organisms and substrate type along the ROV dive track. The dominant substrate 

type over each 50 m segment of the ROV track was also classified using substrate unit 

terminology from CMECS into four classes: bedrock (10% of ROV track), fine unconsolidated 

sediments on bedrock (84%), coral rubble (1%), and sand (5%) as shown in Figure 2.6. 

Substrate was classified over 50 m segments to account for the variability in the ROV 
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positioning, and to classify substrate at a scale closer to the resolution of available multibeam 

sonar bathymetry and backscatter data.  

 

Figure 2.6. CMECS substrate type as characterized over 50m segments of the ROV track. 

Examples images of each substrate type are shown on the right, following the order of the legend 

labels.  

 

Organisms were taxonomically classified and counted within an approximately 0.5 m 

wide strip in front of the ROV for each segment of the track in which lasers were visible. The 

lasers are 10 cm apart, and the analyzed strip included the area between the lasers as well as 20 

cm on each side of the lasers. Organisms were identified to the lowest possible taxon or 

morphotype using the recorded (auditory and written) events log captured for each dive. 

Identification of organisms were conservative given that identifications were made based on 
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video imagery without the benefit of voucher specimens. Identifications ranged from class to 

genus level. Organisms from the phylum Echinodermata and Porifera were identified to class. 

Cnidarians were identified to genus with the exception of anemones which were identified to 

order and coral that could not be identified. Eleven genera of corals, 2 classes of sponges and 4 

classes of echinoderms were observed along the track (Figure 2.7).  

 

Figure 2.7. Taxa identified along the ROV track on Gosnold Seamount as represented by percent 

of overall counts within 0.5 m wide strips for each segment of the track in which lasers were 

visible. Counts were heavily dominated by Hexactinellidae (glass sponges).  

 

As the relative importance of factors that control species distribution changes with scale 

(McGill, 2010), the interaction between factors and their effect on the distribution of 
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assemblages was analyzed at different scales. The georeferenced annotated spreadsheet was the 

basis for the first (fine) scale analysis. Corals, sponges and environmental factors were pulled out 

of the annotation file and a nominal logistic regression was used to determine which factors 

affect their distribution. This fine-scale analysis used deep water corals and sponges as they are 

habitat forming and were the most common groups of organisms along the track. Biological 

assemblages were classified utilizing CMECS units as follows: glass sponge reef, mixed 

colonized deep-water reef, coral colonized deep-water reef, and few/absent biota (Figure 2.8).  

 

Figure 2.8.  CMECS biological assemblage types per 50m segment of ROV track, as a 

percentage of all of the 50m segments in the track. Glass sponge reef made of the majority of the 

track (55%), followed by mixed colonized deep-water reef (29%).  
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2.5  Surrogacy 
 

Biotic and environmental matching (BEST method from Clarke and Gorley, 2008) was 

used to obtain the optimum environmental variables (temperature, depth, salinity and dissolved 

oxygen, slope and sediment type) that characterized biological assemblage types (mixed, glass 

sponge dominated, coral dominated and few/absent biota) identified in 50 m segments (224 

segments in total of which 54 were suitable for analysis because ROV lasers were turned on for 

scale). In contrast to the annotated file, CTD data were averaged for each 50 m segment. Bray-

Curtis indices of similarity based on abundance data were calculated between mixed, coral 

dominated, sponge dominated, and “no epifauna” classes. Assemblage classification of segments 

was performed using hierarchical cluster analysis based on a Bray-Curtis similarity matrix 

created from untransformed abundances. This application groups segments that have similar 

taxonomic composition. A Similarity Profile Test (SIMPROF) was used to determine significant 

differences in faunal composition among segments. Discriminator species for each segment class 

were determined using the SIMPER statistic (SIMilarities PERcentages from Clarke et al., 

2008). Discriminator species were calculated by first computing the average similarity in species 

composition within segments (Clarke, 1993). The overall average similarity was then broken 

down into separate contributions from each species. To classify assemblages in segments without 

lasers, faunal composition was visually classified and placed into existing classified segments 

based on the cluster analysis, or into a new unique segment classification if observed to be 

different from existing classes. Assemblage analyses were generated using Primer 6.0 (Primer-E 

Ltd. Plymouth, UK).  
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Nominal regression revealed that depth, temperature and sediment type were significant 

predictors of individual coral along the ROV track (p < 0.001, p < 0.001, p < 0.001, 

respectively). In contrast, slope, sediment type and dissolved oxygen were significant predictors 

of sponge distribution along the track (p < 0.0001 for all). Results of the nominal regression were 

evaluated at a conservative significance level of 0.01. Correlations of depth and sediment type 

were found to significantly correlate with glass sponge assemblages (R = 0.113, p = 0.04, n = 

121) while depth and temperature were found to significantly correlate to segments with few or 

no organisms (R = 0.749, p = 0.03, n = 31). No significant correlations were found between 

environmental variables, mixed (p = 0.056) and coral dominated assemblages (p = 0.10).  There 

was a negative correlation between glass sponges and depth, with higher densities of glass 

sponges within segments occurring at shallower depths and lower dissolved oxygen. 

The fine-scale analysis allowed for the most direct comparison of organism occurrence 

with abiotic variables, while the broader scale analysis (based on 50 m segments) did not reveal 

correlations between biotic and abiotic variables. This is likely due to the variability of 

environmental conditions and sediment type along a segment that is not well captured over the 

50 m scale. Interestingly, deep sea corals captured the attention of viewers and annotators of the 

ROV video data but were not the dominant group based on abundance. This underscores the 

importance of quantitative analysis of the biology imaged in the video versus less robust 

qualitative observations and annotations of the marine habitat surveyed.  

In summary, the application of CMECs to Gosnold Seamount provided a useful 

systematic framework for structuring geoform, substrate, and biotic classification of benthic 

habitat. Using this standard, in combination with the semi-automated seafloor segmentation 
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approach utilized, can provide a consistent and reproducible habitat classification approach for 

large regions and facilitate comparison of habitats among features. New provisional units not 

currently in CMECS were deemed necessary for proper description of major seamount 

geomorphic features and are proposed for potential adoption in the next update of the standard. 

Substrate classes available in the standard worked well to characterize substrates observed in the 

ROV video data.  Delineation of geoforms and segmentation of the backscatter data offers a 

promising analytical approach to guide additional exploration, sampling, and characterization of 

substrates and habitats.  
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Abstract  

Accurate seafloor maps serve as a critical component for understanding marine 

ecosystems and guiding informed ocean management decisions. From 2004-2015, the Atlantic 

Ocean continental margin offshore of the United States has been systematically mapped using 

multibeam sonars. This work was done in support of the U.S. Extended Continental Shelf (ECS) 

Project and for baseline characterization of the Atlantic canyons, but the question remains as to 

the relevance of these margin-wide data sets for conservation and management decisions 

pertaining to these areas. This study utilized an automatic segmentation approach to initially 
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identify landform features from the bathymetry of the region, then translated these results into 

complete coverage geomorphology maps of the region utilizing the Coastal and Marine 

Ecological Classification Standard (CMECS) to define geoforms. Abyssal flats make up more 

than half of the area (53%), with the continental slope flat class making up another 30% of the 

total area. Flats of any geoform class (including continental shelf flats and guyot flats) make up 

83.06% of the study area. Slopes of any geoform class make up a cumulative total of 13.26% of 

the study region (8.27% abyssal slopes, 3.73% continental slopes, 1.25% seamount slopes). 

While ridge features comprise only 1.82% of the total study area (1.03% abyssal ridges, 0.63 

continental slope ridge, and 0.16% seamount ridges). Key benefits of the study’s semi-automated 

approach include computational efficiency for large datasets, and the ability to apply the same 

methods to large regions with consistent results. 

3.1  Introduction 
 

Between 2004 and 2015, a vast region of the Atlantic Ocean margin adjacent to the east 

coast of the United States - from the continental shelf break to the abyssal ocean, from Canada to 

Florida – was systematically mapped using multibeam sonars, collecting both bathymetry and 

backscatter data (Armstrong, et al., 2012; Calder, 2015; Calder and Gardner, 2008; Cartwright 

and Gardner, 2005; Eakins et al., 2015; Gardner, 2004; Lobecker et al., 2011, 2012, 2014, 2015, 

2017, 2019; Malik et al., 2012; McKenna and Kennedy, 2015; Sowers et al., 2015; Sowers and 

Lobecker, 2019). This work was done in support of the U.S. Extended Continental Shelf (ECS) 

Project (U.S. Extended Continental Shelf Project, 2020) and for baseline characterization of the 

submarine canyons in this region.  
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The unprecedented detail and complete coverage of these multibeam sonar data sets has 

enabled new insights into the distribution of submarine landslides (Twichell et al., 2009), the 

tsunami hazard potential of the Atlantic Margin (ten Brink et al., 2014), submarine canyon 

morphology (Brothers et al., 2013a), and the apparent relationship between canyon catchment 

area and sediment flow dynamics (Brothers et al., 2013b). However, the question remains as to 

the relevance of these margin-wide bathymetry and backscatter data sets for conservation and 

management decisions pertaining to these areas. This study utilizes one aspect of these data 

(bathymetry) to generate broad scale continuous coverage geomorphology maps as a key 

component of marine habitat characterization in support of ecosystem-based management of the 

ocean.  

Broadly speaking, geomorphology is the study of the physical features of the surface of 

the earth (or other planets) and their relation to its geological structures (Stevenson, 2010). 

Seafloor geomorphology is a first-order expression of geologic processes that create benthic 

habitats. Harris (2012) insightfully articulated three broad categories of spatial seafloor 

classification (geomorphology, seascapes, and predictive habitats), representing a continuum of 

characterization as managers move from data-poor to data-rich circumstances. Therefore, 

classifying geomorphology serves as a fundamental step in translating bathymetry into value-

added spatial data of use for ocean managers, and a primary basis for generating seascape maps 

and informing predictive habitat models. Maps of seafloor geomorphology directly support 

marine spatial planning, including applications in protected area designation, offshore 

infrastructure siting, geohazard assessment, habitat research, and environmental monitoring 

(Micallef et al., 2018). 
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Evaluating the usefulness of seafloor geomorphology as a proxy for characterization of 

complex benthic biological communities is an active area of global marine research effort (Harris 

and Baker, 2011; Althaus, 2012). While many useful studies have been completed on this topic, 

methods applied in one study area are typically challenging for other researchers to replicate in 

other regions of interest.  When the delineation and classification of geomorphology is based 

solely on subjective expert opinion, results are difficult to duplicate by other scientists and the 

classification rules may only be readily applicable to specific regions. Thus, an important trend 

in this field of research is the development of approaches that take advantage of the 

computational power and the objectivity and reproducibility of automated digital terrain analysis 

tools (e.g., Walbridge et al., 2018). With proper documentation, these tools also provide the 

benefit of reproducible analytical workflows and the generation of comparable results over large 

regions. This outcome is becoming even more important as the global ocean exploration 

community is making commitments towards mapping the entirety of the Earth’s deep sea by 

2030 (Mayer et al., 2018), and interpreting the results in support of sustainable ocean 

management. Harris et al. (2014) produced the first digital global geomorphology map of the 

ocean generated using a combination of automated and expert judgement methods applied to the 

SRTM30_PLUS global bathymetry grid (Becker et al., 2009) reduced to a uniform grid spacing 

of about 1 km. The present study utilizes a terrain analysis approach based on the identification 

of bathymorphons (Jasiewicz and Stepinski, 2013; Masetti et al., 2018) in order to semi-automate 

the classification of landforms from a bathymetric terrain model with 100 m grid resolution 

covering a vast expanse of deep ocean seafloor off the east coast of the United States and 

Canada.  
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An emerging trend in the field of marine habitat characterization is the development and 

application of standardized classification schemes (e.g., EEA, 2004). A “common language” of 

terminology in describing seabed features is necessary if spatial datasets from a variety of 

sources are to be synthesized into coherent products useful to ocean managers, researchers, and 

policy makers. The benefits of standardized classification schemes become particularly 

important when synthesizing marine habitat information at the regional level covering many 

marine datasets and management jurisdictions. Harris (2012a) provided a review of standardized 

hierarchical marine classification schemes utilized by different nations, and noted that direct 

comparisons among them are difficult given that they have been derived from varying 

information sources and intended for application to different environments. In the United States, 

the Coastal and Marine Ecological Classification Standard (CMECS) was developed as a 

framework for organizing data about the marine environment so that ecosystems can be 

identified, characterized, and mapped in a standard way across regional and national boundaries 

(NOAA, 2015). The purpose of this study was not to evaluate the merits of different 

classification schemes, but rather to test and refine the application specifically of the CMECS 

standard to a deep sea environment largely within U.S. management jurisdiction. 

CMECS is a hierarchical classification scheme that enables the user to characterize the 

marine environment utilizing separate “components” – major topical themes that describe the 

water column (water column component), the geomorphology of the seafloor (geoform 

component), the substrate of the seafloor (substrate component), and the biology of an area 

(biotic component). Each of these components has its own hierarchical structure and catalog of 

defined classification units. Thus thoroughly characterizing a cube of the three-dimensional 

marine environment could involve all four components. Each of these components can also be 
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utilized independently of each other and used to generate separate spatial datasets. This paper 

focuses solely on the application of the CMECS geoform component. This work is envisioned as 

a fundamental piece of the larger holistic characterization of the marine seascape for the Atlantic 

margin offshore of the United States.  

 

Application of CMECS to deep sea habitats is still in the early phases of testing and 

adoption. As a dynamic content standard, CMECS incorporates the use of provisional units, 

which allow researchers to add proposed new units to the standard as they are discovered. This 

flexibility is especially valuable in the deep sea, where knowledge is increasing rapidly and new 

discoveries are commonplace in these poorly-studied habitats. The current study developed 

methods to map the CMECS geoform component (geomorphology) in a repeatable way that 

could also be applied to other regions. This study demonstrates the application of both a semi-

automated approach to delineating and classifying seafloor geomorphologies, and the application 

of a standardized terminology to describe these “geoforms” as consistent with the framework 

provided by CMECS.  

The study region was selected to examine how broad scale multibeam sonar data 

specifically collected to support extended continental shelf studies can be further interpreted to 

provide value for ecosystem-based management purposes. It is important to note that within this 

paper, the terms continental shelf, continental slope, and continental rise and distinctions 

between them, are not being used in the context of Article 76 of the United Nations Convention 

of the Law of the Sea (UNCLOS) and thus should not be taken as representative of any U.S. 

position on the location of these boundaries.  UNCLOS specifies the formulas a nation must use 

to delineate the continental shelf beyond 200 nautical miles for juridical purposes, unrelated to 
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ecological processes or classification.  This study used different criteria, based on professional 

judgement that met the study purpose of segmentation of the seafloor for application of an 

ecological classification scheme (CMECS) that has different classification decision rules from 

those applied under UNCLOS. 

3.2  Materials and Methods 

 

3.2.1  Study Area and Input Datasets 

 

The study area covered by this analysis includes the continental slope/rise and abyssal 

plain of the Atlantic Ocean east of the continental shelf of the east coast of the United States and 

Canada. Depths in the study area range from 72m near the edge of the continental shelf break to 

a maximum depth of 5435m in the abyssal plains. Mapped areas included in the study extend 

beyond the existing 200 nautical mile (nm) maritime limit of the U.S. Exclusive Economic Zone 

(EEZ). The northern limits of the study area are at latitude 43° 47.8N offshore of Canada, and the 

southern limits of the area are at latitude 28°18.8N offshore from the U.S. state of Florida. The 

mapped area is 959,875 km2 (well over twice the size of the state of California).  

The primary input dataset for the analysis was a digital terrain model generated via 

synthesis of the highest quality bathymetric data publicly available within the study region. The 

synthesis incorporates data from 28 separate cruises (Johnson, 2020). The vast majority of 

bathymetry data used in the synthesis grid originated from Extended Continental Shelf 

expeditions led by CCOM/JHC on several research vessels and on ocean exploration expeditions 

led by NOAA’s Office of Ocean Exploration and Research on the NOAA vessel Okeanos 

Explorer. Data were also incorporated from mapping surveys conducted by other vessels. All of 

the source data used in the analysis is available via the NOAA National Centers for 
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Environmental Information multibeam archives (NCEI, 2004). This bathymetry grid was created 

as part of the U.S. and Canadian Extended Continental Shelf efforts and is available on a public 

internet map server hosted by the University of New Hampshire’s Center for Coastal and Ocean 

Mapping / Joint Hydrographic Center (CCOM/JHC) (Johnson, 2020).  

Bathymetry for the deeper regions of the study area (generally deeper than 2000m) were 

collected as part of the U.S. Extended Continental Shelf (ECS) Project by CCOM/JHC. Data 

were collected on eight different cruises between 2004-2015, using 12-kHz, Kongsberg EM120 

or EM122 multibeam sonars. Data were acquired with the initial purpose of supporting the 

determination of the outer limits of the U.S. juridical continental shelf consistent with 

international law.  

Shallower bathymetry data that cover the shelf break and Atlantic canyons out to depths of 

the coverage of ECS cruises were collected for the National Oceanic and Atmospheric 

Administration (NOAA) Atlantic Canyons Undersea Mapping Expeditions (ACUMEN) Project 

using NOAA vessel Okeanos Explorer. Data were collected during nine different cruises using a 

30-kHz Kongsberg EM302 multibeam sonar on the Okeanos Explorer between 2011-2014.  

Data were synthesized into the bathymetric grid using WGS84 spatial reference and 

projected with the Lambert Conformal Conic projection with a grid resolution of 100 m, as 

shown in Figure 3.1. The grid was generated using the weighted moving average gridding option 

in QPS Qimera software with a 3x3 moving window algorithm that fills small holes in the 

bathymetry and slightly smooths the overall surface. However, the underlying bathymetric data 

is very close to 100% full coverage at the 100m resolution of the grid, and interpolated depth 

values are essentially negligible as a percentage of the study area mapped.   
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Data quality was validated for the mapping cruises that generated the data used in the 

synthesis by the calibration of multibeam mapping systems, professional ocean mapping experts 

overseeing all aspects of the surveys, regular frequent sound velocity profiles of the water 

column, rigorous cleaning of noise and erroneous soundings following raw data collection, and 

cross-line validation analysis of survey areas. The synthesis of multibeam sonar data was 

compiled and quality controlled by an expert from the UNOLS Multibeam Advisory Committee 

(Johnson, 2020; Multibeam Advisory Committee, 2019). Specifics on data quality control and 

validation can be found in the individual publicly available cruise reports for each cruise.  
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Figure 3.1. Bathymetric synthesis terrain model grid of the U.S. Atlantic margin study region 

used as the primary data source input into the study.  

 

The analysis of the bathymetric terrain model of the study area utilized the Bathymetry- 

and Reflectivity-based Estimator for Seafloor Segmentation (BRESS) method developed by 
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Masetti et al. (2018). This tool is a free stand-alone application available at 

https://www.hydroffice.org/bress/main (Hydroffice, 2019). The BRESS analytical approach 

implements principles of topographic openness and pattern recognition to identify terrain 

features that can be classified into easily recognizable landform types such as valleys, slopes, 

ridges, and flats. These “bathymorphon” architypes represent the relative landscape relationships 

between a single grid node and surrounding grid nodes as assessed in eight directions around the 

node. The position of a grid node relative to others in the terrain are determined via a line-of-

sight method looking out in each direction by a user defined search annulus specified by an inner 

and outer search radius. Details on this approach to geomorphic terrain analysis can be found in 

Jasiewicz and Stepinski (2013).  

3.2.2  Interpretation of Seafloor Landforms 

 

An important distinction between this method and many other terrain analysis algorithms is 

that the identification of landform elements between a grid node and eight directions around it 

self-scales to adjacent features, whereas many terrain analysis algorithms work using a fixed 

neighbourhood “moving window” approach (Jasiewicz and Stepinski, 2013). The grid 

neighbourhood approach will identify fine features with a small cell window frame, and larger 

features with a bigger window, while the geomorphon approach has the capacity to capture both 

scales to some extent (within the limits of a defined search annulus). This is because it calculates 

elevation values (using both zenith and nadir angles) between the grid node and the maximum 

change in height of surrounding features (positive or negative) via a “line-of-sight” approach.   

The BRESS algorithm was used to identify bathymorphon patterns in the bathymetric surface, 

generate area kernels (aggregations of the same bathymorphon type) and then utilizing a look-up 

https://www.hydroffice.org/bress/main
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classification table, these patterns were translated into landform types. The original geomorphon 

work (Jasiewicz and Stepinski, 2013) proposed a ten-type landform classification: flat, peak, 

ridge, shoulder, spur, slope, pit, valley, footslope, and hollow. BRESS introduced a simplified 

six-type landform classification (flat, ridge, shoulder, slope, valley, and footslope) and, recently, 

a minimalistic classification (flat, ridge, slope, and valley). The simplest classification was 

determined to be the best choice for the extremely large study area in this case, resulting in the 

creation of a continuous landform map of the Atlantic margin region comprised of four classes: 

flat, slope, ridge, and valley.  

Key user defined parameters in the landforms analysis tool within BRESS are the inner 

and outer radius of the search annulus and the flatness parameter. If the inner radius is set too 

small, results can be negatively impacted by noise near the grid node (e.g., multibeam sonar 

surveying sound velocity offsets or outer beam “striping” artifacts in the bathymetry grid). The 

search annulus units are grid nodes, so the length of this is dependent directly on the resolution 

of the input raster grid. Alternatively, the user may specify the search radius parameters in 

meters. Reasonable values for the search annulus are fairly intuitive to a skilled analyst and are 

informed primarily by the scale of the features one is seeking to detect and the resolution of the 

bathymetric grid. The default parameters of inner/outer radii of 5/10 grid nodes respectively 

work well for many terrains. For this study extensive testing of the parameters on different 

regions of the grid revealed that an inner radius of 3 grid nodes and an outer radius of 15 grid 

nodes resulted in the delineation of landform features most comparable to what would be 

manually classified by a skilled analyst. These values were determined by varying the inner and 

outer radius parameters of the model and draping the automatically classified landform spatial 

layers over the bathymetry for examination within 3D visualization software (QPS Fledermaus). 
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An inner radius of 3 nodes was larger enough to ignore “noise” artifacts in the bathymetry that 

could be mistaken as features, while still enabling finer scale geomorphic features to be 

classified. The outer radius of 15 nodes enabled classification of larger scale geomorphic features 

of interest. The results were then evaluated to determine if delineations among landforms aligned 

with logical topographic feature breaks and to assess if the key morphologies of interest in the 

terrain (in this case ridges, slopes, valleys, and flats) were identified. Separate manual landform 

classification maps were not generated in this study for direct comparison with the automatic 

classification results, as they would be as equally subjective as the methodology used and 

therefore offer limited additional insights. The bathymetric grid used in this study was 100m 

resolution, so the inner search radius was equal to 300m and the outer radius was equal to 

1500m.  

Results of the landforms analysis are sensitive to the choice of flatness parameter. A 

flatness number that is too large will result in low to moderate relief seafloor features being 

classified as “flat”, and too small of a number will result in excessive “slope” results. This 

parameter was tested extensively in both the steep terrains (continental canyons and seamounts) 

and low relief terrains (e.g., abyssal plain) found in the study region. Testing results determined 

that one flatness parameter could not yield useful results for the entire region. It was determined 

that the extremely steep seamounts needed a flatness parameter of 5.0 degrees, the continental 

slope region of the margin needed a flatness parameter of 3.0 degrees, and the low gradient 

regions of the Blake Ridge and abyssal plains needed a flatness parameter of 1.0 degree. In order 

to apply the necessary variable flatness terrain values to the bathymetry, a separate spatial layer 

mask was created using the masking tool in BRESS, then applied to compute landforms (Figure 
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3.2). This flatness angle mask spatial layer was generated manually via interpretation of the 

logical bathymetric breaks among the continental slope, abyss, and seamount features.  

 
Figure 3.2. Flatness parameter mask used to apply different flatness values of the BRESS 

landform algorithm to different regions of the Atlantic margin study area. Parameter of 5.0 

degrees (red) applied to the seamounts, 3.0 degrees (green) applied to the continental slope, and 

1 degrees (gray) applied to abyssal areas. ESRI ocean base layer shown in the background for 

context.  
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The initial output of the landforms classification identified most of the prominent 

landform features of interest in both high and low relief areas of the study region. However, 

within low relief areas, a limited number of linear artifacts from the outer beam striping typical 

of multibeam sonar mapping systems were visible and easily discernible from real seafloor 

features. These small artifacts were minor and typical of the increased uncertainty of soundings 

in the outer beams of multibeam sonars, and were not the result of any interpolation of the 

original underlying dataset. Given the low flatness parameter applied to abyssal areas, the larger 

bumps in the outer swath sectors of multibeam in a few isolated areas were classified by BRESS 

as small landforms other than flats. These classification artifacts occurred in small select regions 

of the overall abyssal region of the grid, and were manually reclassified to flats via the 

application of a user-generated mask.  This targeted manual quality control of the landform 

classification output was completed via visual inspection of the landforms draped on the 

bathymetric grid, and areas were corrected by encircling in a polygon using the masking tool 

within the BRESS software. While not an automated process, this tool provides a quick and 

effective quality check to improve the appearance and quantitative results of the analysis over 

survey areas subject to limited systematic artifacts from multibeam sonar surveys.  

The output from the BRESS landform tool is either an ASCII Grid file or a geotiff image 

that can be imported into any spatial analysis or visualization software that can read these 

formats. The resolution of the output ASCII exactly matches the resolution of the input 

bathymetry file, in this case 100m. The ASCII file consists of raster cells with code values that 

represent the landform designation of the nodes in the grid. In this case there were four code 

values representing each of the four landform classes derived from the lookup table in BRESS: 1 

for flats, 3 for ridges, 6 for slopes, and 9 for valleys.  
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3.2.3  Conversion of Landform Units to CMECS Geoform Units 

 

The landform raster output from BRESS (a grid file in ASCII Grid format) was imported 

into ArcGIS Pro v2.6.0 for additional analysis and conversion of landform units into CMECS 

geoform units. Landform units were modified to delineate CMECS geoforms using decision 

rules based on existing CMECs standard definitions of units. CMECS provides a catalog of units 

for geoform classification, along with definitions of each unit class in the standard document 

(FGDC, 2012). Since CMECS is intended to be a dynamic content standard, the user is able to 

propose “provisional units” if the existing units do not adequately meet classification needs. This 

study proposes one new geoform called “valley” (not to be confused with the existing CMECS 

term “submarine canyon” which is a specific type of valley as explained later) and six new 

geoform types that are intended to describe specific types of geoforms unique to deep sea 

features (Table 3.1). 
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Table 3.1. CMECS geoform classes mapped within the Atlantic margin study area. Note that the 

CMECS classification hierarchy moves towards smaller sized features moving to the right within 

the columns. Classes noted as “provisional” (grey) are not yet part of the CMECS standard, but 

were used in this study and are recommended for adoption.  A map of the final geoform types 

from this table is shown in Figure 3.11. Units in column 6 show the names of the classification 

units assigned to the geoform maps presented in this study (mapped units). Most of the units in 

column 6 are not defined specifically in the Geoform Type hierarchy level of CMECS, but are 

implicit in the upper level classification (for instance a ridge geoform located on a continental 

slope is mapped as a Continental Slope Ridge as the geoform type). The term “Abyssal” was 

used in this column instead of “Marine Basin Floor” as it was deemed more descriptive.  

 Tectonic 

Setting 

Physiograp

hic Setting 

Geoform 

Origin 

Geoform Geoform Type 

(Mapped Unit Name  

shown in study maps) 

S
h

el
f Passive 

Continental 

Margin 

Continental 

Shelf 

Geologic Flat Continental Shelf Flat 

C
o
n
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n
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ta

l 

S
lo

p
e 

Passive 

Continental 

Margin 

Continental 

Slope 

Geologic Flat Continental Slope Flat 

Ridge Continental Slope Ridge 

Slope Continental Slope Slope 

Provisional: 

Valley 

Continental Slope Valley 

A
b

y
ss

a
l 

P
la

in
 

Abyssal 

Plain 

Marine 

Basin Floor 

Geologic Flat Abyssal Flat 

Ridge Abyssal Ridge 

Slope Abyssal Slope 

Provisional: 

Valley 

Provisional: Abyssal Valley 

S
ea

m
o
u

n
t 

Abyssal 

Plain 

Marine 

Basin Floor 

Geologic Seamount Guyot 

Pinnacle Seamount 

Flat Provisional: Guyot Flat 

Ridge Provisional: Seamount Ridge 

Slope Provisional: Seamount Slope 

Provisional: 

Valley 

Provisional: Seamount Valley 

 

Landform classes were converted to CMECS geoforms primarily by re-naming them as 

appropriate for the marine setting in which the units occurred throughout the extent of the 

Atlantic margin. While landform units can be thought of as the primary building blocks for the 

identification of larger geomorphic seafloor features (e.g., canyon complexes, sand wave fields) 
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it is proposed here that they also have value in many cases for direct translation into classified 

geomorphic features. This assertion is based on the fact that the landform features identified for 

the study area largely fit well within the existing geomorphic classification scheme being applied 

(CMECS). As apparent from Table 3.1, the landform types “flat”, “ridge”, and “slope” are also 

existing geoform units within CMECS. So a direct translation from landforms to geoforms for 

these cases was logical.  

Although existing CMECS units worked well for direct translation of some landforms, 

other terms that are useful are not yet part of the standard. For instance, valley features were 

evident in all of the major study regions evaluated (continental shelf, abyssal plain, and 

seamounts), but the concept of a valley feature in the deep sea is absent from CMECS. CMECS 

currently has Submarine Canyons (Physiographic Setting), Shelf Valleys (Level 1 geoform), and 

Channels (Level 1 and 2 geoforms). None of these classification terms are adequate descriptors 

for all of the valleys observed in deep sea environments. While certainly some of the valley 

features on the continental slope and on seamounts and guyots could be called “submarine 

canyons,” there are many valley features in these areas identified as valleys in the landform 

analysis which are not submarine canyons. Fortunately, CMECS was designed to be a dynamic 

content standard subject to user refinement and open to proposals for formal future 

modifications. Users are advised to designate “provisional units” for classes that are deemed 

useful but absent from the current version of the standard. Therefore, this study designated the 

term “valley” as a provisional geoform unit for now (column 5 in Table 3.1), and then defined 

provisional geoform type units (another step down in the classification hierarchy, column 6 in 

Table 3.1) to describe the specific types of valleys occurring within the context of different 

features in the deep ocean (continental slopes, abyssal areas, and seamounts).  
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CMECS currently lacks geoform terms that adequately describe the geomorphology of 

features found within seamount features. Seamounts as entire features are covered by the 

standard, as there is a Seamount geoform unit and both Guyot and Pinnacle Seamount geoform 

types defined. It is proposed that adding Guyot Flat, Seamount Ridge, Seamount Slope, and 

Seamount Valley would be useful unit additions to the standard. These units are shown as 

provisional units in Table 1. Seamounts have been demonstrated to be hotspots of biological 

diversity in the deep sea. Ocean exploration ROV dives on seamounts have found that ridge 

features and the edges of guyots can support dense and diverse aggregations of deep sea corals 

and sponges, where sessile attached fauna take advantage of the combination of exposed hard 

substrates and food-supplying currents that can occur in these relatively rare topographic areas 

(see for example NOAA CAPSTONE expedition results in Raineault et al., 2018).   

It is important to note that this study did not classify and map geoforms that are 

composed of a complex aggregation of landforms. For instance, a submarine canyon is an 

important feature to map and identify along continental margins, and a CMECS geoform 

descriptor exists for this feature. However, a typical manual delineation encircling a complete 

canyon system would encompass the following separate landform types: a channel at the bottom 

of the valley (thalweg), the steep valley walls, and the ridges on the tops of the slopes. Therefore, 

this single geomorphological unit is composed of valley, slope, and ridge landforms - refer to 

Harris et al. (2014) for example. Complex submarine canyon systems contain many of these 

features, as well as flats and more complex landforms not part of the current scheme (e.g., pits, 

peaks, shoulders, etc.). Also, since the purpose of this study was to demonstrate what can be 

done via semi-automated terrain analysis tools over very large regions, manual delineation of 

these more complex morphologies was not attempted.  
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CMECS is structured with “physiographic setting” high up in the hierarchy in order to 

discriminate between continental shelf, continental slope, abyssal plain, and seamount features. 

Therefore, it was necessary to spatially delineate the study region into these categories. This 

delineation was done by using the flatness mask ASCII grid which was developed during 

landform modeling, as it was driven directly by the need to apply different flatness parameters to 

the continental slope, abyssal plain, and seamount regions. The mask was modified for the region 

offshore of Canada, as this region was mostly deep abyssal plain for the purposes of geoform 

classification, but was originally given the flatness parameter applied to the continental shelf due 

to the need to minimize classification of significant multibeam artifacts. While the term 

“continental rise” is a physiographic setting term in CMECS, it was not used in the study. This 

was because the Atlantic Margin has a gradual slope in many areas that makes it challenging to 

discriminate between a continental slope and a continental rise, and if present, a flattening out in 

gradient did not appear to occur until depths of 4000m at the shallowest. In these settings, it was 

logical to refer to the area deeper than this as part of the abyssal plain. The global 

geomorphology classification study by Harris et al. (2014) did define a continental rise along the 

U.S. Atlantic continental margin, but the resolution of the data and methods for that study were 

different, and the results were therefore not applied to this study.  

Delineation of seamounts from abyssal plain was straightforward, with clear topographic 

breaks between the two. The mask provides a more subjective delineation of continental slope 

and abyssal plain regions based on professional judgement of the approximate transition zone 

between the two. This was done visually based on the bathymetry grid and the approximate 

location of gradient reduction. Using the depth contour lines was another option as a way to 

distinguish between continental slope and abyssal landforms, but this was not selected because it 
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was a poor fit for the actual feature breaks along the entire length of the margin. Based on 

examination of the changes in gradient along the margin, the demarcation mask between 

continental slope and abyssal areas was established generally between 4000-5000 m in depth 

along most of the margin. This demarcation was different for the southern region which has the 

dramatically different features of Blake Ridge and Blake Escarpment. Because of its character in 

relation to CMECS concepts, all of Blake Ridge was included in the abyssal marine basin floor 

category even though it gets shallower than 3000m for a small portion in the study area. The 

logical topographic break on the Blake Escarpment was at the base of the escarpment at a depth 

contour of approximately 5000 m.  

Although depths greater than 3000 m in the ocean are commonly referred to as abyssal depths, 

along the Atlantic margin in many areas the actual depth where the continental slope flattens out 

onto an abyssal plain is substantially deeper. Alternatively, using a smoothed (generalized) 

gradient map of the margin was also evaluated, but was also not deemed an effective delineation 

approach in this case. Although the U.S. ECS Program refers to the continental slope and 

determines foot of the slope for juridical purposes, those delineations are a special use case 

unrelated to ecological processes or classification. The mask used to delineate among seamounts, 

continental slope, and abyssal regions for this study’s specific purpose of classifying CMECS 

geoforms is shown in Figure 3.3. This mask was created manually via expert interpretation, and 

was a modification of the flatness parameter mask used in BRESS software for the landforms 

analysis.  
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Figure 3.3. Regional mask applied to the study region in order to provide approximate CMECS 

classification boundaries between continental slope areas (light shading) seamounts (dark 

shading), and abyssal regions (medium blue shading). Bathymetry data is shown in the 

background for context. The key difference with the Figure 3.2 (flatness parameter) mask is that 

the deep areas offshore of Canada are included with the abyssal (i.e., deep, low gradient) areas, 

whereas in Figure 3.2 that area was masked differently because it had low relief features that 

were hard to discriminate from multibeam mapping artifacts in the bathymetry and thus needed a 

larger flatness parameter value.  
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For visualization purposes the raster grid output of landforms from BRESS was imported 

into QPS Fledermaus software (version 7.7.9) and draped onto the bathymetric grid. This 

provided for effective three-dimensional exploration of the landform interpretation directly on 

top of the bathymetry from which it was derived (see Figure 3.4 in results). This method was 

utilized to evaluate the results of testing various search annulus and flatness parameter settings 

from the BRESS landforms tool, as well as for visualization of the final output prior to further 

geoprocessing in ArcGIS Pro.  

Raster grids of the seafloor geoforms were converted in ArcGIS Pro to vector files for the 

creation of plots showing square kilometers within each geoform classification. These spatial 

files were also used to select polygons on the continental shelf to reclassify the geoform type as 

“continental shelf flats”, and to select the flat tops of some of the seamounts (guyots) to 

reclassify these areas to geoform type “guyot flats.” CMECS classifies guyots as a type of 

seamount, as the “seamount” unit is at the geoform level of the hierarchy, and “guyot” and 

“pinnacle seamount” are nested within this class at the geoform type level. This reclassification 

was done using manual selections in ArcGIS Pro software, but was limited to a small subset of 

the data given the small spatial extent of these geoform units relative to the size of the study 

region.  

3.3  Results 

 

3.3.1  Seafloor Geomorphology Maps: Landforms 

 

The results of the landform analysis are shown in Figure 3.4, showing flats in purple, 

slopes in green, ridges in blue, and valleys in red. It is immediately notable (and expected) that 

the dominant landform class in the region is flats. The classification of flat doesn’t mean an area 
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lacks any slope, it is classified as such in relation to the surrounding terrain and subject to the 

flatness parameter defined in BRESS. Slope landforms are the second-most dominant class, and 

together with flats show the dominant relief features of the Atlantic margin even at the broad 

scale of the entire study region. Ridge and valley features provide insightful details into the 

structure and complexity of the continental slope canyons, abyssal bedform fields, and seamount 

features (see insets in Figure 3.4). Overall the landform results exhibit logical topographic 

breaks when draped over the bathymetry data, and the automated classification process from 

BRESS clearly works well for this purpose.  

 
 

Figure 3.4. Continuous coverage landform map of the Atlantic margin study region classified 

into four landform types: flats (purple), slopes (green), ridges (blue), and valleys (red). Oblique 
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3-D inset views of landform type draped on bathymetry provided to show details. Note the clear 

delineation of canyon ridges, valleys, and steep slopes on the continental slope (A). Seamount 

features are dominated by very steep slopes with occasional ridge and valley features (B). 

Several large regions of the abyssal plains exhibit bedform features that follow a distinct pattern 

of repeating crest and trough (slope and ridge landform) combinations. Bottom right inset 

highlights one of these bedform fields east of the prominent Blake Spur feature (C). Figure made 

with QPS Fledermaus software version 7.7.9. with vertical exaggeration of 4x. 

 

3.3.2  Seafloor Geomorphology Maps: Geoforms  

 

CMECS geoform maps derived from the landform maps are shown in Figures 3.5 to 3.11. 

Results are shown separately for seamounts (Figure 3.5 and Figure 3.6), continental slope 

features (Figures 3.7 and 3.8), and abyssal features (Figure 3.9). For each of these regions the 

area of each geoform unit class, and percent contribution of each class to the whole area, were 

calculated. Area is report in square kilometers. The relative dominance or rarity of geoform types 

has ramifications for the potential habitat role of these areas, and can inform management 

decisions pertaining to regional marine spatial planning.  
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Figure 3.5. CMECS geoform classifications specific to seamounts. The tan area shown in the 

figure met the definition of the “abyssal flat” class and was added to that class for calculating 

overall study region summary statistics and for the map shown in Figure 3.11 of all geoform 

classes for the whole region.  

 

Seamount geoforms are dominated by seamount slopes (80% by area). The second most 

notable features are seamount ridges (10%), followed by seamount valleys (8%). The uniform 

steepness of the seamounts on all sides and scarcity of consistent prominent ridge features as 

visible from the maps is consistent with these numbers. The rarity of the guyot flat class (2%) 

highlights how small these features truly are by area, even though their visual interest in 

bathymetric maps immediately makes an impression on the interpreter. Only 9 out of the 28 

seamounts within the study region have flats at their tops (guyot flats). The other 19 are pinnacle 

seamounts.  
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Figure 3.6. Geoforms classes of Gosnold Seamount. A hillshade layer was computed from the 

bathymetry and is shown with partial transparency to provide depth and context to the figure.  
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Figure 3.7. CMECS geoform classifications specific to the continental slope region of the study 

area. 85% of the area is classified as flats, followed by 11% slopes. Ridges and valleys both 

comprised 2% each. A very small portion of the mapped area in the study (0.2%) was classified 

as continental shelf flat (in the shallow areas above the heads of the canyons). These results 

highlight the fact the continental slope drops off dramatically within a relatively short distance 
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down the steep Atlantic canyons region of the margin (with slopes typically ranging 5-60 

degrees), then exhibits a mild gradient down to abyssal depths. While the “continental slope flat” 

geoform type (yellow green) occurs on the continental slope, it is classified as a flat relative to 

the steepness of the canyons region, and due to the fact that slopes in these areas are nearly 

uniformly gradual and tend to range from about 0.1-1.5 degrees.  

 

 
Figure 3.8. Prominent submarine canyon features on the continental slope in the Mid-Atlantic as 

classified by CMECS geoforms. This geoform map clearly highlights the extensive network of 

gullies and submarine canyons that are a signature feature of the region. A hillshade layer was 

computed from the bathymetry and is shown with partial transparency to provide depth and 

context to the figure. 
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In the abyssal region 84% of the area is classified as flats, 13% as slopes, 2% as ridges, 

and about 1% as valleys.  Notable geoform characteristics of this region include the dominance 

of flats, the major contribution of the Blake Ridge feature to the slope class, and the importance 

of the bedform sediment wave formations in the U.S. Mid- and South-Atlantic regions to the 

slope, ridge, and valley classes. Bedform features and broad shallow submarine channels 

offshore of the Canadian margin do exist, but were not picked up by the methods used in this 

study given their smaller extent and vertical relief.   
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Figure 3.9. CMECS geoform classifications for the abyssal region of the Atlantic margin. Grey 

regions in the figure are polygons of varying classes of abyssal geoforms that cannot be 

distinguished at the map scale shown.  

 

Figure 3.10 shows a complex region of the study area encompassing portions of Blake 

Escarpment, Blake Spur, and Blake Ridge. The figure provides mapped geoforms in both the 
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continental shelf and abyssal portions of the study area. The bedform features in the right corner 

of the figure are striking, with crest-to-crest distances between about 2000-3000 meters.  

 
 

Figure 3.10. Geoform view of part of the Blake Escarpment and Blake Ridge.  
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Figure 3.11 illustrates the results for all geoform classes across the entire Atlantic margin 

study area. Abyssal flats make up more than half of the area (53%), with the continental slope 

flat class making up another 30% of the total area. Flats of any geoform class (including 

continental shelf flats and guyot flats) make up 83.06% of the study area. Slope classes make up 

a cumulative total of 13.26% of the study region (8.27% abyssal slopes, 3.73% continental 

slopes, 1.25% seamount slopes). While ridge features comprise only 1.82% of the total study 

area (1.03% abyssal ridges, 0.63 continental slope ridge, and 0.16% seamount ridges). The area 

(in square kilometers) and percentage calculations for each geoform class are shown in Table 

3.2.  
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Figure 3.11. CMECS geoform classifications for the entire Atlantic margin region in the study.  
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Table 3.2. Geoform classes of the Atlantic margin study region by area and percentage.  

Mapped Geoform Classification Unit Area (square km) Percent of Margin 

Abyssal Flat 507,354.97 52.86 

Continental Slope Flat 289,047.2 30.11 

Abyssal Slope 79,427.9 8.27 

Continental Slope Slope 35,851.2 3.73 

Seamount Slope 11,978.5 1.25 

Abyssal Ridge 9,929.6 1.03 

Abyssal Valley 9,602.9 1.00 

Continental Slope Valley 7,065 0.74 

Continental Slope Ridge 6,047.7 0.63 

Seamount Ridge 1,531.8 0.16 

Seamount Valley 1,125.5 0.12 

Continental Shelf Flat 606.8 0.06 

Guyot Flat 306.3 0.03 

 

3.4  Discussion 
 

3.4.1  Advantages of the Semi-Automated Standardized Geomorphic Classification 

 

This study tested the application of semi-automated terrain analysis methods and a 

standardized geomorphic classification scheme to a diverse region of the deep sea. The BRESS 

terrain analysis algorithm was effective at generating meaningful landform maps that could be 

readily translated to existing and proposed CMECS geoform units. Benefits of the tested 

methods include the following:  

 The generation of landform results is repeatable and documented.  The BRESS tool is 

based on a published mathematical terrain modelling approach, and is therefore not a 

“black box” tool. While improvements and refinements can be made to the algorithm, the 

methods are transparent.  
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 The semi-automated approach provides high speed classification of terrain over very 

large areas and complex terrain. The study area encompassed 959,875 km2. The 

classification work presented in this paper represents several months of focused full time 

analytical effort (not including initial pilot studies, refinement of study analysis methods, 

and improvements to software interfaces). Full coverage manual interpretation of 

landforms and geoforms by a skilled analyst to a comparable level of detail is estimated 

to take 3 to 5x longer.  

 The classification of landforms using the study methods involve far less subjectivity than 

classification methods conducted manually via expert interpretation.  

 The line-of-sight analytical approach to terrain analysis employed in BRESS provides 

benefits in its ability to self-scale to features in the terrain as versus fixed neighborhood 

moving window algorithms.   

 The methods are adaptable to data collected with different sensors and resolutions. The 

BRESS landform analysis tool can utilize bathymetry data independent of the technology 

used to generate the data. CMECS is also designed to be data agnostic. Both of these 

tools can be utilized to perform similar processing workflows that remain useful with 

emerging seafloor mapping technology and higher resolution maps.  

 The methods are scalable to very large ocean regions, making them promising tools for 

interpreting data collected at regional scales and in international waters.  

 Due to standardized processing methods and terminology this approach can enable 

integration of data sets from a variety of sources and provide outputs useable across a 

variety of ocean governance boundaries.  
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3.4.2  Limitations of the Approach 

 

This approach is subject to limitations typical for studies employing methods to describe and 

map marine habitat, including the fact that all interpretation of remotely sensed information about 

the marine environment is constrained by issues of spatial and temporal scale and resolution of 

measurement data. This study was effective at classifying broad scale features discernible from a 

100m resolution bathymetric grid generated from full coverage multibeam sonar data. Smaller 

geomorphic pattern detection is always limited by resolution and scale considerations. The BRESS 

tool used in this study currently requires several trial-and-error cycles to get the parameters fine-

tuned to the study area. In addition, manually-generated mask spatial layers based on subjective 

expert interpretation were still needed to adjust the flatness parameter across the terrain, to 

generally delineate among continental slope, abyss, and seamount regions, and to quality control 

a small subset of the landform classification output. The current study is one of several other 

applications of the landform modeling tool aimed at improving use guidelines and best practices.  

As described in the methods section, the analysis results are fairly sensitive to the selection 

of an appropriate flatness angle parameter. Common artifacts in multibeam mapping data result 

from greater uncertainty in the seafloor bottom detections of the outer beams even for fully 

calibrated systems with regular sound velocity measurements being taken while surveying. In 

several thousand meters of water depth these striping artifacts in the mapping swath can result in 

bathymetric grid artifacts that can partially mask seafloor features of interest. In this setting, 

choosing a low flatness angle in BRESS can classify low relief features like the channels shown 

in Figure 3.12. However, that is often at the expense of also classifying the striping artifacts that 

are also embedded into the bathymetric grid (which are not real geomorphic features). In this 
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case, choosing a higher value for the flatness parameter ignores the classification of undesired 

artifacts, but also loses the ability to classify features of interest like the abyssal channels in 

Figure 3.12. This area was ultimately assigned a higher flatness parameter of 3.0 degrees in the 

BRESS tool in order to avoid identifying the multibeam striping artifacts as landform features.  

 

Figure 3.12. Perspective view comparison of bathymetry data (A) with the classified landform 

results as draped on bathymetry (B). Note the presence of channel features in the bathymetry that 

could not be resolved as geoforms using the landform parameters applied (they were classified as 

flats as represented by the purple color). 

 

Complex combinations of landform elements that together aggregate into larger 

geomorphic features of interest were not identified in this study. A good example is the bedform 

features found in the abyssal plains of the study area. While the study effectively classified the 

slope, ridge, and valley combinations that comprise the components of larger geoforms such as 

“sediment wave field,” the ability to automatically classify these aggregate geoforms is the 

subject of future research.  
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3.4.3  Potential Applications of CMECS Geomorphic Maps 

 

CMECS geoform maps for the Atlantic margin provide insights useful for informing 

additional characterization of the region, and for informing current management decisions. The 

clear delineation of channels (i.e., the red continental slope valley features shown in Figure 3.8) 

for the Atlantic canyons makes it easy to see the low points and gain insights into the potential 

pathways of sediment transport out onto the abyssal basins.  Their delineation from the 

surrounding terrain makes it easy to identify and enumerate the number of distinct canyon 

channels and continental shelf gullies more easily than by examining the bathymetry directly. 

This facilitates a better assessment of the nature and number of gully and submarine canyon 

features on this margin, and provides a quantitative methodical basis by which to compare these 

attributes to the same type of features on other continental margins. Similarly, the ability to 

automatically delineate significant ridge features within canyons has implications for assessing 

the habitat associations of organisms that may utilize these features. 

The relative rarity of steep slopes (i.e., >3 degree angle from surrounding terrain) and 

ridges in the continental slope (11 and 2%, respectively) is striking. These areas have proven to 

be some of the highest likelihood places capable of supporting deep sea coral and sponge 

communities that often attach to steep exposed hard surfaces (Quattrini et al., 2015). The 

canyons area is clearly a hotspot of geodiversity, and has been recognized as a hotspot for 

biological diversity as well. The delineation of the canyon systems into flat, slope, ridge, and 

valley geoforms enables simple calculations of the relative number and area of these features 

within a given area of interest. This type of quantitative data on marine seascapes supports more 
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informed marine resource management decisions, including strategic planning of marine 

protected area designations.  

The extreme rarity of the guyot flat class  (0.03 % of the total area of the study region) 

make them a potentially vulnerable habitat. Extractive fishing pressure (Clark, 2010), seafloor 

mining activities (Miller et al., 2018), and potential impacts from climate change (Levin, 2019) 

could impact these relatively small areas in different ways than more abundant geoforms and a 

precautionary approach to management is appropriate given their relative scarcity in the marine 

environment. Limited exploration of seamounts to date has revealed that many of these features 

also serve as hotspots of biological diversity and habitat for deep sea coral and sponge 

communities (Kennedy et al., 2019). 

The ability to quickly and automatically classify features such as steep slopes and ridges, 

generate accurate spatial datasets of these features, and calculate the area encompassed within 

them, should be of great interest to marine predictive habitat modelers. While depth (bathymetry) 

is a common variable in habitat suitability modeling, having spatial layers of geoforms that are 

known to be strongly correlated with the presence of certain species or communities of biotic 

importance could support more powerful and accurate predictive models (e.g., Savini et al., 

2014).  

3.5  Conclusions 
 

Our results provide a characterization of the marine landscape that serves as an inventory 

of the cumulative area and abundance of geoforms and the spatial relationships among them. The 

derived maps and associated databases can be used for a broad range of spatial analyses defined 

by other end users to inform management decisions. Geoform summary statistics were calculated 
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over the study region to quantify the area of each geoform type. These analyses represent a first 

step in identifying regions of consistent morphology within which the consistency of the 

backscatter can then be determined (Masetti et al., 2018).  

The approach developed through this work provides a model of how to consistently classify 

ecological marine units using CMECS as an organizing framework across large continental 

margin regions nationally or globally. Given that many nations have already invested heavily in 

gathering bathymetric data for these areas, this approach can be adopted to obtain a standardized 

interpretation to inform baseline marine habitat characterization in support of ecosystem-based 

management.  
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Chapter 4 

Standardized Geomorphic Characterization of the Extensive 

Cold-Water Coral Mound Province of the Blake Plateau, USA 

Abstract 

Extensive cold-water coral (CWC) mound ecosystems around the planet are being 

revealed for the first time as ocean mapping and exploration efforts of the deep sea increase. A 

coordinated multi-year exploration campaign on the Blake Plateau offshore of the southeastern 

U.S. has mapped what appears to be the most expansive CWC mound province thus far 

discovered. Nearly continuous CWC mound features span an area up to 472 km long and 88 km 

wide, with a core area of high density mounds up to 248 km long by 35 km wide. This study 

synthesized bathymetric data from twenty multibeam sonar mapping surveys and generated a 

standardized geomorphic classification of the region in order to delineate and quantify CWC 

mound habitats and compare mound morphologies among subregions of the coral province. 

Based on the multibeam bathymetry, a total of 59,760 individual peak features were delineated, 

providing the first estimate of the overall number of potential CWC mounds mapped in the 

region to date. Five geomorphic landform classes were mapped and quantified: peaks (342 km2), 

valleys (2,883 km2), ridges (2,952 km2), slopes (15,227 km2), and flats (49,003 km2). The 

complex geomorphology of eight subregions was described qualitatively with geomorphic 

“fingerprints” and quantitatively by measurements of mound density and vertical relief. The 
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median mound relief for the entire study region was 14 m, with individual mound features 

ranging 3-178 meters above the adjacent seafloor. Mound peak densities reached up to 4.79 

mounds/km2. Ground-truth for the bathymetric analysis was provided by direct substrate 

observations from 23 submersible dive videos that revealed coral rubble to be the dominant 

substrate component within the peak, ridge, and slope landforms explored, thereby validating the 

interpretation of these bathymetric features as CWC mounds even on features with as little as 10 

meters of average vertical relief above the surrounding seafloor. Results indicate that the Blake 

Plateau supports a globally exceptional CWC mound province of heretofore unprecedented scale 

and diverse morphological complexity.   

4.1 Introduction 
 

4.1.1 Background on Cold-water Coral Mounds 

Deep water cold-water corals (CWCs) grow in the absence of sunlight in deeper water of 

the world’s oceans and filter feed on suspended particles in the water column. CWCs have been 

documented to inhabit many parts of the deep ocean once thought to support minimal benthic 

fauna. The global distribution of CWC species is poorly understood given that the majority of the 

global deep ocean is yet to be mapped or explored. However, CWCs appear to be mainly 

restricted to oceanic waters with within a temperature range of 4-12°C (Roberts et al., 2006). 

Many CWC species are affiliated with hard substrates and geologic features that offer steeper 

slopes, exposed bedrock, or coarse drop-stone materials for attachment to the seafloor (Quattrini 

et al., 2015; Wheeler et al., 2007). Dense aggregations of CWCs are also associated with regions 

of the ocean that sustain high primary productivity in overlying waters and reliable currents for 

food delivery to the stationary corals (Genin et al., 1986).  
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Some CWC species can build calcium carbonate based reef structures referred to by a 

variety of terms including coral banks, lithoherms, and bioherms (Messing et al., 1990; Reed, 

2002; Stetson et al., 1962). A bioherm is a type of mound composed of unconsolidated sediment 

and coral skeletal material capped with coral thickets (Reed, 2002), whereas a lithoherm is a 

mound composed of high-relief lithified carbonate that may be covered with live coral 

(Neumann et al.,1977). CWC reefs have been documented off the coasts of at least 41 countries 

thus far (Freiwald et al., 2004).  

Cold-water scleractinian (“stony coral”) species such as Lophelia, Enallopsammia, 

Madrepora, Oculina, and Solenosmilia grow dense calcareous skeletal frameworks that can build 

extensive biogenic coral mounds ranging in vertical relief from tens to hundreds of meters (Reed 

et al., 2006). These mound features have been discovered around the world clustering in 

“provinces” where food supply and strong currents support coral growth (Roberts et al., 2009). 

These CWC reefs provide complex structure and hard substrate that provide habitat for many 

associated corals, sponges, invertebrates, and fishes (Henry and Roberts, 2016). Reef forming 

CWC species therefore serve as autogenic “ecosystem engineers” (also referred to as foundation 

species) by substantially modifying the surrounding environment and creating habitat niches for 

many other species (Jones et al., 1994). There is also evidence that the presence of high-relief 

CWC mounds can affect the overlying physical oceanography. For example, CWC mounds at 

600 m depth on Rockall Bank in the NE Atlantic have been shown to induce tidally-driven 

downwelling of organic material, providing an important carbon pump from surface waters to the 

deep sea (Soetaert et al., 2016).  
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CWC habitats are slow-growing, long-lived, and fragile, making them particularly 

vulnerable to physical damage by seafloor bottom contact human activities. Threats include 

trawling (Fosså et al., 2002), hydrocarbon and mineral exploration and production, and cable and 

pipeline placements (Friewald et al., 2004).  The ecological importance and vulnerability of 

CWC reefs has resulted in increased national and international efforts to map, characterize, and 

protect them (Parker et al., 2009). 

Multibeam sonar systems have enabled ocean scientists to map complex CWC mound 

and reef habitats remotely from surface ship hull-mounted sonars, with resolution directly related 

to the depth of the seafloor and the angular resolution of the particular multibeam system. 

Multibeam and sidescan sonar systems mounted on remotely operated vehicles (ROVs) and 

autonomous underwater vehicles (AUVs) can get close to the seafloor and thereby obtain much 

higher resolution maps of CWC mounds - typically centimeters to tens of meters resolution 

depending on the height above seafloor (Grasmueck et al., 2006; Kilgour et al., 2014). These 

systems provide higher resolution but smaller areas of coverage than ship-mounted multibeam 

sonars. Fine-scale ground-truth data on seafloor substrate character and biological communities 

at CWC sites is made possible through the use of towed or dropped camera systems, and via 

video data collected by AUVs, ROVs, and human occupied vehicles (HOVs) that can capture 

views of these habitats within meters of the seafloor.  

Aggregations of CWC mounds are regularly referred to in the scientific literature as 

“provinces” (e.g., Angeletti et al., 2020; Hebbeln et al., 2014, Taviani et al., 2017; Wienberg et 

al., 2018). While there is no clear standard that defines a province, by convention they describe 

CWC mound complexes often spanning tens of square kilometers. The delineation of CWC 
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provinces is pragmatically useful for management and conservation purposes such as designation 

of seafloor areas where bottom-disturbing activities are prohibited (Angeletti et al., 2020). 

 

4.1.2 Cold-Water Coral Mound Province of the Blake Plateau 

 

The region offshore of the Southeast U.S. contains the most extensive Lophelia and 

Oculina CWC ecosystems documented within U.S. waters (Hain and Corcoran, 2004; Partyka et 

al., 2007; Reed et al., 2013; Ross and Nizinski, 2007; Stetson et al., 1962). Lophelia pertusa is 

the most common reef building CWC documented in the North Atlantic and has been found in 

depths ranging from 39-3,383 meters (Friewald et al., 2004; Zibrowius, 1980). Studies in the 

Gulf of Mexico on artificial structures calculated minimum Lophelia growth rates of 3.2 to 32.3 

mm/yr (Larcom et al., 2014). CWC mounds within the Straits of Florida have displayed growth 

throughout changes in geologic climate cycles over the last 600,000 years, including the last 

glacial maximum (Galvez, 2020). Given the slow growth rates of Lophelia, and that dead coral 

samples from mound features on the Blake Plateau have thus far been dated between 5,000 to 

44,000 years old (Ayers and Pilkey, 1981), the size and nature of the mounds features in the 

Blake Plateau indicate that they must be many thousands of years old and would be very slow to 

recover from physical damage from human activities. 

In response to improved information on the nature and distribution of CWC resources on 

the Blake Plateau, the South Atlantic Fishery Management Council (SAFMC) designated the 

Stetson/Miami Terrace Deep Water Coral Habitat Area of Particular Concern (HAPC) in 2010 to 

protect the seafloor in this area.  The designation prohibits the use of bottom-contact fishing gear 
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(bottom longline, bottom and mid-water trawl, dredge, pot, and trap), anchoring by fishing 

vessels, and possession of deep water coral. (SAFMC, 2020).  

In 2016, the National Oceanic and Atmospheric Administration’s Deep-Sea Coral 

Research and Technology Program initiated the Southeast Deep Coral Initiative - a focused four-

year research effort to dramatically increase exploration and understanding of deep-sea coral 

habitats in the Southeast region of the U.S. (Wagner et al., 2017). The science plan for this 

initiative informed much of the exploration work and data partially synthesized and presented in 

this study. A separate but related key research initiative in the Southeast U.S. region was 

launched in 2017 called Deep-Sea Exploration to Advance Research on Corals/Canyons/Cold 

seeps (DEEP SEARCH) with funding from the National Oceanographic Partnership Program 

(Cordes, 2020). New mapping data and submersible video data from DEEP SEARCH was 

utilized for this paper for pertinent regions of the Blake Plateau.  

4.1.3 Study Objectives and Importance 

Strategic ocean exploration efforts led by NOAA’s Office of Ocean Exploration and 

Research (OER) and the DEEP SEARCH project have provided breakthrough insights into the 

nature and extent of the cold-water coral ecosystems of the Blake Plateau off the southeastern 

United States. This study has used data collected by OER and DEEP SEARCH and other efforts 

to compile mapping data and video annotations interpreted from submersible (HOV and ROV) 

video footage to: 

1. Determine the known extent of CWC mound features,  

2. Generate an objective standardized geomorphic characterization of the region,  

3. Examine the relationship between mound landforms and seafloor substrates, and 
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4. Test the application of the Coastal and Marine Ecological Classification Standard 

(CMECS) to substrates and geomorphic features in the study area (FGDC, 2012).  

Characterization of the Blake Plateau CWC mound province extent and geomorphic 

diversity is of direct relevance to marine resource managers charged with implementing 

ecosystem-based management approaches and protecting vulnerable seafloor habitats from 

harmful human impacts. The results of this study also provides essential information to enable 

comparisons with other CWC mound provinces in order to understand the global characteristics 

of this ecologically critical marine habitat.  

4.2  Materials and Methods 
 

4.2.1 Study Area 

 

The study area is located on the Blake Plateau 60-120 km offshore of the southeast U.S. 

coastline beginning roughly southeast of Miami, Florida (~25° N) in the south and ending 

southeast of Charleston, South Carolina (~32.4° N) in the north. Blake Plateau is a broad, 

relatively flat region of the upper continental slope of the U.S. Atlantic margin ranging from 

about 500-1000 m water depth. The 150-300 km wide plateau is located between the shallow 

continental shelf (< 200 m depth) and the Blake Escarpment continental slope that steeply drops 

to abyssal plains at 5000 m. This study focused on the western region of the Blake Plateau that is 

directly influenced by the main axis of the warm Florida Current / Gulf Stream current as it 

moves northward out of the Straits of Florida. The current extends to the seafloor in this area 

with a mean transport of 32 Sverdrup (Sv, one million cubic meters per second) at 27°N (±2-3 Sv 

for seasonal and interannual variability), which is equivalent to about two thousand times the 
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annual average transport of the Mississippi River into the Gulf of Mexico (Baringer and Larsen, 

2001; Richardson, 2001). Gulf Stream transport varies seasonally, with surface water transport 

peaking in the fall and reaching a minimum in the spring but deep water transport showing the 

opposite seasonal peak fluctuations and with a larger magnitude (Hogg and Johns, 1995). 

The study area encompasses subregions of the Blake Plateau referred to by other 

researchers under a variety of names, including Stetson Reefs (Reed et al., 2002), Stetson Banks 

(Ross and Nizinski, 2007), Savannah Banks (Ross, 2006), Hoyt Hills, Richardson Hills, 

Richardson Reef, and portions of the Miami Terrace and Charleston Bump.  

The primary data sources utilized for the study were based on twelve expeditions led by 

NOAA’s Office of Ocean Exploration and Research on NOAA Ship Okeanos Explorer, as well 

as two cruises led by the Deep-Sea Exploration to Advance Research on Corals/Canyons/Cold 

seeps (DEEP SEARCH) project on NOAA Ship Ronald H. Brown and R/V Atlantis. Bathymetric 

data, as well as submersible dive video data, were utilized from all of these cruises to inform this 

study. Bathymetric data processing is described in section 4.2.2, while utilization of dive video 

data is described in section 4.2.4.  

4.2.2 Bathymetric Synthesis  

Data from twenty separate multibeam sonar mapping surveys were synthesized into a 

seamless bathymetric map with 35 m grid resolution. All data used as input to the grid are 

publicly available via the NOAA National Centers for Environmental Information multibeam 

archives (NCEI, 2004). Data incorporated into the grid are from the following cruises: EX1106, 

EX1202L1, EX1203, EX1403, EX1804, EX1805, EX1806, EX1812, EX1903L1, EX1903L2, 

EX1906, EX1907, RB1903, AT41, H11071, H11680, LCE2010, RB1008, SAB2006, and 

NF0702. Survey lines selected for this study were generally limited to areas shallower than the 
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1000 m contour line on the continental slope. The focus of this paper was on biogenic CWC 

mounds on the Blake Plateau, so areas deeper than this were excluded. Exploration work 

completed thus far along the adjacent deeper continental slope has revealed coral habitats 

associated with hard-bottom ledge or scarp features, but not CWC mounds.   

Some publicly available multibeam data on the Blake Plateau were intentionally excluded 

from the bathymetric synthesis. Multibeam sonar lines from any input survey with poor quality 

(typically resulting from rough weather conditions) were not used. Some large multibeam survey 

areas in the eastern region of the Blake Plateau were excluded from the synthesis grid because 

they lacked visible CWC mound features. Because the focus of this study was on characterizing 

the geomorphology of CWC mounds in the region, inclusion of these areas would not have 

provided any additional information to the purpose of the study. It must be noted that there are 

still large gaps in coverage remaining on the Blake Plateau.  

Multibeam sonar backscatter intensity mosaics were produced for most of the study areas 

covered by data from NOAA Ship Okeanos Explorer surveys. Backscatter mosaics were 

compared with substrate annotations from submersible dives and landform types to examine if 

any clear correlations were evident, but ultimately this data type was excluded from the study 

due to challenges in scale differences between the datasets and the need to constrain the scope of 

the study.  

Data from each survey were quality checked and rigorously cleaned of noise and sound 

speed error artifacts using manual and automated editing tools within QPS Qimera software 

version 2.2.3. Most of the data were collected by a Kongsberg EM 302 multibeam sonar on the 
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Okeanos Explorer with a 0.5° x 1° transmit/receive beam width array that supported consistent 

quality 25 m resolution grids of the study region. Cleaned data from all sources were gridded to 

25 to 30 m resolution depending on the source data quality. These individual survey grids were 

then exported in xyz (longitude, latitude, depth) format, reimported into a master synthesis 

Qimera project, and then incorporated into a seamless 35 m resolution dynamic surface. 

Gridding surfaces were created using Qimera’s weighted moving average algorithm with a 3x3 

cell moving window. Some minor artifacts were present in the far northern portion of the 

synthesis grid in areas where different surveys overlapped. This region of the Blake Plateau has 

extremely dynamic sound speed fluctuations in the water column due to the Gulf Stream and 

associated eddies, but most artifacts resulting from sound speed error were resolved through 

editing of outer beams of the sonar swaths in the Qimera software. This intensive quality control 

editing of the synthesis bathymetric grid was completed in order to produce the best possible 

seamless map of the region so as to minimize artifacts that would affect the results of 

geomorphic classification in the next step of the study (section 4.2.3). The bathymetry grid and 

all other spatial datasets used in the study were projected to spatial reference WGS 84 / UTM 

zone17N (EPSG:32617). Depths in the final bathymetry synthesis grid range from 16-2700 m, 

with the majority of the region in the 400-800 m range and a mean depth of 740 m. The mapped 

area of the study region is 70,407 km2, equivalent to about half the land area of Florida. The final 

35 m resolution bathymetry grid was imported into ArcGIS Pro version 2.6.0. for further 

analysis.   

The seamless bathymetry grid (Figure 4.1) was used to delineate the extent of nearly 

continuous CWC mound and scarp areas in the south and west portion of the study region that 
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encompasses the largest area and densest mound features. Since there is not an agreed upon 

standard for what defined a CWC mound “province,” two different regions were delineated to 

approximate a maximum and minimum extent in order to enable comparison with the areal 

coverage of other CWC mound provinces globally. Determining “nearly continuous” in terms of 

CWC mounds is a subjective process since many mound features in proximity to each other do 

not directly touch. For this reason, two different polygons were manually drawn in Arc using 

different criteria. The maximum extent polygon (white polygon Figure 4.1) was drawn liberally 

to include any areas of adjacent scarp and CWC mound features with the outer boundary being 

digitized where all features ceased and only flat seafloor was evident in the multibeam grid. This 

maximum extent polygon therefore includes some areas of large flats that are surrounded by 

mound and scarp features, areas with very small mound features (down to 10 m vertical relief), 

and some areas of low mound densities.  
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Figure 4.1. Bathymetric terrain model synthesis grid of the Blake Plateau CWC mound study 

region from 20 different multibeam sonar surveys. The white polygon represents the maximum 

extent of nearly continuous CWC mound features, the yellow polygon represents the minimum 

extent core area of continuous CWC features. The black polygon shows the existing boundaries 

of the Stetson-Miami Deepwater Coral Habitat Area of Particular Concern.  
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A second smaller polygon was digitized to only include the core area of very dense mound 

aggregations within the maximum extent polygon. The purpose of this polygon was to define an 

extent of nearly continuous CWC mound features that is very conservative and essentially 

limited to places where the base of one mound slope touches an adjacent mound (yellow polygon 

Figure 4.1). There is a fairly distinct landscape morphology change moving from west to east 

within this area: from densely packed mounds to more widely spaced mounds in the southern 

half, and a shift to scarp and ridge features in the northern half. The approximate transition 

between these different east/west morphologies was used to define the eastern edge of the core 

area polygon. The core area of dense mounds is referred to in this study as the “Million Mounds” 

subregion based on a nickname it was given by scientists during recent mapping and ROV 

expeditions. Figure 4.3 shows a relatively fine scale view of the Million Mounds area showing 

the minimum extent polygon of continuous mound features (yellow line), and the maximum 

extent polygon (white line) to highlight the different criteria used in digitizing these proposed 

province extent boundaries.  

4.2.3 Geomorphic Analysis of Study Area 

An objective geomorphic landform classification of the region was derived from the 

bathymetry using the Bathymetry- and Reflectivity-based Estimator for Seafloor Segmentation 

(BRESS) method developed by Masetti et al. (2018). The geomorphic classification approach 

taken in this study builds on methods applied to the Atlantic continental slope, abyssal plains, 

and seamounts along the U.S. Atlantic margin (Sowers et al., 2019, 2020), and the reader is 

referred to these publications for discussion of selecting and testing suitable modeling parameters 

for a given study area. Details about the theoretical framework of this approach can be found in 
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Jasiewicz and Stepinski (2013). BRESS is available as a free stand-alone application at 

https://www.hydroffice.org/bress/main (Hydroffice, 2019). Version 2.2.2 was utilized for this 

study. 

The BRESS analytical approach identifies terrain features that can be classified into easily 

recognizable landform types such as valleys, slopes, ridges, and flats. These landform archetypes 

are referred to as “bathymorphons” and represent the relative landscape relationships between a 

single node in the bathymetric grid and the surrounding grid nodes as assessed in eight directions 

around the node. This relative position is determined via a line-of-sight method looking out in 

each direction by a user-defined search annulus specified by an inner and outer search radius. 

The algorithm generates aggregations of the same bathymorphon type and utilizes a look-up 

classification table to translate these patterns into landform types.  

The classification types for this study were selected to delineate the most essential 

components of CWC mound and geologic scarp features that comprise the notable geomorphic 

features in the study region, while striving for simplicity. A driving determinant of the selection 

of landform classes was the study aim to be able to effectively delineate and quantify CWC 

mound peak features from the rest of the terrain. This objective was critical as assessing the 

number, density, and vertical relief of CWC mound features across the extent of the region and 

comparing among subregions was deemed an essential way to characterize the CWC province. 

The following landform types were selected to meet the study goals while enabling the 

classification of a continuous geomorphic map of the region: flat, slope, valley, ridge, and peak.  

https://www.hydroffice.org/bress/main
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The multibeam synthesis grid described in section 4.2.2 was exported from QPS 

Fledermaus software version 7.8.7 in ASCII grid format projected to spatial reference WGS 84 / 

UTM zone17N (EPSG:32617) and used as the input dataset for the BRESS version 2.2.2 

software analysis. Inner and outer search radii and the flatness parameter in BRESS were 

iteratively tested until an inner search radius of 1 grid node (35 m distance), an outer search 

radius of 6 grid nodes (210 m), and a flatness parameter of 1.5 degrees was found to yield the 

best results (i.e. the most comparable results to what would be manually classified by a skilled 

analyst working on the same dataset in order to delineate geomorphic features of interest – 

particularly CWC mound peak features). Given these parameters, the smallest landform unit 

classified by the geomorphic analysis is 35 m, and any mound peak features smaller than this 

would not be classified as such. Results of model landform classification output were draped 

onto 3D bathymetry using QPS Fledermaus software to confirm that delineations between 

landform classes were logical and comparable to feature breaks that could be made manually by 

a skilled analyst.  

A raster grid of landform classes was exported from BRESS in ASCII grid format and 

imported into ArcGIS Pro v2.6.0 for further analysis. The “Int” geoprocessing tool was used run 

on the raster in order to designate each cell of the grid as an integer value instead of a floating 

point value. This was done to ensure correct symbology of the layer. The “Raster to Polygon” 

geoprocessing tool was then used to convert the raster grid to a polygon feature class, with 

individual polygons for all flat, peak, slope, ridge, and valley landforms recorded in an attribute 

table. The “simplify polygon” option was used. A new field was added to the attribute table and 

the “calculate field” tool was used to calculate the area of each polygon in square meters using a 
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geodesic area calculation. This method avoids area calculations with lower accuracy when using 

a projected coordinate system that is not equal-area. The “summary statistics” tool was then used 

to calculate cumulative areas for each landform class for the entire study region.  

4.2.4 Geomorphic Analysis of Subregions and Mound Relief  

Upon inspection of the geomorphology landforms layer of the Blake Plateau study area it 

was readily apparent that there was a striking diversity of geomorphic patterns in the terrain that 

varied dramatically by subregion. The methods described in this section were used to 

characterize these geomorphic differences both qualitatively and quantitatively. To quantify 

differences of CWC mound characteristics across the Blake Plateau, additional spatial analysis 

was done using ArcGIS Pro v2.6.0. 

The first step in the subregional characterization of CWC mound features was to subjectively 

select and delineate the subregions. Eight subregions of the overall study area were selected 

based on the following rationale:  

 Two were selected as examples of large mounds formed along the top of steep geologic 

scarp features of the terrain (“Jellyfish Mounds” and “Richardson Mounds”); 

 Four subregions were selected based on their unique spatial pattern of mound features not 

observed elsewhere in the region (“Streamlined Mounds,” “Ripple Mounds,” “Mini 

Mounds,” and “Sparse Mounds”); 

 One region was selected as a large newly mapped CWC mound area outside the existing 

coral Habitat Area of Particular Concern protection boundary (“Pinnacle Mounds”). 

Sparse Mounds also met this criterion.   
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 One was selected for its exceptionally high mound densities over a large continuous 

spatial extent (“Million Mounds”). This area forms the core of the largest continuous 

extent of coral described in the paper (white polygon in Figure 4.1).  

Bounding polygons for each of these eight areas were then hand-digitized in Arc using the 

bathymetry and landform layers to discriminate between areas of CWC mounds and surrounding 

flat terrain. To highlight the qualitative differences in landform patterns, plan view figures were 

created for the eight subregions to visually display the diverse geomorphic “fingerprints” (i.e. 

pattern arrangement) of the landforms comprising each area. Figures of landform patterns were 

draped on the bathymetry in QPS Fledermaus to enhance visualization.  

Within each of the eight subregions the following metrics were calculated in ArcGIS Pro 

v2.6.0: number of mound peaks, peak density (number of peaks per km2), area of peak 

landforms, areas of ridge landforms, and mound peak minimum and maximum depths. To 

calculate these metrics, the vector layer of landform polygons was clipped to the subregion 

extent, the summary statistics tool was used to summarize the number of peak features and 

generate areas for peak and ridge landform classes. All areas were calculated using a geodesic 

formula to generate accurate area values undistorted by the map projection. To calculate the 

minimum and maximum depth of mound peak features the “extract by mask” geoprocessing tool 

was used to mask the bathymetry layer with a vector layer of only peak landform features for 

each subregion. Minimum and maximum depth values were then noted for the resulting output 

raster.  
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The vertical relief of a CWC mound above surrounding terrain is a defining characteristic of 

mound morphology. Relief above surrounding seafloor will also determine the hydrodynamic 

conditions affecting the slopes, ridges, and peaks of the mound thereby directly influencing 

currents and food delivery to CWCs and associated biota. Therefore, additional metrics designed 

to quantify the vertical relief of mound features from surrounding terrain were deemed 

important, and six metrics were calculated pertaining specifically to mound relief within each 

subregion: mound relief range, minimum, maximum, mean, median, and standard deviation. In 

order to generate statistics of mound relief a methodology was needed to calculate the 

approximate relief of any given mound feature from the surrounding terrain at the base of the 

mound.  

The BRESS software can generate an optional statistical spatial layer output called 

“maximum height delta” that calculates the maximum change in height measured from any grid 

node to its surrounding visual neighborhood in eight line-of-sight directions. This calculation is 

limited to surrounding grid cells that fall within the user-specified inner and outer search radii 

parameters. The BRESS model run used to delineate landforms had inner and outer search radii 

set to 35 m and 210 m, respectively. While these radii parameters were optimized to effectively 

delineate CWC mound peak features, the outer radius of 210 m was not deemed adequate for 

calculating maximum height delta values because it truncated possible vertical relief values and 

resulted in underestimating the relief of mound features when compared with actual direct 

measurements of relief from the bathymetry of select test mounds. By direct measurement of the 

largest mounds in the bathymetry grid, a distance of 420 m was deemed able to capture the 

maximum vertical relief change from the top of any mound feature to the surrounding seafloor 
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flats. Based on this, an additional model run of BRESS was completed on the bathymetric grid 

using an adjusted outer search radius value of 12 nodes (420 m) and the maximum height delta 

spatial output layer was saved and imported into ArcGIS Pro v2.6.0.  

Mound relief values were calculated by using the subregional boundary polygons to clip the 

maximum height delta spatial layer in ArcGIS Pro v2.6.0. The result was a feature layer for each 

subregion that had individual polygons of only areas classified as peak landforms and attributed 

with values of maximum delta heights. The summary statistics geoprocessing tool was then run 

on this feature layer querying for statistics on the sum of polygon areas, range, minimum, 

maximum, mean, median, and standard deviation. These values were then aggregated into a table 

of statistics from all subregions to enable comparisons.  

4.2.5 Substrate Classification and Comparison with Landforms 

An objective of this study is to examine how substrate classes differ among the 

geomorphic landform types classified based on remotely-sensed multibeam sonar mapping data. 

In order to address this objective, reliable observations of seafloor substrate character were 

needed with accurate positioning and good spatial coverage over the CWC mound features of 

primary study interest. Substrate “groundtruth” data for this purpose needed to be actual seafloor 

observation data from cameras or videos because the intent was to classify the primary dominant 

substrate type based on visual percent cover.  

Video data recorded from 23 submersible dives were used to assess the substrate character 

within classified landforms: fifteen dives were completed using the dual-body Deep 

Discover/Seirios ROVs, four dives completed by HOV Alvin, and four dives by the dual-body 
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Jason/Medea ROVs. Substrate observations from the dive videos were sub-sampled in some 

cases such that all dives had observations recorded at approximately one-minute time intervals 

while the vehicles were traversing terrain, resulting in 6,081 substrate observations of the 

seafloor.  

Twelve dives were annotated for primary (dominant) substrate at one-minute dive time 

intervals as part of detailed annotations for sessile fauna conducted for the DEEP SEARCH 

project. Five dives were annotated by NOAA OER staff using the same substrate types as DEEP 

SEARCH, but ensuring the decision criteria and substrate size thresholds followed CMECS. Six 

dives were annotated by staff at NOAA’s National Centers for Coastal Ocean Science Deep 

Coral Ecology Lab for primary substrates using a simplified CMECS terminology along with 

additional comment notes to provide more detail. These annotations were done for different 

purposes by different observers, but were deemed general enough in nature to still be valid for 

the purposes of this paper without cross-validation between different observers. For all 

observations, the terminology used to describe the primary dominant substrate type was 

harmonized with the standard terminology for primary substrate units published in the Coastal 

and Marine Ecological Classification Standard (CMECS). Table 4.1 shows how substrate class 

terminology from DEEP SEARCH was converted to CMECS unit terminology. Figure 4.2 

shows example video imagery stills of the common dominant substrate classes in the study area.  
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Table 4.1. Substrate classification terminology used by the DEEP SEARCH team and how it 

was translated into standard terminology used in CMECS. The table includes fields 

recommended in the CMECS crosswalking standard.  

DEEP 

SEARCH 

Class  

Relationship 

to CMECS 

CMECS 

Class/Subclass 

CMECS 

Component  

Confidence Relationship Notes 

Live 

Scleractinian 

Coral 

Nearly Equal 

(≈) 

Coldwater Stony 

Coral Reef 

Biotic  Certain Live vs. dead coral cannot 

be described with CMECS 

substrate classes, the Biotic 

Component Group unit for 

live coral was used. 

Dead 

Standing 

Coral-

framework 

Less Than (<) Coral Reef 

Substrate 

Substrate Certain CMECS unit is not as 

specific.  

Coral Rubble Equal (=) Coral Rubble Substrate Certain  

Sediment Greater than 

(>) 

Fine 

Unconsolidated 

Substrate Somewhat 

Certain 

Sediment in the DEEP 

SEARCH schema includes 

gravel classes. Anything 

smaller than cobble may be 

included, but gravel classes 

were rare in dive areas. 

Sedimented 

Bedrock 

Nearly Equal 

(≈) 

Bedrock / Co-

occurring 

element modifier 

Fine 

Unconsolidated 

Substrate Somewhat 

Certain 

This class was used when 

the dominant substrate was 

clearly bedrock, but >50% 

had sediments thick enough 

to preclude most sessile 

reef-associated fauna. 

Exposed 

Bedrock 

Less Than (<) Bedrock    Substrate Certain  

Cobble Nearly Equal 

(≈) 

Cobble Substrate Somewhat 

Certain 

Exact size thresholds 

unclear. 
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Figure 4.2. Primary (dominant) substrate classes used in the study. CMECS unit terminology is 

shown. The “coldwater stony coral reef” unit is a biotic component descriptor in CMECS, but 

was used in this study like a substrate class in order to differentiate living stony coral reef from 

dead standing coral-framework (dead stony coral skeletons not broken down into rubble).  

 

Each substrate observation was recorded with longitude, latitude, and depth information 

enabling accurate georeferencing. Excel files containing the substrate data for each dive were 

imported into ArcGIS Pro v2.6.0 Pro as point feature layers. Each layer was then queried to 

select by attribute each unique combination of primary substrate class and landform type. The 

number of point observations for each combination of substrate class (up to seven class 

possibilities) by each landform type (up to five possibilities: slope, peak, ridge, flat, valley) was 

then entered into a separate Excel tracking sheet. Once these data were compiled for all 23 dives, 

total sums of substrate observations per landform class were computed and plotted as bar plots to 

summarize how substrate classes differed with landform type.  
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4.3 Results and Discussion  

 

4.3.1 Extent and Geomorphic Characterization of the Cold-water Coral Province 

Figure 4.1 shows the bathymetric synthesis of the whole study region, along with the 

polygon for the maximum extent of nearly continuous CWC mound features (yellow) and the 

minimum extent core area of continuous CWC features.  The maximum extent polygon is 472 

km long from north to south and up to 88 km wide from west to east. The area enclosed is 28,047 

km2 (6.9 million acres). The core area of dense CWC mounds in the minimum extent polygon is 

248 km long by up to 35 km wide, encompassing an area of 5,179 km2 (1.2 million acres). To 

put the size of these areas in perspective with other terrestrial protected areas in the U.S., the 

maximum extent is 3x larger than Yellowstone National Park and the minimum extent is larger 

than Grand Canyon National Park.  

The geomorphic landform classification of the bathymetry data using the BRESS terrain 

analysis tool enabled the quantification of 59,760 individual peak features, providing the first 

overall estimate of the number of potential CWC mound features in the study region. Inspection 

of the peak landform class draped onto the bathymetry in QPS Fledermaus visualization software 

shows strong alignment with CWC mound peak features compared with expert interpretation. 

This correlation means that the vast majority of features classified as peaks are indeed likely to 

be CWC mound peaks in this particular setting. An example oblique 3D view of the landform 

classification results draped onto bathymetry is show in Figure 4.3.  
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Figure 4.3. Oblique perspective 3D views of a section of the core area of dense mounds in the 

“Million Mounds” subregion. Bathymetry of mound features in meters (upper panel). 

Geomorphic landform classification draped onto the bathymetry (lower panel). Resolution of 

grids is 35 m, vertical exaggeration of 8x. The thin yellow line is the minimum extent polygon of 

continuous mound features, and the white line is the maximum extent polygon. Note the 

delineation of the white peak features from the rest of the CWC mounds to enable the 

enumeration of mounds and the calculation of mound relief metrics for each mound.  
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Cumulative areas were calculated for each of the five geomorphic landform classes: 

peaks (342 km2), valleys (2,883 km2), ridges (2,952 km2), slopes (15,227 km2), and flats (49,003 

km2). Figure 4.4 provides a bar graph of these results. While flats make up the largest area, the 

other four classes collectively cover an area of 21,404 km2 and comprise the complex CWC 

mound and steep scarp features in the region. The aggregated area of peak features alone covers 

an area 6x the size of the island of Manhattan in New York City, and the area covered by peaks 

and ridges together comprise an area larger than Yosemite National Park. Terrestrial protected 

area size comparisons are noted to prompt the reader to consider the ecosystem services provided 

by these important marine habitats at such a scale. A valuation of estimated ecosystem services 

for the Blake Plateau CWC mound province is beyond the scope of this paper, but the initial 

characterization provided here provides a basis upon which further assessment can be 

undertaken. For an example of an application of an ecosystem services valuation approach to a 

large marine ecosystem refer to Mayer et al. (2013).  
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Figure 4.4. Bar plot showing the cumulative areas of the five geomorphic landform classes 

within the overall study region.  

 

The value of developing and applying a user-parameterized terrain segmentation and 

classification approach for geomorphic characterization becomes readily apparent in a massive 

and complex CWC mound province such as described here. As evident from Figure 4.3, 

manually delineating these features in a consistent repeatable way with a comparable level of 

detail would not be possible. Another benefit of this approach is the transparency of landform 

classification methods. Once the model is set up with a few user-defined parameters tailored to 

the study area, the algorithms are based on a published mathematical terrain modeling approach 

instead of expert judgement. Results can, therefore, be replicated by other researchers given the 
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same input data and model parameters. The transparency of the BRESS modeling approach also 

enables it to be applied to other CWC provinces for more consistent comparative analysis.   

Standardization of methods is an inherent objective of this study.  The feasibility of using 

the geomorphic landform classes in order to classify “geoform” units as part of the CMECS 

standard (FGDC, 2012) was evaluated, therefore Table 4.2 provides a comparison of the 

landform units generated by this study versus the closest analogous geoform units in CMECS. 

Since CMECS is a dynamic content standard intended to be revised and updated over time, new 

provisional units may be proposed. New potential provisional geoform units are listed in column 

three of Table 4.2. If the proposed units existed in CMECS, the landform classes from this study 

could largely be transitioned 1:1 to a standardized terminology scheme.   
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Table 4.2. Comparison of the geomorphic landform units classified in the current study to 

existing CMECS geoform unit terminology.  

BRESS 
Landform 
Units from 

Study 

CMECS Geoform Units Applicable to Study Area 
Tectonic Setting: Passive Continental Margin 

   Physiographic Setting: Borderland 

Potential New Provisional  
Geoform Unit 

Peak Closest analogue is “Knob” but it is of geologic 
origin, not biogenic) 

 Mound Peak (if CWC mound) 

 Scarp Peak (if on scarp feature) 

Ridge Ridge (1:1 crosswalk)  Mound Ridge (if CWC mound) 

Valley Valley (current definition would need expansion 
beyond continental shelf) 

 Mound Valley (if adjacent to CWC 
mound) 

 Scarp Valley (if at base of scarp 
feature) 

Slope Slope (1:1 crosswalk)   Mound Slope (if CWC mound) 

Flat Flat (1:1 crosswalk) -- 

 Scarp/Wall 
Fault Scarp (Level 2 option) 
Erosion Scarp (Level 2 option) 

-- 

 Deep/Cold-water Coral Reef  

 Biogenic Deep Coral Reef (living) 
(Level 1 or 2 option) 

 Deep Coral Carbonate Mound (lithoherms) 
(Level 1 or 2 option) 

 
(Note that this unit is comprised of “peak,” 
“ridge,” and “slope” landform units from the 
current study) 

New Level 2 units under CWC Reef 

 Mound Peak 

 Mound Ridge 

 Mound Slope 

 Mound Valley 

The high resolution bathymetric synthesis and the objectively generated full-coverage 

spatial geomorphology layers generated by this study offer strong potential as a valuable input 

into coral habitat suitability models of the region. Many species of deep sea corals show 

particular affinities for high-relief hard substrate features found on mound peaks and ridges. 

Utilizing fine scale delineations of these features as model inputs - or weighted spatial filters for 

fine tuning output probabilities - may result in more accurate models with improved predictive 

performance. Given the recent multifold increase in availability of high resolution full coverage 

multibeam data for increasingly larger regions of the deep sea (and future trends in this 
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direction), the quality of the input bathymetric data into habitat models, and the corresponding 

derived terrain spatial layers associated with them (e.g. slope, aspect, rugosity, benthic position 

index, etc.) is rapidly improving.  

It is interesting to note that Paull et al. (2000) postulated that there may be as many as 

40,000 CWC mounds in the area of seafloor underneath the Gulf Stream in the Straits of Florida 

and inner Blake Plateau with coral-bearing structures covering over 400 km2. The data presented 

in this paper covers much of the geographic region Paull described and enumerates 59,760 likely 

CWC mound structures with a collective peak area (of mostly coral-related substrates) covering 

342 km2.  Paull’s estimates were based on an assumption of one mound structure every 3 km2 

(0.3 peaks/km2), whereas this paper has calculated an average peak density of 0.8 peaks/km2 for 

the whole study region, and an average of 4.8 peaks/km2 for the Million Mound region. These 

comparisons show that these earlier coarse estimates of potential mound habitat were reasonable 

(especially based on very limited mapping information) and ultimately conservative in light of 

what has recently been revealed by additional mapping expeditions with the benefit of 

multibeam sonars.  

4.3.2 Geomorphic Diversity of Subregions 

The complex geomorphology of eight subregions is characterized in this section 

qualitatively with geomorphic “fingerprints” and quantitatively by measurements of mound 

density and vertical relief. The median mound relief for the entire study region was 14 m, with 

individual mound features ranging 3-178 meters above the adjacent seafloor. Figure 4.5 provides 

an overview map of the landform classification results for the entire study area and highlights the 

locations of the featured subregions. Subregions are labeled A-H and provided an informal site 
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name for the purposes of this study. Informal names do not correspond to any officially named 

features in the region. Richardson and Million Mounds are colloquial names used by some 

scientists and managers in the region.  
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Figure 4.5. Geomorphic landform overview map with subregions labeled A-H. All subregions 

contain CWC mound features. Note how the landform map provides a strong immediate visual 

contrast between flat areas and complex terrain.  
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Maps of each subregion are provided in Figures 4.6 – 4.9. The left panels display 

graduated symbols of mound relief overlain on hillshaded bathymetry, with each circle 

representing an individual mound feature. The larger the red circle, the greater the vertical relief 

of the mound. These plots quickly provide a visual display of mound densities and relative relief 

across the bathymetry grid. The right panels display the geomorphic landform classes as draped 

on the bathymetry.  

 

 

Figure 4.6 Maps showing graduated vertical mound relief symbols (left panels) and landform 

classifications draped on bathymetry (right panels) for Jellyfish Mounds and Richardson 

Mounds. Letters in the top left corner correspond to the letters in the Figure 4.5 overview map. 

Black outlines in the left panels are the polygons delineated in ArcGIS Pro v2.6.0 for the purpose 

of quantifying and contrasting metrics about the nature of mounds in each subregion. Blue lines 

in the right panels show the current boundary of the Stetson-Miami HAPC.  
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Figure 4.7. Maps showing graduated vertical mound relief symbols (left panels) and landform 

classifications draped on bathymetry (right panels) for Streamlined Mounds and Ripple Mounds. 

Letters in the top left corner correspond to the letters in the Figure 4.5 overview map. Black 

outlines in the left panels are the polygons delineated in ArcGIS Pro v2.6.0 for the purpose of 

quantifying and contrasting metrics about the nature of mounds in each subregion. Blue lines in 

the right panels show the current boundary of the Stetson-Miami HAPC. 
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Figure 4.8. Maps showing graduated vertical mound relief symbols (left panels) and landform 

classifications draped on bathymetry (right panels) for Pinnacle Mounds and Mini Mounds. 

Letters in the top left corner correspond to the letters in the Figure 4.5 overview map. Black 

outlines in the left panels are the polygons delineated in ArcGIS Pro v2.6.0 for the purpose of 

quantifying and contrasting metrics about the nature of mounds in each subregion. Blue lines in 

the right panels show the current boundary of the Stetson-Miami HAPC. 
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Figure 4.9. Maps showing graduated vertical mound relief symbols (left panels) and landform 

classifications draped on bathymetry (right panels) for Sparse Mounds and Million Mounds. 

Letters in the top left corner correspond to the letters in the Figure 4.5 overview map. Black 

outlines in the left panels are the polygons delineated in ArcGIS Pro v2.6.0 for the purpose of 

quantifying and contrasting metrics about the nature of mounds in each subregion. The yellow 

line in the lower right panel is the core area of dense mounds used to define the minimum extent 

of continuous coral mound features.  

 

A review of Figures 4.6-4.9 provides some interesting qualitative insights into the 

diversity of CWC mound morphologies in this region. In Figure 4.6 both Jellyfish and 

Richardson Mounds show obvious patterns of high relief mound features formed at the tops and 

edges of the steep scarps found in that subregion. Jellyfish Mounds are located just northwest of 

Richardson Mounds. The linearity and continuity of the mound features along the distinct ridges 

found at the top of the scarp features is different from other parts of the Blake Plateau where 

mound features do not form in lines and have more space between each other.  
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Streamlined Mounds in Figure 4.7 shows extremely high mound densities and clear 

directionality in mound orientation. Mounds are elongated along the southwest-to-northeast 

direction, indicating a very likely strong morphology-shaping influence of the Gulf Stream 

current in this area. In stark contrast, the Ripple Mounds subregion in Figure 4.7 shows mounds 

clustering along widely spaced gently curving crest patterns. As shown in a profile of these 

features (Figure 4.10), the mound features are found on minor topographic highs spaced roughly 

800-2000 m apart. It is unclear if this pattern of mound development is a result of the corals 

populating existing minor crests in the bathymetry with favorable substrates, or if the pattern was 

created via spatial self-organization through scale-dependent feedbacks as theorized by van der 

Kaaden et al. (2020). This particular pattern is unique to this subregion for the areas mapped thus 

far on the Blake Plateau.   

 

Figure 4.10. Profile view of landform features draped on bathymetry for the Ripple Mounds 

subregion (area “D” in Figure 4.5). The black line on the left shows the profile transect in 

planview. The profile on the right has vertical exaggeration of 100x, units are in meters.  
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Another unique pattern is found in the Mini Mounds subregion (area “F” in overview 

Figure 4.5) as shown in Figure 4.8. The mounds here are remarkably uniform in spacing and in 

their diminutive height, with an average vertical relief of 10 meters. The Sparse Mounds 

subregion (area “G”) exhibits its own unique characteristics, showing widely spaced but 

prominent mounds in an otherwise very flat region of the Blake Plateau. There is no surface 

terrain expression of favorable underlying geology in the Sparse Mounds area. This observation 

is in contrast to other subregions, subregions such as Jellyfish and Richardson that have CWC 

mounds on top of underlying geologic features that must have provided favorable circumstances 

to sustain the growth of stony corals. Additional analysis of sub-bottom profiler sonar data in this 

area may provide useful insights.   

Sparse Mounds and Pinnacle Mounds (subregion “E” in overview Figure 4.5) are large 

newly discovered regions of CWC mounds located outside of the existing Stetson-Miami HAPC 

protection zone. Figure 4.11 is provided to show a 3D perspective view of the bathymetry and 

an example profile view of the distinct pinnacle morphology of the mounds in this subregion.  
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Figure 4.11. 3D oblique perspective view of the 35 m resolution bathymetry for the Pinnacle 

Mounds subregion (top panel). The bottom panel shows a profile of mound relief with 180x 

vertical exaggeration corresponding to the black line in the top panel.  

Within each of the eight subregions the following metrics were calculated in ArcGIS Pro 

v2.6.0 to characterize CWC mound features: number of mound peaks, peak density (number of 

peaks per km2), area of peak landforms, areas of ridge landforms, and mound peak minimum and 

maximum depths. Additional statistics were also calculated specific to CWC mound feature 

relief from the surrounding terrain: range, minimum, maximum, mean, median, and standard 

deviation. These values were then aggregated into a table of statistics from all subregions to 

enable comparisons (Table 4.3).  
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Table 4.3. Comparison of morphology metrics for the 8 CWC mound subregions evaluated. 

Standout numbers are shown in tan colored cells for emphasis.  

 

Within the overall study region 59,760 individual peak features were identified. Mound 

relief within subregions ranged from 3-224 meters above adjacent seafloor within the 420 m 

radius used to calculate relief. The Million Mounds subregion polygon (row H) contained 24,819 

individual mound features – 42% of the total number of mounds mapped in the entire region. 

Peak density (4.8 mounds/km2), and the areas of peaks (151.5 km2) and ridges (853 km2) were 

also greatest in Million Mounds. Streamlined Mounds had an almost equivalent peak density (4.5 

mounds/km2), and is clearly a distinctive area in this respect. Million Mounds supports the 

largest depth range of coral mound features, with some mounds as shallow as 356 m and as deep 

as 918 m.  

Range 

(m)

Min 

(m)

Max 

(m)

Mean 

(m)

Median 

(m)

Std. 

Deviation 

(m)

A. Jellyfish Mounds 783 3.2 6.2 25.6 99 3 102 30 26 18.4 491 662

B. Richardson Mounds 1,210 2.6 8.0 43.4 157 3 160 44 35 32.7 656 861

C. Streamlined Mounds 1,331 4.5 7.8 47.3 73 4 77 19 18 8.7 440 562

D. Ripple Mounds 647 2.0 3.1 21.9 24 4 28 10 10 3.3 659 802

E. Pinnacle Mounds 1,271 1.4 8.7 43.6 50 3 53 18 16 8.3 785 894

F. Mini Mounds 387 1.9 1.5 24.6 19 4 23 10 9 3.1 799 846

G. Sparse Mounds 168 0.3 1.4 5.5 47 7 54 34 33 7.6 758 815

H. Million Mounds 24,819 4.8 151.5 853.0 100 3 103 20 17 10.0 356 918

Entire Region 59,760 0.8 342 2952 221 3 224 20 17 13.9 71 2688

Mound 

Peak 

Min 

Depth 

(m)

Mound 

Peak 

Max 

Depth 

(m)

Mound Sub-Region Name
# of 

peaks

Peak 

Density 

(#/km
2)

Area 

of 

Peaks 

(km
2
)

Area of 

Ridges 

(km
2
)

Mound Relief Metrics
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The Richardson Mounds subregion is a distinctive area in terms of mound relief metrics, 

containing the largest range, max, mean, median, and standard deviation values. Mound peak 

relief maximum, mean, and median values for each subregion are plotted in Figure 4.12. The 57 

m difference in maximum relief between Richardson and the next highest value (Jellyfish 

Mounds) appears to be significant, but may be somewhat of an artifact of the relief calculation 

method. It has already been noted that mound features located at the top of very steep scarp 

features show high terrain relief, so the maximum values are subject to significant change 

depending on the polygon subregion location and inclusion of specific mound features. High 

relief values alone do not provide insight into the proportion of relief due to the elevation of the 

underlying biogenic structure (formed by stony coral skeletons and sediment deposition over 

long time scales) versus the base geology that any given mound formed upon.  Therefore, the 

maximum relief values should be interpreted cautiously, while still providing some utility in 

terms of comparing subregion values. Million and Jellyfish Mounds had essentially the same 

maximum values, as did Sparse and Pinnacle mounds. Mini Mounds had the lowest maximum 

relief. 
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Figure 4.12 CWC mound peak relief of eight subregions based on the maximum vertical change 

in any of the eight directions up to 420 m radius surrounding a peak landform feature. The 

maximum single vertical relief value within a subregion is shown in orange. Yellow bars 

represent mean values and green bars represent median values of all peaks in the subregion.  

 

Examination of the mean and median relief numbers shows that Richardson Mounds still 

has the highest values, but is closely followed by Sparse Mounds. It is apparent that while the 

Sparse Mounds subregion does not have a great number of mounds, the mounds that are present 

are on average some of the largest in the region, with a mean value of 34 and median value of 33. 

It is worth noting here that the one ROV dive completed thus far to one of the mounds in Sparse 

Mounds documented large areas of coral rubble, dense live Lophelia, and patches of Madrepora 

corals – documenting the high biological importance of these CWC mound features located 
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outside of the current HAPC boundary. The close or matching values between mean and median 

numbers at all subregions except for Jellyfish and Richardson Mounds reveals a largely 

symmetrical distribution of relief within each of these subregions. Jellyfish and Richardson 

Mounds show a more skewed data distribution with some high relief outliers. This result again 

indicates that the large scarps in these regions likely exaggerate the high relief values, and that 

the values presented here should not be confused with the purely biogenic thickness component 

of the CWC mounds. More evidence is needed to understand if the biogenic mound component 

to the relief in these subregions is larger than in other areas. Analysis of sub-bottom sonar data, 

seismic reflection data, and drilling cores of mound features could provide substantially more 

insight into mound composition and thickness.  

The depth values for mound peak features within each subregion are displayed in Figure 

4.13. The greatest variation in mound depths is within the Million Mounds area, spanning a 

range of 562 meters. Both the shallowest (356 m) and deepest (918 m) mound depths are also 

found in the Million Mounds subregion. All other subregions have considerably narrower depth 

ranges. Sparse Mounds and Mini Mounds had the smallest ranges, with mound peak depths that 

occur at uniform depths within a range of 57 and 47 m, respectively. Pinnacle, Sparse, and Mini 

Mounds subregions were the deepest overall areas with their shallowest mound peaks at 785 m, 

758 m, and 799 m, respectively. All of the mound peaks in the sub-regions fall within the depth 

range of about 350 to 900 m.  
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Figure 4.13. Bar plot showing depths of CWC mound peak features in each subregion. The 

range of peak depths is shown in green, minimum depths are shown in orange, and maximum 

depths are shown in yellow. The subregions are ordered by largest to smallest depth range values 

moving from left to right along the x-axis. 

4.3.3 Substrate Classes of Landform Types 

Substrate observations recorded from video data from 23 submersible dives at 

approximately 1-minute intervals (n = 6,081 substrate annotations) were harmonized with the 

Coastal and Marine Ecological Classification Standard (CMECS) and used to assess the substrate 

character within classified landforms. Bar plots of the results are shown in Figure 4.14 and 

Figure 4.15. As shown in Figure 4.14, slope features had the greatest number of overall 

observations, followed by ridges and peaks. Given that the CWC mound features were the target 

of most dives, it is logical that most of the observations occurred traversing up the slope, 
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followed by exploration of the ridges and peaks of the mounds. Flat and valley landforms only 

represent 9% and 6% respectively of the overall observations. 

 
 

Figure 4.14. Plot of primary substrate types observed for each landform class based on 

interpretation of submersible video data. The y-axis represents the number of substrate 

observations aggregated for each landform class. 

As evident from the cumulative plot shown in Figure 4.15, Coral rubble was found to be 

the dominant substrate component within the peak (66%), ridge (72%), and slope (62%) 

landforms, thereby validating the interpretation of these bathymetric features as CWC mounds. 

This result was true even on mounds with as little as 10 meters of average vertical relief from the 

surrounding seafloor, as documented for the Ripple Mounds and Mini Mounds subregions.  
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Live stony coral reef was found exclusively on peaks (7%), ridges (2%), and slopes (2%). 

Dead coral reef substrate (i.e. dead standing coral-framework) is shown in orange and was also 

found almost exclusively on peaks (26%), ridges (18%), and slopes (6%) - with more standing 

framework typically found in the higher relief areas. Unconsolidated sediments (shown in 

yellow) are mostly absent from peaks (1%), but do occur sporadically on ridges (7%) and slopes 

(10%). The substantial coral rubble component in the valleys (76%) may indicate that rubble is 

conveyed downslope by strong currents, biodegradation, and gravity to accumulate in certain 

valley features adjacent to mounds. It is notable that cobble (dark green, 31%) and bedrock (light 

green and dark blue classes, 2% and 37% respectively) were major components of the flats 

explored – evidence of the hard-bottom habitats in the region. The majority of bedrock observed 

was covered in fine sediments (>50%) as a co-occurring element (CMECS class bedrock / fine 

unconsolidated).  
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Figure 4.15. Plot of primary substrate types observed for each landform class based on 

interpretation of submersible video data. The y-axis represents the cumulative percent of 

substrate observations aggregated for each landform class. 

The “rubble” class in this study should not be interpreted as corals damaged by human 

activities. Rubble substrate in the context of this study area occurs naturally as a result of the 

gradual breakdown of dead coral framework. Coral rubble can support high faunal diversity 

(Roberts et al., 2009), and is therefore an important marine habitat. Direct evidence of damage to 

coral and rubble habitats was not a component of this study. Numerous studies have clearly 

documented the sensitivity of CWC mound habitat (including rubble) to bottom-contact fishing 

practices or other human activities (e.g. Fosså et al., 2002; Grehan et al., 2005; Koslow et al., 

2000). The substrate data in this study was methodically translated to CMECS terminology, with 

the intention that this will improve the longevity and usefulness of the data in the longer term.  
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4.4  Conclusions  

This study demonstrated the value of applying an objective automated terrain 

segmentation and classification approach to geomorphic characterization of a highly complex 

CWC mound province. Manual delineation of these features in a consistent repeatable way with 

a comparable level of detail would not have been possible. As inevitably vaster regions of the 

oceans become mapped and explored, and the technological capability to map extensive seafloor 

features in high resolution with autonomous underwater vehicles (AUVs) expands, the 

importance of semi-automated classification approaches will only increase. Reliance solely on 

manual delineation and expert judgment is not a practical approach in these circumstances, and 

the inability to reproduce results and standardize methods across large ocean regions further 

supports the need for standardization or at least transparency in methodologies and terminology. 

The methods used in this study provide a pragmatic standardized approach for identifying, 

characterizing, and quantifying CWC mound-forming habitats and could be applied to other 

CWC provinces to enable more direct comparisons among geographically diverse settings. 

The multibeam sonar bathymetric compilation and corresponding geomorphic landform 

maps generated by this study document what appears to be the most extensive CWC mound 

province thus far discovered. Nearly continuous CWC mound features span an area up to 472 km 

long and 88 km wide, with a core area of high density mounds up to 248 km long by 35 km 

wide. A total of 59,760 individual peak features were delineated, providing the first estimate of 

the overall number of potential CWC mounds mapped in the region to date. Five geomorphic 

landform classes were mapped and quantified: peaks (342 km2), valleys (2,883 km2), ridges 

(2,952 km2), slopes (15,227 km2), and flats (49,003 km2).  
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CWC mound spatial distribution, density, vertical relief, and morphology varied greatly 

among subregions of the Blake Plateau. The median mound peak relief above surrounding 

seafloor for the entire study region was 14 m, with individual mound features in analyzed 

subregions ranging between 3-178 meters in vertical relief. Two large areas containing 

prominent and numerous CWC mounds were mapped in 2018 and 2019 that exist outside the 

present-day Stetson-Miami Habitat Area of Particular Concern. The northern area has 1,271 

mound features and the southern area has 168.  

The relationship between CWC mound size and flow hydrodynamics is complex and in 

need of additional research (Cyr et al., 2016; Soetaert et al., 2016), with important ramifications 

for the suitability of mounds for supporting stony coral growth and associated biota. The CWC 

mound relief spatial layers and summary statistics generated by this study can be used to target 

study sites for assessing hydrodynamic relationships with CWC mounds of diverse sizes across 

the Blake Plateau province.  

The quantification of mound landform features provides a more robust basis to assess the 

significance of the ecosystem services provided by this major CWC province. Characterization 

of the Blake Plateau CWC mound province extent and geomorphic diversity is of direct 

relevance to marine resource managers charged with implementing ecosystem-based 

management approaches and protecting vulnerable seafloor habitats from potentially harmful 

human impacts. 

Ground-truth for the geoform analysis was provided by direct substrate observations from 

23 submersible dive videos that revealed coral rubble to be the dominant substrate component 
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within the peak, ridge, and slope landforms explored, thereby validating the interpretation of 

these bathymetric features as CWC mounds.  These results infer that it is reasonable to expect 

about 99% of classified mound peak areas and 92% of classified mound ridge areas to a have 

dominant substrate type that is CWC-related (coral rubble, dead coral reef substrate, and a small 

component of live cold-water stony coral reef). This has important implications for the collective 

ecological value of this CWC mound province given the proven linkages between coral habitat 

(live and dead) and the benthic and pelagic communities shown to be associated with them. 

These CWC-based habitats support rich communities of associated invertebrates and fishes in the 

Blake Plateau region (Reed et al., 2006; Ross, 2006; Ross and Quattrini, 2007). Submersible dive 

video data is biased towards under-sampling of the substrate characteristics of flat and valley 

features (9% and 6% respectively of the overall substrate observations), and therefore the data 

presented in this study for these geomorphic features may not be adequately representative of 

these habitats.  

The application of the Coastal and Marine Ecological Classification Standard (CMECS) 

in deep sea environments is still evolving, and recommendations for interim provisional units 

were provided for the geoform component of the standard. The existing substrate classification 

units worked well for this study.  

The extent and nature of CWC mounds characterized in this study should be compared 

with the other largest reported CWC mound and reef areas discovered thus far. Røst Reef in 

Norway has previously been recognized as the largest known CWC (Lophelia) reef, with an 

extent of 35 km x 3 km wide (Fosså et al., 2005; ICES, 2002) and covering an area of 

approximately 100 km2 (WWF, 2020). The Mauritanian CWC mound province spans a nearly 
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continuous line of mound features 400 km long, but with a narrow width and an unreported total 

area of coverage (Weinberg et al., 2018). The West Florida slope mounds reported by Reed et al. 

(2006) span an area of 230 km long by 10 km wide. The Northern Argentine Mound Province is 

estimated to cover an area at least 2000 km2 (Steinmann et al., 2020). In comparison with these 

published studies, the core area of dense CWC mounds in the minimum extent polygon 

delineated in this study for the Million Mounds subregion alone covers a nearly continuous area 

of 5,179 km2 and is larger in extent than any other continuous CWC mound or reef province yet 

discovered and published in scientific literature.  

While the Blake Plateau region has long been recognized as one of the world’s most 

significant CWC mound areas, its impressive extent can be more fully appreciated in light of the 

recently collected mapping data presented here. Given that some large regions of the Blake 

Plateau are still yet to be mapped with multibeam sonars, additional CWC habitats are sure to be 

revealed. 

 

Acknowledgements:  

The author would like to thank Ryan Gasbarro and Dr. Erik Cordes for providing detailed 

substrate annotations for twelve submersible dives used in the study for ground truth 

characterization of substrate types. Dr. Mashkoor Malik, Kasey Cantwell, and Matt Dornback 

provided substrate annotations for five ROV dives completed by Deep Discover/Seirios ROVs. 



Derek Sowers                                      Chapter 5   

       

130 

 

 

Chapter 5 

Conclusion 

The central premise of this thesis was to synthesize geomorphological elements of large 

regions of the deep ocean seafloor to establish standards of characterization for ecosystem-based 

habitat classification.  The approach was to apply semi-automated characterization techniques on 

seafloor bathymetric data that were originally collected for other purposes.  The purpose of 

generating these maps is ultimately to be useful for informing ecosystem-based management of 

large marine regions. While seafloor classification techniques for habitat classification have been 

applied in shallow water and generally over more local regions, these techniques have never 

before been applied at continental-margin scales in such deep water. 

In Chapter 2 pragmatic methods were developed and applied to a case study of a 

seamount feature. Chapter 3 utilized insights from the case study and scaled the methods for 

systematic geomorphic classification to a dramatically larger region spanning the continental 

shelf break to the abyssal plains, from Canada to Florida. Results of Chapters 2 and 3 effectively 

validated the first two hypotheses of the thesis: 

1. Broad-scale bathymetric data of the U.S. Atlantic margin collected for ECS and deep 

sea exploration purposes are useful to consistently classify ecological marine units of 

the seafloor and generate value-added characterization maps of large regions.  
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2. Transparent, repeatable, and efficient semi-automated geomorphic analysis methods 

employing the Coastal and Marine Ecological Classification Standard (CMECS) as an 

organizational framework produce useful habitat characterization maps of the U.S. 

Atlantic margin.    

Chapter 4 focused on the third hypothesis of the dissertation: that vulnerable cold-water coral 

(CWC) habitats are identifiable and able to be inventoried and characterized using geomorphic 

analysis and CMECS classification of bathymetric data. To test this hypothesis, the approaches 

refined in Chapters 2 and 3 were applied to a bathymetric grid compiled of all available high 

quality multibeam surveys on the Blake Plateau that had at least some topographic features 

indicative of CWC mounds.  Study results identified 59,760 individual peak features, the vast 

majority of which are very likely to be CWC mounds based on their morphology and the 

validation provided by numerous submersible ground-truth dives completed on mound features 

in the region. The geomorphic classification efficiently delineated and inventoried five distinct 

landform classes from the bathymetry: peaks (342 km2), valleys (2,883 km2), ridges (2,952 km2), 

slopes (15,227 km2), and flats (49,003 km2). Inner and outer search radii and the flatness 

parameter in BRESS were iteratively tested until an inner search radius of 1 grid node (35 m 

distance), an outer search radius of 6 grid nodes (210 m), and a flatness parameter of 1.5 degrees 

was found to yield the best results. The complex geomorphology of eight subregions was 

described qualitatively with geomorphic “fingerprints” and quantitatively by measurements of 

mound density and vertical relief, providing a thorough first-order characterization of the overall 

Blake Plateau CWC mound province.  
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All of the results from this chapter were conveyed directly to stakeholders via a presentation 

to the Habitat Protection and Ecosystem-Based Management Advisory Panel for the South 

Atlantic Fishery Management Council. Panel members expressed the usefulness of the 

interpreted mapping and characterization information in supporting their EBM approach to 

management and for informing their ongoing conservation measures to protect vulnerable CWC 

habitat.  

Based on insights from research completed in Chapters 2-4, the following section 

summarizes the main contributions of this thesis to the field of marine habitat mapping and 

characterization.  

Contribution to Advances in Marine Geomorphic Analysis and Classification Methods:  

 The study area addressed in this thesis fills a gap in the field since few habitat mapping 

studies have been reported covering slope or abyssal habitats (Harris and Baker, 2011b). 

 This thesis demonstrated the flexibility and effectiveness of the BRESS approach to terrain 

analysis for the delineation of landform features of interest. Benefits of the approach included 

the transparency and reproducibility of results, computational efficiency, concurrent 

production of spatial statistics layers derived from the bathymetry, time-saving proficiency 

compared to manual interpretation and delineation of features, and its scalability to large 

regions. The line-of-sight analytical approach provides benefits in its ability to self-scale to 

features in the terrain as versus fixed neighborhood moving window algorithms.  

 The classification of geomorphic landforms using the study methods involved far less 

subjectivity than classification methods conducted manually via expert interpretation. 
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Manual delineation of these features over complex large regions in a consistent repeatable 

manner with a comparable level of detail would not be possible. 

Contribution to Standardized Classification and Terminology  

 This study was one of only several completed to date testing the application of CMECS to 

deep sea habitats (Bassett et al., 2017, Etnoyer et al., 2018, Ruby, 2017; Weaver et al., 2013). 

 This research effort, along with key input from NOAA’s Deep Sea Coral Research and 

Technology Program, prompted changes to NOAA OER’s substrate annotation scheme used 

in real-time during ocean exploration dives on NOAA Ship Okeanos Explorer and for post-

dive analysis of video data using Ocean Network Canada’s SeaTube interface. This is a 

major advancement in the tangible implementation of CMECS terminology in the realm of 

deep sea exploration.  

 This study identified specific gaps in CMECS units for deep sea areas and proposed new 

relevant provisional units for consideration (refer to Table 2.2, Table 3.1, and Table 4.2 for 

specific recommendations). CMECS is designed to be a dynamic content standard that 

evolves over time in response to field applications of the standard.  

Contribution to Advancing Ecosystem-Based Management (EBM): 

 The methods used in this thesis effectively translated bathymetry data into geomorphic 

landforms (and where possible into CMECS geoforms) useful for characterizing marine 

landscapes and inventorying the relative abundance or scarcity of general habitat types, 

which is informative to marine spatial planning efforts.  
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 As stated in the introduction to this thesis, technologies to map marine habitats are rapidly 

evolving and the demand for marine habitat maps is dramatically increasing. Maps serve as 

the fundamental basis for marine spatial planning. The methods developed and applied in this 

thesis are adaptable to data collected with different sensors and resolutions. The BRESS 

landform analysis tool can utilize bathymetry data independent of the technology used to 

generate the data. CMECS is also designed to be data agnostic. Both of these tools can be 

utilized for seafloor classification work that remains relevant as seafloor mapping 

technologies such as AUVs enable higher resolution data for deep sea habitats. 

 As demonstrated in Chapter 4, the study methods have proven to be effective at identifying, 

quantifying, and characterizing CWC mound features. Protection of these vulnerable marine 

habitats requires this information in order to effectively implement EBM strategies.  

 Because the methods are scalable to very large ocean regions, they will be useful for 

interpreting data collected at regional scales across political boundaries and in international 

waters. The U.S. has established a policy goal of mapping all the marine areas in its 

exclusive economic zone (EEZ) deeper than 200 m by 2030 (Ocean Science and Technology 

Subcommittee, 2020). The Seabed 2030 initiative is facilitating international cooperation 

towards the ambitious goal of mapping the global deep ocean by 2030 (Mayer et al., 2018). 

The extensive bathymetric datasets generated by this effort will be of exceptional intrinsic 

value by revealing the shape of the seafloor in far more detail than previously possible. 

However, the value of these data to support EBM will be leveraged far more significantly if 

they are further used to characterize marine habitats of the deep sea in a standardized manner 

of direct use by ocean scientists and managers to support decision-making.   
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 The objectively generated full-coverage spatial geomorphology layers produced by this thesis 

offer strong potential as a valuable input into coral habitat suitability models of the regions 

analyzed. Many species of deep sea corals show particular affinities for high-relief hard 

substrate features found on mound peaks and ridges. Utilizing fine scale delineations of these 

features as model inputs - or weighted spatial filters for fine tuning output probabilities - may 

result in more accurate models with improved predictive performance. Spatial layers 

generated by this thesis have been conveyed to coral modelers involved in the DEEP 

SEARCH initiative to test this hypothesis.  

 Maps of geomorphic features created by this thesis may provide new insights into 

distribution patterns of deep sea fauna. Specific species or community assemblages may 

exhibit affinities for specific types of geoforms, revealing habitat preferences that may not be 

apparent when statistically analyzing biological data for correlations with standard 

environmental parameters (e.g. depth, temperature, pH, oxygen, etc.).  

This dissertation has successfully characterized the geomorphology of vast regions of the deep 

ocean floor off the U.S. Atlantic margin for ecosystem-based management purposes. It has 

applied techniques and established standards of classification that can be applied to other regions 

throughout the World.  This latter point is critical as there are ongoing international efforts today 

to map the entirety of the World's oceans at meaningful scales and these techniques can 

synthesize this information in meaningful ways. Furthermore, the need for such syntheses is 

paramount in order to successful manage (conserve and preserve) the living and non-living 

resources of the ocean.  This thesis shows a way forward for such endeavors, and emphasizes 1) 

the applicability of data acquired for other purposes to be applied to this purpose, and 2) the need 
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for standards to define and describe marine habitats so that all governments, managers, 

biologists, geoscientists, and other ocean stakeholders communicate using the same language.
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