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ABSTRACT  

DEVELOPMENT OF OPEN LACTAM AND CAPTOPRIL ANALOGUES FOR THE COVALENT 

INHIBITION OF METALLO-β-LACTAMASES  

 

By 

MARIE-JOSIANE OHOUEU  

University of New Hampshire, May 2021  

The synthesis of a series of compounds designed to act as inhibitors of metallo-β-

lactamase enzymes (MBLs), a sub-class of β-lactamases found in several clinically difficult to 

treat bacteria that are responsible for the widespread β-lactam antibiotic resistance, are 

described. The strategy involves the introduction of a functional group, such as an  epoxide or 

thiirane, in the designed inhibitors capable of covalently binding the MBL targets and shutting 

them down irreversibly. This would prevent the enzymes from hydrolyzing the antibiotic drugs 

which would maintain their efficacy as a form of treatment.  

This was first attempted through the development of a convergent synthesis which 

involved the formation of L- and D-vinylglycine methyl ester, serving for the incorporation of the  

3-membered ring, in a five-step synthetic pathway. This was subsequently introduced using 

coupling chemistry to a dipeptide. The intermediate dipeptide precursor synthesized through 

amino acid coupling was phenylglycine-serine (Phg-Ser) followed by a phenylacetic acid-serine 

(PAA-Ser), which both mimic an open lactam structure. They were subjected to halogenation to 

convert the serine alcohol functional group to a bromide for the alkylation reaction with the amino 

group contained in the protected vinylglycine. However, the bromination of Phg-Ser proved to be 

difficult while the formation of the desired tripeptide with the brominated PAA-Ser was not 

observed. Evidence of an alkene product was observed which was attributed to the acidic proton 

at the α-position favoring the elimination of the bromine. Those limitations led to the modification 
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of the serine core to aspartic acid which was thought to circumvent the elimination issue by 

introducing the  vinylglycine by amide bond formation rather than alkylation. Investigation with the 

phenylacetic-acid-aspartic acid dipeptide led to a promising route in which the coupling of the 

vinylglycine was achieved efficiently. The subsequent last steps of epoxidation of the alkene and 

deprotection seemed to be successful although optimization of these is still required.  

Another strategy for the development of covalent inhibitors was the synthesis of 

compounds inspired from L-captopril, an inhibitor of angiotensin converting enzyme (ACE) 

inhibitors which plays a role in heart attack. Here, the strategy involves the synthesis of an alkene-

containing intermediate with 2-methylprop-2-enoic acid or 2-methyl-3-butenoic acid through 

acylation of proline ethyl ester with the corresponding acyl chlorides. The intermediates were 

successfully obtained, enabling the formation of the epoxide and thiirane compounds. 

Subsequently, the ethyl ester hydrolysis was done to provide the final derivatives 1-(2-

methyloxirane-2-carbonyl) pyrrolidine-2-carboxylic acid (82) and 1-(2-methylthiirane-2-carbonyl) 

pyrrolidine-2-carboxylic acid (83) with evidence of the formation of the desired 82 and 83. In the 

case of the longer chain analogues, 1-[2-(oxirane-2yl)propanoyl] pyrrolidine-2-carboylic acid (84) 

and 1-[2-(thiirane-2yl)propanoyl] pyrrolidine-2-carboylic acid (85), the deprotection led to the 

isolation of the  final thiirane compound 85 in an overall 5% yield while this last deprotection step 

remains to be optimized to obtain 84. 

The synthetic pathway of the open lactam derivatives  was overall successful with only the 

last two steps requiring further optimization which would provide a new class of β-lactamase 

inhibitors. The pathway for the development of the proline derivatives afforded efficiently one of 

the desired captopril derivatives while the purification of last step to isolate the remaining 

compounds needs to be improved. The strategy presented could be used in the future to provide 

further library compounds for MBL inhibition for further studies.    
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General Introduction 

            This dissertation is composed of three separate chapters: (I) Introduction to β-lactamases 

and antimicrobial resistance, (II) Development of open lactam analogues as covalent inhibitors 

targeting metallo-β-lactamases, (III) Development of captopril-inspired compounds as covalent 

inhibitors of metallo-β-lactamases. The first chapter serves as introduction to the subject under 

the form of  a mini review. The subsequent chapters investigate the strategies which have been 

explored in order to obtain the desired targets. They each are comprised of an introduction, results 

and discussion, and conclusion. Following the chapters is an appendix of relevant spectroscopic 

data related to the experimental procedures of the different chapters.  
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Chapter I. Introduction to β-lactamases and antimicrobial resistance 

Bacterial infections: a life-threatening issue 

 Microorganisms are diverse, comprising fungi, viruses, protozoa, algae, archaea, and 

bacteria, and they are ubiquitous in our environment. Humans are in constant interaction with 

microorganisms, particularly bacteria. These unicellular organisms are divided in two major 

bacterial types: Gram-positive and Gram-negative. The main difference between these two 

categories lies in the structural features of the bacterial cell wall. In the case of Gram-positive 

bacteria, layers of a rigid macromolecule known as peptidoglycan, 20 layers on average, are 

present in addition to the inner cell membrane. In Gram-negative bacteria the peptidoglycan layer 

is thinner, 1.5 layers on average, and has in addition to the inner membrane a semipermeable 

outer membrane. Thus, Gram-negative bacteria are thought to be relatively more flexible and 

more sensitive to lysis.1 It is estimated that about 3.8×1013 bacterial cells are found in the human 

body,2 and they can live in symbiosis with human beings and animals in anatomic areas such as 

the skin, and the gastrointestinal, upper respiratory, genital, and urinary tracts. They can be 

essential to the proper functioning of physiological processes such as maintaining normal 

intestinal development or stimulating the development of their host defense, among others.1 

 However, bacteria can also be harmful to their host if they penetrate tissue barriers which 

are normally free of microorganisms. In this case, the bacterium is able to multiply and damage 

tissues, resulting in an infection. Serious infections, for instance those known as nosocomial,  are 

common and usually contracted within hospital sites.1 In the United States alone it has been 

reported that at least 2.8 million people are infected by drug resistant bacteria every year. Among 

those, an average of 35,000 end up dying as a direct consequence of their contracted infection.3 

Globally, as of today, on average 700,000 people die annually due to infections involving 

antimicrobial resistance and that number has been predicted to reach an average of 10 million 

deaths worldwide yearly by 2050.4 It is important to be able to diagnose and treat bacterial 
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infections rapidly to avoid lethal outcomes in the worst case scenario, which is not always easy 

to achieve. Indeed, the development of antibiotics as a remedy to bacterial infections has been 

pursued for many decades. 

Antibiotics and their modes of action against bacteria  

The term antibiotics was first proposed by Selman Waksman who developed one of the 

first effective therapeutic treatments for tuberculosis in the early 1940s.5 Antibiotics were initially 

defined  as chemical compounds produced by microorganisms capable of selectively inhibiting 

the growth of bacteria in dilute media conditions. In the late 1920s several discoveries helped the 

era of antimicrobial development, notably that by Sir Alexander Fleming who accidentally found 

that the fungus Penicilllium notatum (Figure 1A) was able to inhibit bacterial growth in 1928.6,1 

Around the same time, the development of one of the first antimicrobial drugs used clinically was 

accomplished by Domagk and co-workers from Bayer pharmaceutical. The sulfonamide based 

drug, Prontosil, was among the first effective antimicrobial treatments for which Domagk received 

the Nobel Prize in 1939 (Figure 1B).7  

 

Figure 1: Early antimicrobial compounds: Penicillin (A) and sulfa base structure (left) and 

 Prontosil (right) (B)    

The industrial development of antibiotics as it is known nowadays has also been 

contributed to by Paul Ehrlich, who in addition to synthesizing the first antimicrobial molecule 

Salvarsan (Arsphenamine) for the treatment of syphilis in 19078, introduced a systematic 

screening approach which resulted in the discovery of many other drugs through time.9 Most of 

the antibiotics known have been isolated primarily from studied soil samples; Gramicidin, 
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discovered by Rene Dubos, was among the first to be isolated through systematic search and 

manufactured commercially.10,11  The early definition of antibiotics by Waksman through time has 

been subject to change as studies and understanding of antibiotics has evolved. More recently, 

antibiotics have been defined by many, but not all, as synthetically or naturally obtained chemicals 

capable of preventing bacterial growth with minimal toxicity to hosts.12,13    

 

Figure 2: Illustration of the different mechanisms of bacterial antimicrobial resistance and 

antibiotic modes of action.14  

Antibiotics are identified based on the mechanism and impact they have on bacteria as 

either bacteriostatic, which prevent continuous growth, or bactericidal, which kill the bacteria. 

Studies of antibiotics have shown that they operate through five principal mechanisms against 

bacteria (Figure 2). Three of those mechanisms in which antibiotics are involved prevent the 
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synthesis of vital metabolites for bacteria cell survival. Oxazolidinones, macrolides, 

aminoglycosides and tetracyclines can interfere with protein synthesis in bacterial cells. Protein 

synthesis involves four main stages: the initiation step with ribosomes binding to messenger 

ribonucleic acid (mRNA) to translate the sequence to amino acids by decoding to transfer 

ribonucleic acid (tRNA), the elongation step consisting in extending the peptide chain by binding 

together each amino acid decoded by the ribosome, the termination step which halts the formation 

of the protein is triggered by a particular mRNA sequence (stop codon) which stops the addition 

of amino acid residues to the protein, and the recycling step is the release of the ribosome from 

the completed protein which is ready to bind to another mRNA to start a new protein synthesis 

cycle.14,15 Those drugs inhibit the first two steps of the synthesis by inhibiting the ribosome function 

or by interfering with the decoding of the amino acid to be synthesized (Figure 3A-D).   

 
Figure 3: Molecular structure of selected antibiotics inhibiting protein synthesis pathway (A-D) 

and DNA/RNA synthesis (E) 
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Deoxyribonucleic acid (DNA) and RNA synthesis is known to be disrupted by 

fluoroquinolone compounds (Figure 3E).14 Fluoroquinolone antibiotics tend to alter the process of 

transcription of genetic material which consists of a DNA strand being copied to an RNA strand 

by an enzyme to express a gene which will have a specific role in the cell. The antibiotics bind to 

the designated transcription factor site, thus preventing the enzyme to do so and the process from 

taking place. 

 
Scheme 1: Inhibition of the reaction catalyzed by dihydropteroate synthase (DHPS) in the early 

step of folic acid synthesis by sulfonamides. 

The production of folates, which are precursors of several metabolites needed in bacterial 

cells can be inhibited by sulfonamides (Scheme 1). Sulfonamides, referred to as antifolates, target 

the first enzymes involved in the folic acid biosynthesis, dihydropteroate synthase (DHPS). 

Sulfonamides attach to the binding pocket of DHPS preventing any substrates that are used by 
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this enzyme for the metabolic pathway to do so. This prevents the formation of a folate 

intermediate, 7,8-dihydropteroate, to be formed, thus halting the folate synthesis (Scheme 1).14,16
 

  Another approach is to provoke the disruption of the cell membrane in bacteria with the 

presence of antibiotics which can accomplish that through various mechanisms. Daptomycin 

(Figure 4A), a lipopeptide drug, can insert itself into the phospholipid bilayer of the cell membrane 

and cause it to rupture. As it accumulates, the formation of holes in the bacterial cell membrane 

are created which provoke a dysfunction of vital metabolic pathways preventing them from being 

synthesized.17,18 An antibiotics class that is known as the glycopeptides, e.g. Vancomycin (Figure 

4B), can disrupt peptidoglycan synthesis by inhibiting transglycosylase enzymes involved at an 

early stage of the cell wall synthesis.19  

Figure 4: Structure of the Daptomycin (A) and Vancomycin (B) 

Other compounds, such as β-lactams, can interrupt peptidoglycan synthesis by inhibiting 

the penicillin binding proteins (PBPs) which play an important role in the later stages of 

peptidoglycan cell wall formation. PBPs are responsible for the reaction involving peptide bond 

formation and transglycosylation notably between the peptide and glycosidic bond in the 

peptidoglycan.20  Both glycopeptides (i.e. streptomycin, Figure 3) and β-lactams prevent the 

formation of the rigid bacterial cell wall structure which is necessary to prevent osmotic lysis due 

(A) (B) 



8 
 

to its inability to regulate the osmotic pressure created by the flow of water coming into of the cell. 

As a consequence the bacterial cells lacking peptidoglycan are killed by osmotic burst.21 The role 

of β-lactams is of particular relevance for the current project and will be discussed in more details 

in the subsequent sections.   

Certain characteristics have to be taken into consideration when developing efficient 

antibiotics, including target selectivity, water solubility, low side reactions, stability, low cost, and 

slow resistance development. In general, antibiotics are extremely effective to cure infections 

when first developed and used, but with time it is observed that some diseases persist in patients 

despite the administration of antibiotic drugs. This is due to bacteria developing or acquiring the 

ability to circumvent antibiotics’ mechanisms of action (Figure 2). A minimum inhibitory 

concentration (MIC) test can assess the effectiveness of studied antibiotics to determine if a 

particular strain becomes resistant to it. The adaptation of bacteria to antibiotics has been a 

recurrent issue which has caught the attention of many in this field. Although a great number of 

scientists have intensively conducted research into this problem, few successful breakthroughs 

have been reported in the last few decades for high-risk pathogens. Moreover, the number of 

antibiotics developed yearly has decreased by almost 90% over the last several decades.3 In 

order to find an appropriate solution to this problem, it is necessary to understand how bacterial 

resistance is acquired and works in these microorganisms. 

Mechanisms of antimicrobial resistance in bacteria 

 In certain bacteria intrinsic resistance is observed and consists of resistance against 

antibiotics without prior exposure to them. It is usually due to transport proteins found in their outer 

membrane acting as a natural barrier to large antibiotics (e.g. vancomycin in E. coli)  while smaller 

ones (e.g. β-lactams) are able to bypass this natural filter.22–24 On the other hand, acquired 

resistance is observed in bacteria exposed to antibiotics and developed through adaptation. 

Bacteria that acquire resistance proliferate exponentially in the environment as a result of misused 
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antimicrobial agents, leading to selection of the most life-threatening bacterial strains while 

eradicating sensitive bacterial strains. One manner in which bacteria can pass on acquired 

resistance is via the transfer of genetic material between bacterial cells. It was found that some 

bacterial strains acquire genes coding for the factors of resistance by transfer from live or dead 

viruses or bacterial cells via plasmids, via a conjugation process, which are then passed on 

through one generation to the next.25,26 As well, epigenetic inheritance is suspected to play an 

important role in antibiotic resistance in bacteria. This consists of the transfer of an 

environmentally induced modification of genetic material from a mother to a daughter cell.27,28 

When exposed to a gradual increase of concentration of antibiotics, bacteria can methylate their 

DNA via deoxyadenosine methyl transferase (DAM) enzyme which can provide them with 

antibiotic resistance by preventing lethal DNA damages resulting from the presence of antibiotics 

in their environment.29,30  

 Usually, the genetic material acquired gives bacteria the ability to exhibit three major 

mechanisms of resistance. First, they can reduce the amount of antibiotic in their cell in two ways: 

1) by decreasing the permeability of the cell to antibiotics by reducing the number of outer-

membrane proteins acting as a point of entry (in the case of Gram-negative bacteria) or 2) by 

expressing more efflux pumps excreting antibiotic molecules out of the cell. A second mechanism 

involves the activation of alternative pathways that are not affected by the presence of antibiotics. 

The new pathway involves biomolecules, such as catalytic enzymes with receptors different than 

the one originally targeted by the antibiotics, thus preventing it from being shut down. In this 

manner, the bacteria can still function normally even in the presence of the drug. A good example 

of this mechanism is with the mutated version of penicillin-binding-proteins (PBP), exogenous 

enzymes which will be discussed in more detail in the subsequent sections and commonly found 

in methicillin-resistant Staphylococcus aureus (MRSA). PBP2a, the mutated enzyme, has a low 

affinity for the β-lactam antibiotics due to misalignment of the active serine residue preventing for 
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the antibiotic to be acylated. As a result the antibiotic does not bind to the active site and cannot 

inhibit the mutated PBP2a. 31  

 Lastly, the production of enzymes which can modify or completely inactivate the action of 

antibiotics is the most widely-studied and well-understood mechanism of resistance for bacteria 

(Figure 1).14,32 There are 3 principle classes of enzymes involved in antimicrobial drug inactivation: 

transferases, redox enzymes, and hydrolases.33 First, transferases modify the antibiotics by 

altering them through covalently binding functional groups which in turns leads to a loss of activity. 

A common transferase enzyme is N-acetyltransferase which can alter aminoglycosides through 

acetylation, preventing the resulting acetylated compound from binding to its target.33  

 
Scheme 2: Tetracycline inactivation by oxidation at C12 by  monooxygenase TetX.34   

 The second class of enzymes are monooxygenases such as flavin-dependent tetracycline 

enzymes (TetX) and are redox enzymes providing bacteria with resistance to tetracycline drugs 

(Scheme 2).  The oxidation reaction of the substrate can occur at multiple positions (C11a, C12, C1, 

C2, or C3) leading to cyclization and series of degradation reactions of the molecule (Scheme 

2).34,35 The third largest class of enzyme inactivation category is hydrolases which is comprised 
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principally of macrolide esterases and β-lactamases. Macrolide esterases, as the name implies, 

perform an esterification of the 14- and 15- membered ring  of the macrolide lactones (Figure 5A), 

and the resulting ring-opened product has no antibacterial activity. β-Lactamases are a type of 

hydrolases33 which target β-lactam antibiotics (Figure 5B) and are the main focus of this work. 

These will be discussed in greater detail in the following section.  

 
Figure 5: Targets of hydrolase enzymes in the inactivation of antibiotics  

 The strategy utilized by bacteria to inactivate antibiotics using enzymes has been 

investigated extensively by researchers as it is a very effective manner for bacteria to acquire 

resistance. Studies have shown promise of finding an efficient solution to antimicrobial resistance 

when tackling enzyme inhibition. However, more work must be done to understand the 

mechanism of β-lactamase enzymes in order to develop efficient inhibitors.  

β-Lactam antibiotics and β-lactamases enzymes 

 β-Lactams are among the first antibiotics to have been used to treat infections, penicillin 

being the first one to be isolated in 1928 by Alexander Fleming.36 Their mode of action consists 

of mimicking the peptidoglycan chain by having structural similarities to the terminal D-Ala-D-Ala 

chain (Figure 6). The peptidoglycan is the natural substrate of penicillin-binding-proteins (PBPs)  

catalyzing the reaction of transglycolation is responsible for the continued cell wall extension 

through transpeptidation forming cross-links between two N-acetylmuramic (NAM or MurNAc) 
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side chains (Figure 6). Thus, β-lactams act as competitive inhibitors to peptidoglycan for PBPs as 

they can be catalyzed in its place and halt its formation by preventing the transpeptidation reaction 

between NAM residues.   

  

Figure 6: Illustration of bacterial cell wall synthesis37 and the structural similarities (green) 

between β-lactam antibiotics and the D-Ala-D-Ala motif in peptidoglycan. 

 As mentioned earlier, the peptidoglycan makes up the bacterial cell wall and is vital as it 

prevents cell burst resulting from unregulated osmotic pressure.38 The core structure -lactam 

ring is found in all -lactam antibiotics and is a 4-membered ring containing an amide functionality 

(Figure 7). The lactam ring is an important part of the recognized sequence of the antibiotic by 

the PBPs with which the serine residue can react instead of the NAM side chain  D-Ala-D-Ala 

terminal dimer motif in the peptidoglycan.39,40   
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Figure 7: -Lactam and examples of β-lactam antibiotics  

 As a response to the lethal effect caused by β-lactams, bacteria have expressed β-

lactamases enzymes. These enzymes have the ability to inactivate antibiotics via hydrolysis 

mechanisms, rendering them inefficient as a treatment method. The acquisition of β-lactamases 

by Gram-negative bacteria can be attributed to genetic modifications occurring over time. They 

developed these enzymes as a defense mechanism as far back as several million years ago, 

based on dating analysis of encoded plasmids to fight against β-lactams present naturally in the 

environment.41 As with other enzymes, β-lactamases are substrate specific and interact solely 

with molecules containing defined structural features. The binding interaction with a particular 

substrate depends on the enzyme’s primary amino acid sequence and its resulting 3-D structure 

exposing certain amino residues in the void space of the active site capable to uniquely bound to 

the substrate. β-Lactamases have been divided into four classes (Amber class), A, B, C, and D, 

according to their amino acid sequence. Class A, C, and D enzymes possess a common feature 

as they all contain a catalytic, nucleophilic serine (Ser) residue in their active site. The hydroxyl 

group on the serine residue is able to catalyze hydrolysis by initial nucleophilic attack on the 

carbonyl of the antibiotic -lactam (1, Scheme 3) to form a tetrahedral intermediate (2, Scheme 

3) followed by lactam ring opening (3, Scheme 3) rendering it inactive.42  

 



14 
 

 
Scheme 3 : Hydrolysis mechanism of penicillin by serine (Ser)-containing β-lactamase enzymes 

(class A, C, and D)  

 The case of class B enzymes, the focus of this research, differ considerably structurally 

and mechanistically. Their structures, mechanism of action, and inhibition will be discussed in 

more detail in the subsequent sections. 

Metallo--lactamases (MBLs)  

 The particularity of metallo--lactamases (MBLs) as compared to the serine containing 

enzymes is the presence of one or two zinc (Zn2+) cations in the binding pocket which catalyze 

the hydrolysis of the antibiotics rather than a serine amino acid. MBLs can be sub-divided into 

three groups, B1, B2, and B3, according to their amino acid sequence influencing their 3-D 

structure and the number of zinc cations interacting in the binding pocket (Figure 8). In the sub-

class B1 and B3, two zinc cations are chelated in the active site while in the B2 sub-class only 

one Zn2+ is found. In all three sub-classes, aspartic acid (Asp120) and three histidines (His118, 

His196, His263) amino acids are present in the enzyme’s active site and are involved in the 

coordination of the zinc atom(s). Both, B1 and B2 sub-classes possess a cysteine (Cys221) bound 

to one of the zinc cations in what is known as the DCH site while in B3 this residue is replaced by 
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a histidine (His121; Figure 8A in green), and the B2 sub-class presents a lysine (Lys116) residue. It 

is important to note that the great majority of clinically relevant MBLs are identified as B1 type.43,44 

 

Figure 8: Coordination of zinc atoms in MBLs (blue) in sub-class (A) B1and B3  with a bound 

cephalosporin (variation for B3 in green); (B) B2 with a bound carbapenem  

 Class B enzymes have the particularity to have two flexible mobile loops implicated in 

substrate binding in proximity of their wide active site (Figure 9). It gives them the ability to 

accommodate substrate varying in sizes. This is in addition to the presence of zinc cations 

performing the hydrolysis of drugs without being covalently bound to the enzyme providing them 

with more flexibility compared to serine-β-lactamases.43,45,46  

 
Figure 9: Crystal structure of the NDM-1 enzyme (green) with L3 and L10 loops highlighted 

(red) and zinc cations (grey)47  
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 Metallo- β-lactamases are able to hydrolyze a large range of substrates. Indeed, the 

majority of β-lactam antibiotics were found to be hydrolyzed by MBLs B1 and B3, while B2 

hydrolyze carbapenems principally.48 Hydrolysis by the sub-classes B1 and B2 is similar starting 

with the zinc cations guiding a hydroxide ion to perform a nucleophilic attack on the carbonyl of 

the antibiotic’s -lactam ring (4, Scheme 4) giving a tetrahedral intermediate (5, Scheme 4); thus 

the amide bond is subsequently broken.  

 

Scheme 4: Hydrolysis mechanism of a penicillin by MBLs containing β-lactamase enzyme type 

B1 and B3  

The anionic intermediate (6, Scheme 4) obtained and stabilized by Zn2+ can be protonated. This 

leads to the formation of a hydrolyzed inactive product which is released from the active site in 
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presence of a water molecule. This way the enzyme is ready to perform another hydrolysis 

(Scheme 4).44   

 In the case of B2 enzymes a water molecule, as opposed to a hydroxide, is performing 

the hydrolysis guided by the zinc ion and one of the histidine residues (His118) in the active site 

(Figure 8B), otherwise the mechanism follows similar steps as with di-zinc enzymes.44 Among the 

metallo-β-lactamase subclasses, the B1 subclass is found to be the most widespread. This 

subclass contains some of the most important enzymes found clinically49,50 including 

Imipenemase (IMP), Verona Integron-encoded Metallo-β-lactamase (VIM), and New-Delhi 

Metallo-β-lactamase (NDM). IMP-1, which was encountered in Japan in 1988, was the first 

observed and isolated transferrable enzyme via plasmid.51 They have been able to inactivate all 

β-lactam drugs, making them a primary concern.50 Later on, VIM-1 was found in Verona University 

Hospital (northern Italy) in 199952 and has become the largest B1 subgroup with almost 46 

variants as of 2018.41 Variants are differentiated based on their amino acid sequence. NDM-1 

variants, as the name indicates, originated in 2008 from New Delhi, India53 and have spread to a 

large number of countries. The gene coding for NDM-1 enzymes is often found in addition to other 

genes encoding for different types of β-lactamases, thus  NDM-1 variants are able to hydrolyze a 

broad range of antibiotics, making them multi-drug resistant.50 Despite a large variability between 

each variant, conserved residues in these enzymes have been observed as mentioned above 

with residues coordinating zinc cations in the binding pocket. As well, B1 and B2 enzymes, with 

the exception of VIM variants, have a conserved lysine residue at the amino acid position 224 

(Lys224) which was found to be important in the binding of antibiotics.54 Lys224 is able to form 

electrostatic interactions with the carboxylate group of the β-lactam to position them appropriately 

in the active site and favor their inactivation. VIM-2, VIM-4, VIM-5, and VIM-38 variants on the 

other hand carry an arginine amino acid residue (Arg228), containing a terminal amine group as 

for lysine, which is believed to play a similar role to Lys224 in drug inactivation.55  
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 All these enzymes are able to hydrolyze the latest carbapenem-based drugs which are 

considered last resort drug treatment options, making bacteria containing MBLs an important 

threat. The challenges faced in the development of MBL inhibitors is an increasing concern as 

resistance of bacteria containing MBLs has been more commonly observed over the years. 

Currently, the development of more efficient inhibitors against MBLs is an intense area of research 

and although it is showing promise, it has yet to be very successful. Thus, there is an urgent need 

for more investigations toward  the development of new MBL inhibitors acting as adjuvants to 

antibiotics with the hope to render them potent. 

Inhibitors of metallo-β-lactamases  

 The serine residue in the active sites of class A, C, and D of serine-containing β-lactamase 

enzymes is part of the design of efficient inhibitor molecules which would be trapped very 

efficiently in the enzyme binding pocket and act as competitive molecules to the active drug. 

However, the case of MBLs, class B, is more challenging for inhibition due to the fact that they do 

not contain a covalently bond amino acid residue as for serine-β-lactamases directly involved in 

the degradation of antibiotics.44 The emergence of β-lactamase enzymes has forced scientists to 

quickly look for a solution to the problems that arise when inactivating β-lactam antibiotics. β-

Lactamase inhibitors have been used for a long period of time to combat β-lactam resistance. 

The first generation of inhibitors, notably clavulanic acid, sulbactam, and tazobactam (Figure 10), 

are well suited for inhibiting serine-based β-lactamases but cannot inhibit the activity of class B 

enzymes. This is due to the structural differences of the active site and the mechanism of 

inactivation of drugs relying on the covalently bound serine residue absent in MBLs.49 Indeed, the 

effectiveness of the inhibitors developed earlier on (Figure 10) rely on trapping a covalently bound 

enzyme-substrate adduct, key step for the hydrolysis. Thus, the lack of covalently bond residues 

involve in the MBLs’ hydrolysis mechanism renders serine inhibitor ineffective for class B.49 In 
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recent years, many prospective candidates as MBL inhibitors have been reported in the literature, 

but no effective MBL inhibitors have been clinically approved as of today.56,57  

 
Figure 10: Structure of clavulanic acid, sulbactam, and tazobactam 

 The enzyme-substrate binding interaction is specific requiring a particular molecular motif 

in the substrate to allow binding in the enzyme active site which often form a tightly bond covalent 

intermediate.58 As stated previously, Zn cations located in the MBLs’ binding pocket play an 

important role in the enzyme-substrate interaction for β-lactam hydrolysis. Therefore, most 

approaches for the development of efficient inhibitors involve a Zn-dependent mechanism. The 

first inhibitor not relying on zinc cations for inhibition was reported by Schofield and co-workers in 

201759; however zinc-independent inhibitors have very few candidates reported thus far. At the 

opposite, zinc-dependent mechanisms of inhibition of MBLs has extensively been studied and 

can be broadly divided in four categories as illustrated in Scheme 5.60 
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Scheme 5: Various modes of inhibition of MBLs with representation of the active site (A-D) and 

overall quaternary structure (D). (A) Zinc abstraction from the active site. (B) Zinc ion binding by 

ternary enzyme complex between the MBL, Zn, and inhibitor). (C) Covalent bond formation 

between MBL and inhibitor. (D) Allosteric inhibitors bind to MBL exosite, modifying the MBL 

active site60 

 One successful strategy involves the complete stripping of Zn cations from the enzyme 

binding pocket (Scheme 5A) using metal chelating agents, such as EDTA, preventing the 

hydrolysis of antibiotics. Other ion stripping approaches involve small inhibitors capable of zinc 

removal as reported for the well-studied natural product Aspergillomarasmine A.61–65 Researchers 

have also incorporated elements in inhibitor structures designed to interfere with the nucleophilic 

catalytic Zn-water complex by bridging of functional group such as thiols or acids (Scheme 5B&C). 
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The majority of reported prospective MBL inhibitors using the ion binding strategy include 

principally non-β-lactam based inhibitors belonging to one of the following classes: cyclic 

boronates,66–69 sulfamoyl carboxylates,70–72 dicarboxylic acids,73–75 and thioacid-containing 

molecules76–78 (Figure 11).   

 
Figure 11: Various MBL inhibitors from the reported major classes of compounds 

 Taniborbactam (VNRX-5133, Figure 11), a boron-based compound, was reported to be 

efficient as a broad spectrum inhibitor against serine and MBL enzymes and is one of the few 

compounds to have advanced to the clinic as a promising therapeutic for MBL inhibition.79 Everett 

and colleagues reported in 2018 the 5-(pyridine-3-sulfonamido)-1,3-thiazole-4-carboxylic 

acid (ANT431, Figure 11), a sulfamoyl carboxylic acid based compound, which exhibited inhibitory 

activity against NDM-1, VIM-1, VIM-2, or IMP-1 via ion binding strategy. ANT 431 showed that 

when combined with meropenem, it enables for the antibiotic to be active against bacterial strains 

presenting the 4 MBLs investigated; while meropenem alone is ineffective.71 Certain molecules 

have been repurposed as MBL inhibitors, notably malic acid, citric acid and ascorbic acid, as 

shown by the work conducted by Abbas and co-workers. They showed that those acids were able 

to synergistically restore imipenem and meropenem activities in their presence (Figure 12).80  
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Figure 12: Structure of repurposed compounds: malic acid, citric acid, and ascorbic acid   

 In addition to  zinc-dependent mechanisms, covalent binding strategies for the inhibition 

of β-lactamases have been explored. This method has been effective in covalent inhibition of 

serine-β-lactamase due the serine residue (S64, Scheme 6) involved in the hydrolysis mechanism  

being covalently bound to the active site. Additionally, the presence of other nucleophilic residues 

in proximity, notably lysine (K315, Scheme 6), enable this mechanism as reported for the inhibition 

by cross-linking hydroxamate derivatives.81–83   

 
Scheme 6: Mechanism of covalent inhibition in serine-β-lactamases using hydroxamate 

derivatives forming a cross-linked enzyme active site83 

 This approach relies heavily on the presence of a nucleophilic moiety in the enzyme active 

site which can interact with an inhibitor containing an electrophilic site. Application of this strategy 

to MBLs (Scheme 5C) has been explored although not as extensively as for SBLs. In the case of 

MBLs, the nucleophilic site targeted for covalent binding is generally a conserved amino acid in 

the enzyme binding pocket. In recent years, Thomas and co-workers also highlighted how 

essential are conserved amino acids for effective inhibitor development via covalent binding 

studies targeting Lys211 in NDM-1.83,84 In their research, the strategy to analyze the role of Lys211 
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relied on the presence of an electrophilic carbonyl carbon from a hydroxamate derivative which 

upon attack by the amino group of the lysine 211 (K211, Scheme 7) residue leads to the loss of 

a phenol group. In later work, they also investigated possible future routes for inactivation of NDM-

1 via high-throughput screening of compounds by targeting a cysteine residue (Cys208) which is 

known to be conserved in the B1 subclass of MBLs.85  

 

Scheme 7: Proposed mechanism for the covalent inhibition of MBLs applying the serine- β-

lactamase covalent inhibition approach with hydroxamate derivatives83  

 Similarly, Christopeit et al. demonstrated the importance of conserved lysine Lys224 in 

the mechanism of inhibition via covalent binding. Indeed, mutation of native enzymes leading to 

the deletion of this lysine residue resulted in the loss of inhibitory effect by covalent binding.86  

Such a strategy, involving a nucleophilic attack on a carbonyl of an inhibitor with an adjacent good 

leaving group to allow the nucleophilic group Lys244 to form a covalent bond with the inhibitor, 

was also seen in prior work by Kurosaki and co-workers for the inhibition of IMP-1.87  

 The difficulty in creating efficient covalent inhibitors interacting in a predictable manner for 

most MBLs is made more difficult due to several factors: 1) the non-covalently bond enzyme 

catalytic hydrolytic site, 2) the small overlap of conserved amino acid across all subclasses as 

mentioned earlier. However, the large success in inhibiting serine-based enzymes relied on the 

understanding and predictability of the role of the serine hydroxyl in the hydrolysis mechanism of 

β-lactams. Recent studies on the mechanism of hydrolysis of β-lactam antibiotics by MBLs, the 
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few conserved amino acids in the enzyme active site, and the mechanisms of inhibition of MBLs, 

have inspired further research to develop covalent inhibitors of metallo-β-lactamases.   

Overall research goal   

 The strategy of covalent inhibition of metalloenzymes, with the exception of metallo-β-

lactamases (MBLs), through use of a strained ring has been reported, notably with epoxide- and 

thiirane-based inhibitors.  Irreversible inhibitors such as fumagillin (Figure 13A) and its derivatives 

have been studied for the down-regulation and inhibition of the dimetalloenzyme methionine 

aminopeptidase involved in rheumatoid arthritis. They possess an epoxide which can be ring 

opened by a glutamic acid residue located near the catalytic metal center metal.88,89 Mobashery 

and co-workers have been studying zinc-dependent endopeptidases, which are involved in 

cancer and ulcers among other diseases. They have developed thiirane- and epoxide-containing 

molecules such as (R)-ND-336 (Figure 13B) which have been shown to inhibit matric matrix 

metalloproteinase (MMP) through covalent interaction with nucleophilic residues in the active 

site.90,91 Metallocarboxypeptidases (MCPs) are involved in diseases such as Alzheimer’s disease 

and suspected to be involved in various cancers. Their inhibition has been studied by Testero and 

co-workers, who tested an extensive series of thiirane and epoxide derivatives inspired by (2S, 

3R)-2-benzyl-3,4-epoxybutanoic acid (BEBA, Figure 13C), in which they modified the original 

BEBA phenyl ring to alkyl side chains or rings (Figure 13C).92 Some recent studies have reported 

the application of epoxide compounds toward the inhibition of bacterial enzymes. Class A β-

lactam inhibition involving an epoxy cephalosporin derivative was reported by Lebedev and 

colleagues showing promising inhibitory activities. However, their study was inconclusive on the 

exact mechanism by which the inhibition took place.93 Fosfomycin (or Phosphomycin; Figure 

13D), which is the only phosphonate in the clinic, can bind to the uridine diphosphate-N-

acetylglucosamine enolpyruvyl transferase enzyme (MurA) which is involved in peptidoglycan 
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synthesis. This takes place by nucleophilic attack of the MurA’s cysteine residue found in its active 

site on the fosfomycin epoxide ring, thus being a bactericidal compound.94,95   

 

Figure 13: Epoxide and thiirane covalent inhibitors of metalloenzymes 

 Although the reported covalent inhibitors have not targeted metallo--lactamase enzymes 

and proceed by a different mechanism than the traditional hydrolysis of a substrate, the study and 

application of strained 3-membered-ring-containing molecules is believed to have relevance in 

the development of efficient irreversible covalent MBL inhibitors.  

 

Scheme 8: Covalent binding strategy illustrated for an MBL. Black: MBL; Blue: inhibitor; Nuc: 

nucleophilic amino acid; E: thiirane/epoxide electrophile. 

 The use of strained 3-membered rings such as epoxides or thiiranes as a warhead for 

covalent enzyme inhibition has not been investigated in the context of MBLs. Therefore, this work 

MBL MBL MBL 
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aims at developing a series of newly-designed potential inhibitors containing an epoxide or 

thiirane and a zinc-coordinating functional group(s) in order to efficiently inhibit covalently the MBL 

class (Scheme 8). Several strategies are  explored in this work to achieve covalent binding with 

different newly designed inhibitors. Also, the use of a metal ion binding strategy by incorporation 

of coordinating functional groups (thioacid and carboxylic acid) to those newly designed inhibitors 

is of interest.       
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Chapter II. Open β-lactam analogues as covalent inhibitors  targeting metallo-β-

lactamases 

Introduction: From closed lactam ring to modification into the open β-lactam 

analogues 

The project for the development of covalent open β-lactam inhibitors arose from 

investigations during preceding work on traditional β-lactam inhibitors derived from clavulanic acid 

(Scheme 9). This clavulanic acid-based project which did not lead to a successful outcome 

provided insights for synthetic strategies and direction for the current work presented below. The 

initial goal was to make a series of clavulanic acid inspired inhibitors effective against class B 

which is not normally affected by the traditional clavulanic acid targeting principally class A β-

lactamases very efficiently. The approach was to incorporate an anchor in the designed inhibitor 

for covalent interactions with metallo-β-lactamases (MBLs) using a 3-membered ring such as an 

epoxide, thiirane, or aziridine.  

  

Scheme 9: Attempted synthesis of clavulanic acid derivative containing an epoxide   

Starting with potassium clavulanate (7), a benzyl ester protection of the carboxylic acid 

functional group was performed96 to give 8 in 72% yield leading to the next step, the oxidation of 
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the allylic alcohol. Surprisingly, the use of manganese dioxide as oxidant,97 known to be very 

selective for allylic alcohols, did not provide a significant yield of the desired product 9. The 

reaction conditions led to low percent conversions (2-15%) as determined by nuclear magnetic 

resonance spectroscopy (NMR).  Other reagents were explored for the oxidation reaction 

including 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO),98 Dess-Martin Periodinane (DMP),99 and 

its precursor 2-iodoxybenzoic acid (IBX).100 Attempted oxidation with TEMPO did not lead to 

conclusive results, but the use of DMP and IBX reagents provided a range of percent conversions 

of the corresponding aldehyde 9 between 0 to 70%, as determined by NMR. Two sets of doublets 

were observed at 7.8 ppm and 8.0 ppm with J = 0.9 Hz and J = 8.3 Hz, respectively, when the 

oxidation was performed with DMP while only one peak at 8.0 ppm was observed with IBX. This 

suggests that E and Z isomers of the allyl aldehyde were formed with DMP while IBX afforded 

only one. Although the aldehyde proton characteristic peak of the nitro benzyl protected clavulanic 

9 was observe at around 8.0 ppm, the purification happened to be challenging and they were not 

isolated satisfactorily. 

A crude sample of 9 was subjected to the Tebbe reagent101 for an attempted methylenation 

reaction from the aldehyde. These conditions led to a complex mixture with the loss of the nitro 

benzyl protecting group. The formation of the corresponding alkene compound was not confirmed, 

and the inconsistent results pushed us towards an alternative strategy. The new approach was to 

bypass the olefination step and attempt a direct epoxidation102 of the crude aldehyde product 

collected. This would have shortened the synthesis pathway and avoided issues encountered 

with the Tebbe reaction conditions, but despite multiple attempts, the reaction did not form the 

epoxide 11.  

It was thought that since 3-membered ring formation was proving to be challenging with 

the current substrate, a change in the target structure was necessary which led to the project 

detailed below in this chapter.  
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Research Objectives: Covalent inhibition of MBLs with strained 3-membered ring  

open lactam analogues  

As reported previously, the introduction of a strained 3-membered ring strategy in the 

Metallo-β-lactamase (MBL) inhibitors has not been applied as of right now to the best of our 

knowledge. Thus, it was of interest to investigate it and determine the potential benefits which 

could be observed toward efficient inhibition of MBLs. MBLs found in antibiotic-resistant bacterial 

strains are known to have conserved amino acid residues which can be used as leverage in the 

development of small inhibitor molecules of these enzymes. Some of the conserved amino acids 

in the most prevalent MBL, B1 subclass, include lysine (-NH2) and aspartic acid (-COOH) which 

have been important for the catalytic mechanism of MBLs as reviewed in chapter 1 (Figure 8A). 

These amino acid residues might interact with the designed inhibitors through nucleophilic 

reaction to lead to the formation of a covalent bond between the inhibitor and enzyme, rendering 

the interaction irreversible.  

The new compounds designed are the opposite of a traditional lactam ring structure, an 

open version of the ring containing a coordinating functional group (thioacid) in addition to a 3-

membered ring. This idea was thought to provide a stronger interaction with class B lactamases 

and allow for a more achievable synthesis pathway than the original clavulanic acid derivative. 

The approach that was taken when designing the target molecules include for this series of 

inhibitors (Figure 14) a thioacid functional group which could enhance the positive interaction with 

the targeted enzymes, a phenyl moiety, and the strained 3-membered ring as covalent anchoring 

group.  
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Figure 14: Structure of the proposed covalent 3-membered ring open lactam analogues 

            Experimental and in silico studies of MBL inhibition from all  3 subclasses, including  NDM-

1 (B1), IMP-1 (B1), BCII (B1), CphA (B2), L1 (B3), FEZ-1 (B3) among others, reported the 

presence of hydrophobic moieties contained in the molecule, i.e. alkyl chain, cyclopropyl, benzyl, 

or phenyl group, stabilize the binding in the active site through hydrophobic interactions with loop 

structures in MBLs.103–107 Loop L3 (Figure 15) present in the B1 and B3 subclass can include 

hydrophobic residues such as valine, methionine, tryptophan, or phenylalanine which can 

favorably interact with hydrophobic moieties in inhibitors.44 An in-depth study of ampicillin, which 

is a well-known and commonly used antibiotic containing a phenyl group, with B1 subclass NDM-

1 showed the structural interaction after hydrolysis of ampicillin (Figure 15) and the importance of 

the presence of the phenyl ring in the binding pocket through hydrophobic interactions. The 

hydrophobic interaction of the phenyl ring with methionine (M67) and leucine (L65) residues lead 

to the appropriate positioning and tight binding of the hydrolyzed ampicillin in the active site, 

essential for efficient enzyme inhibition (Figure 15).46    
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Figure 15: X-ray crystal structure of the hydrophobic interactions of hydrolyzed ampicillin 

(green) in the active site  of  NDM-1 (A).Structural similarities between compound 12 and 

hydrolyzed ampicillin (B)46 

Considering the structural features of MBLs and the reported results,  it was decided to 

incorporate a phenyl group which would serve to promote hydrophobic interactions as with 

hydrolyzed ampicillin, which the designed derivatives were inspired from. The initial approach, in 

addition to the hydrophobic moiety, was to incorporate a thioacid, but the synthesis was 

constrained to a carboxylic acid due to synthetic challenges.  

Proposed mechanism of action of covalent 3-membered ring open lactam 

analogues 

The proposed inhibitors are believed to have the ability to interact covalently with MBLs, 

leading to an irreversible inhibition of the metallo enzymes. These derivatives, when administrated 

simultaneously with an antibiotic to the patient, will ideally have a higher affinity for the bacterial 

MBL enzyme than the antibiotic does. Thus, the activity of the MBL will be inhibited, preventing it 

from inactivating the β-lactam antibiotic.  

The presence of a conserved amino acid residue, i.e. aspartic acid (Figure 16), in the 

binding pocket of metallo-β-lactamases could allow for the development of more effective 

(A) (B) 
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inhibitors, as they contain a nucleophilic carboxylate group that can form covalent interactions 

with electrophilic chemical species.  

                

Figure 16: Crystal structure of the active site of MBL highlighting the presence of aspartic acid 

(D) residues circled in red. (A) B1 (NDM-1, PDB: 3S0Z); (B) B2 (CphA, PDB: 1XBG); (C) B3 

(L1, PDB: 15ML). 

The designed compounds could reach the enzyme binding pocket where they would be 

positioned appropriately through hydrogen bonding and hydrophobic interactions between the 

various MBL’s active site amino acids and the functional groups of the target inhibitor. The 

analogues containing a 3-membered ring introduced using organic synthesis could potentially 

interact covalently with the nucleophilic residue in MBLs. The proposed mechanism involves a 

conserved residue, aspartic acid for instance, acting as a nucleophile for the formation of a 

covalent bond. This can take place through an elimination reaction by deprotonation of an acidic 

proton in 13 (Scheme 10) leading to the thiirane ring opening followed by nucleophilic attack by 

the aspartic acid residue on the elimination product (14, Scheme 3) to form a covalent bond for 

an irreversible interaction (15, Scheme 10). Another plausible mechanism can be through direct 

ring opening of the thiirane of the inhibitor (16, Scheme 11) to give the covalently bound inhibitor 

(17, scheme 11). 

(A) (B) (C) 

D78 

D72 

D88 
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Scheme 10: Mode of action of analogue 7 for the inhibition of MBL via elimination.  

  
Scheme 11: Mode of action of the covalent inhibitor 7 via a direct thiirane ring opening 

mechanism  
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Result and Discussion 

Synthesis of Vinylglycine methyl ester hydrochloride (23) 

Multiple convergent synthetic routes were explored in attempts to synthesize the acid 

containing analogues, and these will be discussed in detail in the present section. All pathways 

explored involved a convergent synthesis of a vinylglycine derivative (23a, 23b) used for the 

formation of a 3-membered ring, which is introduced to a dipeptide fragment in attempt to obtain 

the final target molecules presented in Figure 14. The investigation of different dipeptide 

fragments was done leading to several generations of targets which will be detailed.  

Vinylglycine (VG) is a costly commercially available compound, thus it was decided that it 

would be synthesized following a modified literature method reported by A. Afzali and H. Rapoport 

in 5 steps.108 Through this multistep synthesis (Scheme 12), the methyl ester protected D-VG 

(23a) and L-VG (23b) were synthesized in an overall  54% yield. Esterification of D-methionine 

methyl ester HCl (18a) and L-methionine methyl ester HCl (18b)  with benzyl chloroformate 

afforded the corresponding Cbz-protected methionine methyl esters 19a and 19b in 88% yield.  

 

Scheme 12: Synthesis of L- and D-VG methyl esters HCl (23a, 23b)  
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Entry Deprotection 

Conditions 

Observation Yield 

1 Et3SiH, 
Pd(OAc)2,Et3N 

No Deprotection 

SM recovered  

-- 

2 Et3SiH, 
PdCl2, Et3N 

No Deprotection 

SM recovered 

-- 

3 6M HCl, 

Reflux 

Cbz and methyl ester deprotection  97%  

Table 1: Reaction summary for the Cbz removal of 21 

Oxidation of the methionine sulfides using NaIO4 led to the corresponding sulfoxides 20a 

and 20b in 89% yield. Pyrolysis of protected methionine sulfoxides at 170 oC afforded through a 

β-elimination the L- and D-Cbz-VG methyl esters 21a and 21b respectively in 71% yield. 

Removal of the Cbz group  (Table 1) was first attempted using Pd(OAc)2
109 and PdCl2110 with 

Et3SiH to obtain the desired protected VG methyl ester (23a, 23b) without deprotecting the methyl 

ester which was not proposed in the route by Afzali and Rapoport. As the attempted palladium-

catalyzed deprotections were unsuccessful, the removal of both protecting groups was 

accomplished with 6 M HCl under refluxing conditions and afforded the vinylglycine hydrochloride 

22a and 22b in 97% yield. The fully deprotected VG was esterified to give the desired VG methyl 

ester hydrochloride final compounds (23a, 23b) in quantitative yields (p. 124 1H NMR; p.125 13C 

NMR). At that point, the VG methyl ester was to be used as part of the convergent synthesis to 

obtain the desired MBL inhibitors proposed in Figure 14 and discussed below.  

Attempted synthesis of (2S)-(2-amino-2-phenylacetamido)-3-oxo-(3-sulfanylpropyl)amino-

(oxiran-2-yl)acetic acid  (12)   

The original target in the development of covalent inhibitors of MBLs was compound 12 

(Figure 14). Through retrosynthetic analysis it was understood that the ampicillin-mimicking 

moiety in 12 could be introduced via the non-essential amino acid phenylglycine (24) by coupling 

it with the amino group of a dehydroalanine moiety, obtained from 26, and used to incorporate 

the thioacid functional group in the analogue (Scheme 13). As mentioned previously, the 3-
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membered ring portion was designed to be incorporated into the molecule from vinylglycine 

methyl ester hydrochloride (23a, 23b) synthesized from methionine (27) in which the alkene bond 

would undergo epoxidation or indirect episulfidation to serve as an anchor for covalent 

interactions with MBLs. Those two moieties were to be linked together through a conjugate 

addition reaction between the primary amine of 23 and the alkene 25. 

 

Scheme 13: Retrosynthetic analysis of 12. 

N-Boc phenylglycine (24) is commercially available for use in the coupling reaction with 

dehydroalanine. Therefore, synthesis of 12 began with the attempted synthesis of dehydroalanine 

from L-cysteine. A diamide 30 was synthesized in a two-step reaction111 (Scheme 14a) via 

formation of dibrominated acyl chloride intermediate 29 from adipic acid (28) followed by 

nucleophilic addition reaction with ammonia to afford 30 in 29% yield. This was to be used for the 

formation of dehydroalanine (Scheme 14b), however the synthesis from Fmoc-cysteine 31 failed 

to provide the desired compound 25.112 The results of the reaction suggested that the Fmoc 

protecting group was cleaved under the applied conditions which was confirmed by NMR analysis 

which presented the dibenzofulvene characteristic peaks in addition to what seems to be a 

cysteine dipeptide.  
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Scheme 14: (a) Synthesis of diamide 30; (b) Attempted synthesis of Fmoc-dehydroalanine (25)   

In attempt to obtain 12 and avoid the encountered issues with the previously discussed 

synthesis of dehydroalanine, it was decided to replace it by a bromoalanine core which would be 

used to incorporate the acid functionality and to converge the previously synthesized VG methyl 

ester in the desired target molecule (Scheme 12). The bromoalanine core moiety is derived from 

the amino acid serine rather than cysteine used initially for the formation of dehydroalanine. The 

protected VG 23a or 23b can be added in the synthesis via an N-alkylation reaction with the 

protected brominated dipeptide intermediate 37 rather than the previously planned conjugate 

addition reaction with the alkene of dehydroalanine derivative 25. 
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Scheme 15: Attempted synthesis of 12 via bromo dipeptide 37 

Entry Bromination 

Conditions 

Solvent  Temperature 

/Time  

Observation Purification 

1  CBr4, PPh3 CH2Cl2 0 oC to 35 oC  

4h 

No reaction 

completion  

Required- side 

products after 

workup  

2 NBS, PPh3 CH2Cl2 r.t.  

4h 

No starting material 

remaining 

Required- side 

products after 

workup  

3 PBr3  Et2O 0 oC  

1h  

No starting material 

remaining- groups 

missing  

Cleaner than 

NBS after 

workup  

Table 2: Reaction summary for the bromination of 36 
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The synthesis of 12 following the new proposed pathway involved a two-step reaction for 

the protection of L-serine (32). An allyl ester formation of the carboxylic acid followed by silylation 

of the alcohol side chain gave the desired L-serine allyl ester O-tert-butyldimethylsilyl ether (34) 

in a 60% yield over 2 steps.113,114 Amino acid coupling115 of N-Boc protected phenylglycine (24) 

with the synthesized protected serine (34) afforded the desired dipeptide 35 in 74% yield (p. 127 

1H NMR; p.128 13C NMR; p. 129 HRMS). Subsequently, a highly efficient and clean mild acid 

cleavage of the tert-butyldimethylsilyl ether of dipeptide 35 led to the corresponding free alcohol 

36 in 94% yield without further purification required.114 At this point, 36 was to be brominated 

using a brominating agent in the presence of triphenylphosphine. Multiple changes of the reaction 

variables for the bromination were applied in order to obtain an optimized conversion of the 

alcohol (Table 2) to bromide 37. The reaction of 36 with CBr4
116 did not lead to complete 

conversion of the alcohol, which was mostly recovered. When subjected to the reaction conditions 

using N-bromosuccinimide (NBS), the starting alcohol was fully consumed contrarily to CBr4 as 

seen by thin layer chromatography (TLC). Unfortunately, the bromination conditions using NBS117 

contributed to some impurities in the product which required purification prior to moving onto the 

next reaction step. Compound 37 is not stable as the product lose its bromine group after 

manipulation through the purification by column chromatography to form an alkene. Proton 

Nuclear Magnetic Resonance (1H NMR) analysis of the collected product suggested the observed 

outcome. Indeed, the diastereotopic protons of the methyl group geminal to the alcohol in the 

serine moiety of the dipeptide 36 are observed at 4.0-3.9 ppm, but upon bromination to give 37, 

these diastereotopic protons shift downfield after a period of time to 6.6-5.9 ppm. This was 

indicative of the formation of the desired bromine 37 although unstable to manipulation post 

reaction. Thus, it was of interest to seek a more efficient and cleaner option for the formation of 

bromide 37.   
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Phosphorus tribromide118 was used alternatively as the brominating agent instead of CBr4 

or NBS. In this case there was evidence of complete consumption of the alcohol 36 with minor 

side products observed upon aqueous workup which was desired to avoid manipulation through 

purification steps. However, the NMR spectroscopy analysis of the isolated product of the reaction 

showed a loss of peaks for part of the desired compound: the phenylglycine group and evidence 

of the deprotection of the Boc protected amine. The outcome obtained with PBr3 as generating 

less side products was an useful insight for the subsequent synthetic work. However, the loss of 

functionalities in the molecule using 36 led us to focus on the synthesis pathway to develop  

compound 13 which was developed simultaneously and will be described in detail below.  

Attempted synthesis of (2S)-(2-phenylacetamido)-3-oxo-(3-sulfanylpropyl)amino-(oxiran-

2-yl)acetic acid (13) 

In parallel to the synthesis using phenylglycine as the ampicillin-mimicking moiety to form 

12 (Scheme 15), it was decided to use phenylalanine (40) as another derivative which gives 

compound 13 in this case. As it does not contain an amino group, it was of interest to use it for 

both the ease of handling through the synthetic steps and the eventual variation in the interaction 

and inhibition of MBL in comparison to 12. The synthetic path follows a similar approach to the 

one reported for 12, with the majority of the synthetic steps leading to comparable yields except 

for the formation of alcohol 42 (Scheme 16). Phenylalanine (40) was introduced into the synthesis 

by reaction with the previously made protected serine 34 providing 41 in 85% yield followed by 

deprotection of the tert-butyldimethylsilyl ether group to give alcohol 42 in a 88% yield (p. 135 1H 

NMR; p.136 13C NMR), slightly lower than what was obtained for amine containing analogue 36 

(Scheme 15). Based on the results of the bromination conditions investigated for 12 it was decided 

to employ the reaction conditions using PBr3 for the bromination reaction of 42. This led to the 

formation of the desired compound in 10% conversion as observed by 1H NMR analysis which 
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was used as is without further purification. The next step was the attempted alkylation reaction 

with 43 for the incorporation of the VG moiety. 

  

*Percent conversion by 1H NMR 

Scheme 16: Attempted synthesis of 13 with bromo dipeptide intermediate 43 

In anticipation of possible undesired over-alkylated side products in the reaction of 

bromide 43 and L-VG methyl ester hydrochloride (23), the reaction conditions followed were those 

described by S. Bhattacharyya and co-workers.119 The strategy used relies on a chemoselective 

deprotonation of primary amines in the presence of secondary amines, preventing them from 

being alkylated. The reaction conditions were controlled by slow addition of Et3N/dry 

dimethylformamide (DMF) solution (1/40th) over an extended period of time of 8 hours into the 
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alkyl bromide solution in DMF in the presence of 4Å molecular sieves. They reported an N-

alkylation of bromide salts of primary amines with alkyl bromides with a 9:1 ratio of monoalkylated 

to dialkylated product observed, reaction often providing undesired over-alkylated product at 

much higher ratio. However, following the above conditions for the N-alkylation of 43 with 23 did 

not lead to conclusive results for the formation of the desired product 44 despite modification of 

the reaction variables such as the number of equivalents of base or reaction time. Consumption 

of the amine 23 and new product formation were observed, but the 1H NMR spectroscopic 

analysis did not confirm the formation of the desired monoalkylated product in the crude mixture, 

or any of the fractions collected after purification by column chromatography. Interestingly, the 1H 

NMR spectrum obtained only showed the presence of a portion of the expected molecule. The 

vinylglycine moiety seemed to be missing, as the expected peak for the methine group at ~5.0 

ppm and the vinylic protons at 5.2-6.0 ppm were not observed (Figure 17). The spectrum suggests 

that the brominated dipeptide (43) underwent elimination of HBr leading to the formation of an 

alkene product (45) as the geminal vinylic protons in the 6.5-5.9 ppm region were present (Figure 

17). This would be expected due to the presence of the acidic -proton adjacent to the ester, 

which can be deprotonated under basic conditions, followed by elimination of the bromide. After 

several trials and the encountered issues following this pathway, it was clear that the strategy 

undertaken needed to be altered in order to incorporate the VG moiety effectively. The presence 

of an acidic proton next to the bromine, which is a very good leaving group, causes its elimination. 

Therefore, it was decided to attempt a reductive amination of an aldehyde instead of an N-

alkylation of a bromide.  
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Figure 17: 1H NMR spectrum of the proposed unexpected product 45 during attempted reaction 

of 45 with 23. 

For the reductive amination, the oxidation of alcohol 42 is required to obtain the 

corresponding aldehyde. It was decided to use a model system to determine the best reaction 

conditions to achieve the oxidation (Scheme 17). N-(tert-butoxycarbonyl)serine allyl ester (46) 

was synthesized as the model system in 17% over 2 steps from 38113,120 followed by an oxidation 

reaction to obtain the corresponding aldehyde 47. Dess Martin periodinane reagent was used to 

convert alcohol 46 to its corresponding aldehyde 47. After unfruitful attempts, optimization of the 

reaction conditions led to the desired aldehyde  47 in a low yield of 14%, requiring 4 equivalents 

of DMP reagent in a 0.1 M solution (Scheme 17).    

H2O  

Grease  

1H NMR, 500 MHz 
CDCl3 
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Scheme 17: Synthesis of alcohol 46 and oxidation to 47 using optimized conditions 

To form the aldehyde dipeptide 48 (Scheme 18), the oxidation of alcohol 42 was attempted 

with DMP following the optimized conditions determined with the model system, however, the 

desired aldehyde was not obtained despite multiple changes of the reaction parameters (DMP 

equivalents, concentration, etc.). Another oxidant, pyridinium chlorochromate (PCC)121, was also 

explored in attempts to oxidize 42. This did not lead to desired aldehyde 48, and only alcohol 42 

was recovered.  

 

Scheme 18: Attempted synthesis of aldehyde dipeptide 49 

Since the strategies involving N-alkylation with a bromide and reductive amination of an 

aldehyde to incorporate the vinylglycine moiety were both unsuccessful, it became clear that the 
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core structure had to be changed and the synthetic pathway modified to obtain open -lactam 

inhibitors structure for MBLs. The results obtained to this point gave essential information to move 

in a more promising direction with the choice of molecule to work with. Knowing the difficulties 

encountered with the acidic proton at the α-position of previous substrates, it was decided to move 

away from using serine as the core structure and choose an amino acid core with which the issue 

of the acidic proton would not be encountered over the synthetic steps followed. 

Attempted synthesis of (2S)-2-({[9H-fluoren-9-yl)methoxy]carbonyl]amino)-4-oxo-(1-

methoxy-1-oxobut-3-en-2-yl)amino)-1-oxo-1-[(prop-2-en-yl)oxy]butanoate (14)  

Aspartic acid was thought to be an appropriate substitute to the serine core. Compared to 

serine, aspartic acid does not have a free hydroxy group which could be utilized for reductive 

amination or N-alkylation strategies presented above. Instead, an alternative route was explored 

with the use of a protected aspartic acid starting material 50 as core molecule to incorporate VG 

methyl ester 23a or 23b in the synthesis which lead to compound 14 (Figure 19). This was 

possible by taking advantage of the carboxylic acid functional group in the aspartic acid to perform 

an amino acid coupling.  

The Fmoc protecting group is commonly used and known to be practical for orthogonal 

peptide synthesis, so the original proposed pathway to synthesize 14 involved N-

fluorenylmethoxycarbonyl- (Fmoc-)-L-aspartic acid allyl ester (50, Scheme 19). The free 

carboxylic acid side chain of the starting compound being unprotected enables for the coupling of 

the VG methyl ester (23b) using benzotriazol-1-yl-oxytripyrrolidinophosphonium 

hexafluorophosphate (PyBOP) as a coupling agent and diisopropylethylamine (i-Pr2NEt). The 

reaction is moderately efficient with the desired product 51 easily collected after purification by 

column chromatography in 36% yield. The subsequent step is the deprotection of the amino group 

in order to introduce the ampicillin mimicking portion by coupling of phenylacetic acid to 50. 
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Scheme 19: Attempted synthesis of 14 using a Fmoc protected aspartic acid allyl ester 50 

Entry  Fmoc Deprotection 
Conditions 

Time Observations Purification  

1 50% i-Pr2NEt, 
CH2Cl2 

>24h SM remaining  Not isolated  

2 10% piperidine  4h No SM   Not isolated 

3 20% piperidine  10 mins No SM Not isolated  

Impure 

Table 3: Attempted Fmoc deprotection reaction conditions of 51 
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Following the mild reaction conditions reported by Chang and co-workers122 using i-Pr2Net 

did not lead to Fmoc removal with starting material 51 recovered. Alternatively, the traditional 

approach with piperidine123 for Fmoc deprotection was used instead in the hope to get the reaction 

to completion and facilitate the isolation of the product. Multiple conditions were explored with 

piperidine for the Fmoc removal reaction which seemed to lead to the complete deprotection of 

the amino group (Table 3). However, the suspected free amine 52 proved to be difficult to isolate 

and the collection of the purified desired product was not achieved despite a series of purification 

attempts. The NMR analysis of the collected crude product suggested that the deprotection 

reaction of 51 was successful. Indeed, the characteristic dibenzofulvene by-product peaks were 

present in the NMR spectrum. Therefore, it was decided to use the crude material for the next 

step which was the coupling reaction with phenylacetic acid 40. Standard amine coupling 

conditions were used on the crude material collected which led to a complex mixture as the 

reaction progressed. The desired product was not observed upon spectral analysis of the isolated 

product spots. The pitfalls encountered in the presented path with the N-Fmoc protected aspartic 

acid allyl ester 50 as the starting material demonstrated that working with the free amine 52 as an 

intermediate was more challenging than expected and an alternative which would avoid such 

manipulation should be more malleable. The order of the steps to be taken to achieve the 

synthesis of 14 needed to be revisited and starting with a free amine should give a more feasible 

pathway. 

L-Aspartic acid 4-tert-butyl-1-methyl ester hydrochloride (57) was chosen as the starting 

material for the modified pathway to 14 as it was desired to keep the same amino acid core 

structure (Scheme 20). In order to avoid working with a free amine intermediate through the 

synthetic steps, the free amine starting material 57 was first coupled to phenylacetic acid (40) 

using the same conditions as discussed previously. This led to the dipeptide 58 in a high yield of 

91% after purification by column chromatography. Subsequently, the methyl ester deprotection 
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with lithium hydroxide in a 3:1 mixture of methanol/water124 gave the free carboxylic acid 59 in 

48% yield. This was then coupled to VG methyl ester hydrochloride (23b) leading to 60 in a yield 

of 38% and a mixture of diastereomers (d.r. 2:1) although the reaction was carried through with 

PyBOP which should minimize racemization. Subsequently, the use of trifluoroacetic acid (TFA) 

with triethylsilane as the carbocation scavenger for the removal of the t-butyl ester protecting 

group125 of compound 59 provided the free carboxylic acid 61 in a satisfying 97% yield (p. 150 1H 

NMR; p.151 13C NMR; p. 152 HRMS).  

 

Scheme 20: Synthesis of 14 from L-Aspartic acid 4-tert-butyl 1-methyl ester hydrochloride 57 
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From there the carboxylic acid 61 was to be converted to the corresponding thioacid which 

happened to be challenging. The initial reaction conditions followed are those reported by 

Vishwanatha T.M. et al. and use sodium sulfide in DMF in the presence of N-ethyl-N’-(3-

dimethylaminopropyl)carbodiimide (EDC) as the coupling agent.126 The reaction was attempted 

with 61, but the vinylglycine moiety in the expected product 62 was not observed by NMR analysis. 

Subsequently, an attempt towards the optimization of the reaction conditions was done, however 

the results obtained did not confirm the formation of 62. The same outcomes were observed, and 

the NMR data collected suggested that a cyclized product 64 was formed. This could have 

occurred through a 5-exo trig ring closure by attack of the carboxylate group of 61 on the amide 

carbonyl and loss of the VG portion (Scheme 21). The calculated mass for thioacid 62 is m/z 364, 

and the analysis of the crude product by electrospray ionization mass spectrometry (ESI-MS+) 

did not present evidence of this product. Instead, the expected cyclized product with a calculated 

m/z 233 seemed to be present as a molecular ion peak at that a m/z 234 [M+H] was observed in 

the mass spectrum. 

  

Scheme 21: Proposed mechanism for the formation the undesired product 64 during attempted 

formation of 62 from 61 

In light of the provided results and the time constraint, it was of interest to attempt the 

remaining reaction steps of the synthesis, the epoxidation and methyl ester deprotection, with the 

carboxylic acid version rather than the thioacid (Scheme 22). Since both the acid and thioacid 

have zinc-coordinating abilities, it was hypothesized that it would be a good alternative and could 

eventually allow for comparison of the inhibitory abilities of both analogues against MBLs, in the 

case that the thioacid could be synthesized at a later time. 
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Scheme 22: Synthesis of 66 starting from previously made 61  

The epoxidation of alkene 61 using standard Prilezhaev conditions with m-

chloroperbenzoic acid (m-CPBA)127 was performed in attempt to obtain 65, however the alkene 

was left unreacted as the NMR of the collected crude material showed the characteristic proton 

peak for the alkene.  Starting material 64 was subjected to alternative epoxidation conditions 

involving trifluoroacetone and potassium peroxymonosulfate (Oxone ®).128 Through this method, 

3-methyl-3-(trifluoromethyl)dioxirane is formed in situ which is known to be more reactive with 

alkenes than the traditional dimethyldioxirane (DMDO). The 1H and 13C NMR data of the crude 

material collected 65 confirmed that the alkene in the vinylglycine moiety in 61 had reacted as the 

vinyl protons at 6.0 ppm were not present in the spectrum. The 13C NMR obtained as well showed 

that the alkene carbons were not present at 132 ppm and 117 ppm, reinforcing the thought that 

the desired epoxide was indeed synthesized. Multiple purifications of the crude product by 

chromatography were attempted to confirm the formation of 65, but the isolation of the pure 

compound was unsuccessful. Therefore, it was decided to analyze the crude product by ESI-MS 

to help determine if 65 was actually formed as the 1H NMR data of the crude suggested. Thus, a 

two-step reaction to get to the final desired compound 66 could potentially be carried on. 
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  The ESI-MS+ provided interesting results supporting the NMR analysis findings. The 

epoxide 65 m/z 364 was found as the base peak m/z 365 [M+H] in the presence of some impurities 

in low ratio (Figure 18).  

 

Figure 18: ESI-MS+  spectrum of 65 

The confirmation of the formation of the epoxide enabled the final synthetic step to be 

performed in order to obtain 66. It was necessary for the methyl ester deprotection step to be 

selective to avoid any undesired reactions with functionalities contained in the molecule such as 

the epoxide. Trimethyltin hydroxide which is known to be mild and selective for the hydrolysis of 

esters was used in an attempt to deprotect the carboxylic acid to give 66.129 The methyl ester 

deprotection reaction using Me3SnOH performed was challenging due to the fact that the outcome 

of the reaction did not clearly show evidence of the final desired product. The 1H NMR analysis of 

m/z 364 
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the crude product of the deprotection reaction showed the presence of minor peaks corresponding 

to the expected product suggesting that the deprotection had taken place. However, the peak to 

noise ratio in the 1H NMR interfered to confirm in a conclusive manner that the desired compound 

was present in the crude mixture, and additional analysis was needed before manipulating the 

compound through purification methods in the case where the epoxide ring could ring open. An 

ESI-MS analysis was performed to help clarify the 1H NMR data obtained, and the expected 

product  m/z 351 was not conclusively detected as a m/z 347.1241 [M-H]-  was observed as low 

abundance peak representative of a deprotonated specie (Figure 19). This suggested that the 

results for the removal of the methyl ester group was unclear and further investigation required to 

confirm the formation of the desired product of reaction 66.  

  

Figure 19: ESI-MS- results for compound 66  

m/z 351 
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The current results of the pathway followed to get to the desired target 66 were promising 

as the final compound calculated m/z was observed by ESI-MS reinforcing what the preliminary 

NMR data have suggested for the epoxide formation and the potential methyl ester deprotection. 

The minimal amount of product to run the last reaction steps was a limitation, thus optimization 

and scale up of the reactions performed should help achieve the isolation and characterization of 

the pure final compound 66 which we hope to do in the near future.    

Conclusions and prospective work   

The designed synthesis to get to the thioacid derivatives to MBLs has  proven to be 

complex with challenges requiring a series of modifications to the initial target goal. The pathway 

followed to access 12 starting with L-cysteine was attempted, however the preliminary steps being 

unsuccessful forced us to step away from that route. The approach taken to circumvent the 

encountered issues consisted of using L-serine as the core structure of the dipeptide instead, 

followed by coupling to phenylglycine and introduction of the L- or D-VG methyl ester (23a, 23b), 

previously synthesized as the anchor for the 3-membered ring. The first half of that synthesis 

pathway was accomplished successfully until arriving at the halogenated intermediate, which is 

difficult to handle and move forward with. As well, the alternative compound using phenylacetic 

acid instead of phenylglycine to get 13 showed similar problems. Thus, the pathway to obtained 

compound 14 was designed subsequently which did not include a halogenated intermediate. The 

route for the attempted synthesis of thioacid 62 and carboxylic acid 66 was the most successful. 

The attempted thioacid formation was unsuccessful, with a suspected cyclization of intermediate 

61 to anhydride 64, leading us to exclude the thioacid formation step in the synthetic route. The 

acid taken to the final steps did not pose major issues. However, the products obtained after 

epoxidation and methyl ester deprotection were not isolated pure. The analysis of the crude 

product by NMR and ES-HRMS for the epoxide suggest its formation, but the final synthetic step 

for the methyl ester deprotection was inconclusive. Thus, additional investigation of these last two 
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steps could give the final compound. From a synthetic standpoint, it would be interesting to 

synthesize the thiirane version of the target 66 to see if the possible inhibitory activity is altered in 

any way. More time would need to be allocated in order to find a way to obtain the thioacid 

compound 62 as it would be interesting to determine how the chelating effect changes the 

inhibition.   

An optimization of the isolation of the epoxide intermediate and final compound 66 remain 

to be performed to collect pure molecule in order to use it for any inhibitory assessment. The 

preliminary test to be done to determine if the synthesized molecule has a potential for future 

application in antibiotic development is to subject the inhibitor to a with biochemical assay with 

nitrocefin, a chromogenic cephalosporin. Nitrocefin assay with various metallo enzymes could be 

done to measure enzyme inhibition indicated by a change of color from yellow to red which can 

be quantified by spectrometry techniques. Then, in hope of a successful outcome a minimum 

inhibitory concentration (MIC) assay would enable to determine the ability of bacteria strain growth 

to be inhibited.    

 

 

 

 

 

 

 

 

 



55 
 

Chapter III. Captopril-inspired compounds as covalent Inhibitors of metallo-β-

lactamases 

Introduction: Development of captopril and applications to enzyme inhibition    

In the late 1960s and early 1970s, the collaborative work conducted by scientists 

associated with Bristol-Myers Squibb Pharmaceutical Research Institute (Princeton, NJ) on 

antihypertensive drug development led to the first efficient one, L-captopril (67, Figure 20) which 

was originally inspired by teprotide (68, Figure 20).130 

 

Figure 20: Structures of L-captopril (67) and teprotide (68) 

Teprotide (68, Figure 20), a nonapeptide isolated from a Brazilian arrow head viper by 

Ferreira and co-worker131 for application with carboxypeptidase enzymes, was found to be 

efficient at inhibiting angiotensin-converting enzymes (ACE) responsible for the conversion of 

angiotensin I to angiotensin II; angiotensin II being responsible for vasoconstriction and possible 

cardiovascular fatal issues (Scheme 23). The obstacle in applying the efficient finding of teprotide 

due to its lack of oral availability when administrated to patients and its cost, limited it’s application 

as a practical treatment which inspired Bristol-Myers Squibb scientists to develop an alternative 

option.132  
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Scheme 23: Renin–angiotensin system involving ACE (left);  enzyme-substrate interaction in 

ACE active site (right, blue) with a representative substrate (right, green)  

D- and L-Captopril (Figure 20), (2S)-1-[(2R)-2-methyl-3-sulfanylpropanoyl] pyrrolidine-2-

carboxylic acid and (2S)-1-[(2S)-2-methyl-3-sulfanylpropanoyl] pyrrolidine-2-carboxylic acid 

respectively, were obtained as a response to the search for a suitable angiotensin-converting-

enzyme inhibitor which could be easily administrated orally rather than intravenously as it was 

necessary with teprotide.133  

Ondetti, Rubin, and Cushman designed L-captopril through screening of a series of 

potential ACE inhibitors starting from the core structure benzylsuccinyl carboxylate (69, Figure 

21), that Byer and Wolfenden had published several months earlier.134 Ondetti and co-workers 

speculated that the role of the carboxylate group was a key factor in the observed inhibition of the 

bovine carboxypeptidase reported by Beyer due to the presence of a zinc cation lodged in the 

binding pocket of the enzyme.134 
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Figure 21: Structures of D- and L-captopril and succinyl-L-proline 

In light of the observations from the investigation with benzylsuccinyl carboxylate as well 

as the study of the ACE binding site structure, they decided to modify functionalities of succinyl-

L-proline (71, Figure 21) as their starting point for the development of an orally available 

compound mimicking teprotide (68, Figure 20). They observed a “mild” inhibitory activity with a 

50% maximal inhibitory concentration (IC50) of 135 g/mL when succinyl-L-proline was tested 

against rabbit lung ACE. A series of derived molecules were tested through systematic screening 

against rabbit lung ACE which revealed successful inhibition of the latter with the synthesized 

captopril. Testing of D- (70) and L-captopril (67) resulted in an IC50 of 0.04 g/mL and 0.005 g/mL, 

respectively. The outcome showed a 10-fold decrease in IC50 for the L-isomer, thus demonstrating 

a greater inhibitory activity with L-captopril than D-captopril. This gave important insight on the 

type of binding interaction required between the enzyme and designed inhibitors. The key factor 

they found which enhanced the inhibitory activity of captopril was the incorporation of a sulfhydryl 

group which has the ability to coordinate to the zinc atom of the enzyme binding pocket. 
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Scheme 24: Synthesis of L-captopril developed by Cushman and co-worker in 1977132 

            The synthetic approach of captopril reported by Cushman and co-worker (Scheme 24) 

begins with a Michael addition of thiobenzoic acid (72) to methacrylic acid (73) to obtain the 

mercapto-2-methylpropanoic acid intermediate 74. Then, coupling of 74 to L-proline (75) provided 

a mixture of diastereomers of proline coupled product 76. The two diastereomers were separated 

by crystallization of their diastereomeric dicyclohexylammonium salts. The deacylation of the 

resolved diastereomer provided the desired captopril compound (67).132 Multiple synthetic 

pathways toward captopril have been designed since to circumvent the necessary classical 

resolution presented in the original synthesis. Notably, Shimazaki and colleagues had shortly 

thereafter developed a synthesis using an optically active starting material not leading to the 

formation of multiple diastereomers.135 

Captopril has been for a long period of time successfully used in ACE enzyme inhibition. 

More recently, its use has been extended to applications other than inhibition of cardiovascular 

related enzymes, notably with metallo-β-lactamases. It is not surprising that captopril has drawn 

scientists’ interest in the field of MBL inhibition due to one common structural feature with ACE. 

Indeed, both ACE136 and MBL137 are metalloproteinases, which rely on zinc cations for their 
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mechanism of action. Therefore, the insights provided by prior studies of ACE inhibition with L-

captopril revealed a possibility of successful application to MBLs which have been difficult to 

inhibit and for which no inhibitor has been approved for clinical use thus far.  

Captopril belongs to the thiol containing compound class, one of the 4 major classes 

known to inhibit MBLs including cyclic boronates,69 sulfamoyl carboxylates,70–72 and 

dicarboxylates presented in chapter 1 (Figure 11).73,75 In the early 2000s, interesting 

computational and experimental studies of captopril with various MBL subclasses138,139 revealed 

the ability of the compound to inhibit moderately the enzyme. Indeed, computational work 

presented by Jen Anthony and co-workers used ab initio Hartree Fork (HF) and density functional 

theory (DFT) calculations as well as molecular dynamics methods to study binding site 

interactions in a D-captopril-MBL complex with B1 MBL enzyme from Bacteroides fragilis. 

Although two possible binding modes are probable, monodentate through the thiolate S- or 

bidentate through the proline carboxylate group, they focused on the monodentate binding 

through the thiol for this study (Figure 21, left). They reported that the calculated binding energies 

of D-captopril to MBL was higher, and thus has a greater affinity for the active site than the 

corresponding L-diastereomer through the binding of the thiolate to both zinc cations. Heinz Uwe 

and colleagues studied the interaction of D- and L-captopril with cadmium and cobalt-substituted 

MBLs, both mononuclear (B2 subclass) and binuclear (B1 subclass) enzymes, in place of the 

native zinc dependent MBL. Their investigation revealed that the D- and L-captopril molecules 

presented an inhibitory activity against both types of MBL subclasses tested. However, D-captopril 

has demonstrated a greater efficiency at inhibiting the cadmium substituted MBLs than L-captopril 

had, which is consistent with the computational results with the native zinc enzyme reported by 

Anthony et al. mentioned earlier.138 It was noted that the D-diastereomer has a similar structural 

backbone as a hydrolyzed penicillin, which would explain the greater inhibition (70 and 77, Figure 

22). 
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Figure 22: Crystal structure of the active site of IMP-1 (MBL B1 subclass) with D-captopril 

(pink);66 comparative structure of D-captopril (70) with hydrolyzed penicillin (77) 

Interestingly, the binding mode of captopril differs considerably for the inhibition of B1 and 

B2 subclasses, revealing that the development of efficient MBL inhibitors across all subclasses 

presents a real challenge. These results were also confirmed later by other in-depth 

crystallography studies of all stereoisomers of captopril66 along with other thiol-containing 

compounds with all three classes: B1, B2, and B3 MBLs. These investigations looked at the 

required structural aspect to be taken into consideration for the development of a broad-spectrum 

MBL drug.104    

These studies led to the emergence of a growing interest for the compound and structure-

design studies with MBL for which a series of derivatives has been reported. Captopril contains 

two main fragments, the 3-mercapto-2-methylpropanoyl (70, blue portion, Figure 23) and the 

pyrrolidine moiety (70, green portion, Figure 23) for which modifications have been reported in 

attempts to improve the inhibitory efficiency against MBLs. Altering the chain by modifying the 

length between 1 to 3 carbons of the 3-mercapto-2-methylpropanoyl portion or removal of the 

methyl group at the 2 position led to a minimal decrease in the inhibition of the IMP-1 (B1 subclass 

MBL) as compared to L-captopril.140 However, substitution of the methyl group by a phenyl ring 

(78, Figure 23) at the 2 position was shown to slightly improve the inhibitory effect against the 

MBL NDM-1.140 The substitution to a thiol group141 at that position, leading to a dithiol captopril 
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derivative, is not effective and suspected to change the proper conformational interaction in the 

binding pocket unlike what is observed with dicarboxylate MBL inhibitors. 

 

Figure 23: Selected captopril derivatives as efficient inhibitors of MBLs  

Analogues with a modified pyrrolidine ring (Figure 23, green) have been investigated by 

multiple groups, notably  Li and co-workers142 who screened a series of derivatives against NDM-

1. A benzylamide alternative to the L-proline was shown to improve the inhibition of the enzymes 

considerably (79, Figure 23).142 When the ring is replaced by pipecolinic acid (80, Figure 23),141 a 

6-membered ring as opposed to the traditional 5-membered ring, a better inhibition is also 

demonstrated. The hydrophobic interaction initially observed between the proline ring and 

hydrophobic amino acid residues in the active site is enhanced which is thought to lead to the 

observed results. Additionally, alteration of both 3-mercapto-2-methylpropanoyl and pyrrolidine 

has also led to relevant discoveries with compounds of high potential as MBL inhibitors. One 

compound reported by Meng and co-workers (81, Figure 23) containing an indole in place of a 

methyl group and a benzyl group rather that the 5-membered proline proved to inhibit efficiently 

the NDM-1 enzyme.143 For the compounds discussed above, in some occasions they were tested 

against other B1 MBL enzymes such as VIM-1 and IMP-1 without showing improvement of the 

inhibition. This shows that some work remains to be done in this area with inspired captopril 

derivatives as it is shown by the increasing studies reported.  
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Research project goals: Covalent inhibition of MBLs using new captopril derivatives  

containing a thiirane or epoxide functional group   

The work to be discussed in the following section emerged as a result of the observations 

of the capability of captopril and its current derivatives as potential MBL enzymes inhibitors. 

Although the recent literature has shown promise in this area, there is more to explore when it 

comes to MBL inhibition with captopril derivatives as shown by many challenges discussed above, 

notably the inhibition of multiple MBLs with a single molecule. In the aim to address these issues, 

we decided to apply the strategy of enzyme covalent modification using a strained 3-membered 

ring, explored for the development of open lactam analogue in chapter 2, to design captopril 

inhibitors for MBLs. It was decided to keep the pyrrolidine moiety (D-captopril) unaltered while the 

3-mercapto-2-methylpropanoyl would be modified to incorporate a 3-membered ring. The 

synthesis of 4 captopril derivatives was investigated in this project (Figure 24).  

 

Figure 24: Structures of the newly designed captopril inhibitors (82, 83, 84) and reported 

epoxide compound (85) for the study of MBLs inhibition.  

We designed and synthesized captopril derivatives with unaltered pyrrolidine moieties but 

with a modified chain length in addition to the strained ring. The epoxide 82 and thiirane 83 have 

an ethanoyl chain leading to no carbon spacer between the methyl group and the strained ring 

unlike 84 and 85. This was done to determine if the proximity of the 3-membered ring to the proline 

ring would impact the possible inhibition of MBLs. Upon developing potential inhibitors, it was 
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discovered that one epoxide derivative of captopril (84, Figure 23), the only one to this date known 

to the best of our knowledge, was reported in the literature by Choo and co-workers in 1998 for 

application to ACE inhibition.144 In these studies, a series of 22 epoxy amides, esters, and ketones 

were investigated. In the case of the epoxy amides, multiple amino acids were coupled among 

which proline was a candidate leading to the epoxy-captopril derivative 84.144 However, this 

compound was not yet been studied for the inhibition of MBLs, so it was of interest to determine 

its eventual inhibitory ability. Furthermore, we were interested in synthesizing a thiirane version, 

compound 85, which has never been synthesized in the past, in order to study the effect of the 

sulfur atom in relation to the binding interaction within the active site as compared to the oxygen 

analogue. 

Here again, the presence of a conserved amino acid such as aspartic acid in the MBL 

binding pocket is key to the strategy of the captopril derivatives we aim to develop. Additionally, 

lysine or glutamic acid residues identified in the active site of crystal structures of clinically relevant  

MBLs (NDM-1,137 VIM-1,145 IMP-1,146 BcII,147 CcrA148) might also play a central role for the strategy 

to be implemented. The type and position of the amino acid residues located in the binding pocket 

of MBL, particularly in the B1 subclass, gave insight on the possible interactions of the developed 

inhibitors in this project. It is thought that the captopril-inspired derivatives would interact through 

the negatively charged carboxylate group at physiological pH in a manner where it is coordinating 

to the two zinc atoms in a bidentate mode. This would allow for a possible nucleophilic attack of 

the 3-membered ring for and formation of a covalent bond. 
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Proposed mechanism of action for the captopril derivatives containing a strained 3-

membered ring for covalent inhibition  

If the predicted interactions mentioned previously occur, it would allow for a proper 

insertion of the derivative 86 (Scheme 25) in an MBL active site with the alkyl side chain containing 

the 3-membered ring accessible to residues such as aspartic acid, glutamic acid, or lysine. Lysine 

being protonated to an ammonium at physiological pH, this might hydrogen bonding with the 

epoxide or thiirane and help position it such that the conserved aspartic acid residue could 

therefore perform a direct ring opening of the strained ring through nucleophilic attack forming a 

covalently bond inhibitor (87). A glutamic acid residue, which is found in proximity to the metal 

center in some MBL binding sites, might also ring open the thiirane ring through nucleophilic 

attack since it is negatively charged at pH 7.4. Alternatively, the covalent bond formation can take 

place indirectly via deprotonation of the α-proton of the mercapto chain (86) leading to the ring 

opening and the double bond formed in the intermediate 88 subsequently attacked by the 

nucleophilic aspartate residue leading to a covalently bond inhibitor (89) (Scheme 25).  
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Scheme 25: Possible mechanisms of action for the designed inhibitors through direct ring 

opening (A) or indirect ring opening (B) 
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Results and discussion 

Synthesis of 1-(2-methyloxirane-2-carbonyl)pyrrolidine-2-carboxylic acid (82) and 1-(2-

methylthiirane-2-carbonyl)pyrrolidine-2-carboxylic acid (83) 

The synthesis of epoxide 82 and thiirane 83 as D-captopril analogues started from 

commercially available 2-methylprop-2-enoic acid (90) and is summarized in Scheme 25. 

Following a modified procedure reported by Choo and co-workers,144 the proline coupled 

intermediate 91 was formed via acylation of D-proline ethyl ester with 2-methylprop-2-enoyl 

chloride (90), formed in situ from 90 (Scheme 26).  

 

Scheme 26: Optimized conditions for the synthesis of captopril derivatives 82 and 83 
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Entry Solvent Temperature (° C) Time (h) Yield (%) 

1 Dichloromethane r.t. 18 7 

2 Dichloromethane 35 28 8 

3 Dichloromethane 45  12 28 

4 Acetonitrile 60 48 23 

5 DMF 90 22  36 

Table 4: Reaction conditions surveyed for the substitution step in the formation of 92 

  The original reaction conditions for the substitution step used dichloromethane as the 

solvent of choice at 0 °C, providing 92 in a low yield of 7% which was attributed to the low solubility 

of D-proline ethyl ester. Optimization of the reaction conditions afforded the desired coupled 

product in a 36% yield (p.156 1H NMR, p.157 13C NMR) which required at 90 °C with DMF as the 

solvent (Table 4). Direct coupling conditions, which would have shortened the synthetic pathway, 

were also investigated using HATU149 as the coupling agent without any desired product 

observed. 

The NMR spectrum of compound 92 suggested the presence of rotamers by the presence 

of two sets of doublets at 5.3 and 5.1 ppm corresponding to the vinylic methylene group (Figure 

24). This was confirmed by variable temperature (VT) NMR analysis showing coalescence of the 

two sets of doublets. Thus, demonstrating that the slow exchange rate  due to the rotational barrier 

around the C-N bond transition toward a fast-exchange rate as the temperature increases 

enabling signal averaging and coalescence of the peaks (Figure 25). 
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Figure 25: 1H NMR spectra of the variable temperature analysis of compound 92  

After the unsaturated amide 92 was synthesized, it was subjected to various oxidation 

conditions in order to convert the alkene to the desired ethyl ester-protected epoxide 93 (Table 

4). Initially, standard conditions using a common peracid, m-chloroperoxybenzoic acid (mCPBA) 

were explored, however, this only provided a low 20% starting material conversion to the desired 

product as observed by 1H NMR. It was decided to apply more reactive reagents for the 

epoxidation including H2O2,127 t-BuOOH,150 dioxirane derivatives,128,144 as well as NiOAc with 

NaOH.151 The most efficient epoxidation conditions found for the formation of 93 were with 3-

methyl-3-fluoromethyldioxirane which easily afforded the epoxide in over 90% yield confirmed by 

the absence of the vinylic protons peaks in the 5.0-5.3 ppm region and presence of the 

characteristic methylene proton of the epoxide at 2.4-2.8 ppm in the 1H NMR (p.157 1H NMR, 

p.158 13C NMR, p.159 HRMS).  

55 °C 
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Entry 
Oxidative 
Reagents Solvent Temperature Time %Yield 

1 mCPBA CH2Cl2  0 °C 48h 20*  

2 H2O2/NaOH CH3OH 0 °C to r.t. 20h NR 

3 t-BuOOH /KMHDS THF  -15 °C 2h NR 

4 
Ni(OAc)2/NaOH/ 

cold bleach 
CH2Cl2 0 °C 12h 0 to 20* 

5 Ni(OAc)2/cold bleach CH2Cl2 0 °C 12h NR 

6 Oxone/acetone  H2O r.t. 24h 0 to 50* 

7 Oxone/trifluoroacetone  H2O r.t. 2h 97 

*Percent conversion determined by 1H NMR; NR= no reaction with starting material fully or partially recovered 

Table 5: Summary of the epoxidation conditions used for the synthesis of 92 

In order to obtain the final desired compound 82, cleavage of the ethyl ester protecting 

group by hydrolysis152 with ethanolic KOH was performed. The 1H NMR spectrum (p.160 1H NMR)  

of the product collected suggested that the deprotection occurred, with the ethyl ester peaks at 

1.2 ppm (-CH3) and 4.1 (-CH3) ppm were not present in addition to the broad singlet at 9.56 ppm, 

corresponding to the carboxylic hydroxyl proton. The epoxide was stable under the hydrolysis 

conditions, giving the final desired compound 82 with the presence of a side product, observed in 

the 1H NMR spectrum of the crude product. However, the removal of the side product attempted 

by columns chromatography was unsuccessful (Figure 26, top) with one side product co-eluting. 

The 13C NMR of the material collected after the column show the absence of the ethyl ester group 

at 14 ppm and 61 ppm for the methylene and methyl proton respectively The subsequent attempt 

for purification by preparative TLC seemed to lead to a ring opening and formation of the 
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corresponding diol 95 as seen by the downshift of the methylene protons from 2.4-2.8 ppm to 3.9-

4.1 ppm (Figure 26, bottom).  

   

Figure 26: 1H NMR spectra for the impure product after column (82, top, blue) and purified 

product collected (95, bottom, red) in the attempted isolation of compound 82  

1H NMR 
CDCl3, 500MHz 

a 

b 



71 
 

 

Figure 27: HRMS-(ES+) spectrum of the suspected diol 95   

This was further confirmed by the results of the ESI-MS of the purified compound collected 

(Figure 27) which showed the presence of peaks at m/z 217.1785 representative of the diol 95 

with a calculated m/z 217.10 as well as the ionized fragment with loss of water with a m/z 

200.0919. In light of these results, it is promising to see that the ethyl ester deprotection can be 

achieved under these conditions, however a optimization of the column chromatography 

purification is required to isolate the pure product 82 as it is suspected that preparative TLC could 

be the main issue for the ring opening. 

The sulfur analogue 83 was obtain by converting the ethyl ester protected epoxide to a 

thiirane which occurs through a ring opening with thiourea153 as the nucleophile and subsequently 

forming a stable intermediate which cyclizes to form the thiirane ring. The reaction led to the 

observation of separable diastereomers as a 1:1 ratio, based on isolated yield, by column 

chromatography which was not the case for the epoxide analogue. The two diastereomers were 

obtained in a moderate 54% yield (p. 161 1H NMR, p.162 13C NMR, p.163 HRMS). The reaction 

for the removal of the acid protecting group showed removal cleavage of the ethyl ester with 
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presence of a side product as observed in the 1H NMR spectrum of the crude product. Thus, a 

more suitable purification technique than the one used for the epoxide version is to be investigated 

to isolate the clean thiirane compound 83. In addition, the ES-MS of the crude sample collected 

of 83 confirmed the presence of the expected molecular ion m/z 215.06 found at m/z 216.0687 

for [M+H]+.  

The overall steps for the formation of 82 and 83 are promising for future scale up attempts 

of the synthesis, with the exception of the final step of deprotection for which a better purification 

procedure is required. However, due to time constraints this was not investigated further. The 

final step in the synthesis of both products could eventually be optimized by exploring alternative 

deprotection conditions which would prevent the formation of the side product which has yet to 

be identified. This would ultimately allow a cleaner reaction and might not require further 

manipulation of the product through purification to help obtain 82 and 83 in higher yields. 

Synthesis of 1-[2-(oxiran-2yl)propanoyl] pyrrolidine-2-carboxylic acid (84) and 1-[2-

(thiirane-2yl)propanoyl] pyrrolidine-2-carboxylic acid (85) 

The investigations for the optimization of the synthetic pathway to 82 and 83 provided 

useful insight to tackle the synthesis of 1-[2-(oxirane-2yl)propanoyl] pyrrolidine-2-carboylic acid 

(84) and 1-[2-(thiirane-2yl)propanoyl] pyrrolidine-2-carboylic acid (85). Here, a racemic mixture of 

the starting 2-methyl-3-butanoic acid (96), as opposed to the enantiomerically pure compound, 

was used for cost-effectiveness purposes of the synthetic pathway. It was planned to separate 

the diastereomers formed as we move through the synthesis if possible (Scheme 27).  

The synthesis began with the amine coupling of compound 96 to D-proline ethyl ester 

using the previously optimized two-step reaction conditions involving the formation of the acyl 

chloride 97 formed from the carboxylic acid 96 and subsequent acylation reaction of  to get the 

coupling coupled product 98 in 31% yield over two steps (Scheme 27).  
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Scheme 27: Synthesis of compounds 84 and 85 from 2-methyl-3-butanoic acid (96)   

Subsequently, the formation of the epoxide 98 using dimethyldioxirane formed in situ 

showed evidence of multiple diastereomers by 1H NMR (p.169 1H NMR, p.170 13C NMR, p. 171 

HRMS),  with peak broadening and duplication observed. This was noticeable at 2.4 to 2.8 ppm 

and 4.2 to 4.6 ppm representative of the methylene epoxy protons (Ha) and the methine proton at 

the proline stereogenic center, respectively (Figure 28). Although observable by NMR, they were 

not separable using chromatography techniques and the mixture of diastereomers was used as 

is in the following steps. 

 
Figure 28: Epoxide 99 and observable protons in 1H NMR giving evidence of the formation of 

additional diastereomers     
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The hydrolysis of the ethyl ester in 99 with ethanolic KOH gave unconclusive results with 

the observation of a complex mixture by 1H NMR. The data analysis by ESI-MS of the collected 

material of reaction suggested the presence of the corresponding molecular ion of the deprotect 

compound m/z 213.10  and found for [M+H]+ at m/z 214.1070. Several attempts to get a clean 

reaction and facilitate the isolation of the desired epoxide 84 led to similar results and an 

alternative method required.  

The conversion of the ethyl ester epoxide 99 to the thiirane analogue was performed with 

thiourea to afford 100 in 38% yield. This was followed by hydrolysis of the ethyl ester to provide 

the final target compound 85 in 59% yield (p.179 1H NMR, p.180 13C NMR, p.181 HRMS). The 1H 

NMR and 13C NMR analysis of the two collected product fractions suggested that a set of 3 

diastereomers were not separable while one diastereomer seemed to be found in which was not 

clean and presented impurities. The 1H NMR  showed two distinguishable proton peaks at the 

4.2-4.6 ppm region (Hb, Figure 27) which suggested only two diastereomers, however the 13C 

NMR was consistent with the presence of three diastereomers as each carbon peaks were 

present in set of 3. At this point, additional data analysis such as NOE and 2D NMR experiments 

are to be run in attempt to assign the stereochemistry of the diastereomers. The overall synthetic 

pathway was achieved for thiirane analogues compound 85 in 5% yield, while the last step for the 

deprotection of the epoxide needs to be optimized in order to get more accurate data.  

Conclusions and prospective work   

The syntheses of both series of analogues were overall successful, with the synthesis of 

the longer chain compounds 85 achieved completely while some investigation for the deprotection 

of 99 to obtain the final product 84 is needed. Regarding compound 82 and 83, the final steps 

have been shown to be promising with the evidence of their formation, however, milder 

deprotection conditions or a better suited purification method is required to isolate them as pure 

products.  
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Additionally, the experimental spectral data obtained for the final compounds were in good 

agreement with the predicted NMR spectra calculated using DFT calculation. The next step in this 

project would be the determination of the inhibitory potential of 82, 83, 84, and 85 against most 

prevalent MBLs such as NDM-1 once all derivatives are isolated. Some prospective work would 

involve the modification of the pyrrolidine ring structure as it has been demonstrated in the 

literature that more hydrophobic moieties could help enhance the interaction in the binding site, 

as mentioned earlier. This could include a phenyl or indole ring which could potentially interact 

with hydrophobic residues in the MBL binding site such as phenylalanine or tryptophan through 

pi-pi stacking. As well, it would be interesting to determine if the conversion of the carboxylic acid 

on the pyrrolidine ring to a thioacid would affect the binding affinity and increase or decrease the 

inhibitory effect. 
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Chapter IV. Experimental  

General procedures 

Solvents  

Anhydrous solvents, diethyl ether, dichloromethane, and tetrahydrofuran (THF), were 

obtained from an innovative Technology, Inc. Solvent Delivery System before use and stored over 

4 Å molecular sieves. THF was purified further by distillation over sodium and benzophenone 

under an atmosphere of dry nitrogen prior to use. Other solvents, hexanes, ethyl acetate, 

trimethylbenzene, methanol, ethanol were purchased as ACS grade from Pharmco (Brookfield, 

CT), VWR (Bridgeport, NJ ), MilliporeSigma Chemical Company (St. Louis,MO), and  Alfa Aesar 

(Haverhill, MA), and used without further purifications unless otherwise stated. Deionized water 

was obtained from the university water system.  

Reagents and reaction conditions 

All reagents were and purchased from Acros Organics Ltd. (Hampton, NH), Alfa-Aesar 

Chemicals. (Haverhill, MA), AK Scientific Inc. (Union City, CA), Santa Cruz Biotechnology, Inc 

(Dallas, TX) Ambeed Inc. (Arlington Hts, IL), Thermo Fisher Scientific (Waltham, MA), 

MilliporeSigma Chemical Company (St. Louis, MO), Oakwood Products, Inc. (Estill, SC), or TCI 

American Chemicals. (Portland, OR). They were all American Chemical Society (ACS) grade and 

used without further purification unless otherwise stated. All processes involving air or moisture 

sensitive reactants and/or requiring anhydrous conditions were performed under a positive 

pressure of nitrogen using oven or flame-dried glassware. The removal of solvent in vacuo refers 

to evaporation under reduced pressure below or at 40 °C using a Büchi rotary evaporator followed 

by evacuation (< 0.1 mm Hg) to a constant sample mass. Unless otherwise specified, solutions 

of NH4Cl, NaHCO3, HCl, citric acid, LiOH, and Na2S2O3 refer to aqueous solutions. Brine refers 

to a saturated aqueous solution of NaCl. 
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Purification techniques 

Unless stated otherwise, all reactions and fractions from column chromatography were 

monitored by thin layer chromatography (TLC) using glass-backed plates (1.5 x 5 cm) pre-coated 

(0.25 mm) with silica gel containing a UV fluorescent indicator (normal silica gel, 60 F254; reverse-

phase, C18 SiO2 F254) from Sorbent Technologies, Inc. (Norcross, GA). Compounds were 

visualized by exposing the plates to UV light, or by dipping the plates in solutions of potassium 

permanganate, p-anisaldehyde, or phosphomolybdic acid/ethanol (5:95) followed by heating on 

a hot plate. Flash chromatography was performed using grade 60 silica gel (Rose Scientific, 230-

400 mesh) or with a Teledyne Isco CombiFlash Rf 200 purification system. Purification using 

CombiFlash used RediSep® silica gel columns (20-70 μm particle size). Mobile phases were 

prepared per use.  

Instrumentation for compound characterization 

Nuclear Magnetic Resonance (NMR) spectra were measured on a Varian Mercury Plus 

400 FT-NMR operating at 400 MHz for 1H NMR and 100 MHz for 13C NMR spectroscopy, a Bruker 

500 FT-NMR operating at 500 MHz 1H and 126 MHz for 13C NMR spectroscopy, or a Bruker 700 

FT-NMR operating at 700 MHz 1H and 176 MHz for 13C spectroscopy. Deuterated solvents for 

NMR analysis were purchased from Cambridge Isotope Laboratory and stored over 4 Å molecular 

sieves. All 1H NMR chemical shifts are reported in parts per million (ppm) downfield relative to 

tetramethylsilane (TMS) using the residual proton resonance of solvents as the reference: CDCl3, 

δ 7.24; CD3OD, δ 3.30; D2O, δ 4.79. All 13C NMR chemical shifts are reported relative to: CDCl3, 

δ 77.0; CD3OD, δ 49.0. Additional assignments were made using pulsed field gradient versions of 

shift correlation spectroscopy (gCOSY), heteronuclear single quantum coherence (gHSQC), and 

heteronuclear multiple quantum coherence spectroscopy (gHMQC). 1H NMR data are reported in 

the following order: multiplicity (app, apparent, s, singlet; d, doublet; t, triplet; q, quartet; quin, 

quintet; and m, multiplet), number of protons, coupling constant (J) in Hertz (Hz), and assignment. 
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When appropriate, the multiplicity is preceded by br, indicating that the signal was broad. The 

coupling constants reported are within an error range of 0.2-0.4 Hz and have been rounded to the 

nearest 0.1 Hz. All literature compounds had 1H NMR, 13C NMR, and mass spectra consistent 

with the assigned structures. The temperature for the variable temperature study were calibrated 

using a varian model L900 temperature controller.  

Mass spectra (MS) were performed at the University of Illinois and recorded on a 

Micromass 70-VSE high resolution mass spectrometer (HRMS), using a Micromass ZabSpec 

Hybrid Sector-TOF positive or negative mode electrospray ionization (ESI). 
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Detailed Experimental Section Chapter II 

Cbz-L-methionine methyl ester hydrochloride (19b)* 

 

This compound was prepared following by a modification of the procedure by Afzali-Ardakani et 

al.108 L-Methionine methyl ester hydrochloride (18b) (2.00 g, 10.00 mmol) was dissolved in ethyl 

acetate (50 mL), then KHCO3 (5.01 g, 0.050 mmol) in water (50.0 mL) was added at 0 oC, followed 

by dropwise addition of Cbz-chloride (2.2 mL, 11 mmol) over 30 mins. The reaction mixture was 

stirred for 3.5h . The organic layer was separated, washed with HCl (0.5 M, 4 x 5 mL) and water 

(3 x 5 mL), dried (Na2SO4), and the solvent evaporated in vacuo. The product was purified by 

column chromatography (SiO2, hexanes/ethyl acetate, 3:1) to yield the protected compound  19b 

as an off-white solid (2.6252 g, 88%): Rf= 0.48 (hexanes/ ethyl acetate, 3:1); 1H NMR (400 MHz, 

CDCl3) δ 7.41–7.27 (m, 5H, ArH), 5.40 (br d, 1H, J = 8.2 Hz, NH), 5.11 (s, 2H, PhCH2), 4.51 (td, 

1H, J = 7.9, 5.0 Hz, H-2), 3.76 (s, 3H, CO2CH3), 2.53 (app t, 2H, J = 6.8, 7.4 Hz, CH3SCH2CH2 ), 

2.23-2.10 (m, 1H, CH3SCH2CHaHb ), 2.09 (s, 3H, CH3S), 2.06-1.90 (m, 1H, CH3SCH2CHaHb); 13C 

NMR (126 MHz, CDCl3) δ 172.5, 155.9, 136.2, 128.6, 128.2, 128.1, 67.1, 53.1, 52.5, 32.0, 29.9, 

15.5. 

Cbz-L-Methionine methyl ester sulfoxide (20b)* 

 

This compound was prepared following by a modification of the procedure by Afzali-Ardakani et 

al.108 Cbz-L-methionine methyl ester hydrochloride (19b)  (6.15 g, 20.69 mmol) was dissolved in 

methanol (64.0 mL) to which was added a solution of sodium periodate (4.66 g, 21.79 mmol) in 



80 
 

water (25.0 mL) at 0 oC. The reaction mixture was allowed to warm to r.t. and stirred vigorously 

for 2.5 h. It was then filtered through a pad of celite and the solvent was partially evaporated under 

vacuum. The resulting concentrate was extracted with chloroform (4 x 15 mL), and the combined 

organic layers were washed with brine (2 x 30 mL), dried (Na2SO4), and concentrated  in vacuo. 

The crude product was purified by column chromatography (SiO2, CH2Cl2/MeOH, 95:5)  to give 

the product 20b as a clear oil (6.19 g,  96%): Rf= 0.41 (CH2Cl2/MeOH, 95:5), 1H NMR (400 MHz, 

CDCl3) δ 7.41-7.29 (m, 5H, ArH), 5.61 (dd, 1H, J = 7.8, 8.0 Hz, NH), 5.11 (s, 2H, PhCH2), 4.57-

4.40 (m, 1H, H-2), 3.77 (s, 3H, CO2CH3), 2.86-2.62 (m, 2H, CH3SCH2CH2), 2.56 (d, 3H, J = 2.5 

Hz, CH3S), 2.47-2.32 (m, 1H, CH3SCH2CHaHb), 2.22-2.07 (m, 1H, CH3SCH2CHaHb). 13C NMR 

(126 MHz, CDCl3) δ 171.7, 156.1, 136.08, 136.0, 128.6, 128.6, 128.3, 128.3, 128.2, 67.2, 67.2, 

53.1, 52.8, 52.8, 50.8, 50.3, 50.2, 38.6, 26.3, 25.9. 

Synthesis of Cbz-L-Vinylglycine methyl ester (21b)* 

 

This compound was prepared following by a modification of the procedure by Afzali-Ardakani et 

al.108 L-Methionine methyl ester sulfoxide (20b) (3.44 g, 10.98 mmol) was suspended in 1, 2, 3-

trimethylbenzene (44.0 mL) and heated to 170 oC. After 16h, the dark reaction mixture was cooled 

to r.t. and the product was purified by column chromatography (SiO2, hexanes/ethyl acetate, 

100% hexanes to 8:2) to give the product 21b as an orange oil (1.73 g, 63 %): Rf= 0.38 (hexanes/ 

ethyl acetate, 8:2), 1H NMR (400 MHz, CDCl3) δ 7.38 (m, 5H, ArH), 5.92 (ddd, 1H, J = 6.0 Hz, H-

3), 5.46 (br d, 1H, NH), 5.38 (dd, 1H, J = 17.1, 1.8 Hz, HaHbC=CH), 5.29 (dd, 1H, J = 10.4, 1.8 

Hz, HaHbC=CH), 5.14 (s, 2H, PhCH2), 4.96 (t, 1H, H-2 ), 3.78 (s, 3H, CO2CH3); 13C NMR (126 

MHz, CDCl3) δ 170.9, 155.4, 136.2, 132.3, 128.6, 128.2, 128.2, 117.8, 67.2, 56.1, 52.8. 
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Synthesis of L-vinylglycine hydrochloride (22b)* 

 

This compound was prepared following by a modification of the procedure by Afzali-Ardakani et 

al.108 Cbz-vinylglycine methyl ester (21b) (2.01 g, 8.07 mmol) was suspended in HCl (6 M, 41.0 

mL) and heated to reflux for 4 h. The reaction mixture was cooled, and the aqueous layer was 

washed with chloroform (2 x 25 mL) and ethyl acetate (2 x 25 mL), followed by lyophilization to 

collect the pure product 22b as a white powder (1.05 g, 94%): Rf= 0.04 (hexanes/ethyl acetate, 

1:1),  1H NMR (400 MHz, D2O) δ 5.60-5.46 (m, 1H, H-3), 5.15-5.11 (m, 2H H2C=CH), 4.23 (d, 1H, 

J = 7.4 Hz, H-2 ). 13C NMR (126 MHz, D2O) δ 171.0, 128.4, 122.6, 55.4. 

Synthesis of L-vinylglycine methyl ester (23b)* 

 

This compound was prepared following by a modification of the procedure by vinylglycine 

hydrochloride (22b) (0.1927 g, 1.40 mmol) was dissolved in dry methanol (7.5 mL) to which was 

added oxalyl chloride (0.270 mL) at 0 oC under N2. The reaction mixture was allowed to warm to 

r.t. After 25h, the solvent was evaporated in vacuo and the remaining solid was dried on high 

vacuum to afford the desired product  as an off-white solid (0.2260 g, quant.): Rf= 0.06 

(hexanes/ethyl acetate, 1:1); 1H NMR (400 MHz, D2O) δ 5.82 (m, 1H, H-3), 5.45 (dd, 1H, J = 2.7, 

1.2 Hz, HaHbC=CH), 5.42 (dd, 1H, J = 11.2, 1.2 Hz, HaHbC=CH), 3.69 (s, 3H, CO2CH3); 13C NMR 

(126 MHz, D2O) δ 169.0, 127.2, 123.5, 54.8, 54.1, 53.8, 48.9. 

*The synthesis of the d- enantiomer was completed under the same conditions and gave the 

same results. 
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Synthesis of prop-2-enyl- (2S)-2-amino-3(tert-butyl(dimethylsilyl)oxypropanoate (34) 

 

The following reaction procedure was adapted from Pattabiraman et al.113 and Corey et al.114 L-

Serine (32) (3.01 g, 28.61 mmol) was suspended in toluene (90.0 mL) and p-TsOH∙H2O (5.94 g, 

34.48 mmol) followed by allyl alcohol (20 mL, 292.7 mmol) were added to the mixture. The 

reaction mixture was left to stir for 24 h at 115 oC, after which the solvent was evaporated, and 

the concentrate dissolved in CH2Cl2 (62.0 mL). t- Butyldimethylsilyl chloride (9.5051 g, 63.06 

mmol) and imidazole (4.78 g, 70.25 mmol) were added to the flask which was stirred for 18h at 

35 oC. The reaction mixture was concentrated under vacuum, and the residue was dissolved in 

ethyl acetate (100 mL). This was washed with NaOH (1 M, 4 x 50mL) and brine (50 mL), then 

dried (Na2SO4), and the solvent evaporated under vacuum. The product was purified by column 

chromatography (SiO2; 10:90 to 30:70 ethyl acetate/hexanes) to yield 34 as a yellow oil (5.24 g, 

60% (2 steps)): Rf= 0.13 (hexanes/ethyl acetate, 1:1); 1H NMR (400 MHz, CDCl3) δ 5.92 (dddd, 

1H, J = 17.1, 10.4, 5.7, 5.7 Hz, H2C=CH), 5.33 (dq, 1H, J = 17.2, 1.5 Hz, HaHbC=C), 5.24 (dq, 1H, 

J = 10.4, 1.3 Hz, HaHbC=C), 4.62 (dq, 2H, J = 5.8, 1.2 Hz, OCH2), 3.95 (dd, 1H, J = 9.7, 4.3 Hz, 

HaHbC-OTBS), 3.82 (dd, 1H, J = 9.7, 3.7 Hz, HaHbC-OTBS), 3.54 (t, 1H, J = 4.0 Hz, H-2), 1.68 (br 

s, 2H, NH2), 0.87 (s, 9H, Si(CH3)3), 0.04 (d, 6H, J = 5.5 Hz, Si(CH3)2) ).  
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Synthesis of 3-(prop-2-en-1-yl)-2-[(2S)-2-N-tert-butoxycarbonylamino-2-phenylacetamido]-

1-tert-butyl(dimethylsilyl)oxypropanoate (35) 

 

The following procedure was adapted from Quéléver et al.115 N-Boc phenylglycine (24) (0.5148 

g, 2.05 mmol), EDC (0.7934 g,  5.11 mmol), and HOBt ( 0.5675 g, 4.20 mmol) were dissolved in 

DMF (9.2 mL) and the mixture was cooled to 0 oC. The amino acid 34 (0.5122 g, 0.961 mmol) 

was dissolved in DMF (0.91 mL) and i-Pr2NEt (0.5 mL) at 0 oC and added dropwise to the mixture 

containing the activated phenylglycine. The reaction mixture was allowed to warm to r.t. and 

stirred for 18h. The reaction mixture was diluted with ethyl acetate (10 mL), washed with brine (5 

x 10 mL), dried (Na2SO4), and the organic layer was concentrated in vacuo. The product was 

purified by column chromatography (SiO2; ethyl acetate /hexanes, 1:1) to give a pale-yellow oil 

(0.7229 g, 74%) as a mixture of diastereomers (d.r. = 1:2): Rf= 0.80 (ethyl acetate /hexanes, 1:1);  

1H NMR (400 MHz, CDCl3) δ 7.41-7.27 (m, 7.5H, both isomers, ArH), 6.55 (br s, 1H, major isomer, 

NH), 6.46 (d, 0.5H, J = 8.1 Hz, minor isomer, NH), 5.89 (dddd, 1H, J = 17.2, 10.4, 5.8, 5.8, major 

isomer, Hz, H2C=CH), 5.84-5.70 (m, 1.5H, major isomer, NH, and minor isomer, H2C=CH), 5.32 

(dq, 1H, J = 17.2, 1.5 Hz, major isomer, HaHbC=C), 5.28-5.15 (m, 3.5H, major isomer, HaHbC=C 

and PhCH of, H2C=C and minor isomer, PhCH), 4.68-4.61 (m, 3H, both isomers, OCH2), 4.60-

4.56 (dt, 0.5H, J = 8.2, 2.7 Hz, minor isomer, H-2), 4.53 (dt, 1H, J = 5.8, 1.4 Hz, minor isomer, H-

2), 4.09-4.04 (dd, 0.5H, J = 10.2, 2.4 Hz, minor isomer, HaHbC-OTBS), 4.02 (dd, 1H, J = 10.0, 2.5 

Hz, major isomer, HaHbC-OTBS), 3.82 (dd, 0.5H, J = 10.1, 3.1 Hz, minor isomer, HaHbC-OTBS), 

3.66 (d, 1H, J = 10.1 Hz, major isomer, HaHbC-OTBS), 1.41 (s, 13H, both isomers, CO2C(CH3)3), 

0.80 (s, 4.5H, minor isomer, Si(CH3)(CH3)), 0.75 (s, 9H, major isomer, SiC(CH3)3), 0.01 (s, 1.5H, 

Si(CH3)(CH3) of minor isomer), -0.03 (s, 1.5H, Si(CH3)(CH3) of minor isomer), -0.10 (s, 3H, 
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Si(CH3)(CH3) of major isomer); -0.16 (s, 3H, Si(CH3)(CH3) of major isomer); 13C NMR (126 MHz, 

cdcl3) δ 169.7, 169.5, 131.5, 131.4, 129.1, 129.1, 128.4, 128.4, 127.3, 127.2, 119.00, 118.8, 66.2, 

66.1, 63.2, 63.1, 54.5, 54.4, 28.3, 25.7, 25.6, 18.1, 18.0, -5.6, -5.7, -5.8, -5.9; HRMS (ES+) m/z 

calculated for C25H41N2O6Si 493.2734 [M+H]+ found 493.2739. 

Synthesis of 3-(prop-2-en-1-yl)-2-[(2S)-2-N-tert-butoxycarbonylamino-2-phenylacetamido]-

1-hydroxypropanoate (36) 

 

This procedure was modified from Corey, E, J. et al.114 The TBS protected dipeptide (35) (1.71 g, 

3.47 mmol) was dissolved in a solution mixture of THF/H2O/acetic acid (35 ml, 1:1:3) and warmed 

up to 35 oC. After, 48h the reaction mixture was neutralized to pH 6 using sat. NaHCO3 and 

extracted with CH2Cl2 (4 x 15 mL). The combined organic layers were  washed with brine (3 x 30 

mL), dried (Na2SO4), and the solvent evaporated in vacuo. The product (36) was isolated by 

column chromatography (SiO2; ethyl acetate/hexanes, 1:1) as white solid (1.22 g, 93 %) and a 

mixture of diastereomers (d.r. 2:1): Rf= 0.55 (ethyl acetate /hexanes, 1:1); 1H NMR (400 MHz, 

CDCl3) δ 7.44 – 7.28 (m, 8H, both isomers, ArH), 7.02 (d, 1H, J = 7.5 Hz, major isomer NH ), 6.93 

(d, 0.5H, J = 7.5 Hz, minor isomer NH), 5.89 (dddd,1H, J = 17.3, 10.4, 5.8, 5.8 Hz, major isomer, 

H2C=CH ), 5.84 – 5.76 (m, 0.5H, minor isomer, H2C=CH), 5.69 (d, 0.5H, J= 6.8 Hz, minor isomer 

NH), 5.60 (s, 1H, major isomer NH), 5.33 (dq, 1H, J = 17.2, 1.4 Hz, major isomer HaHbC=C), 5.30 

– 5.23 (m, 1.6H, minor isomer H2C=C and PhCH), 5.21 (dq, 1H, J = 10.4, 1.2 Hz, major isomer, 

HaHbC=C), 5.18 (s, 1H, major isomer, PhCH), 4.68 – 4.61 (m, 4H, both isomers, OCH2, and minor 

isomer H-2), 4.61 – 4.56 (dd, 1H, J= 5.7, 1.3 Hz, major isomer, H-2), 3.94 (d, 3H, J = 16.8 Hz, 

both isomers, H2C-OH), 3.13 (br s, 0.5H, minor isomer, OH), 2.75 (br s, 1H, major isomer, OH); 

13C NMR (126 MHz, CDCl3) δ 170.5, 170.3, 169.9, 169.7, 155.6, 155.5, 137.2, 131.3, 131.2, 131.2, 
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129.2, 129.1, 128.7, 128.7, 128.6, 127.3, 119.1, 119.1, 119.0, 118.9, 80.9, 80.5, 66.5, 66.4, 62.8, 

62.6, 59.6, 58.8, 55.1, 55.0, 28.3, 28.3, 20.5. 

Synthesis of 3-(prop-2-en-1-yl)-(2-phenylacetamido)-1-tert-

butyl(dimethylsilyl)oxypropanoate (41) 

 

The following reaction procedure was adapted from Corey et al.114 Phenylacetic acid (40) (0.2660 

g, 1.95 mmol) was dissolved in CH2Cl2 ( 5.0 mL) to which was added PyBOP ( 2.01 g, 3.97 mmol) 

and i-Pr2NEt (2.2 mL) at 0 oC. Protected serine (34) (0.5018 g, 1.93 mmol) dissolved in CH2Cl2 

(5.0 mL) was then added to the reaction mixture and stirred under N2 for 3h. The solvent was 

evaporated in vacuo and the product was purified by column chromatography (SiO2; ethyl 

acetate/hexanes, 3:7) to a pale orange solid (0.6239 g, 85%): Rf= 0.72 (ethyl acetate /hexanes, 

1:1); 1H NMR (400 MHz, CDCl3) δ 7.38 – 7.28 (m, 5H), 6.25 (d, 1H, J = 8.3 Hz,  NH), 5.87 (dddd, 

1H, J = 17.2, 10.4, 5.5, 5.5 Hz, H2C=CH), 5.30 (dq, 1H, J = 17.2, 1.5 Hz, HaHbC=C), 5.23 (dq, 1H, 

J = 10.4, 1.3 Hz, HaHbC=C), 4.66 (dt,1H, J = 8.4, 2.7 Hz, H-2), 4.60 (dt, 2H, J = 5.7, 1.4 Hz, OCH2), 

4.03 (dd, 1H, J = 10.0, 2.4 Hz, HaHbC-OTBS), 3.73 (dd, 1H, J = 10.0, 3.0 Hz, HaHbC-OTBS), 3.64 

(d, 2H, J = 3.2 Hz, PhCH2), 0.75 (s, 9H, SiC(CH3)3), -0.07 (s, 3H, J = 7.8 Hz, SiC(CH3)(CH3)), -

0.09 (s, 3H, J = 7.8 Hz, SiC(CH3)(CH3)); 13C NMR (101 MHz, CDCl3) δ 170.7, 169.9, 134.4, 131.52, 

129.5, 129.1, 127.4, 118.7, 66.0, 63.3, 54.1, 43.7, 25.6, 18.0, -5.7, -5.8; HRMS (ES) m/z 

calculated for C20H31NO4Si [M+Na]+ 400.1920, found 400.1919. 
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Synthesis of 3-(prop-2-en-1-yl)-(2-phenylacetamido)-1-hydroxypropanoate (42) 

 

The following reaction procedure was adapted from Corey et al.114 The serine dipeptide (41) 

(0.3771 g, 1.00 mmol) was dissolved on a solution mixture of THF/H2O/acetic acid (10 ml, 1:1:3) 

and warmed up to 40 oC. After, 22h the reaction was neutralized using sat. NaHCO3 and extracted 

with ethyl acetate (4 x 25 mL). The combined organic layers were  washed with brine (3 x 30 mL), 

dried (Na2SO4), and the solvent evaporated in vacuo. The product 42 was isolated by column 

chromatography (SiO2; ethyl acetate/hexanes, 1:1) as a white solid (0.2318 g, 88%): Rf= 0.28 

(ethyl acetate /hexanes, 1:1); 1H NMR (400 MHz, CDCl3) δ  7.39 – 7.28 (m, 5H, ArH), 6.36 (d, 1H, 

J = 7.0 Hz, NH), 5.87 (dddd, 1H, J = 17.2, 10.4, 5.7, 5.7 Hz, H2C=CH), 5.31 (dq, 1H, J = 17.2, 1.5 

Hz, HaHbC=C), 5.26 (dq, 1H, J = 10.5, 1.2 Hz, HaHbC=C), 4.67 (dd, 1H, J = 7.2, 3.6 Hz, H-2), 4.64 

(dq, 2H, J = 5.8, 1.2 Hz, OCH2), 4.00 – 3.88 (m, 2H, CH2OH), 3.64 (s, 2H, PhCH2), 2.30 (s, 1H, 

OH); 13C NMR (126 MHz, CDCl3) δ 171.6, 169.9, 134.3, 131.2, 129.4, 129.0, 127.5, 119.04, 66.4, 

63.4, 63.4, 55.0, 43.5, 29.7. 

Synthesis of 3-(prop-2-en-1-yl)-(2S)-2-phenylacetamido-1-bromopropanoate (43) 

 

The procedure followed was adapted from the one reported by Adachi, M. et al.118 Deprotected 

serine dipeptide 42 (0.0884 g, 0.34 mmol) was dissolved in Et2O (13.5 mL) at 0 oC to which was 

added PBr3 (90 μL, 0.94 mmol) under N2. The reaction was tracked by TLC until completion, 1h, 

and poured over ice-cold water (20 mL). The quenched reaction mixture was extracted with 
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Et2O/hexanes (1:1, 2 x 10 mL), the combined organic layers washed with water (3 x 20 mL), and 

dried (Na2SO4). The solvent evaporated under vacuum and the product 43 was collected as a 

crude white gel (0.0261 g): Rf= 0.05 (ethyl acetate /hexanes, 1:1) The product was used as is 

without further purification.  

Synthesis of prop-2-en-1-yl-(2S)-[(tert-butoxycarbonyl)amino]-3-hydroxy propanoate (46) 

 

The reaction followed was adapted from Shendage et al.154 Ally ester protected amine 33 (0.9388 

g, 6.47 mmol) was dissolved in THF (21.5 mL) along with Boc anhydride (2.16 g, 9.88 mmol) to 

which was added Et3N (3.2 mL) at 0 oC. The reaction mixture was warmed up to r.t. and stirred 

for 18h. Upon completion as seen by TLC, the mixture was diluted  with water (20 mL), extracted 

with ethyl acetate (3 x 15 mL), and the combined organic layers washed with brine (2 x 10 mL) 

and dried (Na2SO4). The solvent was evaporated in vacuo and compound 46 collected by column 

chromatography (SiO2, CH2Cl2/MeOH, 95:5) as a pale-yellow oil ( 0.2589 g, 17%): Rf= 0.50 

(CH2Cl2/MeOH, 95:5); 1H NMR (400 MHz, CDCl3) δ 5.91 (dddd, 1H, J = 17.2, 10.4, 5.7, 5.7 Hz, 

H2C=CH), 5.43 (br s, 1H, NH), 5.35 (dq, 1H, J = 17.2, 1.5 Hz, 1H, HaHbC=C), 5.27 (dq, 1H, J = 

10.5, 1.3 Hz, HaHbC=C), 4.68 (dt, 2H, J = 5.8, 1.4 Hz, ), 4.42 ( br s, 1H, CHCH2OH), 4.11 – 3.79 

(m, 2H), 2.30 (s, 1H, OH), 1.41 (s, 9H, NHCO2C(CH3)3).  
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Synthesis of prop-2-en-1-yl-(2S)-[(tert-butoxycarbonyl)amino]-3-oxopropanoate  (47)  

 

The following procedure was adapted from Taewoo et al.99 Compound 46 (0.1438 g, 0.58 mmol) 

was dissolved in CH2Cl2 (5.8 mL) to which was added Dess-Martin periodinane (DMP, 0.9947 g, 

2.35 mmol) at r.t. The reaction mixture was left to stir for 20h and neutralized with sat. NaHCO3 

followed by dilution with ethyl acetate (8 mL). The mixture was washed with water (2 x 10 mL), 

brine (3 x 5 mL), dried (Na2SO4), and the solvent evaporated in vacuo. Purification by column 

chromatography (SiO2, ethyl acetate/hexanes, 4:6) then preparative TLC (SiO2, ethyl 

acetate/hexanes, 15:85) afforded the product 47 as a pale yellow oil (0.0279 g, 1.4%): Rf= 0.69 

(ethyl acetate /hexanes, 4:6); 1H NMR (400 MHz, CDCl3) δ 8.69 (br s, 1H, CHO), 5.91 (dddd, 1H, 

J = 17.2, 10.4, 5.7, 5.7 Hz, H2C=CH), 5.43 (br s, 1H, NH), 5.35 (dq, 1H, J = 17.2, 1.5 Hz, 1H, 

HaHbC=C), 5.27 (dq, 1H, J = 10.5, 1.3 Hz, HaHbC=C), 4.68 (dt, 2H, J = 5.8, 1.4 Hz, ), 4.42 (br s, 

1H, CHCHO), 4.11 – 3.79 (m, 2H), 2.30 (s, 1H, OH), 1.41 (s, 9H, NHCO2C(CH3)3).  

Synthesis of (2S)-2-({[9H-fluoren-9-yl)methoxy]carbonyl]amino)-4-oxo-(1-methoxy-1-

oxobut-3-en-2-yl)amino)-1-oxo-1-[(prop-2-en-yl)oxy]butanoate (51)  

 

The following procedure was adapted from Quéléver et al.115 Fmoc-Asp-OAllyl (50) (0.7874 g, 

1.99 mmol)  was dissolved in CH2Cl2 (10.0 mL) followed by i-Pr2NEt (2.1 mL), PyBOP (2.0687 g, 

3.98 mmol), and cooled to 0 oC. Vinylglycine methyl ester (23b) (0.3228 g, 2.13 mmol) was added 

to the reaction mixture and left to stir under N2. After completion as seen by TLC, 2h, the reaction 
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was concentrated in vacuo. The product 51 was purified by column chromatography (SiO2, ethyl 

acetate/hexanes, 6:4) collected as pale yellow flakes (0.3503 g, 36%) mixture of diastereomers 

(d.r. 3:10): Rf= 0.47 (ethyl acetate /hexanes, 1:1); 1H NMR (500 MHz, CDCl3) δ 7.76 (d, 3H, J = 

7.5 Hz, both isomers, PhF ArH), 7.60 (q, 3H, J = 5.4, 4.0 Hz, both isomers, PhF ArH), 7.39 (t, 3H, 

J = 7.5 Hz, both isomers, PhF ArH), 7.30 (t, 3H, J = 7.4 Hz, both isomers, PhF ArH), 6.38 (d, 0.3H, 

J = 7.8 Hz, minor isomer, NH), 6.34 (d, 1H, J = 7.7 Hz, major isomer, NH), 6.13 (d, 1H J = 8.7 Hz, 

major isomer, NH), 6.07 (d, 0.3H, J = 8.4 Hz, minor isomer, NH), 5.88 (ddt, 3H, J = 17.1, 10.3, 

5.1 Hz, both isomers, 2 x H2C=CH), 5.32 (d, 2.8H, J = 17.2 Hz, both isomers, vinylglycine 

H2C=CH), 5.26 (dd, 1.7H, J = 10.4, 1.8 Hz, both isomers, HaHbC=CH), 5.22 (d, 1.5H, J= 20.3 Hz, 

both isomers, HaHbC=CH ), 5.16 – 5.10 (d, 1.3H, J= 10.7 Hz, both isomers, NHCH(CO2CH3) ), 

4.67 (t, 4H, J = 5.2 Hz, both isomers, H-2, OCH2), 4.37 (ddd, 2.9H, J = 39.4, 10.6, 7.1 Hz, both 

isomers, PhFCHCH2), 4.23 (t, 1.6H, J = 7.1 Hz, PhFCH), 3.76 (s, 0.9H, minor isomer, CO2CH3 ), 

3.75 (s, 3H, major isomer, CO2CH3), 3.07 (dd, 1.3H, J = 15.9, 4.5 Hz, both isomers, CHaHb-3), 

2.86 (dt, 1.3H, J = 15.8, 4.2 Hz, both isomers, CHaHb-3). 13C NMR (100 MHz, CDCl3) δ 170.7, 

169.5, 169.3, 156.2, 143.9, 143.8, 141.3, 141.3, 131.7, 131.6, 131.6, 131.6, 127.7, 127.1, 125.3, 

125.2, 120.0, 119.0, 118.7, 118.7, 118.1, 118.1, 67.3, 66.4, 66.4, 54.6, 54.6, 52.9, 52.1, 50.9, 

47.1, 37.6, 29.7; HRMS (ES+) m/z calculated for C27H28N2O7 [M+H]+ 493.1975, found 493.1976.  

Synthesis of 1-tert-butyl 4-methyl (2S)-(2-phenylacetamido)butanedioate (58) 

 

The reaction followed was adapted from Quéléver et al.115 Phenylacetic acid (40) (0.2843 g, 2.09 

mmol) was dissolved in CH2Cl2 (10.5 mL) at 0 oC to which was added PyBOP ( 2.16 g, 4.15 mmol) 

and i-Pr2NEt ( 2.2 mL). After 10 mins, 1-(tert-butyl) 4-methyl L-aspartate hydrochloride (57) 
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(0.4990 g, 2.08 mmol) was added to the reaction mixture and left to stir under N2 until completion 

as seen by TLC. After, 2.5h the reaction was concentrated in vacuo and the product 58 isolated 

by column chromatography (SiO2, ethyl acetate/hexanes, 1:1)  as an off-white solid powder 

(0.6096 g, 91%): Rf= 0.71 (ethyl acetate /hexanes, 1:1); 1H NMR (500 MHz, CDCl3) δ 7.39 – 7.26 

(m, 5H, ArH), 6.37 (d, 1H, J = 7.8 Hz, NH), 4.70 (dt, 1H, J = 7.8, 4.6 Hz,), 3.61 (s, 3H, CO2CH3), 

3.59 (s, 2H, PhCH), 2.93 (dd, 1H, J = 16.7, 4.3 Hz, CHaHb-3), 2.78 (dd, 1H, J = 16.7, 4.9 Hz, 

CHaHb-3), 1.41 (s, 9H, C(CH3)3); 13C NMR (126 MHz, CDCl3) δ 171.2, 170.5, 169.4, 134.5, 129.4, 

128.9, 127.3, 82.6, 51.8, 49.3, 43.6, 36.3, 27.8; HRMS (ES+) m/z calculated for C17H23NO5Na 

[M+Na]+ 344.1474 found 344.1473.  

Synthesis of 4-tert-butoxy-4-oxo- (3S)-(2-phenylacetamido)butanoic acid (59) 

 

The procedure followed was adapted from Ghosh and Liu.155 The methyl ester protected dipeptide 

(58) ( 0.3611 g, 1.12 mmol) was dissolved in a mixture of MeOH/H2O ( 3:1, 42.5 mL) and cooled 

to 0 oC. LiOH∙H2O ּsolution (1 M, 6.1 mL) was added to the reaction under vigorous stirring. The 

reaction was tracked by TLC, and after 2h it was partially evaporated, acidified to pH 3 using 

saturated citric acid (4 mL), followed by extraction with ethyl acetate (3 x 40 mL). The combined 

organic layers were dried (Na2SO4) and solvent evaporated in vacuo. The collected product 59 

was purified by column chromatography (SiO2, CH2Cl2/MeOH, 95:5) collected as a yellow oil 

(0.1897 g, 48%): Rf= 0.39 (CH2Cl2/MeOH, 95:5); 1H NMR (400 MHz, CD3OD) δ 7.34 – 7.16 (m, 

5H, ArH ), 4.62 (td, J = 6.0, 1.3 Hz, 1H, CHCO2tBu), 3.54 (s, 2H, PhCH), 2.83 (d, 1H, 1.9 Hz, 

CHaHb-3), 2.68 (d, 1H, 2.1 Hz, CHaHb-3), 1.40 (s, 9H, C(CH3)3). 13C NMR (100 MHz, CDCl3) δ 
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172.3, 171.0, 169.8, 135.2, 128.8, 126.5, 81.7, 49.8, 42.1, 35.6, 26.7; HRMS (ES-) m/z calculated 

for C16H20 NO5 [M-H]- 306.1341 found 306.1342. 

Synthesis of  1-tert-butyl -4-[(2S)-(1-methoxy-1-oxobut-3-en-2-yl)amino]-4-oxo-(2S)-(2-

phenylacetamido)butanedioate (60) 

 

The reaction followed was adapted from Quéléver et al.115 The carboxylic acid (59) (0.0905 g, 

0.29 mmol) was suspended in CH2Cl2 (1.5 mL) followed by i-Pr2NEt (0.310 mL) and cooled to 0 

oC. PyBOP (0.3204 g, 0.62 mmol) and vinylglycine methyl ester (0.0443 g, 0.29 mmol) were 

added to the reaction mixture and left to stir under N2. After reaction completion as seen by TLC, 

2.5h, the reaction was concentrated in vacuo. The product (60) was collected as a pale yellow 

solid (0.0452 g, 38%) after purification by column chromatography (SiO2, ethyl acetate/hexane, 

6:4) as a 2:1  diastereomers mixture: Rf= 0.50 (ethyl acetate/hexanes, 6:4); 1H NMR (400 MHz, 

CDCl3) δ 7.37 – 7.21 (m, 9.5H, both isomers overlapping CDCl3 solvent, ArH), 6.70 (d, 1H, J = 7.9 

Hz, major isomer NH), 6.65 (d, 0.5H, J = 7.6 Hz, minor isomer, NH), 6.39 (br d, 1.5H, J = 7.4 Hz, 

both isomers, NH), 5.90-5.80 (m, 1.5H, both isomers, CH=CH2), 5.31 (dd, 1H, J = 17.2, 1.8 Hz, 

major isomer, CH=CHaHb), 5.27 – 5.22 (m, 2H, major isomers, CH=CHaHb, and minor isomer, 

CH=CH2), 5.10-5.03 (m, 1.5H, both isomers. CHCH=CH2), 4.72-4.64 (m, 1.5H, both isomers, 

CHCO2tBu), 3.78 (s, 3H, major isomer, CO2CH3), 3.76 (s, 1.5H, minor isomer, CO2CH3), 3.58 (s, 

2H, major isomer, PhCH), 3.56 (s, 1H, minor isomer, PhCH), 2.94-2.87 (m, both isomers, 1.5H, 

CHaHb-3), 2.82-2.75 (m, 1.5H, both isomers, CHaHb-3), 1.41 (s, 4.5H, minor isomer, C(CH3)3), 

1.40 (s, major isomer, 9H, C(CH3)3); 13C NMR (101 MHz, CDCl3) δ 170.8, 170.8, 170.7, 169.6, 

169.5, 169.5, 169.3, 134.6, 134.5, 131.8, 131.7, 129.4, 129.3, 128.9, 128.8, 127.2, 127.2, 118.0, 
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117.9, 82.5, 82.5, 77.3, 77.2, 77.0, 76.7, 54.5, 52.8, 52.8, 49.6, 49.6, 43.6, 43.53, 37.6, 37.6, 27.8, 

27.8; HRMS (ES-) m/z calculated for C17H20N2O6 [M-H]- 347.13 found 347.1240.  

Synthesis of 4-[(1-methoxy-1-oxobut-3-en-2-yl)amino]-4-oxo-(2S)-(2-

phenylacetamido)butanoic acid (61) 

 

The following reaction was adapted from Martin et al.125 Butanedioate (60) (0.0565 g, 0.14 mmol) 

was dissolved in CH2Cl2 (350 μL) to which was added Et3SiH ( 30 μL) at 0 oC. TFA (320 μL, 4.12 

mmol) was added to the reaction which was let to stir under N2. The reaction was tracked by TLC, 

and after 5h, concentrated in vacuo. The product was isolated by column chromatography (SiO2, 

95:5 DCM/ methanol) as a white solid (0.0470 g, 97%): Rf= 0.27 (SiO2, CH2Cl2/MeOH, 95:5); 1H 

NMR (400 MHz, CDCl3) δ 11.88 (br s, 1.5H, both isomers, CO2H), 7.37 – 7.21 (m, 11H, both 

isomers overlapping CDCl3 solvent, ArH), 5.87-5.75 (m, 1.5H, both isomers, CH=CH2), 5.34 – 

5.21 (m, 3H, both isomer, CH=CH2), 5.06-4.99 (m, 1.5H, both isomers, CHCH=CH2), 4.74-4.65 

(m, 1.5H, both isomers, CHCO2tBu), 3.74 (s, 3H, major isomer, CO2CH3), 3.72 (s, 1.5H, minor 

isomer, CO2CH3), 3.64 (s, 2H, major isomer, PhCH), 3.62 (s, 1H, minor isomer, PhCH), 3.02-2.95 

(m, 1.5H, both isomers, CHaHb-3), 2.91-2.82 (m, 1.5H, both isomers, CHaHb-3); 13C NMR (101 

MHz, CDCl3) δ 173.3, 173.2, 172.7, 172.6, 170.9, 170.9, 170.6, 170.6, 133.8, 133.8, 131.1, 131.0, 

129.4, 129.3, 128.9, 127.4, 118.6, 118.5, 77.4, 77.0, 76.7, 55.0, 53.0, 52.9, 49.5, 42.8, 36.8, 36.7; 

HRMS (ES+) m/z calculated for C17H21N2O6 [M+H]+  349.1400 found 349.1397.  
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Synthesis of 4-{[2-methoxy-2-oxo-1-(oxiran-2-yl)-2-oxoethyl]amino}-4-oxo-2-(2-

phenulacetamido)butaneoic acid (62)  

 

The reaction followed was adapted from Yang et al. The alkene (62) (0.0155 g, 0.045 mmol) was 

dissolved in CH3CN (0.5 mL) and EDTA (4 x 10-4
 M, 0.20 mL). The mixture was cooled to 8 oC 

followed by addition of trifluoroacetone acid (20 μL, 0.04 mmol), NaHCO3 (0.1567 g, 1.87 mmol), 

and Oxone ® (0.0614 g, 0.73 mmol). After 3.5h, anhydrous Na2SO4 was added to the reaction 

mixture and CH2Cl2 (10.0 mL) used to collect the product. The solvent was evaporated in vacuo 

and the white solid product (62) isolated by purification using reverse phase preparative TLC 

(C18, CH3CN:H2O, 1:1): Rf= 0.05 (C18, CH3CN:H2O, 1:1); HRMS (ES+) m/z calculated for 

C17H21N2O7 [M+H]+ 365.1349 found 365.1339.   

Synthesis of 4-{[2-methoxy-2-oxo-1-(oxiran-2-yl)-2-oxoethyl]amino}-4-oxo-2-(2-

phenulacetamido)butaneoic acid (63)  

The following procedure was adapted from Nicolaou et al.129 The epoxide (62) was dissolved in 

1,2 dichloroethane (360 μL) to which was added Me3SnOH (0.0199 g, 010 mmol) and the mixture 

was warmed up to 60 oC for 2.5h. The reaction mixture was then concentrated in vacuo, 

redissolved in ethyl acetate (5 mL), and washed with KHSO4 (0.01 M, 3 x 5 mL) and water (1 x 5 

mL). The solvent was evaporated in vacuo to give the crude product (63): Rf= ~1 (C18, 

CH3CN:H2O, 1:1); HRMS (ES+) m/z calculated for C17H19N2O6 [M-3H] 347.1243 found 347.1241.   

 

 



94 
 

Detailed Experimental Section Chapter. III 

Synthesis of ethyl-1-(2-methylprop-2-enoyl)pyrrolidine-2-carboxylate (92)   

 

The following procedure was modified from the one reported in O’Daniel et al and Choo et al.144,156  

Methacrylic acid (90) (740 μL, 8.63 mmol) was dissolved in CH2Cl2 (89 mL) to which was added 

DMF (4 drops) and oxalyl chloride (0.9 mL, 10.5 mmol) at 0 oC under N2. After 1.5 h, the reaction 

mixture was concentrated in vacuo and dissolved in DMF (5 mL). A mixture of D-proline ethyl 

ester (1.06 g, 5.92 mmol) and NEt3 (1.6 mL, 11.3 mmol) in DMF (3 mL) at 0 oC was prepared, 

added to the acid chloride solution, warmed to 90 oC, and the mixture stirred under N2 for 18h. 

The reaction mixture was filtered through a pad of celite, the solvent was evaporated in vacuo, 

and the product purified by column chromatography (SiO2, ethyl acetate/hexanes, 1:1) to give 92 

as a dark yellow oil (0.6606 g, 36% over 2 steps) as a ~2.5:1 mixture of rotamers: Rf= 0.50 (ethyl 

acetate/hexanes, 1:1); 1H NMR (400 MHz, CDCl3) δ 5.32-5.27 (s, 0.7H, major isomer, 

C=CHaCHb), 5.24 (s, 0.7H, major isomer, C=CHaCHb), 5.17 (s, 0.3H, minor isomer, C=CHaCHb ), 

5.02 (s, 0.3H, minor isomer, C=CHaCHb), 4.49 (dd, 1H, J = 8.5, 5.1 Hz, both isomers, H-2), 4.19 

(q, 2H, J = 7.2 Hz, both isomers, CO2CH2CH3), 3.69-3.52 (m, 2H, both isomers, CH2-5), 2.31-2.20 

(m, 1H, both isomers, CHaHb), 2.11-1.79 (m, 6H, both isomers, CHaHb-3, CH2-4, C=CCH3), 1.31-

1.21 (t, 3H, both isomers, CO2CH2CH3); 13C NMR (126 MHz, CDCl3) δ 172.3, 170.5, 141.8, 141.0, 

116.9, 115.9, 61.4, 61.1, 61., 58.7, 49.1, 46.2, 31.5, 29.3, 25.1, 22.7, 20.0, 19.8, 18.1, 14.1 (3 

carbon signals not observed due to overlap). 
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Synthesis of ethyl-1-(2-methyloxirane-2carbonyl)pyrrolidine-2-carboxylate (93) 

 

This procedure was modified from the one reported by Yang et al.128 EDTA (950 μL) was added 

to a solution of compound 92 (0.0510 g, 0.24 mmol) in CH3CN (2.4 mL) at 8 oC. Trifluoroacetone 

(490 μL) was then added to the reaction mixture using a pre-cooled syringe followed by oxone 

(1.4650 g, 2.39 mmol) and NaHCO3 (0.2893 g, 3.44 mmol). The mixture was monitored by TLC 

until completion, 2h, upon which anhydrous Na2SO4 (5 g) was added. The reaction mixture was 

diluted with CH2Cl2 (25 mL), filtered through a thin plug of celite, and the filtrate was concentrated 

in vacuo to afford the product 93 as a pale-yellow oil (0.0520 g, 97%) and a set of rotamers of two 

diastereomers (1:1.5:2.5): Rf= 0.06 (ethyl acetate/hexanes, 7:3); 1H NMR (400 MHz, CDCl3) δ 

4.78 (dd, ~0.2H, J = 8.6, 4.3 Hz, minor isomer, H-2), 4.69 (dd, ~0.3H, J = 8.5, 1.8 Hz, second 

isomer, H-2), 4.46-4.37 (m, ~0.5H, major isomers, H-2), 4.17 (m, 2H, all isomers, CO2CH2CH3), 

3.83-3.45 (m, 2H, all isomers, H-5), 2.94-2.66 (m, 2H, all isomers, epoxide CH2), 2.30-1.67 (m, 

4H, all isomers, CH2-3, all isomers, CH2-4), 1.55 (dd, 4H, J = 10.6, 6.8 Hz, all isomers, CH3), 1.30-

1.17 (m, 12H, 4 x CO2CH2CH3); 13C NMR (126 MHz, CDCl3) δ 172.7, 171.9, 171.8, 169.9, 169.1, 

169.0, 168.5, 61.5, 61.2, 61.2, 61.1, 59.8, 59.5, 59.3, 59.0, 57.7, 57.6, 57.3, 57.0, 53.1, 53.1, 52.8, 

52.5, 52.5, 47.3, 47.2, 46.8, 31.9, 31.5, 28.6, 28.5, 25.4, 24.8, 23.7, 21.9, 21.8, 21.3, 19.6, 19.2, 

19.0, 18.8, 14.2, 14.2, 14.1; HRMS (ES+) m/z calculated for C11H18NO4 [M+H]+ 228.1236 found 

228.1234. 
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Synthesis of 1-(2-Methyloxirane-2-carbonyl)pyrrolidine-2-carboxylic acid (82) 

 
The deprotected compound was obtained following similar reaction conditions as those presented 

by Orrling et al.152 The ethyl ester protected epoxide compound 93 (0.0417 g, 0.18 mmol) was 

dissolved in ethanol (260 μL) to which was added ethanolic KOH (1.07 M, 320 μL) and stirred at 

r.t. After 25 min, the reaction mixture was diluted with sat. NaHCO3 (0.5 mL), acidified to pH 8 

with HCl (0.5 M). and washed with ethyl acetate (3 x 8 mL). The aqueous layer was acidified to 

pH 1 with HCl (0.5 M) and extracted with ethyl acetate (3 x 4 mL). The combined organic layers 

were dried (MgSO4) and the solvent was evaporated in vacuo to afford the crude product 82: Rf= 

0.04 (CH2Cl2/MeOH, 95:5);  HRMS (ES+) m/z calculated for C11H18NO4 [M+H]+ 228.1236 found 

228.1234.  

Synthesis of ethyl-1-(2-methylthiirane-2-carbonyl)pyrrolidine-2-carboxylate (94) 

 

This compound was prepared of Gooyit et al.153 The epoxide 93 (0.0520 g) was dissolved in 

CH2Cl2 (75 μL) and a solution of thiourea (0.1847 g, 2.43 mmol) in MeOH (2.1 mL) was added. 

The mixture was stirred at r.t. under N2 for 23h and concentrated in vacuo. The concentrate was 

dissolved in Et2O/water mixture (1:1, 20 mL), then the organic layer was separated, washed with 

water (2 x 20 mL), and dried (NaSO4). The solvent was evaporated in vacuo followed by 

purification by column chromatography (SiO2, ethyl acetate/hexanes, 1:1)  to give the desired 

product as a clear oil (0.0298 g, 54 %) and separable diastereomers in a 1:1 ratio: Data for 94a : 

Rf= 0.57 (ethyl acetate/hexanes, 7:3); 1H NMR (400 MHz, CDCl3) δ 4.47-4.42 (dd, 1H, H-2), 4.18 

(q, 2H, J = 7.1 Hz, CO2CH2CH3), 3.93-3.86 (dt, 1H, J = 10.4, 6.1 Hz, CHaHb-5 ), 3.73 (dt, 1H, J = 
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10.0, 6.7 Hz, CHaHb-5), 3.09 (d, 1H, J = 1.2 Hz, thiirane CHaHb), 2.40 (d, 1H, J = 1.2 Hz, thiirane 

CHaHb), 2.28-2.17 (m, 1H, CHaHb-3), 2.13-2.03 (m, 1H, CHaHb-4), 2.01-1.90 (m, 2H,  CHaHb-3, 

CHaHb-4), 1.82 (s, 3H, CH3), 1.27 (t, 3H, J = 7.2 Hz, CO2CH2CH3); 13C NMR (126 MHz, CDCl3) δ 

171.75, 168.83, 60.98, 59.87, 47.55, 42.40, 31.62, 28.83, 24.86, 23.37, 14.09; HRMS (ES+) m/z 

calculated for C11H18NO3S [M+H]+ 244.1007 found 244.1010. Data for 94b:Rf= 0.50 (ethyl 

acetate/hexanes, 7:3); 1H NMR (400 MHz, CDCl3) δ 4.41 (dd, 1H, J = 8.6, 3.5 Hz, H-2), 4.25-4.05 

(m, 2H, J = 7.1 Hz, CO2CH2CH3), 3.94 (app ddd, 1H, J = 9.8, 7.6, 4.7 Hz, CHaHb-5 ), 3.68 (dt, 1H, 

J = 10.3, 7.0 Hz, CHaHb-5), 3.09 (d, 1H, J = 1.2 Hz, thiirane CHaHb), 2.40 (d, 1H, J = 1.2 Hz, 

thiirane CHaHb), 2.26-1.92 (m, 4H, CH2-3, CH2-4), 1.78 (s, 3H, CH3), 1.22 (t, 3H, J = 7.2 Hz, 

CO2CH2CH3). 13C NMR (100 MHz, CDCl3) δ 171.8, 168.8, 61.0, 59.9, 47.6, 42.4, 31.6, 28.8, 24.9, 

23.4, 14.1. HRMS (ES+) m/z calculated for C11H18NO3S [M+H]+ 244.1007 found 244.1011. 

Synthesis of 1-(2-methylthiirane-2-carbonyl)pyrrolidine-2-carboxylic acid (83) 

 

The deprotected compound was obtained following similar reaction conditions as those presented 

by Orrling et al.152 The epoxide  (0.0168 g, 0.069 mmol) was dissolved in ethanol (120 μL) to 

which was added ethanolic KOH (1.05 M, 150 μL) and stirred at r.t. After 2h, the reaction mixture 

was diluted with sat. NaHCO3 (0.5 mL), acidified to pH 8 with HCl (0.5 M), and washed with ethyl 

acetate (3 x 8 mL). The aqueous layer was acidified to pH 1 with HCl (0.5 M) and extracted with 

ethyl acetate (3 x 4 mL). The combined organic layers were dried (Na2SO4) and the solvent was 

evaporated in vacuo to afford the crude product: Data for 83a: Rf= 0.08 (CH2Cl2/MeOH, 95:5); 

HRMS (ES+) m/z calculated for C9H14NO3S [M+H]+ 216.0694 found 216.0687; Data for 83b: Rf= 

0.11 (CH2Cl2/MeOH, 95:5); HRMS (ES+) m/z calculated for C9H14NO3S [M+H]+ 216.0694 found 

216.0689. 
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Synthesis of ethyl-1-(2-methylbut-3-enoyl)pyrrolidine-2-carboxylate (98)  

 

The following procedure was modified from the one reported in Choo et al.144 The 2-methyl-3-

butenoic acid (96) (780 μL, 7.50 mmol) was dissolved in CH2Cl2 (75 mL) at 0 oC to which was 

added DMF (4 drops) and oxalyl chloride (0.9 mL, 10.5 mmol) under N2. After 1.5 h, the reaction 

mixture was concentrated in vacuo and dissolved in DMF (5 mL). A mixture of D-proline ethyl 

ester (0.9692 g, 9.68 mmol) and NEt3 (1.4 mL, 11.3 mmol) in DMF (4 mL) was prepared at 0 oC 

and added to the acid chloride solution. Then, the reaction mixture was warmed to 90 oC and 

stirred under N2 for 18 h. The reaction mixture was filtered through a pad of celite, the solvent 

was evaporated in vacuo, and the product purified by column chromatography (SiO2, ethyl 

acetate/hexanes, 7:3) to yield a dark yellow oil (0.5591 g, 31% over 2 steps). The product 98 was 

isolated as a mixture of diastereomers: Rf= 0.64 (ethyl acetate/hexanes, 1:1); 1H NMR (400 MHz, 

CDCl3) δ 5.90-5.74 (m, 1H, CH2=CH), 5.22-4.95 (m, 2H, CH2=CH), 4.50-4.41 (m, 1H, H-2), 4.23-

4.10 (m, 2H, CO2CH2CH3), 3.72-3.46 (m, 2H, H-5), 3.23 (m, 1H, COCHCH3), 2.27-1.81 (m, 4H, 

CH2-3, CH2-4), 1.30-1.14 (m, 6H, CH3, CO2CH2CH3); 13C NMR (101 MHz, CDCl3) δ 172.6, 172.4, 

172.4, 172.3, 138.3, 138.1, 138.0, 137.5, 115.8, 115.6, 115.5, 115.2, 61.5, 61.4, 60.9, 60.9, 59.5, 

59.0, 46.7, 46.7, 46.5, 43.4, 43.1, 42.9, 42.5, 31.5, 31.3, 29.1, 29.1, 24.8, 24.8, 22.4, 22.3, 18.3, 

17.6, 17.5, 17.4, 17.1, 14.2, 14.1 (8 carbon signals not observed due to overlap); HRMS (ES+) 

m/z calculated for C12H20O3 [M+H]+ 226.1443 found 226.1441.  
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Synthesis of ethyl-1-[2-(oxiran-2-yl)propanoyl]pyrrolidine-2-carboxylate (99) 

 

This procedure was adapted from the procedure reported by Choo et al.144 The alkene (98) 

(0.1011 g, 0.45 mmol) was dissolved in a mixture of acetone/water (3:5, 3.6 mL) to which was 

added oxone (1.1118 g, 1.81 mmol) and NaHCO3 (0.5228 g, 6.22 mmol). After being stirred for 

1h at r.t. the reaction mixture was acidified to pH 1-2 using conc. HCl and extracted with EtOAc 

(2 x 8 mL), and the combined organic layers were dried (NaSO4). Evaporation of the solvent in 

vacuo and high vacuum afforded the desired epoxide as a yellow oil (0.0909 g, 85%) as a mixture 

of  4 diastereomers: Rf= 0.11 (CH2Cl2/MeOH, 95:5); 1H NMR (400 MHz, CDCl3) δ 4.61 (dd, 1H, J 

= 8.5, 2.4 Hz, H-2), 4.51-4.36 (m, 6H, 6 x H-2), 4.34 (dd, 0.5H, J = 8.5, 2.4 Hz, 0.5 x H-2), 4.26 

(dd, 0.5H, J = 8.3, 2.4 Hz, 0.5 x H-2), 4.19-4.07 (m, 16H, 8 x CO2CH2CH3), 3.87-3.72 (m, 2H, H-

5), 3.70-3.42 (m, 14H, 7 x H-5’), 3.23-2.98 (m, 8H, 8 x COCHCH3), 2.79-2.67 (m, 8H, 8 x epoxide 

CH), 2.78-2.44 (m, 16H, 8 x epoxide CH2), 2.27-1.83 (m, 32H, 8  x CH2-3, 8 x CH2-4), 1.36-1.01 

(m, 48H, 8 x CH3, 8 x CO2CH2CH3). 13C NMR (100 MHz, CDCl3) δ 172.8, 172.58, 172.4, 172.3, 

172.2, 172.1, 172.0, 172.0, 171.8, 61.7, 61.6, 61.5, 61.2, 61.0, 61.0, 61.0, 59.6, 59.4, 59.2, 59.2, 

59.1, 58.9, 58.8, 58.9, 54.9, 54.2, 54.2, 54.0, 53.8, 53.8, 53.6, 47.1, 47.0, 47.0, 46.9, 46.7, 46.5, 

46.5, 46.4, 46.4, 46.1, 46.0, 45.3, 45.2, 42.1, 41.6, 41.1, 40.8, 40.8, 40.7, 40.2, 31.4, 31.3, 31.3, 

31.2, 29.1, 29.01, 24.7, 24.7, 24.6, 22.5, 22.4, 22.3, 14.6, 14.5, 14.2, 14.1, 13.54, 13.3, 13.2, 12.7 

(25 carbon signals not observed due to overlap); HRMS (ES+) m/z calculated for C12 H20NO4 

[M+H] 242.1392 found 242.1387. 
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Synthesis of 1-[2-(oxiran-2-yl)propanoyl]pyrrolidine-2-carboxylic acid (84) 

 

The deprotected compound # was obtained following similar reaction conditions as those 

presented by Orrling et al.152 The protected epoxide 99 (0.0157g, 0.066 mmol) was dissolved in 

ethanol (100 μL) at r.t. to which was added ethanolic KOH solution (1.05 M, 110 μL). After stirring 

for 2h, the reaction mixture was diluted with sat. NaHCO3 (0.5 mL), acidified to pH 8 with HCl (0.5 

M). and washed with ethyl acetate (3 x 2 mL). The aqueous layer was acidified to pH 1 with HCl 

(0.5 M) and extracted with ethyl acetate (3 x 4 mL). The combined organic layers were dried 

(Na2SO4) and the solvent was evaporated in vacuo to afford the crude product 85: Rf= 0.05 

(CH2Cl2/MeOH, 95:5); HRMS (ES+) m/z calculated for C10H16NO4 [M+H]+ 214.1079 found 

214.1070. 

Synthesis of ethyl-1-[2-(thiirane-2-yl)propanoyl]pyrrolidine-2-carboxylate (100) 

 

The epoxide 99 (0.1284 g, 0.53 mmol) was dissolved in CH2Cl2 (1.7 mL) to which a solution of 

thiourea (0.4205 g, 5.52 mmol) in MeOH (3.4 mL) was added, and the mixture was stirred at r.t. 

under N2 for 24h. The reaction mixture was concentrated in vacuo re-dissolved in a mixture of 

Et2O/water (1:1, 20 mL), then the organic layer was separated and dried (NaSO4). The solvent 

was evaporated in vacuo followed by purification by column chromatography (SiO2, 1:1 ethyl 

acetate/hexanes) to give the desired product as a clear oil (0.0514 g, 38%) and two set of 

separable diastereomers in a 6:2:1:1 ratio: Rf= 0.47 (ethyl acetate/hexanes, 1:1); 1H NMR (400 

MHz, CDCl3) δ 4.53 (dd, ~0.2H J = 8.8, 4.0 Hz, one isomer, H-5), 4.48 (dd, ~0.6H, J = 8.8, 4.2 



101 
 

Hz, one isomer, H-5), 4.40 (dd, ~0.1H, J = 8.5, 2.5 Hz, one isomer, H-5), 4.27 (dd, ~0.1H J = 8.3, 

2.6 Hz, one isomer, CH-5), 4.28-4.07 (m, 2H, CO2CH2CH3), 3.90-3.72 (m, 1H, H-2), 3.72-3.58 (m, 

1H, H-2), 3.51-3.39 (m, 1H, COCHCH3), 3.22-3.10 (m, 1H, thiirane CH), 2.54 (ddd, 1H, J = 11.5, 

6.3, 1.4 Hz, thiirane CHaHb),  (1H, J = 8.6, 6.9 Hz, thiirane CHaHb), 2.33-2.13 (m, 3H, thiirane 

CHaHb, CHaHb-3, CHaHb-4),  2.10-1.77 (m, 2H, CHaHb-3, CHaHb-4), 1.45-1.32 (m, 3H, CH3)  1.30-

1.24, 3H, CO2CH2CH3); 13C NMR (126 MHz, CDCl3) δ 173.95, 173.2, 173.2, 173.0, 172.5, 172.3, 

172.2, 172.1, 61.8, 61.8, 61.7, 61.1, 61.1, 61.0, 59.5, 59.1, 58.9, 58.8, 47.1, 47.1, 47.0, 46.4, 46.4, 

46.3, 45.7, 45.6, 45.2, 38.4, 38.3, 38.0, 37.9, 31.4, 29.1, 29.1, 25.3, 25.3, 25.0, 24.8, 24.8, 24.1, 

24.1, 23.2, 22.5, 22.4, 18.5, 18.0, 17.7, 16.8, 14.2, 14.1 ; HRMS (ES+) m/z calculated for 

C12H20NO3S [M+H]+ 258.1164 found. 258.1171.  

Synthesis of 1-[2-(thiirane-2-yl)propanoyl]pyrrolidine-2-carboxylic acid (85) 

 

The deprotected compound 85 was obtained following similar reaction conditions as those 

presented by Orrling et al.152 The protected thiirane compound 100 (0.0116 g, 0.045 mmol) was 

dissolved in ethanol (70 μL) at r.t. to which was added ethanolic KOH solution (1.05 M, 100 μL). 

After stirring for 2h, the reaction mixture was diluted with sat. NaHCO3 (0.5 mL), acidified to pH 8 

with HCl (0.5 M). and washed with ethyl acetate (3 x 2 mL). The aqueous layer was acidified to 

pH 1 with HCl (0.5 M) and extracted with ethyl acetate (3 x 4 mL). The combined organic layers 

were dried (Na2SO4) and the solvent was evaporated in vacuo to afford the  product 85 as an off 

white solid (0.0282 g, 59%) and mixture of diastereomers: Rf= 0.05 (CH2Cl2/MeOH, 95:5); 1H NMR 

(700 MHz, CDCl3) δ 4.67 (dd, ~0.3H, J = 8.0, 2.5 Hz, minor isomer, CH-5), 4.60 – 4.57 (m, ~0.7H, 

major isomer, CH-5), 3.66 – 3.54 (m, 1H, H-2), 3.52 – 3.44 (m, 1H, H-2), 3.24 – 3.09 (m, 1H, 

COCHCH3), 3.22-3.10 (m, 1H, thiirane CH), 2.54 (ddd, 1H, J = 11.5, 6.3, 1.4 Hz, thiirane CHaHb), 
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2.46 – 2.21(m, 3H, thiirane CHaHb, CHaHb-3, CHaHb-4),  2.12 – 1.98 (m, 2H, CHaHb-3, CHaHb-4), 

1.47 – 1.35 (m, 3H, CH3); 13C NMR (176 MHz, CDCl3) δ 176.3, 175.8, 175.6, 172.7, 172.5, 172.5, 

59.9, 59.9, 59.7, 47.9, 47.8, 47.8, 45.9, 45.1, 44.5, 37.0, 36.5, 27.6, 27.6, 27.4, 24.8, 24.8, 24.8, 

24.7, 24.4, 24.4, 17.8, 17.5, 17.1; HRMS (ES+) m/z calculated for C10H16NO3S [M+H]+ 230.0851 

found  230.0844.    
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