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ABSTRACT 

BACTERIAL GENOME AND POPULATION DYNAMICS WITH IMPLICATIONS FOR 

PUBLIC HEALTH 

by 

Cooper J. Park 

University of New Hampshire 

Bacterial populations are extraordinarily heterogeneous. Despite growing clonally, these 

populations are often composed of multiple lineages distinguished by both phenotypic and 

genetic differences that are caused by both allelic and whole gene variation. Such genomic 

mosaicism and within-species variation can significantly impact a species’ response to selective 

pressures from antibiotic use, vaccination, immune responses and host environment. One 

important process that contributes to this phenomenon is recombination, the exchange of very 

similar DNA sequences between strains which can result to either the addition or replacement of 

homologous genes.  Current models of microbial recombination incorporate the null expectation 

that recombination is a homogeneous process across a species, whereby different lineages of the 

same species and different genes within a genome exhibit the same rates of DNA donation and 

receipt. However, recent work has demonstrated that intra-species recombination rates can differ 

even between strains. This dissertation attempts to elucidate the extent of, and the processes 

underlying, heterogeneity in genomic content in microbial species and populations relevant to 

human health. The first chapter addresses the best-known producer of the tetracycline class of 

antibiotics, Streptomyces rimosus. Results suggest that even strains appearing nearly identical in 
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a core-genome phylogeny have divergent biosynthetic gene cluster content, emphasizing the 

importance of analyzing entire populations in drug discovery protocols. The second chapter 

explores the population dynamics of one of the most common causes of foodborne illness in the 

world, Salmonella enterica with results that indicate the evolution of ecologically unique 

subspecies of S. enterica are intricately linked by heterogeneous recombination. The third and 

fourth chapters demonstrate similar patterns of genomic diversity and recombination of clinically 

relevant genes in populations of Campylobacter jejuni and S. enterica collected from hospitals in 

New Hampshire in 2017. Finally, the fifth chapter describes a novel bioinformatic program 

called HERO which rapidly identifies and visualizes donor-recipient recombination pairs from a 

bacterial population. It also reports measures of heterogeneity in the population’s total 

recombination including events per donor-recipient pair, recombined DNA fragment length and 

the number of events per gene. Collectively, these results contribute to the growing evidence that 

intra-species heterogeneity plays a role in the evolution and management of bacterial species 

associated with public health. 
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INTRODUCTION 

 

 Microbial species are a critical component of human health and disease. A taxonomically 

and functionally diverse community of microbes are implicated in the emergence and 

management of infectious diseases. Dramatic improvements in technological and computational 

techniques for genome sequencing have shown that this functional and genetic diversity can exist 

even within individual bacterial species. Such variation is often described by the contents of a 

species’ pangenome, defined as the collection of all unique gene families present within it 

(McInerney, McNally, and O’Connell 2017; Tettelin et al. 2005). Many bacterial species are 

characterized by large pangenomes that are made up of relatively small core genomes (i.e., genes 

found ubiquitously among representative individuals) and larger accessory genomes (i.e., rarer 

genes found in one or few individuals) (McInerney, McNally, and O’Connell 2017). For 

example, a study of 2,085 Escherichia coli genomes, a species with roughly 5,000 genes per 

strain, revealed a pangenome of ~90,000 genes, dominated by the accessory genome (Land et al. 

2015). Such genomic mosaicism and within-species variation can significantly impact a species’ 

response to selective pressures from antibiotic use, vaccination, immune responses and host 

environment (Sela et al. 2018; Leventhal et al. 2018; Brüggemann et al. 2018). 

 

 There is a critical need to understand the dynamics of the genomic variation that exists 

within bacterial species and the mechanisms which regulate it. One important process that 

contributes to this phenomenon is recombination, the exchange of very similar DNA sequences 

between strains which can result to either the addition or replacement of homologous genes 
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(Didelot and Maiden 2010; Didelot et al. 2012). Current models of microbial recombination 

incorporate the null expectation that recombination is a homogeneous process across a species, 

whereby different lineages of the same species and different genes within a genome exhibit the 

same rates of DNA donation and receipt (Vos et al. 2015). However, recent work has 

demonstrated that intra-species recombination rates can differ between strains (Beiko, Harlow, 

and Ragan 2005; Chewapreecha et al. 2014). These highways of recombination are likely to 

represent specific lineages that function as hubs of gene flow, facilitating the rapid spread of 

genes necessary for rapid adaptation to ecological changes (Chewapreecha et al. 2014). 

Therefore, elucidating the influence of intra-species recombination on clinically relevant 

bacterial populations should provide new insights on the prevention and treatment of bacterial 

pathogens. 

 

 In this dissertation, I describe six studies which aimed to evaluate the overall genomic 

variability and characterize the rates and patterns of intra-species recombination within several 

bacterial populations of clinical importance. In the first two chapters I describe two studies that 

explore the evolutionary impact of recombination on the antibiotic producing species 

Streptomyces rimosus (Chapter 1) and a major worldwide foodborne pathogenic species 

Salmonella enterica (Chapter 2). In the next two chapters I describe two additional studies which 

apply the concepts of intra-species variation and recombination to analyze the genomic 

epidemiology of two bacterial populations sampled by the New Hampshire Department of Health 

and Human Services during 2017, Campylobacter jejuni (Chapter 3) and Salmonella enterica 

(Chapter 4). Finally, Chapter 5 describes the invention of an open source bioinformatic program 

called HERO (Highways Enumerated by Recombination Observations). HERO takes a collection 
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of predicted recombination events within a bacterial population to identify donor-recipient 

relationships and related metrics of recombination. The results from these studies demonstrate 

that within-species variation genome structure and recombination dynamics in both clinically 

beneficial and detrimental bacterial species is an important driver of bacterial evolution and 

adaptation. In conclusion, this dissertation provides new evidence that within-species genomic 

diversity plays a significant role in our management of future public health crises, including 

disease outbreaks and multidrug resistance. 
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CHAPTER 1 

Within-species genomic variation and variable patterns of recombination in the 

tetracycline producer Streptomyces rimosus 

Cooper J. Park, Cheryl P. Andam 

Article published in Frontiers in Microbiology 

Presented here with permission from publisher (see Apendix 1) 

ABSTRACT 

Streptomyces rimosus is best known as the primary source of the tetracycline class of antibiotics, 

most notably oxytetracycline, which have been widely used against many gram-positive and 

gram-negative pathogens and protozoan parasites. However, despite the medical and agricultural 

importance of S. rimosus, little is known of its evolutionary history and genome dynamics. In 

this study, we aim to elucidate the pan-genome characteristics and phylogenetic relationships of 

32 S. rimosus genomes. The S. rimosus pan-genome contains more than 22,000 orthologous gene 

clusters, and approximately 8.8% of these genes constitutes the core genome. A large part of the 

accessory genome is composed of 9,646 strain-specific genes. S. rimosus exhibits an open pan-

genome (decay parameter α = 0.83) and high gene diversity between strains (genomic fluidity φ 

= 0.12). We also observed strain-level variation in the distribution and abundance of biosynthetic 

gene clusters (BGCs) and that each individual S. rimosus genome has a unique repertoire of 

BGCs. Lastly, we observed variation in recombination, with some strains donating or receiving 

DNA more often than others, strains that tend to frequently recombine with specific partners, 

genes that often experience recombination more than others, and variable sizes of recombined 
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DNA sequences. We conclude that the high levels of inter-strain genomic variation in S. rimosus 

is partly explained by differences in recombination among strains. These results have important 

implications on current efforts for natural drug discovery, the ecological role of strain-level 

variation in microbial populations, and addressing the fundamental question of why microbes 

have pan-genomes. 
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INTRODUCTION 

 The gram-positive genus Streptomyces (phylum Actinobacteria) constitutes a highly 

diverse group that is widely distributed in nature. Streptomyces are prolific producers of 

bioactive specialized metabolites that have adaptive functions in nature and have found extensive 

utility in human medicine(Xu et al. 2016; Kinashi 2011; Cruz-Morales et al. 2016). They are 

known as the major source of naturally derived antibiotics and many pharmaceutically relevant 

compounds (e.g., antifungals, antitumor, antihelminths, antiprotozoans, immunosuppressants) 

(Kinashi 2011). Many invertebrates such as wasps and ants also use the antibiotics produced by 

their Streptomyces symbionts to protect themselves against infection (Seipke, Kaltenpoth, and 

Hutchings 2012; Kaltenpoth et al. 2005). In contrast to most bacteria, Streptomyces species are 

characterized by complex secondary metabolism and a fungal-like morphological differentiation 

that involves the formation of branching, filamentous vegetative growth and aerial hyphae 

bearing long chains of reproductive spores (Flärdh and Buttner 2009); hence they were originally 

misclassified as fungi. The formation of aerial mycelium corresponds to the production of 

secondary metabolites such as antibiotics (Barka et al. 2016). Current estimate of the number of 

known Streptomyces species is approximately 650 (Labeda et al. 2012), making it one of the 

largest genera in the bacterial domain.  

 

 Whole genome sequencing of closely related, locally co-occurring microbial strains has 

revealed the existence of tremendous diversity within a species, arising from both allelic and 

gene content differences (Chang et al. 2018; Croucher et al. 2014; A. Zhu et al. 2015; Levade et 

al. 2017). Hence, using traditional taxonomic methods, it is difficult to delineate two lineages 
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that are considered the same species yet vary substantially in gene content (Jaspers and 

Overmann 2004; Land et al. 2015; Segerman 2012). For example, fuzzy species i.e., those that 

that do not form clear, distinct species boundaries due to frequent gene exchange through 

recombination, have been reported in Neisseria meningitidis (William P. Hanage, Fraser, and 

Spratt 2005). Hybrid lineages as in the case of Klebsiella pneumoniae sequence type [ST] 258 

have been formed via a large chromosomal replacement event (Chen et al. 2014). Such genomic 

mosaicism and within-species variation can significantly impact a species’ response to selective 

pressures from antibiotic use, vaccination, immune responses and host environment 

(Brüggemann et al. 2018; Leventhal et al. 2018; Sela et al. 2018). Within-species genomic 

variation has also been reported to impact species divergence (Papke et al. 2007; Youngblut et al. 

2015), metabolic diversity and versatility (Silby et al. 2011), and symbiotic relationships (De 

Maayer et al. 2014) in microbes, with medically relevant implications. For example, hyper-

recombinant strains of Streptococcus pneumoniae are associated with the highest levels of drug 

resistance (William Paul Hanage et al. 2009). One important process that generates genomic 

variation in microbial species is recombination, the exchange of very similar DNA sequences 

between strains, and which can result to either the addition or replacement of homologous genes 

(Didelot and Maiden 2010; Didelot et al. 2012). Most studies dealing with within-species 

genomic variation has been focused on antibiotic resistant pathogens [for example, (Andam et al. 

2017; Grad et al. 2014; Grinberg et al. 2017; Lam et al. 2018)], yet rarely do we find 

investigations on antibiotic producers. In Streptomyces, genomic diversity between species has 

been widely investigated (Andam et al. 2016; Doroghazi and Metcalf 2013; Huguet-Tapia et al. 

2016; J. N. Kim et al. 2015), but the extent, origins and functional role of genomic variation 

among closely related strains of the same species remains poorly understood.  
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 In this study, we focus on Streptomyces rimosus, which is best known as the primary 

source of the tetracycline class of antibiotics, most notably oxytetracycline (Petković et al. 2006). 

Tetracyclines are noted for their broad spectrum antibacterial activity and since the 1940s, have 

been used against a wide range of both gram-positive and gram-negative pathogens, 

mycoplasmas, chlamydiae, rickettsiae and protozoan parasites (Chopra and Roberts 2001). 

Oxytetracycline, a well-studied polyketide natural product, is a bacteriostatic antibiotic that 

inhibits bacterial growth by reversibly binding to the 30S ribosomal subunit, thus inhibiting 

protein synthesis (Petković et al. 2006; Schnappinger and Hillen 1996). S. rimosus is also known 

to produce the polyene antifungal rimocidin (Davisson et al., 1951). Although the precise 

mechanism of action of rimocidins is still not well understood, antifungal activity seems to be 

due to polyene molecules causing the sterol-containing cell membrane to become permeable 

(Seco et al. 2005). Despite the medical and agricultural importance of S. rimosus and the variety 

of antibiotics it produces, little is known of its evolutionary history and genome characteristics. 

Here, we explore the pan-genome characteristics and phylogenetic relationships of 32 S. rimosus 

genomes. We report high levels of inter-strain genomic variation, including the differential 

distribution and abundance of biosynthetic gene clusters (BGCs) among strains. BGCs represent 

a collection of genes that, together are responsible for the production of a specific secondary 

metabolite, such as antibiotics. We also observed high frequency of recombination which may 

partly explain the large genomic variation among strains; however, recombination is biased, with 

some strains exhibiting more frequent donation or receipt of DNA than other strains. These 

results have important implications on current efforts for natural drug discovery, the ecological 
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role of strain-level genomic variation in microbial populations, and addressing the fundamental 

question of why microbes have pan-genomes. 

 

METHODS 

Dataset 

 A total of 32 genomes of S. rimosus available in November 2018 were downloaded from 

the RefSeq database of the National Center for Biotechnology Information (NCBI). Accession 

numbers and genomic information (genome size, % GC content, number of genes, number of 

protein-coding genes) are shown in Supplementary Table S1. To maintain consistency in gene 

annotations, the genomes were re-annotated using Prokka with default parameters (Torsten 

Seemann 2014). 

 

Pan-genome and phylogenetic analysis 

 Core and accessory genes were identified using Roary with default settings (Page et al. 

2015). Roary iteratively pre-clusters protein sequences using CD-HIT (Li and Godzik 2006), a 

fast program for clustering and comparing, which results to a substantially reduced set of data. 

Sequences in this reduced dataset were compared using all-against-all BLASTP (Altschul et al. 

1990) and were then clustered the second time using Markov clustering (Enright, Van Dongen, 

and Ouzounis 2002). Each orthologous gene family from the merged CD-HIT and MCL were 

aligned using MAFFT (Kazutaka Katoh et al. 2002). We used Phandango (Hadfield et al. 2018) 

to visualize the presence-absence of genes per strain. The gene sequence alignments of each 
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identified core gene family were concatenated to give a single core alignment, and a maximum-

likelihood phylogeny was then generated using the program RAxML v.8.2.11 (Stamatakis 2006) 

with a general time reversible (GTR) nucleotide substitution model (Tavaré, 1986), four gamma 

categories for rate heterogeneity and 100 bootstrap replicates. The phylogenetic tree was 

visualized using the Interactive Tree of Life [iToL] (Letunic and Bork 2016).  

 

 We used the program micropan (Snipen and Liland 2015) implemented in R (R Core 

Team 2019) to calculate the pan-genome’s decay parameter () (Tettelin et al. 2008) and 

genomic fluidity (φ) (Kislyuk et al. 2011). The decay parameter measures the number of new 

gene clusters observed when genomes are ordered in a random way, which provides an 

indication of the openness or closeness of a pan-genome (Tettelin et al. 2008). An open pan-

genome indicates that the number of new genes to be observed in future genomes is large, while 

a closed pan-genome indicates that after a certain number of sequenced genomes are added, the 

number of new genes discovered reaches a plateau (Tettelin et al. 2008). The genomic fluidity is 

a measure of the dissimilarity of genomes based on the degree of overlap in gene content and is 

defined as the number of unique gene families divided by the total number of gene families 

(Kislyuk et al. 2011). Both metrics are used to evaluate within-species genomic variation. 

Genome-wide average nucleotide identity (ANI) of all orthologous genes shared between any 

two genomes was calculated for all possible pairs of genomes (Jain et al. 2018). ANI is a robust 

similarity metric that has been widely used to resolve inter- and intra-strain relatedness. The 

threshold value of 95% has been widely used as a cutoff for comparisons belonging to the same 

or different species (Jain et al. 2018). 
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 BGCs encoding secondary metabolites were predicted and annotated using the 

standalone version of antiSMASH 4.1 (Weber et al. 2015). antiSMASH predicts BGCs using 

signature profile Hidden Markov Models (pHMMs) derived from multiple sequence alignments 

of experimentally characterized signature proteins or protein domains of known BGCs (Blin et 

al., 2017). It then aligns the identified regions at the gene cluster level to their nearest relatives 

from a database containing all other known gene clusters (Weber et al. 2015). BGCs that encode 

for oxytetracycline and rimocidin were identified by searching all the genomes for homologs of 

each of the genes comprising the two BGCs using BLASTP (Altschul et al. 1990) with a 

minimum e-value of 10-10. Individual genes in a BGC obtained from previous studies (Seco et al. 

2005; W. Zhang et al. 2006) were used as query sequences. Presence of the BGC was ascertained 

if there were BLASTP hits for at least 90% of the genes within the BGC. Sequences for the 

individual genes of the two BGCs were obtained from the Database of BIoSynthesis cluster 

CUrated and InTegrated (DoBISCUIT) (Ichikawa et al. 2013) based on previous studies of the 

oxytetracycline and rimocidin BGCs (Seco et al. 2005; W. Zhang et al. 2006). 

 

Recombination detection 

 We used three approaches to detect recombination in the population. First, the pairwise 

homoplasy index or PHI (Φw) test was used to determine the statistical likelihood of 

recombination being present in our dataset (Bruen, Philippe, and Bryant 2006). This statistic 

measures the genealogical correlation or similarity of adjacent sites. Under the null hypothesis of 

no recombination, the genealogical correlation of adjacent sites is invariant to permutations of 

the sites as all sites have the same history (Bruen, Philippe, and Bryant 2006). Significance of the 

observed Φw was obtained using a permutation test. We then visualized potential recombination 
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events using Splitstree v.4.14.4, which integrates reticulations due to recombinations in 

phylogenetic relationships rather than forcing the data to be represented in a bifurcating tree 

(Huson 1998). Next, we ran fastGEAR (Mostowy et al. 2017) with default parameters to detect 

genome-wide mosaicism. Using the individual sequence alignments of all core and shared 

accessory genes, we first identified sequence clusters were first identified using BAPS (Cheng, 

Rong, and Huang 2016) implemented in fastGEAR. fastGEAR infers the population structure of 

individual alignments using a Hidden Markov Model to identify lineages in an 

alignment. Lineages are defined as groups which are genetically distinct in at least 50% of the 

alignment. Within each lineage, recombinations are identified by comparing every nucleotide 

site in the target sequence to all remaining lineages and asks whether it is more similar to 

something else compared to other strains in the same lineage. In other words, fastGEAR infers 

recombination by searching for similar nucleotide segments between diverse sequence 

clusters. To test the significance of the inferred recombinations and identify false-positive 

recombinations, fastGEAR uses a diversity test, wherein the diversity of the fragment in question 

is different compared to its background. To predict the origin of the recently recombined regions, 

the sequences on which the recombination event was predicted to have occurred were first 

extracted from the genome data. The recombined regions were then used as query sequences in 

BLASTN (Altschul et al. 1990) searches against all possible genomes from the identified donor 

lineage as well as from the non-redundant (nr) nucleotide database in NCBI. The top BLAST hit 

with the highest bit score was considered as the potential donor, provided that the hit covered at 

least 50% of the recombination fragment length and had a minimum of 99% nucleotide identity.  
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RESULTS 

Pan-genome characteristics of S. rimosus 

 We used a total of 32 S. rimosus genomes downloaded from the RefSeq database of 

NCBI (Supplementary Table S1). Genome sizes range from 8.14-10.02 Mb (mean = 9.20 Mb), 

while the number of predicted genes per genome ranges from 7,071 – 8,666 (mean = 8,020). The 

% G+C content also varies among genomes, ranging from 71.7 – 72.1%. We used Roary (Page et 

al. 2015) to calculate the S. rimosus pan-genome, defined as the totality of genes present in a 

group of genomes (Page et al. 2015). Roary classifies orthologous gene families into core genes 

and accessory genes. Core genes are present in 99% ≤ strains ≤ 100% (Supplementary Tables S2 

and S3). To take sequencing and assembly errors into account, Roary also calculates the number 

of soft core genes which are present in 95% ≤ strains < 99%. Accessory genes comprise the shell 

genes which are present in 15% ≤ strains < 95% and cloud genes which are present in < 15% of 

strains (Figure 1a). We found a considerably small core genome (1,945 genes) comprising 8.8% 

of the pan-genome (22,114 genes). Broadening our definition of the core genome to incorporate 

the soft core genes still only represented approximately 17% of the total pan-genome. The core 

genome comprises 22.44 - 27.51% of each individual genome. It is also notable that the vast 

majority of accessory genes (9,646, representing 44% of the pan-genome) are unique to a single 

strain. In microbes, large accessory genomes and high number of strain-specific genes are often 

associated with horizontal gene transfer [HGT] (Pohl et al. 2014; Vos and Eyre-Walker 2017; B. 

Zhu et al. 2016).  
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 The size of the pan-genome and its increase/decrease in size upon addition of new strains 

can be used to predict the future rate of discovery of novel genes in a species (Medini et al. 2005; 

Tettelin et al. 2008). We used the program micropan to estimate the openness of the S. rimosus 

pan-genome by using the Heap’s power law function (Tettelin et al. 2008) for all possible 

permutations of all S. rimosus genomes. We calculated the decay parameter , wherein an  > 

1.0 indicates that the size of the pan-genome approaches a constant as more genomes are 

sampled (i.e., the pan-genome is closed), while  < 1.0 indicates that the size of the pan-genome 

is increasing and unbounded by the number of genomes considered (i.e., the size of the pan-

genome follows Heaps’ law and the pan-genome is open) (Medini et al. 2005; Tettelin et al. 

2008). We obtained an  = 0.83 using 100 permutations in S. rimosus and suggests an open pan-

genome; hence, we are likely to find new genes as more genomes are sequenced in the future. 

The openness of pan-genome reflects the diversity of the gene pool within bacterial species, and 

is often associated with bacterial species that inhabit multiple environments or have different 

mechanisms and opportunities for gene exchange (Rouli et al. 2015; Brito et al. 2018). We find 

that the pan-genome of S. rimosus increases with the addition of new genomes, while the core 

genome decreases and begins to plateau at approximately 20 genomes (Figure 1b). The number 

of new, previously unseen, genes found as each genome is added to the plot averages 450 (Figure 

1c). Finally, we also show the number of unique genes overall that have been observed exactly 

once continues to increase as each genome is added (Figure 1c).  

 

 To estimate the degree of overlap with respect to gene cluster content between any two 

genomes, we also calculated the genomic fluidity (φ), which provides an overview of gene-level 

similarity between genomes and is defined as the number of unique gene families divided by the 
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total number of gene families (Kislyuk et al. 2011). Fluidity values range from 0-1, with 0.0 to 

indicate that the two genomes contain identical gene clusters, while 1.0 if the two genomes are 

non-overlapping (Kislyuk et al. 2011). Hence, a fluidity value of 0.2 for example implies that 

20% of the genes are unique to their host genome and the remaining 80% are shared between 

genomes (Halachev, Loman, and Pallen 2011). We obtained a genomic fluidity value of 0.12, 

which suggests that S. rimosus has a high degree of genomic diversity and is within the range 

found in other bacterial species (Halachev, Loman, and Pallen 2011; Kislyuk et al. 2011). 

 

 To determine the degree of genomic relatedness and hence clarify whether these 32 

genomes belong to the same species, we calculated the pairwise ANI for all possible pairs of 

genomes. ANI calculates the average nucleotide identity of all orthologous genes shared 

between any two genomes and organisms belonging to the same species typically exhibit 

≥95% ANI (Jain et al. 2018). The distribution of pairwise ANI values reveal that the S. 

rimosus genomes are within the 95% cutoff and should therefore considered the same species 

(Figure 1d, e and Supplementary Table S4). Strain NRRL WC-3904 exhibits a slightly lower 

ANI value of 94% when compared to the rest of the genomes in the dataset. To further visualize 

the distribution of genes among the strains, we generated a pan-genome matrix using Roary and 

Phandango (Figure 1f). We find that NRRL WC-3904 exhibits a highly divergent accessory 

genome profile compared to the remaining 31 genomes, which may explain its slightly lower 

ANI values.  
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Strain-level variation in the distribution and abundance of BGCs 

 Streptomyces are renowned for their ability to produce structurally diverse natural 

products (called secondary metabolites), many of which are widely used in medicine, 

agriculture and bioenergy processes. Secondary metabolites differ from primary metabolites in 

that they are not involved in essential metabolic activities required for normal growth and 

reproduction of the organism, but may contribute significantly to an individual’s fitness and 

ecological adaptation (Zotchev 2014). Mining bacterial genomes has shown that their potential 

for producing secondary metabolites and other bioactive compounds is much higher than what is 

observed in the laboratory (Doroghazi and Metcalf 2013), and hence has important implications 

in discovering novel bioactive compounds. 

 

 Biosynthesis of secondary metabolites is typically governed by 10–30 genes organized as 

clusters in the genome, allowing the coordinated expression of the genes involved in their 

biosynthesis, resistance and efflux (Zotchev 2014). We used antiSMASH 4.1 (Weber et al. 2015) 

to identify BGCs present in each S. rimosus genome. Each genome harbors 35-71 BGCs, with 

more than half of the BGCs predicted to produce polyketide (PKS) and non-ribosomal peptide 

synthetase (NRPS), or hybrids of the two (Figure 2a). This range in BGC content in S. rimosus 

is consistent with results from previous BGC surveys in other Streptomyces species (Choudoir, 

Pepe-Ranney, and Buckley 2018; Seipke 2015; Seipke et al. 2011; Vicente et al. 2018) and the 

widely studied actinobacterium Salinispora (Letzel et al. 2017; Udwary et al. 2007), although 

many BGCs often remain “silent” under standard laboratory conditions (Bentley et al. 2002; 

Ikeda et al. 2003; Ohnishi et al. 2008). Hybrid BGCs contain genes that code for more than one 

type of scaffold-synthesizing enzymes (Cimermancic et al. 2014; Zotchev 2014). Many of the 
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NRPS or PKS hybrids are found in one or few genomes: lantipeptide-t1pks-nrps hybrid in two 

genomes, melanin-t1pks hybrid in two genomes, phosphonate in one genome, t1pks-

lassopeptide-nrps hybrid in two genomes, terpene-t2pks-t1pks-lassopeptide hybrid in two 

genomes, and terpene-t2pks-t1pks-lassopeptide hybrid in one genome. Aside from NRPS and 

PKS, other commonly shared BGCs are bacteriocin, butyrolactone, ectoine, lantipeptide, 

lassopeptide, melanin, nucleoside, siderophore, and terpene. Other BGCs are also differentially 

distributed among the 32 genomes: indoles in five genomes, ladderane in two genomes, 

phosphonate in one genome, and thiopeptide in one genome. Interestingly, Type II PKS and its 

hybrids were detected in 29 strains. Type II PKS synthesize tetracyclines and other aromatic 

polyketides such as anthracyclines, angucyclines and pentangular polyphenols, which are also 

widely used as antibiotics or chemotherapeutics (Hertweck et al. 2007; J. Kim and Yi 

2012). Overall, we find that each individual S. rimosus genome harbor a unique combination of 

BGCs, further highlighting the extent of inter-strain genomic variation in S. rimosus. We note, 

however, that the reported numbers have likely been overestimated due to the low quality of 

some of the genome assemblies, which can affect the accurate BGC prediction in 

antiSMASH. 

 

 S. rimosus is particularly well known for its production of the antibiotics 

oxytetracycline and rimocidin (Petković et al. 2006). To determine the presence of BGCs that 

encode for these two antibiotics, we used BLASTP to search the 32 genomes for the 

individual genes of each BGC (Figure 2b, Tables S5 and S6). We found that, except for a 

single genome (R6-500MV9-R8), all S. rimosus genomes carry one or both BGCs. A total of 

30 genomes had nearly 100% matches for each of the 21 genes found in the oxytetracycline 
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BGC, while two showed a match for only a single gene. On the other hand, the rimocidin 

BGC was detected in 28 genomes.  

 

Frequent but biased recombination between strains 

 In Streptomyces, recombination is known to have greatly contributed to shaping its 

evolution and diversity, with some taxonomically recognized species exhibiting significant 

genetic mosaicism (Andam et al. 2016; Cheng, Rong, and Huang 2016; Doroghazi and Buckley 

2010). To infer the phylogenetic relationships of the 32 S. rimosus genomes, the 1,945 core 

genes were aligned and concatenated, giving a total length of 2,017,766 bp. The core genome 

phylogeny reveals four clusters (Figure 3). Under the null hypothesis of no recombination, we 

calculated the PHI statistic (Bruen, Philippe, and Bryant 2006) and detected evidence for 

significant recombination in the core genome (p value = 0.0). Recombination in S. rimosus core 

genome can be visualized using Neighbor Net implemented in SplitsTree4, which shows the 

reticulations in their phylogenetic relationships (Huson 1998) (Figure 3a). To further characterize 

the extent of genome-wide recombination in S. rimosus, we ran fastGEAR (Mostowy et al. 2014) 

on individual sequence alignments of core and shared accessory genes. Each predicted 

recombination fragment was then used as a query in BLASTN (Altschul et al. 1990) against the 

predicted lineage of donors to identify the most likely donor-recipient linkages. We found that 

recombination is frequent, with a total of 2,148 genes that had experienced recombination. 

However, when we mapped the donor-recipient recombination partners, we found that although 

recombination is frequent, it does not impact all genomes similarly (Figure 3b). A total of 12 

genomes were not identified to be either a donor or recipient of recombined DNA. Of those 

genomes wherein recombination was detected, there were genomes that appear to accept more 
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recombined DNA than others. We calculated the number of recombination events for any 

genome pair that is at least one standard deviation above the group’s average of 36 

recombination events. We identified five genomes (NRRL WC-3869, NRRL WC-3927, NRRL 

WC-3924, NRRL WC-3896, NRRL B-16073) that have received more recombined DNA than 

others. We observed that although recombination is frequent, it does not impact all 32 genomes 

similarly. We find that recombination is biased, with some strains receiving more recombined 

DNA more often (NRRL WC-3896 and B-16073), while others exhibit preferences to specific 

exchange partners (Figure 3b).  

 

 The strength of fastGEAR is its ability to identify both recent (affecting a few strains) 

and ancestral (affecting entire lineages) recombinations (Mostowy et al. 2017). Of the recent 

recombination events identified, we observed a total of 91 unique donor-recipient pairs and five 

of these pairs contributed 49% or more of the total recombination events (Figure 3b). A total of 

30 recent recombination events originate from donors outside of the S. rimosus dataset. Of these, 

half came from other Streptomyces species and two from other genera in Actinobacteria 

(Micromonospora and Rhodococcus). The taxonomic origins of the remaining recombination 

events could not be precisely determined due to the short length of the recombined sequences. 

Finally, we found that, of the 22,114 genes that comprise the pan-genome, a total of 2,149 genes 

have had a history of recombination (Figure 3c). Of these, 1,147 genes were involved in recent 

recombination and 386 genes in ancestral recombination (Table S2). The most frequently 

recombined genes include those associated with antibiotic biosynthesis (lgrB, tycC), 

transmembrane transport (ygbN, efpA) and transferase (aftD) (Figure 3c and Supplementary 

Table S7). 



 

20 

 

 The lengths of the recombined regions have an approximately exponential distribution, 

with majority of recombination events being small (<500 bp) and large events occurring 

relatively infrequently (Figure 3d). The median length of recombined fragments is 230 bp and 

the largest recombination event is 11,934 bp in strain NRRL B-16073. Our finding of a 

heterogeneous model of recombination is consistent with those reported in other bacterial 

species, such as the pathogens Streptococcus pneumoniae (Chewapreecha et al. 2014) and 

Legionella pneumophila (David et al. 2017), and our results demonstrate that it also holds true 

for non-pathogenic species. The observed heterogeneity in recombination sizes has been 

previously described and classified into micro-recombinations (i.e., short, frequent sequence 

replacements) and macro-recombinations (i.e., rarer, multi-fragment, saltational sequence 

replacements) (Mostowy et al. 2014), and our results are consistent with these. Overall, our 

analysis of recombination in S. rimosus reveals inter-strain variation in terms of the frequency of 

DNA donation or receipt, genes that experience the most frequent recombination and the size of 

recombination events. 

 

DISCUSSION 

 The tremendous diversity and ability of Streptomyces to inhabit numerous ecological 

niches and produce diverse clinically useful compounds have been attributed to their large pan-

genomes (J. Kim and Yi 2012; Zhan Zhou et al. 2012). In a recent study of 122 Streptomyces 

genomes comprising multiple species, a mere 2.63% (n=1,048 genes present in ≥95% of all 

genomes) of the 39,893 gene families present constitutes the core genome while the remaining 

genes are classified as accessory genes (McDonald and Curriea 2017). At the species level, our 

results on 32 S. rimosus genomes reveal similar patterns of having a small fraction of core genes 
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(n=1,945 genes) which make up 8.8% of a much larger pan-genome (22,114 genes). When we 

include the soft-core genes (genes present in at least 95% of the strains) numbering 1,874 genes, 

the core genome still represents only 17% of the pan-genome. While sequencing errors and the 

draft nature of the genomes used here may partly explain the low number of core genes in S. 

rimosus, the observation of a small core genome in microbial species is not uncommon and has 

been reported in other species (McInerney, McNally, and O’Connell 2017), including 

Actinobacteria. For example, the core genome of 28 Bifidobacterium longum subsp. longum 

strains consists of 1,160 genes from a pan-genome of 4,169 genes (Chaplin et al. 2015). In 18 

strains of Corynebacterium pseudotuberculosis, the core genome consists of 1,355 genes and a 

pan-genome of 3,183 genes (Baraúna et al. 2017). In an analysis of 2,085 Escherichia coli 

genomes, the largest pan-genome analysis to date, a total of 3,188 genes comprises the core 

genome and is a remarkably small number compared to the stunning 90,000 genes that comprise 

the E. coli pan-genome, with a third of these genes occurring in only one genome (Land et al. 

2015). The open pan-genome of S. rimosus means that the sequencing of new genomes will 

possibly add new genes not described in this current pan-genome study. Lastly, while it is 

difficult to speculate on the causes of why one strain (NRRL WC-3904) has an ANI of 94% 

compared to the other genomes (slightly below the 95% cutoff for species delineation), previous 

ANI-based studies have found similar results and may reflect the edge of a genetic discontinuum 

between species (Caro-Quintero, Rodriguez-Castaño, and Konstantinidis 2009; Jain et al. 2018). 

However, using the 83% ANI cutoff to delineate different species (Jain et al. 2018), WC-3904 

cannot be classified as a separate species.  
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 Compared to other Actinobacteria species and other bacterial phyla, Streptomyces also 

harbors the highest numbers of secondary metabolite BGCs from a large variety of classes and 

often with little overlap between strains (Doroghazi and Metcalf 2013). Here, each S. rimosus 

genome harbors a unique repertoire of BGCs ranging from 35-71 BGCs per genome, including 

many NRPS, PKS and hybrid clusters. These results highlight the importance of sampling 

multiple strains of the same species in improving efforts for natural drug discovery. Antibiotics 

with new inhibitory mechanisms or cellular targets are urgently needed as resistance to our 

existing arsenal of drugs is growing and multidrug resistance becomes widespread. While 

emergence of resistance to and decreased effectiveness of existing tetracyclines as front-line 

antibiotics have grown over the years (Chopra and Roberts 2001), our genomic analyses suggest 

that the potential of S. rimosus as producers of novel antibiotics has not been fully explored and 

many natural products are yet to be discovered from this species. 

 

 Only recently with whole genome sequencing do we come to recognize the extent in 

which, within each bacterial species, different strains may vary in the set of genes they encode 

(Konstantinidis, Ramette, and Tiedje 2006; Leonard et al. 2016; Seipke 2015; Truong et al. 

2017).  Recently, a polyphasic analyses was conducted on ten strains closely related to 

Streptomyces cyaneofuscatus, with all strains having identical 16S rRNA sequences (Antony-

Babu et al. 2017). Authors reported significant differences in morphological, phenotypical and 

metabolic characteristics, and could in fact be distinguished as five different species (Antony-

Babu et al. 2017). Such variation is not uncommon and has been reported to influence 

functions relevant to the structure and dynamics of the entire microbial community, adaptation to 

changes in the environment, and interactions with the eukaryotic host (Greenblum, Carr, and 
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Borenstein 2015). However, the large pan-genome size of a microbial species remains intriguing. 

Efforts to elucidate the factors that shape and maintain the existence of a multitude of genes in a 

few strains have recently demonstrated the contributions of selection, drift, recombination, 

migration and effective population (Andreani, Hesse, and Vos 2017; L.-M. M. Bobay and 

Ochman 2018; McInerney, McNally, and O’Connell 2017; Vos and Eyre-Walker 2017). While 

the relative contributions of these processes across multiple microbial species remain unclear, it 

is likely that one or few of these processes may explain the large pan-genome size of S. rimosus. 

 

 Equally intriguing is our observation of heterogeneity in the frequency and characteristics 

of recombination. We observed that some strains donate or receive DNA more often than others, 

while some strains that tend to frequently recombine with specific partners. Such a pair of strains 

or lineages exchanging DNA more often between them than with others is said to be linked by a 

highway of gene sharing (Bansal et al. 2013; Beiko, Harlow, and Ragan 2005). A highway of 

recombination between a pair of genomes, wherein they exchange DNA more often between 

them than with others, are likely to represent specific lineages that function as hubs of gene flow, 

facilitating the rapid spread of genes (for example, those associated with antibiotic resistance, 

metabolic genes, niche-specific genes) (Chewapreecha et al. 2014). These highways have been 

previously identified at higher taxonomic groups (domains, phyla, families) (Bansal et al. 2013; 

Beiko, Harlow, and Ragan 2005; Zhaxybayeva et al. 2009), but have only recently been reported 

at the sub-species level (Chewapreecha et al. 2014). However, the drivers of heterogeneity in the 

frequency and characteristics of recombination among members of the same species is poorly 

understood. Biases in recombination partners and other forms of genetic exchange have been 

reported to arise from phylogenetic relatedness (including compatible mismatch repair 
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systems), geographical or physical proximity, shared ecological niches, or common set of 

mobile elements (Andam and Gogarten 2011; Beiko, Harlow, and Ragan 2005; Skippington and 

Ragan 2012; Smillie et al. 2011). However, it is unclear whether this variation in 

recombination is adaptive or not at the population level, to what extent strains that less often 

recombine benefit from the population, and how the population evolves with a mix of strains 

that vary in recombination frequencies and partners. In the future, a possible approach to 

further understand the variation in the recombination process in microbial genomes is to 

integrate evolutionary game theory with genome sequencing of closely related bacterial 

strains, composed of recombining (“cooperators”) and non-recombining (“cheaters”) that can 

be modeled over hundreds of generations (Rauch, Kondev, and Sanchez 2017; Van Dyken et al. 

2013; Zomorrodi and Segrè 2017). 

 

 The principal caveat in this analysis is that that the quality of the S. rimosus genomes we 

examined are of varying quality, with some genomes having several hundred contigs. The draft 

nature of the genomes can have a significant impact on the antiSMASH output, particularly so in 

the identification of hybrid BGCs. There are two reasons for this. First, antiSMASH is 

conservative in terms of predicting the borders of BGCs and second, most strains harbor BGC 

islands on the arms of linear chromosomes (as in Streptomyces (Kinashi 2011)), which 

antiSMASH can misidentify as hybrid BGCs. Another important limitation is that NCBI did not 

have information about the specific ecological and/or geographical origins of these strains 

(Supplementary Table S1). Moreover, only 32 genomes were considered. Because the size of the 

core and accessory genomes is a function of the number and characteristics of the dataset, 

improved sequencing quality as well as the sequencing of additional genomes is likely to alter 
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some of our results. In our study, we found evidence of an open S. rimosus pan-genome (i.e., the 

number of new genes discovered increases with the number of additionally sequenced strains) 

even with the use of draft genomes. Hence, we may expect to find a larger core genome and 

additional accessory genes if these 32 strains are re-sequenced and complete genomes are 

generated. We also expect to find additional new and unique S. rimosus genes from strains 

inhabiting diverse environments. While they are most prevalent in soil and decaying vegetation, 

many Streptomyces species have also been identified in extreme environments and the gut of 

insects (Barka et al. 2016; van der Meij et al. 2017). In these places, we are likely to find niche-

specific genes (Croucher et al. 2014; Gupta et al. 2015; B. Zhu et al. 2016), further expanding the 

size of the accessory genomes of Streptomyces species. Much of the work on Streptomyces 

isolation have only concentrated on soil environments, but future work should increase sampling 

efforts of S. rimosus in previously unexplored niches. 

 

CONCLUSION 

 In this study, we focus on elucidating the pan-genome characteristics and phylogenetic 

relationships of 32 S. rimosus genomes, which is best known as the primary source of the 

tetracyclines used against many species of pathogens and parasites. There are two major 

conclusions from this study. First, S. rimosus exhibits tremendous inter-strain genomic and 

biosynthetic variation, which suggests that their potential as an antibiotic producer remains to be 

fully explored. Second, we observed high levels of recombination between strains; however, 

recombination is not a homogenous process in this species. Our findings contribute to addressing 

the puzzle of why microbes have pan-genomes (Andreani, Hesse, and Vos 2017; L.-M. M. 

Bobay and Ochman 2018; McInerney, McNally, and O’Connell 2017; Vos and Eyre-Walker 
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2017) and the contributions of biased gene exchange to maintaining gene content variability 

within a species (Andam and Gogarten 2011; Bansal et al. 2013; Beiko, Harlow, and Ragan 

2005; Chewapreecha et al. 2014). 
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FIGURES 

 

Figure 1. Pan-genome analysis of 32 S. rimosus strains. (a) The number of unique genes that are 

shared by any given number of genomes or unique to a single genome. Numerical values for 

each gene category are shown in Supplementary Table S2. (b) The size of the core genome, i.e., 

genes that are present in at least 31 of the 32 strains (blue line) and pan-genome, i.e., the totality 

of unique genes present in the population (pink line) in relation to numbers of genomes 

compared. The list of core genes is listed in Supplementary Table S3. (c) The number of unique 

genes, i.e., genes unique to individual strains (green line) and new genes, i.e., genes not found in 

the previously compared genomes (purple line) in relation to numbers of genomes compared. (d) 

Distribution of pairwise average nucleotide identity (ANI) values. ANI calculates the average 

nucleotide identity of all orthologous genes shared between any two genomes. The 95% ANI 

cutoff is a frequently used standard for species demarcation. (e) Pairwise whole genome ANI 

comparison. Percentage values are shown in Supplementary Table S4. (f) Gene presence-absence 

matrix showing the distribution of genes present in a genome. Each row corresponds to a strain 

in panel e. Each column represents an orthologous gene family. Dark blue blocks represent the 

presence of a gene, while light blue blocks represent the absence of a gene
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Figure 2. Distribution of BGCs per genome. (a) BGCs and hybrid clusters were identified using antiSMASH. The maximum 

likelihood phylogenetic tree was reconstructed using concatenated alignments of 1,945 core genes. Scale bar of phylogenetic tree 

represents nucleotide substitutions per site. Acronyms: nrps – non-ribosomal peptide synthase, t1pks –Type 1 polyketide synthase, 

t2pks - Type II polyketide synthase, t3pks - Type III polyketide synthase, ks - ketosynthase. (b) Phylogenetic distribution of the 

oxytetracycline and rimocidin BGCs. Colored rings outside the tree show the presence/absence of BGCs known to encode for 

oxytetracycline and rimocidin. The two BGCs were identified by searching all the genomes for homologs of each of the genes 

comprising the BGCs using BLASTP (Altschul et al. 1990) with a minimum e-value of 10-10. Individual genes in a BGC obtained 

from previous studies (Seco et al. 2004; W. Zhang et al. 2006) were used as query sequences. Presence of the BGC was inferred if 

there were significant BLASTP hits for at least 90% of the individual genes within the BGC.
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Figure 3. Genetic relationships among S. rimosus strains are influenced by homologous 

recombination. (a) A phylogenetic network of the S. rimosus core genome generated using 

SplitsTree. The strain names were colored according to clustering results using BAPS. (b) 

Donor-recipient linkages of major recombination events (i.e., highways of recombination) 

identified using fastGEAR and BLASTN. Scale bar represents nucleotide substitutions per site. 

Each arrow represents a certain number of recombination events between a pair of genomes, 

with different colors representing the range of of numbers. (c) Genes that have undergone recent 

or ancestral recombination. Horizontal axis shows the estimated number of ancestral 

recombinations and vertical axis shows the estimated number of recent recombinations. Names 

of some of the genes are shown. Numbers in parenthesis indicate the number of genes 

represented by overlapping dots found on the same position. (d) Frequency histogram of the size 

of recombination events of all genes in the pan-genome. 
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ABSTRACT 

Salmonella is responsible for many non-typhoidal foodborne infections and enteric (typhoid) 

fever in humans. Of the two Salmonella species, Salmonella enterica is highly diverse and 

includes ten known subspecies and approximately 2,600 serotypes. Understanding the 

evolutionary processes that generate the tremendous diversity in Salmonella is important in 

reducing and controlling the incidence of disease outbreaks and the emergence of virulent 

strains. In this study, we aim to elucidate the impact of homologous recombination in the 

diversification of S. enterica subspecies. Using a dataset of previously published 926 Salmonella 

genomes representing the ten S. enterica subspecies and Salmonella bongori, we calculated a 

genus-wide pan-genome composed of 84,041 genes and the S. enterica pan-genome of 81,371 

genes. The size of the accessory genomes varies between 12,429 genes in S. e. arizonae (IIIa) to 

33,257 genes in S. e. enterica (I). A total of 12,136 genes in the Salmonella pan-genome have 

had a history of recombination, representing 14.44% of the pan-genome. We identified genomic 

hotspots of recombination that include genes associated with flagellin and the synthesis of 

methionine and thiamine pyrophosphate, which are known to influence host adaptation and 

virulence. Lastly, we uncovered within-species heterogeneity in rates of recombination and 

preferential genetic exchange between certain donor and recipient strains. Frequent but biased 
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recombination within a bacterial species may suggest that lineages vary in their response to 

environmental selection pressure. Certain lineages, such as the more uncommon non-enterica 

subspecies, may also act as a major reservoir of genetic diversity for the wider population. 
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INTRODUCTION 

Salmonella is widely known for causing non-typhoidal foodborne infections and enteric 

(typhoid) fever in humans (Gal-Mor, Boyle, and Grassl 2014; Eng et al. 2015; Crump et al. 

2015). It is a major public health concern, causing 93.8 million illnesses and 155,000 deaths per 

year globally (Eng et al. 2015). Salmonellosis in humans manifests itself as diarrhea, fever and 

abdominal pain within 12-72 hours after infection (Crump et al. 2015). Aside from being able to 

colonize almost all warm- and cold-blooded animals (Hoelzer, Switt, and Wiedmann 2011; 

Elmberg et al. 2017; Branchu, Bawn, and Kingsley 2018), Salmonella is also prevalent in 

environmental reservoirs (H. Liu, Whitehouse, and Li 2018; Underthun et al. 2018). In the 

United States, food products such as vegetables, fruits, and meat have been identified as 

vehicles of Salmonella-associated foodborne outbreaks in the past decade (CDC 2018). The 

emergence of antimicrobial resistant Salmonella lineages further exacerbates the burden caused 

by this pathogen and compromises our ability to treat clinical infections (Klemm et al. 2018; 

Hawkey et al. 2019). 

 

Salmonella consists of two species, Salmonella bongori and Salmonella enterica, with 

the latter further classified into ten subspecies: enterica (I), salamae (II), arizonae (IIIa), 

diarizonae (IIIb), houtenae (IV), indica (VI), unnamed subsp. VII, and three novel subspecies A, 

B, and C (Alikhan et al. 2018). S. enterica consists of approximately 2,600 different serotypes 

(Lan, Reeves, and Octavia 2009; Andino and Hanning 2015), but only a few serotypes cause 

the majority of gastroenteritis (food poisoning) cases (2). Approximately 99% of salmonellosis 

is due to S. e. enterica (I) serotypes, with 70% caused by only 12 serotypes (Lan, Reeves, and 

Octavia 2009; Andino and Hanning 2015). In the United States, the two most common serotypes 
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are S. e. ser. Enteritidis and S. e. ser. Typhimurium (CDC 2018). S. e. enterica (I) represents the 

vast majority of Salmonella strains isolated from humans and warm-blooded animals, while all 

the other subspecies and S. bongori are more typically isolated from cold-blooded animals (Eng 

et al. 2015; Lamas et al. 2018).  

 

There is a critical need to define the processes that shape how the success of S. enterica 

result from the combination of intrinsic genomic factors, evolutionary processes and the selective 

environment (ecology), which favors the emergence of new lineages or those with novel 

characteristics that enhance their resistance, virulence or transmission. One important process 

that contributes to a pathogen's success is recombination, which can rapidly spread adaptive 

alleles and novel genes across the population (Didelot and Maiden 2010; William P. Hanage 

2016). Hence, recombination can significantly impact the pathogen’s response to selective 

pressures from clinical interventions such as antibiotic use, host immune responses, and extra-

host environments (Sela et al. 2018; Brüggemann et al. 2018; Leventhal et al. 2018). Previous 

studies have shown that frequent recombination and the acquisition of novel genes have 

contributed to the ecology, evolution and pathogenicity of S. enterica (Didelot et al. 2011; Desai 

et al. 2013), with evidence of recombination affecting the diversity of the lipopolysaccharide 

antigenic factor (Davies et al. 2013), animal host range (Langridge et al. 2015), and antimicrobial 

resistance (Klemm et al. 2018; Hawkey et al. 2019). Understanding the role of recombination in 

Salmonella diversity will be particularly crucial in reducing and controlling incidence of disease 

outbreaks and the emergence of antimicrobial resistance in this pathogen. 
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 In this study, we aim to compare the genomic content and elucidate the impact of 

homologous recombination on the diversification of the different S. enterica subspecies. Using a 

dataset of 926 previously published Salmonella genomes, representing the ten S. enterica 

subspecies and S. bongori, we report marked differences in core and accessory genome content 

between subspecies. We identified genomic hotspots of recombination that include genes 

associated with flagellin and the synthesis of methionine and thiamine pyrophosphate. Lastly, we 

uncovered heterogeneity and biases in rates and patterns of recombination. We interpret these 

findings as indicating the presence of genetic or ecological influences that facilitate the creation 

of hubs of gene flow between lineages and barriers between other lineages. Our results also 

highlight the role of the more uncommon non-enterica subspecies as a major reservoir of genetic 

diversity for the wider population. Our study offers important insights into within-species 

diversification, ecological adaptation and co-circulation of multiple Salmonella lineages. 

 

METHODS 

Dataset  

 Our dataset consisted of 926 Salmonella enterica genomes downloaded from EnteroBase 

(Alikhan et al. 2018; Zhemin Zhou et al. 2020). It consists of 297 genomes of S. enterica subsp. 

enterica (I), 116 S. enterica subsp. salamae (II), 116 S. enterica subsp. arizonae (IIIa), 187 S. 

enterica subsp. diarizonae (IIIb), 136 S. enterica subsp. houtenae (IV), 36 S. bongori (V), 16 S. 

enterica subsp. indica (VI), six S. enterica subsp VII, three S. enterica subsp. A, six S. enterica 

subsp. B and seven S. enterica subsp. C genomes. Classification of the genomes into subspecies 

was based on delineation of the core SNPs reported by Alikhan et al. (Alikhan et al. 2018). To 
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maintain consistency in gene annotations, all genomes were re-annotated using Prokka v1.12 

(Torsten Seemann 2014) with default parameters. 

 

Pan-genome analyses 

 To determine the degree of genomic relatedness and clarify the relationships between the 

subspecies, we calculated the genome-wide ANI for all possible pairs of genomes using the 

program FastANI v.1.0 (Jain et al. 2018). ANI is a robust similarity metric that has been widely 

used to resolve inter- and intra-strain relatedness. The threshold value of 95% has been often 

used as a cutoff for comparisons belonging to the same or different species (Jain et al. 2018). We 

used Roary v3.11 with default parameters (95% identity and 99% presence for core genome 

inclusion) (Page et al. 2015) to characterize the pan-genome at the genus, species and subspecies 

levels. Roary classifies genes into core, soft core, shell, and cloud genes by iteratively pre-

clustering protein sequences using CD-HIT (Fu et al. 2012), all-against-all BLASTP (Altschul et 

al. 1990) and Markov clustering (Enright, Van Dongen, and Ouzounis 2002). A strength of 

Roary is that it treats paralogous genes as independent gene families and splits the paralogs into 

separate clusters by examining the synteny (i.e., the physical co-localization of genes) of 

flanking genes. We used this clustering output in all downstream analyses, including the pan-

genome characterization and recombination detection. Visualization of the pan-genome was 

done using the post-processing scripts provided by Roary. Gene functions were inferred using 

the Gene Ontology Consortium’s Enrichment Analysis (Ashburner et al. 2000). For the plasmid 

analysis, we downloaded the S. e. subsp. enterica serovar Typhimurium st. LT2 genome and its 

plasmid sequence from the NCBI RefSeq database (Accession ID: GCF_000006945.2) to be 

used as a reference. Plasmid-associated genes were identified by using BLASTN (Altschul et al. 
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1990) to compare genes in the reference plasmid against all genes in the Salmonella pan-genome 

with a conservative e-value threshold of 1e-10. Operons were identified by running the S. 

enterica reference genome through the Operon-mapper web-based pipeline (Taboada et al. 

2018).  

 

Phylogeny reconstruction 

 Nucleotide sequences of each single-copy orthologous gene family obtained from Roary 

was aligned using MAFFT v.7.305b (Kazutaka Katoh et al. 2002). Sequence alignments of core 

genes were concatenated to give a single core alignment and a maximum-likelihood phylogeny 

was then generated using the program Randomized Axelerated Maximum Likelihood (RAxML) 

v.8.2.11 (Stamatakis 2006) with a general time-reversible (GTR) nucleotide substitution model 

(Tavaré 1986), four gamma categories for rate heterogeneity and 100 bootstrap replicates. All 

phylogenies were visualized using the Interactive Tree of Life (Letunic and Bork 2016). Pairwise 

SNP differences in the core genome alignment were identified using the R script available in 

https://github.com/MDU-PHL/pairwise_snp_differences. 

 

Detection of homologous recombination 

 Using the core genome alignments, we also calculated the pairwise homoplasy index 

(PHI) test to determine the statistical likelihood of recombination being present in the entire 

dataset and within each subspecies (Bruen, Philippe, and Bryant 2006). This statistic measures 

the genealogical correlation or similarity of adjacent sites. Under the null hypothesis of no 

recombination, the genealogical correlation of adjacent sites is invariant to permutations of the 
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sites as all sites have the same history (Bruen, Philippe, and Bryant 2006). Significance of the 

observed PHI was estimated using a permutation test.  

 

 To calculate and compare rates of recombination between subspecies, we ran mcorr, 

which uses a coalescent-based model of evolution to calculate the probability that a pair of 

genomes differs at one locus conditional on having differences at another locus (Lin and Kussell 

2019). As input to mcorr, we used the core genes identified by Roary (Page et al. 2015) of each 

subspecies. The recombination parameters estimated by mcorr include: θ - the average number of 

mutations per locus; ϕ - the average number of recombinations per locus; the ratio of ϕ/θ - the 

number of recombination events per mutation in a population and is comparable to γ/μ; d - the 

amount of diversity in a sample brought on by the effects of both recombination and clonal 

evolution; c - the fraction of the sample diversity derived from recombination.  

 

 To identify the most frequently recombining genes across the genomes, we used 

fastGEAR (Mostowy et al. 2017) with default parameters on individual core and shared 

accessory genes identified by Roary. The program fastGEAR predicts recombination events by 

first clustering sequences into lineages using a Hidden Markov Model implemented in BAPS 

(Pritchard, Stephens, and Donnelly 2000). These lineages are defined as groups which are 

genetically divergent by at least 50% of the sequence alignment. Within each lineage, each 

genome was then examined using a Hidden Markov Model which iteratively compares 

polymorphic sites in the strain’s sequence (relative to other members of its own lineage) against 

the same nucleotide site in other lineages. The comparison is made over multiple iterations of the 
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model, each with updated parameters from the prior run. At the conclusion of the simulation, if a 

nucleotide site of a strain is found to more similar to the same site in strains of another lineage, it 

is considered to be a recombination event. To test the significance of these inferred 

recombinations and identify false-positives, fastGEAR uses a diversity test that compares the 

diversity of the recombined fragment in question to its background. Recombinations were 

visualized using R (R Core Team 2019) and the post-processing scripts provided by fastGEAR.  

 

 For every recent recombination event identified by fastGEAR, we inferred its donor 

strain by extracting the nucleotide sequence of the predicted recombined fragment and used it as 

a query in a BLASTN (Altschul et al. 1990) search against all possible genomes from the 

identified donor lineage, following the methodology used to identify recombination donors in S. 

pneumoniae (Chewapreecha et al. 2014). The top BLAST hit with the highest bit score was 

considered the potential donor and given a probability score of 1 for that event, provided that it 

had an e-value of at least 10-10 and at least 95% nucleotide identity. The e-value and nucleotide 

identity values were chosen to maintain a strict conservative relationship between the donor and 

recipient. Following a recent recombination event, we expect that the nucleotide similarity 

between donor and recipient will be remarkably high, and in many cases identical. While our 

chosen threshold values were arbitrary from a biological perspective, they were chosen to reflect 

that expectation. In the event of a tie where the e-value and nucleotide identity values were the 

same across multiple donors, the probability score for that event was divided evenly among each 

donor (i.e., a probability score of 0.25 was assigned in a four-way tie). This approach involves 

calculating the sum of a potential donor’s probability score across every recombination event in 

every gene as its likelihood of being a recombination donor. We then assigned the role of most 
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probable donor in each recombination event to the strain with the highest cumulative donor 

probability score. Events with potential donors of equal cumulative scores were considered to 

have originated from the most recent common ancestor of the donors and was discarded from the 

analysis as an ancestral recombination event. 

 

Data availability 

 The genomes analyzed in this study were downloaded from and are available in the 

Enterobase database (https://enterobase.warwick.ac.uk/species/index/senterica) (Zhemin Zhou et 

al. 2020). Accession numbers are listed in Table S1. 

 

RESULTS 

Pan-genome characteristics of Salmonella 

 To investigate the relative contributions of homologous recombination to the genomic 

diversity of S. enterica subspecies, we compiled a total of 926 representative genomes 

downloaded from EnteroBase (Table S1) (Zhemin Zhou et al. 2020; Alikhan et al. 2018). We 

also included S. bongori because we hypothesized that recombination also occurs between the 

two species. Of the ten S. enterica subspecies, three were reported to be novel [referred to as 

subsp. A, B, C (Alikhan et al. 2018)] (Fig. 1a). The core genome-based phylogenetic 

relationships of these 926 genomes and the discovery of the novel subspecies have been 

published elsewhere (Alikhan et al. 2018). Subspecies classification in this dataset was based on 

core single nucleotide polymorphisms (SNPs), which revealed ten distinct S. enterica subspecies 
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(Alikhan et al. 2018). Across the entire dataset, genome size varied between 4.01-5.76 Mb (mean 

= 4.8 Mb) and the number of predicted genes ranged from 3,745 - 5,593 (mean = 4,564) (Table 

S1).  

 

 We used Roary (Page et al. 2015) to estimate the pan-genome of the entire Salmonella 

dataset and of each subspecies. Roary classifies orthologous gene families into core genes 

(present in 99% ≤ strains ≤ 100%), soft core genes (present in 95% ≤ strains < 99%), shell genes 

(present in 15% ≤ strains < 95%) and cloud genes (present in < 15% of strains) (Table S1, Fig. 

S1). At the genus level, we found a considerably small core genome composed of 1,596 genes, 

which represents a mere 1.90% of the entire pan-genome (84,041 genes; Table S1). For S. 

enterica, core genes make up 2.28% (1,858 genes) of the species pan-genome (81,371 genes; 

Table S1). It is also notable that the vast majority of accessory genes of S. enterica (75,631 

genes, representing 92.95% of the pan-genome) are present in less than 15% of the genomes, 

with most accessory genes also being unique to a strain (33,474 genes, representing 41.14% of 

the pan-genome). Comparing the five largest S. enterica subspecies (I, II, IIIa, IIIb, IV), we 

found that the sizes of their core genomes are comparable, ranging from 2,636 genes in S. e. 

enterica (I) to 3,292 genes in S. e. arizonae (IIIa). However, we found major differences in the 

size of their accessory genomes. Combining the shell and cloud genes, the accessory genomes 

comprise 71.82% [12,429 genes in S. e. arizonae (IIIa)] to 90.48% [33,257 genes in S. e. enterica 

(I)] of the pan-genome of each subspecies. (Table S1). A remarkable component of the accessory 

genome of S. enterica [31,809 genes, 40% of the accessory genome] is composed of strain-

specific and ORFan genes (i.e., genes with no known homology to genes in other taxonomically 

or evolutionary lineages (Tautz and Domazet-Lošo 2011)), which have been recently reported to 
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be significantly associated with pathogenicity in nine bacterial genera (Entwistle, Li, and Yin 

2019). Sequencing and annotation errors may also partly explain the large number of accessory 

genes in Salmonella. 

 

 To determine the degree of genomic relatedness and hence clarify the distinction among 

the S. enterica subspecies, we calculated the pairwise average nucleotide identity (ANI) for all 

possible pairs of genomes. ANI estimates the average nucleotide identity of all orthologous 

genes shared between any two genomes and organisms belonging to the same species 

typically exhibit ≥ 95% ANI (Jain et al. 2018). The ten S. enterica subspecies can be 

delineated based on their ANI (Fig. 1a) and can be clearly differentiated from S. bongori with 

a mean ANI between the two species of 89.95% (range: 89.20 - 90.53%) (Fig.1b). Mean ANI 

across all pairs of S. enterica genomes is 94.68% (92.62 - 97.26%), while mean ANI within 

each S. enterica subspecies is 98.81% (range: 96.92 - 99.99%). 

 

 We also compared the core and accessory genomes within and among S. enterica 

subspecies. We first calculated the number of core SNP differences between any pair of 

genomes. Within S. e. salamae (II), we found the greatest range of pairwise SNPs (between 3 

and 15,846), while S. e. diarizonae (IIIb) showed significantly less variation (between 1 and 

4,386) despite it being one of the largest clusters in the study. As expected, we found 

considerably fewer SNPs within subspecies than between subspecies, with a maximum pairwise 

SNP count of 16,624 among genomes in subsp. A (Fig. 1c). Comparing the two Salmonella 

species, we obtained a mean of 66,486 core SNPs that differentiate the them (range: 64,131 - 
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69,571 SNPs) (Fig. S2). We also compared the number of accessory genes per genome among 

the different subspecies. S. e. diarizonae (IIIb) exhibited the highest mean as well as the greatest 

variability in the accessory gene content, ranging from 2,509 and 3,678 accessory genes per 

genome (Fig. 1d). However, pan-genome estimates are greatly influenced by the size of the 

dataset being examined (Lapierre and Gogarten 2009) and it is thus challenging to compare 

subspecies of different sizes.  

 

Lineage-specific rates of homologous recombination 

 Within-species variation in rates of recombination has been previously reported in other 

bacterial pathogens, such as Streptococcus pneumoniae (Chewapreecha et al. 2014; Andam et al. 

2017) and Staphylococcus aureus (Castillo-Ramírez et al. 2012). We therefore sought to 

determine whether this is also true for Salmonella. We compared rates of recombination among 

the different Salmonella subspecies because variable recombination rates between subspecies 

may reflect a differential response to environmental selection pressure and different capacities 

for adaptation (Chewapreecha et al. 2014). Because the number of genomes in each subspecies 

are greatly dissimilar, ranging from 3 genomes in novel subsp. A to 297 in S. e. enterica (I), we 

restricted our recombination analyses to the five largest subspecies. Under the null hypothesis of 

no recombination, we calculated the pairwise homoplasy index (PHI) statistic. We found 

significant evidence for the presence of recombination in S. e. enterica (I), S. e. arizonae (IIIa), 

S. e. diarizonae (IIIb) and S. e. houtenae (IV) (p-value < 0.01 for each subspecies).  
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Next, using the program mcorr, we calculated the probability that a pair of genomes 

differs at one locus conditional on having differences in another locus, which defines the 

correlation profile (Lin and Kussell 2019). In the absence of recombination, the correlation 

profile will be constant (flat), while recombination will generate monotonically decaying 

correlations as a function of the distance between loci (Lin and Kussell 2019). This decay is due 

to each recombination event creating a sequentially identical fragment between the genomes of 

the donor and recipient; hence, a higher recombination rate results in a faster decay rate (Lin and 

Kussell 2019). The correlation profiles for each of the five subspecies exhibit a monotonic decay, 

with recombination rates decreasing as a function of the size of the homologous fragment (Fig. 

S3). Similar decaying correlation profiles have been calculated in other recombining pathogenic 

bacteria, such as Helicobacter pylori and Pseudomonas aeruginosa (Lin and Kussell 2019).  

 

We also used mcorr (Lin and Kussell 2019) to calculate five recombination parameters 

based on the correlation profiles of synonymous substitutions for pairs of homologous sequences 

(Fig. 2 and Table S2). As input, we used the core genes of each S. enterica subspecies and 100 

bootstrap replicates. Sample diversity (d), which is generated from both recombination and 

accumulation of mutations of the clonal lineage, ranged from 4.3 x10-3 in S. e. diarizonae (IIIb) 

to 0.016 in S. e. enterica (I). For comparison, other pathogenic species of Gammaproteobacteria 

exhibit a sample diversity of 3.3 x10-4 (Yersinia pestis), 0.014 (P. aeruginosa) and 0.031 

(Acinetobacter baumanii and Klebsiella pneumoniae) (Lin and Kussell 2019). The mutational 

divergence (), which refers to the mean number of mutations per locus since the divergence of a 

pair of homologous sites, ranged from 0.012 in S. e. houtenae (IV) to 0.023 in S. e. enterica (I). 

For comparison, mutational divergence in global collections of Y. pestis, P. aeruginosa, A. 
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baumanii and K. pneumoniae are 0.0091, 0.027, 0.087, and 0.13, respectively (Lin and Kussell 

2019). Recombinational divergence () ranged from 0.066 in S. e. diarizonae (IIIb) to 0.225 in S. 

e. enterica (I). The same parameter was reported to be 0.027, 0.29, 0.11, and 0.56 in Y. pestis, P. 

aeruginosa, A. baumanii and K. pneumoniae, respectively (Lin and Kussell 2019). The ratio  / 

(or γ/μ), which gives the relative rate of recombination to mutation, ranged from 3.38 in S. e. 

arizonae (IIIa) to 9.75 in S. e. enterica (I). For comparison, γ/μ is estimated to be 3.0, 11, 4.2, 

and 1.3 in Y. pestis, P. aeruginosa, A. baumanii and K. pneumoniae, respectively (Lin and 

Kussell 2019). Lastly, the recombination coverage (c), which indicates the fraction of the 

genome whose diversity was derived from recombination events since its last common ancestor 

and ranges from 0 (clonal evolution) to 1 (complete recombination) (Lin and Kussell 2019), 

ranged from 0.248 in S. e. arizonae (IIIa) to 0.714 in S. e. enterica (I). This parameter is reported 

to be 0.033 in Y. pestis, 0.52 in P. aeruginosa, 0.40 in A. baumanii and 0.27 in K. pneumoniae 

(Lin and Kussell 2019). Comparing the five subspecies across each parameter, we found 

significant differences (p-value < 0.01 for each parameter; Kruskall-Wallis test). Overall, we 

found that the degree in which the S. enterica subspecies differ from each other in terms of the 

five recombination parameters is comparable to those found when comparing different bacterial 

species. 

 

Heterogeneity and biases in patterns of homologous recombination 

 Recent population genomic studies have reported variation not only in rates of 

recombination among members of a single bacterial species but also in other characteristics of 

recombination (Chewapreecha et al. 2014; Lin and Kussell 2019; Park and Andam 2019). One 
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such variation can be found in the length of recombined DNA sequences. In bacterial genomes, 

two distinct modes of recombination have been proposed to occur: micro-recombination 

(frequent exchange of short DNA fragments) and macro-recombination (occasional larger 

replacements, usually associated with major phenotypic changes) (Mostowy et al. 2014). To 

determine the size distribution of recombined DNA segments, we ran fastGEAR (Mostowy et al. 

2017) on individual sequence alignments of core and shared accessory genes. In the entire 

Salmonella dataset, the lengths of the recombination fragments greatly varied, ranging in size 

from 101 bp to 2,712 bp in the core genome and from 101 bp to 7,606 bp in the accessory 

genome (Fig. 3a). Among the five largest subspecies, the number of recombination events range 

from 1,604 in S. e. houtenae (IV) to 5,260 in S. e. enterica (I). Overall, the sizes of 

recombination events follow a geometric distribution, with majority of recombination events 

encompassing short DNA segments of <1000 bp. Large recombination events (>1,000 bp) 

occurred less frequently, with the longest recombination block detected in a genome from novel 

subsp. A (7,606 bp). For comparison, macro-recombination in other bacterial species such as the 

highly recombining S. pneumoniae has been reported to reach up to 100,000 bp (Andam et al. 

2017). 

 

 The strength of fastGEAR is its ability to identify both recent (affecting a few strains) 

and ancestral (affecting entire lineages) recombinations (Mostowy et al. 2017). We found that, of 

the 84,041 genes that comprise the Salmonella pan-genome, a total of 12,136 genes have had a 

history of recombination, representing 14.44% of the pan-genome (Fig. 3b and Table S2). Of 

these, 6,722 genes were involved only in recent recombination, 1,071 genes only in ancestral 

recombination and 4,343 genes in both recent and ancestral recombination. Of the 12,136 
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recombining genes, 1,475 are core genes and the remaining 10,661 are accessory genes. Some of 

the most frequently recombining genes have unknown or hypothetical functions, while those 

genes with the highest frequencies of recombination and which also have known functions 

include fliC, thiH, metE, and metH and will be highlighted here (Fig. 3b). The flagellin gene fliC 

encodes the Salmonella phase 1 antigen and, along with fliB (which encodes the phase 2 

antigen), is considered as a Salmonella serotype determinant gene (Y. Liu et al. 2017). Flagellin 

genes contribute to ecological adaptation of Salmonella by allowing the cell to adjust their 

expression through phase variation when it encounters a new niche (De Maayer and Cowan 

2016) and in the generation of new serotypes (Smith, Beltran, and Selander 1990). Flagellar 

motility plays a role in host colonization, surface adhesion and biofilm formation; hence they are 

also important virulence factors in Salmonella (Horstmann et al. 2017). The thiH gene is 

involved in the biosynthesis of thiamine pyrophosphate, an essential cofactor for several 

enzymes in central metabolism and amino acid biosynthesis (Martinez-Gomez, Robers, and 

Downs 2004). The specific contribution of thiamine pyrophosphate in Salmonella pathogenicity 

is unclear; however, it has been reported that thiamine acquisition is a critical step in the 

replication and proliferation of Listeria monocytogenes within host cells during the infection 

process (Schauer et al. 2009). The products of metE and metH are transmethylases that function 

in cobalamin-independent and cobalamin-dependent reactions, respectively, during the last step 

of methionine biosynthesis (Weissbach and Brot 1991). While the specific role of MetE and 

MetH in S. enterica infection remains unclear, these genes have been reported to contribute to 

metabolic adaptation to physiological host conditions and pathogenicity in Ralstonia 

solanacearum during plant infection (Plener et al. 2012). Other recombining genes detected by 

fastGEAR are listed in Table S2.  The phylogenies of genes metE, metH and thiH show that 
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strains of the same subspecies often cluster together and rarely do we find strains from one 

subspecies grouping within another subspecies (Fig. S4). In contrast, the fliC gene tree reveals 

numerous instances of phylogenetic incongruence, with multiple strains from one subspecies 

grouping with members of other subspecies. We also observed that paralogous gene families 

exhibit different number of recombination events. For example, fastGEAR identified 173, 3, 53 

and 1 recent recombination events in the flagellin genes fliC, fliC_1, fliC_2 and fliC_5, 

respectively and 7, 2, 67, 0 and 2 recent recombination events in the aldehyde-alcohol 

dehydrogenase genes adhE, adhE_1, adhE_2, adhE_3 and adhE_5, respectively (Table S2). We 

also explored evidence for recombination in the 115 plasmid-associated genes in the plasmid 

sequence of S. e. subsp. enterica serovar Typhimurium st. LT2 genome that we used as a 

reference. A total of 112/753 plasmid-associated genes (i.e., 753 genes from the Salmonella pan-

genome with an e-value of 1e-10 or lower when compared to any of the 115 reference plasmid 

genes using BLASTN) have experienced recombination (Fig. S5, Fig. S6, Table S3). We also 

observed that the genes that comprise an operon do not show similar frequencies of 

recombination (Fig. S7, Table S3).  

 

 Highways of recombination, whereby a pair of strains or lineages frequently recombine 

with each other more often than they do with others, have been previously reported in the Gram-

positive S. pneumoniae (Chewapreecha et al. 2014). Here, we aim to determine whether such 

highways of recombination also exist in Salmonella. To achieve this, we first identified the 

recombining pairs of donor and recipient genomes. Using the method developed in the S. 

pneumoniae study (Chewapreecha et al. 2014), we first calculated the sum of a potential donor’s 

probability score across every recombination event in every gene as its probability of being a 
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recombination donor. We then assigned the role of the most probable donor in each 

recombination event to the genome with the highest cumulative donor probability score. For each 

pair, we characterized it as one linked by a highway of recombination when the number of 

recombination events from donor to recipient was at least one standard deviation above the 

average number of recombination events per recombining pair across the entire dataset. We also 

considered the direction of recombination events, which means that any pair of recombining 

genomes can be linked by a highway in either direction. We identified a total of 38,105 unique 

recombining pairs of genomes in the entire Salmonella dataset, of which 2,190 fit our definition 

of a highway. Of these, a total of 1,784 are highways that linked genomes from different 

subspecies (Fig. 3c). Lastly, we also found that 86% of strains in the dataset acted as a DNA 

donor, while every genome has received recombined DNA at least once. 

 

DISCUSSION 

 S. enterica continues to threaten animal and human health worldwide. While S. e. 

enterica (I) accounts for majority of clinical infections, little is known of how other subspecies 

contribute to the entire species' virulence and adaptive potential. To elucidate its success as a 

pathogen, analyses of the genomic structure and phylogenetic relationships among the different 

S. enterica subspecies is critical. Here, we show that recombination within and between 

subspecies has played a major role in shaping the evolution and genome structure of S. enterica. 

Widespread recombination within the species means that new adaptations arising in one lineage 

can be rapidly transferred to another distantly related lineage (Didelot and Maiden 2010; William 

P. Hanage 2016).  
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 The major finding in this study is that while the different S. enterica subspecies can be 

distinguished from each other based on their core and accessory genomes, variation in 

recombination frequencies occurs between the different subspecies. Our findings greatly expand 

on the results of a previous study that reported an uneven role of recombination among S. e. 

enterica (I) lineages based on sequencing approximately 10% of their core genome (Didelot et 

al. 2011). In that study, the authors report that some lineages displayed evidence of more 

frequent recombination than others, and that recombination has occurred predominantly between 

members of the same lineage, thus suggesting barriers to recombination (Didelot et al. 2011). 

More recently, a recombination analysis of 73 S. enterica genomes using co-ancestry and 

hybridization methods also show variation in recombination across the species, resulting in the 

formation of hybrid groups within the genus (Criscuolo et al. 2019). Variability in gene content 

and in patterns of recombination may be considered effective strategies for a species to maintain 

potentially useful adaptive alleles and novel genes that can rapidly be shared among specific 

members of the species. This variation also means that a species can prevent the likelihood that a 

gene is lost from the population by ensuring that some strains, even rare ones, carry them. 

Within-species differences in recombination also suggests that lineages within a species respond 

to selective pressures and environmental changes in different ways (Chewapreecha et al. 2014). 

Our results also imply that recombinations are not random events that impact all members of a 

species in a uniform manner. Genetic or ecological influences likely exist that facilitate the 

creation of hubs of gene flow between certain lineages as well as barriers between other lineages. 

We interpret these findings as indicating the existence of both biases and barriers of 

recombination between multiple lineages, which can shape the phylogenetic distribution of 

different genetic elements independent of the organisms that harbor them (Fondi et al. 2016).  
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 Several factors can potentially explain within-species variation in rates of recombination 

and biases in donor-recipient linkages. First, minimal niche overlap can impact opportunities for 

recombination between strains and subspecies. Non-enterica subspecies are often sampled from 

cold-blooded animals (e.g., turtles, snakes, lizards, crocodiles), while S. e. enterica (I) is 

frequently found in humans and warm-blooded animals consumed by humans (i.e., poultry, cattle 

and pigs) (Lamas et al. 2018). Such ecological barriers may explain the fewer highways of 

recombination observed between S. e. enterica (I) and the non-enterica subspecies compared to 

recombination between the different non-enterica subspecies. However, S. e. enterica (I) and the 

non-enterica subspecies are not exclusively isolated from each other, and both can sometimes be 

found together in cold- and warm-blooded animals. Hence, another possible explanation for the 

variation in recombination is that different Salmonella subspecies occupy distinct micro-

ecological niches (Fung et al. 2019), which may even be separated by a few millimeters, within a 

human or animal host and therefore reduce the opportunity for genetic exchange. The existence 

of cryptic niches and their role in structuring bacterial populations has been previously reported. 

Two generalist Campylobacter jejuni lineages inhabiting the same animal host show no evidence 

of recombination between them even though they freely recombine with other lineages and with 

each other in laboratory setting (Sheppard et al. 2014).  

 

Certain genomic elements can also influence the success of a recombination event, thus 

contributing to the biases and barriers to recombination. One example is the functional linkage of 

multiple genes in operons. Functional similarity, and in some cases dependency, of operon-

linked genes may likely limit the potential for recombination to impact individual genes in a 

region under positive selection and hence promote the horizontal gene transfer (HGT) of entire 
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operons (Lawrence and Roth 1996; Omelchenko et al. 2003; Kominek et al. 2019). However, it 

has been reported that a remarkable 35% of operons that show evidence of HGT is made up of 

genes with different phylogenetic affinities, occurring through in situ xenologous displacement 

through recombination (Omelchenko et al. 2003), and thus may partly explain our result of 

differential recombination within an operon. Frequent homologous replacement of genes within 

an operon allows the bacterium to maintain operon integrity (i.e., without causing disruption of 

operon organization and function) in the face of strong positive selection (Omelchenko et al. 

2003). Plasmids and other mobile elements can also facilitate and influence patterns of 

recombination and virulence in enteric pathogens (Pilla and Tang 2018). In Salmonella, only a 

small number of recombining genes are associated with plasmids; hence other mechanisms of 

recombination likely play a more substantial role. Future work should therefore explore the 

contributions of a variety of mechanisms (transduction, transformation, conjugation, other types 

of mobile genetic elements) in mobilizing different components of the Salmonella pan-genome. 

Additionally, incompatible restriction-modification (R-M) systems act as genetic barriers that 

can limit extensive recombination and incorporation of longer DNA segments (Brown et al. 

2003). A previous study of S. e. enterica (I) showed mosaicism in the mutS gene, which encodes 

a key component of the methyl-directed mismatch repair (MMR) system, with mutant alleles in 

mutS able to enhance the recombination between lineages (LeClerc et al. 1996; Zahrt and Maloy 

1997). It is possible that minute R-M differences and MMR defects can facilitate frequent 

recombination between certain subspecies but not with others. Future work focusing on in vitro 

recombination assays of strains from different S. enterica subspecies may provide important 

insights into whether genetic, mechanistic or ecological barriers can explain biases in 

recombination partners. 
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 The major limitation in this study is the high variability in the number of genomes in each 

of the ten subspecies, making it difficult to elucidate and compare the novel but less well-known 

subspecies with the more prevalent S. e. enterica (I). The non-enterica subspecies have been less 

studied, mainly because they are often associated with cold-blooded animals (Guyomard-

Rabenirina et al. 2019; Pulford et al. 2019) and cases of human salmonellosis are almost entirely 

limited to serotypes of S. e. enterica (I) (Desai et al. 2013; Eng et al. 2015). There is therefore a 

stark gap in sampling and genome sequencing work that has been done to date on non-

enterica subspecies. Previous reports indicate that non-enterica subspecies have lower invasive 

capacity, virulence, and levels of resistance to common antibiotics, and human infections have 

been mostly those involving weakened immune systems (Lamas et al. 2018; Giner-Lamia et al. 

2019). However, as we have shown in this study, there is frequent recombination between 

subspecies, hence these less well-known subspecies likely act as reservoirs of novel allelic 

variants or genes that human-associated lineages can sample from when needed (e.g., as a 

response to environmental change or host immune system). Future genome sequencing 

endeavors may shed important insights on the genomic diversity on many non-enterica 

subspecies from various hosts and habitats. Lastly, the draft nature of these genomes, potential 

sequencing errors and mis-annotation may also have influenced our analysis of genome 

structure, including the characterization of core and accessory genes, detection of recombination 

events, and identification of donors and recipients. 

 

 Recombination, either through homologous or illegitimate means, plays a fundamental 

role in the evolution and species diversification of bacterial genomes (Didelot and Maiden 2010; 

Dixit, Pang, and Maslov 2017; Marttinen and Hanage 2017). For many bacterial pathogens, 
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including Salmonella, recombination has been implicated in the emergence of highly virulent 

lineages (Klemm et al. 2018; William Paul Hanage et al. 2009; Paul et al. 2013). Our results 

provide crucial insights into the contributions of recombination into the diversification and 

adaptive capabilities of S. enterica as a species. Understanding the extent of genomic variation 

within a species, and the ecological and evolutionary underpinnings of this variation, will enable 

successful surveillance of emerging infectious agents. It will also facilitate the development of 

effective clinical interventions to limit the emergence of new pathogenic clones and of accurate 

predictions of how specific lineages will respond to environmental changes. 
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FIGURES 

 

Figure 1. Genomic differences among Salmonella genomes. (a) Pairwise genome-wide ANI 

values. ANI calculates the average nucleotide identity of all orthologous genes shared between 

any two genomes. The phylogeny was reconstructed using the concatenated alignment of 1,596 

genus-wide core genes. Scale bar represents nucleotide substitutions per site. (b) Frequency 

distribution of all pairwise ANI values. The 95% ANI cutoff is a frequently used standard for 

species demarcation. (c) Number of SNPs in the core genome alignment per subspecies. The box 

shows the median SNP count, and lower and upper quartiles. The whiskers represent the 

minimum and maximum SNP counts. (d) Number of accessory genes per genome for each 

subspecies. Subspecies classification is based on core genome variation calculated by Alikhan et 

al. (Alikhan et al. 2018). 
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Figure 2. Recombination parameters of the five largest S. enterica subspecies calculated using 

mcorr (Lin and Kussell 2019). Histograms show the frequency distribution of each 

recombination parameter for all pairs of genomes. 
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Figure 3. Variable patterns of recombination. (a) Size distribution of lengths of recombined core 

and accessory DNA fragments. (b) Genes that have undergone recent or ancestral recombination. 

Horizontal axis shows the estimated number of ancestral recombinations, and vertical axis shows 

the estimated number of recent recombinations. For clarity, names of some of the most 

frequently recombined genes with known functions are shown. (c) The maximum likelihood 

phylogenetic tree was calculated using the concatenation of 1,596 core genes present in all 926 

genomes and rooted using S. bongori. Scale bar represents nucleotide substitutions per site. The 

outer ring shows the different subspecies identified in Alikhan et al. (Alikhan et al. 2018). For 

visual clarity, only inter-subspecies highways of recombination events identified by fastGEAR 

are shown (as gray arrowlines) and non-highway recombination pairs are not shown for visual 

clarity. Inferred recipient genomes are indicated by the arrowheads. 
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ABSTRACT 

Campylobacter jejuni is one of the leading causes of bacterial gastroenteritis worldwide. In the 

United States, New Hampshire was one of the 18 states that reported cases in the 2016-2018 

multistate outbreak of multidrug resistant C. jejuni. Here, we aimed to elucidate the baseline 

diversity of the wider New Hampshire C. jejuni population during the outbreak. We used 

genome sequences of 52 clinical isolates sampled in New Hampshire in 2017, including one of 

the two isolates from the outbreak. Results revealed a remarkably diverse population composed 
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of at least 28 sequence types, which are mostly represented by one or few strains. Comparison 

with 249 clinical C. jejuni from other states showed frequent phylogenetic intermingling, 

suggesting lack of geographical structure and minimal local diversification within the state. 

Multiple independent acquisitions of resistance genes from five classes of antibiotics 

characterize the population, with 47/52 (90.4%) of the genomes carrying at least one horizontally 

acquired resistance gene. Frequently recombining genes include those associated with heptose 

biosynthesis, colonization and stress resistance. We conclude that the diversity of clinical C. 

jejuni in New Hampshire in 2017 was driven mainly by the co-existence of phylogenetically 

diverse antibiotic resistant lineages, widespread geographical mixing, and frequent 

recombination. This study provides an important baseline census of the standing pan-genomic 

variation and drug resistance to aid the development of a statewide database for epidemiological 

studies and clinical decision making. Continued genomic surveillance will be necessary to 

accurately assess how the population of C. jejuni changes over the long term. 
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INTRODUCTION 

Campylobacter jejuni is a major foodborne pathogen and the most commonly reported 

bacterial cause of gastroenteritis (campylobacteriosis) in the United States and worldwide (Kirk 

et al. 2015; Tack et al. 2019). Severe cases of C. jejuni infections can also lead to invasive 

infections such as bacteremia (Hussein et al. 2016). Infection with C. jejuni is also considered 

one of the main precedents for the development of the autoimmune condition Guillain-Barré 

Syndrome (GBS), a serious demyelinating neuropathy (Yu, Usuki, and Ariga 2006). The World 

Health Organization estimates that Campylobacter spp. has resulted to 166 million illnesses and 

37,604 deaths in 2010 worldwide (Kirk et al. 2015). In the United States, the Centers for Disease 

Control and Prevention (CDC) estimates a total of 1.5 million infections and $270 million in 

direct medical costs every year caused by Campylobacter infections, mostly involving C. jejuni 

(CDC 2019). Because Campylobacter naturally colonizes the gastrointestinal tract of food-

producing, companion and wild animals, disease outbreaks have often been linked to 

consumption of raw, undercooked, or contaminated water, food and food products as well as 

through direct contact with animals (Kaakoush et al. 2015). 

 

 Due to the self-limiting characteristic of campylobacteriosis, antimicrobial therapy is not 

routinely recommended; however, in acute or persistent infections, immunocompromised cases 

or those patients with comorbidities, antibiotics are commonly prescribed (Kaakoush et al. 

2015). The emergence and spread of Campylobacter isolates exhibiting resistance to antibiotics 

commonly used to treat severe infections have been alarmingly increasing in the past two 

decades (CDC 2019; Whitehouse, Zhao, and Tate 2018; Yang et al. 2019). In CDC’s 2019 report 

on Antibiotic Resistance Threats in the United States, antibiotic resistant  Campylobacter is 
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listed as one of the 11 serious threats to public health that require prompt and sustained action 

(CDC 2019). The CDC estimates that 28% of Campylobacter isolates from 2015-2017 have 

decreased susceptibility to ciprofloxacin (fluoroquinolone), 4% with decreased susceptibility to 

azithromycin (macrolide), and 2% with decreased susceptibility to both ciprofloxacin and 

azithromycin (CDC 2019). The public health threat of antibiotic resistance (ABR) in this 

pathogen was recently brought to light when a multistate outbreak of multidrug resistant C. 

jejuni infections occurred in the United States from January 2016 to February 2018 

(Montgomery et al. 2018). The source of the outbreak were puppies from breeders, distributors 

and pet stores (Montgomery et al. 2018). Antibiotic susceptibility testing showed that the 

outbreak isolates were resistant to all antibiotics commonly used to treat Campylobacter 

infections (Montgomery et al. 2018). The state of New Hampshire was one of the 18 states that 

reported cases in the 2016-2018 C. jejuni outbreak, with two of the 118 cases reported 

(Montgomery et al. 2018). In our study, we aimed to elucidate the genetic diversity of the wider 

New Hampshire C. jejuni population during the period of the outbreak, how resistance and 

virulence determinants are distributed among strains, and the evolutionary processes that have 

shaped the local population. This study provides an important baseline census of the standing C. 

jejuni pan-genomic diversity and drug resistance characteristics in New Hampshire to aid in the 

development of a statewide database for epidemiological studies and clinical decision making. 

Continued genomic surveillance of the background diversity will be necessary to accurately 

assess how the population of C. jejuni changes over the long term, in response to changes in the 

selective landscape, and during disease outbreaks. 
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METHODS 

Bacterial Isolates 

 Isolates were submitted to the Public Health Laboratories, New Hampshire Department of 

Health and Human Services (NH DHHS) in Concord, New Hampshire, USA in 2017. These 

isolates were received from New Hampshire health care providers and were recovered primarily 

from stool specimens collected from individuals with Campylobacter infection. The state of New 

Hampshire considers Campylobacter infections as a reportable disease and the NH DHHS 

strongly encourages isolate submission to the Public Health Laboratories. However, submission 

of isolates is not mandatory. No identifiable information is associated with the isolates submitted 

by the health care providers. In total, our dataset comprised 52 isolates. 

 

DNA extraction and genome sequencing 

 Sequencing of Campylobacter isolates is part of the PulseNet surveillance program, a 

United States national laboratory network that connects foodborne illness cases to detect 

outbreaks (Tolar et al. 2019). DNA extraction, library preparation and whole genome sequencing 

were done following the PulseNet USA standard operating procedures 

(https://www.cdc.gov/pulsenet/pathogens/wgs.html). Briefly, DNA extraction procedures were 

conducted using the Qiagen DNeasy Blood & Tissue Kit (Qiagen, Valencia CA). DNA quality 

and concentration were measured using Qubit fluorometer and NanoDrop spectrometer. A total 

of 1 ng of genomic DNA from each isolate was used to construct sequencing libraries using the 

Illumina Nextera XT DNA Library Preparation Kit (Illumina, Inc. San Diego, CA) per the 

manufacturer’s instructions. Samples were sequenced as multiplexed libraries on the Illumina 
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MiSeq platform operated per the manufacturer’s instructions for 500 cycles to produce paired-

end reads of 250 bp in length. The MiSeq sequencer is housed at the NH DHHS Public Health 

Laboratories. 

 

De novo genome assembly, annotation, pan-genome and phylogenetic analyses 

 We used the Nullarbor pipeline v2.0 (https://github.com/tseemann/nullarbor) to perform 

read trimming, quality assessment, contig assembly, gene annotation, pan-genome, sequence 

type (ST) identification, sequence alignment and phylogenetic analysis of the entire dataset. The 

Nullarbor pipeline can be described as follows: Adapters were trimmed using Trimmomatic 

v0.38 (Tolar et al. 2019). Trimmed reads were assembled into contigs using SKESA v2.3.0 

(Souvorov, Agarwala, and Lipman 2018) using a C. jejuni subsp. jejuni reference genome 

obtained from the NCBI’s RefSeq database (Accession ID: GCF_000009085.1). Quality of 

genome assemblies was assessed using Quast (Gurevich et al. 2013). Assembled genomes were 

annotated using Prokka v1.13.3 (Torsten Seemann 2014) with default parameters. Roary v3.12.0 

(Page et al. 2015) was used to characterize the pan-genome of the New Hampshire C. jejuni 

dataset and to classify genes into core, soft core, shell, and cloud genes. Each orthologous gene 

family was aligned using MAFFT v.7.407 (K. Katoh and Standley 2013). The ST of each isolate 

was determined using the program multilocus sequence typing (MLST) 

(https://github.com/tseemann/mlst), which extracts the sequences of seven housekeeping genes 

(aspA, glnA, gltA, glyA, pgm, tkt, uncA) from the Illumina raw data and compares them to the C. 

jejuni MLST database (www.mlst.net) (Jolley, Chan, and Maiden 2004). Single nucleotide 

polymorphisms (SNPs) from the core genes were identified and aligned using Snippy v4.3.6 

(https://github.com/tseemann/snippy) and were used to generate a maximum likelihood 
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phylogeny using the program IQ-TREE v1.6.9 (Nguyen, Lam-Tung, Schmidt, Heiko A., 

Haeseler, Arndt von, Minh 2015). 

 

To determine the degree of overall genomic relatedness between genomes, we calculated 

the genome-wide average nucleotide identity (ANI) for all possible pairs of genomes using the 

program FastANI v.1.0 (Jain et al. 2018). ANI estimates the average nucleotide identity of all 

orthologous genes shared between any two genomes (Jain et al. 2018). Organisms belonging to 

the same species typically exhibit ≥95% ANI (Jain et al. 2018). Pairwise ANI values were 

visualized using an heatmap generated in R (R Core Team 2019) and the ggplot2 package 

(Wickham 2016). 

 

In order to place the New Hampshire isolates within a country-wide context, we queried 

the genome sequences of 48,987 clinical C. jejuni isolates that were included in the 100K 

Pathogen Project as of March 2020 (Weimer 2017). Of these, we selected 367 isolates that were 

derived only from the United States, from human samples, from clinical specimens, as well as 

those that have information on their state of origin. These were filtered further to only include 

those genomes that are within the 95% ANI threshold that defines a bacterial species (Jain et al. 

2018). A total of 249 genomes representing 13 other states were used for comparison with the 

New Hampshire genomes (Table S1). After annotating with Prokka (Torsten Seemann 2014) and 

identifying the pan-genome using Roary (Page et al. 2015), we generated a core genome 

phylogeny using RAxML v8.2.11 (Stamatakis 2006) with a general time reversible nucleotide 

substitution model, four gamma categories for rate heterogeneity and 100 bootstrap replicates. 
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In silico identification of ABR genes, virulence genes and plasmids 

 We screened all genomes for known resistance and virulence genes using a direct read 

mapping method called ABRicate v.0.8.10 (https://github.com/tseemann/abricate) implemented 

in Nullarbor. ABRicate identifies ABR genes using BLASTN comparison search (Altschul et al. 

1990) against the Resfinder database (Zankari, Ea, Hasman, Henrik, Cosentino, Salvatore, 

Vestergaard, Martin, Rasmussen, Simon, Lund, Ole, Aarestrup, Frank M., Larsen 2012). 

ABRicate only identifies horizontally acquired resistance genes and not resistance due to 

chromosomal mutations. Virulence genes were identified using BLASTN against the Virulence 

Factor Database (VFDB) (Liu, Bo, Zheng, Dandan, Jin, Qi, Chen, Lihong, Yang 2019). Some of 

these predicted genes may be complete, exact matches or incomplete; hence ABRicate classifies 

the predicted genes based on the proportion of the gene that is covered. These categories are 

present (≥95% sequence coverage), questionable (<95% sequence coverage) and absent, which 

provide a level of confidence on ABRicate’s predictions. We also used PlasmidFinder with 

default parameters to perform an in silico detection and characterization of plasmid sequences 

(Carattoli et al. 2014). 

 

Recombination detection 

Using the core genome alignment, we calculated the pairwise homoplasy index test 

implemented in SplitsTree v.4.14.8 (Huson 1998) to determine the statistical likelihood of 

recombination being present in the entire dataset (Bruen, Philippe, and Bryant 2006). This 

statistic measures the genealogical correlation or similarity of adjacent nucleotide sites. Under 

the null hypothesis of no recombination, the genealogical correlation of adjacent sites is invariant 
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to permutations of the sites because all sites should have the same evolutionary history (Bruen, 

Philippe, and Bryant 2006). Significance of the observed index was estimated using a 

permutation test. We then visualized potential recombination events using SplitsTree, which 

integrates reticulations due to recombination in a phylogeny (Huson 1998). To identify the most 

frequently recombining genes across the genomes, we used fastGEAR (Mostowy et al. 2017) 

with default parameters on individual core and shared accessory genes identified by Roary. To 

test the significance of the inferred recombination events and identify false positives, we used the 

diversity test implemented in fastGEAR, which compares the diversity of the recombined 

fragment in question to its sequence background. Recombinations were visualized using R (R 

Core Team 2019) and the post-processing scripts provided by fastGEAR. We used EggNOG-

mapper v2 to perform orthology assignment for functional annotation of the recombined genes 

(Huerta-Cepas et al. 2017). The reference sequences of recombined genes were used as input to 

obtain the gene ontology IDs. We restricted our search only within the subphylum Epsilon-

proteobacteria to which Campylobacter belongs. These IDs were then used as input in the 

webtool PANTHER (Mi et al. 2019) to perform a statistical overrepresentation test to determine 

if the recombined genes were biased towards a specific ontological process. PANTHER 

classifies the ontological function of each recombined gene using different categories: Molecular 

Function, Cellular Component, Biological Process, Protein Class. 

 

Parameters used for all programs are listed in Table S1. 
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Data Availability 

 All Campylobacter genomic sequences generated under PulseNet USA surveillance 

(Tolar et al. 2019) are uploaded in real-time to the sequence read archive (SRA) hosted by the 

National Center for Biotechnology Information (NCBI). The genomes analyzed in this study are 

available in BioProject PRJNA239251. The genomes obtained from the 100K Pathogen Project 

were obtained from BioProject PRJNA186441. Accession numbers and Biosample IDs are listed 

in Table S1. 

 

RESULTS 

Genomic characteristics of C. jejuni in New Hampshire 

We sequenced the genomes of 52 clinical C. jejuni isolates collected in New Hampshire, 

USA in 2017 (Table S2). The genome sequences contain between 21-78 contigs and N50 values 

range between 34,459 - 197,591. De novo genome assemblies generated sequences of sizes 

ranging from 1.57-1.81 Mb (mean = 1.70 Mb). We used PlasmidFinder to determine if the 

variation in genome size could be attributed to the presence or absence of plasmids. No plasmids 

were detected in any of the New Hampshire genomes.  We next used Roary to estimate the pan-

genome of the entire C. jejuni dataset (Figure S1 and Table S3). Of the 4,335 gene families 

identified in the pan-genome, a total of 1,176 genes comprised the core genome (genes present in 

99% ≤ strains ≤ 100%), which represents approximately 27% of the pan-genome. The maximum 

likelihood phylogenetic tree based on the alignment of 83,210 core SNPs revealed lineages that 

have relatively little structure relative to the location of the healthcare provider (county) or date 

of collection (Fig. 1A). Genome-wide ANI values for every possible pair of C. jejuni genomes 
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ranged from 96.7 - 99.99% (mean = 98.26%) (Fig. 1B,C and Table S4). Together, the core genes 

(n = 1,176 genes) and the soft-core genes (n = 111 genes; genes present in 95% ≤ strains < 99%) 

constituted only 29.69% of the entire population’s pan-genome. Accessory genes can be 

categorized into shell (n = 881; genes present in 15% ≤ strains < 95%) and cloud genes (n = 

2,167; genes present in < 15% of strains). Together, both categories of accessory genes 

constituted 70.31% of the population's pan-genome. There was substantial strain-level variation 

in the New Hampshire population in terms of gene content. The number of protein-coding genes 

per genome ranged from 1,575 – 1,918 (mean = 1,743) (Fig. 1D). The number of accessory 

genes per genome ranged from 385-724 (mean = 539.8) (Fig. 1E). Many accessory genes were 

unique to individual strains (1,059 genes, representing 24.42% of the pan-genome), with 1-166 

singleton genes present per genome (Fig. 1F). 

 

 Our results from in silico MLST showed that the C. jejuni isolates belonged to 28 unique 

known STs (Fig. 1A, Table S5). Four novel STs found in five strains have MLST profiles that 

did not match known STs in the MLST database (Jolley, Chan, and Maiden 2004). We did not 

identify any one genome that dominated the entire population; instead, the population was 

composed of multiple STs represented only by one or few strains. The most common were STs 

48 and 50 which were represented by six and five strains, respectively. In this dataset, we also 

included a genome (SRR6152533) from one of the two isolates from New Hampshire that was 

part of the 2016-2018 multistate puppy-associated outbreak of multidrug resistant C. jejuni 

(Montgomery et al. 2018). This isolate has been identified as ST 2109. 
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Relationship of the New Hampshire C. jejuni isolates to the wider United States population 

 To place the genetic diversity and population structure of the New Hampshire C. jejuni 

isolates within the broader United States C. jejuni population, we used a genome dataset 

consisting of 249 clinical C. jejuni isolates primarily from stool specimens from the 100K 

Pathogen Project (Table S2) (Weimer 2017). These genomes represented 13 other states in the 

country. Pairwise genomic comparison in this merged dataset (i.e., 52 from New Hampshire and 

249 from the 100K Pathogen Project) revealed ANI values that ranged between 96.06 - 100% 

(mean = 98.23%) (Fig. 2, Table S4). Pan-genome analysis using Roary showed a total of 10,763 

genes in the pan-genome in the merged dataset, which was 2.48x more than the New Hampshire 

pan-genome alone. We identified only 937 core and 203 soft-core genes, which were 0.2x fewer 

and 1.8x more than the New Hampshire pan-genome, respectively. We also identified a total of 

423 genes (representing 3.93% of the pan-genome of the merged dataset) that were found 

exclusively in the New Hampshire population compared to the 6,150 (representing 57.1% of the 

pan-genome) found exclusively outside the state. A maximum likelihood tree generated using the 

alignment of the core genes showed that the phylogenetic clustering of isolates was independent 

of the state of origin and that the New Hampshire genomes were intermingled with those from 

other states (Fig. 2). 

 

Distribution of horizontally acquired ABR genes 

 Frequent horizontal gene transfer (HGT) characterize the evolutionary history of 

numerous bacterial species (Soucy, Huang, and Gogarten 2015), including Campylobacter 

(Sheppard and Maiden 2015). In many bacterial pathogens, HGT has greatly contributed to the 
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emergence and spread of many “superbugs” that have acquired resistance to a broad spectrum of 

antibiotics (Juhas 2015). We used the program ABRicate to determine the presence of 

horizontally acquired genes known to encode resistance to a range of different classes of 

antibiotics. We identified a total of 14 unique genes associated with ABR and which represent 

five different major classes of antibiotics (aminoglycosides, β-lactams, chloramphenicol-

florfenicol, streptothricin and tetracycline) (Fig. 3 and Table S6). Multiple independent 

acquisitions of resistance genes from the five major classes of antibiotics characterized the New 

Hampshire C. jejuni population, with 47/52 (90.4%) of the genomes carrying at least one 

horizontally acquired resistance gene. Five genomes (representing 9.6% of the population) 

carried at least one of the six genes that encode resistance against aminoglycosides. Of the five 

genes that encode for β-lactam resistance, one gene (blaOXA-605) was found in 38 genomes, 

representing 73% of the population. Four other genomes harbored three other unique genes that 

encode β-lactam resistance. Overall, we found that resistance to β-lactams is most common in 

the population, with a remarkable 80.77% of the population carrying at least one of the five β-

lactam resistance genes detected. Two genomes carried the sat4 gene, which confers 

streptothricin resistance, while 17 genomes harbor the tetO gene which confers tetracycline 

resistance. One genome (SRR5859317) contained at least one resistance gene for each of the 

four classes (aminoglycosides, β-lactams, streptothricin and tetracycline), while three genomes 

carried genes that encode resistance against three major classes of antibiotics. Notably, the 

isolate from the puppy outbreak shared at least three distinct ABR genes with the rest of the local 

population (aph(3')-IIIa, blaOXA-605, sat4) in addition to three other ABR genes that were unique 

to it (aad9, aadE, aph(2'')-Ih). It has been postulated that antibiotic use in puppies may have led 

to the emergence and transmission of multi-drug resistant C. jejuni isolates during the 2016-2018 
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outbreak (Montgomery et al. 2018). We also identified the likely presence of the multidrug 

resistance phenotype mediated by the plasmid-borne gene that encodes for Cfr rRNA 

methyltransferase, which confers resistance to phenicols, lincosamides, oxazolidinones, 

pleuromutilins, and streptogramin A antibiotics (Long et al. 2006; Tang et al. 2017), in five 

genomes. Lastly, we did not detect the presence of any one acquired resistance gene in five 

genomes (9.6% of the population). Overall, we found that many of the clinical C. jejuni isolates 

in the local population were carriers of a diverse suite of resistance genes that can be horizontally 

exchanged between strains. The outbreak isolate was not the only one that was multidrug 

resistant; at least six other isolates carry transferrable genes that encode resistance against 

multiple classes of antibiotics. 

 

Distribution of virulence determinants 

We also used ABRicate to determine the presence of virulence genes in C. jejuni (Fig. 3 

and Table S6). In all, we detected a total of 126 virulence-related genes. A total of 78 virulence 

genes were most common in the population and were found in at least 50 out of 52 genomes. The 

most common virulence genes in the New Hampshire C. jejuni population were those that 

encode for traits related to capsule, lipooligosaccharide, flagella-mediated motility, bacterial 

adherence to intestinal mucosa, invasive capability, toxin production and type four secretion 

system. Genes associated with adherence included those that function in capsule variation, 

binding to fibronectin, lipooligosaccharide and major outer membrane protein (porin) (Liu, Bo, 

Zheng, Dandan, Jin, Qi, Chen, Lihong, Yang 2019). Some virulence genes were particularly 

noteworthy and will be discussed here.  
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The cytolethal distending toxin (cdt) is one of the well-characterized virulence factors 

of C. jejuni and is reported to be associated with local acute inflammation in enterocolitis 

(Hickey et al. 2000), hyper-invasion (Baig et al. 2015) and colorectal tumorigenesis (He et al. 

2019). The C. jejuni cdt operon, consisting of cdtA, cdtB, and cdtC, encodes a multi-subunit 

holotoxin that has DNAse activity and induces DNA double-strand breaks (Lara-Tejero and 

Galán 2001; Bezine, Vignard, and Mirey 2014). While the presence of a single cdt gene does not 

have any effect on the virulence of C. jejuni, it has been reported that the presence of all 

three cdt genes results in the release of a functional cytotoxin (Lara-Tejero and Galán 2001). It is 

therefore not surprising that all three genes were found in at least 90% of the New Hampshire 

population, which consists solely of human clinical isolates. The cdt genes were present at high 

frequencies: cdtA in 51/52 genomes, cdtB in 47/52 genomes, and cdtC in 52/52 genomes. 

However, 1/52 and 5/52 genomes also possess ctdA and cdtB, respectively, but have <95% 

sequence coverage that may be due to sequencing errors. 

 

C. jejuni is the most frequent pathogen associated with acute immune-mediated 

neuropathies GBS and Miller-Fisher Syndrome, which can cause acute flaccid paralysis in 

humans (Taboada et al. 2018; Yu, Usuki, and Ariga 2006). It has been previously reported that 

ganglioside mimicry by the C. jejuni lipooligosaccharide is a critical factor in eliciting the two 

neuropathies (Yu, Usuki, and Ariga 2006). The gene wlaN encodes β-1,3 galactosyltransferase, 

which is involved in the biosynthesis of ganglioside-mimicking lipooligosaccharide in C. jejuni 

(Linton et al. 2000). We detected wlaN in two genomes in the New Hampshire population. 

Previous studies on the prevalence of wlaN in C. jejuni from other geographical regions report 

similar low frequencies (e.g., 13-17% in 624 C. jejuni isolates from humans and poultry in 
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Poland (45); 7.5% in 58 stool isolates in Bangladesh (Talukder et al. 2008); 10% in 111 human, 

animal and environmental isolates in Brazil (Frazão et al. 2017)). In contrast, another study 

reports that, of the 40 isolates of C. jejuni from human, bovine and turkey sources, wlaN was 

more prevalent and was detected in 46.7 % of strains that exhibit no or weak colonization and 

invasion capacity and in 60 % of strains with strong colonization and invasion capacity (Müller et 

al. 2007). Sialylated lipooligosaccharide has been reported to have the potential to also produce 

ganglioside mimics and induce GBS (Neal-McKinney et al. 2018). The gene cstIII, which 

encodes a lipooligosaccharide sialyltransferase, is reported to be also associated with neuropathy 

(Neal-McKinney et al. 2018). In the New Hampshire C. jejuni population, a total of nine strains 

carried the cstIII gene. For comparison, previous studies report the presence of cstIII in 30.8% of 

266 isolates of human, chicken, bovine and turkey origin in Germany (Zautner et al. 2012) and in 

18.9% of 827 genomes analyzed by the Food and Drug Administration Pacific Northwest 

Laboratory (Neal-McKinney et al. 2018). 

 

 Glycosylation of Campylobacter flagellins with pseudaminic acid and its derivative has 

been previously shown to be essential for flagellar assembly and motility, which are required for 

colonization of the mucus lining of the gastrointestinal tract (Guerry 2007; Chidwick and 

Fascione 2020). The genes pseA-I are required for the biosynthesis and/or transfer of 

pseudaminic acid to the flagellin (Guerry 2007; Chidwick and Fascione 2020). In the New 

Hampshire population, we found that these genes were differentially distributed among genomes: 

52/52 genomes have pseB, pseC, pseF, pseG and pseI; 51/52 genomes have pseA; 7/52 genomes 

have pseD; 42/52 genomes have pseE; and 48/52 genomes have pseH. Such variation in the 

distribution of individual genes of an operon among closely related strains is not uncommon and 
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may be indicative of frequent in situ gene displacement through gene gain and loss, which does 

not often result to losing the integrity and function of the operon (Omelchenko et al. 2003). The 

differential distribution of these genes may also contribute to the generation of variation in 

flagellin glycosylation among strains that can influence antigenic diversity in C. jejuni (Guerry 

2007). 

 

Reticulated evolution due to frequent recombination in New Hampshire genomes 

Recombination plays an important role in the evolutionary history of C. jejuni (Wilson et 

al. 2009; Woodcock et al. 2017). Here, we aimed to elucidate to what extent recombination 

contributes to the genomic structure of C. jejuni at the local scale. Using the pairwise homoplasy 

index statistic, we detected evidence for significant recombination in the core genome (p-value 

<< 0.01). Recombination in C. jejuni core genome can be visualized using NeighborNet 

implemented in SplitsTree4 (Huson 1998), which showed the phylogenetic reticulations due to 

recombination (Fig. 4A). We then used fastGEAR to estimate recombination in core genes and 

shared accessory genes (Mostowy et al. 2017) (Table S7). In the New Hampshire C. jejuni 

population, the lengths of the recombination fragments greatly varied. Overall, the sizes of 

recombination events followed a geometric distribution, with majority of the recombination 

encompassing short DNA segments and a median size of 116 bp (Fig. 4B). Large recombination 

events (>2,000 bp) occurred less frequently, with the longest recombination blocks detected in 

three genomes (SRR5278283 [ST 475], SRR6014507 [ST 48], SRR6014981 [ST 475]). Similar 

patterns of frequent micro-recombinations and rare macro-recombinations (Mostowy et al. 2014) 

have been reported in other bacterial pathogens, such as Streptococcus pneumoniae and 

Salmonella enterica (Mostowy et al. 2014; Park and Andam 2020). Such patterns have been 
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reported to greatly contribute to shaping the genomic and phenotypic heterogeneity, including 

resistance and pathogenicity characteristics, of a pathogen species (Mostowy et al. 2014; Park 

and Andam 2020; David et al. 2017). 

 

We also used fastGEAR to identify the genes that were frequently recombined. A total of 

1,071 genes representing 24.7% of the pan-genome have experienced recombination (Fig. 4C 

and Table S7). Of these genes, 1,020 were involved in recent recombination (i.e., recombination 

affecting a few strains) and 224 in ancestral recombination (i.e., recombination affecting entire 

lineages) (Fig. 4C). Some of the most frequently recombining genes with known function that 

fastGEAR detected included those that may contribute to virulence and adaptation. The gene 

product MutS2 has been reported to be associated with the overall function of preserving 

genomic integrity by inhibiting homologous recombination (Pinto et al. 2005). The gene 

products of hddA (D-glycero-D-manno-heptose 7-phosphate kinase) and gmhA (phosphoheptose 

isomerase) are involved in heptose biosynthesis (Liang et al. 2016). Modifications in capsular 

heptose have been shown to contribute to C. jejuni colonization and persistence in the 

gastrointestinal tract (A. Wong et al. 2015). The gene product of nspC (carboxynorspermidine 

decarboxylase) is involved in the biosynthesis of the polyamine norspermidine, which functions 

in biofilm formation (Wotanis et al. 2017). The carbamoyltransferase encoded by hypF aids in 

the maturation of [NiFe] hydrogenases in Escherichia coli (Paschos et al. 2002). hypF mutants 

have been shown to exhibit loss of resistance against extreme acidic conditions (Hayes et al. 

2006) as in the case during passage through the stomach (Reid et al. 2008). Lastly, it is curious 

that dltA was identified as frequently recombining in the gram-negative C. jejuni. The dlt operon 

functions in the D-alanylation of teichoic acids in gram-positive bacteria and has been shown to 
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confer resistance to antimicrobial peptides (Kovács et al. 2006). A previous study reported the presence 

of the dlt operon in three gram-negative genera (Erwinia, Bordetella and Photorhabdus) and was 

thought to have been acquired by HGT (Abi Khattar et al. 2009).  

 

To further elucidate the general functions of the recombined genes, we used EggNOG-

mapper v2 and PANTHER to perform orthology prediction and functional annotation. Of the 

1,071 genes inferred by Roary to have had experienced recombination, EggNOG-mapper v2 did 

not retrieve gene ontology results for 795 genes. Using PANTHER, we classified the remaining 

276 genes based on different functional categories: molecular function, biological process, 

cellular component and protein class (Table S8 and Figure S2). A total of 149 genes can be 

classified as having catalytic activity. A total of 131 genes were associated with metabolic 

processes. A total of 69 genes were associated with a variety of cellular components or the 

cytoplasm and 19 genes associated with the cell membrane. Lastly, 137 genes were associated 

with metabolic interconversion enzymes. Overall, our recombination analysis shows that even 

within a single year of sampling, the standing pan-genomic variation in a local population is 

amplified through frequent but variable recombination of genes associated with a variety of 

functions, which can greatly contribute to C. jejuni’s potential to evolve rapidly (Sheppard and 

Maiden 2015). 

 

DISCUSSION 

Rapid advances and declining costs in whole genome sequencing are transforming the 

public health system. Pathogen genomics is expected to become an integral part of a systematic 
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surveillance required to monitor emerging trends in disease epidemiology, including 

campylobacteriosis, which will allow for earlier detection and more precise investigations of 

outbreaks, transmission, virulence and drug resistance (Grad and Lipsitch 2014; Gaiarsa et al. 

2015). Pathogen genomic surveillance should include long-term monitoring of the standing 

pathogen diversity in any local population at a fine-scale resolution to provide a baseline census 

of antibiotic resistant and other high-risk clones circulating within a region, from local to global 

scales. Such information is integral in epidemiological studies and clinical decision making in 

managing Campylobacter infections. In this study, we analyzed the genomic diversity of 52 

clinical isolates of C. jejuni in the state of New Hampshire in 2017. This dataset was selected in 

order to assess the background genomic variation in C. jejuni during the 2016-2018 puppy-

associated outbreak of multidrug resistant C. jejuni in the United States. Our analysis included 

one of the two outbreak isolates that were reported in the state. Results revealed a remarkably 

high phylogenetic and genomic diversity of strains co-circulating in the wider New Hampshire 

C. jejuni population. Our results showed lack of geographical structure and minimal local 

diversification within the state. We did not detect evidence for clonal expansion shaping the local 

population structure; the co-circulation of multiple STs suggest multiple introduction and 

widespread dissemination of divergent C. jejuni lineages between multiple counties in New 

Hampshire as well as between states, which may be facilitated by the constant movement of 

agricultural products, animals and people.  

 

The rapid evolution and diversification of C. jejuni within only a single year has also 

been facilitated by frequent recombination and HGT, which has been often observed in previous 

studies of C. jejuni (Vegge et al. 2012; Sheppard et al. 2014; Mourkas et al. 2019). We present 
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different lines of evidence to demonstrate the contribution of these processes in shaping the 

genomic structure of the New Hampshire population. First, we found that accessory genes are 

differentially distributed among strains, likely due to rapid gene gain and loss, which contributes 

to the overall genomic diversity of the local population. The variable distribution of accessory 

genes between strains is often attributed to adaptation to specific ecological niches (McInerney, 

McNally, and O’Connell 2017; Chaudhry and Patil 2020), even within the same host (Stoesser et 

al. 2015; Chung et al. 2017). For example, mobile integrated elements and plasmids were 

reported to be more common in fecal than blood C. jejuni isolates, while a hybrid capsule locus 

was more common in blood than fecal isolates (Skarp et al. 2017). Here, we show that even 

among fecal isolates, there is substantial heterogeneity in accessory gene content, which may 

indicate either neutral evolution due to random processes (Haegeman and Weitz 2012) or the 

existence of cryptic ecological niches (Sheppard et al. 2014) in the gastrointestinal tract that 

selects for certain adaptive genes. Second, the population harbors numerous horizontally 

acquired resistance determinants from five major classes of antibiotics. The origins and direction 

of transfer of these genes remain uncertain, but it is safe to assume that their acquisition and 

mobility may have greatly contributed to the overall distribution of ABR genes in the local 

population. The outbreak isolate has been previously characterized as multidrug resistant 

(Montgomery et al. 2018). Our analysis shows that it harbors six horizontally acquired resistance 

genes, three of which were unique to it and another three that were shared with other New 

Hampshire genomes. Yet it is remarkable that the genome sequences of the rest of the population 

revealed that many of the isolates were also drug resistant, with resistance to beta-lactams the 

most common. A few multidrug resistant genomes were also detected. Hence, while the outbreak 

isolate did not spread through clonal expansion within the state, the risk of widespread 
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dissemination of resistance genes through HGT among C. jejuni lineages is a serious public 

health threat and must be considered in the implementation of control measures and antibiotic 

stewardship practices. Lastly, frequently recombining genes include those associated with 

heptose biosynthesis, colonization and stress resistance, all of which can have a substantial impact 

on the pathogen’s adaptive potential. This includes the rapid emergence of novel phenotypes (Sheppard 

and Maiden 2015; Golz et al. 2020), such as multidrug resistance (Lopes et al. 2019) and the ability 

to colonize a specific host (i.e., specialists) or multiple hosts (i.e., generalists) (Woodcock et al. 2017). 

Because increased genetic variation leads to more rapid adaptation (Arber 2000), populations 

have a broader reservoir of mobile accessory genomic variants that can be mixed and matched in 

individual genomes through frequent recombination, which would suggest that individual strains 

each has a unique suite of capabilities to adapt to their environment.  

 

Defining the baseline genomic diversity of a pathogen in a local population is integral to 

elucidating the ecological factors that sustain the co-circulation of diverse and drug resistant 

lineages. It will aid in the development of a statewide database for epidemiological studies and 

clinical decision in response to changing selective pressures and during disease outbreaks (Grad 

and Lipsitch 2014; Gaiarsa et al. 2015). This is particularly important to precisely identify and 

trace high-risk clones in the local population that can disseminate easily or accumulate additional 

resistance mechanisms. While the 2017 genomes were phylogenetically diverse, represented by 

28 unique known STs, it remains unclear whether there are certain lineages that will become 

more successful over the long term, e.g., hyper-virulent, hyper-recombinant, highly transmissible 

or multidrug resistant. Only continuous genomic surveillance of the local population over many 

years will allow us to determine the bacterial population dynamics within the state. Nevertheless, 
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our study provides the initial genomic surveillance of C. jejuni for New Hampshire, which can 

be built on in future years to track the evolutionary changes that underlie phenotypic and 

population shifts of high-risk or super-fit clones over time. 

 

 A few limitations need to be acknowledged. First, bacterial samples were based on what 

were received by the NH DHHS from local health providers and may not fully reflect the clinical 

C. jejuni diversity present in the entire state. It is likely that numerous and genetically distinct 

lineages in the clinical setting circulate in New Hampshire but remain undiscovered or 

undetected (e.g., if a strain causes less severe symptoms in a patient during infection and thus 

may not seek medical intervention). The broad phylogenetic and pan-genomic diversity of the 

New Hampshire population paired with a low sample size in this study suggests that we have 

merely touched on the existing diversity of this pathogen within the state. It is possible that one 

or few of the 28 STs are already undergoing clonal expansion and more predominant in certain 

regions in New Hampshire, yet remain invisible to current surveillance schemes. Hence, future 

genomic studies should involve a more systematic sampling and active surveillance of patients 

from healthcare providers across the state in order to target certain counties and localities if 

needed (e.g., during outbreaks). Such statewide strategy across the country will also allow us to 

precisely define the phylogenetic relationships of C. jejuni co-circulating across the country and 

map the geographical dispersal of specific clones of interest. Unfortunately, our dataset does not 

include an extensive amount of clinical, phenotypic or other epidemiological information for 

each isolate because of how the sampling scheme was set up in the state. This is another 

important lesson we can learn from this study and apply to future genomic surveillance systems 

within the state. We strongly advocate for sampling and surveillance schemes of infectious 
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diseases, including Campylobacter infections, in the state of New Hampshire that include such 

pertinent information. Second, only clinical isolates were included in this study, which certainly 

posed limitations on elucidating the statewide diversity of the pathogen. Asymptomatic 

individuals may carry a genetically distinct C. jejuni population that remains to be characterized 

(G. G. Perron et al. 2012; Chisholm et al. 2018). Moreover, because campylobacteriosis is often 

associated with contaminated food products and exposure to animals (Kaakoush et al. 2015), 

whole genome sequencing of isolates from various sources (agricultural and food production 

settings, domestic animals, wild animals, environment) should be a major component of studies 

of disease ecology and epidemiology. Many reservoirs of C. jejuni are yet to be identified and 

bacterial populations from these sources undoubtedly contain many lineages that are yet to be 

described. Sampling and sequencing from non-clinical sources will provide valuable insights into 

the sources of horizontally acquired ABR genes, routes and mechanisms of transmission from 

agricultural and environmental reservoirs to humans, and genetic bases of bacterial adaptation to 

specific ecological niches (e.g., host versus non-host). Widespread application of whole genome 

sequencing of foodborne pathogens and other zoonotic diseases across the entire spectrum of the 

One Health paradigm (Destoumieux-Garzón et al. 2018) will therefore greatly facilitate public 

health interventions across multiple sectors. Lastly, next generation sequencing methods remain 

imperfect. In silico identification of any genetic elements, including resistance genes, relies on 

high-quality sequencing output. Genome sequencing failures are known to occur with any 

sequencing platform. Possible sources of errors include low number of reads, high incidence of 

unidentified or unreliable nucleotide calls (represented by "N"), high positional bias within the 

flowcell, and poor overall sequence qualities. The New Hampshire genomes used in our study all 

have <100 contigs, which is generally satisfactory in many bacterial genome studies. Application 
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of whole genome sequencing in public health laboratories is expected to improve the quality of 

sequences given the ongoing and rapid development in sequencing, DNA library preparation and 

bioinformatics technologies. 

 

Whole genome sequencing is a powerful tool that provides timely, accurate and granular 

information about a pathogen that can be translated to public health action. The NH DHHS has 

only recently started sequencing bacterial genomes of select pathogens. This study presents some 

of the initial results of the state's initiative to implement whole genome sequencing in public 

health laboratories. It is expected that our results will reinforce the need to incorporate pathogen 

genomics as an integral component of New Hampshire's disease surveillance, control, clinical 

decisions and policy making. Here, we present an analysis of the standing pan-genomic variation 

of clinical C. jejuni within a local region in the United States. We conclude that the diversity of 

clinical C. jejuni in New Hampshire in 2017 was driven mainly by the co-existence of 

phylogenetically diverse antibiotic resistant lineages, widespread geographical mixing, and 

frequent recombination. Continued genomic surveillance will be necessary to assess how the 

local population of C. jejuni changes over the long term and in response to changing selective 

landscapes within the state.  
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FIGURES 

Figure 1. Phylogenetic relationships and pan-genome characteristics of the 52 C. jejuni isolates. 

(A) The phylogeny was reconstructed using 83,210 core SNPs. Scale bar represents the number 

of nucleotide substitutions per site. Asterisk indicates the genome of the C. jejuni from the multi-

state puppy outbreak. (B) Frequency distribution of all pairwise ANI values. (C) ANI values 

were calculated for every pair of genomes in the entire dataset. Bar plots show the number of (D) 

protein coding genes, (E) accessory genes and (F) singleton genes per genome. Singleton genes 

those that are unique to an individual genome. 
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Figure 2. Phylogenetic relationships of 52 C. jejuni isolates combined with 249 isolates 

from 13 other states in the United States. The genome sequences of the latter were obtained from 

the 100K Pathogen Project. The phylogeny was constructed from the alignment of 937 core 

genes. Scale bar represents the number of nucleotide substitutions per site. ANI values were 

calculated for every pair of genomes in the entire dataset. Colored strip represents the state of 

origin for each isolate. Colored strips representing New Hampshire are elongated to distinguish 

them from the rest of the United States population. 
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Figure 3. Summary of ABR and virulence profiles of individual C. jejuni genomes. 

Names of horizontally acquired resistance genes are on the left and colored by antibiotic class. 

Names of virulence genes are listed on the right. Solid blocks indicate presence of gene (≥95% 

sequence coverage), wavy blocks indicate questionable presence (<95% sequence coverage), and 

empty boxes indicate the absence of the gene. The tree is identical to that in Fig. 1. Only those 

virulence genes that are differentially distributed among strains are shown here. A 

comprehensive list of all virulence genes identified in each strain is shown in Table S6. 
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Figure 4. Recombination characteristics of the New Hampshire C. jejuni. (A) 

Phylogenetic SplitsTree network generated from the core genome alignment. Scale bar 

represents nucleotide substitutions per site. (B) Frequency distribution of the size of recombined 

DNA segments. (C) Genes that have undergone recent and/or ancestral recombination. For 

clarity, names of some of the most frequently recombined genes with known functions are 

shown. A list of all recombination events is presented in Table S7. 
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ABSTRACT 

Salmonella enterica, the causative agent of gastrointestinal diseases and typhoid fever, is a 

human and animal pathogen which causes significant mortality and morbidity worldwide. The 

use of whole genome sequencing in surveillance and monitoring of Salmonella infections creates 

tremendous opportunities to elucidate the genetic basis of antimicrobial resistance, virulence and 

diversity of S. enterica circulating in the community. In this study, we present our findings on 

the genomic diversity and phylogenetic relationships of 63 S. enterica isolates from human 

clinical specimens reported to the Department of Health and Human Services (DHHS) in the 
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state of New Hampshire, United States in 2017. We found a remarkably large genomic, 

phylogenetic and serotype variation among the S. enterica isolates co-circulating across the state, 

dominated by serotypes Enteritidis (sequence type [ST] 11), Heidelberg (ST 15) and 

Typhimurium (ST 19). We found that nearly all of the clinical S. enterica isolates carry 

numerous genetic determinants that confer resistance to multiple classes of antimicrobials, most 

notably aminoglycosides, fluoroquinolones and macrolides. Majority of the isolates (48 out of 

63) carry at least four resistance determinants per genome. We also detected the genes mdtK and 

mdsABC that encode multidrug efflux pumps and the gene sdiA that encodes a regulator for a 

third multidrug resistance pump. Our results indicate rapid microevolution and geographical 

dissemination of multidrug resistant lineages over a short time span. These findings are critical to 

aid the DHHS and similar public health laboratories in the development of effective disease 

control measures, epidemiological studies and treatment options for serious Salmonella 

infections. 
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INTRODUCTION 

 Infections due to Salmonella enterica remains a major public health concern worldwide. 

The medical costs associated with surveillance, prevention and treatment further exacerbates the 

economic burden caused by Salmonella infections. Control of Salmonella infections is difficult 

partly because of the vast number and diversity of Salmonella serotypes. To date, more than 

2,500 serotypes have been recognized (X. Zhang, Payne, and Lan 2019; Brenner et al. 2000), 

which display a broad range of epidemiological (e.g., virulence features, modes of transmission, 

disease outcomes, response to clinical interventions), ecological (e.g., host range, unique 

reservoirs, seasonal distribution) and evolutionary (e.g., rates of recombination) features (Gal-

Mor, Boyle, and Grassl 2014; Judd et al. 2019; Jones et al. 2008). S. enterica serotypes are 

broadly divided into typhoidal and non-typhoidal based on the disease they cause 

(Balasubramanian et al. 2019; Darton, Blohmke, and Pollard 2014; Gal-Mor, Boyle, and Grassl 

2014). The typhoidal serotypes (Typhi and Paratyphi) often cause severe systemic diseases in 

humans while the non-typhoidal serotypes mostly cause diarrhea, fever and abdominal cramps 

(Balasubramanian et al. 2019; Darton, Blohmke, and Pollard 2014; Gal-Mor, Boyle, and Grassl 

2014). 

  

 Severe Salmonella infections can lead to death unless treated with antimicrobials (Crump 

et al. 2015; Stanaway et al. 2019). However, antimicrobial resistance in S. enterica has been 

increasing in the last four decades (Britto et al. 2018; Hawkey et al. 2019; Leekitcharoenphon et 

al. 2016). In the 2019 report of the United States Centers for Disease Control and Prevention 

(CDC) on antimicrobial resistance, both drug-resistant non-typhoidal and typhoidal Salmonella 

are considered to be serious level threats to human health (CDC 2019). In the United States, the 
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CDC estimates that non-typhoidal Salmonella causes an estimated 1.35 million infections, 

26,500 hospitalizations, and 420 deaths annually, resulting in an estimated $400 million in direct 

medical costs (CDC 2019). Of these, 212,500 infections and 70 deaths every year are due to 

drug-resistant non-typhoidal Salmonella (CDC 2019). Salmonella serotype Typhi, which causes 

the potentially life-threatening typhoid fever (Britto et al. 2018; Darton, Blohmke, and Pollard 

2014), causes an estimated 5,700 infections and 620 hospitalizations each year in the United 

States (CDC 2019). Of these, drug-resistant Salmonella Typhi results to 4,100 estimated 

infections and <5 deaths each year (CDC 2019). The emergence and geographic spread of 

multidrug resistance (i.e., resistant to three or more classes of antimicrobials) and resistance to 

currently antibiotics used for treatment such as ceftriaxone and ciprofloxacin (Klemm et al. 

2018b; Mather et al. 2018; M. H. Y. Wong et al. 2014; Hawkey et al. 2019) is severely 

diminishing treatment options for Salmonella infections.  

  

 Salmonella infections are a nationally notifiable disease in the United States. Molecular 

surveillance activities based on pathogen subtyping and antimicrobial non-susceptibility testing 

are therefore important measures for tracking and controlling Salmonella infections by regional 

public health agencies. The use of whole genome sequencing by public health laboratories 

creates tremendous opportunities to elucidate the genetic basis of antimicrobial resistance, 

virulence and diversity of S. enterica circulating in the community. In this study, we present our 

findings on the genomic diversity and phylogenetic relationships of S. enterica isolates from 

human clinical specimens reported to the Department of Health and Human Services (DHHS) in 

the state of New Hampshire, United States in 2017. Our results reveal a genetically diverse 

assembly of multidrug resistant lineages and serotypes of S. enterica found across the state, 
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which can inform effective disease control, outbreak investigations and case studies of 

Salmonella infections in the region. 

 

METHODS 

Bacterial isolates 

 Isolates were submitted to the Public Health Laboratories, New Hampshire DHHS in 

Concord, New Hampshire, USA in 2017. These isolates were received from New Hampshire 

health care providers and were collected primarily from individuals diagnosed with Salmonella 

infection. Most of the Salmonella isolates were recovered from stool, while a few were obtained 

from bile, blood and urine. The state of New Hampshire considers Salmonella infections as a 

reportable disease and the DHHS strongly encourages isolate submission to the Public Health 

Laboratories. However, submission of isolates is not mandatory. No identifiable information is 

associated with the isolates submitted by the health care providers. In total, our data includes 63 

isolates (Supplementary Table S1). 

 

DNA extraction and whole genome sequencing  

 Sequencing of Salmonella isolates is part of the CDC-sponsored program PulseNet 

surveillance, a United States national laboratory network that connects foodborne illness cases to 

detect outbreaks (Tolar et al. 2019). DNA extraction, library preparation and whole genome 

sequencing were done following the PulseNet USA standard operating procedures 

(https://www.cdc.gov/pulsenet/index.html). Briefly, DNA extraction procedures were conducted 

using the DNeasy Blood & Tissue Kit (Qiagen, Valencia CA). DNA quality and concentration 

were measured using Qubit fluorometer and NanoDrop spectrophotometer. A total of 1 ng of 
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genomic DNA from each isolate was used to construct sequencing libraries using the Nextera XT 

DNA Library Preparation Kit (Illumina, Inc. San Diego, CA) per manufacturer’s instructions. 

Samples were sequenced as multiplexed libraries on the Illumina MiSeq platform operated 

following the manufacturer’s instructions for 500 cycles to produce paired end reads of 250 bp in 

length. The MiSeq sequencer is housed at the New Hampshire DHHS Public Health 

Laboratories. 

 

De novo genome assembly, annotation, pan-genome and phylogenetic analyses  

 We used the Nullarbor pipeline v2.0 (https://github.com/tseemann/nullarbor) to perform 

read trimming, quality assessment, contig assembly, gene annotation, pan-genome, ST 

identification, sequence alignment and phylogenetic analysis of the entire dataset. The Nullarbor 

pipeline can be briefly described as follows: Adapters were trimmed using Trimmomatic v0.38 

(Bolger, Lohse, and Usadel 2014). Trimmed reads were assembled into contigs using SKESA 

v2.3.0 (Souvorov, Agarwala, and Lipman 2018). using an S. enterica subsp. enterica serovar 

Typhimurium str. LT2 reference genome obtained from the RefSeq database (Accession ID: 

GCF_000006945.2) of the National Center for Biotechnology Information (NCBI). Quality of 

genome assemblies was assessed using Quast (Gurevich et al. 2013). Assembled genomes were 

annotated using Prokka v1.13.3 (T. Seemann 2014) with default parameters. To determine the 

degree of overall genomic relatedness between genomes, we calculated the genome-wide 

average nucleotide identity (ANI) for all possible pairs of genomes using the program FastANI 

(Jain et al. 2018). ANI estimates the average nucleotide identity of all orthologous genes shared 

between any two genomes (Jain et al. 2018). Pairwise ANI values and plots were generated and 

visualized using R (R Core Team 2019). 
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 We used Roary v3.12.0 (Page et al. 2015) to characterize the pan-genome of the New 

Hampshire S. enterica dataset. The presence or absence of genes was visualized using post-

processing scripts provided by the Roary program. Each orthologous gene family was aligned 

using MAFFT 7.407 (Kazutaka Katoh, Rozewicki, and Yamada 2017). The ST of each isolate 

was determined using the program mlst (multilocus sequence typing; 

https://github.com/tseemann/mlst), which extracts the sequences of seven housekeeping genes 

(aroC, dnaN, hemD, hisD, purE, sucA, thrA) from the Illumina raw sequences and compares 

them to the S. enterica MLST database (www.mlst.net) (Jolley, Chan, and Maiden 2004). Mobile 

genetic elements were identified from the assembled contigs using IslandViewer 4 (Bertelli et al. 

2017), PlasmidFinder (Carattoli et al. 2014) and ViralRecall 

(https://github.com/faylward/viralrecall) to identify genomic islands, plasmids and prophages, 

respectively. Single nucleotide polymorphisms (SNPs) from the core genes were identified and 

aligned using Snippy v4.3.6 (https://github.com/tseemann/snippy) and were used to generate a 

maximum likelihood phylogeny  with a general time reversible (GTR) nucleotide substitution 

model (Tavaré 1986) and four gamma categories for rate heterogeneity using the program IQ-

TREE v1.6.9 (Nguyen, Lam-Tung, Schmidt, Heiko A., Haeseler, Arndt von, Minh 2015). 

Phylogenetic trees were visualized using iToL v5.5.1 (Letunic and Bork 2016). Statistical 

analysis of gene content differences between genomes was carried out using Mann-Whitney U 

pairwise tests (Mann and Whitney 1947) with Bonferroni adjusted p-values (Bonferroni 1936). 

 

 Serotype identification was carried out using both conventional phenotypic serotyping 

and genome-based methods. First, serotype was determined by agglutination of the bacterium 

with specific antisera to identify variants of the two surface structures O and H antigens based on 
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the WKL scheme (Grimont and Weill 2007). Second, we used a k-mer-based algorithm called 

SeqSero2 that uses raw reads to predict serotypes defined by the O and H antigens (S. Zhang et 

al. 2019). The k-mers were then compared to the serotype determinant database composed of the 

sequences of the wzx and wzy genes for the O antigen and the fliC and fljB genes for the H 

antigen (S. Zhang et al. 2019). 

 

In silico identification of antimicrobial resistance genes 

 We screened all genomes for known resistance genes using a local assembly and contig 

mapping method called Antimicrobial Resistance Identification By Assembly (ARIBA) (Hunt et 

al., 2017). ARIBA identifies both horizontally acquired resistance genes and chromosomal 

mutations associated with resistance by mapping reads to a reference database. We used the 

Comprehensive Antibiotic Resistance Database (CARD) (McArthur et al., 2013) for comparison 

with the New Hampshire genomes. Sequence comparison was carried out by matching contigs to 

their closest reference sequence using MUMmer (Kurtz et al., 2004). 

 

Data availability 

 All S. enterica genomic sequences generated under PulseNet USA surveillance (Tolar et 

al. 2019) are uploaded in real-time to the sequence read archive (SRA) hosted by NCBI. The 

genomes analyzed in this study are available in BioProject PRJNA230403. Accession numbers 

and Biosample IDs for the New Hampshire genomes are listed in Supplementary Table 1. 
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RESULTS 

Genomic and phylogenetic characteristics of S. enterica in New Hampshire 

 We sequenced the genomes of 63 clinical S. enterica isolates collected from ten counties 

in New Hampshire, USA in 2017 (Fig. 1a and Supplementary Table 1). The isolates came from 

stool (n = 56 isolates), urine (n = 4), blood (n = 2) and bile (n = 1). The genome sequences 

contain between 21 – 126 contigs and N50 values range between 71,043 and 708,941bp 

(Supplementary Table 1). De novo genome assemblies generated sequences of sizes ranging 

from 4.51 – 5.03 Mb (mean = 4.74 Mb) (Supplementary Table 1). We used Roary to estimate the 

pan-genome (Page et al., 2015) of the entire New Hampshire S. enterica dataset. The pan-

genome is defined as the totality of genes in a set of strains (Medini et al. 2005). Of the 9,850 

gene families identified in the pan-genome, a total of 3,407 genes comprised the core genome 

(i.e., a core gene is present in 99% ≤ strains < 100%), which represents approximately 34.6% of 

the pan-genome. The maximum likelihood phylogenetic tree based on the alignment of 169,002 

core SNPs revealed little overall population structure relative to the location of the healthcare 

provider (county) and date of collection (Fig 1a). Genome-wide ANI values (Jain et al. 2018) for 

every possible pair of S. enterica genomes ranged from 97.9 – 99.9% (mean = 98.8%) (Fig 1b 

and c). Together, the core genes (n = 3,407 genes) and the soft-core genes (n = 211 genes; 

defined as those genes present in 95% ≤ strains < 99%) constitute only 36.7% of the entire 

population’s pan-genome. Accessory genes can be categorized into shell (n = 1,600 genes; 

defined as those genes present in 15% ≤ strains < 95%) and cloud genes (n = 4,632 genes; 

defined as those genes present in < 15% of strains). Together, both categories of accessory genes 

constitute 63.3% of the population’s pan-genome. There was substantial strain-level variation in 

the New Hampshire population in terms of gene content. The number of protein-coding genes 
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per genome ranged from 4,190 – 4,758 (mean = 4446) (Fig 1d). The number of accessory genes 

per genome ranged from 427 – 898 (mean = 666) (Fig 1e). Many accessory genes were also 

unique to individual strains (2,519 genes representing 25.6% of the pan-genome), with 0 – 366 

singleton genes identified per genome (Fig 1f). 

  

 Our results from the in silico MLST analysis showed that the S. enterica isolates 

belonged to 20 unique known STs (Fig. 1a). One novel ST found in a single strain had a MLST 

profile with no known match to the MLST database (Jolley, Chan, and Maiden 2004). We also 

identified a total of 18 serotypes using SeqSero2 (S. Zhang et al. 2019). The most common 

serotypes in the New Hampshire population were Enteritidis (ST 11), Heidelberg (ST 15) and 

Typhimurium (ST 19), which were represented by 15, 9, and 10 isolates respectively. Except for 

one genome, serotypes identified using the conventional phenotypic serotyping assay and the in 

silico method implemented in SeqSero2 were in concordance. Genome SRR6026010 was 

identified as serotype Panama by the former method but serotype Javiana by the latter. However, 

the core genome tree showed the isolate falling within the Javiana serotype cluster (Fig. 1a). We 

detected two typhoidal serotypes Typhi (ST 2) and Paratyphi B (ST 43), while the rest were all 

non-typhoidal. 

 

 Isolates from urine and blood were intermingled with the stool isolates and did not form 

source-specific clusters in the phylogenetic tree (Fig. 1a). The four urine isolates were 

represented by ST 1674 serotype Javiana, ST 32 serotype Reading, and two isolates of ST 11 

serotype Enteriditis. The blood isolates were represented by ST 11 serotype Enteriditis and ST 
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19 serotype Typhimurium. Lastly, the single isolate from bile was represented by ST 23 serotype 

Oranienburg.  

 

Genomic variation between closely related strains 

 The three most prominent STs were 11, 15 and 19, all of which correspond to the three 

common serotypes described above. We found genome content variation among members of 

each of the three STs. The core genome of each ST consisted of 4,311, 4,425 and 4,294 genes for 

STs 11, 15 and 19, respectively, while the accessory genome consisted of 624, 25 and 870 genes 

for STs 11, 15 and 19, respectively (Fig. 2a). Comparisons of these three STs revealed 

significant differences between their pan-genomes. Genomes within ST19 consistently 

demonstrated greater genomic diversity with higher counts of mobile genetic elements consisting 

of pathogenicity islands, plasmids and phages (Fig. 2b), accessory genes (Fig. 2c), protein coding 

genes (Fig. 2d) and singleton genes (i.e., genes unique to a single genome) (Fig. 2e) (Mann-

Whitney U test). The presence of diverse mobile genetic elements that can rapidly disseminate 

genetic material between lineages may partly explain the large genomic variation between 

closely related Salmonella genomes (Emond-Rheault et al. 2020; Moreno Switt et al. 2012).  

  

 Notably, all ST15 genomes were sampled within a month of each other (August – 

September) and were primarily from the same county (Rockingham), which may explain the near 

absence of genomic diversity among individual genomes (Fig. 2bcde). Whether these 

Rockingham isolates are epidemiologically linked and/or comprise a local outbreak requires 

additional clinical data from the healthcare providers, which were not available to us. On the 

other hand, isolates of STs 11 and 19 were obtained from multiple counties and sampling months 
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throughout the year. Overall, we found a remarkably large genomic, phylogenetic and serotype 

variation among the S. enterica isolates co-circulating across the state of New Hampshire, which 

indicates rapid microevolution and geographical dissemination over a short time span. 

 

Distribution of antimicrobial resistance genes 

 We used an in silico method implemented in the program ARIBA (Hunt et al. 2017) to 

determine the presence of horizontally acquired resistance genes and chromosomal mutations 

associated with resistance to a range of different classes of antimicrobials. We identified a total 

of 21 unique genes associated with resistance across ten different classes of antimicrobials 

(aminoglycosides, beta-lactams, cephalosporins, elfamycins, fosfomycins, fluoroquinolones, 

macrolides, phenicols, sulfonamides and tetracyclines) (Fig. 3a). We found that all 63 strains 

carry at least one resistance determinant. Three antimicrobial classes have the highest number of 

genomes carrying at least one resistance gene associated with it. These are aminoglycosides, 

fluoroquinolones and macrolides with 63/63 (100%), 57/63 (90.48%) and 46/63 (73.02%) 

genomes having at least one resistance gene for each class, respectively (Fig. 3b). We also 

detected mdtK gene, which encodes the multi-drug efflux pump and confers resistance against 

acriflavin, doxorubicin and norfloxacin (Nishino, Latifi, and Groisman 2006), in 92.06% (58/63) 

of the genomes. Only isolates with serotype Newport do not carry the mdtK gene. A remarkable 

48 genomes, which constitute 76% of the dataset, carry four or more resistance determinants per 

genome (Fig 3c). Lastly, the Salmonella-specific multi-drug transporter efflux pump MdsABC 

and its promoter golS were found in all but one genome. MdsABC has been found to confer 

resistance to novobiocin and is required for full virulence to infect and colonize host cells 

(Nishino, Latifi, and Groisman 2006).  The gene sdiA, which encodes a quorum-sensing 
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regulator that mediates the multi-drug resistance pump AcrAB (Rahmati et al. 2002), was also 

present in all genomes. It has been previously shown that overproduction of the gene product 

SdiA confers multidrug resistance and increased levels of AcrAB to the cell (Rahmati et al. 

2002). 

  

 All genomes of STs 11, 15 and 19 carry resistance determinants associated with 

aminoglycosides, fluoroquinolones and the multidrug Mds efflux pump. Except for one genome, 

all ST11 genomes also carry resistance determinant for macrolides. All genomes of ST 15 also 

carry the fosA7 gene which confers high-level resistance to fosfomycin (Rehman et al. 2017). 

The product of fosA7 is a glutathione-S-transferase that binds to fosfomycin and ruptures its 

epoxide ring structure (Rehman et al. 2017). FosA7 was first detected in S. enterica serovar 

Heidelberg isolated from broiler chickens and has been shown to be transferrable via plasmid 

mobility (Rehman et al. 2017). Moreover, four of the eight genomes of ST 15 carry the 

resistance determinant for elfamycin, which targets the elongation factor-Tu (Prezioso, Brown, 

and Goldberg 2017). In ST 19, resistance determinants associated with cephalosporin, phenicol, 

sulfonamide and tetracycline are found in one, one, two and two genomes, respectively. Isolates 

that carry each of the genes that confer resistance to these four classes of antimicrobials were 

distributed in disparate parts of the phylogenetic tree and were not associated with any one ST or 

serotype, which may be indicative of horizontal transfer of resistance genes (Krauland et al. 

2009; Cohen et al. 2020; Oladeinde et al. 2019; Park and Andam 2020). We also detected the 

presence of multiple resistance determinants per genome in other less common STs (i.e., those 

represented by only a single isolate), such as STs 2, 10, 132, 138 and 448.  
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DISCUSSION 

 S. enterica infections are a major public health concern in the United States and 

worldwide (Crump et al. 2015; Stanaway et al. 2019). The application of whole genome 

sequencing in infectious disease surveillance and epidemiological studies is a powerful tool for 

public health agencies and laboratories. Our study provides the initial genomic analysis of S. 

enterica isolates from clinical human specimens received by the New Hampshire DHHS and we 

show that nearly all the clinical isolates of this pathogen carry genetic determinants that confer 

resistance to multiple classes of antimicrobial compounds. We also show that although three 

lineages (STs 11, 15 and 19) are relatively common, numerous other STs and serotypes are also 

co-circulating in the clinical population. 

 

 There are three aspects of the New Hampshire S. enterica population worth highlighting. 

First, the distribution of many of the resistance genes in disparate parts of the phylogenetic tree 

reflects their rapid mobility between distinct lineages, including less common STs and serotypes 

(i.e., represented by one or two isolates). That the rarer lineages and serotypes were also 

multidrug resistant means that they can potentially increase in frequency in the population in the 

long term or act as a reservoir of horizontally transferrable resistance genes. Future work will 

help illuminate from which lineages they acquired the resistance genes from and whether these 

horizontally acquired resistance genes are maintained in in the population over many years. 

Horizontal gene transfer and recombination can also lead to the emergence of novel genetic 

variants with unique epidemiological characteristics, as has been reported in other bacterial 

pathogens (Sun et al. 2016; Chen et al. 2014) and Salmonella is not an exception (Brown et al. 

2003; Criscuolo et al. 2019; Park and Andam 2020). Second, the remarkably diverse population 
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of S. enterica in the region within a short time span of one year highlights the need to implement 

a multi-year surveillance to understand the dynamics of these lineages and serotypes. It is 

possible that the long-term dynamics of the clinical S. enterica population in New Hampshire 

may be characterized by the persistence of the pre-existing dominant strains (STs 11, 15 and 19) 

and serotypes rather than through de novo adaptation (Andam et al. 2017). Genetic differences 

may accumulate in the three most common STs as they evolve and adapt over the long term and 

in response to environmental or host changes. The three STs are associated with the serotypes S. 

Typhimurium, Enteritidis and Heidelberg, which are major public health threats across the 

world. S. Typhimurium accounts for a quarter of total global infections and is exceptional in its 

wide host range (human, livestock, wildlife) and environmental distribution, global 

dissemination and multidrug resistance (Branchu, Bawn, and Kingsley 2018; Leekitcharoenphon 

et al. 2016). Major outbreaks worldwide due to contaminated food and animal sources have been 

attributed to S. Enteritidis (Vaughn et al. 2020; Dallman et al. 2016) and Heidelberg (Antony et 

al. 2018; Bearson et al. 2017). Future surveillance will be critical to documenting any of these 

scenarios, including whether these three serotypes will continue to persist in New Hampshire. On 

the other hand, less common lineages with unique features can have a selective advantage over 

their competitors as environmental conditions change (e.g., changes in host demography, clinical 

interventions implemented, food and animal sources) (X. Zhang, Payne, and Lan 2019) and 

replace the three most common STs or serotypes. Third, these multidrug resistant isolates are 

found all across the ten counties, suggesting the widespread geographical spread of multidrug 

resistance across the state. Such knowledge would be particularly relevant to public health 

officials to enable precise identification of priority regions (counties) and inform regulation 

strategies for antimicrobial compounds in the state. 



 

107 

 

 

 This study has several limitations. First, sampling was limited to only clinical specimens 

received by DHHS and those collected from patients who went to see their health care providers. 

Hence, we were not able to determine the population structure and antimicrobial resistance 

profiles of S. enterica from the greater New Hampshire community, which may consist of a 

different suite of STs and serotypes or may exhibit dissimilar composition and distribution of 

resistance determinants. Since gastroenteritis is mainly a self-limiting disease (Gal-Mor, Boyle, 

and Grassl 2014), most people are likely to self-medicate and not see their healthcare provider. 

This means that a large subset of the New Hampshire population is not represented in the current 

study and only those STs and serotypes that result to more severe infections were included. A 

more comprehensive and systematic surveillance system is therefore needed to track the 

population structure of S. enterica isolates that cause less severe symptoms or those isolates from 

patients who experience rapid recovery. Gaps in disease surveillance means that isolates from 

these patients remain invisible from comparative analyses and may not be taken into account in 

clinical decision-making procedures. Second, we had limited metadata associated with the 

isolates because of current state policies regarding patient records. Such data would have been 

epidemiologically informative, especially in the case of the closely related ST 15 isolates from 

Rockingham county recovered in August - September. The small amount of genomic differences 

among them suggest a rapid emergence and/or spread, indicative of an unrecognized localized 

outbreak in the region. Cryptic transmission and outbreaks that might have otherwise gone 

unnoticed have been previously identified in Salmonella and other bacterial pathogens (Taylor et 

al. 1998; Roach et al. 2015; Turner et al. 2017) and our results suggest that this might have 

occurred in Rockingham. Moving forward, our results will prove useful as a basis to further 
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investigate this cluster of Salmonella cases and determine their relationships. Another limitation 

is the lack of isolates from food and environmental sources, where S. enterica is also known to 

inhabit and survive (Fernández, Guerra, and Rodicio 2018; Pornsukarom, Van Vliet, and Thakur 

2018; Silva, Calva, and Maloy 2014) and to which we can compare our clinical isolates. Such 

information will be critical to ascertain the origin of the clinical isolates reported to DHHS and 

ensure safety in the food production and supply chains. 

 

CONCLUSION 

 In summary, we found that nearly all of the clinical S. enterica isolates from the 2017 

New Hampshire population carry numerous genetic determinants that confer resistance to 

multiple classes of antimicrobials. Our results suggest rapid microevolution and geographical 

dissemination of multidrug resistant lineages over a short time span. The disparate phylogenetic 

distribution of many of the resistance genes reflect their rapid mobility between phylogenetically 

distinct lineages and the potential threat of further geographical spread of multidrug resistance 

across the state. Future work should focus on implementing a multi-year genomic surveillance to 

help illuminate the population dynamics of clinical S. enterica in the state of New Hampshire. 
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FIGURES 

 

Figure 1. Phylogenetic relationship and genomic characteristics of the 63 clinical isolates of S. 

enterica from New Hampshire. (a) The phylogeny was reconstructed from 169,001 core SNPs 

using IQTree. The scale bar represents the number of nucleotide substitutions per site. The 

matrix on the right shows ANI values calculated for every pair of genomes in the entire data set. 

(b) Frequency distribution of all pairwise ANI values. (c) Number of protein coding genes per 

genome. (d) Number of accessory genes per genome. (e) Number of singleton genes per genome. 

Singleton genes are those that are unique to an individual genome.
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Figure 2. Genomic variation among strains of the same ST. (a) Phylogenetic trees of STs 11, 15 and 19 built from 870, 17, and 1,624, 

respectively core SNPs using IQTree. The matrix of the right of each tree shows the presence (dark blue) or absence (light blue) of 

gene families per genome. The scale bar represents the number of nucleotide substitutions per site. Comparison of mobile genetic 

elements (b), accessory genes (c), protein coding genes (d) and singleton genes (e) among the three STs. *** represents a p-value < 

0.001 using a Mann-Whitney U pairwise test with a Bonferroni p-value adjustment.

   

   

  

 
    

    

    

   

   

   

         

       

                            

                        
 

 

 

 

  

  

  

  

  

  

                    

       
     

      

            

         

               

               
               

                

    

        

 
 
 
 
 



 

 

 

1
1
1
 

 
 

Figure 3. Antimicrobial resistance profiles of the 63 S. enterica isolates. (a) Names of specific resistance genes are listed on the left 

and the names of antimicrobial classes are listed on the right of the matrix. Solid blocks indicate the presence (95% sequence 

coverage) and empty boxes indicate the absence of the resistance determinant. The tree is identical to that in Fig. 1. A comprehensive 

list of all resistance genes identified in each strain is shown in Table S6. (b) Number of genomes carrying at least one resistance gene 

for each class of antimicrobial compound. (c) Number of genomes carrying multiple number of resistance genes.
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APPENDIX 4 

Supplementary Table 1. Accession numbers, metadata and genome characteristics of the 63 S. enterica isolates. 

Genome DOC County 
Sequence 
Type CDC serotype SeqSero_Serotype Source Contigs bp N50 CDS rRNA tRNA tmRNA 

PNUSAS25946 September Rockingham 26 Thompson Thompson Fecal 22 4782193 708941 4478 7 0 0 

PNUSAS26943 September Rockingham 15 Heidelberg Heidelberg Fecal 35 4744532 235564 4440 6 0 0 

PNUSAS26944 September Rockingham 15 Heidelberg Heidelberg Fecal 32 4745684 270009 4440 6 0 0 

PNUSAS26945 September Coos 26 Thompson Thompson Fecal 49 4812295 202625 4490 8 0 0 

PNUSAS26946 September Carroll 22 Braenderup Braenderup Fecal 51 4684157 161515 4359 5 0 0 

PNUSAS26947 September Strafford 43 
Paratyphi_B_var.L 
(+)tartrate+ 4,5 

Paratyphi_B_var._L 
(+)_tartrate+ Fecal 44 4629689 258157 4298 3 0 0 

PNUSAS26948 September Rockingham 22 Braenderup Braenderup Fecal 27 4764080 386169 4438 5 0 0 

PNUSAS26949 October Carroll 19 Typhimurium Typhimurium Fecal 49 4819575 191426 4520 8 0 0 

PNUSAS26951 October Carroll 19 Typhimurium Typhimurium Fecal 55 4816957 185929 4517 8 0 0 

PNUSAS26952 October Grafton 11 Enteritidis Enteritidis Blood 45 4758090 244934 4483 6 0 0 

PNUSAS26953 October Grafton 11 Enteritidis Enteritidis Fecal 40 4761866 321396 4499 4 0 0 

SRR5364221 January Hillsborough 19 Typhimurium Typhimurium Fecal 48 4922423 200577 4639 5 0 0 

SRR5364224 December Hillsborough 10 Dublin Dublin Fecal 60 4950834 178709 4758 7 0 0 

SRR5364225 January Carroll 11 Enteritidis Enteritidis Fecal 21 4698759 444845 4423 4 0 0 

SRR5364226 December Carroll 0 Schwarzengrund Schwarzengrund Fecal 27 4565114 412740 4245 6 0 0 

SRR5364227 January Hillsborough 19 Typhimurium Typhimurium Fecal 49 4922449 225553 4641 5 0 0 

SRR5364228 January Hillsborough 48 Panama Panama Fecal 25 4514971 401124 4190 8 0 0 

SRR5364229 February Merrimack 365 Weltevreden Weltevreden Fecal 114 5032464 107850 4708 2 0 0 

SRR5382665 February Grafton 1674 Javiana Javiana Fecal 25 4610090 465452 4338 6 0 0 

SRR5382673 February Merrimack 11 Enteritidis Enteritidis Fecal 36 4689802 246231 4390 6 0 0 

SRR6019672 July Rockingham 11 Enteritidis Enteritidis Fecal 43 4688753 239013 4395 8 0 0 

SRR6019677 July Rockingham 26 Thompson Thompson Fecal 31 4668073 326092 4316 9 0 0 

SRR6019679 July Belknap 19 Typhimurium Typhimurium Fecal 59 4933506 164254 4659 8 0 0 
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SRR6026010 August Rockingham 24 Panama Javiana Fecal 49 4604657 195247 4311 6 0 0 

SRR6026018 August Grafton 448 G Mississippi Fecal 60 4626896 153963 4402 5 0 0 

SRR6026029 August Strafford 24 Javiana Javiana Fecal 32 4608177 383767 4308 6 0 0 

SRR6107297 September Merrimack 11 Enteritidis Enteritidis Fecal 24 4692646 478724 4400 8 0 0 

SRR6107309 August Strafford 138 Montevideo Montevideo Fecal 33 4540052 243482 4203 7 0 0 

SRR6107320 August Rockingham 118 Newport Newport Fecal 33 4754786 405936 4444 6 0 0 

SRR6107328 August Hillsborough 24 Javiana Javiana Fecal 32 4608643 299062 4314 6 0 0 

SRR6107330 August Rockingham 15 Heidelberg Heidelberg Fecal 26 4746478 381308 4433 6 0 0 

SRR6107334 August Rockingham 15 Heidelberg Heidelberg Fecal 29 4745667 381280 4441 6 0 0 

SRR6107340 August Rockingham 15 Heidelberg Heidelberg Fecal 26 4746429 693625 4436 6 0 0 

SRR6107350 August Hillsborough 2 Typhi Typhi Fecal 54 4724761 185186 4564 3 0 0 

SRR6107354 August Strafford 350 Newport Newport Fecal 32 4836204 315961 4565 3 0 0 

SRR6107359 August Rockingham 15 Heidelberg Heidelberg Fecal 26 4746524 381295 4438 6 0 0 

SRR6107360 August Strafford 15 Heidelberg Heidelberg Fecal 31 4745286 298538 4437 6 0 0 

SRR6107362 August Strafford 32 Infantis Infantis Fecal 32 4641427 526636 4303 9 0 0 

SRR6107371 August Belknap 11 Enteritidis Enteritidis Fecal 25 4693061 478730 4402 7 0 0 

SRR6158700 August Strafford 118 Newport Newport Fecal 44 4808218 236852 4524 8 0 0 

SRR6183270 August Grafton 19 Typhimurium Typhimurium Fecal 77 4892969 114190 4591 7 0 0 

SRR6183271 August Rockingham 15 Heidelberg Heidelberg Fecal 34 4744849 288603 4435 6 0 0 

SRR6183272 September Hillsborough 15 Heidelberg Heidelberg Fecal 41 4745325 203449 4434 8 0 0 

SRR6183274 September Rockingham 23 Oranienburg Oranienburg Bile 59 4635557 122605 4324 5 0 0 

SRR6183275 August Rockingham 11 Enteritidis Enteritidis Fecal 32 4807134 433312 4543 6 0 0 

SRR6183276 September Merrimack 19 Typhimurium Typhimurium Blood 70 4927213 149645 4661 6 0 0 

SRR6183302 September Hillsborough 1628 Reading Reading Fecal 78 4871331 137427 4569 6 0 0 

SRR6183303 September Hillsborough 11 Enteritidis Enteritidis Fecal 30 4862126 479109 4584 10 0 0 

SRR6183310 September Grafton 19 Typhimurium Typhimurium Fecal 126 4922296 71043 4649 8 0 0 

SRR6183315 September Rockingham 350 Newport Newport Fecal 50 4823015 162766 4548 2 0 0 

SRR6183316 September Hillsborough 11 Enteritidis Enteritidis Fecal 26 4694442 478724 4400 8 0 0 

SRR6183317 September Rockingham 23 Oranienburg Oranienburg Fecal 62 4635842 134559 4320 7 0 0 

SRR6366419 November Rockingham 11 Enteritidis Enteritidis Fecal 31 4700781 328912 4424 5 0 0 
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SRR6366421 October Strafford 11 Enteritidis Enteritidis Urine 50 4689049 225268 4393 6 0 0 

SRR6366423 October Carroll 11 Enteritidis Enteritidis Urine 41 4692651 348980 4400 8 0 0 

SRR6366424 November Merrimack 19 Typhimurium Typhimurium Fecal 65 4830191 162378 4524 6 0 0 

SRR6366425 October Rockingham 11 Enteritidis Enteritidis Fecal 25 4726093 464906 4441 6 0 0 

SRR6366426 October Rockingham 11 Enteritidis Enteritidis Fecal 23 4726788 433312 4443 6 0 0 

SRR6366428 October Rockingham 32 Infantis Infantis Urine 49 4647444 194908 4297 10 0 0 

SRR6366430 October Sullivan 1674 Javiana Javiana Urine 55 4565190 144059 4278 7 0 0 

SRR6366432 November Strafford 26 Thompson Thompson Fecal 29 4667339 285126 4317 8 0 0 

SRR6366439 October Carroll 19 Typhimurium Typhimurium Fecal 47 4816899 210210 4513 8 0 0 

SRR6371549 May Cheshire 132 Newport Newport Fecal 26 4761285 472041 4466 4 0 0 
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ABSTRACT 

Background 

Homologous recombination is known to influence a myriad of evolutionary and population 

processes within bacteria. However, growing evidence suggests that the frequency and 

distribution of recombination events can be influenced by genetic and ecological barriers 

between strains within a species. Despite the growing number of tools available to predict 

recombination events, no software provides the means to characterize donor-recipient 

relationships and other metrics of recombination heterogeneity within a population. 

Results 

We present HERO, a Python tool which uses the output of the recombination detection tool 

fastGEAR to identify donors and recipients in recombination events. HERO also maps 

recombination events to user-defined metadata categories to help elucidate potential drivers of 

biases in recombination partners and visualizes the results in publication-ready figures using 

Circos networks. It also reports and visualizes the variation in recombined DNA fragment size, 

and events per gene as additional measures of variation. 

Conclusions 

HERO is a freely available Python tool for measuring and visualizing heterogeneity within a 

bacterial population’s history of recombination. The code and documentation are available to 

download from https://github.com/therealcooperpark/hero. An example of using the program can 

be found at https://github.com/therealcooperpark/hero_example.  

 

  

https://github.com/therealcooperpark/hero
https://github.com/therealcooperpark/hero_example
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INTRODUCTION 

 Genetic recombination allows a microbial cell to rapidly acquire novel traits through 

incorporation of DNA fragments from other strains or species into its own genome (Didelot and 

Maiden 2010). It often involves the non-reciprocal unidirectional transfer of a homologous or 

highly similar segment of DNA from a donor to a recipient (Didelot and Maiden 2010). The 

consequences of genetic recombination are vast. Homologous recombination is known to 

influence a myriad of evolutionary and population processes, including levels of standing 

diversity, niche expansion, spread of resistance and virulence determinants, and rapid adaptive 

changes in response to new or fluctuating environmental conditions (Levin and Cornejo 2009; 

William P. Hanage 2016). It can generate vaccine escape variants and the rapid diversification of 

surface antigens, allowing immune evasion (Croucher et al. 2017). Recombination of large DNA 

segments can also result to the emergence of novel genetic variants or hybrids with unique 

phenotypes such as multidrug resistance, hyper-virulence and increased transmissibility (Gabriel 

G. Perron et al. 2012; Spoor et al. 2015). 

 

 Although many studies have generated crucial insights into the nature and frequencies of 

recombination between bacterial species (González-Torres et al. 2019; Vos and Didelot 2009; 

Levin and Cornejo 2009), it is often assumed that all strains recombine at a uniform frequency 

and randomly across the entire species. Recombination rates between strains of the same species 

can vary along a continuum spanning several orders of magnitude. Some strains also donate or 

receive DNA more often than others (Rodríguez-Beltrán et al. 2015; Wyres et al. 2019), while 

some strains tend to preferentially recombine with specific partners (Chewapreecha et al. 2014; 

Park and Andam 2020). Such a pair of strains or lineages exchanging DNA more often between 
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them than with others is said to be linked by a highway of recombination (or biased 

recombination). Highways likely represent specific lineages that function as hubs of gene flow, 

facilitating the rapid spread of genes associated with antibiotic resistance, host adaptation and 

immune interactions (Chewapreecha et al. 2014). Within-species differences in recombination 

also suggest that lineages respond to selective pressures in different ways. Such variation also 

implies that recombination itself can evolve in response to natural selection (Lobkovsky, Wolf, 

and Koonin 2016; Peñalba and Wolf 2020) and can occur quickly on an evolutionary timescale 

(Cowley et al. 2018; Evans and Rozen 2013). Hence, the idea of a single effective recombination 

rate for a species does not provide a biologically realistic representation of microbial evolution. 

Equally problematic is when studies attempt to fit the data to evolutionary and population genetic 

models that assume a constant species-wide rate of recombination.  

 

 Rapid recombination detection programs have been developed that can be used to 

identify recombined DNA fragments in large-scale whole genome datasets. ClonalOrigin 

generates a clonal phylogenetic tree and considers recombination events as regions of DNA that 

create localized discrepancies to the clonal phylogeny (Didelot et al. 2010). BratNextGen 

clusters regions in a genome that may be more distinct from other taxa than expected by normal 

mutation-driven evolution and creates a proportion of shared ancestry tree to group genomes that 

have a greater proportion of shared DNA clusters (Marttinen et al. 2012). Gubbins identifies 

recombined sequences by iteratively scanning a sequence alignment and examining for elevated 

densities of nucleotide substitutions, and hence is more appropriate in investigations at the 

subspecies level (Croucher et al. 2015). FastGEAR uses a Hidden Markov Model to compare 

every nucleotide site in the target sequence to all remaining lineages and asks whether it is more 
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similar to something else compared to other strains in the same lineage (Mostowy et al. 2017). 

However, these programs do not provide a means to characterize population-wide patterns of 

donor-recipient relationships using the predicted recombination events. Here, we introduce the 

program HERO (Highways Enumerated by Recombination Observations), which uses the output 

of fastGEAR to identify donors and recipients in recombination events. HERO also maps 

recombination events to user-defined metadata categories to help elucidate potential drivers of 

biases in recombination partners. 

 

IMPLEMENTATION 

Identifying DNA donors and recipients 

HERO is a Python-implemented tool that uses the results of fastGEAR as input to infer donor-

recipient pairs in recombination events. Because fastGEAR identifies putative recombination 

events by predicting the origin of individual nucleotide sites from allelic patterns observed in 

different lineages, individual fastGEAR-defined lineages are reported as the potential donor for 

each recombination event rather than individual genomes. Additionally, because this process 

iterates over individual nucleotide sites, recombination events can be any length. For each 

putative recombined DNA segment that fastGEAR identifies, a Bayes factor (BF) is also 

computed based on the density of single nucleotide polymorphisms (SNP) that is compared 

between within the claimed recombination event and non-recombinant regions. FastGEAR uses a 

significance threshold of BF = 1 for recent recombination that represents a middle ground 

between false positive rate and power to detect recent recombination events.  
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 HERO considers only the results of recent recombinations inferred by fastGEAR. It first 

filters predicted recent recombination events by their reported length in base pairs and their 

Bayes factor (BF) (Bernardo, JM, Smith 2001). The filtering criteria for both BF and length can 

be customized by the user, but the default minimum BF and fragment length are 10 and 0, 

respectively. Recombination detection methods rely on changes in the density of SNPs (between 

the donor and recipient) between the putative recombined segment and surrounding non-

recombinant genome. However, recombined DNA is often very similar in sequence to the 

original recipient genome, especially when the event occurs within a species (Didelot and 

Maiden 2010). Therefore, filtering events by their length is an arbitrary cut-off when the short 

recombination events predicted by fastGEAR are likely to be only the divergent piece of larger 

DNA fragments. In order to remain conservative regarding the number of recombination events 

in the population, we increased the minimum BF from fastGEAR (BF > 1) to a more strict 

default in HERO (BF > 10).  

 

 HERO accepts associated metadata (e.g., clusters delineated in population structure 

analysis, environment, specimen source, human or animal host) for each genome in the dataset. 

HERO identifies a donor-recipient pair between the recipient’s metadata group and the most 

likely donor metadata group. Because fastGEAR identifies a cluster of potential donor strains 

(i.e., lineage) rather than a single donor genome, HERO uses a simple distance matrix to 

compare the sequence similarity between the recombined DNA in the recipient to the same 

region from each genome in the donor lineage. Assuming the shared ecology facilitates 

recombination between closely related strains, the metadata group containing the genome with 

the highest similarity to the recipient is considered the donor group for that event. 
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Recombination events will be discarded from the analysis if donors from different metadata 

groups tie for the highest similarity to the recipient. Additionally, multiple recombination events 

with overlapping nucleotide ranges between the same donor-recipient metadata pair are 

considered to be a single recombination event.  

 

Identifying highways of recombination 

 HERO identifies a highway of recombination as a pair of metadata groups with a number 

of recombination events greater than 3*IQR + Q3, where IQR is the inter-quartile range and Q3 

is the third quartile of the distribution of recombination events per donor-recipient pair. Hence, 

the definition of a highway will vary based on the number of metadata groups and genomes 

included in the dataset being examined. Furthermore, the direction of a recombination event is 

considered when determining a highway, making it possible for a recombining pair to be a 

highway in one direction, but not the other. 

 

Visualizing results 

  The primary output of HERO is a pair of network images generated using Circos 

(Krzywinski et al. 2009) . In the first figure “circos.svg”, the fragments on the outer ring 

represent each metadata group involved in a recombination event (Fig. 1a). In this example, we 

used sequence clusters (SC) defined by a Bayesian hierarchical clustering method implemented 

in BAPS (Fig. 1a) (Corander et al. 2008). The length of the fragments in the outer ring (Fig. 1b) 

is proportional to the number of recombination events involving the group. The intertwining 

ribbons between groups represent donor-recipient pairs of recombination where the ribbon is 

colored to match the donor and the donor edge of the ribbon is indented towards the center of the 
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circle (Fig. 1b). The thickness of the ribbon is proportional to the number of recombination 

events between a pair of genomes. Because the direction of a recombination event is considered 

when visualizing these pairs, it is possible for two ribbons to exist between the same pair of 

metadata groups. There is an option to highlight highways of recombination as seen in the output 

“highway_circos.svg” (Fig. 1c). In addition to the circos networks, HERO generates frequency 

histograms showing the lengths of recombined DNA sequences, the number of recombination 

receipts per genome and the number of recombination events per gene (Fig. 2). HERO also 

provides supporting text files of the data for all figures. 

 

RESULTS AND DISCUSSION 

 We next demonstrate the utility of HERO with the same collection of 616 whole-genome 

Streptococcus pneumoniae isolates sampled in Massachusetts, USA (Croucher et al. 2013) that 

was previously used to demonstrate the effectiveness of fastGEAR to detect recombination 

(Mostowy et al. 2017). The methods we used to prepare the dataset have been described in detail 

in Additional File 1 and Accession IDs for all genomes can be found in Additional File 2. 

 

Exploring dynamics of recombination within Streptococcus pneumoniae 

 We first used Roary (Page et al. 2015) to characterize the pan-genome of the entire S. 

pneumoniae population. We identified 1,161 core genes (i.e., genes present in ≥ 99% of strains) 

and 6,133 shared accessory genes (i.e., genes present in at least 2 genomes, but less than 99% of 

the population) out of a total of 7,511 genes in the pan-genome. We identified 582 genes with 

evidence of recombination and 1,990 recent recombination events. We then used HERO to 

identify the distribution of these recombination events across the 16 SCs in which each genome 
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was assigned to in its original publication (Croucher et al. 2013) (Fig. 1a,b). Out of the 256 

possible unidirectional pairs of SCs, 191 of them had evidence for recombination with between 1 

and 191 recombination events in any one pair (mean ≈ 11 events). Using HERO’s definition of a 

highway of recombination, we found 21 pairs that met the definition of a highway (i.e., pairs 

with ≥ 22 events) (Fig. 1c). Highways of recombination accounted for 1,052 of the total 1,990 

(52.8%) recombination events inferred within the population.  

 

 All highways of recombination involved the only multiphyletic cluster SC16 as either a 

donor or recipient. Based on the phylogenetic tree for the population, SC16 is likely composed of 

multiple individual clusters too small to be detected independently by the BAPS clustering 

software (Corander et al. 2008). To improve the resolution of the analysis, we used HERO to re-

calculate the distribution of events, but this time breaking SC16 into eight smaller SCs (labeled 

as SC16a-h) where each new SC is separated by at least one monophyletic SC (Fig. 3a,b). Using 

these newly assigned clusters, the number of possible unidirectional SC pairs in the population 

increased to 529. We found 347 of these pairs to have evidence of recombination, with between 

1 and 58 events in any one pair (mean ≈ 5 events). These pairs shared a total of 2,230 

recombination events across 558 different genes. In this new clustering scheme, the threshold for 

a highway of recombination decreased to 17 events per pair, yet only 18 pairs (5% of all 

recombining pairs) were identified as highways (Fig. 3c). These highways accounted for 466 

(20%) out of the 2,230 recombination events. While 12 of these highways involved SC16c as 

either a donor or recipient, the remaining six highways were scattered between pairs involving 

SC16b, SC12, and SC6. 

 



 

125 

 

 The number of recombination events per genome varied, with between 8 and 50 events in 

a single genome (mean ≈ 24 events) (Fig. 3a). The detected fragment size of recombination 

events varied from 1 - 4,447bp (mean ≈ 309bp) (Fig. 3b). Lastly, we detected variation in the 

number of recombination events per gene with between 1 and 33 events per gene (mean ≈ 4 

events) (Fig. 3c). 

 

Characterizing the properties of a recombination pair 

 Intra-species variation in recombination has been found to exist within multiple bacterial 

species and across broad ecological settings (Chewapreecha et al. 2014; Sheppard et al. 2014; 

Park and Andam 2020). However, the extent to which genetic and ecological factors drive this 

variation remains poorly understood. By combining results generated by HERO with other 

common measures of population diversity we sought to identify trends within the S. pneumoniae 

population that could be extrapolated to other species and populations.  

 

 One of the most significant challenges to predicting recombination pairs is the effect of 

sampling bias on donor identification. Under-sampling a population risks missing genomes with 

unique gene repertoires that could potentially be the source of a recombination event. In contrast, 

having one or a few well-sampled subpopulations may exaggerate the credit these larger groups 

get as a donor by being the dominant source of variation that suspected recombination events are 

compared against. To test the effect of sampling in our population we first compared the number 

of genomes in each cluster to the number of recombination events involving the cluster (Fig. 4a) 

and found a significant but weak positive correlation between the two (p-value < 0.05, R2 = 

0.14). We also compared the number of shared genes within a cluster to its number of 
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recombination events (Fig. 4b) and found a significant positive correlation (p-value < 0.001, R2 = 

0.72). Lastly, we calculated the Average Nucleotide Identity (ANI) for each SC using fastANI 

v1.0 (Jain et al. 2018). ANI estimates the average nucleotide identity of all orthologous genes 

shared between any two genomes, thus being analogous to a measure of their core-genome 

similarity (Jain et al. 2018). We calculated the SC-wide ANI, which refers to the mean of all 

possible pairwise ANI values between any two pairs in the SC. For each SC, we compared the 

number of recombination events with its SC-wide ANI (Fig. 4c) and found a statistically 

significant negative correlation (p-value < 0.001, R2 = 0.47). 

 

 Collectively, these results indicate poor resolution of recombination events between 

closely related strains. While the size of a cluster can influence the amount of diversity within it, 

it is not clear that sample size alone is significantly influencing the distribution of predicted 

recombination events among the sequence clusters. Therefore, the primary limitations to HERO 

stem from the assigned metadata groups. Multiphyletic clades, such as SC16 from this S. 

pneumoniae population, are likely to distort findings from clusters derived from sequence data as 

the cumulative genetic diversity from multiple clades will contribute many more opportunities to 

find recombination than from within a single monophyletic clade. However, if multiphyletic 

clades are expected (e.g., in ecologically derived clusters), sufficient representation for each 

cluster will be crucial to accurately attributing recombination events to a donor cluster.  

Predicting whether a sampled population reflects the total genomic diversity of its natural 

population remains a challenging aspect of bacterial population genetics (L. M. Bobay and 

Ochman 2018). However, future advancements in metagenomic sequencing and genome 

assembly from metagenomic data are likely to improve the resolution of these analyses. 
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CONCLUSION 

 In summary, we present HERO, a user-friendly python program that uses the output from 

the popular recombination detection tool fastGEAR to identify and donor-recipient pairs in 

recombination events. We propose a definition of a “highway of recombination” which can 

capture unique trends in recombination frequencies within a population while maintaining 

flexibility across populations with different frequencies of recombination.. The simplicity of 

HERO’s usage combined with its informative visualizations provide a detailed look into a 

population’s history of recombination.
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Figure 1. HERO recombination pairs compared to sequence cluster positions in a phylogeny. a) Core genome phylogeny of the S. 

pneumoniae population. The phylogeny was reconstructed using the concatenated alignment of 1,161 core genes. The scale bar 

represents substitutions per site. b) A recombination network generated by HERO. Outer ring fragments are individual BAPS-derived 

SCs. Length of each fragment is proportional to the number of recombination events affecting the SC. Ribbons connect clusters that 

share recombination events where the thickness of the ribbon is proportional to the number of shared events, the color of the ribbon 

matches the color of the donor cluster, and the donor edge of each ribbon is indented towards the middle of the circle. c) A 

recombination network (identical to panel b) highlighting the highways of recombination and non-highways are colored gray. 
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Figure 2. Measures of variability in recombination. a) Histogram showing the frequency distribution of events per recipient genome. 

b) Histogram showing the frequency distribution of recombination fragment size (bp). c) Histogram showing the frequency 

distribution of events per gene. 
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Figure 3. HERO recombination pairs compared to sequence cluster positions in a phylogeny with SC16 split into smaller clusters. a) 

Core genome phylogeny of the S. pneumoniae population. The phylogeny was reconstructed using the concatenated alignment of 

1,161 core genes. The scale bar represents substitutions per site. b) A recombination network generated by HERO. Outer ring 

fragments are individual sequence clusters. Length of each fragment is proportional to number of recombination events affecting the 

cluster. Ribbons connect clusters that share recombination events where the thickness of the ribbon is proportional to the number of 

shared events, the color of the ribbon matches the color of the donor cluster, and the donor edge of each ribbon is indented towards the 

middle of the circle. c) A recombination network generated by HERO. Identical to figure 2, except only ribbons connecting highways 

of recombination are colored. 
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Figure 4. Characteristics of recombination pairs. a) Relationship between the number of genomes in a cluster and its number of 

predicted recombination events. b) Relationship between the number of shared genes in a cluster and its number of predicted 

recombination events. c) Relationship between SC-wide ANI and number of recombination events per SC.
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DATA AVAILABILITY 

Methods for preparing the dataset used here can be found in Additional File 1. Accession IDs for 

S. pneumoniae genomes can be found in Additional File 2. Additionally, a walkthrough of the 

sample dataset analysis including intermediate files for each step can be found at 

https://github.com/therealcooperpark/hero_example 

 

AVAILABILITY AND REQUIREMENTS 

Project name: HERO 

Project home page: https://github.com/therealcooperpark/hero 

Operating System(s): Linux 

Programming language: Python 3.6 

Other requirements: BioPython (Python), Pandas (Python), Plotnine (Python), fastGEAR, Circos, 

GNU Parallel 

License: MIT 

Any restrictions to use by non-academics: None 
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APPENDIX 5 

Additional File 1 – Details about methods of S. pneumoniae analysis. 

De novo genome assembly, annotation, pangenome, and phylogenetic analysis 

 Each of the 616 S. pneumoniae genomes was independently assembled using Spades 

v3.13.1 (Bankevich et al. 2012) with default parameters. Assembled genomes were annotated 

with Prokka v1.14.0 (T. Seemann 2014) and default parameters. We then used Roary v3.12.0 

(Page et al. 2015) to characterize the pangenome of the population, including the ‘-z’ parameter 

to generate alignments for each gene in the pangenome. Each gene alignment was aligned using 

MAFFT v7.407 (Kazutaka Katoh, Rozewicki, and Yamada 2017). A core genome phylogenetic 

tree was generated using the aligned concatenation of all core genes from the pangenome and the 

tool RAxML v8.2.11 (Stamatakis 2006) with a general time reversible (GTR) nucleotide 

substitution model (Tavaré 1986), four gamma categories for rate heterogeneity, and 100 

bootstrap replicates. Phylogenies were visualized using the Interactive Tree of Life (Letunic and 

Bork 2016). 

Detection of recombination 

 To identify recombination, we used fastGEAR (Mostowy et al. 2017) with default 

parameters on individual core and shared accessory genes identified by Roary. Prior to running 

fastGEAR, the protein specific headers in each FASTA gene alignment were replaced with a 

genome name using a custom script to make fastGEAR results comparable between genes. The 

custom script has been provided with HERO on its GitHub page 

(https://github.com/therealcooperpark/hero) as “sidekick.py” for reproducibility and convenience 

when using HERO in similar workflows.
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Supplementary Table 1 – Accession IDs and metadata for 616 S. pneumoniae genomes used in analysis. 

Accession Strain_Cluster_(SC) 

ERR069731 1 

ERR069809 1 

ERR129088 1 

ERR129126 1 

ERR129158 1 

ERR129164 1 

ERR129199 1 

ERR129201 1 

ERR124256 1 

ERR124285 1 

ERR065347 1 

ERR065350 1 

ERR068012 1 

ERR068048 1 

ERR067981 1 

ERR069683 1 

ERR069768 1 

ERR065968 1 

ERR129051 1 

ERR129058 1 

ERR129090 1 

ERR129113 1 

ERR129132 1 

ERR124237 1 

ERR124265 1 

ERR124282 1 

ERR124304 1 

ERR068013 1 

ERR068018 1 

ERR068020 1 

ERR067977 1 

ERR069690 1 

ERR069712 1 

ERR069715 1 

ERR069732 1 

ERR069740 1 

ERR069746 1 

ERR069755 1 

ERR069765 1 

ERR069770 1 

ERR069812 1 

ERR069823 1 

ERR069835 1 

ERR065962 1 

ERR065967 1 

ERR124231 1 

ERR065344 1 

ERR065292 1 

ERR065330 1 

ERR067964 1 

ERR069719 1 

ERR069721 1 

ERR069752 2 

ERR069760 2 

ERR069801 2 

ERR069804 2 

ERR069822 2 

ERR069837 2 

ERR069839 2 

ERR065964 2 

ERR129037 2 

ERR129068 2 

ERR129079 2 

ERR129080 2 

ERR129093 2 

ERR129127 2 

ERR129131 2 

ERR129137 2 

ERR129139 2 

ERR129154 2 

ERR129159 2 

ERR129177 2 

ERR129178 2 

ERR129210 2 

ERR129211 2 

ERR129214 2 

ERR129215 2 

ERR124240 2 

ERR124242 2 

ERR124246 2 

ERR124268 2 

ERR124291 2 

ERR124296 2 

ERR124298 2 

ERR124302 2 

ERR065308 2 

ERR065310 2 

ERR065326 2 

ERR067985 2 

ERR067986 2 

ERR068000 2 

ERR068040 2 
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CONCLUSIONS 

Recombination and the pangenome as a reservoir for rapid ecological adaptation 

The evolution of adaptive traits (e.g., antibiotic resistance or virulence) is likely to happen more 

quickly when those traits are already present in the population instead of originating de novo 

(Andam et al. 2017). Therefore, an understanding of the baseline genetic diversity and the 

potential for genetic exchange within a population can be informative to public health endeavors. 

For example, the large pangenome and biosynthetic gene cluster diversity found in Streptomyces 

rimosus (Chapter 1) demonstrates the importance of drug discovery efforts testing multiple 

strains within the same species, as no individual genome is likely to be representative of the 

species’ biochemical potential. Similarly, when searching for the origin of a new outbreak strain 

it will be imperative to understand the genomic variation of the strain’s entire population. 

Species such as Salmonella enterica may utilize recombination as a metaphorical fishing rod to 

sample new traits from a pool of genetic diversity that includes individuals from different 

ecological backgrounds (Chapter 2). In fact, public health experts can preemptively sample the 

standing genomic diversity within their communities to identify potential mechanisms of 

infection that may be acquired by future outbreak isolates, as demonstrated in my analyses of 

Campylobacter jejuni and Salmonella enterica in New Hampshire (Chapter 3 & 4). 

  

Barriers to recombination create bias in rates and patterns within a species 

 Despite the incredible diversity present within a species’ pangenome, it is likely that not 

all of it is readily available to any one strain regardless of its affinity for recombined DNA. 
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Ecological and genetic barriers to recombination create implicit bias in the frequency and 

distribution of recombination events within a species (Andam and Gogarten 2011; Sheppard et 

al. 2014). However, lineages with the fewest barriers to recombination can act as “highways” of 

recombination that function as hubs of gene flow for adaptive alleles (Beiko, Harlow, and Ragan 

2005; Chewapreecha et al. 2014). Understanding the specifics of any barrier to recombination 

and identifying extant highways of recombination will be crucial to refining our forecasts of 

public health. In my dissertation I have contributed a series of studies on several different 

pathogen and non-pathogen species which demonstrate a methodology for identifying specific 

events and overall biases of recombination in samples of global populations (Chapter 1 & 2). 

Additionally, I further demonstrate that similar studies can be conducted at the state level to 

assess potential biases in local populations (Chapter 3 & 4). These methods are anticipated to be 

especially beneficial as sampling strategies continue long-term and analyses can be conducted on 

regular intervals to elucidate changing dynamics in the population. Additionally, future work in 

identifying recombination highways will benefit tremendously from robust definitions that can 

be used repeatedly across different studies, species and populations. I attempt to establish one 

such definition and provide a convenient option for future researchers to use it with the 

implementation of HERO (Chapter 5). HERO also serves as a novel method to rapidly visualize 

trends of recombination within a population through its network graphics. 

 

 As the prevalence of whole genome sequencing continues to grow in both research and 

healthcare facilities, countless individual genomes will be sequenced from new environments 

including new countries, hosts, and environments. These studies will contribute vital knowledge 

to a broad range of public health challenges including the growth of antibiotic resistance, 
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potential pathogen reservoirs in the environment, changing transmission routes, discovery of 

novel therapeutics and host susceptibility to disease. 
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