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E.1 Details on all simulation systems. The simulation details on all four

pathways (PWs) are presented, including the dimensions of the simulation
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tation. (B) A stack of 40 DPD molecules with 2 DNA strands are shown in

sticks and cartoon representations, respectively. . . . . . . . . . . . . . . . . 12

2.1 A side-view of the simulation domain during an SMD simulation: RNA, green

cartoon; water molecules, gray points; and ligand, space-filling. The ligand
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reaction coordinate (depicted by a red arrow) which indicates the direction of
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3.1 Sequence and structural details of HIV-1 TAR RNA. (A) Shown is

the secondary structure and a snapshot of the three-dimensional structure of

HIV-1 TAR RNA (PDB code 1ANR). Various structural motifs (Bulge, He-

lix I, Helix II, and Loop) are uniquely colored and labeled. (B) Shown are

the snapshots of the initial states of TAR RNA (cartoon representation) in

unliganded simulations. The apo conformation of TAR (PDB code 1ANR) is

shown at the center (black cartoon) and superimposed onto other TAR RNA

initial states. The initial conformations are placed in a circle such that the

RMSD of the initial state relative to the apo conformation increases coun-

terclockwise, with the 5J2W structure having the least RMSD and the 1LVJ

structure having the highest RMSD. . . . . . . . . . . . . . . . . . . . . . . 40

3.2 Conformational metrics of torsional flexibility and BSA. (panel A;

left) All dihedral angles are shown by an arrow and labeled on a snapshot of

the polynucleotide chain. The atoms in the chain are labeled as follows: 1,

P; 2, O5’; 3, C5’; 4, C4’; 5, C3’; 6, O3’; 7, C1’; and 8, N9/N1. (panel A;

right, top and bottom) The normalized distributions of each RNA backbone

dihedral angle (α, β, γ, δ, ǫ, ζ) and the glycosidic dihedral angle (χ) for un-

liganded (U) and liganded (L) simulations. The transparent and thicker gray

lines represent expected ranges of dihedral angles based on experimentally

known RNA structures. See also Figure A.4. (B) The histograms of mean

BSA values based on liganded MD simulations (darker shades) and the initial

liganded structures (lighter shades) are shown. The error bars (vertical lines

marked on histograms) were computed based on each liganded simulation.

The BSA histograms are organized into three groups (labeled 1, 2, and 3;

marked by overbars). A red asterisk highlights a system (PDB code 1ARJ)

which exhibited a partial dissociation of the ligand. See also Figure A.6. . . 46
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3.3 RMSD and clustering analyses. (A) Shown are the histograms (with error

bars) of mean values of RMSD for all unliganded (lighter shades) and liganded

(darker shades) simulations. The RMSD histograms are organized into three

groups (labeled 1, 2, and 3; marked by overbars). An orange asterisk marks

a system (PDB code 1LVJ) which showed a different behavior in comparison

to other systems. (B) The fraction of conformations (Fconf) from a given

simulation (100,000 conformations per simulation) that constitute the most

populated cluster for each system in unliganded (lighter shades) and liganded

(darker shades) simulations. Each bar corresponds to a unique system. The

purple and orange asterisks indicate those systems in which Fconf was higher in

unliganded simulations than in corresponding liganded simulations. A black

asterisk marks the experimental apo TAR structure (PDB code 1ANR). . . . 48

3.4 Cross-comparison of initial, unliganded, and liganded TAR struc-

tures. A cross-comparison of TAR RNA conformations via RMSD is high-

lighted for all structures in the initial states (panel A; labeled I) and based

upon average structures derived from unliganded (panel B; labeled U) and

liganded (panel C; labeled L) MD simulations. . . . . . . . . . . . . . . . . . 51

3.5 Shown are the histograms (with error bars) of mean values of RMSD computed

with respect to the average structure for all unliganded (lighter shades) and

liganded (darker shades) simulations. The RMSD histograms are organized

into three groups (labeled 1, 2, and 3; marked by overbars). An orange

asterisk marks a system (PDB code 1LVJ) which showed a different behavior

in comparison to other systems. A black asterisk marks the experimental apo

TAR structure (PDB code 1ANR). . . . . . . . . . . . . . . . . . . . . . . . 52
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3.6 Intrahelical and interhelical dynamics in TAR RNA. (A; leftmost

panel) A snapshot of the TAR RNA structure depicting the intrahelical angle

γ1, which describes the rotation of Helix I. The reference axis for the rotation

of Helix I is marked by a cyan arrow. (A; middle and rightmost panels) The

distributions of γ1 are shown for the unliganded (U) and liganded (L) simu-

lations of each structure. (B, C) Data similar to panel A are shown for the

intrahelical angle γ2, which describes the rotation of Helix II (panel B), and

φ, the interhelical angle between Helix I and II (panel C). The reference axis

for the rotation of Helix II is marked by a blue arrow. The color scheme in

histograms is same as the PDB label. . . . . . . . . . . . . . . . . . . . . . . 55
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3.7 Conformational transitions in bulge nucleotides. (A) A snapshot of

TAR RNA nucleotides (stick representation) used in defining the flipping an-

gle (θ) for U23 (blue sticks and marked by an asterisk) and the traces of θ

vs. simulation time (t) are shown for four systems in which a conformational

transition was observed either in the unliganded state (U; lighter shade) or in

the liganded state (L; darker shade) or in both. The initial value of θ for U23

in each system is marked on the y-axis by a filled circle in the same color as

traces. The inward flipped state is characterized by θ values between -60° and

+60° (labeled and shown by a transparent gray rectangle). All other values

of θ indicate an outward flipped state. For those unliganded and liganded

simulations where a transition occurred in both simulations, only those values

of θ are plotted where a transition was observed. In case the transition was

observed only in an unliganded simulation (or vice versa in a liganded sim-

ulation), in addition to plotting θ values in the unliganded simulation where

the transition occurred, all values of θ are shown for the corresponding lig-

anded simulation (or vice versa corresponding unliganded simulation) where

the transition was not observed. (B and C) Data similar to panel A are shown

for the flipping of nucleotides C24 (red sticks and marked by an asterisk; panel

B) and U25 (green sticks and marked by an asterisk; panel C). The flipping

angle of a nucleotide is defined by the center of mass of each of the follow-

ing four groups: the nitrogenous bases of base-paired nucleotides (labeled 1)

neighboring the flipping base, sugar moiety (labeled 2) attached to the base

that is stacked with the flipping base, sugar moiety (labeled 3) attached to the

flipping base, and the nitrogenous base (labeled 4) of the flipping nucleotide.

See also Figure A.14. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
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3.8 Predicted binding pockets in unliganded TAR structures. (A) Pre-

dicted binding pockets (cyan surfaces) are shown overlaid on each TAR RNA

structure (transparent white cartoon). (B-D) Snapshots of the overlay of

each ligand (orange sticks) on the predicted binding pocket where the ligand

is known to bind in each structure. See also Figures A.15 and A.16. . . . . . 60

4.1 System setup and structural details. (A) Secondary structure of HIV-1

TAR RNA. (B) A side-view of the simulation domain: RNA, green cartoon;

water molecules, gray points; ligand, space-filling; and the bounding box, blue.

A red arrow indicates the direction of pulling. The chemical structure of the

ligand is also shown with labeled aromatic rings (inset). (C) A side view of

the binding pocket: ligand is shown in a space-filling representation and each

key nucleotide is highlighted in a unique color and labeled. . . . . . . . . . . 69

4.2 Reaction coordinate, unbinding force, and free-energy from SMD

simulations. (A) The COM trajectory of the ligand. Black solid line rep-

resents the actual RC, black dotted line represents the average trace across

102 trajectories, and gray lines represent all SMD trajectories. (B) Unbinding

force with the mean force (black solid line) and standard deviation profiles

(gray) from all SMD simulations are shown. (C) Potential of Mean Force vs.

RC, as computed using the exponential averaging (black line) and using the

second-order cumulant expansion (gray line) with error bars. . . . . . . . . . 73

4.3 Ligand dissociation mechanism: Snapshots of ligand dissociation from

the simulations with the lowest work (top) and the highest work (bottom) are

shown. Color and labeling scheme is same as in Figure 4.1C. See also Figure

C.6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
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4.4 Conformational metrics: Shown are the traces of several conformational

metrics from the lowest work (blue) and the highest work (red) simulations.

Darker colors signify transition regions of interest. The numbers in each panel

correspond to metrics computed for specific nucleotides (see inset in panel A).

The conformational metrics shown are: (A) χ-dihedral of U23 nucleotide; (B)

distance between the COM of U23 and U25; (C) dihedral angle that describes

the flipping of C24; and (D) dihedral angle that describes the rotation of A22.

See also Figure 4.5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.5 Additional conformational metrics: Shown are traces of additional con-

formational metrics from the lowest work (blue) and the highest work (red)

simulations: (A) an interplane angle between A22 and U23 (marked as 5 in

the inset in panel A and describing the relative position of U23); and (B) a

hydrogen bond distance between C24 and U40 (marked as 6 in the inset in

panel A). Darker colors signify transition regions of interest; see also Figure

4.4 for other details. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.1 Structural details and system setup. (A) The sequences of the HIV-

1 RRE RNA and the RSG-1.2 peptide are shown. (B) A side-view of the

binding pocket is shown where the peptide is rendered as a cyan tube with

the side-chains of key residues highlighted in stick representations. Each key

nucleotide in the RNA and each key amino acid in the peptide are highlighted

in a unique color and labeled. (C) A side-view of the RRE RNA (gray cartoon)

and the peptide (cyan cartoon) complex is shown. A transparent gray sphere

represents an approximate volume of the peptide binding pocket. Each arrow

corresponds to the peptide dissociation coordinate/direction for one of the

four pathways (PWs): PW1 (red), PW2 (cyan), PW3 (orange), and PW4

(blue). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
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5.2 The unbinding force and the free-energy profiles. (A) The traces of the

averaged unbinding force along each pathway are shown: PW1 (red), PW2

(cyan), PW3 (orange), and PW4 (blue). (B) The free-energy profile along

each pathway is shown. See also Figures E.2 and E.6. . . . . . . . . . . . . . 91

5.3 Mechanistic details of PW1. (A) The hydrogen bond distances between

the NH2 atom of R8 and the O6 atom of G64 (red trace) and between the NH2

atom of R8 and the O6 atom of U66 (blue trace). (B) The hydrogen bond

distances between the NH1 atom of R14 and the O6 atom of G70 (red trace)

and between the NH1 atom of R14 and the O6 atom of G48 (blue trace). (C)

The hydrogen bond distance between the NH2 atom of R15 and the O4 atom

of U45 (red trace) and the salt bridge between the NH2 atom of R15 and the

O1P atom of U45 (blue trace). All metrics are computed from the simulation

with the lowest work value. Darker colors signify regions of interest. Lightly

shaded horizontal lines indicate initial values of the corresponding distance.

Each panel is accompanied with snapshots highlighting the corresponding in-

teractions extracted from a time point marked by an arrow. Each amino acid,

nucleotide, and an atom that participate in hydrogen bonding or salt bridging

interactions are uniquely colored. . . . . . . . . . . . . . . . . . . . . . . . . 94

5.4 Mechanistic details of PW2. (A) The hydrogen bond distance between

the NH2 atom of R8 and the O6 atom of G65 (red trace) and the salt bridge

between the NH1 atom of R8 and the O1P atom of G55 (blue trace). (B) The

hydrogen bond distance between the NH1 atom of R14 and the O6 atom of

G70 (red trace) and the salt bridge between the NH2 atom of R14 and the

O2P atom of A68 (blue trace). (C) The salt bridges between NH1 atom of

R15 and the O1P atom of U45 (red trace) and between the NH2 atom of R15

and the O2P atom of C44 (blue trace). cf. Figure 5.3 for all other details. . . 97
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5.5 Mechanistic details of PW3. (A) The hydrogen bond distances between

the NH3 atom of R8 and the O6 atom G64 (red trace) and between the NH2

atom R8 and the O4 atom of U66 (blue trace) and the salt bridge between the

NH2 atom of R8 and the O2P atom of A68 (green trace). (B) The hydrogen

bond distance between the NH2 atom of R14 and the O6 atom of G70 (red

trace) and the salt bridge between the NH2 atom of R14 and the O2P atom

of A68 (blue trace). (C) The hydrogen bond distances between the NH1 atom

R15 and the N7 atom of A73 (red trace) and between the NH2 atom of R15

and the O4 atom of U72 (blue trace) and the salt bridge between the NH2

atom of R15 and the O2P atom of G42 (green trace). cf. Figure 5.3 for all

other details. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.6 Mechanistic details of PW4. (A) The hydrogen bond distances between

the NH2 atom of R8 and the O6 atom of G64 (red trace) and between the

NH2 atom of R8 and the O6 atom of G70 (blue trace) and the salt bridge

between the NH1 atom of R8 and the O1P atom of U72 (green trace). (B)

The hydrogen bond distance between the NH1 atom of R14 and the O6 atom

of G70 (red trace) and the salt bridges between the NH1 atom of R14 and

the O1P atom of C69 (blue trace) and between the NH2 atom of R14 and the

O2P atom of A68 (green trace). (C) The hydrogen bond distances between

NH1 atom of R15 and the N7 atom of A73 (red trace) and between the O2

atom of R15 and the O2 atom of U72 (blue trace) and the salt bridge between

the NH2 atom of R15 and the O1P atom of C44 (green trace). cf. Figure 5.3

for all other details. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
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6.1 Details on the primary order parameter. (A) The OP is defined by the

center of mass of each of the following four groups: the nitrogenous bases of

C55 and G17 (labeled 1), sugar moiety attached to G17 (labeled 2), sugar

moiety attached to A18 (labeled 3), and the nitrogenous base of A18 (labeled

4). Each key nucleotide is also uniquely colored and labeled. (B) Shown is a

time trace of the primary OP in the seed trajectory (red). A cyan rectangle

highlights the shooting region. See also Figure G.2. . . . . . . . . . . . . . . 112

6.2 Population distributions of CVs at terminal points. Shown are the

distributions of CVs at terminal points of transition paths for the inward

(red) and outward (gray) states. (A) The pseudo-dihedral angle (φ1) that

describes the position of A18 relative to G17. (B) The distance (d1) between

the centers of mass of G17 and A18. (C) The pseudo-dihedral angle (φ2) that

describes the position of A18 relative to A19. See also Figure G.3. . . . . . . 115

6.3 Evolution of the refined RC and the potential of mean force (PMF)

profile. (A) The evolution of the RC along representative trajectories. See

also Figure G.5. (B) PMF as a function of the RC. Three vertical lines mark

the free energy difference between the inward (labeled I) and metastable (la-

beled M) states (blue), the activation energy (dark gray; labeled ‡), and the

energy difference between the inward I and outward (labeled O) states (red). 117

6.4 Global and local conformational dynamics in dsRNA. (left) Snapshot

of global conformational changes in the RNA stem loop derived from shoot-

ing trajectories at three different states: I (magenta), M (blue), and O (red).

(right) Snapshots of the flipping site in three different states. Each key nu-

cleotide and atoms that participate in hydrogen bonding (marked by dotted

red lines) are uniquely colored. . . . . . . . . . . . . . . . . . . . . . . . . . . 119
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7.1 2 DNA - 40 DPD system. (A) Snapshots of the 2 DNA 40 DPD system

are shown in two different views before the simulation was initiated, after

minimization, as well as at t = 90 ns, 150 ns, and 200 ns. The DNA strands

are shown as red cartoon and the DPD molecules are shown in space-filling

representation. DPD molecules, that have been selected for the CD spectra

calculations, are highlighted in black. (B) The orientation angle and two

distances, the center-to-center distance of two adjacent DPDs (D1) and the

rise per DPD along the assemblys axis (D2), are shown for the 2 DNA - 40

DPD system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

7.2 Snapshots of the 40 DPD system. Snapshots of the 40 DPD system are

shown before the simulation was initiated, after minimization, as well as at

t = 25 ns, 60 ns, and 75 ns. The DPD molecules are shown in space-filling

representation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

A.1 Chemical structures of ligands studied: (top row) small molecules; (bot-

tom row) peptides. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

A.2 Conformational metrics of ligands. (A) The centers of mass of ligands

are represented by spheres (colored and labeled) and overlaid on the apo struc-

ture of TAR. (B) The all-atom root-mean-squared-deviation (RMSD) of each

liganded TAR structure relative to the apo structure (PDB code 1ANR) vs.

buried surface area (BSA) of each ligand are shown for small-molecules (top

panel) and peptides (bottom panel). . . . . . . . . . . . . . . . . . . . . . . . 164

A.3 Snapshots of the initial systems in liganded simulations: RNA, car-

toon representation; ligands, space-filling. Snapshot of the apo TAR structure

(PDB code 1ANR) is located at the center (black cartoon). See also Figure 3.1.165

A.4 Torsional flexibility. The normalized distributions of each RNA backbone

dihedral angle (α, β, γ, δ, ǫ, ζ) and the glycosidic dihedral angle (χ) for unli-

ganded (labeled U in panel A) and liganded (labeled L in panel B) simulations.166
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A.5 Snapshots highlighting an increase in BSA. Shown are the snapshots of

the TAR RNA conformations (surface map) and the ligand (RBT550; space-

filling) from a liganded simulation (PDB code 1UTS) highlighting an increase

in BSA in comparison to the initial BSA due to conformational rearrangements

of the ligand in the binding pocket. A cyan surface indicates the nucleotides

of the binding pocket in close contact with the ligand and a white surface

represents the rest of the RNA structure. . . . . . . . . . . . . . . . . . . . . 166

A.6 Snapshots highlighting partial ligand dissociation. Shown are the snap-

shots of the TAR RNA conformations (red cartoon) and the ligand (arginine

amide; space-filling) from a liganded simulation (PDB code 1ARJ) highlight-

ing the partial dissociation of the ligand at t = 180 ns and then rebinding

again in the original binding pocket (t = 1000 ns). . . . . . . . . . . . . . . . 167

A.7 Conformational change in TAR RNA in a liganded simulation. Shown

are the bent and stretched conformations of TAR (orange cartoon) with the

ligand (space-filling) from a liganded simulation (PDB code 1LVJ). . . . . . 167

A.8 The ∆RMSF per residue data are presented highlighting the differences be-

tween the unliganded and liganded simulations. Each system is uniquely col-

ored. The bulge (B) and the loop (L) motifs are marked with the dashed

lines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

A.9 Flexibility of the bulge motif in unliganded and liganded states.

RMSD data with error bars, similar to Figure 3.3A, are shown for the bulge

motif nucleotides (lighter shades, unliganded; darker shades, liganded). . . . 168

A.10 Comparison of average structures of TAR RNA. The average struc-

tures of TAR RNA from unliganded simulations are overlaid on the average

structures from the simulation of the apo TAR RNA structure (PDB code

1ANR). The RMSD values between the average structures are also labeled in

color along with the PDB codes. . . . . . . . . . . . . . . . . . . . . . . . . 169
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A.11 Cluster analysis of unliganded simulations. The distributions of all

clusters computed from conformations sampled via MD simulations are shown

for the unliganded state of each system. Histograms are shown in the same

color as the labeled PDB code. See also Figure 3.3B. . . . . . . . . . . . . . 170

A.12 Cluster analysis of liganded simulations. Data similar to Figure A.11

are shown for the liganded state of each system. See also Figure 3.3B. . . . . 170

A.13 Combined cluster analysis. The fraction of conformations (Fconf) from

each system that populate each cluster from a set of (A) unliganded and (B)

liganded simulations. Each system is uniquely colored. The numbers at the

top of each cluster signify the percentage of the total number of frames that

constitute that specific cluster. . . . . . . . . . . . . . . . . . . . . . . . . . 171

A.14 Conformational transitions in bulge nucleotides (U23, C24, and

U25) in unliganded (U) and liganded (L) simulations. Data similar to

Figure 3.7 are shown for additional systems. . . . . . . . . . . . . . . . . . . 171

A.15 Predicted binding pockets in unliganded TAR structures. Data sim-

ilar to Figure 3.8A are shown for additional systems. . . . . . . . . . . . . . 172

A.16 Overlays of ligands in predicted binding pockets. Shown are the snap-

shots of predicted binding pockets (cyan surfaces) with an overlay of each

ligand (orange sticks) on various TAR structures (transparent gray cartoons).

See also Figure 3.8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

A.17 Principal component analysis. Shown are the normalized histograms of

the first principal component projection from each of the (A) unliganded and

(B) liganded simulations. Each system is uniquely colored. . . . . . . . . . . 173

C.1 Long time-scale classical MD simulation: Snapshots of RNA (gray car-

toon) and ligand (space-filling) are shown at various timepoints from a 2 µs

long classical MD simulation, where ligand remains stably bound. . . . . . . 197
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C.2 The buried surface area (BSA) trace vs. time is shown for the ligand from

a 2 µs long classical MD simulation (cf. Figure C.1). The dotted red line

corresponds to the average BSA. . . . . . . . . . . . . . . . . . . . . . . . . . 198

C.3 Ligand dissociation work from SMD simulations: (A) work values are

plotted along the reaction coordinate (RC) from 102 independent cv-SMD

simulations. Blue to red color palette indicates lower to higher values of work

required for ligand dissociation. (B) A histogram of all work values (at 25 Å)

is shown with a best-fit distribution line (red trace). . . . . . . . . . . . . . 198

C.4 Reaction coordinate and force-convergence data: Shown are (A) dis-

tributions of ∆RC values computed from the deviations of pathways from

cv-SMD simulations with respect to the actual reaction coordinate. (B) dis-
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ABSTRACT

MOLECULAR SIMULATION STUDIES OF DYNAMICS AND INTERACTIONS IN

NUCLEIC ACIDS

by

Lev Levintov

University of New Hampshire, May, 2021

In my thesis work, I conducted molecular simulation studies to explore dynamics and interac-

tions in nucleic acids. I began my work by applying conventional molecular dynamics (MD)

simulations to study the local and global dynamics of the transactivation response (TAR)

element from the type-1 human immunodeficiency virus (HIV-1) and the effect of binding

of ligands on the dynamics of TAR RNA. I determined that the TAR RNA structure was

stabilized on binding of ligands due to the decreased flexibility in helices that comprise TAR

RNA. This rigidity of the TAR RNA structure was coupled with the decreased flipping of

bulge nucleotides. I also observed that different initial conformations of TAR RNA converged

to similar conformations in the course of MD simulations. Finally, I observed the formation

of binding pockets in unliganded TAR structures that could accommodate ligands of various

sizes.

After comprehensively exploring the dynamics of TAR RNA with and without ligands,

I conducted more specific studies on the interactions that were formed or broken during the

(un)binding process of two ligands, a small molecule inhibitor and a helical peptide, from

xxxix



the viral RNA molecules using non-equilibrium simulations. Firstly, I observed that the

dissociation of a small molecule is coupled with a base flipping event which I described using

physical variables and thermodynamic properties. Secondly, I observed that the dissociation

process of a helical peptide is facilitated by a network of hydrogen bonding and salt bridging

interactions which are formed across four distinct dissociation pathways. I also resolved

the free-energy profiles for each pathway which revealed metastable states and dissociation

barriers. Based on the free-energy profiles, I proposed a preferred dissociation pathway and

identified one arginine amino acid that plays an important role in the recognition of the

peptide by the viral RNA.

Next, I focused on studying a more complex reaction coordinate (RC) that could describe

a base flipping mechanism in a double-stranded RNA (dsRNA) molecule using transition

path sampling (TPS) methods. Additionally, I used the likelihood maximization method

to determine a refined RC based on an ensemble of 1000 transition trajectories created by

the path sampling algorithm. The refined RC consisted of two collective variables (CVs),

a distance and a dihedral angle between the neighboring nucleotides and the flipping base.

I also projected a free-energy profile along the refined RC which revealed three free-energy

minima. I proposed that one of the free-energy minima represented a wobbled conformation

of the flipping nucleobase. I also analyzed the reactive trajectories which showed that the

base flipping is coupled with global conformational changes in a stem-loop of dsRNA.

Outside of studies involving RNA, I conducted conventional MD simulations to study

the dynamics of a porphyrin/DNA nanoassembly which revealed the overall left-handed

orientation of the nanoassembly. I characterized the resulting porphyrin/DNA system using

various physical variables. Overall, my thesis revealed the local and global dynamics of RNA

as well as DNA systems, and perturbations to dynamics originating in binding of ligands of

various sizes.

xl



CHAPTER 1

INTRODUCTION

1.1 Brief History of Nucleic Acids Research

The research work on nucleic acids has witnessed major breakthroughs during the 20th

century [1]. In 1944, it was discovered that deoxyribonucleic acid (DNA) is the carrier of

genetic information and not the proteins, as believed previously [2]. In 1952, Erwin Chargaff

showed that the amount of guanine in DNA equaled the amount of cytosine and the amount

of adenine equaled the amount of thymine [3]. Later in 1953, Rosalind Franklin and Maurice

Wilkins, Francis Crick and James Watson solved the structure of B-DNA (Figure 1.1A)

using X-ray crystallography which was the first accurate molecular structure of DNA [4, 5].

Finally, in 1961, deciphering of the genetic code began after Marshall Nirenberg and Heinrich

Matthaei discovered the first codon that got translated into a specific amino acid [6].

In 1965, the first complete nucleotide sequence of a ribonucleic acid (RNA) molecule was

reported by Holley et al. [7]. For decades, according to the central dogma of biology, RNA

was considered only as a passive carrier of genetic information from DNA to proteins [8].

In particular, a messenger RNA (mRNA) was thought to act as an intermediate carrier of

genetic information and a transfer RNA (tRNA) was responsible for the transport of amino

acids to the translation machine of the cell (Figure 1.1B,C) [9]. Only in the early 1980s it

was discovered that RNA can catalyze certain chemical reactions by breaking and reforming

phosphodiester bonds [10], and its catalytic function can achieve acceleration rates that are

comparable to protein enzymes [11]. The next crucial step in the RNA research was the

crystallization of the ribosome [12], a large cellular machine that is responsible for protein
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Figure 1.1: Shown are the snapshots of different types of nucleic acids: (A) a double-stranded
DNA molecule with each strand drawn in a unique color (PDB: 1BNA); (B) a cartoon
representation of an mRNA molecule (PDB: 6DNC); (C) a cartoon representation of a tRNA
molecule (PDB: 4V42); (D) a representation of the ribosome structure with the 30S and the
50S subunits highlighted in cyan and purple, respectively (PDB: 6DNC).

synthesis. The structure and further research on the ribosome [13–24] revealed that the

ribosome structure is mostly consisted of large RNA molecules which are combined with

small proteins (Figure 1.1D). In recent years, it has been shown that the RNA molecules are

involved in other cellular processes, including gene silencing, regulation, and processing of

genetic information [25–28]. Moreover, RNA molecules are implicated in the development of

various diseases, including cancers [29,30], neurological disorders [31], cardiovascular diseases

[32], as well as in the replication and survival mechanisms of many viruses and bacteria

[33–35].

These discoveries have tremendously expanded our knowledge about the molecular bi-

ology by demonstrating the significance of RNA molecules in performing various functions

in cells. However, despite the increased understanding of the RNA structure-dynamics-

function relationships in cells, we still need to better characterize the dynamics of RNA and

the interactions between RNA and its binding partners at the atomic level [36].
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1.2 Structures of Nucleic Acids

Nucleic acids are either single-stranded (RNA; Figure 1.1B) or double-stranded (DNA; Figure

1.1A) biopolymers that are composed of individual building blocks called nucleotides. Each

nucleotide consists of three components: a phosphate group, a 5-carbon sugar moiety, and

a nitrogenous base. If the sugar group is a deoxyribose, the biopolymer is a DNA molecule

and if the sugar group is a ribose, the biopolymer is an RNA molecule. The sugar group is

linked to the 5′-phosphate group and to the aromatic base through the N-glycosidic bond

(Figure 1.2A). DNA is comprised of the following four nucleobases (bases): adenine (A),

cytosine (C), guanine (G), and thymine (T). Adenine, guanine, and cytosine also occur in

RNA, but in RNA thymine is substituted by uracil (U). All five bases are shown in Figure

1.2B.

Each base can form hydrogen bonding interactions with another base and thus their

combination forms a base-pair. Based on that, J. Watson and F. Crick proposed the com-

plementary pairing of bases (also known as Watson-Crick base pairing) which states that an

adenine base forms a pair with a thymine base (or with a uracil base in RNA) and a guanine

base forms a pair with a cytosine base (Figure 1.2C) [5]. These base-pairing interactions as

well as stacking of base pairs, which results from van der Waals and electrostatic interactions

between bases that stack on top of one another, stabilize the double-helical structure of DNA

molecules (Figure 1.2D) and of short helical segments in RNA molecules that often fold upon

themselves to form WC-complementary base pairs. Each nucleic acid chain of nucleotides

is assembled through a sequential phosphodiester linkage mechanism, in which a phosphate

group links the 3′-carbon of each sugar to the 5′-carbon of the next sugar moiety, leaving

an unlinked 5′-carbon at one end of the strand (termed as the “5′-end”) and an unlinked

3′-position at the other end of the strand (termed as the “3′-end”). Therefore, the strands

are asymmetric and can form base-pairing interactions. The 5′-end is considered to be the

beginning of the strand because the synthesis of nucleic acids is initiated at that end.
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Figure 1.2: Structures of nucleic acids. (A) An example of a single nucleotide within a
strand. Each atom is highlighted and labeled in a unique color. A red asterisk marks an
oxygen atom that is not present in a DNA nucleotide. (B) The five aromatic bases that are
present in nucleic acids. Each atom is highlighted and labeled in a unique color. (C) The
Watson-Crick base pairs. The dashed lines indicate hydrogen bonds. (D) Two snapshots
of a double-helical DNA structure highlighting base-stacking interactions (side-view) and
base-pairing interactions (top-view). Each strand is represented in a unique color.

Nucleic acids can also be analyzed and presented by their primary, secondary (2D),

and tertiary (3D) structures. The primary structure describes a sequence of nucleotides,

while the secondary structure defines the base-pairing interactions in nucleic acids. For

RNA, the secondary structure can be divided into the following motifs (elements): helices,

internal loops, hairpins, bulges, and junctions [37]. The tertiary structure describes the three-

dimensional shape of nucleic acids and results from interactions between specific secondary

structural motifs [37]. The tertiary structure depends on the formation of numerous van der

Waals contacts and hydrogen bonds which result from the base-pairing interactions between

secondary structural motifs. Thus, the tertiary structure of RNA molecules largely depends

4



on the secondary structure interactions [38, 39]. However, RNA structures are not static in

the solution rather are highly flexible and dynamic.

1.3 RNA Dynamics

As stated previously, RNA molecules play an essential role in various cellular processes, such

as translation and transcription [40], regulation of gene expression [28], and protein synthe-

sis [41]. The variability in functions of RNA is associated with its ability to undergo confor-

mational changes since a single RNA molecule can adopt multiple complex three-dimensional

shapes in response to external stimuli while also undergoing local conformational changes at

the level of base pairs [42,43]. These dynamics can be classified into distinct modes that range

over various timescales, for example, base-pairing rearrangements at the ns-µs timescales or

complex interhelical motions that lead to global transitions in the three-dimensional shape

of the RNA molecule at the µs timescales [44,45]. However, despite the tremendous amount

of information on RNA dynamics that the experimental techniques provide us, the charac-

terization of all possible parameters that are required to describe the RNA dynamics at the

atomic level of detail is still challenging [36, 46–48]. Therefore, computational methods can

be utilized to simulate the dynamics of RNA molecules to support experimental findings and

to provide further insights into the RNA dynamics as well as to understand the recognition

mechanisms between the RNA molecules and various ligands [36, 49].

1.4 RNA-Ligands Interactions

The misregulation of the activity of RNA molecules can lead to the development of various

diseases, including cancer, neurological disorders, and cardiovascular diseases [50–52]. More-

over, RNA molecules play a crucial role in various processes of viral and bacterial life cycles,

such as replication and survival mechanisms [35,53–55]. Therefore, RNA molecules serve as

compelling targets for novel therapeutic agents [31,35,55–57]. In this thesis, I studied three

types of ligands the examples of which are provided in Figure 1.3: (i) small molecules that

5



Figure 1.3: Snapshots of representative ligands that were studied in this work: (A) the
structure of a small molecule, acetylpromazine, with each atom highlighted in a unique color
(PDB: 1LVJ); (B) a stick (left) and a cartoon (right) representations of a helical peptide
based on the type of residue (PDB: 1G70); (C) the structure of a porphyrin-diaminopurine
(DPD) molecule, with each atom highlighted in a unique color.

inhibit viral replication in human immunodeficiency virus type 1 (HIV-1); (ii) helical and

cyclic peptides that inhibit viral replication in HIV-1; (iii) modified porphyrin molecules

that interact with DNA strands to form a supramolecular nanoassembly.

1.5 Background of Systems Studied

In this thesis, I studied three classes of nucleic-acid systems: (i) viral RNA molecules, (ii) a

double-stranded RNA (dsRNA) molecule, and (iii) single-stranded DNA (ssDNA) molecules.

Among viral RNA molecules, I studied the HIV-1 transactivation response element (TAR)

RNA and the HIV-1 Rev response element (RRE) RNA which participate in the viral repli-

cation process.
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Figure 1.4: Secondary structure and a snapshot of the three-dimensional structure of HIV-1
TAR RNA (PDB: 1ANR) are shown. Various structural motifs are uniquely colored and
labeled.

1.5.1 Viral RNA Molecules

Due to its ability to adapt multiple states, a key model for studying RNA dynamics is TAR

RNA (Figure 1.4) from HIV-1 [48,58]. TAR RNA is located at the 5′ end of HIV-1 transcripts

where it interacts with the viral transactivator (Tat) protein and the host cofactor cyclin T1

to promote efficient transcription of the downstream genome and is therefore considered to

be an important drug target. TAR RNA has been studied using nuclear magnetic resonance

(NMR) spectroscopy [58–68], coarse-grained MD simulations [69], electron paramagnetic

resonance (EPR) [70], gel mobility [71], combinations of NMR and MD methods [62, 72],

and combinations of NMR and structure prediction software [73]. Collectively, these studies

have shown that TAR RNA undergoes complex dynamics by sampling different interhelical

conformations around the bulge junction, thus forming various conformational ensembles

[48, 61]. Several studies have revealed that a bulge motif in TAR RNA (red; Figure 1.4) is
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Figure 1.5: Secondary structure and a snapshot of the three-dimensional structure of HIV-1
RRE RNA (PDB: 1G70) are shown. Key nucleotides are uniquely colored and labeled.

especially critical for its recognition by the Tat protein [59, 60, 74]. Several previous studies

have shown that TAR RNA can bind to peptide mimics [59,75–79], to small molecules [80–83],

to proteins [84–87], and to divalent cations [88]. While detailed dynamics in TAR RNA have

not been characterized in the presence of all known ligands, it has been suggested that ligands

can potentially induce structural transitions in TAR by stabilizing pre-existing conformers

or an ensemble of states in the apo TAR RNA structure [66, 89–91].

Another viral RNA system that I studied in my thesis work, was the conserved HIV-1

RRE RNA segment which is located in the env coding region and plays an essential role

in viral replication [92] (Figure 1.5). In particular, I studied the dissociation process of

a helical peptide, arginine-rich peptide (RSG-1.2) [93], from the RRE RNA. This peptide
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Figure 1.6: (left) Secondary structure of dsRNA with key nucleotides highlighted. The
nucleobase studied in this work is marked with an asterisk. (right) A side-view of the three-
dimensional structure of dsRNA where each key nucleotide is highlighted in a unique color
and labeled. Specifically, A18 is shown both in the flipped in and out conformations.

binds the RRE RNA with a higher binding affinity and specificity than the Rev protein and

displaces it to inhibit the viral replication process [93,94]. The RRE RNA has been studied

using X-ray crystallography [95, 96], electron microscopy [97], single-molecule fluorescence

spectroscopy [98], circular dichroism [94], and MD simulations [99]. These studies collectively

revealed how the Rev protein binds the RRE RNA, the overall assembly of the Rev domain

and the RRE RNA, and proposed the importance of hydrogen bonding and salt bridging

interactions between the Rev/RSG-1.2 peptides and the RRE RNA. However, a detailed

mechanism of the binding/unbinding of the RSG-1.2 peptide has not been investigated. In

my work I revealed the sequence of events that underlie the binding/unbinding mechanism

and proposed the pathway with the smallest free energy barrier of dissociation.
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1.5.2 Double-stranded RNA (dsRNA)

I also investigated the base flipping mechanism of a nucleobase in a dsRNA which is known to

flip out and get chemically modified by an enzyme (Figure 1.6) [100]. Studying spontaneous

base flipping is a challenging process both for experimental and computational methods

due to a lower likelihood of observation of flipping in a single nucleobase in otherwise stable

structures of nucleic acids. NMR methods have been applied to study base flipping [100–102],

along with other experimental techniques including X-ray crystallography [103], fluorescence-

based assays [104, 105], melting point studies [106], and combined approaches [107, 108]. In

DNA, NMR studies have shown that the lifetime of the extrahelical state of a base can be

on the order of µs, and that of the intrahelical state in the range of ms depending on the

stability of individual bases [109, 110]. Additionally, several studies revealed that the base

becomes accessible to the solvent for NMR detection when the base pair opens to a pseudo-

dihedral angle of at least 30°, thereby indicating that the bases are still within the cutoff

of a hydrogen bond formation [111, 112]. Therefore, the fluctuations measured by NMR

may need to be reassigned to base wobbling as opposed to flipping and the mechanistic

understanding may not be directly applicable to a base flipping process [108]. Thus, despite

key mechanistic information emerging from the application of NMR methods, there remains

the need for additional analyses at the atomic level for obtaining further insights into this

molecular mechanism.

On the computational side, due to limitations in conformational sampling by conven-

tional molecular dynamics (MD) simulations, enhanced sampling methods have been applied

to probe this event [108,111–119]. Among previous studies of base flipping, some have used

external forces to induce base flipping transitions [111, 115], which likely leads to a loss of

critical information on key variables that may contribute to base flipping. Enhanced sam-

pling methods also rely on the definition of an appropriate reaction coordinate (RC) which

is a single variable to discriminate between a given pair of stable states and using which the

key thermodynamic (e.g. free energy) properties can be computed. Although establishing
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an appropriate RC is challenging [120], once it is identified the multidimensional free energy

surface can be reduced to a one-dimensional profile along the RC to obtain crucial mechanis-

tic insights into the transition mechanism. Many computational methods have been applied

to study nucleobase stacking/unstacking in nucleic acids [113,114,117,121–125]. Several sig-

nificant studies have been conducted to study the base flipping process in DNA in association

with protein binding [126,127]. Several of these studies explored simplified systems that con-

sisted only up to three base pairs and may be limited in describing the dynamics in a larger

RNA system with many base pairs. [121–123] Additionally, several previous studies were

reported over a decade ago and the force-fields for nucleic acids have significantly improved

in recent years. [36,128] Moreover, the candidate variables that potentially contribute to RC

have not been examined systematically. Therefore, the application of simulation methods

that permit systematic testing of a suitable RC is needed to improve our understanding of

the mechanism of base flipping in nucleic acids.

1.5.3 Porphyrin/DNA System

Nucleic acids are commonly used as templates to prepare supramolecular nanoassemblies due

to their ability to form stacking and hydrogen bonding interactions [129, 130]. Achiral por-

phyrins (Figure 1.3C) are perfect building blocks for nanoassemblies because they have the

ability to self-stack and form hydrogen bonding interactions with ssDNA molecules. Highly

ordered left-handed and right-handed supramolecular porphyrin nanostructures that were

templated between two DNA strands can be prepared under different experimental condi-

tions which control the orientation (handedness) of the overall assembly. However, despite

knowing the orientation of each nanoassembly under specific experimental conditions, the

detailed mechanism of self-assembly was not known. Therefore, I conducted MD simulations

of an achiral stack of porphyrin derivatives (DPD molecules) with and without DNA strands

(Figure 1.7) to understand the assembly mechanism and to identify the handedness of the

nanoassembly.
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Figure 1.7: (A) A stack of 40 DPD molecules. Each molecule is shown in sticks representa-
tion. (B) A stack of 40 DPD molecules with 2 DNA strands are shown in sticks and cartoon
representations, respectively.
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1.6 Specific Aims

The main goal of my thesis is to investigate the dynamics and thermodynamics of nucleic

acid molecules as well as to probe the interfacial interactions of nucleic acid molecules with

various ligands. In this section, I introduce specific aims of my thesis.

1.6.1 Specific Aim 1: Probe the conformational dynamics in HIV-1 TAR RNA

with/without ligands

RNA molecules are known to undergo conformational changes in response to environmental

changes, but the dynamics in RNA molecules, with and without ligands, have been studied

only to a limited extent. I conducted explicit-solvent MD simulations to study the dynamics

in a model RNA system, the HIV-1 TAR RNA, that were initiated from 13 different initial

conformations of the TAR RNA with ligands, and from 14 conformations without these

ligands. By utilizing 27 different initial systems, I aimed to obtain a broader sampling of

TAR RNA dynamics. These studies are reported in chapter 3.

1.6.2 Specific Aim 2: Characterize conformational transitions associated with

recognition of a small molecule inhibitor by the HIV-1 TAR RNA

RNA has become an important target for developing novel therapeutic agents, however the

conformational transitions that are coupled with ligand binding/unbinding are poorly under-

stood. In this aim, I used non-equilibrium simulations to study the dissociation pathway of

a small molecule inhibitor with low toxicity and high binding affinity from a binding pocket

in TAR RNA. The study revealed several local conformational transitions in the nucleotides

which constitute the binding pocket, specifically a base flipping event and a rotation of a

base around its glycosidic bond in bulge nucleotides. Additionally, I have reported the free

energy profile and the corresponding dissociation constant that describe the small molecule

dissociation which are in reasonable agreement with the experimental values. These studies
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are reported in chapter 4.

1.6.3 Specific Aim 3: Probe the recognition mechanism of a helical peptide by

the HIV-1 RRE RNA

In this aim, I conducted non-equilibrium simulations to probe the dissociation process of

an arginine-rich helical peptide from the HIV-1 RRE RNA along four distinct pathways.

These simulations revealed key interactions that were formed in a step-wise ordered pattern

between specific amino acids of the peptide and specific nucleotides of the RNA molecule in

each pathway. These interactions often occurred simultaneously, thus forming a network of

salt bridging and hydrogen bonding interactions which are critical for the recognition of the

peptide by the RRE RNA. Moreover, the analysis of the free energy profiles indicated the

preferred pathway and the mechanism of peptide recognition. These studies are reported in

chapter 5.

1.6.4 Specific Aim 4: Perform a systematic examination of collective variables

to describe the base flipping mechanism in RNA

Base flipping is a critical biophysical event involved in recognition of various ligands by nu-

cleic acids. The mechanism of base flipping in nucleic acids has been explored using various

experimental and computational techniques. However, our understanding of molecular scale

details of this mechanism still remains limited, specifically which interactions contribute the

most to this event and which variables best characterize it. In this aim, I performed a sys-

tematic examination of collective variables (CVs) using transition path sampling methods in

combination with likelihood maximization method to describe the base flipping mechanism.

I have reported which CVs are key components of the base flipping mechanism and how

they can be combined into a one-dimensional reaction coordinate (RC). I also report the

free energy surface and transition dynamics which are projected along the determined RC.

These studies are reported in chapter 6.
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1.6.5 Specific Aim 5: Characterize the self-assembly and dynamics of por-

phyrin/DNA systems

In this aim, I conducted explicit-solvent MD simulations of several variations of porphyrin/DNA

systems with different molecular compositions. These simulations revealed the dynamics

and the preferred orientation of each porphyrin/DNA system. I characterized the resulting

nanoassemblies using various physical variables. These studies are reported in chapter 7.

1.7 Thesis Outline

In chapter 2, I provide details on the computational methods, software tools, and math-

ematical models that I used in my thesis work. In chapter 3, I describe the results of a

study on the conformational dynamics of the HIV-1 TAR RNA with and without ligands.

In chapter 4, I describe the dissociation process of a small molecule inhibitor from the HIV-1

TAR RNA. In chapter 5, I describe the dissociation process of a helical peptide from the

HIV-1 RRE RNA. In chapter 6, I present the results of a study on the local dynamics of

bases in RNA, specifically on the base flipping mechanism in a dsRNA molecule. In chapter

7, I discuss a study on the self-assembly of porphyrin/DNA systems. In chapter 8, I share

my thoughts on future work.

Appendices A and B provide supporting information, scripts, and analysis codes for a

study presented in chapter 3. Appendices C and D provide supporting information, scripts,

and analysis codes for a study presented in chapter 4. Appendices E and F provide supporting

information, scripts, and analysis codes for a study presented in chapter 5. Appendices G

and H provide supporting information, scripts, and analysis codes for a study presented in

chapter 6. Appendix I provides parameter files for small molecules and porphyrins that

I have generated in studies presented in chapters 3, 5, and 7. Appendix J provides links

to media sources which have highlighted the study presented in chapter 4. Appendix K

concludes my thesis with my curriculum vitae.
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CHAPTER 2

MODELS AND METHODS

2.1 Introduction

One of the key hypotheses in molecular biology is that biomolecules are flexible and dy-

namic molecules and the atoms that constitute these biomolecules are in constant motion.

Therefore, it is critical to understand the underlying atomic interactions and the dynamics

of biomolecules which regulate their overall structure and function. Computer simulations

have emerged as a tool to probe the dynamics of different many-particle systems, by captur-

ing the motions of atoms and their interactions [131]. Therefore, computer simulations can

be used to answer specific questions about properties and functions of various biomolecular

systems. Specifically, conventional MD simulation is one of the most common computational

technique to probe the equilibrium and transport properties of many-particle systems. In

1977, the first study on the dynamics of a folded protein was published which showed that

MD simulations could capture the dynamic properties of proteins [131, 132]. During the

following 40 years, the impact and variability of computer simulation methods in predicting

various molecular motions and interactions have expanded dramatically. For example, com-

puter simulations have been applied to study the protein structure and dynamics [133–136],

the dynamics in nucleic acids [137–139], the protein-ligand interactions [140, 141], the ion

channels [142], and the ligand binding [143,144].
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2.2 Molecular Dynamics (MD) Simulations

In my work, MD simulations were the primary method to explore the dynamics in nucleic

acids and their interactions with ligands. MD simulations can capture different properties of

molecular systems and provide crucial insights on the atomic details that underlie biomolec-

ular processes. However, not all properties and quantities can be directly calculated in an

MD simulation and vice versa certain quantities that can be directly estimated in a simula-

tion cannot be tracked in an experiment [145]. A representative example is a simulation of

liquid water in which we can measure the coordinates and velocities of each molecule (micro-

scopic properties) at any instance of time [145]. However, there is no experimental method

that can produce this kind of information, but rather it will provide us with the averaged

properties across a large number of molecules (macroscopic properties) [145]. Statistical me-

chanics is used to connect the microscopic measurements from computer simulations with

the macroscopic properties using laws of thermodynamics and Newton’s laws of motions.

In a conventional MD simulation, Newton’s second law is used to update atomic positions

in time

~Fi = mi~ai = −
∂U

∂ri
(2.1)

where ~Fi is the force on a particle i with a massmi and an acceleration ~ai, U is the interatomic

potential energy and ri represents the Cartesian set of coordinates of a particle i. The

potential energy term (U) is described in section 2.2.6.

2.2.1 Ensembles

The macroscopic state of a system is defined using macroscopic properties, including temper-

ature (T), pressure (P), and volume (V). Other thermodynamic properties can be computed

using equations of state or other fundamental equations of thermodynamics. However, in the

microscopic state (microstate) we can obtain the coordinates and velocities of each particle in

17



the system. To connect the dynamics of particles which are defined by their microscopic prop-

erties to the overall macroscopic properties of the system, a concept of an ensemble is defined.

An ensemble is a collection of weighted microstates that have an identical macrostate [146].

In other words, a single macrostate corresponds to many microstates. Different types of

ensembles exist with specific properties controlled and held fixed, including T, P, V, total

number of particles (N), total energy (E), or chemical potential (µ). In my work, all MD

simulations were conducted using either the NVT ensemble with fixed variables N, V, and

T or the NPT ensemble with fixed variables N, P, and T. These ensembles are commonly

used in the MD simulations since they consistently represent the experimental conditions.

2.2.2 Langevin Dynamics

A key requirement for any MD simulation method is to generate the correct ensemble at

a specified temperature, pressure or volume. For this purpose, the Newtonian equation of

motion of a particle (equation 2.1) is modified by adding a friction term which improves the

stability of the system. For that matter, the Langevin equation is implemented in all MD

software that I used in my work as follows

mv̇ = F (r)−mγv −mγ

√

2kBT

m
R(t) (2.2)

where m is the mass of a particle, v̇ is the acceleration, F (r) is the force, r is the position

vector, γ is the friction coefficient, v = ṙ is the velocity, kB is the Boltzmann constant, T

is the temperature, R(t) is a univariate Gaussian random process. It is often advantageous

to use smaller values of γ around 1 ps−1, 2 ps−1 or 5 ps−1 to improve sampling [147,148] or

stability of integration [149]. The equation 2.1 is modified by adding the dissipative (−mγv)

and the fluctuating (the last term) forces in order to mimic the viscosity of a solvent and

the molecular collisions which are present in the realistic experimental systems.
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2.2.3 Initial Conditions

In an MD simulation, the initial coordinates and velocities of each atom in the system must

be specified before the simulation is launched. The initial coordinates for atoms can be

obtained from the Research Collaboratory for Structural Bioinformatics (RCSB) website1

which provides the Protein Data Bank (PDB) files for experimentally resolved structures of

biomolecules. These structures have been resolved using various experimental techniques,

such as X-ray crystallography, NMR spectroscopy, and cryo-electron microscopy. The ini-

tial velocities for atoms in the system are randomly assigned from a Maxwell-Boltzmann

distribution:

P (v) =

√

(
m

2πkBT
)34πe

− mv
2

2kBT (2.3)

where m is the mass of the particle, v is the velocity, kB is the Boltzmann constant, and T

is the temperature.

2.2.4 Numerical Integration

After defining all the initial positions and velocities of the particles, we need to perform

numerical integration of the Newton’s equations of motion. Various integration algorithms

have been designed to perform this task and each algorithm has its specific advantages and

disadvantages. However, the complexity of the physical and chemical systems which consist

of thousands of particles as well as the stochastic nature of the evolution of these systems

imply that the convergence of any integration algorithm is a challenging task [145]. More-

over, an integration algorithm is required to maintain the accuracy of system properties,

such as the temperature and the pressure must be kept constant around the specified val-

ues in the NPT ensemble. In this respect, one of the simplest yet efficient algorithms is

the Verlet algorithm and its variations [145]. A variation of the Verlet algorithm is the

1http://www.rcsb.org/
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Brünger—Brooks—Karplus (BBK) method [150], which is a common algorithm to integrate

the Langevin equation 2.2:

rn+1 = rn +
1− γ∆t/2

1 + γ∆t/2
(rn − rn+1) +

1

1 + γ∆t/2
∆t2[m−1F (rn) +

√

2γkBT

∆m
Zn] (2.4)

where Zn is a set of Gaussian random variables of zero mean and variance of one. In the BBK

method, only one random variable is needed for each degree of freedom. This method has a

global error proportional to ∆t2 [150]. Another common integration algorithm is the velocity

Verlet algorithm in which the velocity and position are calculated at the same timestep:

rn+1 = rn + v∆t+
Fn

2m
∆t2 (2.5)

vn+1 = vn +
Fn+1 + Fn

2m
∆t (2.6)

In the velocity Verlet algorithm, we need to compute the new positions first and only

after that we can compute the new velocities which can be further used to compute the

forces [145]. This method has a global error proportional to ∆t2 [145].

2.2.5 Integration Timestep (∆t)

It is crucial to set a proper timestep (∆t) for the numerical integration since it will determine

the accuracy and convergence in MD simulations. A small timestep increases the accuracy

of the simulations but simultaneously results in the increased computational costs. A larger

timestep leads to increased sampling of the conformational space but causes instabilities

in the simulation. Therefore, it is critical to select the timestep to achieve accuracy and

convergence in the simulations. One of the requirements for the numerical integrators is

that the timestep should be small enough with respect to the most rapid component of the

motion [151]. Thus, a recommended timestep for the MD simulations of biomolecules, where
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the most rapid component is the motion of hydrogen atoms, is either 1 fs, if the bonds to

hydrogen atoms are flexible or 2 fs, if the bonds to hydrogen atoms are rigid [152].

2.2.6 Potential Energy (U)

One of the most crucial components of any MD simulation is solving Newton’s equations of

motion which in return requires the calculation of the potential energy function (U). There

are various models of the potential energy function that are commonly implemented in MD

simulations. Each model is based on different assumptions and on different parameterization

schemes that are used for determining the parameters of the corresponding model that is

commonly referred to as a force-field. In my work, I implemented the Amber force-field

which has been shown to be the most promising force-field for conducting MD simulations

of nucleic acids [36,153]. The functional form of the Amber force-field describes the bonded

interactions (the first three terms in equation 2.7) and non-bonded interactions (the last two

terms in equation 2.7) [154].

U(r) =
∑

bonds

Kb(b− b0) +
∑

angles

Kθ(θ − θ0) +
∑

dihedrals

(
Vn
2
)(1 + cos [nφ− δ])

+
∑

i<j

ǫij [(
R0

ij

Rij

)12 − 2(
R0

ij

Rij

)6] +
∑

i<j

qiqj
Rij

(2.7)

The first term in the potential energy function accounts for the bond oscillations around

the equilibrium bond length of b0 with the specified bond force constant of Kb. The second

term describes the angle oscillations around the equilibrium angle of θ0 with the specified

angle force constant of Kθ. The third term accounts for the dihedral angles or torsional

rotations where Vn is the amplitude, φ is the dihedral angle, n is the periodicity, and δ

is the phase. Interatomic interactions between pairs of atoms (labeled as i, j in equation

2.7) are approximated by the 12-6 Lennard-Jones potential which is the fourth term. The

Lennard-Jones potential represents the attractive and repulsive forces between pairs of atoms
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with the equilibrium interatomic van der Waals (VDW) distance of R0
ij and the potential

well depth of ǫij . The last term is the Coulombic potential which describes the electrostatic

interactions between pairs of atoms which are represented as point charges (qi or qj in

equation 2.7). Hydrogen bonding interactions are taken into account through the Lennard-

Jones and Coulombic potentials. In order to conduct an MD simulation, all the above

parameters should be specified. These parameters are computed using quantum-mechanical

calculations and then compared against experimental data [36].

I used the Amber force-field for nucleic acids [155–158], TIP3P model for water [159],

ions [160], peptides [161], small molecules, and porphyrins. The force-field for porphyrins

and small molecules was designed using the general Amber force-field (GAFF) with the

AM1-BCC charge method [162, 163]. The derived parameters for the small molecules are

provided in Appendix I.2 and for the DPD molecule in Appendix I.3. In the next section, I

provide a brief overview on the history of the Amber force-field for nucleic acids.

2.2.7 History of the Amber Force-Field for Nucleic Acids

The main factor that is responsible for all the interatomic interactions in the system is the

potential energy function and the associated force-field. The force-field defines the functional

form and the parameter set (e.g. Kb, b0, Kθ, and etc.) for the potential energy function.

Until now, the majority of nucleic acids simulations are performed using non-polarizable

force-fields whose form was based on the work by Cornell et al. [164]. This force-field is

often abbreviated as parm94 or as ff94, which was a modification of the Weiner et al. force-

field [165], and became the first Amber force-field for simulations of proteins, nucleic acids,

and organic molecules. The Cornell et al. nucleic acids force-field was considered to be a

great success due to the choice of the scheme for fitting the atomic charges which led to a

good description of the hydrogen bonding and stacking interactions [36]. This force-field was

later modified by adjusting the pucker and the χ-dihedral profiles to yield the parm98 [166]

and parm99 [167] force-field, which are alternatively abbreviated as ff98 and ff99.
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After that, the development of Amber parameters for nucleic acids progressed along two

primary pathways. One pathway is led by the Orozco group and is named after the Barcelona

Supercomputing Center (BSC). In 2007, the bsc0 version of the Amber force-field for nucleic

acids was released which improved upon parm99 by updating the α and γ dihedral angles in

the backbone of nucleic acids [155]. These modifications prevented sampling of non-native

γ-trans backbone dihedral states which led to the collapse of B-DNA and RNA structures.

In 2016, this group released a new modification of this force-field, bsc1, which includes

additional modifications to the sugar pucker, the χ glycosidic dihedral angle, and the ǫ and

ζ dihedral angles [158]. Bsc1 force-field is considered to be a general force-field for simulating

DNA systems [168] and I used it to simulate DNA strands in the study presented in chapter

7.

The other pathway is the collective research performed by various groups in Czech Re-

public from the city of Olomouc which gave the name to this series of force-fields, “OL”. In

2010, this group released RNA-specific correction χOL3 which reparameterized the χ glyco-

sidic dihedral angle [156,169]. As a result of this correction, the anti to high-anti χ shifts in

RNA molecules which caused irreversible transitions into untwisted ladder-like structures,

were suppressed. This modification also improved the description of the syn region and the

syn/anti balance. It is a well-tested force-field and is on e of the recommended force-fields

to use for simulating RNA molecules [36]. This group also released several separate modi-

fications to the DNA force-field, specifically, χOL4 modification to improve the χ glycosidic

dihedral angle in DNA nucleotides [170], ǫ/ζOL1 modification to improve the ǫ and ζ dihedral

angles in the DNA backbone [171], and βOL1 modification to improve the β dihedral angle

in the DNA backbone [172]. Combinations of these modifications to the DNA force-field are

often referred to as OL15 and is a good alternative to the bsc1 force-field [168]. The group

also developed a general pair potential (HBfix) which can tune particular non-bonded terms

responsible for hydrogen bonding interactions in base pairs of RNA molecules [173]. This

potential can be combined with other Amber force-fields and it does not affect any other
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interactions. The group further released a new version of HBfix which refines the simulations

of RNA tetranucleotides (tHBfix) [174].

The Amber community has also benefited from the studies conducted by many other

research groups. Specifically, the χ reparameterization by Yildirim et al. (χY IL) corrected

the syn/anti balance in RNA structures on the basis of NMR data and the resulting effect

was similar to the χOL3 force-field [36]. An alternative set of torsions for RNA has been

reported by the Rochester group (“ROC”) which fit five backbone and four glycosidic dihe-

dral parameters [157]. Another RNA force-field was developed by Shaw et al. (“Shaw”) in

which the charges and VDW parameters of the nucleobase atoms and the χ, γ, and ζ dihe-

dral angles were modified to improve stacking and base-pairing interactions [175]. The level

of accuracy of this force-field corresponds to the most promising protein force-fields which

was tested by conducting 30 µs - 180 µs MD simulations of various RNA structures [175].

Cesari et al. performed a refinement of all dihedral angle potentials in the Amber RNA

force-field using the data from solution NMR [176]. As the authors claim, simulations of

RNA tetraloops using the corrected dihedral angle potentials showed good agreement with

the experimental results, however additional testing of the derived parameters is required

on larger RNA systems [176]. New OPLS-AA/M force field has been developed by the Yale

group which optimized torsional potentials of the α and γ backbone dihedral angles [177]. In

my work, I used the ff99+χOL3 or the RNA.ROC force-fields for simulating RNA molecules.

Overall, a large number of Amber force-fields for nucleic acids as well as modifications

or corrections have been released in the past decade. Each set of parameters has its own

advantages and disadvantages, specifically several force fields require additional testing for

a variety of RNA systems [176,177]. The user needs to make a choice of which force-field or

which set of modifications to apply to the system of study.
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2.2.8 Boundary Conditions

There are three types of boundary conditions (BC) which can be specified in MD simulations:

(i) vacuum, (ii) a reflecting wall, and (iii) periodic boundary conditions (PBC). The vacuum

is the simplest BC which mimics a gas-phase environment but the dynamics of the global

system properties will not reproduce the condensed phase [178]. The reflecting wall BC

means that the particle is immediately reflected when it crosses the wall. PBC means that

the system is placed in a simulation box and is considered to have infinitely many images in

space [179]. Each simulation domain has 26 nearest neighbors in three dimensions. When

the particle crosses the boundary of the simulation box on one side, an image of the particle

enters the simulation box from the opposite side, and thus the overall number of particles in

the system is conserved. In my work, I used PBC in all MD simulations.

2.2.9 Minimization

Even when initial structures are obtained from the experimental work, there may still be

missing hydrogen atoms or other atoms in residues. Therefore, energy minimization of the

initial coordinates is required to remove any potential steric clashes between atoms if the

missing atoms are added during initial structure preparation. In my work, I used either

steepest descents or conjugate gradient schemes prior to conducting MD simulations.

2.2.10 Temperature and Pressure Control

In all MD simulations reported in this thesis, I used the Langevin thermostat, where addi-

tional damping and random forces are introduced to the system. The temperature control

is implemented through a frequent adjustment of momenta of all atoms in the system. The

pressure is controlled using the Nose-Hoover barostat algorithm in all MD simulations in my

thesis work [180–182].
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2.3 Software Packages

2.3.1 MD Simulation Software

I used the version 18 of Amber software package (Amber 18) to conduct MD simulations for

studies presented in chapters 3 and 6. Amber is a suite of biomolecular simulation programs

that can be used to setup, perform, and analyze MD simulations [154,183]. Specifically, the

Amber software suit includes Ambertools which is a collection of freely available programs for

analysis and set up of simulations [154]. The Amber code supports serial as well as parallel

CPU and GPU simulations. Amber also refers to a set of molecular mechanical force-fields

for the simulation of biomolecules which are available to the practitioners of biomolecular

simulations.

I also used the NAMD software package (NAMD 2.12) to conduct MD simulations for

studies presented in chapters 4, 5, and 7. NAMD is a parallel MD software designed for

highperformance simulation of large biomolecular systems [152]. NAMD can be scaled to

use hundreds of processors for conducting MD simulations and is compatible with Amber

and CHARMM potential functions, parameters, and file formats [152]. Advanced techniques

such as steered molecular dynamics (SMD) are also implemented in NAMD. This software

is free for academic purposes and has an open source code which can be modified by users.

2.3.2 Conducting MD Simulations

As stated previously, I conducted MD simulations using the Amber and NAMD software

suites with the Amber force-field in my work. Therefore, I used programs in the Ambertools

package in combination with Visual Molecular Dynamics (VMD) to set up and analyze the

systems. The resulting files were compatible with both NAMD and Amber software suits.

Here, I provide a brief overview on conducting MD simulations.

(i) Preparation of input files: Before conducting MD simulations, I prepared coordinate

files (PDB or CRD files), parameter/topology files (PARM files), and configuration files with
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simulation settings. The information on these files can be found on the Amber website2.

During this step, solvent and ions are added to the simulation domain using LEaP program

in Ambertools [154] or VMD [184]. At this step, I also used the Antechamber program to

generate force-field files for small molecules and DPD molecules. I provide these files in

Appendix I.

(ii) Conducting MD simulations: Energy minimization is the first step in MD simulations.

After that, the simulations are continued either in the NPT or NVT ensembles. Frequently,

a short (∼0.5 ns) MD simulation is conducted in the NPT ensemble to equilibrate the water

box prior to conducting simulations in the NVT ensemble. All simulations were conducted

on supercomputing resources at UNH or on Comet (San Diego Supercomputer Center). In

the studies presented in chapters 4 and 5, I applied weak restraints to the phosphorus atoms

in the RNA backbone while conducting enhanced sampling simulations.

(iii) Data analysis: The resulting trajectory and log files contain information on the

atomic coordinates as well as other information depending on the type of simulation that is

being conducted (e.g. force data in SMD simulations). In the following section, I describe

the software that I used in my work to perform data analysis.

2.3.3 Modeling and Analysis

I used the software tool VMD 1.9 [184] to visualize and analyze trajectories generated by

NAMD and Amber. VMD can also be utilized to perform solvation and ionization of the sys-

tem. I used the Tk console available in VMD to execute Tcl scripts to analyze the following

metrics in my trajectories: root mean squared deviation (RMSD), root mean squared fluc-

tuation (RMSF), buried surface area (BSA), distance between atom pairs, hydrogen bond

distances, salt bridge distances, etc. I also used the CPPTRAJ program [185] in Ambertools

package to perform cluster analysis and average structure analysis and to compute various

dihedral angles, and angles between bases.

2https://ambermd.org/tutorials/BuildingSystems.php
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I also used MATLAB (ver. R2019a) to perform additional calculations, data analysis,

and to create plots. I used the MDpocket tool [186] to analyze trajectories in the study

presented in chapter 3. The MDpocket tool is an open-access pocket detection tool for MD

trajectories.

All simulation preparations and data analyses were performed using the Linux operating

systems (openSUSE). Therefore, I also wrote simple bash shell scripts (e.g. AWK and SED)

for analyses. Gnuplot was another graphing utility that I used to create plots. Finally, I

used various plugins in VMD for my simulation set up or analysis, including SSRestraints,

CatDCD, and NAMDEnergy. All the scripts that I have generated in my studies are included

in Appendices B, D, F, and H.

2.4 Enhanced Sampling Methods

Conventional MD simulations often cannot explore the entire conformational space due to

a large number of degrees of freedom. Moreover, a system in an MD simulation frequently

gets trapped in an energy minimum with high energy barriers to transition into a different

state resulting in insufficient sampling. A good example is a ligand dissociation process

which often cannot be fully captured using conventional MD simulations. Therefore, a

variety of enhanced sampling methods have been developed to overcome these limitations of

conventional MD simulations [187].

These methods often rely on the definition of one or more CVs, which can reduce the

number of degrees of freedom and apply bias to the dynamics of the system in a controlled

manner. Various variables could be used as CVs, for example the distances between atoms

or groups of atoms, the angles between atoms or groups of atoms, the RMSD of the system,

the secondary structure of the system, and so on3. The CV is also often termed as an “order

parameter” or a “reaction coordinate”. However, in my work, I have different definitions for

the order parameter and the reaction coordinate which are further discussed in section 2.4.2

3https://www.ks.uiuc.edu/Research/namd/2.9/ug/node53.html
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and these terms are not used interchangeably.

In my thesis, I used two enhanced sampling techniques, steered molecular dynamics

(SMD) and transition path sampling (TPS) method. I applied SMD simulations to study

the dissociation process of a small molecule and a helical peptide from viral RNA elements

(chapters 4 and 5) and TPS method to study the base flipping mechanism in the dsRNA

(chapter 6).

2.4.1 Steered Molecular Dynamics (SMD)

In SMD simulations, an external force is applied to an atom or a group of atoms, termed

as SMD atom(s), to enhance conformational sampling in biophysical processes (e.g. ligand

dissociation) that are difficult to observe in conventional MD simulations. Specifically, in my

thesis work, I used constant velocity SMD (cv-SMD) simulation in which pulling is performed

at a constant velocity (Figure 2.1). For simplicity, I refer to cv-SMD as SMD in my thesis.

This method was first introduced in 1997 by Klaus Schulten et al. [188] and was inspired

by the atomic force microscopy (AFM) experiment, in which a mechanical probe is used to

obtain the force-extension data of various structures, including biomolecules. While the AFM

experiments provided macroscopic insights into structurefunction relationships of various

systems, the mechanism of these events at the atomic level and the underlying interactions

were not fully understood [189]. SMD simulations later proved to be a reliable method which

provided crucial details on the structurefunction relationship of macromolecular complexes

involving proteins and ligands and complemented experimental data [189,190].

In SMD simulations4, the SMD atom is attached to a dummy atom via a virtual spring.

This dummy atom is moved at a constant velocity and the applied force between both is

measured using

4https://www.ks.uiuc.edu/Training/Tutorials/namd/namd-tutorial-html/node18.html
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Figure 2.1: A side-view of the simulation domain during an SMD simulation: RNA, green
cartoon; water molecules, gray points; and ligand, space-filling. The ligand is presented at
various time points to show how it is being pulled along the reaction coordinate (depicted
by a red arrow) which indicates the direction of pulling.

~F = −∇U (2.8)

U =
1

2
k[vt− (~r − ~r0) · ~n]

2 (2.9)

where U is the potential energy, k is the spring constant, v is the pulling velocity, t is time,

~r is the actual position of the SMD atom, ~r0 is the initial position of the SMD atom, ~n is

the direction of pulling. The external work performed for a trajectory can be estimated by

W0→t = −kv

∫ t

0

(r − (r0 + vt))dt (2.10)
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The second law of thermodynamics states that the average work done on the system is

greater than the free energy difference between the initial and the final states of the system.

The overbar denotes an average over an ensemble of measurements of W :

∆G ≤ W (2.11)

The equality holds only when the process is carried out at an infinitely slow rate. However,

in 1997, Christopher Jarzynski discovered an equality that relates a set of non-equilibrium

processes between the two states to an equilibrium free energy difference between the same

two states [191]. The resulting expression is

exp(−βW ) = exp(−β∆G) (2.12)

or, equivalently,

∆G = −β−1 ln exp(−βW ) (2.13)

where β = 1/kBT . It is also possible to compute the free energy difference (∆G) using the

second-order cumulant expansion of the Jarzynski’s equality which is computed as follows:

∆G = 〈W 〉 −
1

2
β(〈W

2
〉 − 〈W 〉2) (2.14)

where overbars represent averages over defined time windows, and angle brackets denote

ensemble averages over independent cv-SMD simulations.

Thus, using the Jarzynski’s equality we can estimate the equilibrium free energy difference

from an ensemble of non-equilibrium processes. In my thesis work, I followed the protocol

developed by Jensen et al. [192] who described how to relate the work values extracted from

SMD simulations (equation 2.10) to the free energy difference computed per Jarzynski’s

equality (equations 2.12, 2.13, and 2.14) [193,194].
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2.4.2 Transition Path Sampling (TPS)

In my thesis, I used the TPS methods to study the base flipping mechanism in a dsRNA

(chapter 6). Frequently, one wants to investigate a rarely occurring dynamical process that

connects two metastable states of a system. This rare transition occurs rapidly, but observing

it using conventional simulation methods is a challenging problem due to high free-energy

barriers that separate the two metastable states and limit the sampling of the system to one

of these states [195]. If this transition is captured and characterized, key mechanistic details

on the transition can be identified [196].

Many enhanced sampling methods assume a prespecified CV that is intuitively selected

for the process being studied, e.g SMD [190], metadynamics [197], adaptive biasing force

method [198], umbrella sampling [199], and other methods [200–202]. However, for many

reactions in complex systems with a lot of degrees of freedom it is a non-trivial task to identify

an accurate RC because the reaction involves simultaneous changes in many degrees of

freedom [120,203]. A reaction coordinate is a single variable that characterizes the dynamical

mechanism of the transition and can discriminate between a given pair of stable states.

Thus, the determined RC can be utilized in various ways: it is possible to monitor the events

occurring during the transition along the resulting RC; the free energy can be projected along

the resulting RC; rate constants of the transition can be computed using the RC [203,204].

A technique that has been successfully applied to study rare events is the TPS method

which generalizes basic Monte Carlo procedures to construct the transition path ensemble

(TPE) [196, 205]. Specifically, TPS generates an ensemble of transition paths that connect

a pair of initial (reactant) and final (product) states that are separated by a free energy

barrier and, importantly, TPS does not require a priori knowledge of the reaction coordinate

[196, 205, 206]. Now, I provide a more detailed overview on the individual steps that are

performed during the implementation of the TPS used in my work.

(a) List of Appropriate CVs: Before conducting simulations, it is recommended to identify a

list of all possible CVs ({Xk}, k = 1, 2, · · · , Ntot) that can characterize the transition between
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the reactant (A) and the product (B) states. These CVs can be identified from intuitively

observing the experimental structure, from conducting a biased simulation and exploring the

resulting trajectory or from reading the existing studies on that system [207].

(b) Definition of Stable States: The next step of the TPS method is to define the reactant

and the product states in terms of a single order parameter (Xp) [196, 208]. An order

parameter is defined as a collective variable that can unambiguously discriminate between

states A and B [196]. Each state is classified by a basin (region) of attraction, since the

system experiences equilibrium fluctuations. Thus, the ranges of Xp should not only be

large enough for each state to accommodate equilibrium fluctuations of the system, but they

should also not overlap to prevent harvesting of the wrong basin [195, 196]. For example, I

can define the range for state A as Xp < c1 and the range for state B as Xp > c2, then the

region defined by c1 < Xp < c2 corresponds to a shooting region, which is located close to

the transition region [203].

(c) Initial Reactive Trajectory: An important step in TPS is to obtain an initial reactive

trajectory (seed trajectory) that connects states (basins) A and B. The seed trajectory can

be generated by any tools available, as long as it sequentially connects states A and B.

Several possible ways are conducting a long conventional MD simulation, conducting an MD

simulation at an elevated temperature or conducting a biased MD simulation [195,209,210].

The resulting seed trajectory does not have to be a true dynamical pathway since it will

eventually reach the TPE by successive sampling as per TPS algorithm [196].

(d) Transition Path Ensemble (TPE): After generating an initial reactive trajectory, an

ensemble of unbiased MD trajectories (shooting trajectories) is generated between states A

and B. The seed trajectory is used to select configurations (shooting points) that are located

in the shooting region. The shooting points are then altered by sampling momenta afresh

for each atom in the system from the Boltzmann distribution [203, 204]. The total energy

of the system, as well as the total linear and angular momenta of the system are conserved.

This is followed by the aimless shooting algorithm, or in other words, a number of short
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MD simulations are conducted. The shooting trajectories have a high probability of rapidly

relaxing to one of the stable basins because the aimless shooting algorithm that I used in my

work generates shooting points near the barrier region [203, 204]. If the shooting trajectory

terminates at either of the stable basins, it is accepted as a new transition path and used as a

new seed trajectory and new shooting points are generated [203]. Otherwise, the trajectory

is rejected.

(e) Orthogonal Collective Variables: The CVs that are identified in part (a), should be

computed at the terminal and shooting points of each shooting trajectory. Each of the CVs

at the shooting point is then normalized according to the following expression:

qk =
1

σk
(Xk − 〈Xk〉), (2.15)

where 〈Xk〉 and σk respectively represent the mean and standard deviation of Xk (CV), for

all shooting points. The normalized variable has a mean of 0 and a standard deviation of 1.

Thus, q({qk}) represents a set of CVs to be tested in construction of the RC.

(f) Determination of the Reaction Coordinate: The RC is defined as a linear combination of

the identified and normalized CVs as

r({q}) = a0 +
m
∑

k=1

akqk, (2.16)

wherem is the number of OPs and is less than or equal to the total number of identified CVs,

ak’s are adjustable parameters. For example, if the final RC consists of two CVs, then it will

have a form of r = a0 + a1q1 + a2q2. I applied the likelihood maximization method [203,204]

to find the best set of CVs and associated ak’s that are chosen to maximize the likelihood

ln(L) and have the committor function pO defined as the probability that a transition path,

initiated from a shooting point, commits to the product state, O. Per aimless shooting

algorithm and likelihood maximization methods, the committor is modeled as

34



pO(r) =
1

2
[1 + tanh(r)], (2.17)

and L is defined as

L =
∏

xk→O

pO(r(q))
∏

xk→I

[1− pO(r(q))], (2.18)

The products over xk → O and xk → I represent the product over all shooting points xk

committed to state O and I. By varying m in equation 2.16, different models of the RC

can be investigated. For each model, ak’s are determined for each combination of qk’s by

maximizing ln(L). The parameter a0 is adjusted so that the transition between states I and

O appears at r = 0.

The models of the RC with the same number of OPs (m = n) are then compared

against each other using the maximum likelihood scores to pick the best combination of

CVs. The best model with n parameters is then compared against the best model with n+1

parameters and the significance of the addition of an extra CV is evaluated using the Bayesian

information criterion (BIC) [204], which determines when additional complexity of the model

shows no further improvement or increased significance because an extra parameter in the

model is significant only if the likelihood increases by a value larger than the value set by

the BIC [204]. The BIC is applied using the following expression:

BIC =
1

2
ln(Nshoot), (2.19)

where Nshoot is the total number of shooting points that is generated. For example, if 1000

shooting trajectories are generated then by using Nshoot = 1000, the BIC is equal to 3.45

using equation 2.19. If ln(L) does not change more than this number on increasing model

complexity, adding another parameter to RC is not considered significant.

(g) Free Energy Profile along the RC: The potential of mean force (PMF)/free energy profile

is obtained along the RC using
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G(r) = −kBT lnP (r), (2.20)

where kB is the Boltzmann constant, T is the temperature, and P(r) is the histogrammed

population. Per Peters et al., [204] if an RC is optimized using shooting points from TPS

simulations, then the resulting RC based on the transition path ensemble is also a good RC

in the equilibrium ensemble, thereby permitting equation 2.20 for obtaining the PMF.

2.5 Summary

I used conventional MD simulations in studies presented in chapters 3 and 7. I used SMD

simulations in studies presented in chapters 4 and 5. I used TPS method in a study presented

in chapter 6.
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CHAPTER 3

STUDY ON THE ROLE OF CONFORMATIONAL HETEROGENEITY IN

LIGAND RECOGNITION BY VIRAL RNA MOLECULES

3.1 Abstract

RNA molecules are known to undergo conformational changes in response to various environ-

mental stimuli including temperature, pH, and ligands. In particular, viral RNA molecules

are a key example of conformationally adapting molecules that have evolved to switch be-

tween many functional conformations. The TAR RNA from the HIV-1 is a viral RNA

molecule that is being increasingly explored as a potential therapeutic target due to its role

in the viral replication process. For work described in this chapter, I have studied the dynam-

ics in TAR RNA in apo and liganded states by performing explicit-solvent MD simulations

initiated with 27 distinct structures. I determined that the TAR RNA structure is signifi-

cantly stabilized on ligand binding with especially decreased fluctuations in its two helices.

This rigidity is further coupled with the decreased flipping of bulge nucleotides, which were

observed to flip more frequently in the absence of ligands. I found that initially-distinct

structures of TAR RNA converged to similar conformations on removing ligands. I also

report that conformational dynamics in unliganded TAR structures leads to the formation

of binding pockets capable of accommodating ligands of various sizes.

3.2 Significance

In the studies presented in this chapter, I reveal how global and local dynamics in viral RNA

molecules is influenced by non-covalent ligand binding. To the best of my knowledge, this
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is the first work which utilized a large number of various initial conformations of the viral

RNA molecule with/without ligands. I determined that ligand binding stabilizes the viral

RNA structure which is characterized by decreased fluctuations of the two helices that com-

prise the RNA molecule and by decreased flipping of the bulge nucleotides. Additionally, I

observed that initially diverse conformations of the viral RNA molecule became more similar

in the course of MD simulations. These results enhance our understanding of the dynamics

in viral RNA molecules and the role of ligand binding. Finally, I discovered the formation

of binding pockets at various segments of the RNA molecule which could be potentially

targeted with new therapeutic agents.

3.3 Background

RNA molecules have long been considered primarily as passive carriers of genetic informa-

tion but this conception has changed in recent years due to enhanced understanding of the

roles of RNA in different cellular processes including translation and transcription [40], reg-

ulation of gene expression [28], and protein synthesis [41]. RNA is also implicated in various

diseases, including cancers, neurological disorders, and viral infections [29,51,211,212]. This

involvement of RNA presents an opportunity to target RNA by small-molecules for influenc-

ing the progression of various diseases [213]. Viral RNA molecules are a compelling target

for small-molecule therapeutics since many viruses have RNA genomes, for example, HIV,

hepatitis C virus (HCV), influenza virus, and severe acute respiratory syndrome coronavirus

(SARS CoV/CoV2) [35,53,214].

The variability in functions of RNA is rooted in its ability to undergo conformational

changes that often lead to complex three-dimensional folds and an ensemble of structures

which determine the function of RNA [43,48]. Conformational changes in RNA may be due

to changes in physiological conditions or due to binding of ligands (proteins, small ligands,

and ions) [90, 215, 216]. The conformational flexibility in RNA can also lead to formation
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of transient binding pockets that can be exploited for drug design [35, 55, 56]. While viral

genomes encode for a limited number of protein targets, often considered “undruggable”

[213], conserved and structured RNA motifs in viral genomes are viable targets to discover

binding pockets for small molecules [35, 213].

Although the understanding of RNA dynamics has increased via different experimental

techniques [49, 57, 213, 217], especially those of RNA structure determination, the role of

dynamics of all structural motifs in RNA and their coupling to ligand binding has not been

fully explored to date [218]. Several experimental techniques including X-ray crystallography

and NMR spectroscopy can provide information on the dynamical properties of nucleic acids

[58,72,219], but even these methods are often limited in probing all possible parameters that

can fully describe the dynamics in RNA molecules [90, 220]. However, computational tools

can further enhance the understanding of RNA dynamics by providing additional insights at

the atomic level. Moreover, these tools can potentially assist in identifying binding pockets

that can be explored in drug design.

TAR RNA (Figure 3.1A) from HIV-1 is a key model system to study conformational

transitions in RNA molecules due to its ability to adapt multiple states [48, 58]. The TAR

RNA is located at the 5′ end of HIV-1 transcripts where it interacts with the viral trans-

activator (Tat) protein and the host cofactor cyclin T1 to promote efficient transcription of

the downstream genome and is therefore considered to be an important drug target. Sev-

eral previous studies have shown that TAR RNA can bind to peptide mimics [59,75–79], to

small molecules [80–83], to proteins [84–87], and to divalent cations [88] (examples are shown

in Table A.1, Figure A.1). TAR RNA has been studied using NMR methods [58–68, 221],

coarse-grained MD simulations [69], electron paramagnetic resonance (EPR) [70], gel mo-

bility [71], combinations of NMR and MD methods [62, 72], and combinations of NMR and

structure prediction software [73]. Collectively, these studies have shown that TAR RNA un-

dergoes complex dynamics by sampling different interhelical conformations around the bulge

junction, thus forming various conformational ensembles [48, 61]. While detailed dynamics
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Figure 3.1: Sequence and structural details of HIV-1 TAR RNA. (A) Shown is
the secondary structure and a snapshot of the three-dimensional structure of HIV-1 TAR
RNA (PDB code 1ANR). Various structural motifs (Bulge, Helix I, Helix II, and Loop) are
uniquely colored and labeled. (B) Shown are the snapshots of the initial states of TAR RNA
(cartoon representation) in unliganded simulations. The apo conformation of TAR (PDB
code 1ANR) is shown at the center (black cartoon) and superimposed onto other TAR RNA
initial states. The initial conformations are placed in a circle such that the RMSD of the
initial state relative to the apo conformation increases counterclockwise, with the 5J2W
structure having the least RMSD and the 1LVJ structure having the highest RMSD.
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in TAR RNA have not been characterized in the presence of all known ligands, it has been

suggested that ligands can potentially induce structural transitions in TAR by stabilizing

pre-existing conformers or an ensemble of states in the apo TAR RNA structure [66,89–91].

Several studies have revealed that a bulge motif in TAR RNA is especially critical for

its recognition by the Tat protein [59,60,74]. Therefore, the bulge motif has been exploited

in the design of inhibitors to disrupt the TAR/Tat interaction (Figure A.2A) [79, 222]. As

shown in Figure A.2A, peptide ligands mostly interact with the apical loop (orange in Figure

3.1A), helix II (blue in Figure 3.1A), and the bulge motif (red in Figure 3.1A), while small

molecules are scattered between helices I and II (cyan and blue in Figure 3.1A). The ligands

differ in size and the charge value, which results in an increased buried surface area (BSA)

as the size of the ligand increases but the structural changes in TAR RNA are not correlated

with the ligand size or BSA (Figure A.2B).

I studied dynamics in TAR RNA by conducting long time-scale MD simulations that were

initiated from 13 different initial conformations of TAR with ligands, and from 14 conforma-

tions without these ligands, 13 conformations after removing ligands and one conformation

based on the experimental apo structure (Table A.2; Figures 3.1B and A.3). By utilizing

several different initial structures, I aimed to obtain a broader conformational mapping of

TAR RNA which has not been carried out yet. Moreover, I studied the effect of ligand

binding on the dynamics in TAR RNA by comparing unliganded and liganded simulations.

3.4 Methods

3.4.1 System Preparation

I have studied the dynamics in HIV-1 TAR RNA using 27 different initial conformations

with/without ligands (Figures 3.1B and A.3). The initial coordinates for these conformations

were obtained from the Protein Data Bank (PDB codes: 1ANR, 1ARJ, 1LVJ, 1QD3, 1UTS,

1UUD, 1UUI, 2KDQ, 2KX5, 2L8H, 5J0M, 5J1O, 5J2W, 6D2U) [59, 60, 75–83]. Several of

these structures had either a different type of nucleotide or a different number of atoms in the
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deposited structure files. I selected the 1ANR conformation as the standard set of nucleotide

sequence and mutated or removed those nucleotides or atoms in the other 13 systems that

were different from the apo structure (PDB code 1ANR) which resulted in each TAR RNA

system consistently having 29 nucleotides and 931 atoms (Table A.2). Each unliganded

and liganded TAR structure was solvated in a periodic simulation domain of TIP3P water

molecules where the overall number of atoms in various systems ranged between 19443 and

25647 (Table A.2). The overall charge in simulations of unliganded systems was neutralized

with 29 Na+ ions while the number of Na+ ions in the liganded systems varied depending

on the charge of the ligand.

3.4.2 Simulation Details

All MD simulations were carried out and analyzed using software packages Amber, CPP-

TRAJ and VMD [154, 184, 185] combined with the Amber force-field for RNA (ff99+χOL3)

[155, 156] and for peptides (ff14sb) [161]. For solvent, TIP3P water model [159] and for

ions the Li/Merz parameters were used [160]. The Antechamber package was used to de-

sign force-fields for small molecules by using the general Amber force-field (GAFF) with the

AM1-BCC charge method (see Appendix I) [162, 163]. The temperature and pressure were

maintained at 300 K and 1 atm using the Langevin thermostat and the Berendsen barostat.

The steepest descent minimization was performed for 1000 steps followed by 100-500 steps of

conjugate gradient minimization. The periodic boundary conditions were used with a cutoff

of 9.0 Å for nonbonded interactions. Each of the 27 systems was subjected to a 2 µs long

MD simulation in the NPT ensemble with a 2 fs timestep, which resulted in the overall 54

µs dataset and the frames in each trajectory were saved every 20 ps.

3.4.3 Conformational Metrics

Torsional Flexibility: The overall torsional flexibility of each TAR RNA structure was

investigated by computing (from MD simulation data) all backbone dihedral angles and the
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χ dihedral angle (which describes the relative position of a nucleobase relative to the sugar

group). The dihedral angles were computed for each nucleotide in each system across the

entire trajectory (100,000 values per MD trajectory). The resulting values of dihedral angles

were then used to compute their normalized distributions. These distributions were further

compared against the typical ranges of values of dihedral angles known from experimentally

determined structures of nucleic acids that were extracted from the Protein Data Bank and

reported in the textbook by Tamar Schlick (Figures 3.2A and A.4) [179].

Buried surface area (BSA): I calculated the BSA for each ligand in the liganded simula-

tions. The BSA was computed using the following expression:

BSA = SASAR + SASAL − SASARL

where SASAR represents the solvent accessible surface area (SASA) of the RNA, SASAL

represents the SASA of the ligand, and SASARL represents the combined SASA of the

RNA/ligand complex. The BSA values indicate the area of contact between a ligand and

the TAR RNA conformation.

Root mean squared deviation (RMSD): I calculated the all-atom RMSD for each sys-

tem and for nucleotides in the bulge motif (U23, C24, and U25) to understand the effect

of ligand binding on the overall TAR RNA structure. The alignment of each structure was

performed against all non-hydrogen atoms in the initial state. The RMSD values indicate

changes in the TAR RNA structure relative to a reference state. I used the initial conforma-

tions as well as the average structures computed from each simulation as the reference states.

Root mean squared fluctuation (RMSF): I computed the backbone phosphorous (P)

atom based RMSF per residue to further study the flexibility of each nucleotide and ∆RMSF
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to compare the differences in dynamics between unliganded and liganded simulations. A neg-

ative value of ∆RMSF signifies decreased fluctuations in the presence of ligands or increased

fluctuations in the absence of ligands.

Average Structure: I computed the average structures of TAR RNA from each unliganded

and liganded simulation using the CPPTRAJ [185] program in the Amber software. The

global rotational and translational motions were removed prior to computing the average

structure. I then cross-compared all average structures using the RMSD as a comparison

metric.

Clustering Analysis: To determine the population of similar TAR RNA conformations

in MD simulations, I performed a clustering analysis using the CPPTRAJ [185] tool with

DBSCAN [223] clustering algorithm. I used the P-atom based RMSD in each TAR RNA con-

formation as a distance metric and a minimum of 25 conformations (RMSD within ∼1.0-1.5

Å) were required to form a cluster. In addition to estimating clusters in individual trajec-

tories, I performed combined cluster analysis (CCA) on the entire dataset of unliganded

simulations and also on the entire dataset of liganded simulations by combining all trajecto-

ries. I used DBSCAN clustering algorithm with the minimum number of points set to 50 and

the RMSD was set as a distance metric (RMSD within 1.9Å). To conserve memory, I used

every second frame of each trajectory resulting in 700,000 and 650,000 frames for combined

clusters of unliganded and liganded simulations, respectively. The initial “sieve” value was

set to 40 to form initial clusters, which means that every 40th frame was used to generate

an initial cluster, resulting in 17,500 and 16,250 initial frames from unliganded and liganded

simulations.

Helical Dynamics: The TAR RNA structure consists of two helices (termed Helix I and

II) that are linked by a flexible three nucleotide bulge motif (Figure 3.1A). The dynamics
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in these helices were characterized using the γ1 and γ2 angles, which describe the twist of

each helix around the helical axis, and by the φ angle which describes the relative position

of the helices. The φ angle was defined between the centers of mass of the two helices. For

the calculation of angles, Helix I was defined by the base pairs G17-C45, G18-C44, C19-G43,

A20-U42, G21-C41, and A22-U40 (cyan in Figure 3.1A), while Helix II was defined by the

base pairs G26-C39, A27-U38, G28-C37, and C29-G36 (blue in Figure 3.1A). The axes in

helices were defined as passing through the centers of mass of the bottom and top base pairs

in respective helices and the CPPTRAJ [185] program was used to compute the twist angles.

Nucleotide Flipping: I characterized the flipping of nucleotides in the bulge motif (high-

lighted in red; Figure 3.1A) using the pseudo-dihedral angle computed between the centers

of mass (COM) of four groups of atoms: the nitrogenous bases of U40 and A22, or C39 and

C26, sugar moiety attached to A22 or C26, sugar moiety attached to U23, C24, or U25, and

the nitrogenous base of U23, C24, or U25. The definition of the flipping angle was adopted

from previous studies [124,224]. In all systems, the inward (flipped-in) state of a nucleotide

corresponds to pseudo-dihedral angle values between -60° and 60° but other values of the

angle characterize an outward (flipped-out) state.

Binding Pocket Analysis: To characterize the binding pockets in TAR RNA conforma-

tions based on unliganded MD simulations, I used the MDpocket tool, which is an open-access

pocket detection tool for MD trajectories [186]. Before analyzing each frame from MD sim-

ulations for pocket analysis, each trajectory was aligned to the initial structure based on the

backbone P-atoms.
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Figure 3.2: Conformational metrics of torsional flexibility and BSA. (panel A; left)
All dihedral angles are shown by an arrow and labeled on a snapshot of the polynucleotide
chain. The atoms in the chain are labeled as follows: 1, P; 2, O5’; 3, C5’; 4, C4’; 5, C3’; 6,
O3’; 7, C1’; and 8, N9/N1. (panel A; right, top and bottom) The normalized distributions of
each RNA backbone dihedral angle (α, β, γ, δ, ǫ, ζ) and the glycosidic dihedral angle (χ) for
unliganded (U) and liganded (L) simulations. The transparent and thicker gray lines repre-
sent expected ranges of dihedral angles based on experimentally known RNA structures. See
also Figure A.4. (B) The histograms of mean BSA values based on liganded MD simulations
(darker shades) and the initial liganded structures (lighter shades) are shown. The error
bars (vertical lines marked on histograms) were computed based on each liganded simula-
tion. The BSA histograms are organized into three groups (labeled 1, 2, and 3; marked by
overbars). A red asterisk highlights a system (PDB code 1ARJ) which exhibited a partial
dissociation of the ligand. See also Figure A.6.
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3.5 Results

3.5.1 Assessment of Torsional Flexibility and Ligand Stability

I first assessed the overall torsional flexibility of TAR by computing all backbone or gly-

cosidic dihedral angles from unliganded and liganded simulations (Figures 3.2A and A.4).

Specifically, the distributions of these dihedral angles (Figure 3.2A) were computed from

the combined data of 14 unliganded simulations and similarly from the combined data of 13

liganded simulations. I found that the values spanned by these dihedral angles are consistent

with the known ranges of dihedral angles in experimental structures of nucleic acids (marked

by transparent gray lines on angle distributions in Figure 3.2A), thereby highlighting that

the TAR RNA conformations generated with the AMBER force-field are consistent with the

expected dynamics in the backbone of RNA structures.

I also assessed whether the ligands remained associated with each TAR RNA structure

during MD simulations. In Figure 3.2B, I show the histograms of the mean values of BSA

from liganded MD simulations (darker shades) along with the initial BSA values of ligands

in various TAR structures (lighter shades). These BSA data are organized into three groups

based on the distribution of BSA values in MD simulations in comparison to initial BSA val-

ues. I observed that most systems exhibited similar or higher ligand BSA values (e.g. group

1 systems with PDB codes 1UTS, 1UUD, 1UUI, 2KX5, 5J1O, and 5J2W) in comparison to

the initial BSA due to conformational rearrangements of ligands in the binding pocket that

led to a deeper burial of some ligands in the binding pocket (e.g., see Figure A.5). However,

some systems exhibited fluctuations in nucleotides which allowed ligands to conformationally

rearrange in the binding pocket and partially move out of the initial pocket, as indicated by

the decreased BSA values (e.g. group 2 systems with PDB codes 1LVJ, 1QD3, and 5J0M;

Figure 3.2B).

A larger decrease in BSA of the ligand was observed in systems organized in group 3 (e.g.

PDB codes 2KDQ, 2L8H, 6D2U, and 1ARJ) indicating that the ligands in these systems
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Figure 3.3: RMSD and clustering analyses. (A) Shown are the histograms (with error
bars) of mean values of RMSD for all unliganded (lighter shades) and liganded (darker
shades) simulations. The RMSD histograms are organized into three groups (labeled 1, 2, and
3; marked by overbars). An orange asterisk marks a system (PDB code 1LVJ) which showed
a different behavior in comparison to other systems. (B) The fraction of conformations
(Fconf) from a given simulation (100,000 conformations per simulation) that constitute the
most populated cluster for each system in unliganded (lighter shades) and liganded (darker
shades) simulations. Each bar corresponds to a unique system. The purple and orange
asterisks indicate those systems in which Fconf was higher in unliganded simulations than
in corresponding liganded simulations. A black asterisk marks the experimental apo TAR
structure (PDB code 1ANR).

exhibited increased rearrangements in the binding pocket. For example, the ligand arginine

amide in one of the TAR RNA structures (PDB code 1ARJ; marked by a red asterisk in

Figure 3.2B) exhibited brief dissociation for about ∼18 ns before binding again in the initial

binding pocket (Figure A.6). This observation is consistent with the largest dissociation

constant for this ligand [59] and the smallest size of this ligand among all ligands studied

(Table A.1). However, I did not observe full dissociation of any ligand during MD simulations.

3.5.2 Ligands Rigidify TAR RNA

To assess the differences in conformations of TAR RNA in unliganded and liganded states,

I first computed the RMSD values with respect to the initial structure in each simulation

(Figure 3.3A; lighter and darker shades for unliganded and liganded simulations, respec-

tively). I observed that the unliganded systems diverged from their respective initial states

on average by 5.28±1.12 Å and the liganded systems by 4.52±1.19 Å. For several systems, I
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observed a significant decrease in mean RMSD values and no overlap in error bars in liganded

states compared to unliganded states (group 1; Figure 3.3A). About half of liganded systems

fluctuated more and thus had less distinct RMSD distributions in comparison to respective

unliganded systems, as characterized by overlapping error bars (group 2; Figure 3.3A). De-

spite having less distinct distributions, these liganded simulations still showed lower mean

RMSD values in comparison to unliganded simulations (group 2; Figure 3.3A). Two sys-

tems (PDB codes 1UUD and 2L8H) had almost no difference in their RMSD distributions

in liganded and unliganded states (group 3; Figure 3.3A). These data suggest that the TAR

RNA structures became conformationally more rigid when ligands were present since lig-

anded structures deviated to a smaller extent from their initial conformations in comparison

to unliganded simulations.

However, one system (marked by an orange asterisk in group 3; Figure 3.3A) showed

increased fluctuations and a higher mean RMSD in the liganded state in comparison to the

unliganded state. On further probing this structure (PDB code 1LVJ), I found that the

structural deviation is likely a result of ligand rearrangements in the binding pocket that

conformationally altered the TAR RNA structure from an initially bent conformation to a

relaxed conformation with a higher RMSD value (Figure A.7). The fact that the presence

of a ligand caused higher perturbations in the TAR RNA structure that resulted in an

unexpected conformational behavior needs to be considered in designing new inhibitors that

target TAR RNA.

I further report the ∆RMSF values per residue based upon unliganded and liganded

simulations to understand the effect of ligand binding on the flexibility of a particular residue

or a motif (Figure A.8). In Figure A.8, I show the difference between the RMSF values

(∆RMSF) of the unliganded and liganded simulations where a negative value corresponds

to an increased flexibility on ligand removal. I observed that in eight systems, all of the

residues became more flexible when ligands were removed (e.g. systems with PDB codes

1QD3, 1UTS, 1UUI, 2KDQ, 2KX5, 5J0M, 5J1O, and 6D2U). In four systems, I observed
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larger flexibility in a portion of residues in the liganded simulations (e.g. systems with PDB

codes 1ARJ, 1UUD, 2L8H, and 5J1O). Importantly, one of those systems (PDB code 5J1O)

had only one residue (U25) with increased flexibility in the liganded state due to the flipping

out of that residue during the simulation. Finally, in one system (PDB code 1LVJ) all of

the residues became more rigid after ligands were removed which was consistent with the

aforementioned observation that the fluctuations and mean RMSD for this specific system

was higher in the liganded conformation (Figure 3.3A).

Due to the significance of the bulge motif in ligand recognition [59,74], I also separately

computed the RMSD values for the bulge motif (Figure A.9). Overall, the bulge motifs in

unliganded and liganded systems deviated by 7.82 ± 1.83 Å and 5.6 ± 1.73 Å, respectively.

In particular, I observed that the majority of systems had higher mean RMSD values in

the unliganded states with the exception of the system with the PDB code 1LVJ that had

a higher mean RMSD value of the bulge motif in the liganded state (Figure A.9). This

observation is also consistent with ∆RMSF data that showed increased flexibility of the

bulge nucleotides in the system with the PDB code 1LVJ (Figure A.8). The behavior of

the bulge motif in this system is coupled with the ligand movement in the binding pocket

and the local rearrangements of bulge nucleotides that result in the overall change in the

conformation of TAR RNA (Figure A.7). These data suggest that the TAR RNA structures

and the bulge nucleotides in liganded systems deviated to a smaller extent from their initial

conformations compared to in the unliganded systems.

3.5.3 Comparison of Average Structures and Formation of Conformational Clus-

ters

I further investigated the conformational variability of the data by comparing the average

structures from each simulation and by performing a cluster analysis. Using RMSD as a

conformational metric, I cross-compared all initial TAR RNA structures before simulations

were initiated (Figure 3.4A) as well as by obtaining the average structures of TAR RNA from
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Figure 3.4: Cross-comparison of initial, unliganded, and liganded TAR structures.
A cross-comparison of TAR RNA conformations via RMSD is highlighted for all structures
in the initial states (panel A; labeled I) and based upon average structures derived from
unliganded (panel B; labeled U) and liganded (panel C; labeled L) MD simulations.

each unliganded (Figure 3.4B) and liganded simulation (Figure 3.4C). This cross-comparison

showed that the RMSD between a pair of structures decreased in unliganded simulations

(Figure 3.4B), thereby indicating that the TAR RNA structures became on average more

similar to each other in unliganded simulations. In liganded simulations, the RMSD between

a pair of structures also decreased on average, but to a smaller extent in comparison to the

unliganded simulations and the structures were still reasonably distinct (Figure 3.4C). For

example, the initial RMSD between the structures with the PDB codes 1LVJ (orange) and

2L8H (purple) was 7.91 Å (dark purple bar in Figure 3.4A). After unliganded and liganded

simulations, the RMSD between these systems for average structures was 3.8 Å and 4.8 Å,

respectively (dark purple bars in Figures 3.4B,C). I also observed that the average structures

of all systems obtained from unliganded MD simulations adopt conformations similar to the

average structure obtained from an MD simulation of the experimental apo system (PDB

code 1ANR) (Figure A.10).

To further assess the fluctuations and the flexibility in TAR RNA, I computed the RMSD

values in the course of each simulation with respect to the average structure of the corre-

sponding simulation (Figure 3.5). I observed that the unliganded systems diverged from

their respective average structures by 3.07± 0.97 Å and the liganded systems by 2.31± 0.57

Å. The majority of the systems had a decrease in mean RMSD values and smaller magnitude
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Figure 3.5: Shown are the histograms (with error bars) of mean values of RMSD computed
with respect to the average structure for all unliganded (lighter shades) and liganded (darker
shades) simulations. The RMSD histograms are organized into three groups (labeled 1, 2,
and 3; marked by overbars). An orange asterisk marks a system (PDB code 1LVJ) which
showed a different behavior in comparison to other systems. A black asterisk marks the
experimental apo TAR structure (PDB code 1ANR).

of fluctuations in the liganded states compared to the unliganded states (group 1; Figure

3.5). Three systems exhibited very similar RMSD distributions in unliganded and liganded

states (group 2; Figure 3.5), however, two of them still showed decreased mean RMSD values

in the liganded state (PDB codes 1ARJ and 1UUD). Finally, one system (PDB code 1LVJ;

Figure 3.5) showed increased fluctuations and a higher mean RMSD value in the liganded

state in comparison to the unliganded state which is consistent with the observations de-

scribed earlier. Overall, this metric showed that the fluctuations in the TAR RNA structures

decreased in the presence of ligands.

In addition to comparing the average structures from each simulation, I performed clus-

tering analysis to detect similarities among structures within each simulation and to un-
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derstand the effect of presence of ligands on conformational variability in TAR RNA. In

Figure 3.3B, I present the fraction of conformations in the most populated clusters derived

from each unliganded and liganded simulation along with more comprehensive details on

the distributions of clusters in Figures A.11 and A.12. I observed a larger variation in con-

formational clusters in unliganded simulations in comparison to liganded simulations. For

example, only two unliganded systems (PDB codes 1UUD and 2KDQ) had a cluster that

contained at least 75% of structures while eight liganded simulations (PDB codes 1QD3,

1UUD, 1UUI, 2KDQ, 2KX5, 5J0M, 5J2W, and 6D2U) had a cluster of this type (Figure

3.3B). The only exceptions were the unliganded systems with the initial structures based on

PDBs 1LVJ (orange histograms in Figure 3.3B) and 2L8H (purple histograms in Figure 3.3B)

that contained clusters with a higher fraction of conformations in the most populated cluster

than in corresponding liganded simulations. Importantly, all liganded systems with peptide

ligands (PDB codes 2KDQ, 2KX5, 5J0M, 5J1O, 5J2W, and 6D2U), except for the initial

structure with the PDB code 5J1O, had the most populated cluster containing the majority

of conformations (Figure 3.3B). This analysis further supports the observation that ligands

in general rigidify the TAR RNA structure by restricting its motion within an ensemble of

structures that constitute the most populated cluster.

I also performed the combined cluster analysis (CCA) to further investigate conforma-

tional clusters in TAR simulations that were initiated with distinct initial structures. In

Figure A.13, I show Fconf for the top clusters from the datasets of unliganded and liganded

simulations. The CCA of unliganded simulations revealed three clusters that contain more

than 5% of the total number of configurations each and are composed of multiple systems

(Figure A.13A). The CCA of liganded simulations, that was performed at the same value of

the RMSD metric for constructing clusters as for the CCA of the unliganded simulations,

revealed only one cluster which contains most of the systems (Figure A.13B). These observa-

tions show that a number of simulations, that were initiated from distinct initial structures,

have conformations that are similar to each other.
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3.5.4 Ligands Alter Helical Dynamics in TAR RNA

The TAR RNA structure is comprised of two helices (termed Helix I and II in Figure 3.1A)

and the dynamics in these helices are described using the angles, γ1 and γ2 (Figure 3.6A,B),

which describe the twist of each helix around the helical axis and by the interhelical bending

angle (φ) which describes the relative positioning of helices (Figure 3.6C). I observed that

the initial γ1 values for all systems were between 29° and 34° except for one system (PDB

code 2L8H) where the angle was 66.5°. Similarly, the γ2 values were between 27° and 38° for

all systems except one system (PDB code 1QD3) where it was 16°.

Based on the angle distributions from MD simulations, I observed that γ1 was mostly

confined between -90° and 90° for the unliganded and liganded systems (Figure 3.6A). Most

of the liganded systems showed a decrease in the width of populated angles in comparison

to the analogous systems in the unliganded form with the exception of the system with the

PBD code 2L8H (depicted in purple color in Figure 3.6) which exhibited a higher twisting in

the Helix I with γ1 angles between 70° and 115°. The system with the PBD code 1ARJ in the

liganded form showed values similar to the unliganded conformation given conformational

rearrangements in the ligand and a decreased BSA (Figures 3.2, A.6). The average γ1 values

for the unliganded and liganded systems were estimated to be 19 ± 40° and 20 ± 33°,

respectively. Overall, the presence of ligands decreased the standard deviation in γ1 by 7°,

thereby leading to narrower γ1 distributions.

I also observed that Helix II showed more flexibility compared to Helix I in both liganded

and unliganded simulations. In the unliganded simulations, γ2 was mostly distributed be-

tween -90° and 105° with the exception of the structures with PDB codes 5J0M, 2KDQ, and

5J2W that spanned additional conformations between -105° and -140°, between -120° and

-130°, and between -105° and -145°, respectively. The γ2 angle in the liganded systems was

mostly confined between -105° and 120° but even though the width of distributions were
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Figure 3.6: Intrahelical and interhelical dynamics in TAR RNA. (A; leftmost panel)
A snapshot of the TAR RNA structure depicting the intrahelical angle γ1, which describes
the rotation of Helix I. The reference axis for the rotation of Helix I is marked by a cyan
arrow. (A; middle and rightmost panels) The distributions of γ1 are shown for the unliganded
(U) and liganded (L) simulations of each structure. (B, C) Data similar to panel A are shown
for the intrahelical angle γ2, which describes the rotation of Helix II (panel B), and φ, the
interhelical angle between Helix I and II (panel C). The reference axis for the rotation of
Helix II is marked by a blue arrow. The color scheme in histograms is same as the PDB
label.
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similar, the number of states that were populated decreased. The average γ2 values for the

unliganded and liganded systems were estimated to be 12 ± 51° and 11 ± 46°. Overall, the

presence of ligands decreased the standard deviation in γ2 by 5°.

I observed that φ is mostly confined between 25° and 105° for the unliganded systems,

with the exceptions of structures with the PDB codes 1QD3 and 2KDQ, which occupied

states with angles between 25° and 80°, and 1UUD which occupied states between 45° and

85°. The distributions of φ in the liganded systems became narrower (ranging between 35°

and 75°) with the exception of the structures with the PDB codes 1LVJ, 1ARJ, and 1UTS

which spanned angles between 25° and 105°, 25° and 100°, and 45° and 110°, respectively.

Overall, the structural bending in TAR RNA decreased in the liganded systems, except for

the systems with initial states based on the PDB codes 1UUD, 1UTS, 1LVJ and 1ARJ which

have distributions similar to their unliganded systems. The average φ for the unliganded and

liganded systems was estimated to be 70 ± 14° and 60 ± 11°, respectively. While previous

NMR analysis has suggested high amplitude bending and twisting motions in TAR RNA

helices [72], these data further suggest that the conformations of helices in TAR RNA are

altered and stabilized on ligand binding.

3.5.5 Ligands Stabilize Nucleotide Flipping in TAR RNA

Beyond global motions in TAR structures, I further probed local motions in key motifs

such as the bulge region, which is considered important for the viral replication process

because the rearrangements in nucleotides in this region (U23, C24, and U25) determine the

orientation of helical motifs (Helix I and II) in TAR [59, 60, 74], Specifically, the outward

flipped conformations of nucleotides C24 and U25 facilitate coaxial stacking of Helices I

and II, thereby rigidifying the TAR structure. In Figure 3.7, I show the nucleotides used

in defining the flipping angle (θ) and the time-traces of θ for three bulge-nucleotides, as

obtained from unliganded and liganded simulations. The inward flipping of a nucleotide

is characterized by θ values between -60° and 60°, and the outward flipping for all other θ
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Figure 3.7: Conformational transitions in bulge nucleotides. (A) A snapshot of TAR
RNA nucleotides (stick representation) used in defining the flipping angle (θ) for U23 (blue
sticks and marked by an asterisk) and the traces of θ vs. simulation time (t) are shown for
four systems in which a conformational transition was observed either in the unliganded state
(U; lighter shade) or in the liganded state (L; darker shade) or in both. The initial value of
θ for U23 in each system is marked on the y-axis by a filled circle in the same color as traces.
The inward flipped state is characterized by θ values between -60° and +60° (labeled and
shown by a transparent gray rectangle). All other values of θ indicate an outward flipped
state. For those unliganded and liganded simulations where a transition occurred in both
simulations, only those values of θ are plotted where a transition was observed. In case
the transition was observed only in an unliganded simulation (or vice versa in a liganded
simulation), in addition to plotting θ values in the unliganded simulation where the transition
occurred, all values of θ are shown for the corresponding liganded simulation (or vice versa
corresponding unliganded simulation) where the transition was not observed. (B and C)
Data similar to panel A are shown for the flipping of nucleotides C24 (red sticks and marked
by an asterisk; panel B) and U25 (green sticks and marked by an asterisk; panel C). The
flipping angle of a nucleotide is defined by the center of mass of each of the following four
groups: the nitrogenous bases of base-paired nucleotides (labeled 1) neighboring the flipping
base, sugar moiety (labeled 2) attached to the base that is stacked with the flipping base,
sugar moiety (labeled 3) attached to the flipping base, and the nitrogenous base (labeled 4)
of the flipping nucleotide. See also Figure A.14.
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values.

The first bulge-nucleotide U23 (Figure 3.7A) was initially in a flipped-in state in most

structures, except in two structures (PDB codes 1QD3 and 1UTS) where it was in a flipped-

out state (as marked by a filled circle on the y-axis at t = 0 in time-traces of θ in Figure 3.7A).

I observed that U23 flipped out during five unliganded simulations (PDB codes 1ARJ, 1UUI,

2L8H, 5J2W, and 6D2U) in which U23 was initially in a flipped-in state (traces with lighter

shades in Figures 3.7A and A.14). In most of these systems U23 eventually returned to its

initial position after briefly transitioning to a flipped-out conformation. For example, in one

of the unliganded simulations (PDB code 2L8H; light purple time-traces in Figure 3.7A)

U23 flipped outward at t = ∼0.9 µs, maintaining the flipped out state for ∼0.5 µs, and then

flipping inward, resuming its initial position.

I observed a similar conformational behavior in systems with PDB codes 6D2U (light

brown time-traces in Figure 3.7A) and 5J2W (light cyan time-traces in Figure A.14A). In

another unliganded system (PDB code 1UUI), U23 flipped out at t = ∼1.25 µs and re-

mained in a flipped-out state until the end of the simulation (light yellow time-traces in

Figure 3.7A). However, in one system (PDB code 1UTS) I observed conformational transi-

tions in both unliganded and liganded simulations (cyan time-traces in Figure 3.7A), where

U23 flipped inward from an initially outward conformation with θ = 130°, retaining the in-

ward position for almost the entirely of liganded simulation and flipping outward after ∼1 µs

in the unliganded simulation. In all liganded simulations, U23 transiently flipped outward

only in one system (PDB code 1ARJ; Figure A.14A). Overall, I observed that the presence

of ligands significantly decreased conformational transitions in U23. This conformational

behavior is consistent with observations from experiments, where a smaller pool of ligands

(arginine amide and a linear as well as a cyclic peptide) were tested [225]. However, I consis-

tently observed conformational stabilization of U23 for several ligands with different binding

affinities.

The second bulge-nucleotide C24 (Figure 3.7B) was initially in a flipped-out conformation
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in all systems, except in three systems (PDB codes 1ANR, 1LVJ, and 1QD3). I observed

that C24 flipped inward in three unliganded simulations (PDB codes 1ARJ, 5J1O, and

1UTS) (lighter shade time-traces shown in red, blue, and cyan in Figure 3.7B). For example,

C24 flipped inward in one of the unliganded systems (PDB code 1ARJ; Figure 3.7B) and

remained in the inward conformation until ∼1.15 µs. However, in other unliganded systems

(PDB codes 5J1O and 1UTS), C24 flipped inward at the beginning of simulations where it

either remained flipped inward during the entire simulation (PDB code 5J1O; Figure 3.7B)

or flipped outward and then flipped back inward toward the end of the simulation (PDB

code 1UTS; Figure 3.7B). For two unliganded systems where C24 was initially in an inward

flipped conformation (PDB codes 1LVJ and 1QD3), it flipped outward toward the end of

simulations (Figures 3.7B, A.14B). In liganded simulations, I observed that C24 flipped

inward during two simulations (PDB codes 1ARJ and 1UTS; darker red and cyan time-traces

in Figure 3.7B) and flipped outward during one simulation (PDB code 1LVJ; darker brown

time-trace in Figure 3.7B). Overall, I observed that C24 showed conformational transitions

both in unliganded and liganded simulations, but less frequently in liganded simulations.

The third bulge-nucleotide U25 (Figure 3.7C) was initially in a flipped-in conformation in

most structures except in three structures (PDB codes 2KDQ, 5J2W, and 6D2U). I observed

U25 to be significantly flexible in both unliganded and liganded simulations since it flipped

inward or outward in most of the systems. For example, U25 flipped outward from an initially

inward conformation in several unliganded simulations (PDB codes 1UUI, 1UTS, 2KX5,

2L8H, and 5J1O; Figures 3.7C and A.14C). It also flipped inward from an initially outward

conformation during unliganded simulations of several systems (PDB codes 2KDQ, 5J2W,

and 6D2U) in which it remained in the inward conformation until the end of each simulation

(Figure 3.7C). In several liganded simulations (PDB codes 1ARJ, 1UTS, 2L8H, and 5J1O),

U25 flipped outward from an initially inward conformation (Figure A.14C), while in other

systems (e.g. PDB code 6D2U) it flipped inward from an initially outward conformation

(Figure 3.7C). Overall, I observed that all three bulge nucleotides (U23, C24, and U25) can
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Figure 3.8: Predicted binding pockets in unliganded TAR structures. (A) Predicted
binding pockets (cyan surfaces) are shown overlaid on each TAR RNA structure (transparent
white cartoon). (B-D) Snapshots of the overlay of each ligand (orange sticks) on the predicted
binding pocket where the ligand is known to bind in each structure. See also Figures A.15
and A.16.

conformationally transition between inward and outward states although ligands decrease

the frequency of these transitions.

3.5.6 Conformational Dynamics in TAR RNA Reveal Ligand Binding Pockets

Given that the knowledge of binding pockets is useful in developing novel inhibitors [213],

I probed all unliganded simulations for the presence of binding pockets that may form as a

result of conformational dynamics. In Figures 3.8A and A.15, I show several binding pockets

(depicted as cyan surfaces overlaid on the initial structure) that appear in various regions of

each unliganded TAR RNA structure (labeled B, L, H1, and H2 for the bulge region, loop

region, and helices I and II, respectively; see also Figure 3.1A).

I also assessed whether the density of pockets observed in specific regions in a structure

could accommodate ligands in conformations observed in liganded TAR RNA structures.

I found that the observed pockets were sufficiently large in size to encapsulate the ligand

known to bind to that specific TAR RNA structure. For example, TAR RNA is known to

bind to small-molecule ligands (acetylpromazine and RBT158) in the bulge region, where I
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observed binding pockets (labeled B for PDBs 1ANR and 5J1O in Figure 3.8A) large enough

to accommodate each ligand (Figure 3.8B). Furthermore, TAR RNA is also known to bind

other ligands (neomycin B and JB181) in the Helix I and the apical-loop/bulge regions,

where I observed binding pockets (labeled H1 for PDB 6D2U and L/B for PDB 1UUD in

Figure 3.8A) large enough to accommodate respective ligands (Figure 3.8C, D). I observed

that unliganded simulations with different initial structures showed several similar binding

pockets as well as previously unknown binding pockets (in the apical loop or Helices I and II)

that accommodated ligands known to experimentally bind to other conformations (Figure

A.16).

3.6 Discussion

In this study, I have carried out long time-scale MD simulations (totaling 54 µs) of the HIV-1

TAR RNA structure in unliganded and liganded states. Specifically, these simulations were

conducted with initial coordinates derived from the experimentally resolved apo structure

of TAR RNA (PDB code 1ANR) as well as 13 other structures of TAR RNA that were

bound to a variety of ligands including small-molecules and peptides. To increase the pool

of unliganded simulations, I also conducted simulations of 13 liganded TAR RNA struc-

tures by removing ligands and retaining the initial coordinates for RNA atoms. I aimed to

probe conformational heterogeneity in ensembles of TAR RNA structures in unliganded and

liganded states to understand the predisposition of the unliganded TAR conformations to

ligand binding and the effect thereafter.

I initially assessed the overall torsional flexibility of TAR RNA by computing distribu-

tions of all backbone dihedral angles from unliganded and liganded simulations (Figures

3.2A and A.4) and found these distributions to be consistent with the range of values from

experimentally known structures of nucleic acids. This observation supports the ability of

the interatomic potential in adequately capturing the dynamics in TAR RNA structures.

By computing the buried surface area (BSA) of each ligand, I also assessed the stability of
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ligands during long time-scale MD simulations and found that in most TAR RNA struc-

tures ligands remained bound throughout simulations except in a few cases where ligands

conformationally rearranged and/or partially dissociated.

I then probed the global dynamics in TAR RNA by comparing all unliganded and lig-

anded conformations from MD simulations using global RMSD, ∆RMSF, and clustering

analyses (Figures 3.3, A.8, and 3.5). The primary observation from the RMSD analysis was

that the mean RMSD of unliganded conformations was higher than the mean RMSD of

liganded conformations, thereby suggesting decreased conformational fluctuations in TAR

RNA on ligand binding. The analysis of ∆RMSF further supported this observation since

the magnitude of fluctuations in nucleotides was smaller in the liganded simulations than

in the unliganded simulations. These observations are consistent with the notion that RNA

molecules are stabilized by binding of ligands because liganded TAR RNA structures were

conformationally more rigid compared to unliganded structures.

However, one of the small molecules, acetylpromazine, resulted in distinct perturbations

in the overall structure of the liganded TAR RNA in comparison to other liganded systems

and in comparison to the corresponding unliganded simulation. In the presence of acetyl-

promazine, the TAR RNA structure transitioned between two distinct (bent and stretched)

conformations (Figure A.7). I have previously also shown that the (un)binding process of

acetylpromazine is associated with the flipping of nucleotides in the binding pocket [226].

The main structural difference between acetylpromazine and other small molecules is the

presence of a sulfur moiety in one of the benzoic rings (Figure A.1), which could be an

important design feature for future development of inhibitory compounds.

The bulge motif which connects two helices in the TAR RNA structure (Figure 3.1A) also

became more rigid in the presence of ligands, which decreased the twisting and bending fluc-

tuations in TAR RNA helices. The clustering analysis further supported these observations

by showing a higher fraction of similar conformations in liganded structures in comparison

to unliganded structures. In fact some liganded structures with peptide ligands exhibited

62



a single cluster containing more than 90% of the RNA conformations, implying that these

liganded simulations exhibited small conformational variability in the presence of peptides

since the TAR RNA conformations were similar to each other (e.g. PDB code 2KX5; Fig-

ure. 3.3B and A.12). I also observed that various simulations have similar conformations

that form combined clusters by performing combined cluster analysis (Figure A.13) and by

comparing average structures from each simulation (Figures 3.4, A.10). These observations

further support the previously proposed hypothesis [48, 61, 220] that despite being a highly

flexible molecule, TAR RNA potentially adopts a set of conformations forming an ensemble

of structures that can recognize various ligands.

I further probed the local dynamics in bulge nucleotides (U23, C24, and U25), the con-

formational flipping motions in which facilitate ligand binding [59,60], as well as alter global

dynamics in TAR RNA. As opposed to the notion that the binding of ligands may prevent

conformational transitions in nucleotides, I observed that the bulge nucleotides can transition

between inward and outward conformations in both unliganded and liganded states although

the frequency of transitions significantly decreases in the presence of ligands. Overall, I found

bulge nucleotides C24 and U25 to be more flexible than U23.

Importantly, as a result of conformational heterogeneity in TAR RNA structures and

coupling between local and global dynamics, I observed the formation of ligand binding

pockets near several structural motifs (bulge region and helices I/II). This observation is

consistent with the suggestion that TAR RNA may adopt conformations with pre-existing

binding pockets where ligands can fit [48]. I observed that these binding pockets form

consistently in all unliganded simulations with enough volume to accommodate different

ligands (Figures 3.8, A.15, and A.16), including larger ligands (e.g. peptides). Moreover,

I observed the formation of binding pockets in other structural motifs (e.g. the apical

loop) in TAR RNA which are potentially useful to future inhibitor design. As an example,

Patwardhan et al. [222] showed that the amiloride ligands can bind to nucleotides in the

apical loop where I observed several binding pockets.
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3.7 Conclusions

Although RNA molecules are known to undergo conformational changes during various cel-

lular processes, the conformational dynamics in RNA molecules, with and without ligands,

have been studied only to a limited extent. I used explicit-solvent MD simulations to study

the dynamics in a model RNA system, the HIV-1 TAR RNA, which is known to recognize

several types of ligands including small-molecules and peptides. I observed that the ligands

rigidified TAR RNA structures by interacting with the bulge nucleotides and decreased the

overall bending and twisting motions in helical motifs in TAR RNA. Therefore, I found

that ligands overall decreased conformational heterogeneity in TAR structures. While RNA

is considered a highly flexible molecule, I observed that TAR RNA structures on average

became more similar to each other in the unliganded and liganded simulations compared

to their initial conformations. I also observed that the conformational transitions leading

to flipping of nucleotides in RNA molecules likely occur irrespective of the presence of lig-

ands although the frequency of these transitions decreases on ligand binding. As a result of

conformational heterogeneity, I also showed that unliganded RNA molecules possess ligand

binding pockets that may be amenable to targeting by novel inhibitory molecules.

3.8 Supporting Information

Additional data and figures are shown in Appendix A. I have performed preliminary analysis

of the principal components which is also presented in Appendix A. In Appendix B, I also

provide example scripts that I used to set up, conduct, and analyze my simulations. I have

also included in Appendix B the scripts for creating figures. For sharing with the scientific

community, I have further made the simulation data available via the Zenodo platform

(https://doi.org/10.5281/zenodo.4521164).
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3.9 Publication

The work described in this chapter is reproduced from Ref. [227], with permission from the

Royal Society of Chemistry. The citation is as follows:

Levintov, L., and Vashisth, H. (2021). Role of Conformational Heterogeneity in Ligand

Recognition by Viral RNAMolecules. Phys. Chem. Chem. Phys. doi: 10.1039/D1CP00679G.
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CHAPTER 4

STUDY ON THE BINDING/UNBINDING PROCESS OF A SMALL

MOLECULE FROM A VIRAL RNA MOLECULE

4.1 Abstract

RNAs are conformationally flexible molecules that fold into three-dimensional structures

and play an important role in different cellular processes as well as in the development of

many diseases. RNA has therefore become an important target for developing novel thera-

peutic approaches. The biophysical processes underlying RNA function are often associated

with rare structural transitions that play a key role in ligand recognition. In this chapter,

I describe studies where I probed these rarely occurring transitions using nonequilibrium

simulations by characterizing the dissociation of a ligand molecule from an HIV-1 viral RNA

element. Specifically, I observed base-flipping rare events that are coupled with ligand bind-

ing/unbinding and also provided mechanistic details underlying these transitions.

4.2 Significance

In the studies presented in this chapter, I reveal the key interactions that are required to be

created or ruptured during the dissociation process of a small molecule with inhibitory prop-

erties from a viral RNA molecule. Specifically, I observed base-flipping rare events which

are involved in the recognition mechanism of the small inhibitor by the viral RNA molecule.

Additionally, I determined that these transitions contribute to a sequence of events relating

five nucleotides which have not been observed previously. These results enhance our under-

standing of the recognition mechanisms of small molecules by viral RNAs and knowledge of
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these transitions can be potentially useful for designing new inhibitory molecules for target-

ing viral RNA molecules.

4.3 Background

RNA molecules were considered only as passive carriers of genetic information until RNA

was implicated in diverse cellular processes (translation and transcription [40], regulation

of gene expression [28, 228], and protein synthesis [41]). Many RNAs are also involved in

progression of various diseases including neurological disorders, cancers, and cardiovascular

diseases [29, 31, 229]. Moreover, RNAs play a critical role in the replication and survival

mechanisms of many viruses and bacteria [34,230,231]. Thus, it is promising to target RNA

molecules for developing therapeutic modalities because RNA lies upstream of proteins and

its activity can be modulated before or during its synthesis [213].

Particularly, viral genomes do not provide a large number of protein targets due to

the lack of well-defined binding pockets for small molecules [35]. However, conserved and

structured RNA motifs of viral genomes are flexible and fold into complex three-dimensional

structures that may provide transient binding pockets for small molecules, and thereby

activities of “undruggable” proteins could be modulated before they are synthesized [35,213].

For example, new amiloride derivatives were shown to interact with several HIV-1 RNAs and

inhibit the replication process of the virus [222,232].

However, it is more challenging to target RNAs than proteins due to the highly charged

nature of the RNA backbone, conformational flexibility of RNA, and a relatively low abun-

dance of cellular RNAs in comparison with the ribosomal RNA [217]. In addition, designing

new ligands to target RNA is limited by a poor understanding of the recognition mech-

anisms between RNA and its binding partners. These mechanisms are important for the

function of RNA and the knowledge of the conformational dynamics of binding, as well as

their thermodynamic and kinetic properties, will be useful in the drug discovery process [49].
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Experimental techniques including X-ray crystallography and NMR spectroscopy provide

crucial insights into the dynamics of RNA and its interactions with ligands [219,233]. AFM is

another technique to study interactions between ligands and receptors or unfolding processes

by obtaining force-extension data [189]. However, characterization of all possible atomic

details of large and complex biomolecular systems continues to be a challenging process for

experimental techniques. The number of parameters that need to be measured exceeds the

number of parameters that can be tracked in experiments, even with the advanced NMR

methods [46–48].

However, computational methods, such as MD simulations, are becoming increasingly

important in characterizing the dynamics of biomolecules and their interactions with ligands

by providing additional insights at the atomic level. Although many biophysical processes oc-

cur on time-scales challenging to probe using conventional MD simulations, non-equilibrium

techniques, such as SMD simulations, that enhance conformational sampling are useful in

probing critical ligand recognition events. During these processes, interactions that are im-

portant for the overall stability of the system are perturbed to reveal key structural motifs

involved in ligand binding/unbinding. SMD has been successfully applied to study unfold-

ing of RNA/DNA [234, 235], unbinding mechanisms of protein/ligand [236, 237], RNA/li-

gand [238,239] complexes, and to study other systems [240,241].

For work described in this chapter I applied MD and SMD simulation methods to study

the TAR RNA from the HIV-1 (Figure 4.1A) that is located at the 5′ end of the viral RNA

genome. It is a key model system to study RNA dynamics and has been shown to transition

between multiple conformations (e.g. bent and coaxially stacked configurations) along with

other less populated states [48,58]. It also has an important function in the viral replication

mechanism because it interacts with the viral Tat protein and the host cofactor cyclin T1

to promote efficient transcription of the downstream genome [242]. Therefore, it has been

targeted with molecules of various types and sizes and has become a primary drug target in

the HIV-1 genome.
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Figure 4.1: System setup and structural details. (A) Secondary structure of HIV-1 TAR
RNA. (B) A side-view of the simulation domain: RNA, green cartoon; water molecules,
gray points; ligand, space-filling; and the bounding box, blue. A red arrow indicates the
direction of pulling. The chemical structure of the ligand is also shown with labeled aromatic
rings (inset). (C) A side view of the binding pocket: ligand is shown in a space-filling
representation and each key nucleotide is highlighted in a unique color and labeled.

Specifically, I conducted a long time-scale MD simulation spanning 2 µs and 300 non-

equilibrium SMD simulations (see sections 4.4.1 and 4.4.2) to study the dissociation pathway

of a small molecule, acetylpromazine (inset in Figure 4.1B) [83], which represents a compound

with low toxicity and high binding affinity with interactions (Figure 4.1C) in the common

binding pocket in TAR-RNA.

4.4 Methods

4.4.1 System Preparation and Simulation Details

Software and Force-Field: For work described in this chapter I focused on studying

the unbinding process of acetylpromazine from the HIV-1 TAR RNA using conventional

MD and SMD simulations. The initial coordinates for the system were obtained from the

NMR structure deposited in the Protein Data Bank (PDB code 1LVJ) [83]. A 2 µs long

classical MD simulation of the RNA/ligand complex was conducted using the Amber force-

69



field (ff99+χOL3) [155, 156] using the Amber software [154]. All SMD simulations were

also carried out using the Amber force-field (ff99+χOL3) [155, 156] but using the NAMD

software [152]. The analyses of all trajectories were carried out using the CPPTRAJ and

VMD software [152, 184, 185]. For acetylpromazine, the Antechamber program [243, 244]

in Amber was used to develop the force field parameters with atomic charges using the

AM1-BCC charge method (see Appendix I) [162].

MD: The system was solvated in a 57 Å × 84 Å × 55 Å periodic box of TIP3P water

molecules and the total number of atoms was 22053. The overall charge of the system was

neutralized with 29 Na+ ions. No constraints were imposed on the RNA/ligand complex.

The temperature was maintained using the Langevin thermostat at 310K, consistent with

experimental conditions [83], and the pressure was maintained at 1 atm using the Berendsen

barostat. The steepest descent minimization was initially performed for 1000 steps followed

by 100-500 steps of conjugate gradient minimization. The system was subjected to a 2 µs

long MD simulation in the NPT ensemble with a 2 fs timestep. The configurations were

saved every 20 ps. Data from this simulation are shown in Figures C.1 and C.2.

SMD: The system was solvated in a 54 Å × 90 Å × 90 Å periodic box of TIP3P water

molecules and the total number of atoms was 33936. The overall system was charge neu-

tralized with 29 Na+ ions and was energy-minimized via 500 cycles of conjugate-gradient

optimization. To equilibrate the box volume, a 500 ps MD simulation with a 2 fs timestep

was initially conducted. The coordinates from the end of this MD simulation were used

as initial conditions for subsequent 5 ns long SMD simulations in the NPT ensemble, con-

ducted using a 2 fs timestep. Even though the ligand dissociated at 25 Å, I continued SMD

simulations up to a distance of 60 Å. The temperature and pressure were maintained at

310 K and 1 atm using the Langevin thermostat and the Nose-Hoover barostat. Periodic

boundary conditions were used in all simulations, electrostatics were computed every time

step using the particle mesh Ewald method, and the van der Waals interactions were cut-off

at 10 Å with switching initiated at 8 Å. In these simulations, phosphorus atoms in the RNA

70



backbone were weakly restrained to prevent the overall rotation and translation of the RNA

molecule. Configurations were saved every picosecond and SMD output was saved every 20

fs.

4.4.2 SMD Simulations and the Potential of Mean Force (PMF) Calculation

The cv-SMD simulations were implemented by applying a harmonic external force using a

spring with a spring constant of k = 7 kcal mol-1 Å-2 that was attached to the center of mass of

the ligand and was pulled at a constant velocity of 0.0125 Å/ps along the reaction coordinate

r. The force constant value was chosen per stiff-spring approximation [194] to closely follow

the reaction coordinate for ligand dissociation. The potential of mean force (PMF) was

calculated using the exponential averaging and the second order cumulant expansion of the

Jarzynski’s equality presented in section 2.4.1 (equations 2.13 and 2.14).

4.4.3 Buried Surface Area (BSA)

I calculated the BSA for the ligand acetylpromazine from a 2 µs classical MD simulation.

The BSA was computed using the following equation:

BSA = SASARNA + SASALigand − SASAComplex

where SASARNA represents the solvent accessible surface area (SASA) of RNA, SASALigand

represents the SASA of ligand, and SASAComplex represents the SASA of the RNA/ligand

complex. The BSA value indicates the area of contact between the ligand and RNA. Data

are shown in Figure C.2.
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4.5 Results and Discussion

4.5.1 Thermodynamics of Ligand Dissociation

The studies of ligand dissociation from bound conformations are most suitably done using

non-equilibrium simulations because the system is trapped in an energy minimum with high

energy barriers to dissociation where the ligand is stabilized by interactions in the binding

pocket. Conventional MD simulations are often non-ergodic due to incomplete sampling and

as a result systems usually remain trapped in energy minima. In the work presented in this

chapter, I did not observe a spontaneous dissociation of acetylpromazine in a conventional

and long time-scale (2 µs) MD simulation. As seen in snapshots from the MD trajectory (Fig-

ure C.1), the ligand remained stably bound to RNA. The BSA, which represents the interface

area of contact between the RNA and the ligand, supports this observation since the average

BSA is 552 ± 82 Å2 (Figure C.2) with an initial value of 645 Å2. Thus, observing sponta-

neous dissociation is a non-trivial task even in µs-long MD simulations and non-equilibrium

enhanced sampling methods (e.g. SMD) are needed. I used cv-SMD simulations for studying

the dissociation process of acetylpromazine and for computing the non-equilibrium work of

ligand dissociation. The non-equilibrium work values were then used to compute the unbind-

ing free-energy (∆G) using the exponential averaging as well as the second-order cumulant

expansion of the Jarzynskis equality [191–194]. An SMD simulation with the lowest work

value will have the highest contribution to the free-energy computed via Jarzynski’s equality

and therefore provides the most valuable information about key interactions that have to be

broken or created during the dissociation process since the system requires the least amount

of work to overcome those interactions. In contrast, simulations with higher work values

provide a less than optimal pathway for ligand dissociation. Thus, the comparison between

simulations requiring the lowest and highest work values can reveal the salient features of

the binding/unbinding process of ligands. Specifically, I performed 300 cv-SMD simulations,

each 5 ns long, where a harmonic spring with a spring constant k = 7 kcal mol-1 Å-2 was
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Figure 4.2: Reaction coordinate, unbinding force, and free-energy from SMD sim-
ulations. (A) The COM trajectory of the ligand. Black solid line represents the actual
RC, black dotted line represents the average trace across 102 trajectories, and gray lines
represent all SMD trajectories. (B) Unbinding force with the mean force (black solid line)
and standard deviation profiles (gray) from all SMD simulations are shown. (C) Potential
of Mean Force vs. RC, as computed using the exponential averaging (black line) and using
the second-order cumulant expansion (gray line) with error bars.

73



attached to the COM of acetylpromazine and pulled with a velocity of 0.0125 Å/ps along the

z-direction. The external work, W (Figure C.3), of ligand dissociation from the RNA pocket

was computed from 102 trajectories out of all SMD simulations that consistently followed

the reaction coordinate (Figures 4.2A and C.4A).

The unbinding cv-SMD force profile (Figure 4.2B) starts with the ligand in the bound

state with no external force applied. Negative forces at the beginning indicate the dom-

inance of system forces over the external force. As the external force values started to

increase, overcoming the system forces restricting the ligand to its original conformation,

acetylpromazine dissociation begins. The continued increase in the mean force until reach-

ing a maximum value represents the displacements of various nucleotides in the binding

pocket and perturbations in stacking interactions between the benzene rings of acetylpro-

mazine and nucleotides. The maximum force corresponds to the point where ligand displaced

all nucleotides leading to an open dissociation pathway. A small decrease in the force profile

(between 4.3 Å and 4.9 Å) corresponds to a state where both of the benzene rings moved

out of the binding pocket. The unbinding forces then decreased as the ligand moved away

from the binding pocket. The fluctuations in force were measured after 17.5 Å to ascertain

that the average force converged to zero indicating full dissociation of the ligand with no

interactions to RNA (Figure C.4B).

The free-energy profiles computed using the exponential averaging and second-order cu-

mulant expansion of Jarzynski’s equality (Figure 4.2C) show an energy minimum corre-

sponding to the bound state and converged free-energy values for the unbound state. The

free-energy difference between the bound and unbound states at 17.5 Å was calculated to

be 12.5 ± 1.47 kcal/mol and 8.176 ± 2.87 kcal/mol using the exponential averaging and the

second-order cumulant expansion of Jarzynskis equality, respectively. The unbinding free

energies were then used to compute the dissociation constant (Kd = e−
∆G

RT , where R is the

gas constant and T is the temperature) and compared against the experimentally determined

values. I estimated Kd value as 1.54 nM (exponential averaging) and 1750 nM (cumulant
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Figure 4.3: Ligand dissociation mechanism: Snapshots of ligand dissociation from the
simulations with the lowest work (top) and the highest work (bottom) are shown. Color and
labeling scheme is same as in Figure 4.1C. See also Figure C.6.

expansion). The experimental Kd value of 100 nM (corresponding to ∼9.94 kcal/mol) lies

within the range of bounds predicted by our simulations.

4.5.2 Ligand Escape Pathway

Initially, the ligand was located between the base pairs G26-C39 and A22-U40 where its

benzene ring 2 was inserted between U23, U25 and U40, forming stacking interactions with

these bases, and the benzene ring 1 was positioned next to G26, forming an angle of ∼135°

to the benzene ring 2. The aliphatic chain of the ligand was extended along the minor groove

of RNA and pushed C24 out of the stack (Figure 4.1C). I first focused on the dissociation

pathway that was observed in the simulation that required to perform the least amount of

work out of all SMD trajectories since that simulation has the most important details of the

dissociation mechanism.

During the first 350 ps of this cv-SMD simulation, the ligand rotated counterclockwise by

90° with the sulfur atom pointing out of the binding pocket (Figure 4.3 and Figure C.5). At
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that time, the benzene ring 2 induced a counterclockwise rotation of U23 of the χ-dihedral by

50° and the benzene ring 2 stacked on U23, sulfur atom formed a van der Waals interaction

with U25, the aliphatic chain induced a rotation of the χ-dihedral of C24 from -75° to -

165°, A22 shifted by 40°, partially flipping out and providing space to C24 to rotate and flip

inward, following the movement of the ligand out of the binding pocket.

At a distance of 5.6 Å (t = 450 ps), the sulfur atom continued to interact with U25

that resulted in an intramolecular conformational change in the ligand where three fused

aromatic rings formed ∼90° angle with the aliphatic chain (Figure 4.3 and Figure C.5). In

the meantime, C24 flipped inward, occupying the free space left behind by the ligand, and

formed a hydrogen bond with the oxygen atom of U40 while A22 returned to its initial

position in the RNA stack. The flipping of C24 back into the RNA helix represents a rare

base-flipping event in nucleic acids that occurs on a millisecond timescale and is difficult to

observe both experimentally and during conventional MD simulations [108,245].

Between 450 ps and 800 ps, U23 flipped underneath the ligand that was moving out

of the pocket, thus making a pathway free of any obstacles (Figure 4.3 and Figure C.5).

At a distance of 9.55 Å (800 ps), the ligand rotated again causing a minor counterclockwise

rotation of U25 around the χ-dihedral by 60°. As the ligand was dissociating, U23 moved out

of the binding pocket and flipped out when the ligand was at a distance of 10 Å away from

U23. The ligand was free of any interactions with the RNA at d = 17.5 Å. Other simulations

with lower work values indicated a similar mechanism of ligand dissociation (Figure C.6).

In contrast, in the simulation trajectory resulting in the highest dissociation work, the

C24 nucleotide did not flip inside, despite interacting with the ligand as in the lowest work

simulation (Figure 4.3 and Figure C.7). This could be potentially explained by the fact that

A22 did not shift to provide additional space for C24. At 360 ps, the base part of U25

rotated around the χ-dihedral by 100° while still interacting with the sulfur atom of the

ligand. In addition to that, U23 did not interact with benzene ring 2 as long as it did in the

lowest work simulation and did not move closer to A22 below the ligand. Instead, when U25
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Figure 4.4: Conformational metrics: Shown are the traces of several conformational
metrics from the lowest work (blue) and the highest work (red) simulations. Darker colors
signify transition regions of interest. The numbers in each panel correspond to metrics
computed for specific nucleotides (see inset in panel A). The conformational metrics shown
are: (A) χ-dihedral of U23 nucleotide; (B) distance between the COM of U23 and U25; (C)
dihedral angle that describes the flipping of C24; and (D) dihedral angle that describes the
rotation of A22. See also Figure 4.5.
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was rotating, U23 got shifted away from the ligand and stacked on U25 for ∼120 ps. That

transition moved U23 in the outward configuration with respect to the binding pocket and

above the ligand, while in the lowest work simulation U23 was below the ligand toward the

binding pocket.

At 500 ps, U25 started interacting with the sulfur atom of the ligand which caused a

rotation of the nucleobase in U23 around the χ-dihedral from -150° to 60° (Figure 4.4A).

U23 proceeded to interact with the ligand by stacking on the benzene ring 2 between 500

ps and 950 ps which resulted in the rotation of U23 base to its original χ-dihedral value

of -150° (Figure 4.4A). U23 then interacted with the aliphatic chain and remained in the

flipped out state for the remainder of the simulation. These sequence of events potentially

contribute to additional work required to overcome more stacking interactions between the

acetylpromazine benzene ring 2 and U23/U25. Also, after the ligand moved out of the

binding pocket, it continued to interact with A35 that was flipped out in the stem-loop of

RNA (Figure C.8).

4.5.3 Mechanistic Details of Ligand Dissociation

To characterize the conformational rearrangements of the binding pocket nucleotides in the

least work simulation, including the flipping-in of C24, and probe the reasons for not observ-

ing this flipping event in the highest work simulation, I describe a number of mechanistic

details that collectively describe these events. These details can further improve our un-

derstanding of a base flipping process in the TAR-RNA and in bulge motifs of RNA in

general.

I observed a sequence of conformational transitions in U23 and U25 (Figure C.9) that

influenced the base flipping as well as potentially contributed to the amount of work needed to

dissociate the ligand. As highlighted in earlier discussion, U23 rotated around the χ-dihedral

and buried deeper in the binding pocket in the first 350 ps in the least work simulation. The

movement of A22 outward was a consequence of this transition since U23 was displaced by the
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ligand which in turn displaced A22. Between 350 ps and 1000 ps, U23 rotated relative to A22

(Figure 4.5A) by 100° and moved away from U25 by 2 Å (Figure 4.4B) while partially filling

the space that was available after A22 moved outward. At ∼830 ps, U25 rotated around

the χ-dihedral by 40° counterclockwise and interacted with U23 until it (U23) flipped out

at the end of the simulation. Interestingly, in the highest work simulation the same base

rotated around the χ-dihedral in the opposite direction by 120°. Also, in that simulation,

U23 rotated clockwise (opposite to the direction of rotation in the lowest work simulation

where U23 moved inside the binding pocket) by 90° around the χ-dihedral at 350 ps which

caused it to move out of the binding pocket. The difference in the directions of rotation of

the χ-dihedral of U23 is a crucial detail that led to different conformational events in the

binding pocket and likely influenced the final work values.

As shown in Figure 4.4C, the flipping in of C24 toward the binding pocket started after

the rotation around its χ-dihedral which was observed in both the lowest and the highest

work simulations. However, only in the lowest work simulation, this rotation was followed

by the transition to an inward conformation. At 350 ps, A22 shifted in the outward direction

by 30° counterclockwise (Figures 4.4D and C.10) providing space for C24 to move in. In the

highest work simulation, on the contrary, A22 did not shift outward, remaining at its initial

position and forming a base pair with U40 after the ligand dissociated.

In the lowest work simulation, the movement of A22 outward was followed by the move-

ment of C24 inward as described by the dihedral-angle in Figure 4.4C at ∼400 ps. I observed

fluctuations in C24 as it was moving in because the ligand had to first leave the binding

pocket and provide space for that nucleotide. It also started to form a hydrogen bond with

U40 (Figure 4.5B and C.10) and after the ligand completely dissociated, the hydrogen bond

was stabilized (after 1 ns). Thus, C24 replaced the ligand which acted as a “pseudo base

pair” in the initial conformation between A22 and U40. This highlights that ligands recog-

nized by RNA likely substitute for and conformationally mimic interactions between RNA

nucleobases.
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Figure 4.5: Additional conformational metrics: Shown are traces of additional confor-
mational metrics from the lowest work (blue) and the highest work (red) simulations: (A)
an interplane angle between A22 and U23 (marked as 5 in the inset in panel A and describ-
ing the relative position of U23); and (B) a hydrogen bond distance between C24 and U40
(marked as 6 in the inset in panel A). Darker colors signify transition regions of interest; see
also Figure 4.4 for other details.
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4.6 Conclusions

Binding/unbinding of ligands in RNA systems is an important biophysical process that

is poorly understood. I used non-equilibrium cv-SMD and conventional MD simulations to

study the dissociation pathway of acetylpromazine from TAR-RNA binding pocket to obtain

key insights into the ligand binding/unbinding process. As expected, I did not observe

ligand dissociation in a conventional MD simulation. On the contrary, cv-SMD simulations

facilitated ligand dissociation and provided a large ensemble of trajectories to study this

mechanism. In particular, I investigated in detail the lowest and the highest work simulations

to identify mechanistic underpinnings of ligand dissociation. In the simulation with the

lowest work value, I observed a rare base flipping event in the C24 nucleotide of TAR-RNA.

This transition was a result of a sequence of complex events relating 5 nucleotides that were

not observed in the highest work simulation.

Interestingly, the differences in the sequence of events between the lowest and the highest

work simulations were initiated by the rotation of the χ-dihedral of U23 in opposite directions

which I have identified for the first time. The counterclockwise rotation of the χ-dihedral

of U23 not only decreased the amount of work but assisted in flipping-in of C24. I suggest

that building a substantial ensemble of non-equilibrium trajectories is a potentially useful

approach to gain insights into rare conformational transitions. These simulations, together

with the Jarzynskis equality, were also able to predict the bounds on Kd within which was

the experimentally measured value. Furthermore, I reported mechanistic details underlying

several conformational transitions, including a dihedral-angle of C24, a hydrogen bond be-

tween C24 and U40, the χ-dihedral of U23, and an interplane angle between U23 and A22.

Since the transitions in these variables exhibit two-state features, it is potentially useful to

invoke rare event sampling methods to further study this mechanism in future. Specifically,

transition path sampling [120, 196] along with the likelihood maximization [203, 204] is an

exhaustive and accurate method to study these types of events. Its principles have been
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applied to study protein [246] and RNA systems [247]. Moreover, conformational transi-

tions observed here can be potentially exploited for designing a new generation of inhibitory

molecules targeting TAR-RNA.

4.7 Supporting Information

Additional data and figures are shown in Appendix C. In Appendix D, I also provide example

scripts that I used to set up, conduct, and analyze my simulations. I have also included in

Appendix D the scripts for creating figures.

4.8 Publication

The work described in this chapter is reproduced from Ref. [226], with permission from the

American Chemical Society. The citation is as follows:

Levintov, L., and Vashisth, H. (2020). Ligand Recognition in Viral RNA Necessitates Rare

Conformational Transitions. J. Phys. Chem. Lett. 11:5426-5432
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CHAPTER 5

STUDY ON THE BINDING/UNBINDING PROCESS OF A HELICAL

PEPTIDE FROM A VIRAL RNA MOLECULE

5.1 Abstract

Interactions between RNA molecules and proteins are critical to many cellular processes and

are implicated in various diseases. The RNA-peptide complexes are good model systems to

probe the recognition mechanism of RNA by proteins. For studies described in this chapter,

I report studies on the binding/unbinding process of a helical peptide from a viral RNA ele-

ment using non-equilibrium MD simulations. I explored the existence of various dissociation

pathways with distinct free-energy profiles that reveal metastable states and distinct barriers

to peptide dissociation. I also report the free-energy differences for each of the four pathways

to be 96.47 ± 12.63 kcal/mol, 96.1 ± 10.95 kcal/mol, 91.83 ± 9.81 kcal/mol, and 92 ± 11.32

kcal/mol. Based on the free-energy analysis, I further propose the preferred pathway and the

mechanism of peptide dissociation. The preferred pathway is characterized by the formation

of sequential hydrogen bonding and salt bridging interactions between several key arginine

amino acids and the viral RNA nucleotides. Specifically, I identified one arginine amino acid

(R8) of the peptide to play a significant role in the recognition mechanism of the peptide by

the viral RNA molecule.

5.2 Significance

In the studies presented in this chapter, I reveal key interactions that are involved in the

recognition of a viral RNA molecule by a peptide which have not been reported previously.
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Specifically, I discovered that the recognition of the peptide depends on the formation of salt

bridges and hydrogen bonds that are formed between the arginine residues and the RNA

backbone. I also demonstrated that these interactions formed a network of salt bridges that

were spanning the major groove of RNA. These results enhance our understanding of the

importance of arginine amino acids, or other basic amino acids, in the design of peptides

that target viral RNA molecules.

5.3 Background

Numerous functions of RNA molecules depend on their interactions with proteins [248],

which play a crucial role in various phases of the cell life cycle, including gene regulation

[249, 250], transcription [251, 252], and translation [253]. Consequently, misregulation of

RNA-protein interactions can lead to neurological disorders, cardiovascular problems, and

oncogenic diseases [29,50–52]. Moreover, the interactions between viral RNA molecules and

cellular or viral proteins are involved in the replication and transcription processes of various

viruses, for example, HIV, HCV, and SARS CoV/CoV2 [59, 254–256]. Therefore, resolving

the mechanistic details of RNA-protein interactions is essential for understanding various

biological and biophysical processes [29, 50–52,59,249–256].

Proteins and short peptides often interact with RNA molecules by adopting an α-helical

or a β-sheet structure that can fit into the binding pocket of an RNA molecule [257–259,

259–263] or through the interactions with the RNA backbone [100,248,264]. Specifically, the

RNA-peptide complexes are considered good model systems to study RNA-protein interac-

tions and to probe the recognition mechanisms [265, 266]. A general RNA binding protein

domain is the arginine-rich motif (ARM) which is found in ribosomal proteins [267], ribonu-

cleoproteins [248, 268], and viral proteins [59, 269]. The ARMs are short peptides that have

a high concentration of arginine residues and have high affinity and specificity of interaction

with their targets by adopting various conformations including α-helical, β-hairpin, or ex-
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tended conformations [270]. The interactions between these ARMs and RNA molecules have

been investigated using NMR spectroscopy [59,93,257,271–274], CD spectroscopy [275,276],

X-ray crystallography [95, 96], and combinations of experimental and computational meth-

ods [270,277–279]. Several comprehensive investigations have been conducted on the nucleic

acid-protein interfaces using structural and shape analyses to establish common features

across known complexes [280–283]. Overall, these studies showed that the RNA-protein

interactions are governed by sequence (e.g. composition of amino acids/nucleotides) or by

shape (e.g. recognition of specific shapes of proteins).

However, the role of dynamics in RNA-protein interactions is still not fully understood

due to challenges in capturing all the required parameters for describing a complex biomolec-

ular system [47, 49, 264]. Computational methods such as MD simulations that are rooted

in biophysical modeling are promising tools to enhance our knowledge of the recognition

mechanism between RNA molecules and proteins by characterizing molecular motions at

the atomic level [284]. Although several RNA-protein complexes [277, 278, 285–316] have

been investigated using MD simulations, only a few studies have been conducted to investi-

gate the interactions in viral RNA-protein complexes [99, 317–322]. Specifically, the studies

on the viral RNA-protein complexes highlighted the importance of electrostatic interactions

and the interactions between water molecules and proteins. However, most of these stud-

ies [99, 317–320] were reported over a decade ago and the force fields for nucleic acids and

proteins have significantly improved in recent years [36]. Additionally, the time-scales of con-

ventional MD simulations performed in these studies were limited. Thus, we still lack a full

understanding of the viral RNA-protein recognition mechanisms and of specific interactions

that need to be created or disrupted during the binding/unbinding process.

To address these questions, I applied non-equilibrium SMD simulations to study the

binding/unbinding process of a helical arginine-rich peptide (RSG-1.2) from a conserved

HIV-1 RRE RNA segment which is located in the env coding region and plays an essential

role in viral replication (Figure 5.1A) [92]. The RSG-1.2 peptide is a mutated Rev peptide
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Figure 5.1: Structural details and system setup. (A) The sequences of the HIV-1 RRE
RNA and the RSG-1.2 peptide are shown. (B) A side-view of the binding pocket is shown
where the peptide is rendered as a cyan tube with the side-chains of key residues highlighted
in stick representations. Each key nucleotide in the RNA and each key amino acid in the
peptide are highlighted in a unique color and labeled. (C) A side-view of the RRE RNA
(gray cartoon) and the peptide (cyan cartoon) complex is shown. A transparent gray sphere
represents an approximate volume of the peptide binding pocket. Each arrow corresponds
to the peptide dissociation coordinate/direction for one of the four pathways (PWs): PW1
(red), PW2 (cyan), PW3 (orange), and PW4 (blue).
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with higher binding affinity and specificity in comparison to the canonical Rev peptide which

binds RRE RNA [92] and is a good model system for studying RNA-protein interactions

(Figure 5.1B) [266]. Specifically, I conducted SMD simulations along four distinct pathways

(Table E.1; Figures 5.1C and E.1). In these simulations, I observed the formation of specific

interactions and the sequence in which those interactions were forming or rupturing during

the dissociation process of the peptide along each PW. Based on simulation results, I propose

the preferred pathway as well as the mechanism of recognition of the peptide.

5.4 Methods

5.4.1 System Setup and Equilibration Details

In this work, I have studied the (un)binding process of the RSG-1.2 helical peptide from

the HIV-1 RRE RNA using SMD simulations along four different pathways (Figure 5.1C).

I obtained the initial coordinates for the system from the first frame of the NMR structure

deposited in the Protein Data Bank (PDB code: 1G70) [93]. I centered the RNA/peptide

complex at the origin and rotated to align the dissociation direction of the peptide in each

pathway along the same axis (Figure E.1). I then solvated each system in a periodic simu-

lation domain of TIP3P water molecules (Table E.1; Figure E.1). I neutralized the overall

charge of the system with 27 Na+ ions.

I energy minimized the system via the steepest descent minimization for 1000 steps

that was followed by 500 cycles of conjugate-gradient minimization. To equilibrate the box

volume, I conducted a 500 ps MD simulation in the NPT ensemble with a 2 fs timestep. I

maintained the temperature and pressure at 310 K and 1 atm using the Langevin thermostat

and the Nos-Hoover barostat in all MD and SMD simulations. I used periodic boundary

conditions in all simulations and computed the electrostatic interactions using the particle

mesh Ewald method. For the van der Waals interactions, I used a cut-off of 10 Å with

switching initiated at 8 Å. I applied weak restraints to the phosphorous (P) atoms in the

RNA backbone to prevent the overall rotation and translation of the RNA molecule. I carried
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out all simulations using the NAMD [152] software package combined with the Amber force-

field for RNA (RNA.ROC) [157] and for the peptide (ff14sb) [161]. I used the TIP3P water

model [159] for the solvent and the Li/Merz parameters for the ions [160]. I analyzed all

trajectories using the VMD and CPPTRAJ software [184,185].

5.4.2 SMD Simulations

To study the dissociation of the peptide along each of the four pathways, I performed con-

stant velocity SMD (cv-SMD) simulations, referred hereafter as SMD simulations. I provide

additional details on the SMD method in section 2.4.1. To select the four dissociation path-

ways, I considered a sphere which approximated the volume of the binding pocket (gray

sphere in Figure 5.1C). I then selected points on the surface of the sphere that were radi-

ally separated by ∼13 Å, to prevent overlap with the RNA molecule. The arrows that are

shown in Figure 5.1C pass through each of the defined points and represent unique reaction

coordinates of dissociation along each of the four pathways. I used the coordinates from the

end of the initial MD simulations for subsequent SMD simulations in the NPT ensemble.

Specifically, for each of the four pathways, I conducted 75 SMD simulations, each of which

was 13 ns long, thereby resulting in a total simulation time of 3900 ns.

Consistent with the stiff-spring approximation [194], I applied a harmonic external force

with a spring constant of k = 12 kcal mol-1 Å-2 that was attached to the center of mass of

the peptide residues Gly11 through Arg22. After testing various values, I chose a pulling

velocity of 0.00625 Å/ps. I also applied a harmonic restraint to prevent the rotation of

the peptide during dissociation in SMD simulations. As the reference orientation angle, I

used the initial coordinates of the peptide and a force constant of 3 kcal mol-1deg-2 for the

harmonic potential. I also applied restraints to the atoms forming hydrogen bonds in the

peptide residues Gly11 through Arg22 to maintain the secondary structure of the peptide

during the dissociation. The configurations were saved every ps and the SMD output was

saved every 20 fs.
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5.4.3 PMF Calculation

I followed the protocol developed by Jensen et al. [192], and calculated the PMF using the

exponential averaging of the Jarzynski’s equality presented in section 2.4.1 (equation 2.13).

5.4.4 Interaction Energies and Salt Bridges

I also computed the non-bonded interaction energies between a specific amino acid of the

peptide and a specific nucleotide of the RRE RNA. In particular, I calculated the vdW

energy between all atoms in the following pairs of amino acids and nucleotides: Arg8/R8

and U66; Arg15/R15 and U72; Arg17/R17 and A68; Arg18/R18 and A68.

I also analyzed a network of hydrogen bonding and salt bridging interactions formed

between a specific arginine amino acid and a specific RNA nucleotide. Hydrogen bonds were

defined between a hydrogen atom of the arginine amino acid and a heavy atom (oxygen

or nitrogen atom) of the RNA nucleotide. Salt bridges were defined between a nitrogen

atom of the arginine amino acid and the oxygen atom of the phosphate group in the RNA

backbone. The definition and the cutoff value of 3.5 Å for hydrogen bonding and salt bridging

interactions were adopted from a previous study [99]. Specifically, I computed the salt bridge

distances between the atoms presented in Table 5.1.

5.5 Results

5.5.1 Thermodynamics of Peptide Dissociation

Using non-equilibrium cv-SMD simulations, I studied the dissociation of the RSG-1.2 pep-

tide from the RRE RNA along four distinct pathways (Figure 5.1C). During these SMD

simulations, the peptide consistently followed the reaction coordinate (Figure E.2A). I also

calculated the unbinding force profiles to ascertain that the average force converged to zero,

corresponding to a fully dissociated state of the peptide and with no residual interactions

with the RNA. In Figure E.2B, I show the average force profiles with error bars for each
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Table 5.1: Details on salt bridging interactions. The details on the atom of the amino
acid (Peptide) and the atom of the nucleotide (RNA) that participate in salt bridging inter-
actions are presented for each pathway (PW).

PW Peptide RNA
1 NH2/R15 O1P/U45

2

NH1/R8 O1P/G48
NH2/R14 O2P/A68
NH2/R15 O2P/U45
NH1/R15 O1P/C44

3
NH2/R8 O2P/A68
NH2/R14 O2P/A68
NH2/R15 O2P/G42

4

NH1/R8 O1P/U72
NH2/R14 O2P/A68
NH1/R14 O1P/C69
NH2/R15 O1P/C44

pathway which show that the average force for the dissociation of the peptide converged to

zero after ∼35-40 Å depending on the pathway. The convergence to zero is further ascer-

tained by computing the distributions of force values after 40 Å for each pathway that reveal

a mean of zero (Figure E.3). Then, I computed the non-equilibrium work required for the

dissociation of the peptide from each of the 75 simulations for all four pathways (Figures

E.4 and E.5). The resulting work distributions were used to estimate the free-energy/PMF

profile along the reaction coordinate for each pathway (Figure 5.2B) using the Jarzynski’s

equality [191] that relates the non-equilibrium work to the equilibrium free-energy difference

(∆G). Since non-equilibrium trajectories with the least work have the highest contribution

to the equilibrium free-energy difference estimated using the Jarzynski’s equality, I provide

mechanistic details from these trajectories.

The intermediate steps of the peptide dissociation in each pathway are quantitatively

described using the unbinding force profiles (Figure 5.2A). At the beginning of each SMD

simulation (r = 0 Å), the peptide was located in the bound state, interacting with the

RNA nucleotides in the binding pocket (Figure 5.1B). In particular, the R8 amino acid

was initially interacting with the U66, G64, and A52 nucleotides; the R14 amino acid was
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Figure 5.2: The unbinding force and the free-energy profiles. (A) The traces of the
averaged unbinding force along each pathway are shown: PW1 (red), PW2 (cyan), PW3
(orange), and PW4 (blue). (B) The free-energy profile along each pathway is shown. See
also Figures E.2 and E.6.

interacting with the G70 nucleotide; the R15 amino acid was interacting with the A73 and

U72 nucleotides; and the R17 amino acid was initially interacting with the A68 nucleotide

(Figure 5.1B). A gradual increase in the external force values for each pathway (Figure 5.2A)

indicates that the peptide began to dissociate from the binding pocket by overcoming the

interactions with the binding pocket nucleotides. The peak force values correspond to the

stage when the peptide has moved out of the binding pocket by rupturing key interactions
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with the RNA. The external force values then decreased as the peptide was at a distance

of ∼35-40 Å when the force values on average converged to zero signifying that the peptide

reached the dissociated state (Figure 5.2A).

I further analyzed the unbinding force profiles which exhibited different magnitudes of

the maximum force of dissociation in each pathway. Specifically, I observed that PW1 had

the highest value of the maximum force of dissociation occurring at ∼5 Å which was equal

to ∼2377 pN (PW1 in Figure 5.2A). The force profile in PW2 exhibited the second highest

value of the maximum force of dissociation at ∼4.5 Å which was equal to ∼1850 pN (PW2

in Figure 5.2A). Additionally, I detected a smaller peak of the unbinding force at ∼7.2 Å in

PW2 which was equal to ∼1090 pN. I observed that PW3 exhibited the third highest value

of the maximum force of dissociation at ∼5.2 Å corresponding to a force value of ∼1600 pN

(PW3 in Figure 5.2A). Moreover, I detected a smaller force peak value at 1.3 Å in PW3

corresponding to ∼1120 pN. Finally, I observed the lowest value of the maximum force of

dissociation in PW4 which occurred at at ∼3.8 Å and was equal to ∼1360 pN (PW4 in

Figure 5.2A). I also located smaller peaks in force at ∼1.2 Å and at ∼6.6 Å which were both

equal to ∼950 pN. I detected a variability in the location of the maximum force value in the

individual trajectories. The maximum force values were located between 4.6 Å and 5.4 Å in

PW1, between 4.3 Å and 4.8 Å in PW2, between 4.9 Å and 5.4 Å in PW3, and between 3.6

Å and 4.5 Å in PW4 (Figure E.2B). I observed that the unbinding force profiles converged

to zero at 35 Å for PW1 and PW2, and at 40 Å for PW3 and PW4 (Figures 5.2A and E.2B).

I report the free-energy profiles for each pathway (Figure 5.2B) which provide additional

information on the thermodynamics of peptide dissociation, including the free-energy barri-

ers, and the metastable states. All reported free-energy values are measured with respect to

the initial state. I also show a zoomed view on the free-energy profile for r values between

0 Å and 15 Å along with the first-order derivative of the free-energy profile computed every

100 points for the same range of r values in each pathway (Figure E.6). The first-order

derivative provides information on the instantaneous rate of change of the free-energy profile
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and I defined the wells in the first-order derivative profiles as the metastable state in the

free-energy (M; Figure E.6) and the barriers separating these wells as the free-energy barriers

(‡; Figure E.6). The point when the first-order derivative converges to zero corresponds to a

point in the free-energy profile when there is no change and the free-energy profile plateuas.

I observed that the highest free-energy barrier of dissociation was in PW1 which was

equal to 41 ± 3.67 kcal/mol at ∼4.2 Å with an additional free-energy barrier of 61.67 ±

7.41 kcal/mol at 6 Å (red ‡; Figure E.6A). I observed the second highest free-energy barrier

in PW2 corresponding to 37.51 ± 2.62 kcal/mol at ∼4.4 Å with an additional free-energy

barrier of 58.08 ± 5.96 kcal/mol at ∼7.5 Å (cyan ‡; Figure E.6B). In PW3, I observed several

free-energy barriers at ∼1 Å and at ∼4.6 Å corresponding to the free-energy values of 4.49

± 0.18 kcal/mol and 31.47 ± 3.77 kcal/mol, respectively (orange ‡; Figure E.6C). Finally,

in PW4, I observed four free-energy barriers at ∼0.8 Å, at ∼3.8 Å, at ∼5.9 Å, and at ∼8.5

Å corresponding to the free-energy values of 3.66 ± 0.34 kcal/mol, 24.46 ± 2.08 kcal/mol,

38.46 ± 3.59 kcal/mol, and 50.48 ± 5.99 (blue ‡; Figure E.6D).

I also observed the formation of the metastable states in all pathways (labeled M in

Figure E.6). I located the metastable states at ∼5.4 Å in PW1 (red M; Figure E.6A), at

∼5.4 Å in PW2 (cyan M; Figure E.6B), at 1.8 Å in PW3 (orange M; Figure E.6C), and

at 1.3 Å, at 5.1 Å and at 6.9 Å in PW4 (blue M; Figure E.6D). The mechanistic details

of each metastable state are provided in the following section. Finally, I observed that the

free-energy differences between the initial states (r = 0 Å) and the dissociated states (r

= 50 Å) were 96.47 ± 12.63 kcal/mol for PW1, 96.1 ± 10.95 kcal/mol for PW2, 91.83 ±

9.81 kcal/mol for PW3, and 92 ± 11.32 kcal/mol for PW4. Thus, the resulting free-energy

differences (∆G) have similar values, falling within the range of error bars for each pathway.

Overall, I observed that PW4 has the smallest free-energy barrier for dissociation of the

peptide while having additional metastable states in comparison to other pathways.
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Figure 5.3: Mechanistic details of PW1. (A) The hydrogen bond distances between the
NH2 atom of R8 and the O6 atom of G64 (red trace) and between the NH2 atom of R8
and the O6 atom of U66 (blue trace). (B) The hydrogen bond distances between the NH1
atom of R14 and the O6 atom of G70 (red trace) and between the NH1 atom of R14 and the
O6 atom of G48 (blue trace). (C) The hydrogen bond distance between the NH2 atom of
R15 and the O4 atom of U45 (red trace) and the salt bridge between the NH2 atom of R15
and the O1P atom of U45 (blue trace). All metrics are computed from the simulation with
the lowest work value. Darker colors signify regions of interest. Lightly shaded horizontal
lines indicate initial values of the corresponding distance. Each panel is accompanied with
snapshots highlighting the corresponding interactions extracted from a time point marked by
an arrow. Each amino acid, nucleotide, and an atom that participate in hydrogen bonding
or salt bridging interactions are uniquely colored.
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5.5.2 Mechanistic Details: Peptide Dissociation Pathways

In the initial conformation, the peptide is bound in the major groove of the RRE RNA

between the A75-U45 and U66-A52 base pairs while largely maintaining an α-helical confor-

mation with five residues constituting a coiled segment at the N-terminus (Figure 5.1B) [93].

The A68 and U72 nucleotides were in the flipped-out configurations, recognizing the peptide

through stacking interactions with the R15 and R18 amino acids, respectively (Figure 5.1B).

The Hoogsteen edge of the G70 and A73 nucleotides formed hydrogen bonding interactions

with the R14 and R15 amino acids, respectively. The R8 amino acid from the coiled segment

of the peptide interacts with the U66 nucleotide while the R17 and R18 amino acids also

form contacts with the RNA backbone.

During the early part of the lowest-work SMD simulation in PW1, the peptide began

dissociating out of the binding pocket (Figure E.7A) which was also characterized by weak-

ening of interactions between several key amino acids and nucleotides (Figure E.8A). In

particular, I observed that the van der Waals interaction energy between the R8 amino acid

and the U66 nucleotide, the R15 amino acid and the U72 nucleotide, the R17 amino acid

and the A68 nucleotide approached zero (Figure E.8A), indicating negligible interactions

between the residues. Specifically, at t = ∼0.6 ns, the hydrogen bond between the NH2

atom of R8 amino acid and the O6 atom of G64 weakened (red trace; Figure 5.3A) and a

new hydrogen bond was formed between the NH2 atom of R8 amino acid and the O6 atom

of U66 (blue trace; Figure 5.3A). Additionally, at t = ∼0.6 ns, the hydrogen bond between

the NH1 atom of R14 amino acid and the O6 atom of G70 broke (red trace; Figure 5.3B)

which led to the formation of a hydrogen bond between the NH1 atom of R14 amino acid

and the O6 atom of G48 (blue trace; Figure 5.3B). This sequence of events was a result of

the peptide leaving the initial binding pocket and was coupled with the formation of new

hydrogen bonding interactions between the R8 and R14 amino acids and the U66 and G48

nucleotides, respectively (Figures 5.3A,B).

At t = ∼1 ns, the peptide was located in the proximity of the backbone atoms of the
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C44, U45, and G46 nucleotides that constitute the major groove of the RNA (Figure E.9)

and the van der Waals interactions between the R8, R15, and R17 amino acids, and the

U66, U72, and A68 nucleotides diminished (Figure E.8A). This was also characterized by

the rupture of the hydrogen bonds that were previously formed at t = ∼0.6 ns between the

NH2 atom of R8 amino acid and the O6 atom of U66, and between the NH1 atom of R14

amino acid and the O6 atom of G48 (blue trace; Figure 5.3A,B). The state when the peptide

was located in the proximity of the backbone atoms of the C44, U45, and G46 nucleotides

corresponds to a weak metastable state in the free-energy profile (red M; Figure E.6A).

At ∼1.4 ns, the peptide displaced the backbone atoms of the C44, U45, and G46 nu-

cleotides and was located in the partially dissociated state, while the R8, R14, and R15

amino acids were still in the vicinity of the RRE RNA with the possibility to interact with

the C44, U45, and G46 nucleotides (Figure E.7A). However, at t = ∼1.9 ns, I observed the

formation of only one salt bridge that was formed between the NH2 atom of R15 amino

acid and the O1P atom of U45 (blue trace; Figure 5.3C) which was preceded by the rupture

of the hydrogen bond at t = ∼0.95 ns between the NH2 atom of R15 amino acid and the

O4 atom of U45 while the peptide was still located in the binding pocket (red trace; Figure

5.3C). The peptide was free of any interactions with the RNA at a distance of 35 Å (t = 5.6

ns).

In PW2, I observed different mechanistic details underlying the dissociation process in

comparison to PW1 which likely contributed to a lower free-energy barrier to dissociation

(Figure 5.2B). As the peptide began dissociating out of the binding pocket (Figure E.7B),

the van der Waals interactions between the R8 amino acid and the U66 nucleotide were

broken at t = ∼0.1 ns (purple trace; Figure E.8B). This event occurred simultaneously with

the rupture of the hydrogen bond between the NH2 atom of R8 amino acid and the O6 atom

of G64 at t = ∼0.1 ns (red; Figure 5.4A). The R8 amino acid did not form any stable close

contact interactions until t = ∼0.9 ns, when the NH1 atom of R8 formed a salt bridge with

the O1P atom of G48. At ∼0.73 ns, the hydrogen bond between the NH1 atom of R14 and

96



Figure 5.4: Mechanistic details of PW2. (A) The hydrogen bond distance between the
NH2 atom of R8 and the O6 atom of G65 (red trace) and the salt bridge between the NH1
atom of R8 and the O1P atom of G55 (blue trace). (B) The hydrogen bond distance between
the NH1 atom of R14 and the O6 atom of G70 (red trace) and the salt bridge between the
NH2 atom of R14 and the O2P atom of A68 (blue trace). (C) The salt bridges between NH1
atom of R15 and the O1P atom of U45 (red trace) and between the NH2 atom of R15 and
the O2P atom of C44 (blue trace). cf. Figure 5.3 for all other details.
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the O6 atom of G70, that was preformed in the initial binding pocket, broke and the NH2

atom of R14 formed a salt bridge with the O2P atom of A68 at t = ∼0.75 ns (Figure 5.4B).

Thus, two arginine amino acids, R8 and R14, formed salt bridging interactions at ∼0.9 ns,

creating a network of salt bridges from the G48 nucleotide to the A68 nucleotide (Figure

E.10A). This conformation also resulted in a metastable state which was highlighted in the

free-energy profile at ∼6.5 Å (cyan M; Figure E.6B).

In PW2, the NH1 atom of R15 formed a salt bridge with the O1P atom of C44 (red

trace; Figure 5.4C) when the peptide was in the vicinity of the backbone atoms of the C44,

U45, and G46 nucleotides at t = ∼1 ns (Figure E.7B). Importantly, at t = ∼1.3 ns, the NH2

atom of R15 formed a salt bridge with the O2P atom of U45 (blue trace; Figure 5.4C). Thus,

between t = ∼1.3 ns and t = ∼1.5 ns, the NH1 and NH2 atoms of R15 were fluctuating

to simultaneously form two salt bridges with the O1P and O2P atoms of C44 and U45

nucleotides, respectively (Figure 5.4C). This motion was another factor that contributed to

a decrease in the free-energy barrier in comparison to PW1. In addition to that, the rupture

of the hydrogen bond between the NH2 atom of R8 amino acid and the O6 atom of G64

at t = ∼0.1 ns and the rupture of the van der Waals interactions between the R8 amino

acid and the U66 at t = ∼0.1 ns, also contributed to a decrease in the free-energy barrier in

comparison to PW1. The peptide was free of any interactions with the RNA at a distance

of 35 Å (t = 5.6 ns).

In PW3, the peptide required ∼3 ns to escape the binding pocket, while in PW1 and

PW2 the peptide escaped the binding pocket in ∼2 ns (Figures E.7A-C). This was in part

due to the interactions of various amino acids with the A68 nucleotide in PW3 (Figure E.7C)

as well as due to the interactions between the R8 amino acid and the U66 nucleotide that I

characterized using the van der Waals energy (purple trace; Figure E.8C). These interactions

resulted in a partial unfolding of the peptide coil between t = ∼1.8 ns and t = ∼3 ns (Figure

E.7C).

During the first 0.8 ns of the simulation, the peptide disrupted interactions between the
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Figure 5.5: Mechanistic details of PW3. (A) The hydrogen bond distances between the
NH3 atom of R8 and the O6 atom G64 (red trace) and between the NH2 atom R8 and the
O4 atom of U66 (blue trace) and the salt bridge between the NH2 atom of R8 and the O2P
atom of A68 (green trace). (B) The hydrogen bond distance between the NH2 atom of R14
and the O6 atom of G70 (red trace) and the salt bridge between the NH2 atom of R14 and
the O2P atom of A68 (blue trace). (C) The hydrogen bond distances between the NH1 atom
R15 and the N7 atom of A73 (red trace) and between the NH2 atom of R15 and the O4
atom of U72 (blue trace) and the salt bridge between the NH2 atom of R15 and the O2P
atom of G42 (green trace). cf. Figure 5.3 for all other details.
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R18 amino acid and the A68 nucleotide, as characterized by the van der Waals energy (brown

trace; Figure E.8C), and started dissociating. A hydrogen bond between the NH2 atom of

R8 amino acid and the O6 atom of G64 weakened at t = ∼0.9 ns (red trace; Figure 5.5A)

and the NH2 atom of R8 amino acid started forming a new hydrogen bond with the O4 atom

of U66 at t = ∼1 ns (blue trace; Figure 5.5A). At t = ∼0.9 ns, the hydrogen bond between

the NH2 atom of R14 amino acid and the O6 atom of G70 ruptured (red trace; Figure 5.5B)

and the NH2 atom of R14 amino acid formed a salt bridge with the O2P atom of A68 (blue

trace; Figure 5.5B).

At t = ∼0.25 ns, the NH1 atom of R15 amino acid stopped forming the hydrogen bond

with the N7 atom of A73, and the NH2 atom of R15 formed a hydrogen bond with the O4

atom of U72. Thus, the combined interactions between the NH2 atom of R8 amino acid and

the O4 atom of U66, between the NH2 atom of R14 amino acid and the O2P atom of A68,

between the NH2 atom of R15 amino acid and the O4 atom of U72 created a network of salt

bridging and hydrogen bonding interactions at ∼1 ns and lasted for ∼0.5 ns (Figure E.10B).

At t = ∼1.7 ns, the hydrogen bond between the NH2 atom of R15 amino acid and the

O4 atom of U72 ruptured (blue trace; Figure 5.5C) and a salt bridge was formed between

the NH2 atom of R15 and the O2P atom of the G42 which broke at t = ∼2.7 ns (green

trace; Figure 5.5C). At t = ∼2.7 ns, a salt bridge was formed between the NH2 atom of R8

amino acid and the O2P atom of A68 which lasted for ∼0.2 ns (green trace; Figure 5.5A).

Thus, salt bridging interactions were forming during every step of the dissociation process

in PW3. The peptide was free of any interactions with the RNA at a distance of 40 Å (t =

6.4 ns).

Finally, in PW4, which had the lowest free-energy barrier to dissociation (Figure E.6D),

the mechanism of dissociation was similar to PW3 but I observed several key differences.

During the first 0.8 ns of the simulation, the interactions between the R8 amino acid and the

U66 nucleotide and the R18 amino acid and the A68 nucleotide weakened, as characterized

by the van der Waals interaction energy (Figure E.8D). The NH2 atom of R8 amino acid
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Figure 5.6: Mechanistic details of PW4. (A) The hydrogen bond distances between the
NH2 atom of R8 and the O6 atom of G64 (red trace) and between the NH2 atom of R8 and
the O6 atom of G70 (blue trace) and the salt bridge between the NH1 atom of R8 and the
O1P atom of U72 (green trace). (B) The hydrogen bond distance between the NH1 atom
of R14 and the O6 atom of G70 (red trace) and the salt bridges between the NH1 atom of
R14 and the O1P atom of C69 (blue trace) and between the NH2 atom of R14 and the O2P
atom of A68 (green trace). (C) The hydrogen bond distances between NH1 atom of R15
and the N7 atom of A73 (red trace) and between the O2 atom of R15 and the O2 atom of
U72 (blue trace) and the salt bridge between the NH2 atom of R15 and the O1P atom of
C44 (green trace). cf. Figure 5.3 for all other details.
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formed a hydrogen bond with the O6 atom of G64 at t = ∼0.35 ns and broke it at t =

∼0.55 ns (red trace; Figure 5.6A). After that, the R8 amino acid did not form any stable

interactions until t = ∼2 ns (Fig. S6D). At t = ∼0.8 ns, the hydrogen bond between the NH1

atom of R14 amino acid and the O6 atom of G70 ruptured (red trace; Figure 5.6B) and a salt

bridge was formed between the NH1 atom of R14 amino acid and the O1P atom of G69 (blue

trace; Figure 5.6B). At t = ∼0.65 ns, a hydrogen bond was formed between the NH2 atom

of R15 amino acid and the O2 atom of U72 (blue trace; Figure 5.6C) which was preceded by

the rupture of the hydrogen bond (at t = ∼0.6 ns) between the NH1 atom of R15 amino acid

and the N7 atom of A73 (red trace; Figure 5.6A). The salt bridge between the NH1 atoms of

R14 amino acid with the O1P atom of C69 and the hydrogen bond between the NH2 atom

of R15 amino acid with the O2 atom of U72 formed a network of salt bridging and hydrogen

bonding interactions at ∼0.8 ns (Figure E.10C) which corresponded to a metastable state

at ∼5.1 Å (blue M; Figure E.6D).

At t = ∼1.3 ns, the NH2 atom of R14 amino acid formed another salt bridge with the

O2P atom of A68 (green trace; Figure 5.6B). The NH2 atom of R15 amino acid ruptured

the hydrogen bond with the O2 atom of U72 and formed a salt bridge with the O1P atom

of C44 at t = ∼1.1 ns (Figure 5.6C). At t = ∼2 ns, the NH2 atom of R8 amino acid formed

a hydrogen bond with the O6 atom of G70 (blue trace; Figure 5.6A) and combined with the

salt bridge between the NH2 atom of R15 amino acid and the O1P atom of C44, the second

network of hydrogen bonding and salt bridging interactions was created in PW4 (Figure

E.10D) and corresponded to a metastable state at ∼6.9 Å (blue M; Figure E.6D). At t =

∼2.4 ns, a hydrogen bond between the NH2 atom of R8 amino acid and the O6 atom of G70

ruptured and a salt bridge was formed between the NH1 atom of R8 and the O1P atom of

U72 (green trace; Figure 5.6A). The peptide was free of any interactions with the RNA at a

distance of 40 Å (t = 6.4 ns).

Overall, I observed formation of unique interactions in each pathway, including the for-

mation of salt bridging and hydrogen bonding interactions. These observations suggest that
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there is a network of salt bridges and hydrogen bonds that was formed in each pathway, with

the exception of PW1 which had the smallest number of hydrogen bonds and salt bridges

formed in comparison to other pathways.

5.6 Discussion

I have studied the dissociation mechanism of the RSG-1.2 peptide from the RRE RNA along

four distinct pathways using non-equilibrium SMD simulations. Although, it has been previ-

ously proposed that the salt bridging interactions could be important for the recognition of

this peptide by the RRE RNA [99], there is no study on the binding/unbinding mechanism of

this peptide in the literature. I observed the formation of unique salt bridging and hydrogen

bonding interactions in each pathway that form in an ordered step-wise sequence where the

rupture of one interaction led to the creation of another interaction. I also estimated the

free-energy profiles for each pathway using the Jarzynski’s equality and observed distinct

free-energy barriers in each pathway.

I observed the highest free-energy barrier of dissociation in PW1 (Figure E.6A) which was

coupled with the displacement of the backbone atoms of the C44, U45, and G46 nucleotides

(Figure E.9). Moreover, I observed only one salt bridge formed during dissociation in PW1

(Table 5.1; Figure 5.3C). The formation of this salt bridge between the R15 amino acid of

the peptide and the U45 nucleotide of the RRE RNA was coupled with a weak recognition

of the peptide by the RNA.

Even though, the overall process of dissociation in PW2 was somewhat similar to PW1,

the free-energy barrier in PW2 was smaller than in PW1 (Figure E.6A,B). One of the key

differences between PW1 and PW2 was the interaction between the R8 amino acid and the

U66 nucleotide of the RNA that ruptured at t = ∼0.1 ns in PW2, as characterized by the

van der Waals interaction energy, while the rupture of the interaction between the R8 amino

acid and the U66 nucleotide only occurred at t = ∼0.8 ns in PW1 (purple traces; Figures

E.8A,B). I also observed an additional salt bridge in PW2 that was formed between the NH2
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atom of R15 amino acid and the O1P atom of C44 (red trace; Figure 5.4C). This interaction

was formed ∼0.5 ns earlier in PW2 in comparison to a similar type of interaction between

the NH2 atom of R15 amino acid and the O1P atom of U45 in PW1. The peptide passed in

close proximity to the C44 and U45 nucleotides in both pathways and a faster establishment

of a salt bridging interaction with an atom from one of these nucleotides is important for the

recognition of the RNA backbone for the peptide if it dissociates in the direction of PW1

or PW2. The earlier rupture of the interaction between the R8 amino acid and the U66

nucleotide as well as a lack of displacement of the backbone atoms of the C44, U45, and G46

nucleotides led to a decreased free-energy barrier in PW2.

The pathways PW3 and PW4 had smaller free-energy barriers in comparison to PW1

and PW2 (Figure E.6). It should be noted that in PW3 and PW4, the peptide required a

longer time to dissociate in comparison to PW1 and PW2 which was caused by additional

interactions that were forming between the flipped-out A68 nucleotide and the peptide, as

it was dissociating (Figures E.7C,D). These interactions were not formed in PW1 and PW2

because the peptide was dissociating in a direction away from the A68 nucleotide (Figures

E.7A,B). Moreover, the dissociation reaction coordinate in PW3 and PW4 was free of any

obstacles such as the atoms of the RNA backbone in the C44, U45, and G46 nucleotides

that were present in PW1 and PW2. Thus, a decrease in the free-energy barriers in PW3

and PW4 was achieved by reducing any steric overlap or the displacement of the atoms in

the major groove of the RNA. Therefore, these two pathways, PW3 and PW4, are preferred

in comparison to PW1 and PW2 due to lower free-energy barriers for peptide dissociation

(Figure E.6).

However, PW4 exhibited an even smaller free-energy barrier of dissociation by ∼7 kcal/-

mol in comparison to PW3, meaning that the pathway PW4 is further preferred over PW3.

This decrease in free-energy barrier in PW4 is likely a result of the behavior of the R8 amino

acid which did not form any stable interactions between ∼0.5 ns and ∼2 ns in PW4 (Figure

5.6A) while it was forming stable hydrogen bonding interactions in that time range in PW3
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(red and blue traces; Figure 5.5A). This behavior of the R8 amino acid was also reflected in

the van der Waals interaction energies (purple traces; Figures E.8C,D) which showed that

the R8 amino acid had stronger interactions with the U66 nucleotide in PW3 in comparison

to PW4.

By analyzing the salt bridging and hydrogen bonding interactions in each pathway, I

determined that R8, R14, and R15 were the most critical amino acids for the recognition of

the peptide by the RRE RNA. Each of these amino acids were involved in a complex network

of salt bridges and hydrogen bonds in PW2, PW3, and PW4 (Figures 5.4,5.5,5.6 and E.10).

Moreover, these amino acids interacted with the RNA nucleotides in a step-wise pattern in

which the rupture of existing interactions resulted in the formation of new interactions with

other nucleotides during the dissociation process. PW3 and PW4 exhibited the formation of

additional hydrogen bonds and salt bridges in comparison to PW1 and PW2 which resulted

from the extended dissociation timescales.

In particular, I believe that the R8 amino acid was the most critical amino acid in the

least free-energy barrier pathway PW4. Firstly, as mentioned before, the R8 amino acid had

decreased interactions with the nucleotides of the RRE RNA between ∼0.5 ns and ∼2 ns

which led to a decreased free energy barrier in PW4. Secondly, after the peptide dissociated

from the initial binding pocket, the R8 amino acid was the only amino acid that was forming

a stable interaction with the RNA nucleotide after ∼3 ns. Specifically, the NH2 atom of the

R8 amino acid formed a salt bridge with the O1P atom of the U72 nucleotide between ∼3 ns

and ∼3.4 ns (green trace; Figure 5.6A). Thus, I hypothesize that for the reverse process of

peptide binding along PW4, the R8 amino acid will be the first amino acid to form a stable

interaction with the U72 nucleotide of the RRE RNA.

Additionally, it is critical to note that the RSG-1.2 protein was synthesized by mutagene-

sis from the Rev peptide [323] that binds the RRE RNA during the HIV-1 replication process.

One important mutation in that study, was the mutation of the arginine amino acid in the

Rev protein at position 9 to proline (P9). It was hypothesized that this mutation resulted
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in a decrease of electrostatic contacts between the arginine amino acids in the N-terminus of

the peptide and could be potentially coupled with the increased binding affinity to the RRE

RNA [323]. However, it was not clear how the RSG-1.2 peptide recognized the RRE RNA

during the binding process and which amino acids contributed the most to this process. In

our work, I observed that the R8 amino acid, which is located next to the P9 amino acid in

the polypeptide chain, formed stable hydrogen bonding and salt bridging interactions in each

pathway. The R8 amino acid also was the last amino acid to interact with the RRE RNA

during the dissociation and thus could be the first to interact with the RRE RNA during

the binding process. Thus, the ability of the R8 amino acid to form these interactions was

rooted in its flexibility that was coupled with the formation of various interactions with the

RRE RNA nucleotides and resulted in the increased binding affinity and specificity with the

RRE RNA in comparison to the Rev protein.

5.7 Conclusion

The (un)binding of proteins or short peptides in the RNA-protein complexes is an important

biophysical process that is poorly understood. I used non-equilibrium cv-SMD simulations to

study the dissociation mechanism of a helical peptide along four different pathways from the

RRE RNA binding pocket to obtain key insights into the peptide binding/unbinding process

and the recognition mechanism of this peptide. In particular, I investigated the mechanistic

details of each pathway to identify interactions that are important for the recognition of

proteins/peptides. I analyzed the resulting free-energy profiles and observed that the final

free-energy differences were 96.47 ± 12.63 kcal/mol for PW1, 96.1 ± 10.95 kcal/mol for

PW2, 91.83 ± 9.81 kcal/mol for PW3, and 92 ± 11.32 kcal/mol for PW4. Consistent with

the similar initial (bound) and final (unbound) states of the peptide in each pathway, the

resulting free-energy differences (∆G) are consistent among different pathways. However,

the free-energy profiles for each pathway exhibited different magnitudes of the free-energy

barriers for dissociation of the peptide leading to the observation that PW4 is the preferred
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pathway of dissociation. In addition, the peptide dissociation was coupled with the forma-

tion of metastable states that resulted from a network of salt bridges formed between the

arginine amino acids and the phosphate groups of the RNA backbone as well as from the

hydrogen bonding. Specifically, I identified that the R8, R14, and R15 amino acids were

important for the peptide recognition by the RRE RNA. Our results also suggest the R8

amino acid to be the most critical amino acid out of the three arginine amino acids due to

its increased flexibility and the ability to form a primary/terminal salt bridging interaction

with the U72 nucleotide during the binding/unbinding process in PW4. These observations

are potentially important for the recognition mechanism between the RNA molecules and

the proteins/peptides that have charged amino acids.

5.8 Supporting Information

Additional data and figures are shown in Appendix E along with the information about

the helicity of the peptide in the absence of the RRE RNA. In Appendix F, I also provide

example scripts that I used to set up, conduct, and analyze my simulations. I have also

included in Appendix F the scripts for creating figures.

5.9 Publication

The work described in this chapter has been submitted for review:

Levintov, L., and Vashisth, H. (2021). Role of Salt-bridging Interactions in Recognition of

Viral RNA by Arginine-rich Peptides. Biophys. J. (Under review).
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CHAPTER 6

STUDY ON THE BASE FLIPPING MECHANISM IN RNA MOLECULES

6.1 Abstract

Base flipping is a key biophysical event involved in recognition of various ligands by RNA

molecules. However, the mechanism of base flipping in RNA remains poorly understood, in

part due to the lack of atomistic details on complex rearrangements in neighboring bases. For

studies described in this chapter, I applied TPS methods to study base flipping in a dsRNA

molecule that is known to interact with RNA-editing enzymes through this mechanism. I

obtained an ensemble of 1000 transition trajectories to describe the base-flipping process. I

used the likelihood maximization method to determine the refined RC consisting of two CVs,

a distance and a dihedral angle between nucleotides that form stacking interactions with the

flipping base. The free energy profile projected along the refined RC revealed three minima,

two corresponding to the initial and final states and one for a metastable state. I suggest

that the metastable state likely represents a wobbled conformation of nucleobases observed

in NMR studies that is often characterized as the flipped state. The analyses of reactive

trajectories further revealed that the base flipping is coupled to a global conformational

change in a stem loop of dsRNA.

6.2 Significance

In the studies presented in this chapter, I determined the refined RC that can characterize

base flipping mechanism in RNA molecules. I investigated a set of CVs which were previ-

ously used as single-variable RC models to characterize base flipping and I revealed that the
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refined RC is a more complex combination of two CVs. Additionally, using the refined RC,

I observed that flipping of a single base resulted in local rearrangements in the neighboring

bases which in return were coupled with global structural transitions of the RNA stem loop.

I suggest that the refined RC could be applied to study base flipping mechanism in other

RNA systems using different enhanced sampling methods.

6.3 Background

Interactions between nucleic acids and proteins play an essential role in various cellular

processes including post-transcriptional modifications [324–326], repair mechanisms [327,

328], and replication [329, 330]. Some proteins bind to nucleic acids without introducing

significant structural changes but in other cases binding is associated with large distortions

in the structures of nucleic acids. Among other examples are enzymes that bind to nucleic

acids upon opening of a specific base pair to perform a chemical reaction on the target base

[103, 331]. It means that the bases involved in chemical modifications have to be accessible

to enzymes, preferably in a flipped out (extrahelical) state. However, it remains unclear

whether base flipping occurs spontaneously or not [332, 333]. Therefore, resolving atomistic

details of a base flipping event remains a fundamental problem of interest in biophysics of

nucleic acids.

Studying spontaneous base flipping is a challenging process both for experimental and

computational methods due to a lower likelihood of observation of flipping in a single nu-

cleobase in otherwise stable structures of nucleic acids. On the experimental side, NMR

spectroscopy has become the leading method to study dynamics in nucleic acids due to its

ability to probe fluctuations at the level of individual nucleobases [46–48].Specifically, NMR

has been applied to study the base flipping mechanism through the imino proton exchange

assay [108] where the exchange of the imino proton with the catalysts in the solution is

assumed to occur only when the base flips out [109]. It has been applied to study base
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flipping [73, 100, 101], along with other experimental techniques including X-ray crystallog-

raphy [103], fluorescence-based assays [104, 105], melting point studies [106], and combined

approaches [107,108]. In DNA, NMR studies have shown that the lifetime of the extrahelical

state of a base can be on the order of µs, and that of the intrahelical state in the range of

ms depending on the stability of individual bases [109, 110]. Additionally, several studies

revealed that the target imino proton on the base becomes accessible to the the solvent for

proton when the base pair opens to a pseudo-dihedral angle of at least 30°, thereby indicating

that the bases are still within the cutoff of a hydrogen bond formation [111,112]. Specifically,

using a combination of NMR and MD methods, the authors compared the free-energy profile,

the solvent accessibility of the imino proton for base flipping based on MD simulations, and

the exchange time of the imino proton based on NMR data. Using the above comparison

the authors proposed that the imino proton exchange occurs when the base opens at ± 30°

which means that it is not fully flipped out [112]. Therefore, the fluctuations measured by

NMR may need to be reassigned to base wobbling as opposed to flipping and the mechanistic

understanding may not be directly applicable to a base flipping process [108]. Thus, despite

key mechanistic information emerging from the application of NMR methods, there remains

the need for additional analyses at the atomic level for obtaining further insights into this

molecular mechanism.

On the computational side, due to limitations in conformational sampling by conventional

MD simulations, enhanced sampling methods have been applied to probe this event [108,

111–119]. Among previous studies of base flipping, some have used external forces to induce

base flipping transitions [111,115], which likely leads to a loss of critical information on key

variables that may contribute to base flipping. Enhanced sampling methods also rely on the

definition of an appropriate RC which is a single variable to discriminate between a given

pair of stable states and using which the key thermodynamic (e.g. free energy) properties

can be computed. Although establishing an appropriate RC is challenging [120], once it

is identified the multidimensional free energy surface can be reduced to a one-dimensional
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profile along the RC to obtain crucial mechanistic insights into the transition mechanism.

Many computational methods have been applied to study nucleobase stacking/unstacking

in nucleic acids [113, 114, 117, 121–125]. Several significant studies have been conducted

to study the base flipping process in DNA in association with protein binding [126, 127].

Several of these studies explored simplified systems that consisted only up to three base

pairs and may be limited in describing the dynamics in a larger RNA system with many

base pairs [121–123]. Additionally, several previous studies were reported over a decade

ago and the force fields for nucleic acids have significantly improved in recent years [36,128].

Moreover, the candidate variables that potentially contribute to RC have not been examined

systematically. Therefore, the application of simulation methods that permit systematic

testing of a suitable RC is needed to improve the understanding of the mechanism of base

flipping in nucleic acids.

Such techniques include the method of TPS [196, 206, 334], which has been successfully

applied to study the flipping of a terminal pyrimidine base in a short DNA chain with three

base pairs [114]. While most previous studies have focused on DNA due to its structural

stability, I study RNA as a model system given its conformational flexibility and emerging

importance in drug discovery [213]. TPS has also been applied to explore other biophysical

problems including folding [209, 246, 335], flipping of amino acids in enzymes [336], DNA

synthesis [337], water dynamics [338], catalysis [207, 208, 339], nucleation [340, 341], and

chemical reactions [342]. In this work, I applied TPS [196, 206, 334] simulations and the

likelihood maximization methods [204] to study the base flipping mechanism in a dsRNA

molecule which has a nucleobase that can flip out (Figure 1.6).

6.4 Methods

6.4.1 System Preparation and Simulation Details

The initial coordinates for dsRNA were obtained from the first frame of the NMR structure

(PDB code: 2L2K) [100]. The system was solvated in a 72 Å × 72 Å × 83 Å periodic box
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Figure 6.1: Details on the primary order parameter. (A) The OP is defined by the
center of mass of each of the following four groups: the nitrogenous bases of C55 and G17
(labeled 1), sugar moiety attached to G17 (labeled 2), sugar moiety attached to A18 (labeled
3), and the nitrogenous base of A18 (labeled 4). Each key nucleotide is also uniquely colored
and labeled. (B) Shown is a time trace of the primary OP in the seed trajectory (red). A
cyan rectangle highlights the shooting region. See also Figure G.2.

of TIP3P water molecules and was comprised of 39305 atoms (Figure G.1). The system

was neutralized with 21 Mg2+ ions. The temperature and pressure were maintained at 310

K and 1 atm using the Langevin thermostat and the Berendsen barostat, respectively. All

MD simulations were carried out using the Amber [154] software combined with the recent

RNA Amber force-field developed by a Rochester group (RNA.ROC) [157]. The analyses of

all trajectories were carried out using the CPPTRAJ module in Amber and using the VMD

software [184,185].

6.4.2 Transition Path Sampling

TPS [195, 196, 206] is a method to generate an ensemble of transition paths that connect

a pair of initial (reactant) and final (product) states that are separated by a free energy

barrier. More details on the TPS method can be found in section 2.4.2.

6.4.3 Seed Trajectory and Definitions of Stable States

I conducted four conventional MD simulations, each 150 ns long, to obtain a seed trajectory.

Only one out of these four simulations exhibited a spontaneous base flipping event (Figure
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G.2) and therefore it was used as the seed trajectory for building an ensemble of transition

paths. For these MD simulations, I first performed 1000 steps of steepest descent mini-

mization followed by 500 steps of conjugate gradient minimization. Then, I conducted all

MD simulations in the NPT ensemble using a 2 fs timestep and saved configurations every

10 ps. Prior to launching shooting simulations, I defined an OP that can unambiguously

discriminate between the two stable states, the inward (I, state 1) and the outward (O, state

2) states, and determined the ranges of the OP for defining two stable states. These ranges

were chosen to clearly separate stable basins, accommodate system fluctuations, and pre-

vent sampling of non-reactive trajectories [195, 196, 209]. I selected a pseudo-dihedral angle

as the OP that is defined by the centers of mass of four groups of atoms (Figure 6.1A) which

has been previously identified as a potential collective variable (CV) for this system [124].

For the configuration I, the range of the OP was defined as -70° < OP1 < 70° and for the

configuration O as 100° < OP2 < 180° and -120° < OP2 < -180°. From the shooting region

identified in the seed trajectory, I then launched 1000 shooting trajectories, each 1 ns long.

I carried out all shooting simulations in the NPT ensemble using a 2 fs timestep and saved

configurations every 0.25 ps. Based on the definition of the OP, 748 of them terminated in

the state I and 252 in the state O [203,204].

6.4.4 List of Collective Variables

In addition to the primary OP, a list of other potential CVs was created and monitored in

all shooting trajectories. The distributions of the values of each of the CVs (qk) at terminal

points in shooting trajectories were examined to select those CVs to be included in the

construction of RC that discriminated between the I/O states. I used equation 2.15 to

normalize the CVs (section 2.4.2e).

The 12 CVs (k = 1, 2,· · · , 12) that were identified (Table G.1) are:

1. φ1: the pseudo-dihedral angle that describes the position of A18 relative to G17. It also

served as our primary OP.
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2. φ2: the pseudo-dihedral angle that describes the position of A18 relative to A19.

3. d1: the distance between the centers of mass of G17 and A18.

4. d2: the distance between the centers of mass of A18 and A19.

5. d3: the hydrogen bond distance between the N1 atom of A18 and the N3 atom of C54.

6. α1: the angle between A18 and C28 defined using the following three atoms: N9 and C ′
1

of A18, and C ′
1 of C54.

7. α2: the interplane angle between G17 and A18. Only heavy atoms were used to define

the plane.

8. α3: the interplane angle between A18 and A19. Only heavy atoms were used to define

the plane.

9. NW : the number of water molecules within 8 Å of A18.

10. E1: the stacking energy between bases G17 and A18.

11. E3: the interaction energy between bases A18 and C54.

12. E2: the stacking energy between bases A18 and A19.

6.4.5 Refined Reaction Coordinate

The RC is defined as a linear combination of the identified and normalized CVs using

equation 2.16 (section 2.4.2f). Subsequently, I applied the likelihood maximization method

[203,204] to find the best set of CVs and associated ak’s following the procedure described in

section 2.4.2f. By varying m in equation 2.16, different models of the RC were investigated

and presented in Tables G.2-G.4.

6.4.6 Free Energy Profile along RC

The PMF/free energy profile was obtained along the RC using equation 2.20 and additional

details are provided in section 2.4.2g.
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Figure 6.2: Population distributions of CVs at terminal points. Shown are the
distributions of CVs at terminal points of transition paths for the inward (red) and outward
(gray) states. (A) The pseudo-dihedral angle (φ1) that describes the position of A18 relative
to G17. (B) The distance (d1) between the centers of mass of G17 and A18. (C) The pseudo-
dihedral angle (φ2) that describes the position of A18 relative to A19. See also Figure G.3.

6.5 Results and Discussion

6.5.1 Fluctuations of the OP (φ1)

After defining a list of all potential CVs that can be used to describe the transition between

the I and O configurations, I picked the pseudo-dihedral angle (φ1) between G17 and A18 as

our primary OP, which was used to identify the seed trajectory (Figure 6.1). A time trace

of the OP in the seed trajectory is shown in Figure 6.1B and the distribution of its values at

terminal points in the transition paths in Figure 6.2A. I defined the shooting region as the

range between 75° and 95° and observed a transition in this region (at ∼117 ns) in one of

four conventional MD simulations (Figure 6.1B). Three other conventional MD simulations

that were launched from the same initial structure did not exhibit base flipping (Figure G.2).

The configurations from the shooting region in the seed trajectory were then used as input

structures to build an ensemble of 1000 shooting trajectories.

6.5.2 Identification of Other Potential CVs

All of the predefined CVs (Table G.1) were monitored at the terminal points of each shooting

trajectory for their suitability in discriminating between two states and thus for inclusion in

construction of the RC. The population distributions of all tested CVs at terminal points

in shooting trajectories are shown in Figures 6.2 and G.3. The CVs in Figure 6.2 (φ1, d1,
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and φ2) were found to be the most important for constructing a model of the refined RC

because these CVs exhibited distinct bimodal distributions at the terminal points where one

peak was more populated at the inward state and the other at the outward state (Figure

6.2). These variables collectively describe the relative position of the nucleobase A18 with

respect to G17 and A19 with which A18 forms stacking interactions (Figure 1.6). Since φ1

and d1 likely provide similar information, I anticipated that one of them may be omitted

from the refined RC. Many CVs shown in Figure G.3 exhibited overlapping distributions

between the two states with several CVs showing larger overlaps in their distributions (e.g.

Figures G.3G,I) due to which these CVs were not included in the refined RC.

6.5.3 Refined Reaction Coordinate (r)

The refined RC was then determined using the likelihood maximization and the BIC [203,204]

by testing various models of increasing complexity constructed from 12 CVs (Tables G.1-

G.4). I found that the refined RC was a linear combination of 2 CVs, d1 and φ2. The final

equation for the refined RC is:

r = −0.84 + 0.4753d1 − 0.3941φ2 (6.1)

The addition of a third variable to the RC improves it but according to the likelihood

maximization tests, the improvement is not significant (Table G.4), meaning that 2 CVs are

sufficient to formulate the refined RC. This can be seen in Figure G.4A which shows the

histograms of the RC values across all shooting trajectories and the resulting free energy

profiles in Figure G.4B. These data show that, for the three-variable RC models, the free

energy profiles are similar to the refined RC (Figure G.4B). The evolution of the refined RC

in the transition paths is shown in Figures 6.3A and G.5. The time evolution of the RC

further confirms its validity by showing that the trajectories initiated from the region near

r = 0 terminated in one of the two stable states and the RC is divided into two segments of

the configuration space by terminating either at the inward state or at the outward state.
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Figure 6.3: Evolution of the refined RC and the potential of mean force (PMF)
profile. (A) The evolution of the RC along representative trajectories. See also Figure
G.5. (B) PMF as a function of the RC. Three vertical lines mark the free energy difference
between the inward (labeled I) and metastable (labeled M) states (blue), the activation
energy (dark gray; labeled ‡), and the energy difference between the inward I and outward
(labeled O) states (red).

117



6.5.4 Free Energy Profile

The PMF profile (Figure 6.3B) was estimated based on the population distribution of the

refined RC computed across all transition paths (Figure G.6). The PMF profile exhibited

three minima corresponding to the inward (I) state (-1.65 < r < -1.56), a metastable (M)

state (-0.87 < r < -0.75), and the outward (O) state (0.63 < r < 0.81). The transition state is

represented by r = 0. The activation free energy (∆G‡) and the free energy difference (∆G)

between states I and O were determined to be 1.48 kcal/mol and 1.0 kcal/mol, respectively.

Based on the free energy profile, the outward state is less stable than the inward state which

could be important for the deamination process performed by the ADAR2 enzyme [100].

Importantly, the metastable state represented the wobbling movement of A18 when the nu-

cleotide is partially flipped out with φ1∼50°-65°. I suggest that the metastable states of these

types are likely observed by NMR and mischaracterized as the flipped out (outward/extra-

helical) states [100,111]. The final RC also discriminates between the metastable (wobbled)

and the flipped out (outward) states.

6.5.5 Conformational Properties of dsRNA in the Transition Path Ensemble

I launched shooting trajectories from the shooting region that is located close to the transition

region and trajectories landed either in the reactant state (I and M) or in the product

state (O). Based on the OP, 748 trajectories terminated in the I state and 252 trajectories

terminated in the O state. The conformations of bases in dsRNA at the state I and the

shooting region are shown in Figure G.7A,B. In the shooting region, the positions of A18

and U53 are perturbed compared to the initial (I) conformation by ∼75-95° (φ1) and ∼30-

40° (using the flipping angle definition similar to φ1), respectively. I observed that the

flipping motion of A18 resulted not only in rearrangements in neighboring bases but also in

a conformational change in a stem loop of dsRNA (the loop highlighted in magenta/blue/red

in Figure 6.4). Below, I discuss how the flipping of A18 affected the conformation of the

stem loop, motion of nucleotides, and hydrogen bonds between various bases in three different
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Figure 6.4: Global and local conformational dynamics in dsRNA. (left) Snapshot of
global conformational changes in the RNA stem loop derived from shooting trajectories at
three different states: I (magenta), M (blue), and O (red). (right) Snapshots of the flipping
site in three different states. Each key nucleotide and atoms that participate in hydrogen
bonding (marked by dotted red lines) are uniquely colored.

119



states (I, M, and O).

State I: During inward flipping of A18 from the transition barrier region, A18 and A19

formed the base pairs with C54 and U53, respectively, and the RNA stem loop had an

elongated conformation (I; Figure 6.4). The formation of a base pair between A19 and U53

was measured via a hydrogen bond distance of 3.5 Å between the O4 atom of U53 and the N6

atom of A19 (Figure G.8A). Concomitantly, C54 partially flipped out by ∼55-60° to provide

space for A18 to flip back in (Figure G.8B and I; Figure 6.4). The flipping of C54 outward

(Figure G.8A) was not observed in the initial configuration (Figure 1.6).

State M:When A18 was in theM state (i.e. wobbled conformation), the RNA stem loop was

in a bent conformation relative to state I (M; Figure 6.4). This conformation resulted due to

the interactions between a triplet of bases: A18, A19 and U53 (M; Figure 6.4). A18 formed

a hydrogen bond (3.5 Å long) with U53, which was partially flipped out at the transition

barrier (Figure G.8C). At the same time, the initial hydrogen bond between the O4 atom of

U53 and the N6 atom of A19 broke and a new hydrogen bond formed between the O2 atom

of U53 and the N6 atom of A19 (Figure G.8A,D). As a result of these rearrangements, U53

formed hydrogen bonds with both A18 and A19, thus creating a triplet, which caused the

RNA stem loop to bend (M; Figure 6.4).

State O: In shooting trajectories that resulted in outward flipping of A18, the RNA stem

loop was also observed to undergo a bent conformation (O; Figure 6.4). Similar to the M

state, U53 partially flipped out and disrupted the initial hydrogen bond with A19 and formed

another between the O2 atom of U53 and the N6 atom of A19 (Figure G.8D). A18 did not

form any interactions with U53 but the flipping of A18 outward likely perturbed U53 and

caused U53 to partially flip out. Thus, even minor conformational change in A18 by ∼45°

(M state) caused local rearrangements in U53 while breaking the initial hydrogen bonds with

A19 which in return resulted in a bent conformation of the RNA stem-loop. Overall, our

mechanistic analyses of conformations of bases in the transition path ensemble revealed that

the flipping of a single base (A18) in RNA is not only coupled with rearrangements in local
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bases, but also global conformational changes in common motifs (e.g. stem loops) found in

nucleic acids.

6.5.6 Comparison to Previous Work

I note that Hart et al. [124] have previously studied this base flipping event by focusing on φ1

as their hypothesized RC. However, the search for the refined RC in my work is systematic

and exhaustive since I have examined a large number of CVs and their combinations using the

likelihood maximization method [203,204]. The ensemble of trajectories that I have generated

(totaling over 1000 ns) exceeded what was used in the previous work (14.4 ns) which further

helped me in identifying a refined RC. Importantly, my results showed that, for a single

variable RC model, φ2 is a more important CV than φ1 because φ2 was ranked 2nd, while φ1

was ranked 11th (Table G.2). Additionally, I estimated that a two-variable RC model is more

significant for capturing the base flipping process than a single-variable model, whether it

consisted of φ1 or any other variable (Table G.3). In fact, even a three-variable RC model

did not indicate that φ1 was the most important CV out of the remaining CVs for model

improvement since the model with φ1 was ranked 4th (Table G.4). Moreover, I also observed

that the local base flipping event in dsRNA is coupled with a global conformational transition

in the stem-loop of this dsRNA. In the previous work [124], only local rearrangements of

A18 and the neighboring bases were reported but in my work I showed that even a partial

flipping of A18 caused the stem loop of dsRNA to bend. I also revealed that in the metastable

state, U53 forms a base triplet with A18 and A19 through hydrogen bonding interactions

(Figure 6.4) which has not been reported previously.

6.6 Conclusions

Using transition path sampling combined with the likelihood maximization methods, I de-

veloped a refined RC to describe the base flipping mechanism in dsRNA. The refined RC

is comprised of two CVs that collectively describe the relative position of the flipping base
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with respect to the neighboring bases, thereby showing an improved description of the base-

flipping mechanism. Outside of conformational variables, I did not observe any significant

improvements in my RC models on including the solvent molecules or stacking energies be-

tween the bases. However, a further examination of these coordinates may be needed for

other RNA motifs (e.g. bulges) if the flipping nucleotides are not involved in base-pairing

interactions unlike the system studied in this work. My results emphasize the importance

of systematic examination of CVs in constructing RC models of complex biophysical pro-

cesses. I also observed that the flipping of a single base caused local rearrangements in the

neighboring bases which then resulted in global structural transitions in a stem loop of the

dsRNA. I suggest that the approaches described in this chapter are potentially applicable to

other RNA/ligand systems, for example, conformational transitions coupled to binding of a

ligand molecule in an RNA element from HIV-1, as reported in chapter 4 [226].

6.7 Supporting Information

Additional data and figures are shown in Appendix G. I have performed preliminary estimates

on kinetics of base flipping which are also presented in Appendix G. In Appendix H, I

also provide example scripts that I used to set up, conduct, and analyze my simulations.

Specifically, all the scripts with descriptions that were used to perform TPS simulations are

shown in Appendix H.

6.8 Publication

The work described in this chapter is reproduced from Ref. [343], with permission from the

American Chemical Society. The citation is as follows:

Levintov, L., Paul, S., and Vashisth, H. (2021). Reaction coordinate and thermodynamics

of base flipping in RNA. J. Chem. Theory Comput. 17:1914-1921.
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CHAPTER 7

STUDY ON THE SELF-ASSEMBLY AND DYNAMICS OF

PORPHYRIN/DNA SYSTEMS

7.1 Abstract

In this chapter, I discuss the results of MD simulations of porphyrin/DNA nanoassemblies.

This work was carried out in collaboration with Dr. Shambhavi Tannir at University of

Wyoming, with Dr. Krisztina Varga at University of New Hampshire, with Dr. Mark

Townley at University of New Hampshire, with Dr. Milan Balaz at Yonsei University, with

Dr. Brian Leonard at University of Wyoming, and with Dr. Jan Kubelka at University of

Wyoming. I only describe the MD simulation part which includes simulations of the 40 DPD

molecules and 2 DNA - 40 DPD systems. Other details can be found in our collaborative

publication [344].

7.2 Significance

In the studies presented in this chapter, I identified the self-assembly mechanism and orien-

tation of the porphyrin/DNA systems. Additionally, I measured various physical variables

that characterize the final conformation of the assembly and these parameters agree with

the experimentally observed behavior of the porphyrin/DNA nanoassembly. These results

enhance our understanding of the self-assembly mechanisms of supramolecular nanoassem-

blies and of the roles of porphyrin and DNA molecules in these processes.
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7.3 Background

I provide a brief introduction on the porphyrin/DNA system in section 1.5.3. In this study

I conducted MD simulations of an achiral stack of porphyrin molecules in the presence and

absence of the DNA strands. The primary goal was to identify the mechanism of self-

assembly of a porphyrin/DNA system as well as the overall structure of the assembly and

characterize it using various conformational metrics.

7.4 System Setup and Simulation Details

All MD simulations were carried out and analyzed using the NAMD/VMD software suite

[152, 184]. The Amber bsc1 force-field [158] was used to simulate the DNA strands. The

initial structure of an oligothymidylic acid T40 was created using the psfgen tool in VMD

by using the topology information on a single thymine nucleotide. To prepare the initial

system, coordinates, charges, and Amber force-field parameters of the porphyrindiaminop-

urine (DPD) molecule were developed. At first, the initial structure of the DPD molecule

was created using CHARMM-GUI Ligand-Reader and Modeler [345, 346] followed by 100

steps of conjugate gradient energy minimization in NAMD. Then, the Antechamber pro-

gram [163, 243] in Amber was used to obtain force field parameters, and the AM1-BCC

charge method [162] was used to obtain atomic charges. After developing parameters, 40

DPD molecules were positioned on top of each other in an achiral stacked conformation, and

two T40 DNA strands were added on the opposite sides of the stack. In the other system, a

stack of 40 DPD molecules without DNA strands was positioned in an achiral pattern.

All systems were solvated using explicit water (TIP3P) molecules, and the overall charge

of the DNA strands was neutralized by adding Mg2+ ions. Detailed information on the

system size and trajectory length is provided in Table 7.1. The box volume was optimized in

the NPT ensemble by first running a 1000 step conjugate gradient energy minimization that

was followed by a 400 ps MD run with a 2 fs time step. The temperature in all simulations
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Table 7.1: Details of simulation systems.
System 2 DNA - 40 DPD 40 DPD

Number of atoms 423,882 173,313
Simulation time (ns) 200 75

Size (Å3) 219 × 156 × 133 226 × 98 × 95
Temperature (K) 310 310
Number of Mg2+ 40 0
Minimization steps 1000 1000

Force-field Amber Amber

was maintained at 310 K and controlled using the Langevin thermostat, and the pressure

was controlled by the NoseHoover barostat in all NPT runs. All simulations were carried out

using periodic boundary conditions. The simulations were further run in the NVT ensemble

after brief initial equilibration in the NPT ensemble. Long-range electrostatic interactions

were treated by the particle-mesh Ewald method.

7.5 Results

MD simulations were carried out to determine the probable mechanism of the assembly

process. I hypothesized that since the DNA strands consist of 40 thymine nucleotides (T40),

each nucleotide potentially interacts with a single molecule of DPD, and thereby 40 DNA

bases potentially interact with 40 DPD molecules. Based upon this hypothesis, I assembled

a system containing 2 DNA strands and 40 DPD molecules positioned between the DNA

strands in an achiral columnar nanostack (Figure 7.1A).

The simulation of the 2 DNA 40 DPD system showed that the DPD molecules preferred

to remain stacked and formed a predominantly helical type of structure without the appli-

cation of an external physical stimulus (Figure 7.1A). After the simulation was initiated,

the two T40 DNA strands diffused through the aqueous environment toward the achiral

DPD stack as they interacted with it. At ∼90 ns, the counterclockwise twist of the 40 DPD

stack started to appear as one T40 DNA strand interacted with the whole DPD stack, while

the other interacted partially (Figure 7.1A). Detailed analysis showed that DPD molecules
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Figure 7.1: 2 DNA - 40 DPD system. (A) Snapshots of the 2 DNA 40 DPD system are
shown in two different views before the simulation was initiated, after minimization, as well
as at t = 90 ns, 150 ns, and 200 ns. The DNA strands are shown as red cartoon and the
DPD molecules are shown in space-filling representation. DPD molecules, that have been
selected for the CD spectra calculations, are highlighted in black. (B) The orientation angle
and two distances, the center-to-center distance of two adjacent DPDs (D1) and the rise per
DPD along the assemblys axis (D2), are shown for the 2 DNA - 40 DPD system.
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Figure 7.2: Snapshots of the 40 DPD system. Snapshots of the 40 DPD system are
shown before the simulation was initiated, after minimization, as well as at t = 25 ns, 60 ns,
and 75 ns. The DPD molecules are shown in space-filling representation.

924 of the 40 DPD stack (Figure 7.1A) interacted with both T40 DNA strands and con-

tinued to rotate counterclockwise until a relatively stable left-handed helix was formed at

∼140 ns and remained for the rest of the simulation (200 ns, Figure 7.1A). The MD simula-

tion thus successfully reproduced the experimentally observed formation of the left-handed

nanoassemblies by fast cooling in the absence of NaCl. The analysis of the system over the

last 60 ns revealed the center-to-center distance of two adjacent DPD molecules of D1 = 5.9

Å, the rise per DPD molecule along the assemblys axis of D2 = 3.6 Å, the rotation per DPD

molecule of −8.1°, and the length of the overall 40 DPD stack ∼145 Å (Figure 7.1B).

The simulation of the 40 DPD system without any DNA strands showed that the DPD

molecules remain stacked during the entire simulation which is consistent with the ability of

porphyrin-type molecules to self-assemble and stack through π−π interactions (Figure 7.2).

Importantly, I observed that the DPD molecules formed smaller groups of 3-5 molecules that

moved together but did not dissociate from the overall assembly (Figure 7.2). Overall, the

2 DNA 40 DPD system was the only system where a stable helical shape was observed and
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the 40 DPD nanoassembly remained achiral.

7.6 Conclusions

In this study, I conducted explicit-solvent MD simulations of the porphyrin (DPD) molecules

with and without DNA strands. These simulations revealed a left-handed orientation of the

nanoassembly in the presence of two DNA strands with the center-to-center distance of two

adjacent DPD molecules of 5.9 Å, the rise per DPD molecule along the assemblys axis of

3.6 Å, the rotation per DPD molecule of −8.1°, and the length of the overall 40 DPD stack

of ∼145 Å. I did not observe the formation of a helix in the simulation of the 40 DPD

molecules without any DNA strands but, importantly, the DPD molecules did not dissociate

from the nanostack. Overall, DNA strands facilitated the formation of a helical shape of the

porphyrin/DNA system.

7.7 Publication

The work described in this chapter is reproduced from Ref. [344] with permission from the

American Chemical Society.

Tannir, S., Levintov, L., Townley, M. A., Leonard, B. M., Kubelka, J., Vashisth, H., Varga,

K., and Balaz, M. (2020). “Functional nanoassemblies with mirror-image chiroptical prop-

erties templated by a single homochiral DNA strand.” Chem. Mater., 32:22722281.
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CHAPTER 8

FUTURE WORK

In this chapter, I provide suggestions for future research work.

For work described in chapter 3, I conducted explicit-solvent MD simulations of differ-

ent unliganded TAR RNA conformations which revealed the formation of transient binding

pockets that can accommodate ligands of various sizes. I suggest that future researchers can

use my simulations or conduct additional MD simulations of unliganded TAR RNA systems

and perform compound docking in the pockets that I have identified in my work (see Figures

3.8 and A.16). As a first step, one can construct a large library of inhibitors which are known

to bind TAR RNA and then expand the library by modifying the known binders and test

them using virtual screening method.

In chapter 4, I studied the (un)binding process of a small molecule from the TAR RNA

using non-equilibrium cv-SMD simulations. In the majority of cases, ligand binding is only

investigated in terms of binding sites and bound poses while the kinetics and mechanisms of

binding have not been studied to a large extent [144,347]. A study can be conducted which

combines the two approaches, SMD simulations and the TPS method, to develop a reaction

coordinate which can describe the dissociation process of a small molecule from the viral

RNA molecule. SMD simulations can be used to generate a seed trajectory which connects

the bound (reactant) and unbound (product) states. The TPS method with the likelihood

maximization method can be used to systematically explore a set of CVs in the construction

of the RC.

In chapter 5, I studied the (un)binding process of the RSG-1.2 peptide from the RRE
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RNA using non-equilibrium cv-SMD simulations. I think that another similar peptide that

can be studied is the the Rev peptide which is a conventional RRE RNA binder. Specifically,

it is known that the RSG-1.2 peptide, which was synthesized by mutating the Rev peptide,

has an increased binding affinity and specificity to the RRE RNA in comparison to the Rev

peptide [323]. It was previously hypothesized that increased binding affinity of the RSG-

1.2 was coupled with a lower number of arginine amino acids in comparison to the Rev

peptide [323]. A study can be conducted using free energy perturbation methods to identify

key energetic and mechanistic differences between the RSG-1.2 peptide and the Rev peptide

which facilitate an increased binding affinity of the RSG-1.2 peptide by the RRE RNA.

Another suggestion is to mutate a single or several arginine amino acids in the RSG-1.2

peptide to further explore the importance of arginine amino acids.

In chapter 6, I studied the base flipping mechanism in a dsRNA molecule using path

sampling methods. In my work, the flipping base was mismatched, or in other words it was

not forming a canonical Watson-Crick base pair. I think that future researchers can focus

on investigating systems in which a nucleotide is not involved in base-pairing interactions,

for example nucleotides that constitute bulge motifs or hairpins. A good model system in

that case would be the HIV-1 TAR RNA. The base flipping process can also be studied

in association with protein binding to explore to what extent proteins affect the flipping

of bases in RNA molecules. A reaction coordinate can be determined for the RNA/protein

system and it would be of interest to compare it to the reaction coordinate that was reported

in my work.
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[283] Dennis M Krüger, Saskia Neubacher, and Tom N Grossmann. ProteinRNA interac-
tions: structural characteristics and hotspot amino acids. RNA, 24:14571465, 2018.

[284] Alexander D Mackerell Jr and Lennart Nilsson. Molecular dynamics simulations of
nucleic acid-protein complexes. Curr. Opin. Struct. Biol., 18:194–199, 2008.

[285] Carolina M Reyes and Peter A Kollman. Molecular dynamics studies of U1A-RNA
complexes. RNA, 5:235244, 1999.

[286] Ikuo Kurisaki, Masayoshi Takayanagi, and Masataka Nagaoka. Combined mechanism
of conformational selection and induced fit in U1ARNA molecular recognition. Bio-
chemistry, 53:36463657, 2014.

[287] Jian-xin Guo and William H Gmeiner. Molecular dynamics simulation of the human
U2B’ protein complex with U2 snRNA hairpin IV in aqueous solution. Biophys. J.,
81:630642, 2001.

[288] Nathan Schmid, Bojan Zagrovic, and Wilfred F van Gunsteren. Mechanism and ther-
modynamics of binding of the polypyrimidine tract binding protein to RNA. Biochem-
istry, 46:65006512, 2007.

[289] Miroslav Krepl, Antoine Clery, Markus Blatter, Frederic H-T Allain, and Jiri Sponer.
Synergy between NMR measurements and MD simulations of protein/RNA complexes:
application to the RRMs, the most common RNA recognition motifs. Nucleic Acids
Res., 44:6452–6470, 2016.

[290] Nana D dit Konte, Miroslav Krepl, Fred F Damberger, Nina Ripin, Olivier Duss, Jiri
Sponer, and Frederic H-T Allain. Aromatic side-chain conformational switch on the
surface of the RNA recognition motif enables RNA discrimination. Nat. Commun.,
8:e654, 2017.

[291] Carolina M Reyes and Peter A Kollman. Structure and thermodynamics of RNA-
protein binding: using molecular dynamics and free energy analyses to calculate the
free energies of binding and conformational change. J. Mol. Biol., 297:1145–1158, 2000.

[292] Dukagjin M Blakaj, Kevin J McConnell, David L Beveridge, and Anne M Baranger.
Molecular dynamics and thermodynamics of protein-RNA interactions: mutation of a
conserved aromatic residue modifies stacking interactions and structural adaptation in
the U1A-stem loop 2 RNA complex. J. Am. Chem. Soc., 123:25482551, 2001.

154



[293] Bethany L Kormos, Yulia Benitex, Anne M Beveridge, and David L Baranger. Affinity
and specificity of protein U1A-RNA complex formation based on an additive compo-
nent free energy model. J. Mol. Biol., 371:1405–1419, 2007.

[294] Tiziana Castrignano, Giovanni Chillemi, Gabriele Varani, and Alessandro Desideri.
Molecular dynamics simulation of the RNA complex of a double-stranded RNA-binding
domain reveals dynamic features of the intermolecular interface and its hydration. Nat.
Commun., 8:e654, 2017.

[295] Zhen Xia, Zhihong Zhu, Jun Zhu, and Ruhong Zhou. Recognition mechanism of siRNA
by viral p19 suppressor of RNA silencing: a molecular dynamics study. Biophys. J.,
96:17611769, 2009.

[296] Junru Yang, Jianing Song, John Z H Zhang, and Changge Ji. Effect of mismatch on
binding of ADAR2/GluR-2 pre-mRNA complex. J. Mol. Model., 21:222, 2015.

[297] Xinlei Wang, Lela Vukovic, Hye R Koh, Klaus Schulten, and Sua Myong. Dynamic
profiling of double-stranded RNA binding proteins. Nucleic Acids Res., 43:75667576,
2015.

[298] Salvador I Drusin, Irina P Suarez, Diego F Gauto, Rodolfo M Rasia, and Diego M
Moreno. dsRNA-protein interactions studied by molecular dynamics techniques. Un-
ravelling dsRNA recognition by DCL1. Arch. Biochem. Biophys., 596:118–125, 2016.

[299] Qiao Xue, Qing-Chuan Zheng, Ji-Long Zhang, Ying-Lu Cui, and Hong-Xing Zhang.
Exploring the mechanism how Marburg virus VP35 recognizes and binds dsRNA by
molecular dynamics simulations and free energy calculations. Biopolymers, 101:849–
860, 2014.

[300] S Harikrishna and P I Pradeepkumar. Probing the binding interactions between chemi-
cally modified siRNAs and human Argonaute 2 using microsecond molecular dynamics
simulations. J. Chem. Inf. Model., 57:883896, 2017.

[301] Kamila Reblova, Nada Spackova, Jaroslav Koca, Neocles B Leontis, and Jiri Sponer.
Long-residency hydration, cation binding, and dynamics of loop E/helix IV rRNA-L25
protein complex. Biophys. J., 87:33973412, 2002.

[302] Thomas Crety and Therese Malliavin. The conformational landscape of the ribosomal
protein S15 and its influence on the protein interaction with 16S RNA. Biophys. J.,
92:2647–2465, 2007.

[303] Ke Chen, John Eargle, Krishnarjun Sarkar, Martin Gruebele, and Zaida Luthey-
Schulten. Functional role of ribosomal signatures. Biophys. J., 99:39303940, 2010.

[304] Miroslav Krepl, Kamila Reblova, Jaroslav Koca, and Jiri Sponer. Bioinformatics and
molecular dynamics simulation study of L1 stalk non-canonical rRNA elements: kink-
turns, loops, and tetraloops. J. Phys. Chem. B, 117:55405555, 2013.

155



[305] Satoshi Yamasaki, Shugo Nakamura, Tohru Terada, and Kentaro Shimizu. Mechanism
of the difference in the binding affinity of E. coli tRNAGln to glutaminyl-tRNA syn-
thetase caused by noninterface nucleotides in variable loop. Biophys. J., 92:192–200,
2007.

[306] Amit Ghosh and Saraswathi Vishveshwara. A study of communication pathways in
methionyl- tRNA synthetase by molecular dynamics simulations and structure network
analysis. Proc. Natl. Acad. Sci. U. S. A., 104:15711–15716, 2007.

[307] Anurag Sethi, John Eargle, Alexis A Black, and Zaida Luthey-Schulten. Dynamical
networks in tRNA:protein complexes. Proc. Natl. Acad. Sci. U. S. A., 106:6620–6625,
2009.

[308] Moitrayee Bhattacharyya, Amit Ghosh, Priti Hansia, and Saraswathi Vishveshwara.
Allostery and conformational free energy changes in human tryptophanyl-tRNA syn-
thetase from essential dynamics and structure networks. Proteins, 78:506–517, 2010.

[309] Amit Ghosh, Reiko Sakaguchi, Cuiping Liu, Saraswathi Vishveshwara, and Ya-Ming
Hou. Allosteric communication in cysteinyl tRNA synthetase: a network of direct and
indirect readout. J. Biol. Chem., 286:3772137731, 2011.

[310] Eric A C Bushnell, WenJuan Huang, Jorge Llano, and James W Gauld. Molecular
dynamics investigation into substrate binding and identity of the catalytic base in the
mechanism of Threonyl-tRNA synthetase. J. Phys. Chem. B, 116:5205–5212, 2012.

[311] Rongzhong Li, Lindsay M Macnamara, Jessica D Leuchter, Rebecca W Alexander, and
Samuel S Cho. MD simulations of tRNA and aminoacyl-tRNA synthetases: dynamics,
folding, binding, and allostery. Int. J. Mol. Sci., 16:1587215902, 2015.

[312] Carolina Estarellas, Michal Otyepka, Jaroslav Koca, Pavel Banas, Miroslav Krepl,
and Jiri Sponer. Molecular dynamic simulations of protein/RNA complexes:
CRISPR/Csy4 endoribonuclease. Biochim. Biophys. Acta., 1850:1072–1090, 2015.

[313] Malgorzata Figiel, Miroslav Krepl, Jaroslaw Poznanski, Agnieszka Golab, Jiri Sponer,
and Marcin Nowotny. Coordination between the polymerase and RNase H activity of
HIV-1 reverse transcriptase. Nucleic Acids Res., 45:3341–3352, 2017.

[314] Giulia Palermo, Yinglong Miao, Ross C Walker, Martin Jinek, and J Andrew McCam-
mon. Striking plasticity of CRISPR-Cas9 and key role of non-target DNA, as revealed
by molecular simulations. ACS Cent. Sci., 2:756763, 2016.

[315] Giulia Palermo, Yinglong Miao, Ross C Walker, Martin Jinek, and J Andrew McCam-
mon. CRISPR-Cas9 conformational activation as elucidated from enhanced molecular
simulations. Proc. Natl. Acad. Sci. U. S. A., 114:7260–7265, 2017.

[316] Miroslav Krepl, Marek Havrila, Petr Stadlbauer, Pavel Banas, Michal Otyepka, J Pa-
sulka, Richard Stefl, and Jiri Sponer. Can we execute stable microsecond-scale atom-
istic simulations of proteinRNA complexes? J. Chem. Theory Comput., 11:12201243,
2015.

156



[317] Riccardo Nifos, Carolina M Reyes, and Peter A Kollman. Molecular dynamics studies
of the HIV-1 TAR and its complex with argininamide. Nucleic Acids Res., 28:49444955,
2000.

[318] Carolina M Reyes, Riccardo Nifos, Alan D Frankel, and Peter A Kollman. Molecular
dynamics and binding specificity analysis of the bovine immunodeficiency virus BIV
Tat-TAR complex. Biophys. J., 80:28332842, 2001.

[319] Yuguang Mu and Gerhard Stock. Conformational dynamics of RNA-peptide binding:
a molecular dynamics simulation study. Biophys. J., 90:391–399, 2006.

[320] Mattia Mori, Ursula Dietrich, Fabrizio Manetti, and Maurizio Botta. Molecular dy-
namics and DFT study on HIV-1 nucleocapsid protein-7 in complex with viral genome.
J. Chem. Inf. Model., 50:638650, 2010.

[321] Trang N Do, Emiliano Ippoliti, Paolo Carloni, Gabriele Varani, and Michele Parrinello.
Counterion redistribution upon binding of a Tat-protein mimic to HIV-1 TAR RNA.
. Chem. Theory Comput., 8:688694, 2012.

[322] Chun H Li, Zhi C Zuo, Ji G Su, Xian J Xu, and Cun X Wang. The interactions
and recognition of cyclic peptide mimetics of Tat with HIV-1 TAR RNA: a molecular
dynamics simulation study. J. Biomol. Struct. Dyn., 31:276287, 2013.

[323] Kazuo Harada, Shelley S Martin, Ruoying Tan, and Alan D Frankel. Molding a peptide
into an RNA site by in vivo peptide evolution. Proc. Natl. Acad. Sci. U. S. A.,
94:11887–11892, 1997.

[324] Sigrid Nachtergaele and Chuan He. The emerging biology of RNA post-transcriptional
modifications. RNA Biol., 14:156–163, 2017.

[325] Brenda L Bass. RNA editing by adenosine deaminases that act on RNA. Annu. Rev.
Biochem., 71:817–846, 2002.

[326] Kazuko Nishikura. Editor meets silencer: crosstalk between RNA editing and RNA
interference. Nat. Rev. Mol. Cell Biol., 7:919–931, 2006.

[327] Richard J Roberts and Xiaodong Cheng. Base flipping. Annu. Rev. Biochem., 67:181–
198, 1998.

[328] Cai-Guang Yang, Chengqi Yi, Erica M Duguid, Christopher T Sullivan, Xing Jian,
Phoebe A Rice, and Chuan He. Crystal structures of DNA/RNA repair enzymes AlkB
and ABH2 bound to dsDNA. Nature, 452:961–965, 2008.

[329] Maria Spies and Brian O Smith. Protein-nucleic acids interactions: new ways of
connecting structure, dynamics and function. Biophys. Rev., 9:289–291, 2017.

[330] Jason L J Lin, Chyuan-Chuan Wu, Wei-Zen Yang, and Hanna S Yuan. Crystal struc-
ture of endonuclease G in complex with DNA reveals how it nonspecifically degrades
DNA as a homodimer. Nucleic Acids Res., 44:10480–10490, 2016.

157



[331] Samuel Hong and Xiaodong Cheng. DNA base flipping: a general mechanism for
writing, reading, and erasing DNA modifications. Adv. Exp. Med. Biol., 945:321341,
2016.

[332] Paul C Blainey, Antoine M van Oijen, Anirban Banerjee, Gregory L Verdine, and
X Sunney Xie. A base-excision DNA-repair protein finds intrahelical lesion bases by
fast sliding in contact with DNA. Proc. Natl. Acad. Sci. U.S.A., 103:5752–5757, 2006.

[333] Yuzong Z Chen, V Mohan, and Richard H Griffey. Spontaneous base flipping in DNA
and its possible role in methyltransferase binding. Phys. Rev. E Stat. Phys. Plasmas
Fluids Relat. Interdiscip. Topics, 62:1133–1137, 2000.

[334] Christoph Dellago, Peter G Bolhuis, and Phillip L Geissler. Transition path sampling.
Adv. Chem. Phys., 123:1–78, 2002.

[335] Rose Du, Vijay S Pande, Alexander Y Grosberg, Toyoichi Tanaka, and Eugene S
Shakhnovich. On the transition coordinate for protein folding. J. Chem. Phys.,
108:334–350, 1998.

[336] Sanjib Paul and Srabani Taraphder. Determination of the reaction coordinate for a
key conformational fluctuation in human carbonic anhydrase II. J. Phys. Chem. B,
119:11403–11415, 2015.

[337] Ravi Radhakrishnan and Tamar Schlick. Orchestration of cooperative events in DNA
synthesis and repair mechanism unraveled by transition path sampling of DNA poly-
merase β’s closing. Proc. Natl. Acad. Sci. U.S.A., 101:59705975, 2004.

[338] Li Xi, Manas Shah, and Bernhardt L Trout. Hopping of water in a glassy polymer
studied via transition path sampling and likelihood maximization. J. Phys. Chem. B,
117:3634–3647, 2013.

[339] Sara L Quaytman and Steven D Schwartz. Reaction coordinate of an enzymatic reac-
tion revealed by transition path sampling. Proc. Natl. Acad. Sci. U.S.A., 104:12253–
12258, 2007.

[340] Brandon C Knott, Valeria Molinero, Michael F Doherty, and Baron Peters. Homoge-
neous nucleation of methane hydrates: unrealistic under realistic conditions. J. Am.
Chem. Soc., 134:19544–19547, 2012.

[341] Laura Lupi, Arpa Hudait, Baron Peters, Michael Grünwald, Ryan GMullen, Andrew H
Nguyen, and Valeria Molinero. Role of stacking disorder in ice nucleation. Nature,
551:218–222, 2017.

[342] Christian Leitold, Christopher J Mundy, Marcel D Baer, Gregory K Schenter, and
Baron Peters. Solvent reaction coordinate for an SN2 reaction. J. Chem. Phys.,
153:024103, 2020.

[343] Lev Levintov, Sanjib Paul, and Harish Vashisth. Reaction coordinate and thermody-
namics of base flipping in RNA. J. Chem. Theory Comput., 17:1914–1921, 2021.

158



[344] Shambhavi Tannir, Lev Levintov, Mark A Townley, Brian M Leonard, Jan Kubelka,
Harish Vashisth, Krisztina Varga, and Milan Balaz. Functional nanoassemblies with
mirror-image chiroptical properties templated by a single homochiral DNA strand.
Chem. Mater., 32(6):22722281, 2020.

[345] Sunhwan Jo, Taehoon Kim, Vidyashankara G Iyer, and Wonpil Im. CHARMM-GUI:
a web-based graphical user interface for CHARMM. J. Comput. Chem., 29(11):1859–
1865, 2008.

[346] Seonghoon Kim, Jumin Lee, Sunhwan Jo, Charles L Brooks III, Hui S Lee, and Wonpil
Im. CHARMM-GUI ligand reader and modeler for CHARMM force field generation
of small molecules. J. Comput. Chem., 38(21):1879–1886, 2017.

[347] Alex Dickson and Samuel D Lotz. Ligand release pathways obtained with WExplore:
residence times and mechanisms. J. Phys. Chem. B, 120(24):53775385, 2016.

[348] Eugene Wigner. The transition state method. J. Chem. Soc. Faraday Trans., 34:29–41,
1938.

[349] Henry Eyring. The activated complex in chemical reactions. J. Chem. Phys., 3:107–
115, 1935.

[350] Baron Peters. Recent advances in transition path sampling: accurate reaction coor-
dinates, likelihood maximisation and diffusive barrier-crossing dynamics. Mol. Simul.,
36:1265–1281, 2010.

159



APPENDIX A

SUPPORTING INFORMATION FOR CHAPTER 3

A.1 Principal Component Analysis (PCA)

I conducted a principal component analysis (PCA) to reveal the dominant modes of motion in

each unliganded and liganded simulation and to compare PC projections between different

simulations. PCA can be used as a metric of similarity between the dominant modes of

motion sampled across various unliganded and liganded simulations. Figure A.17 shows the

overlap of histograms of the first PC projections for the unliganded and liganded simulations.

In the unliganded simulations, I observe a significant overlap between systems with PDB

codes 1ARJ, 1QD3, 1UUD, 1UUI, 2KX5, 2L8H, and 5J0M signifying that these systems

exhibited similar motions in their RNA structures (Figure A.17A). I also observed overlap of

the first PC in the systems with PDB codes 1ANR, 1LVJ, 2KDQ, 5J2W, and 6D2U (Figure

A.17A). One system exhibited a completely different shape of the first PC which is coupled

with increased mobility of all three bulge bases (1UTS; Figures 3.7, A.14, and A.17A). In the

liganded simulations, I observed a significant overlap among a larger fraction of systems in

comparison to unliganded simulations, specifically, systems with PDB codes 1ARJ, 1QD3,

1UTS, 1UUI, 2L8H, 5J0M, 5J1O, 5J2W, and 6D2U (Figure A.17B). Two systems (PDB

codes 2KDQ and 2KX5) formed a second group of systems which exhibited an overlap

in the projections of the first PC. Overall, this data shows that there are similarities in

motion among various unliganded and liganded simulations but liganded systems have more

overlaps across the projections of the first PC in comparison to the unliganded simulations.

This means that most of the liganded RNA systems exhibit the same type of motions while

160



interacting with the ligands.
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Table A.1: Details on ligands studied. For each ligand, shown is the PDB code, ligand
name, chemical formula, number of atoms, molecular weight, and the dissociation constant
(KD). See also Figure A.1.

PDB ID Name Chemical Formula Number of atoms Molecular weight KD (µM)
1ARJ Arginine amide C6H15N4O2 27 175 1000
1LVJ Acetylpromazine C19H22N2OS 45 326 0.1
1QD3 Neomycin B C23H46N6O13 88 614 5.9
1UTS RBT550 C24H33N5O 63 407 0.039
1UUD RBT203 C16H31N7O2 56 353 1.54
1UUI RBT158 C16H29N5O2 52 323 >50
2L8H MV2003 C17H25N5O2 49 331 NA
2KDQ

L-22 C76H145N33O15 269 1759 0.03
5J0M
5J1O
5J2W
2KX5 KP-Z-41 C94H179N41O19S2 335 2249 0.001
6D2U JB181 C72H140N31O15 258 1678 <0.00018
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Table A.2: Details on all simulation systems. For each TAR structure (see PDB codes),
listed are RNA sequences in the original structure (column labeled RNA Before) and in the
modeled structure (column labeled RNA After). The last column lists the total number
of atoms in solvated and ionized unliganded as well as liganded (marked in bold) systems
except for the PDB code 1ANR (first row) which is the experimental apo structure. See also
section 3.4.1.

PDB ID RNA Before RNA After System Size

ap
o 1ANR

930 931
22959

GGCAGAUCUGAGCCUGGGAGCUCUCUGCC GGCAGAUCUGAGCCUGGGAGCUCUCUGCC

li
ga
n
de
d/
u
n
li
ga
n
de
d

5J2W
929 931 20586

GGCAGAUCUGAGCCUGGGAGCUCUCUGCC GGCAGAUCUGAGCCUGGGAGCUCUCUGCC 20542

1UUI
930 931 23076

GGCAGAUCUGAGCCUGGGAGCUCUCUGCC GGCAGAUCUGAGCCUGGGAGCUCUCUGCC 23078

5J1O
929 931 21159

GGCAGAUCUGAGCCUGGGAGCUCUCUGCC GGCAGAUCUGAGCCUGGGAGCUCUCUGCC 21127

6D2U
930 931 21742

GGCAGAUCUGAGCCUGGGAGCUCUCUGCC GGCAGAUCUGAGCCUGGGAGCUCUCUGCC 21761

1UUD
929 931 24633

GGCAGAUCUGAGCCUGGGAGCUCUCUGCC GGCAGAUCUGAGCCUGGGAGCUCUCUGCC 24645

1UTS
930 931 24165

GGCAGAUCUGAGCCUGGGAGCUCUCUGCC GGCAGAUCUGAGCCUGGGAGCUCUCUGCC 24159

2KX5
930 931 23475

GGCAGAUCUGAGCCUGGGAGCUCUCUGCC GGCAGAUCUGAGCCUGGGAGCUCUCUGCC 25647

1QD3
927 931 19443

GCCAGAUUUGAGCCUGGGAGCUCUCUGGC GGCAGAUCUGAGCCUGGGAGCUCUCUGCC 19483

5J0M
929 931 22446

GGCAGAUCUGAGCCUGGGAGCUCUCUGCC GGCAGAUCUGAGCCUGGGAGCUCUCUGCC 22444

2KDQ
930 931 24471

GGCAGAUCUGAGCCUGGGAGCUCUCUGCC GGCAGAUCUGAGCCUGGGAGCUCUCUGCC 24529

1ARJ
930 931 22845

GGCAGAUCUGAGCCUGGGAGCUCUCUGCC GGCAGAUCUGAGCCUGGGAGCUCUCUGCC 22865

2L8H
930 931 20691

GGCAGAUCUGAGCCUGGGAGCUCUCUGCC GGCAGAUCUGAGCCUGGGAGCUCUCUGCC 20714

1LVJ
999 931 22023

GGCCAGAUCUGAGCCUGGGAGCUCUCUGGCC GGCAGAUCUGAGCCUGGGAGCUCUCUGCC 22053
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Figure A.1: Chemical structures of ligands studied: (top row) small molecules; (bottom
row) peptides.

Figure A.2: Conformational metrics of ligands. (A) The centers of mass of ligands are
represented by spheres (colored and labeled) and overlaid on the apo structure of TAR. (B)
The all-atom root-mean-squared-deviation (RMSD) of each liganded TAR structure relative
to the apo structure (PDB code 1ANR) vs. buried surface area (BSA) of each ligand are
shown for small-molecules (top panel) and peptides (bottom panel).
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Figure A.3: Snapshots of the initial systems in liganded simulations: RNA, cartoon
representation; ligands, space-filling. Snapshot of the apo TAR structure (PDB code 1ANR)
is located at the center (black cartoon). See also Figure 3.1.
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Figure A.4: Torsional flexibility. The normalized distributions of each RNA backbone
dihedral angle (α, β, γ, δ, ǫ, ζ) and the glycosidic dihedral angle (χ) for unliganded (labeled
U in panel A) and liganded (labeled L in panel B) simulations.

Figure A.5: Snapshots highlighting an increase in BSA. Shown are the snapshots of
the TAR RNA conformations (surface map) and the ligand (RBT550; space-filling) from a
liganded simulation (PDB code 1UTS) highlighting an increase in BSA in comparison to the
initial BSA due to conformational rearrangements of the ligand in the binding pocket. A
cyan surface indicates the nucleotides of the binding pocket in close contact with the ligand
and a white surface represents the rest of the RNA structure.
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Figure A.6: Snapshots highlighting partial ligand dissociation. Shown are the snap-
shots of the TAR RNA conformations (red cartoon) and the ligand (arginine amide; space-
filling) from a liganded simulation (PDB code 1ARJ) highlighting the partial dissociation of
the ligand at t = 180 ns and then rebinding again in the original binding pocket (t = 1000
ns).

Figure A.7: Conformational change in TAR RNA in a liganded simulation. Shown
are the bent and stretched conformations of TAR (orange cartoon) with the ligand (space-
filling) from a liganded simulation (PDB code 1LVJ).
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Figure A.8: The ∆RMSF per residue data are presented highlighting the differences between
the unliganded and liganded simulations. Each system is uniquely colored. The bulge (B)
and the loop (L) motifs are marked with the dashed lines.
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Figure A.9: Flexibility of the bulge motif in unliganded and liganded states. RMSD
data with error bars, similar to Figure 3.3A, are shown for the bulge motif nucleotides (lighter
shades, unliganded; darker shades, liganded).
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Figure A.10: Comparison of average structures of TAR RNA. The average structures
of TAR RNA from unliganded simulations are overlaid on the average structures from the
simulation of the apo TAR RNA structure (PDB code 1ANR). The RMSD values between
the average structures are also labeled in color along with the PDB codes.
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Figure A.11: Cluster analysis of unliganded simulations. The distributions of all clus-
ters computed from conformations sampled via MD simulations are shown for the unliganded
state of each system. Histograms are shown in the same color as the labeled PDB code. See
also Figure 3.3B.

Figure A.12: Cluster analysis of liganded simulations. Data similar to Figure A.11 are
shown for the liganded state of each system. See also Figure 3.3B.
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Figure A.13: Combined cluster analysis. The fraction of conformations (Fconf) from
each system that populate each cluster from a set of (A) unliganded and (B) liganded
simulations. Each system is uniquely colored. The numbers at the top of each cluster signify
the percentage of the total number of frames that constitute that specific cluster.

Figure A.14: Conformational transitions in bulge nucleotides (U23, C24, and U25)
in unliganded (U) and liganded (L) simulations. Data similar to Figure 3.7 are shown
for additional systems.
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Figure A.15: Predicted binding pockets in unliganded TAR structures. Data similar
to Figure 3.8A are shown for additional systems.

Figure A.16: Overlays of ligands in predicted binding pockets. Shown are the snap-
shots of predicted binding pockets (cyan surfaces) with an overlay of each ligand (orange
sticks) on various TAR structures (transparent gray cartoons). See also Figure 3.8.
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Figure A.17: Principal component analysis. Shown are the normalized histograms of
the first principal component projection from each of the (A) unliganded and (B) liganded
simulations. Each system is uniquely colored.
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APPENDIX B

SCRIPTS FOR CHAPTER 3

B.1 Overview

In this appendix, I provide the scripts that I have used to set up and analyze simulations in

chapter 3 using various software packages.

B.2 Amber Simulation

To set up an Amber simulation, I modified the residue names in the initial PDB file that

was downloaded from the Protein Data Bank using a simple SED script. If this step is

not performed, the TLEAP program will not be able to read the PDB file and set up the

simulation domain.

1 sed ’s/G /RG/g’ 1anr_frame0.pdb > modified.pdb

2 sed -i ’s/C /RC/g’ modified.pdb

3 sed -i ’s/U /RU/g’ modified.pdb

4 sed -i ’s/A /RA/g’ modified.pdb

After that, I used the TLEAP program in Ambertools to solvate the system, to ionize the

system, and to generate the input files for an MD simulation.

1 addPath /home/harishv/bin/amber16/dat/leap/parm/

2 source leaprc.RNA.ROC

3 source leaprc.water.tip3p

4 loadamberparams frcmod.ionsjc_tip3p

5 loadamberparams frcmod.ions234lm_126_tip3p

6 loadamberprep drug.prepi !load force field file for the ligand

7 loadamberparams drug.frcmod !load force field file for the ligand

8 mol = loadPdb "modified.pdb"

9 check mol

10 solvateBox mol TIP3PBOX 15

174



11 addIons2 mol Na+ 0

12 savepdb mol apo_final.pdb

13 saveAmberParm mol apo_final.prmtop apo.inpcrd

14 quit

The minimization of a system should be performed prior to conducting an MD simulation.

Below, I provide the Amber minimization script.

1 Minimize

2 $cntrl

3 imin=1,

4 ntx=1,

5 irest=0,

6 maxcyc =2000,

7 ncyc =1000,

8 ntpr =100,

9 ntwx=0,

10 cut=8.0,

11 /

It is critical to note that the simulations involving a minimization using Amber can be

conducted only on CPUs. The Amber configuration file for conducting a simulation in the

NPT ensemble is provided below.

1 Production

2 &cntrl

3 imin=0,

4 iwrap=1,

5 ntx=1,

6 irest=0,

7 nstlim =1000000000 ,

8 dt=0.002 ,

9 ntf=2,

10 ntc=2,

11 temp0 =300,

12 ntpr =10000 ,

13 ntwr =10000 ,

14 ntwx =10000 ,

15 ntwv =10000 ,

16 ntxo=1,

17 cut=9.,

18 ntb=2,

19 ntp=1,

20 ntt=3,

21 gamma_ln =2,

22 /

I conducted all simulations in this chapter on a local supercomputer at UNH (Premise). To
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copy my input files I used the following script:

1 scp -pr /home/levintov/project_dynamics /common /6d2u/setup

2 levintov@premise .sr.unh.edu:/mnt/home/chem -eng/levintov/tar/

I also provide jobscripts to submit Amber simulations on a local supercomputer at UNH

(Premise). A script for launching a minimization job on a CPU node:

1 #!/ bin/csh

2

3 #SBATCH --partition=harish -N 1 --time =00:15:00 --job -name=1 arj_min

4 #SBATCH --output=slurm_%x-%j.log --error=slurm_%x-%j.err

5

6 module load mpi

7 module load Amber

8

9 set AMBER =" pmemd"

10

11 set parmfile =" arj_final.prmtop"

12 set initial ="arj.inpcrd"

13

14 echo -n "Starting Script at: "

15 date

16 echo ""

17

18 mpirun $AMBER -O -i min.in -o min.out -p $parmfile -c $initial -r min.rst

19 -inf min.info

20

21 echo "ALL DONE"

A script for launching an MD simulation on a GPU node:

1 #!/ bin/csh

2

3 #SBATCH --partition=harish --gres=gpu:1 --job -name=1arj

4

5 #SBATCH --output=slurm_%x-%j.log --error=slurm_%x-%j.err

6

7 module load mpi

8 module load Amber

9

10 set AMBER =" pmemd.cuda.MPI"

11

12 set parmfile =" arj_final.prmtop"

13 ##set input =""

14 set initial ="min.rst"

15

16 echo -n "Starting Script at: "

17 date

18 echo ""
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19

20 mpirun $AMBER -O -i run.in -o run.out -p $parmfile -c $initial -r run.rst

21 -x run.mdcrd -v run.mdvel -inf run.info

22

23 echo "ALL DONE"

B.3 Analysis Scripts

In this study, I used various conformational metrics to analyze the system. In this section,

I provide all the scripts that I have generated. VMD [184] scripts can be executed from the

terminal window: vmd -dispdev text -e input.tcl. CPPTRAJ [185] scripts can also be

executed from the terminal window: cpptraj -i input.in. MATLAB scripts are executed

in the MATLAB GUI.

B.3.1 RMSD Script

1 ### VMD SCRIPT

2 mol new ../ arj_raw.prmtop

3 mol addfile ../ no_wat.nc waitfor all

4

5 set nf [molinfo top get numframes]

6 set ref0 [atomselect top "nucleic" frame 0]

7

8 set sel [atomselect top "nucleic "]

9 set sel1 [atomselect top "nucleic "]

10

11 ##Apo

12 set out0 [open rmsd_arj.dat "w"]

13

14 for {set i 0} { $i < $nf } { incr i } {

15

16 $sel frame $i

17 $sel1 frame $i

18

19 $sel move [measure fit $sel1 $ref0]

20 set rmsd [measure rmsd $sel1 $ref0]

21 puts $out0 "$i $rmsd"

22 }

23

24 exit
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B.3.2 RMSF Script

1 ### VMD SCRIPT

2 mol new ../ arj_raw.prmtop

3 mol addfile ../ no_wat.nc waitfor all

4

5 set outfile [open "arj_rmsf_bound .dat" w]

6 set sel [atomselect top all]

7 set sel0 [$sel num]

8 set sel [atomselect top "resid 1 to $sel0 and name P"]

9 set ref0 [atomselect top all frame 0]

10 set sel1 [atomselect top all]

11

12 set stepsize 1

13

14 set nframes [molinfo top get numframes]

15 set nframes2 [expr $nframes - 1]

16

17 for {set i 0} {$i < [$sel num]} {incr i} {

18 $sel1 move [measure fit $sel1 $ref0]

19 set rmsf [measure rmsf $sel first 1 last $nframes2 step $stepsize]

20 puts $outfile "[expr {$i+1}] \t [lindex $rmsf $i]"

21 }

22

23 close $outfile

B.3.3 BSA Script

1 ### VMD SCRIPT

2 mol new ../ arj_raw.prmtop

3 mol addfile ../ no_wat.nc waitfor all

4

5 set nf [molinfo top get numframes]

6

7 set ref0 [atomselect top "nucleic" frame 0]

8

9 set rna [atomselect top "nucleic "]

10 set drug [atomselect top "not nucleic "]

11 set together [atomselect top all]

12

13 set out0 [open bsa_arj.dat "w"]

14

15 for {set i 0} { $i < $nf } { incr i } {

16 $rna frame $i

17 $drug frame $i

18 $together frame $i

19

20 $together move [measure fit $rna $ref0]

21

22 set sasa_rna [measure sasa 1.4 $rna -restrict $rna]
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23 set sasa_drug [measure sasa 1.4 $drug -restrict $drug]

24 set sasa_together [measure sasa 1.4 $together -restrict $together]

25 set bsa [expr $sasa_rna+$sasa_drug -$sasa_together ]

26 puts $out0 "$i $bsa"

27 }

28

29 exit

B.3.4 Script to Compute an Average Structure

1 ### CPPTRAJ SCRIPT

2 parm ../ arj_rna.prmtop

3 trajin ../ no_wat.nc

4 rms first mass @P

5 average arj_aver_bound .pdb pdb

6 run

7 exit

B.3.5 Script to Conduct a Cluster Analysis

1 ### CPPTRAJ SCRIPT

2 parm ../ arj_rna.prmtop

3 trajin ../ aligned.nc

4 cluster C0 \

5 dbscan minpoints 25 epsilon 1.5 sievetoframe \

6 rms @P \

7 sieve 10 \

8 out cnumvtime.dat \

9 summary summary.dat \

10 info info.dat \

11 cpopvtime cpopvtime.agr normframe \

12 repout rep repfmt pdb \

13 singlerepout singlerep.nc singlerepfmt netcdf \

14 avgout Avg avgfmt restart

B.3.6 Script to Compute a Dihedral Angle of a Flipping Base

1 ### CPPTRAJ SCRIPT

2 parm ../ arj_rna.prmtop

3 trajin ../ rna.nc

4 dihedral r8_r6 :6@N1 ,C2 ,N3 ,C4 ,C5,C6 :7@C1 ’,O4’,C4 ’,C3’,C2 ’

5 :8@C2 ’,C3 ,C4 ’,O4 ,C1’ :8@N1 ,C2 ,N3,C4 ,C5 ,C6 out arj_r8_r6.dat mass

6 run

7 exit
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B.3.7 Script to Compute ∆RMSF

1 ### MATLAB SCRIPT

2 A_free = importdata(’data/arj_rmsf_free.dat ’);

3 A_bound = importdata(’data/arj_rmsf_bound .dat ’);

4

5 RMSF_free = A_free (:,2);

6 RMSF_bound = A_bound (:,2);

7

8 del_RMSF = RMSF_bound - RMSF_free;

9

10 fileID = fopen(’arj_delRMSF.dat ’,’w’);

11 fprintf(fileID ,’%f\n’,del_RMSF );

B.4 Scripts to Generate Figures

I primarily used GNUPLOT and MATLAB to generate data plots in my work. In this

section, I provide several example scripts to generate the plots presented in chapter 3.

B.4.1 RMSD Plot

1 ### GNUPLOT SCRIPT

2 #!/ usr/bin/gnuplot

3 set encoding iso_8859_1

4 set term post eps enh color size 20,12 "HelveticaBold" 50 solid

5 set output "rmsd_main_v2.eps"

6 unset key

7 unset tics

8 unset border

9

10 set xrange [ -2.8:27]

11 set yrange [ -0.5:10]

12

13 set arrow 1 from 0,0 to 27,0 nohead lw 8

14 set arrow 2 from -0.001,0 to 0,10 nohead lw 8

15 set arrow 3 from 0,5 to -0.4,5 nohead lw 6

16 set arrow 4 from 0,9.98 to -0.4,9.98 nohead lw 6

17 set arrow 5 from 0,0 to -0.4,0 nohead lw 6

18 set arrow 100 from 0,2.5 to -0.2,2.5 nohead lw 6

19 set arrow 101 from 0,7.5 to -0.2,7.5 nohead lw 6

20

21 set label 1 "0" at -1.1,0 font "HelveticaBold ,85"

22 set label 2 "5" at -1.1,5 font "HelveticaBold ,85"

23 set label 3 "10" at -1.6,10 font "HelveticaBold ,85"

24 set label 4 "RMSD ({\305})" at -2.5,3.25 font "HelveticaBold ,120"

25 rotate by 90
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26

27 set label 5 "1UUI" at 0.7,-0.3 font "HelveticaBold ,60" tc rgb "# ffd600"

28 set label 6 "2KDQ" at 2.7,-0.3 font "HelveticaBold ,60" tc rgb "# FF69B4"

29 set label 7 "5J1O" at 4.7,-0.3 font "HelveticaBold ,60" tc rgb "#0000 ff"

30 set label 8 "6D2U" at 6.7,-0.3 font "HelveticaBold ,60" tc rgb "# d2b48c"

31 set label 9 "1ARJ" at 8.7,-0.3 font "HelveticaBold ,60" tc rgb "red"

32 set label 10 "1QD3" at 10.7,-0.3 font "HelveticaBold ,60" tc rgb "#32 CD32"

33 set label 11 "1UTS" at 12.7,-0.3 font "HelveticaBold ,60" tc rgb "#00 FFFF"

34 set label 12 "2KX5" at 14.7,-0.3 font "HelveticaBold ,60" tc rgb "#7 f7f7f"

35 set label 13 "5J0M" at 16.7,-0.3 font "HelveticaBold ,60" tc rgb "#8 b4513"

36 set label 14 "5J2W" at 18.7,-0.3 font "HelveticaBold ,60" tc rgb "#008 b8b"

37 set label 15 "1UUD" at 20.65 , -0.3 font "HelveticaBold ,60" tc rgb "# ff00ff"

38 set label 16 "2L8H" at 22.7,-0.3 font "HelveticaBold ,60" tc rgb "#4 b0082"

39 set label 17 "1LVJ" at 24.7,-0.3 font "HelveticaBold ,60" tc rgb "orange"

40

41 set label 100 "{/ ZapfDingbats \153}" at 26.1,7 font "HelveticaBold ,50"

42 tc rgb "orange"

43 set label 101 "1" at 4.3 ,8.8 font "HelveticaBold ,80"

44 set label 102 "2" at 14.3 ,8.8 font "HelveticaBold ,80"

45 set label 103 "3" at 23.2 ,8.8 font "HelveticaBold ,80"

46

47 #set label 11 "PDB" at 6,-200 font "HelveticaBold ,120"

48

49 #STD

50 #1UUI

51 set arrow 12 from 1.75 ,3.3 to 1.75 ,4.06 nohead lw 9 lc rgb "# e6c100"

52 set arrow 13 from 1.55 ,3.3 to 1.95 ,3.3 nohead lw 9 lc rgb "# e6c100"

53 set arrow 14 from 1.55 ,4.06 to 1.95 ,4.06 nohead lw 9 lc rgb "# e6c100"

54

55 set arrow 15 from 1.25 ,4.32 to 1.25 ,5.6 nohead lw 9 lc rgb "# e6c100"

56 set arrow 16 from 1.05 ,4.32 to 1.45 ,4.32 nohead lw 9 lc rgb "# e6c100"

57 set arrow 17 from 1.05 ,5.6 to 1.45 ,5.6 nohead lw 9 lc rgb "# e6c100"

58

59 #2KDQ

60 set arrow 18 from 3.75 ,3.85 to 3.75 ,4.39 nohead lw 9 lc rgb "# ff369b"

61 set arrow 19 from 3.55 ,3.85 to 3.95 ,3.85 nohead lw 9 lc rgb "# ff369b"

62 set arrow 20 from 3.55 ,4.39 to 3.95 ,4.39 nohead lw 9 lc rgb "# ff369b"

63

64 set arrow 21 from 3.25 ,4.9 to 3.25 ,6.28 nohead lw 9 lc rgb "# ff369b"

65 set arrow 22 from 3.05 ,4.9 to 3.45 ,4.9 nohead lw 9 lc rgb "# ff369b"

66 set arrow 23 from 3.05 ,6.28 to 3.45 ,6.28 nohead lw 9 lc rgb "# ff369b"

67

68 #5J1O

69 set arrow 24 from 5.75 ,3.22 to 5.75 ,4.18 nohead lw 9 lc rgb "#0000 b3"

70 set arrow 25 from 5.55 ,3.22 to 5.95 ,3.22 nohead lw 9 lc rgb "#0000 b3"

71 set arrow 26 from 5.55 ,4.18 to 5.95 ,4.18 nohead lw 9 lc rgb "#0000 b3"

72

73 set arrow 27 from 5.25 ,4.41 to 5.25 ,6.23 nohead lw 9 lc rgb "#0000 b3"

74 set arrow 28 from 5.05 ,4.41 to 5.45 ,4.41 nohead lw 9 lc rgb "#0000 b3"

75 set arrow 29 from 5.05 ,6.23 to 5.45 ,6.23 nohead lw 9 lc rgb "#0000 b3"

76

77 #6D2U

78 set arrow 30 from 7.75 ,2.96 to 7.75 ,3.5 nohead lw 9 lc rgb "# c49c67"

79 set arrow 31 from 7.55 ,2.96 to 7.95 ,2.96 nohead lw 9 lc rgb "# c49c67"
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80 set arrow 32 from 7.55 ,3.5 to 7.95 ,3.5 nohead lw 9 lc rgb "# c49c67"

81

82 set arrow 33 from 7.25,4 to 7.25 ,6.16 nohead lw 9 lc rgb "# c49c67"

83 set arrow 34 from 7.05,4 to 7.45,4 nohead lw 9 lc rgb "# c49c67"

84 set arrow 35 from 7.05 ,6.16 to 7.45 ,6.16 nohead lw 9 lc rgb "# c49c67"

85

86 #1ARJ

87 set arrow 36 from 9.75 ,4.87 to 9.75 ,6.33 nohead lw 9 lc rgb "# cc0000"

88 set arrow 37 from 9.55 ,4.87 to 9.95 ,4.87 nohead lw 9 lc rgb "# cc0000"

89 set arrow 38 from 9.55 ,6.33 to 9.95 ,6.33 nohead lw 9 lc rgb "# cc0000"

90

91 set arrow 39 from 9.25 ,5.61 to 9.25 ,7.65 nohead lw 9 lc rgb "# cc0000"

92 set arrow 40 from 9.05 ,5.61 to 9.45 ,5.61 nohead lw 9 lc rgb "# cc0000"

93 set arrow 41 from 9.05 ,7.65 to 9.45 ,7.65 nohead lw 9 lc rgb "# cc0000"

94

95 #1QD3

96 set arrow 42 from 11.75 ,4.04 to 11.75 ,4.86 nohead lw 9 lc rgb "#008000"

97 set arrow 43 from 11.55 ,4.04 to 11.95 ,4.04 nohead lw 9 lc rgb "#008000"

98 set arrow 44 from 11.55 ,4.86 to 11.95 ,4.86 nohead lw 9 lc rgb "#008000"

99

100 set arrow 45 from 11.25 ,4.65 to 11.25 ,6.01 nohead lw 9 lc rgb "#008000"

101 set arrow 46 from 11.05 ,4.65 to 11.45 ,4.65 nohead lw 9 lc rgb "#008000"

102 set arrow 47 from 11.05 ,6.01 to 11.45 ,6.01 nohead lw 9 lc rgb "#008000"

103

104 #1UTS

105 set arrow 48 from 13.75 ,4.85 to 13.75 ,6.39 nohead lw 9 lc rgb "#00 cece"

106 set arrow 49 from 13.55 ,4.85 to 13.95 ,4.85 nohead lw 9 lc rgb "#00 cece"

107 set arrow 50 from 13.55 ,6.39 to 13.95 ,6.39 nohead lw 9 lc rgb "#00 cece"

108

109 set arrow 51 from 13.25 ,5.28 to 13.25 ,8.24 nohead lw 9 lc rgb "#00 cece"

110 set arrow 52 from 13.05 ,5.28 to 13.45 ,5.28 nohead lw 9 lc rgb "#00 cece"

111 set arrow 53 from 13.05 ,8.24 to 13.45 ,8.24 nohead lw 9 lc rgb "#00 cece"

112

113 #2KX5

114 set arrow 54 from 15.75 ,3.79 to 15.75 ,4.49 nohead lw 9 lc rgb "#666666"

115 set arrow 55 from 15.55 ,3.79 to 15.95 ,3.79 nohead lw 9 lc rgb "#666666"

116 set arrow 56 from 15.55 ,4.49 to 15.95 ,4.49 nohead lw 9 lc rgb "#666666"

117

118 set arrow 57 from 15.25 ,3.87 to 15.25 ,5.65 nohead lw 9 lc rgb "#666666"

119 set arrow 58 from 15.05 ,3.87 to 15.45 ,3.87 nohead lw 9 lc rgb "#666666"

120 set arrow 59 from 15.05 ,5.65 to 15.45 ,5.65 nohead lw 9 lc rgb "#666666"

121

122 #5J0M

123 set arrow 60 from 17.75 ,4.1 to 17.75 ,4.8 nohead lw 9 lc rgb "#5 e2f0d"

124 set arrow 61 from 17.55 ,4.1 to 17.95 ,4.1 nohead lw 9 lc rgb "#5 e2f0d"

125 set arrow 62 from 17.55 ,4.8 to 17.95 ,4.8 nohead lw 9 lc rgb "#5 e2f0d"

126

127 set arrow 63 from 17.25 ,4.14 to 17.25 ,5.52 nohead lw 9 lc rgb "#5 e2f0d"

128 set arrow 64 from 17.05 ,4.14 to 17.45 ,4.14 nohead lw 9 lc rgb "#5 e2f0d"

129 set arrow 65 from 17.05 ,5.52 to 17.45 ,5.52 nohead lw 9 lc rgb "#5 e2f0d"

130

131 #5J2W

132 set arrow 66 from 19.75 ,3.07 to 19.75 ,3.55 nohead lw 9 lc rgb "#005858"

133 set arrow 67 from 19.55 ,3.07 to 19.95 ,3.07 nohead lw 9 lc rgb "#005858"
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134 set arrow 68 from 19.55 ,3.55 to 19.95 ,3.55 nohead lw 9 lc rgb "#005858"

135

136 set arrow 69 from 19.25 ,3.44 to 19.25 ,5.34 nohead lw 9 lc rgb "#005858"

137 set arrow 70 from 19.05 ,3.44 to 19.45 ,3.44 nohead lw 9 lc rgb "#005858"

138 set arrow 71 from 19.05 ,5.34 to 19.45 ,5.34 nohead lw 9 lc rgb "#005858"

139

140 #1UUD

141 set arrow 72 from 21.75 ,3.99 to 21.75 ,5.11 nohead lw 9 lc rgb "# d800d8"

142 set arrow 73 from 21.55 ,3.99 to 21.95 ,3.99 nohead lw 9 lc rgb "# d800d8"

143 set arrow 74 from 21.55 ,5.11 to 21.95 ,5.11 nohead lw 9 lc rgb "# d800d8"

144

145 set arrow 75 from 21.25 ,4.3 to 21.25 ,5.34 nohead lw 9 lc rgb "# d800d8"

146 set arrow 76 from 21.05 ,4.3 to 21.45 ,4.3 nohead lw 9 lc rgb "# d800d8"

147 set arrow 77 from 21.05 ,5.34 to 21.45 ,5.34 nohead lw 9 lc rgb "# d800d8"

148

149 #2L8H

150 set arrow 78 from 23.75 ,3.9 to 23.75 ,6.12 nohead lw 9 lc rgb "#2 e004f"

151 set arrow 79 from 23.55 ,3.9 to 23.95 ,3.9 nohead lw 9 lc rgb "#2 e004f"

152 set arrow 80 from 23.55 ,6.12 to 23.95 ,6.12 nohead lw 9 lc rgb "#2 e004f"

153

154 set arrow 81 from 23.25 ,4.04 to 23.25 ,6.2 nohead lw 9 lc rgb "#2 e004f"

155 set arrow 82 from 23.05 ,4.04 to 23.45 ,4.04 nohead lw 9 lc rgb "#2 e004f"

156 set arrow 83 from 23.05 ,6.2 to 23.45 ,6.2 nohead lw 9 lc rgb "#2 e004f"

157

158 #1LVJ

159 set arrow 84 from 25.75 ,5.73 to 25.75 ,8.17 nohead lw 9 lc rgb "# e69500"

160 set arrow 85 from 25.55 ,5.73 to 25.95 ,5.73 nohead lw 9 lc rgb "# e69500"

161 set arrow 86 from 25.55 ,8.17 to 25.95 ,8.17 nohead lw 9 lc rgb "# e69500"

162

163 set arrow 87 from 25.25 ,4.4 to 25.25 ,5.72 nohead lw 9 lc rgb "# e69500"

164 set arrow 88 from 25.05 ,4.4 to 25.45 ,4.4 nohead lw 9 lc rgb "# e69500"

165 set arrow 89 from 25.05 ,5.72 to 25.45 ,5.72 nohead lw 9 lc rgb "# e69500"

166

167 #1UUI

168 set object 1 rect from 1,0 to 1.5 ,4.96 fc rgb "# ffd600" fs solid 0.5

169 noborder

170 set object 2 rect from 1.5,0 to 2,3.68 fc rgb "# ffd600" fs solid 1

171 noborder

172

173 #2KDQ

174 set object 3 rect from 3,0 to 3.5 ,5.59 fc rgb "# ffc0cb" fs solid 0.5

175 noborder

176 set object 4 rect from 3.5,0 to 4,4.12 fc rgb "# FF69B4" fs solid 1

177 noborder

178

179 #5J1O

180 set object 5 rect from 5,0 to 5.5 ,5.32 fc rgb "#0000 ff" fs solid 0.5

181 noborder

182 set object 6 rect from 5.5,0 to 6,3.7 fc rgb "#0000 ff" fs solid 1 noborder

183

184 #6D2U

185 set object 7 rect from 7,0 to 7.5 ,5.08 fc rgb "# d2b48c" fs solid 0.5

186 noborder

187 set object 8 rect from 7.5,0 to 8,3.23 fc rgb "# d2b48c" fs solid 1
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188 noborder

189

190 #1ARJ

191 set object 9 rect from 9,0 to 9.5 ,6.63 fc rgb "red" fs solid 0.5

192 noborder

193 set object 10 rect from 9.5,0 to 10,5.6 fc rgb "red" fs solid 1

194 noborder

195

196 #1QD3

197 set object 11 rect from 11,0 to 11.5 ,5.33 fc rgb "green" fs solid 0.5

198 noborder

199 set object 12 rect from 11.5,0 to 12 ,4.45 fc rgb "#32 CD32" fs solid 1

200 noborder

201

202 #1UTS

203 set object 13 rect from 13,0 to 13.5 ,6.76 fc rgb "#00 FFFF" fs solid 0.5

204 noborder

205 set object 14 rect from 13.5,0 to 14 ,5.62 fc rgb "#00 e5e5" fs solid 1

206 noborder

207

208 #2KX5

209 set object 15 rect from 15,0 to 15.5 ,4.76 fc rgb "#7 f7f7f" fs solid 0.5

210 noborder

211 set object 16 rect from 15.5,0 to 16 ,4.14 fc rgb "#7 f7f7f" fs solid 1

212 noborder

213

214 #5J0M

215 set object 17 rect from 17,0 to 17.5 ,4.83 fc rgb "#8 b4513" fs solid 0.5

216 noborder

217 set object 18 rect from 17.5,0 to 18 ,4.45 fc rgb "#8 b4513" fs solid 1

218 noborder

219

220 #5J2W

221 set object 19 rect from 19,0 to 19.5 ,4.39 fc rgb "#008 b8b" fs solid 0.5

222 noborder

223 set object 20 rect from 19.5,0 to 20 ,3.31 fc rgb "#008 b8b" fs solid 1

224 noborder

225

226 #1UUD

227 set object 21 rect from 21,0 to 21.5 ,4.82 fc rgb "# ff00ff" fs solid 0.5

228 noborder

229 set object 22 rect from 21.5,0 to 22 ,4.55 fc rgb "# ff00ff" fs solid 1

230 noborder

231

232 #2L8H

233 set object 23 rect from 23,0 to 23.5 ,5.12 fc rgb "#4 b0082" fs solid 0.5

234 noborder

235 set object 24 rect from 23.5,0 to 24 ,5.01 fc rgb "#4 b0082" fs solid 1

236 noborder

237

238 #1LVJ

239 set object 25 rect from 25,0 to 25.5 ,5.06 fc rgb "orange" fs solid 0.5

240 noborder

241 set object 26 rect from 25.5,0 to 26 ,6.95 fc rgb "orange" fs solid 1
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242 noborder

243

244 #Lines to outline groups

245 set arrow 104 from 0.73 ,8.5 to 8.27 ,8.5 nohead lw 6

246 set arrow 105 from 0.75 ,8.5 to 0.75 ,8.3 nohead lw 6

247 set arrow 106 from 8.25 ,8.5 to 8.25 ,8.3 nohead lw 6

248

249 set arrow 107 from 8.73 ,8.5 to 20.27 ,8.5 nohead lw 6

250 set arrow 108 from 8.75 ,8.5 to 8.75 ,8.3 nohead lw 6

251 set arrow 109 from 20.25 ,8.5 to 20.25 ,8.3 nohead lw 6

252

253 set arrow 110 from 20.73 ,8.5 to 26.27 ,8.5 nohead lw 6

254 set arrow 111 from 20.75 ,8.5 to 20.75 ,8.3 nohead lw 6

255 set arrow 112 from 26.25 ,8.5 to 26.25 ,8.3 nohead lw 6

256

257 p "test.dat" u 1:2 w l lt rgb "gray" lw 8 notitle

B.4.2 Average Bar Plot

The following MATLAB script generates a bar plot from chapter 3 (see Figure 3.4A).

1 ### MATLAB SCRIPT

2 A1 = importdata(’matrix_initial .dat ’);

3 figure

4 width = 0.4;

5 h = bar3(A1,width );

6 set(gca ,’box ’,’off ’,’TickDir ’,’out ’,’fontweight ’,’bold ’,’FontAngle ’,

7 ’italic ’,’fontsize ’,24,’linewidth ’,3,’FontName ’,’Bookman ’,

8 ’FontSmoothing ’,’on’,’xtick ’,[],’ytick ’,[]);

9 ax = gca;

10 ax.ZMinorTick = ’off ’;

11 ylim ([0.5 ,14.5]);

12 cm = get(gcf ,’colormap ’); % Use the current colormap.

13 cnt = 0;

14 for jj = 1: length(h)

15 xd = get(h(jj),’xdata ’);

16 yd = get(h(jj),’ydata ’);

17 zd = get(h(jj),’zdata ’);

18 delete(h(jj))

19 idx = [0; find(all(isnan(xd) ,2))];

20 if jj == 1

21 S = zeros(length(h)*( length(idx)-1),1);

22 dv = floor(size(cm ,1)/ length(S));

23 end

24 for ii = 1: length(idx)-1

25 cnt = cnt + 1;

26 S(cnt) = surface(xd(idx(ii)+1: idx(ii+1)-1,:),...

27 yd(idx(ii)+1: idx(ii+1)-1,:),...

28 zd(idx(ii)+1: idx(ii+1)-1,:),...

29 ’facecolor ’,cm((cnt -1)*dv+1 ,:));

30 end

31 end
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32 zlim ([0 ,10]);

33 % 1anr

34 set(S(1),’facecolor ’,’white ’);

35 set(S(2),’facecolor ’,’black ’);

36 set(S(3),’facecolor ’,’black ’);

37 set(S(4),’facecolor ’,’black ’);

38 set(S(5),’facecolor ’,’black ’);

39 set(S(6),’facecolor ’,’black ’);

40 set(S(7),’facecolor ’,’black ’);

41 set(S(8),’facecolor ’,’black ’);

42 set(S(9),’facecolor ’,’black ’);

43 set(S(10),’ facecolor ’,’black ’);

44 set(S(11),’ facecolor ’,’black ’);

45 set(S(12),’ facecolor ’,’black ’);

46 set(S(13),’ facecolor ’,’black ’);

47 set(S(14),’ facecolor ’,’black ’);

48 % 5j2w

49 set(S(15),’ facecolor ’,’white ’);

50 set(S(16),’ facecolor ’,’white ’);

51 set(S(17),’ facecolor ’,’[0 0.545 0.545] ’);

52 set(S(18),’ facecolor ’,’[0 0.545 0.545] ’);

53 set(S(19),’ facecolor ’,’[0 0.545 0.545] ’);

54 set(S(20),’ facecolor ’,’[0 0.545 0.545] ’);

55 set(S(21),’ facecolor ’,’[0 0.545 0.545] ’);

56 set(S(22),’ facecolor ’,’[0 0.545 0.545] ’);

57 set(S(23),’ facecolor ’,’[0 0.545 0.545] ’);

58 set(S(24),’ facecolor ’,’[0 0.545 0.545] ’);

59 set(S(25),’ facecolor ’,’[0 0.545 0.545] ’);

60 set(S(26),’ facecolor ’,’[0 0.545 0.545] ’);

61 set(S(27),’ facecolor ’,’[0 0.545 0.545] ’);

62 set(S(28),’ facecolor ’,’[0 0.545 0.545] ’);

63 % 1uui

64 set(S(29),’ facecolor ’,’white ’);

65 set(S(30),’ facecolor ’,’white ’);

66 set(S(31),’ facecolor ’,’white ’);

67 set(S(32),’ facecolor ’,’yellow ’);

68 set(S(33),’ facecolor ’,’yellow ’);

69 set(S(34),’ facecolor ’,’yellow ’);

70 set(S(35),’ facecolor ’,’yellow ’);

71 set(S(36),’ facecolor ’,’yellow ’);

72 set(S(37),’ facecolor ’,’yellow ’);

73 set(S(38),’ facecolor ’,’yellow ’);

74 set(S(39),’ facecolor ’,’yellow ’);

75 set(S(40),’ facecolor ’,’yellow ’);

76 set(S(41),’ facecolor ’,’yellow ’);

77 set(S(42),’ facecolor ’,’yellow ’);

78 % 5j1o

79 set(S(43),’ facecolor ’,’white ’);

80 set(S(44),’ facecolor ’,’white ’);

81 set(S(45),’ facecolor ’,’white ’);

82 set(S(46),’ facecolor ’,’white ’);

83 set(S(47),’ facecolor ’,’[0 0 1]’);

84 set(S(48),’ facecolor ’,’[0 0 1]’);

85 set(S(49),’ facecolor ’,’[0 0 1]’);
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86 set(S(50),’ facecolor ’,’[0 0 1]’);

87 set(S(51),’ facecolor ’,’[0 0 1]’);

88 set(S(52),’ facecolor ’,’[0 0 1]’);

89 set(S(53),’ facecolor ’,’[0 0 1]’);

90 set(S(54),’ facecolor ’,’[0 0 1]’);

91 set(S(55),’ facecolor ’,’[0 0 1]’);

92 set(S(56),’ facecolor ’,’[0 0 1]’);

93 % 6d2u

94 set(S(57),’ facecolor ’,’white ’);

95 set(S(58),’ facecolor ’,’white ’);

96 set(S(59),’ facecolor ’,’white ’);

97 set(S(60),’ facecolor ’,’white ’);

98 set(S(61),’ facecolor ’,’white ’);

99 set(S(62),’ facecolor ’,’[0.823 0.706 0.549] ’);

100 set(S(63),’ facecolor ’,’[0.823 0.706 0.549] ’);

101 set(S(64),’ facecolor ’,’[0.823 0.706 0.549] ’);

102 set(S(65),’ facecolor ’,’[0.823 0.706 0.549] ’);

103 set(S(66),’ facecolor ’,’[0.823 0.706 0.549] ’);

104 set(S(67),’ facecolor ’,’[0.823 0.706 0.549] ’);

105 set(S(68),’ facecolor ’,’[0.823 0.706 0.549] ’);

106 set(S(69),’ facecolor ’,’[0.823 0.706 0.549] ’);

107 set(S(70),’ facecolor ’,’[0.823 0.706 0.549] ’);

108 % 1uud

109 set(S(71),’ facecolor ’,’white ’);

110 set(S(72),’ facecolor ’,’white ’);

111 set(S(73),’ facecolor ’,’white ’);

112 set(S(74),’ facecolor ’,’white ’);

113 set(S(75),’ facecolor ’,’white ’);

114 set(S(76),’ facecolor ’,’white ’);

115 set(S(77),’ facecolor ’,’[1 0 1]’);

116 set(S(78),’ facecolor ’,’[1 0 1]’);

117 set(S(79),’ facecolor ’,’[1 0 1]’);

118 set(S(80),’ facecolor ’,’[1 0 1]’);

119 set(S(81),’ facecolor ’,’[1 0 1]’);

120 set(S(82),’ facecolor ’,’[1 0 1]’);

121 set(S(83),’ facecolor ’,’[1 0 1]’);

122 set(S(84),’ facecolor ’,’[1 0 1]’);

123 % 1uts

124 set(S(85),’ facecolor ’,’white ’);

125 set(S(86),’ facecolor ’,’white ’);

126 set(S(87),’ facecolor ’,’white ’);

127 set(S(88),’ facecolor ’,’white ’);

128 set(S(89),’ facecolor ’,’white ’);

129 set(S(90),’ facecolor ’,’white ’);

130 set(S(91),’ facecolor ’,’white ’);

131 set(S(92),’ facecolor ’,’[0 1 1]’);

132 set(S(93),’ facecolor ’,’[0 1 1]’);

133 set(S(94),’ facecolor ’,’[0 1 1]’);

134 set(S(95),’ facecolor ’,’[0 1 1]’);

135 set(S(96),’ facecolor ’,’[0 1 1]’);

136 set(S(97),’ facecolor ’,’[0 1 1]’);

137 set(S(98),’ facecolor ’,’[0 1 1]’);

138 % 2kx5

139 set(S(99),’ facecolor ’,’white ’);
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140 set(S(100),’ facecolor ’,’white ’);

141 set(S(101),’ facecolor ’,’white ’);

142 set(S(102),’ facecolor ’,’white ’);

143 set(S(103),’ facecolor ’,’white ’);

144 set(S(104),’ facecolor ’,’white ’);

145 set(S(105),’ facecolor ’,’white ’);

146 set(S(106),’ facecolor ’,’white ’);

147 set(S(107),’ facecolor ’,’[0.498 0.498 0.498] ’);

148 set(S(108),’ facecolor ’,’[0.498 0.498 0.498] ’);

149 set(S(109),’ facecolor ’,’[0.498 0.498 0.498] ’);

150 set(S(110),’ facecolor ’,’[0.498 0.498 0.498] ’);

151 set(S(111),’ facecolor ’,’[0.498 0.498 0.498] ’);

152 set(S(112),’ facecolor ’,’[0.498 0.498 0.498] ’);

153 % 1qd3

154 set(S(113),’ facecolor ’,’white ’);

155 set(S(114),’ facecolor ’,’white ’);

156 set(S(115),’ facecolor ’,’white ’);

157 set(S(116),’ facecolor ’,’white ’);

158 set(S(117),’ facecolor ’,’white ’);

159 set(S(118),’ facecolor ’,’white ’);

160 set(S(119),’ facecolor ’,’white ’);

161 set(S(120),’ facecolor ’,’white ’);

162 set(S(121),’ facecolor ’,’white ’);

163 set(S(122),’ facecolor ’,’green ’);

164 set(S(123),’ facecolor ’,’green ’);

165 set(S(124),’ facecolor ’,’green ’);

166 set(S(125),’ facecolor ’,’green ’);

167 set(S(126),’ facecolor ’,’green ’);

168 % 5j0m

169 set(S(127),’ facecolor ’,’white ’);

170 set(S(128),’ facecolor ’,’white ’);

171 set(S(129),’ facecolor ’,’white ’);

172 set(S(130),’ facecolor ’,’white ’);

173 set(S(131),’ facecolor ’,’white ’);

174 set(S(132),’ facecolor ’,’white ’);

175 set(S(133),’ facecolor ’,’white ’);

176 set(S(134),’ facecolor ’,’white ’);

177 set(S(135),’ facecolor ’,’white ’);

178 set(S(136),’ facecolor ’,’white ’);

179 set(S(137),’ facecolor ’,’[0.545 0.271 0.074] ’);

180 set(S(138),’ facecolor ’,’[0.545 0.271 0.074] ’);

181 set(S(139),’ facecolor ’,’[0.545 0.271 0.074] ’);

182 set(S(140),’ facecolor ’,’[0.545 0.271 0.074] ’);

183 % 2kdq

184 set(S(141),’ facecolor ’,’white ’);

185 set(S(142),’ facecolor ’,’white ’);

186 set(S(143),’ facecolor ’,’white ’);

187 set(S(144),’ facecolor ’,’white ’);

188 set(S(145),’ facecolor ’,’white ’);

189 set(S(146),’ facecolor ’,’white ’);

190 set(S(147),’ facecolor ’,’white ’);

191 set(S(148),’ facecolor ’,’white ’);

192 set(S(149),’ facecolor ’,’white ’);

193 set(S(150),’ facecolor ’,’white ’);
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194 set(S(151),’ facecolor ’,’white ’);

195 set(S(152),’ facecolor ’,’[1 0.753 0.796] ’);

196 set(S(153),’ facecolor ’,’[1 0.753 0.796] ’);

197 set(S(154),’ facecolor ’,’[1 0.753 0.796] ’);

198 % 1arj

199 set(S(155),’ facecolor ’,’white ’);

200 set(S(156),’ facecolor ’,’white ’);

201 set(S(157),’ facecolor ’,’white ’);

202 set(S(158),’ facecolor ’,’white ’);

203 set(S(159),’ facecolor ’,’white ’);

204 set(S(160),’ facecolor ’,’white ’);

205 set(S(161),’ facecolor ’,’white ’);

206 set(S(162),’ facecolor ’,’white ’);

207 set(S(163),’ facecolor ’,’white ’);

208 set(S(164),’ facecolor ’,’white ’);

209 set(S(165),’ facecolor ’,’white ’);

210 set(S(166),’ facecolor ’,’white ’);

211 set(S(167),’ facecolor ’,’red ’);

212 set(S(168),’ facecolor ’,’red ’);

213 % 2l8h

214 set(S(169),’ facecolor ’,’white ’);

215 set(S(170),’ facecolor ’,’white ’);

216 set(S(171),’ facecolor ’,’white ’);

217 set(S(172),’ facecolor ’,’white ’);

218 set(S(173),’ facecolor ’,’white ’);

219 set(S(174),’ facecolor ’,’white ’);

220 set(S(175),’ facecolor ’,’white ’);

221 set(S(176),’ facecolor ’,’white ’);

222 set(S(177),’ facecolor ’,’white ’);

223 set(S(178),’ facecolor ’,’white ’);

224 set(S(179),’ facecolor ’,’white ’);

225 set(S(180),’ facecolor ’,’white ’);

226 set(S(181),’ facecolor ’,’white ’);

227 set(S(182),’ facecolor ’,’[0.294 0 0.51]] ’);

228 % 1lvj

229 set(S(183),’ facecolor ’,’white ’);

230 set(S(184),’ facecolor ’,’white ’);

231 set(S(185),’ facecolor ’,’white ’);

232 set(S(186),’ facecolor ’,’white ’);

233 set(S(187),’ facecolor ’,’white ’);

234 set(S(188),’ facecolor ’,’white ’);

235 set(S(189),’ facecolor ’,’white ’);

236 set(S(190),’ facecolor ’,’white ’);

237 set(S(191),’ facecolor ’,’white ’);

238 set(S(192),’ facecolor ’,’white ’);

239 set(S(193),’ facecolor ’,’white ’);

240 set(S(194),’ facecolor ’,’white ’);

241 set(S(195),’ facecolor ’,’white ’);

242 set(S(196),’ facecolor ’,’white ’);
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B.4.3 Dihedral Angle Plot of a Bulge Nucleotide

The following GNUPLOT script generates an individual dihedral angle plot (see Figure

3.7A).

1 ### GNUPLOT SCRIPT

2 #!/ usr/bin/gnuplot

3 set encoding iso_8859_1

4 set term post eps enh color size 20,12 "HelveticaBold" 50 solid

5 set output "1 arj_u23.eps"

6 unset key

7 unset tics

8 unset border

9

10 #set style fill transparent solid 0.3 noborder

11 set style circle radius 0.0025

12 set xrange [ -0.3:2.05]

13 set yrange [ -230:190]

14 set arrow 1 from 0,-180 to 2,-180 nohead lw 8

15 set arrow 2 from 0,-180 to 0,180 nohead lw 8

16 set arrow 3 from 0,0 to -0.015,0 nohead lw 6

17 set arrow 4 from 0,60 to -0.03,60 nohead lw 6

18 set arrow 5 from 0,120 to -0.015 ,120 nohead lw 6

19 set arrow 6 from 0 ,179.5 to -0.03 ,179.5 nohead lw 6

20 set arrow 7 from 0,-60 to -0.03,-60 nohead lw 6

21 set arrow 8 from 0,-120 to -0.015,-120 nohead lw 6

22 set arrow 9 from 0,-179.5 to -0.03,-179.5 nohead lw 6

23

24 set arrow 11 from 1.999 , -180 to 1.999 , -188 nohead lw 6

25 set arrow 13 from 0.999 , -180 to 0.999 , -188 nohead lw 6

26 set arrow 14 from 0.5,-180 to 0.5,-188 nohead lw 6

27 set arrow 15 from 1.5,-180 to 1.5,-188 nohead lw 6

28 set arrow 19 from 1.75,-180 to 1.75,-184 nohead lw 6

29 set arrow 18 from -0.001,-180 to -0.001,-188 nohead lw 6

30 set arrow 20 from 0.25,-180 to 0.25,-184 nohead lw 6

31 set arrow 21 from 1.25,-180 to 1.25,-184 nohead lw 6

32 set arrow 22 from 0.75,-180 to 0.75,-184 nohead lw 6

33

34 #set arrow 16 from 0,60 to 2,60 nohead lw 12 dt 2

35 #set arrow 17 from 0,-60 to 2,-60 nohead lw 12 dt 2

36

37 #set label 23 "1ARJ" at 0.01 ,188 font "HelveticaBold ,70" tc rgb "red"

38 set label 24 "U" at 2.01 ,182 font "HelveticaBold ,120" tc rgb "# ff8080"

39 set label 25 "L" at 2.01 ,155 font "HelveticaBold ,120" tc rgb "# e60000"

40

41 set label 2 "60" at -0.14,60 font "HelveticaBold ,100"

42 set label 4 "180" at -0.19,180 font "HelveticaBold ,100"

43 set label 5 "-60" at -0.19,-60 font "HelveticaBold ,100"

44 set label 7 "-180" at -0.23,-180 font "HelveticaBold ,100"

45 #set label 8 "2" at 1.98,-200 font "HelveticaBold ,100"

46 #set label 9 "1" at 0.98,-200 font "HelveticaBold ,100"
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47 #set label 10 "0" at -0.02,-200 font "HelveticaBold ,100"

48 #set label 13 "1.5" at 1.45,-200 font "HelveticaBold ,100"

49 #set label 14 "0.5" at 0.45,-200 font "HelveticaBold ,100"

50 set label 15 "inward" at 2.075,-50 front font "Helvetica -Italic ,120"

51 tc rgb "#595959" rotate by 90

52

53 set object 1 rect from 0,-60 to 2,60 fc rgb "# a5a5a5" fs solid 0.2

54 noborder

55 set arrow 23 from 2.01,-58 to 2.01 ,58 heads size 0.02 ,30 lw 6

56 lt rgb "#595959"

57

58 set label 1000 "{/ ZapfDingbats \154}" at -0.027,50 front

59 font "HelveticaBold ,90" tc rgb "# cd0000"

60 #set object 2 circle at screen 1,-90 size screen 30 fc rgb "# cd0000"

61 ## c49c67

62

63 set label 11 "{/ Symbol \161} ({\260})" at -0.3,-45

64 font "HelveticaBold ,180" rotate by 90

65

66 p "arj_u23_unl.dat" u ($1 *0.00002):2 w circles lt rgb "red"

67 fs solid 0.5 noborder notitle , \

68 "arj_u23_lig.dat" u ($1 *0.00002):2 w circles lt rgb "# e60000"

69 fs solid 1 noborder notitle , \

B.4.4 Dihedral Angle Plot of a Bulge Nucleotide

The following MATLAB script generates a backbone torsion angle plot (see Figure 3.2A).

1 ### MATLAB SCRIPT

2 theta_1 = linspace ( -1.92 , -0.96);

3 rho_1 = theta_1 -theta_1 +1;

4 alpha_1 = polarplot(theta_1 ,rho_1 ,’LineWidth ’,10,’Color ’,’red ’);

5 hold on

6 theta_2 = linspace (0.96 ,1.48);

7 rho_2 = theta_2 - theta_2 + 1;

8 alpha_2 = polarplot(theta_2 ,rho_2 ,’LineWidth ’,10,’Color ’,’red ’);

9 set(gca ,’box ’,’off ’,’TickDir ’,’out ’,’fontweight ’,’bold ’,’fontsize ’

10 ,40,’linewidth ’,3);

11 ax=gca;

12 ax.RMinorTick=’off ’;

13 ax.RTickLabelMode =’manual ’;

14 ax.RTickLabel =’{}’;

15 ax.RTickMode=’manual ’;

16 ax.RTick =[1 2 3 4 5 6 7];

17 ax.ThetaTickLabel ={’0’; ’’; ’’; ’90’; ’’; ’’; ’180’;

18 ’’; ’’; ’-90’;’’;’’;’’};

19

20

21 theta_3 = linspace ( -3.14 , -2.62);

22 rho_3 = theta_3 -theta_3 +2;

23 beta_1 = polarplot(theta_3 ,rho_3 ,’LineWidth ’,10,’Color ’,’blue ’);
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24 theta_4 = linspace (2.53 ,3.14);

25 rho_4 = theta_4 -theta_4 +2;

26 beta_2 = polarplot(theta_4 ,rho_4 ,’LineWidth ’,10,’Color ’,’blue ’);

27

28 theta_5 = linspace (0.7 ,1.4);

29 rho_5 = theta_5 -theta_5 +3;

30 gamma = polarplot(theta_5 ,rho_5 ,’LineWidth ’,10,’Color ’,’green ’);

31

32 theta_6 = linspace (0.96 ,1.83);

33 rho_6 = theta_6 -theta_6 +4;

34 delta_1 = polarplot(theta_6 ,rho_6 ,’LineWidth ’,10,’Color ’,’cyan ’);

35

36 theta_7 = linspace (2.09 ,2.62);

37 rho_7 = theta_7 -theta_7 +4;

38 delta_2 = polarplot(theta_7 ,rho_7 ,’LineWidth ’,10,’Color ’,’cyan ’);

39

40 theta_8 = linspace ( -3.14 , -2.09);

41 rho_8 = theta_8 -theta_8 +5;

42 epsilon_1 = polarplot(theta_8 ,rho_8 ,’LineWidth ’,10,’Color ’,’magenta ’);

43

44 theta_9 = linspace ( -1.83 , -1.22);

45 rho_9 = theta_9 -theta_9 +5;

46 epsilon_2 = polarplot(theta_9 ,rho_9 ,’LineWidth ’,10,’Color ’,’magenta ’);

47

48 theta_10 = linspace (2.97 ,3.14);

49 rho_10 = theta_10 -theta_10 +5;

50 epsilon_3 = polarplot(theta_10 ,rho_10 ,’LineWidth ’,10,’Color ’,’magenta ’);

51

52 theta_11 = linspace ( -1.83 , -0.7);

53 rho_11 = theta_11 -theta_11 +6;

54 zeta_1 = polarplot(theta_11 ,rho_11 ,’LineWidth ’,10,’Color ’,’[1 0.84 0]’);

55

56 theta_12 = linspace (0.96 ,1.57);

57 rho_12 = theta_12 -theta_12 +6;

58 zeta_2 = polarplot(theta_12 ,rho_12 ,’LineWidth ’,10,’Color ’,’[1 0.84 0]’);

59

60 theta_13 = linspace ( -3.14 , -1.4);

61 rho_13 = theta_13 -theta_13 +7;

62 chi_1 = polarplot(theta_13 ,rho_13 ,’LineWidth ’,10,’Color ’,’black ’);

63

64 theta_14 = linspace (3.05 ,3.14);

65 rho_14 = theta_14 -theta_14 +7;

66 chi_2 = polarplot(theta_14 ,rho_14 ,’LineWidth ’,10,’Color ’,’black ’);

67

68 %%%% Experimental lines

69 %%%% Alpha

70 theta_15 = linspace (-0.39,-2);

71 rho_15 = theta_15 -theta_15 +1;

72 alpha_15 = polarplot(theta_15 ,rho_15 ,’LineWidth ’,15,’Color ’,

73 ’[0.498 0.498 0.498] ’);

74 alpha_15.Color (4) = 0.4;

75 theta_16 = linspace (2.53 ,2.79);

76 rho_16 = theta_16 -theta_16 +1;

77 alpha_16 = polarplot(theta_16 ,rho_16 ,’LineWidth ’,15,’Color ’,
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78 ’[0.498 0.498 0.498] ’);

79 alpha_16.Color (4) = 0.4;

80 theta_17 = linspace (1 ,1.05);

81 rho_17 = theta_17 -theta_17 +1;

82 alpha_17 = polarplot(theta_17 ,rho_17 ,’LineWidth ’,15,’Color ’,

83 ’[0.498 0.498 0.498] ’);

84 alpha_17.Color (4) = 0.4;

85 theta_18 = linspace (1.35 ,1.4);

86 rho_18 = theta_18 -theta_18 +1;

87 alpha_18 = polarplot(theta_18 ,rho_18 ,’LineWidth ’,15,’Color ’,

88 ’[0.498 0.498 0.498] ’);

89 alpha_18.Color (4) = 0.4;

90

91 %%%% Beta

92 theta_19 = linspace (2.53 ,3.14);

93 rho_19 = theta_19 -theta_19 +2;

94 beta_19 = polarplot(theta_19 ,rho_19 ,’LineWidth ’,15,’Color ’,

95 ’[0.498 0.498 0.498] ’);

96 beta_19.Color (4) = 0.4;

97 theta_20 = linspace ( -2.79 , -3.14);

98 rho_20 = theta_20 -theta_20 +2;

99 beta_20 = polarplot(theta_20 ,rho_20 ,’LineWidth ’,15,’Color ’,

100 ’[0.498 0.498 0.498] ’);

101 beta_20.Color (4) = 0.4;

102 theta_21 = linspace (1.44 ,1.53);

103 rho_21 = theta_21 -theta_21 +2;

104 beta_21 = polarplot(theta_21 ,rho_21 ,’LineWidth ’,15,’Color ’,

105 ’[0.498 0.498 0.498] ’);

106 beta_21.Color (4) = 0.4;

107 theta_22 = linspace (1.74 ,1.88);

108 rho_22 = theta_22 -theta_22 +2;

109 beta_22 = polarplot(theta_22 ,rho_22 ,’LineWidth ’,15,’Color ’,

110 ’[0.498 0.498 0.498] ’);

111 beta_22.Color (4) = 0.4;

112 theta_23 = linspace ( -2.7 , -2.75);

113 rho_23 = theta_23 -theta_23 +2;

114 beta_23 = polarplot(theta_23 ,rho_23 ,’LineWidth ’,15,’Color ’,

115 ’[0.498 0.498 0.498] ’);

116 beta_23.Color (4) = 0.4;

117 theta_24 = linspace (-1.96,-2);

118 rho_24 = theta_24 -theta_24 +2;

119 beta_24 = polarplot(theta_24 ,rho_24 ,’LineWidth ’,15,’Color ’,

120 ’[0.498 0.498 0.498] ’);

121 beta_24.Color (4) = 0.4;

122

123 %%%% Gamma

124 theta_25 = linspace (0.39 ,1.57);

125 rho_25 = theta_25 -theta_25 +3;

126 gamma_25 = polarplot(theta_25 ,rho_25 ,’LineWidth ’,15,’Color ’,

127 ’[0.498 0.498 0.498] ’);

128 gamma_25.Color (4) = 0.4;

129 theta_26 = linspace (2.97 ,3.14);

130 rho_26 = theta_26 -theta_26 +3;

131 gamma_26 = polarplot(theta_26 ,rho_26 ,’LineWidth ’,15,’Color ’,
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132 ’[0.498 0.498 0.498] ’);

133 gamma_26.Color (4) = 0.4;

134 theta_27 = linspace ( -2.79 , -3.14);

135 rho_27 = theta_27 -theta_27 +3;

136 gamma_27 = polarplot(theta_27 ,rho_27 ,’LineWidth ’,15,’Color ’,

137 ’[0.498 0.498 0.498] ’);

138 gamma_27.Color (4) = 0.4;

139 theta_28 = linspace (0 , -0.04);

140 rho_28 = theta_28 -theta_28 +3;

141 gamma_28 = polarplot(theta_28 ,rho_28 ,’LineWidth ’,15,’Color ’,

142 ’[0.498 0.498 0.498] ’);

143 gamma_28.Color (4) = 0.4;

144 theta_29 = linspace (0.31 ,0.35);

145 rho_29 = theta_29 -theta_29 +3;

146 gamma_29 = polarplot(theta_29 ,rho_29 ,’LineWidth ’,15,’Color ’,

147 ’[0.498 0.498 0.498] ’);

148 gamma_29.Color (4) = 0.4;

149 theta_30 = linspace (1.66 ,1.7);

150 rho_30 = theta_30 -theta_30 +3;

151 gamma_30 = polarplot(theta_30 ,rho_30 ,’LineWidth ’,15,’Color ’,

152 ’[0.498 0.498 0.498] ’);

153 gamma_30.Color (4) = 0.4;

154 theta_31 = linspace (1.96 ,2);

155 rho_31 = theta_31 -theta_31 +3;

156 gamma_31 = polarplot(theta_31 ,rho_31 ,’LineWidth ’,15,’Color ’,

157 ’[0.498 0.498 0.498] ’);

158 gamma_31.Color (4) = 0.4;

159 theta_32 = linspace (2.27 ,2.31);

160 rho_32 = theta_32 -theta_32 +3;

161 gamma_32 = polarplot(theta_32 ,rho_32 ,’LineWidth ’,15,’Color ’,

162 ’[0.498 0.498 0.498] ’);

163 gamma_32.Color (4) = 0.4;

164 theta_33 = linspace (2.79 ,2.83);

165 rho_33 = theta_33 -theta_33 +3;

166 gamma_33 = polarplot(theta_33 ,rho_33 ,’LineWidth ’,15,’Color ’,

167 ’[0.498 0.498 0.498] ’);

168 gamma_33.Color (4) = 0.4;

169

170 %%%% Delta

171 theta_34 = linspace (1.13 ,1.74);

172 rho_34 = theta_34 -theta_34 +4;

173 delta_34 = polarplot(theta_34 ,rho_34 ,’LineWidth ’,15,’Color ’,

174 ’[0.498 0.498 0.498] ’);

175 delta_34.Color (4) = 0.4;

176 theta_35 = linspace (2.53 ,2.71);

177 rho_35 = theta_35 -theta_35 +4;

178 delta_35 = polarplot(theta_35 ,rho_35 ,’LineWidth ’,15,’Color ’,

179 ’[0.498 0.498 0.498] ’);

180 delta_35.Color (4) = 0.4;

181

182 %%%% Epsilon

183 theta_36 = linspace ( -3.14 , -3.05);

184 rho_36 = theta_36 -theta_36 +5;

185 epsilon_36 = polarplot(theta_36 ,rho_36 ,’LineWidth ’,15,’Color ’,
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186 ’[0.498 0.498 0.498] ’);

187 epsilon_36.Color (4) = 0.4;

188 theta_37 = linspace ( -2.88 , -2.27);

189 rho_37 = theta_37 -theta_37 +5;

190 epsilon_37 = polarplot(theta_37 ,rho_37 ,’LineWidth ’,15,’Color ’,

191 ’[0.498 0.498 0.498] ’);

192 epsilon_37.Color (4) = 0.4;

193 theta_38 = linspace ( -1.92 , -2.05);

194 rho_38 = theta_38 -theta_38 +5;

195 epsilon_38 = polarplot(theta_38 ,rho_38 ,’LineWidth ’,15,’Color ’,

196 ’[0.498 0.498 0.498] ’);

197 epsilon_38.Color (4) = 0.4;

198 theta_39 = linspace ( -1.57 , -1.61);

199 rho_39 = theta_39 -theta_39 +5;

200 epsilon_39 = polarplot(theta_39 ,rho_39 ,’LineWidth ’,15,’Color ’,

201 ’[0.498 0.498 0.498] ’);

202 epsilon_39.Color (4) = 0.4;

203

204 %%%% Zeta

205 theta_40 = linspace ( -0.87 , -1.74);

206 rho_40 = theta_40 -theta_40 +6;

207 zeta_40 = polarplot(theta_40 ,rho_40 ,’LineWidth ’,15,’Color ’,

208 ’[0.498 0.498 0.498] ’);

209 zeta_40.Color (4) = 0.4;

210 theta_41 = linspace (2.88 ,3.14);

211 rho_41 = theta_41 -theta_41 +6;

212 zeta_41 = polarplot(theta_41 ,rho_41 ,’LineWidth ’,15,’Color ’,

213 ’[0.498 0.498 0.498] ’);

214 zeta_41.Color (4) = 0.4;

215 theta_42 = linspace ( -1.96 , -1.88);

216 rho_42 = theta_42 -theta_42 +6;

217 zeta_42 = polarplot(theta_42 ,rho_42 ,’LineWidth ’,15,’Color ’,

218 ’[0.498 0.498 0.498] ’);

219 zeta_42.Color (4) = 0.4;

220 theta_43 = linspace ( -3.14 , -3.05);

221 rho_43 = theta_43 -theta_43 +6;

222 zeta_43 = polarplot(theta_43 ,rho_43 ,’LineWidth ’,15,’Color ’,

223 ’[0.498 0.498 0.498] ’);

224 zeta_43.Color (4) = 0.4;

225 theta_44 = linspace (1.44 ,1.48);

226 rho_44 = theta_44 -theta_44 +6;

227 zeta_44 = polarplot(theta_44 ,rho_44 ,’LineWidth ’,15,’Color ’,

228 ’[0.498 0.498 0.498] ’);

229 zeta_44.Color (4) = 0.4;

230 theta_45 = linspace (0.83 ,0.87);

231 rho_45 = theta_45 -theta_45 +6;

232 zeta_45 = polarplot(theta_45 ,rho_45 ,’LineWidth ’,15,’Color ’,

233 ’[0.498 0.498 0.498] ’);

234 zeta_45.Color (4) = 0.4;

235 theta_46 = linspace (0.17 ,0.22);

236 rho_46 = theta_46 -theta_46 +6;

237 zeta_46 = polarplot(theta_46 ,rho_46 ,’LineWidth ’,15,’Color ’,

238 ’[0.498 0.498 0.498] ’);

239 zeta_46.Color (4) = 0.4;

195



240 theta_47 = linspace ( -0.78 , -0.74);

241 rho_47 = theta_47 -theta_47 +6;

242 zeta_47 = polarplot(theta_47 ,rho_47 ,’LineWidth ’,15,’Color ’,

243 ’[0.498 0.498 0.498] ’);

244 zeta_47.Color (4) = 0.4;

245 theta_48 = linspace ( -0.52 , -0.57);

246 rho_48 = theta_48 -theta_48 +6;

247 zeta_48 = polarplot(theta_48 ,rho_48 ,’LineWidth ’,15,’Color ’,

248 ’[0.498 0.498 0.498] ’);

249 zeta_48.Color (4) = 0.4;

250

251 %%%% Chi

252 theta_49 = linspace ( -2.44 , -3.14);

253 rho_49 = theta_49 -theta_49 +7;

254 chi_49 = polarplot(theta_49 ,rho_49 ,’LineWidth ’,20,’Color ’,

255 ’[0.498 0.498 0.498] ’);

256 chi_49.Color (4) = 0.4;

257 theta_50 = linspace (3.1 ,3.14);

258 rho_50 = theta_50 -theta_50 +7;

259 chi_50 = polarplot(theta_50 ,rho_50 ,’LineWidth ’,20,’Color ’,

260 ’[0.498 0.498 0.498] ’);

261 chi_50.Color (4) = 0.4;

262 theta_51 = linspace (2.97 ,3.05);

263 rho_51 = theta_51 -theta_51 +7;

264 chi_51 = polarplot(theta_51 ,rho_51 ,’LineWidth ’,20,’Color ’,

265 ’[0.498 0.498 0.498] ’);

266 chi_51.Color (4) = 0.4;

267 theta_52 = linspace (0.74 ,0.78);

268 rho_52 = theta_52 -theta_52 +7;

269 chi_52 = polarplot(theta_52 ,rho_52 ,’LineWidth ’,20,’Color ’,

270 ’[0.498 0.498 0.498] ’);

271 chi_52.Color (4) = 0.4;

272 theta_53 = linspace (0.31 ,0.35);

273 rho_53 = theta_53 -theta_53 +7;

274 chi_53 = polarplot(theta_53 ,rho_53 ,’LineWidth ’,20,’Color ’,

275 ’[0.498 0.498 0.498] ’);

276 chi_53.Color (4) = 0.4;

277 theta_54 = linspace (1.13 ,1.18);

278 rho_54 = theta_54 -theta_54 +7;

279 chi_54 = polarplot(theta_54 ,rho_54 ,’LineWidth ’,20,’Color ’,

280 ’[0.498 0.498 0.498] ’);

281 chi_54.Color (4) = 0.4;

282 hold off
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APPENDIX C

SUPPORTING INFORMATION FOR CHAPTER 4

Figure C.1: Long time-scale classical MD simulation: Snapshots of RNA (gray cartoon)
and ligand (space-filling) are shown at various timepoints from a 2 µs long classical MD
simulation, where ligand remains stably bound.
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Figure C.2: The buried surface area (BSA) trace vs. time is shown for the ligand from a 2
µs long classical MD simulation (cf. Figure C.1). The dotted red line corresponds to the
average BSA.

Figure C.3: Ligand dissociation work from SMD simulations: (A) work values are
plotted along the reaction coordinate (RC) from 102 independent cv-SMD simulations. Blue
to red color palette indicates lower to higher values of work required for ligand dissociation.
(B) A histogram of all work values (at 25 Å) is shown with a best-fit distribution line (red
trace).
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Figure C.4: Reaction coordinate and force-convergence data: Shown are (A) distri-
butions of ∆RC values computed from the deviations of pathways from cv-SMD simulations
with respect to the actual reaction coordinate. (B) distributions of ∆Force values after the
force on average converges to 0 (at ∼17.5 Å along the reaction coordinate; cf. Figure 4.2B).

Figure C.5: Ligand dissociation in the lowest work simulation: Snapshots of the
ligand dissociation process at various timepoints are shown. The time values highlighted in
red are those snapshots that are also shown in Figure C.5. Key nucleotides are highlighted:
A22 (purple), U23 (orange), C24 (blue), U25 (green) and U40 (red). Ligand is shown in a
space-filling representation.
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Figure C.6: Conformational metrics and ligand dissociation mechanism from two
additional simulations with lower work values: (A) Same metrics as in Figure 4.4
are presented. The traces correspond to the lowest work simulation (blue trace with W =
9.56 kcal/mol) and two additional simulations with the next lower values of work (black
and gray traces with W = 12.59 and 12.76 kcal/mol, respectively). (B) Snapshots of ligand
dissociation from two additional lower work simulations are shown. Color and labeling
scheme is same as in Figures 4.1 and 4.3.

200



Figure C.7: Ligand dissociation in the highest work simulation: Snapshots of the
ligand dissociation process at various timepoints are shown. cf. Figure 4.3 and Figure C.5
for other details.

Figure C.8: A side-view snapshot of the ligand interacting with the A35 nucleotide (gray
sticks) is shown. Other nucleotides shown are the same as in Figure 4.1C and Figure 4.3.
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Figure C.9: Shown are representative snapshots of TAR-RNA from the lowest work simula-
tion highlighting nucleotides U23 (orange) and U25 (green).

Figure C.10: Representative snapshots from the lowest work simulation highlighting A22
(purple), C24 (blue) and U40 (red). The dotted line indicates a hydrogen bond between C24
and U40.

202



APPENDIX D

SCRIPTS FOR CHAPTER 4

D.1 Overview

In this appendix, I provide the scripts that I have used to set up and analyze simulations in

chapter 4 using various software packages.

D.2 cv-SMD Simulation using NAMD

I begin setting up a cv-SMD simulation by placing the system at the origin:

1 set sel [atomselect top all]

2 set ligand [atomselect top "resname PMZ"]

3 set gec [measure center ligand]

4 $sel moveby [vecscale -1.0 $gec]

An example script to rotate the system and to align the pulling direction along a z-axis:

1 set sel [atomselect top all]

2 set com [measure center $sel weight mass]

3 set matrix [transaxis y 180]

4 $sel moveby [vecscale -1.0 $com]

5 $sel move $matrix

6 $sel moveby $com

7 $sel writepdb rna_ligand.pdb % Save the final orientation to a pdb file

An example script to generate PSF and PDB files for the peptide. It can be executed from

the terminal window: vmd -dispdev text -e psfgen.pgn.

1 package require psfgen

2 topology top_all36_na.rtf

3 segment K {pdb rna.pdb}

4 coordpdb rna.pdb K

5 guesscoord

203



6 writepdb rna_fin.pdb

7 writepsf rna_fin.psf

8 exit

A script to solvate a system in VMD with an extended z-dimension:

1 package require solvate

2 solvate rna_drug.psf rna_drug.pdb -o rna_drug_wat -x 12.5 +x 12.5

3 -y 12.5 +y 12.5 -z 12.5 +z 50

A script to ionize a system in VMD with sodium ions:

1 package require autoionize

2 autoionize -psf rna_drug_wat.psf -pdb rna_drug_wat.pdb -neutralize

3 -cation SOD

Below is the script to determine the vector of the pulling direction and to label the atoms

that will be pulled in the cv-SMD simulation.

1 set allatoms [atomselect top all]

2 $allatoms set beta 0

3 set fixedatoms [atomselect top "nucleic and name P"]

4 $fixedatoms set beta 1

5 $allatoms set occupancy 0

6 set smdatoms [atomselect top "resname PMZ"]

7 $smdatoms set occupancy 1

8 $allatoms writepdb lvj_smd.ref

9

10

11 set smdpos [lindex [$smdatoms get {x y z}] 0]

12 set z_dir_pos {6.7093586921691895 0.4800395369529724 53}

13 vecnorm [vecsub $smdpos $z_dir_pos]

After that, I used similar scripts from section B.2 to generate the Amber parameter/topology

files. The script below shows an example of an SMD configuration file to conduct an SMD

simulation.

1 ####################################################

2 coordinates lvj_smd.pdb

3

4 set temperature 310

5 set outputname lvj_smd_run

6 firsttimestep 0

7

8 #Continuing a run

9 #set inputname lvj_smd_eq.restart ; ### Edit with previous restart file
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10 #binCoordinates $inputname.coor;

11 #binVelocities $inputname.vel;

12 #extendedSystem $inputname.xsc;

13

14 #Simulation Parameters

15 #Input

16 amber on ;##### Enables Amber format force field

17 parmfile lvj_smd.prmtop ;##### Amber parameter/topology file

18 temperature $temperature

19

20 #Force field parameters

21 exclude scaled1 -4

22 1-4scaling 1.0

23 cutoff 10

24 switching on

25 switchdist 8

26 pairlistdist 12

27

28 #Integrator Parameters

29 timestep 2.0 #2 fs/step

30 rigidBonds all

31 nonBondedFreq 1

32 fullElectFrequency 2

33 stepspercycle 10

34

35

36 # Periodic Boundary Conditions

37 if {1} {

38 cellBasisVector1 65.0 0.0 0.0

39 cellBasisVector2 0.0 79.0 0.0

40 cellBasisVector3 0.0 0.0 133.0

41 cellOrigin 0.43169 -1.24704 29.93577

42 }

43 wrapAll on

44

45 #Electrostatic Force Evaluation (PME)

46 PME yes

47 PMEGridSizeX 72

48 PMEGridSizeY 80

49 PMEGridSizeZ 135

50

51 # Constant Temperature Control

52 langevin off; ### The temperature should be off in SMD

53

54 # Constant Pressure Control

55 if {1} {

56 useGroupPressure yes

57 useFlexibleCell no

58 useConstantArea no

59

60 langevinPiston on

61 langevinPistonTarget 1.01325 ;# in bar -> 1 atm

62 langevinPistonPeriod 100.0

63 langevinPistonDecay 50.0
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64 langevinPistonTemp $temperature

65 }

66 ############## SMD Settings ##############

67 if {1} { ;### Atoms are held fixed during a simulation

68 fixedAtoms on ;### if this option is on;

69 fixedAtomsFile lvj_smd.ref ;### File containing fixed atom parameters;

70 fixedAtomsCol B ;### Column of the file containing fixed

71 } ;### atom parameters;

72

73 SMD on ;### Enables SMD simulation

74 SMDFile lvj_smd.ref ;### SMD constraint reference file

75 SMDk 7 ;### Force constant value

76 SMDVel 0.000025 ;### Velocity of the SMD pulling

77 SMDDir -0.0491 0.04992 0.997;### Direction of the SMD movement

78 SMDOutputFreq 10

79

80 ########################################

81

82 #Output

83 outputName $outputname

84 restartfreq 2500 ;# 5000 steps = every 10ps

85 dcdfreq 1000

86 xstFreq 1000

87 outputEnergies 1000

88 outputPressure 1000

89

90 #Execution

91 reinitvels $temperature

92 run 2500000

I conducted all cv-SMD simulations on the XSEDE supercomputer in San Diego (Comet).

Below, I provide a jobscript file.

1 #!/ bin/sh

2

3 #SBATCH --job -name=" lvj_6"

4 #SBATCH --output ="namd.%j.%N.out"

5 #SBATCH --partition=compute

6 #SBATCH --nodes=2

7 #SBATCH --ntasks -per -node =24

8 #SBATCH --export=ALL

9 #SBATCH -t 48:00:00

10 #SBATCH -A dxu114

11

12 module load namd /2.13

13

14 #Run NAMD job using mpirun_rsh

15 PROCS=$(( $SLURM_NNODES * $SLURM_NTASKS_PER_NODE ))

16 NODEFILE=‘generate_pbs_nodefile ‘

17 exe=‘which namd2 ‘

18

19 #mpirun_rsh
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20 mpirun_rsh -export -all -hostfile $NODEFILE -np 24 $exe npt_cv.conf

D.3 Analysis Scripts

In this section, I provide all the scripts that I have generated to analyze SMD simulations.

D.3.1 Script to Compute Force

1 ### VMD SCRIPT

2 ### Open the log file for reading and the output .dat file for writing

3 set imax 1

4 set work_J 0

5 for {set i 0} { $i < $imax } {incr i} {

6 set file [open namd.log r]

7 set output [open work.dat w]

8 ### Gather input from user.

9 set nx { -0.0490834900098211}

10 set ny {0.0499167955671872}

11 set nz {0.9975465525622148}

12 set initx {7.27452}

13 set inity { -0.748136}

14 set initz { -5.76629}

15 ### Loop over all lines of the log file

16 set file [open namd.log r]

17

18 while { [gets $file line] != -1 } {

19

20 ### Determine if a line contains SMD output. If so, write the

21 ### timestep followed by f(dot)n to the output file

22 if {[ lindex $line 0] == "SMD"} {

23 ### Input

24 set time {0.02}

25 set vel [expr 0.0125* pow (10,-10)]

26 set dist [expr sqrt( ($initx - [lindex $line 2])*( $initx -

27 [lindex $line 2]) + ($inity - [lindex $line 3])*( $inity -

28 [lindex $line 3]) + ($initz - [lindex $line 4])*( $initz -

29 [lindex $line 4]))]

30 set f [expr $nx*[ lindex $line 5] + $ny*[ lindex $line 6] +

31 $nz*[ lindex $line 7]]

32 puts $output "[ lindex $line 1] $dist $f"

33 }

34 }

35 }

36 ### Close the log file and the output .dat file

37 close $file

38 close $output

39

40 exit
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D.3.2 Script to Compute Work and PMF

1 ### MATLAB SCRIPT

2

3 clear

4 ac =.015;

5 pa=’loess ’;

6 tt =1000000;

7

8 cd(’/run/media/levintov/easystore/smd/1lvj/smd_1lvj_1 ’);

9 fid = fopen(’ft.dat ’,’r’);

10 A = textscan(fid , ’%f %f’); %,’headerlines ’,4

11 fclose(fid);

12 data=cell2mat(A(2));

13 step=cell2mat(A(1));

14

15 for i=2:102

16 cd([’/run/media/levintov/easystore/smd/1lvj/smd_1lvj_ ’,num2str(i)]);

17 fid = fopen(’ft.dat ’,’r’);

18 A = textscan(fid , ’%f %f’); %,’headerlines ’,4

19 fclose(fid);

20 data=[data cell2mat(A(2))];

21 end

22

23 v=0.0000125/1e-15; % Angestrom per fs

24

25 for i=1:102

26 intdata(:,i)= cumtrapz(step .*1e-15,data(:,i))*v;%pN*Angestrom

27 end

28

29 w=intdata *1e-12*1e -10/4184; %kcal

30 T=310;

31 K=3.29982916e-27; % kilocalorie / kelvin

32 pmf=-K*T*log(mean(exp(-w/T/K),2));

33

34 NA =6.022 e23; %avogardo ’s

35 w=w*NA; %kcal/mol

36 pmf=pmf*NA; %kcal/mol

37 dist=step *0.000025; % step*Angestrom/step=>Angestrom

38 [ss, I]=sort(w(end ,:));

39 sd = std(w,0,2);

40 out = [dist pmf sd];

41 h1=plot(dist ,w(:,I))

42

43

44 a=gca;

45 a.Box=’off ’;

46 for i=1:102

47 a.Children(i). LineWidth =2;

48 end

49 a.Children (1). LineWidth =4;

50 a.LineWidth =6;
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51 a.TickDir=’out ’;

52 a.FontSize =50;

53 a.FontWeight=’Bold ’;

54 a.XTick =0:5:25;

55 a.YTick =0:10:60;

56 axis ([0 25 0 40])

57 cmp=jet (102);

58 for line = 1:102

59 set(h1(line),’Color ’,cmp(line ,:));

60 end

61 % xlabel([’Distance (’,char (197),’)’])

62 % ylabel([’W (kcal/mol)’])

63 % l=legend ([h1.mainLine ,h1.edge (1)],{’mean ’,’std ’});

64 % l.Box=’off ’;

65 % l.Location=’northeast ’;

66 % l.FontSize =14;

67 figure

68 h2=plot(dist ,pmf ,’k’);

69 a=gca;

70 a.Box=’off ’;

71 a.Children.LineWidth =4;

72 a.LineWidth =6;

73 a.TickDir=’out ’;

74 a.FontSize =40;

75 a.FontWeight=’Bold ’;

76 a.XTick =0:5:25;

77 a.YTick = -5:5:25;

78 axis ([0 25 -5 25])

79 xlabel([’Distance (’,char (197),’)’])

80 ylabel([’PMF (kcal/mol)’])

D.3.3 Script to Compute Physical Variables

1 ### VMD Script

2 mol new lvj_smd.prmtop

3

4 mol addfile 1lvj_low_work.dcd waitfor all

5 set out1 [open cv.dat "w"]

6

7 set nf [molinfo top get numframes]

8 set u7_n1 [atomselect top "index 211"]

9 set u7_c6 [atomselect top "index 212"]

10 set u7_c4 [atomselect top "index 216"]

11

12 set u9_n1 [atomselect top "index 272"]

13 set u9_c6 [atomselect top "index 273"]

14 set u9_c4 [atomselect top "index 277"]

15

16 set u7 [atomselect top "resid 7 and (name N1 or name C2 or name N3 or

17 name C4 or name C5 or name C6)"]

18 set u9 [atomselect top "resid 9 and (name N1 or name C2 or name N3 or

19 name C4 or name C5 or name C6)"]
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20 global M_PI

21 for {set i 0} {$i < $nf} {incr i} {

22

23 $u7_n1 frame $i

24 $u7_c4 frame $i

25 $u7_c6 frame $i

26 $u9_n1 frame $i

27 $u9_c4 frame $i

28 $u9_c6 frame $i

29 $u7 frame $i

30 $u9 frame $i

31

32 set g1 [measure center $u7_n1 weight mass]

33 set g2 [measure center $u7_c6 weight mass]

34 set g3 [measure center $u7_c4 weight mass]

35

36 set g4 [measure center $u9_n1 weight mass]

37 set g5 [measure center $u9_c6 weight mass]

38 set g6 [measure center $u9_c4 weight mass]

39

40 set gu7 [measure center $u7 weight mass]

41 set gu9 [measure center $u9 weight mass]

42

43 set dA [vecsub $g1 $g2]

44 set dB [vecsub $g1 $g3]

45 set dC [vecsub $g4 $g5]

46 set dD [vecsub $g4 $g6]

47

48 set u7_normal [veccross $dA $dB]

49 set u9_normal [veccross $dC $dD]

50 set dot6 [vecdot $u7_normal $u9_normal]

51 set cosine6 [expr $dot6 /([ veclength $u7_normal ]*[ veclength $u9_normal ])]

52

53 set 1 [measure dihed {302 297 236 241} frame $i]

54 set 2 [measure bond {247 766} frame $i]

55 set 3 [measure dihed {211 206 173 178} frame $i]

56 set 4 [measure dihed {178 173 139 144} frame $i]

57 set 5 [measure dihed {269 270 272 281} frame $i]

58 set 6 [expr acos($cosine6 )*(180/ $M_PI )]

59 set 7 [measure dihed {208 209 211 220} frame $i]

60 set 8 [vecdist $gu7 $gu9]

61 puts $out1 "$i $1 $2 $3 $4 $5 $6 $7 $8"

62 }

63 exit

D.4 Scripts to Generate Figures

In this section, I provide several example scripts to generate the plots presented in chapter

4.
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D.4.1 Script to Plot Force Profile

1 ### Gnuplot Script

2 #!/ usr/bin/gnuplot

3 #40 dpd system

4 #Histogram of sign

5 set encoding iso_8859_1

6 set term post eps enh color size 18,11 "HelveticaBold" 70 solid

7

8 set output "average_f_1lvj .eps"

9

10 unset key

11 set xtics out nomirror scale 3.5

12 #set xzeroaxis

13 set xrange [0:25]

14 set yrange [ -800:800]

15 set ytics out -800,200,800 nomirror scale 3.5 offset 0.5

16 set border 3 lw 12

17 Shadecolor = "#80 E0A080"

18 #Shadecolor2 = "# B0C4DE"

19

20 set arrow 1 from 0,0 to 25,0 nohead front dt 2 lw 6

21 #set yrange [2:8]

22 #set xlabel "Distance (\305)" font "HelveticaBold ,60"

23 #set ylabel "Force (pN)" font "HelveticaBold ,60"

24

25 #p "./ center_full_da /comb_d1.dat" u ($1 *0.15):2 w l lw 2 lc rgb

26 "black" title "D_{1}", \

27 # "./ center_full_da /comb_d2.dat" u ($1 *0.15):2 w l lw 2 lc rgb

28 "#0000 FF" title "D_{2}",

29

30 p "f_average.dat" u 1:($2+$3):($2 -$3) with filledcurve fc rgb

31 Shadecolor notitle , \

32 "f_average.dat" u 1:2 w l lw 2 lc rgb "black" notitle

D.4.2 Script to Plot Distance Profile

1 %%% MATLAB Script

2 cd(’/run/media/levintov/easystore/smd/1lvj/smd_1lvj_1 ’);

3 fid = fopen(’dist_pass.dat ’,’r’);

4 A = textscan(fid , ’%f %f’); %,’headerlines ’,4

5 fclose(fid);

6 data=cell2mat(A(2));

7 step=cell2mat(A(1));

8 time = step /500000;

9 for i=2:102

10 cd([’/run/media/levintov/easystore/smd/1lvj/smd_1lvj_ ’,num2str(i)]);

11 fid = fopen(’dist_pass.dat ’,’r’);

12 A = textscan(fid , ’%f %f’); %,’headerlines ’,4

13 fclose(fid);
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14 data=[data cell2mat(A(2))];

15 end

16

17 [ss, I]=sort(data(end ,:));

18 h1=plot(data ,time);

19

20 a=gca;

21 a.Box=’off ’;

22 for i=1:102

23 a.Children(i). LineWidth =2;

24 end

25 %a.Children (1). LineWidth =4;

26 a.LineWidth =6;

27 a.TickDir=’out ’;

28 a.FontSize =50;

29 a.FontWeight=’Bold ’;

30 xticks ([]);

31 % a.YTick =0:0.5:2.5;

32 xlim ([0 25]);

33 % ylim ([0 2]);

34 % axis ([0 25 0 2])

35 cmp=jet (102);

36 for line = 1:102

37 set(h1(line),’Color ’,cmp(line ,:));

38 end

39 hold on

40 h2 = plot ([0 25] , [0 2]);

41 h2.Color=’black ’;

42 h2.LineWidth =4;

43 xlim ([0 25]);

44 ylim ([0 2]);

D.4.3 Script to Plot a Physical Variable

The following MATLAB script generates physical variables traces shown in Figure 4.4.

1 %%% MATLAB Script

2 CVs_low = importdata(’smd_1lvj_28/cv.dat ’);

3 step_low1 = CVs_low (1:309 ,1);

4 cv2_low1 = CVs_low (1:309 ,3);

5 step_low2 = CVs_low (309:310 ,1);

6 cv2_low2 = CVs_low (309:310 ,3);

7 step_low3 = CVs_low (310:2000 ,1);

8 cv2_low3 = CVs_low (310:2000 ,3);

9

10 CVs_high = importdata(’smd_1lvj_35/cv.dat ’);

11 step_high = CVs_high (:,1);

12 cv2_high = CVs_high (:,3);

13

14 time_low1 = step_low1 /1000;

15 time_low2 = step_low2 /1000;

16 time_low3 = step_low3 /1000;

17 time_high = step_high /1000;
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18

19 p1_1 = plot(time_low1 ,cv2_low1 );

20 p1_1.Color = ’0.53 0.66 0.97’;

21 p1_1.LineWidth = 2;

22 hold on

23 p1_11 = plot(time_low2 ,cv2_low2 );

24 p1_11.Color = ’blue ’;

25 p1_11.LineWidth = 2;

26 p1_12 = plot(time_low3 ,cv2_low3 );

27 p1_12.Color = ’blue ’;

28 p1_12.LineWidth = 2;

29 p1_2 = plot(time_high ,cv2_high );

30 p1_2.Color = ’0.94 0.72 0.73’;

31 p1_2.LineWidth = 2;

32 set(gca ,’box ’,’off ’,’TickDir ’,’out ’,’fontweight ’,’bold ’,’fontsize ’,50,

33 ’linewidth ’,8);

34 % legend({’Low Work ’,’High Work ’},’Location ’,’northeastoutside ’);

35 % legend(’boxoff ’);

36 xlabel(’Time (ns)’);

37 hold off
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APPENDIX E

SUPPORTING INFORMATION FOR CHAPTER 5

E.1 The RSG-1.2 peptide

The structure of the RSG-1.2 peptide was studied both in the presence and absence of

the RNA using NMR and CD spectroscopy [93, 323]. In the presence of the RNA, the

peptide adopts a partially α-helical configuration as highlighted by the NMR spectra [93].

In the absence of the RNA, the CD spectra showed that the RSG-1.2 peptide formed a

predominantly disordered conformation (only 12% helicity) [93, 323]. I conducted a 100

ns MD simulation of the peptide in a simulation domain of TIP3P water molecules with

Cl−. As shown in Figure E.11A, the α-helix of the peptide was partially distorted in the

course of the MD simulation. I also computed φ and ψ dihedral angles from the entire MD

simulation of the amino acids that constitute the α-helix in the initial structure (Figure

E.11B). I determined that the dihedral angles are mostly scattered in the fourth quadrant,

which does not correspond to any particular state, and around ψ = −50 and φ = −60,

which corresponds to the α-helical conformation (red circle; Figure E.11B). Based on the

MD data, I suggest that the peptide exists in the predominantly disordered conformation,

which confirms the experimental observations, and through the interactions with the RRE

RNA the peptide adopts the α-helical conformation.
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Table E.1: Details on all simulation systems. The simulation details on all four pathways
(PWs) are presented, including the dimensions of the simulation domain of each system
(column labeled system dimensions), number of atoms (column labeled system size), pulling
distance (column labeled distance), simulation time of a single run, and the number of runs.
The system size is slightly distinct in each pathway due to the initial reorientation of the
RNA-peptide complex and resolvation.
PW system dimensions system size (atoms) distance (Å) time/run (ns) # runs

1 68 Å × 84 Å × 126 Å 63919 80 13 75
2 65 Å × 79 Å × 133 Å 61171 80 13 75
3 64 Å × 84 Å × 129 Å 61618 80 13 75
4 70 Å × 83 Å × 130 Å 66511 80 13 75
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Figure E.1: System setup: Shown are the side-views of the simulation domains along (A)
pathway 1 (PW1), (B) pathway 2 (PW2), (C) pathway 3 (PW3), and (D) pathway 4 (PW4).
In each snapshot, RNA is represented as a green cartoon; peptide as a purple cartoon; water
molecules as gray points; and the bounding box in gray. The arrow in each panel indicates
the reaction coordinate for each pathway that was used to conduct non-equilibrium cv-SMD
simulations.
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Figure E.2: The reaction coordinates (r) and the unbinding force profiles. (A) The
center-of-mass (COM) trajectories of the peptide are shown in unique colors for PW1 (red),
PW2 (cyan), PW3 (orange), and PW4( blue). The black solid lines represent the actual r ;
the dark dotted lines represent the average trace across 75 trajectories for the corresponding
PW; and the lighter shaded lines represent all SMD trajectories for the corresponding PW.
(B) The unbinding force profiles are shown in unique colors for PW1 (red), PW2 (cyan), PW3
(orange), and PW4 (blue) with the average force traces (darker solid lines) and standard
deviations (lighter shades).
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Figure E.3: Force convergence data: Shown are the distributions of ∆Force values,
defined as a difference between zero and the actual force value after the average force profile
converged to zero for (A) PW1, (B) PW2, (C) PW3, and (D) PW4. The ∆Force values were
measured after a distance of 40 Å along the reaction coordinate. See also Figure E.2B.
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Figure E.4: Non-equilibrium work profiles: The non-equilibrium work values obtained
from 75 independent cv-SMD simulations for (A) PW1, (B) PW2, (C) PW3, and (D) PW4.
The lower work values are indicated in blue traces and the higher work values in red traces.
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Figure E.5: Distributions of the final work values: The histograms of all final work
values during cv-SMD simulations are shown with a best-fit distribution line for (A) PW1,
(B) PW2, (C) PW3, and (D) PW4.
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Figure E.6: The free energy and corresponding first-order derivative profiles: A
zoomed view of each free-energy profile (left) and the corresponding first-order derivative
profile (m ; right) computed every 100 points for r values between 0 Å and 15 Å are shown for
(A) PW1, (B) PW2, (C) PW3, and (D) PW4. The fluctuations of the first-order derivatives
are shown in light shaded colors. The free-energy barriers (indicated by ‡) and metastable
states (indicated by M) are also shown and labeled.
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Figure E.7: Dissociation pathways: Shown are the snapshots of the peptide (cyan tube
with key amino acids highlighted) dissociating from the RRE RNA (gray cartoon) from the
least work cv-SMD simulation for (A) PW1 (red), (B) PW2 (cyan), (C) PW3 (orange), and
(D) PW4 (blue).
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Figure E.8: Van der Waals interaction energies: Shown are the time traces of the van
der Waals interaction energy computed between the following amino acid - nucleotide pairs:
the Arg8 (R8) amino acid and the U66 nucleotide (purple); the Arg15 (R15) amino acid and
the U72 nucleotide (orange); the Arg17 (R17) amino acid and the A68 nucleotide (yellow);
the Arg18 (R18) amino acid and the A68 nucleotide (brown). The energies were computed
from the simulation with the least work in (A) PW1, (B) PW2, (C) PW3, and (D) PW4.
Data after 4 ns are truncated due to the convergence to zero of each van der Waals energy
trace.
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Figure E.9: Snapshots from PW1: Shown are the snapshots of the peptide (cyan tube
with key amino acids highlighted) dissociating from the RRE RNA (gray cartoon) from the
lowest work simulation of PW1. Three nucleotides (U44, U45, and G46) which interact with
the peptide through the atoms in the backbone are each shown in a stick representation.
The color scheme is the same as in Figure 5.1B.
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Figure E.10: Networks of salt bridging and hydrogen bonding interactions: Shown
are the snapshots of the peptide (cyan tube with key amino acids highlighted) dissociating
from the RRE RNA (white cartoon) and forming a network of salt bridging and hydrogen
bonding interactions from the least work cv-SMD simulations in (A) PW2, (B) PW3, and
(C-D) PW4. Each amino acid, each nucleotide or an atom that participate in hydrogen
bonding or salt bridging interactions (marked by a dashed line), are uniquely colored. The
color scheme is the same as in Figure 5.1B.
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Figure E.11: The RSG-1.2 peptide: (A) Shown are the snapshots of the peptide (blue
cartoon) from a 100 ns MD simulation. (B) The Ramachandran plot computed for φ and
ψ dihedral angles of amino acids that constitute an α-helix in the initial structure in the
course of a 100 ns MD simulation. Red circle highlights an approximate region of an α-helical
conformation.
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APPENDIX F

SCRIPTS FOR CHAPTER 5

F.1 Overview

In this appendix, I provide the scripts that I have used to set up and analyze simulations in

chapter 5 using various software packages. The set up procedure in this study was similar

to the set up procedure presented in Appendix F, thus I only provide the scripts that were

new in this study.

F.2 Additional Scripts to Set Up a cv-SMD Simulation using NAMD

A script to apply restraints to the protein secondary structure based on hydrogen bonding

interactions in the helix using SSRestraints plugin in VMD is shown below:

1 ssrestraints -psf rna_peptide_fin.psf -pdb rna_peptide_fin.pdb

2 -o g70_hbond.ref -sel helix -hbonds

I also provide a different cv-SMD script since I used several new simulation settings in this

study in comparison to study presented in chapter 4.

1 coordinates g70_smd.pdb

2

3 set temperature 310

4 set outputname g70_smd_dir1

5

6 #Simulation Parameters

7 #Input

8 amber on

9 parmfile g70_smd.prmtop

10

11 #Continuing a run

12 set inputname g70_smd_eq.restart ;
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13 binCoordinates $inputname.coor ;

14 binVelocities $inputname.vel ;

15 extendedSystem $inputname.xsc ;

16 firsttimestep 0 ;

17 numsteps 6500000 ;

18

19 #Force field parameters

20 exclude scaled1 -4

21 1-4scaling 1.0

22 cutoff 10

23 switching on

24 switchdist 8

25 pairlistdist 12

26

27 #Integrator Parameters

28 timestep 2.0 #2 fs/step

29 rigidBonds all

30 nonBondedFreq 1

31 fullElectFrequency 2

32 stepspercycle 10

33

34 #Constant Temperature Control

35 langevin on

36 langevinDamping 1

37 langevinTemp $temperature

38 langevinHydrogen off

39

40 # Periodic Boundary Conditions

41 cellBasisVector1 65.0 0.0 0.0

42 cellBasisVector2 0.0 79.0 0.0

43 cellBasisVector3 0.0 0.0 133.0

44 cellOrigin 0.43169 -1.247 29.9358

45 wrapAll on

46

47 #Electrostatic Force Evaluation (PME)

48 PME yes

49 PMEGridSizeX 72

50 PMEGridSizeY 80

51 PMEGridSizeZ 135

52

53 # Constant Pressure Control

54 useGroupPressure yes

55 useFlexibleCell no

56 useConstantArea no

57

58 langevinPiston on

59 langevinPistonTarget 1.01325 ;# in bar -> 1 atm

60 langevinPistonPeriod 100.0

61 langevinPistonDecay 50.0

62 langevinPistonTemp $temperature

63

64 #SMD

65 if {1} {

66 fixedAtoms on
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67 fixedAtomsFile g70_smd.ref

68 fixedAtomsCol B

69 }

70 SMD on

71 SMDFile g70_smd.ref

72 SMDk 12

73 SMDVel 0.0000125

74 SMDDir -0.0697 -0.03259 0.997

75 SMDOutputFreq 10

76

77 #Output

78 outputName $outputname

79 restartfreq 5000 ;# 5000 steps = every 10ps

80 dcdfreq 5000

81 xstFreq 5000

82 outputEnergies 5000

83 outputPressure 5000

84

85 #Extra Bonds ### module to introduce secondary

86 extraBonds on ### structure restraints

87 extraBondsFile g70_hbond.ref

88

89 #Colvar Module ### module to introduce

90 colvars on ### orientational restraints

91 colvarsConfig colvar.in

92

93 #Execution

94 reinitvels $temperature

The CV file colvar.in is shown below:

1 colvarsTrajFrequency 100

2 colvarsRestartFrequency 500

3 colvarsTrajAppend on

4

5 colvar {

6 name rotation

7 orientation {

8 atoms {atomNumbersRange 1-255 }

9 refpositionsFile {reference.pdb}

10 refPositionsCol {B}

11 refPositionsColValue {2}

12 closestToQuaternion {1.0, 0.0, 0.0, 0.0}

13 }

14 }

15 harmonic {

16 name harm

17 colvars {rotation}

18 centers {( 1 , 0 , 0 , 0 ) }

19 forceConstant 10000

20 }
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F.3 Analysis Scripts

In this section, I provide additional scripts that I have generated to analyze SMD simulations.

F.3.1 Interaction Energy

I used the NAMDEnergy plugin in VMD to calculate interaction energies.

1 mol new ../ g70_smd.prmtop

2 mol addfile ../ low_dir1.dcd first 0 last 4000 waitfor all

3

4 package require namdenergy

5

6 set sel1 [atomselect top "resid 2"]

7 set sel2 [atomselect top "resid 35"]

8

9 namdenergy -sel $sel1 $sel2 -nonb -tempname test -ofile low_dir1_2_35.dat

10 -extsys ../ g70_smd_dir1.xsc -pme -cutoff 10 -switch 8 -exe

11 /home/levintov/NAMD/NAMD_2 .12 _Linux -x86_64/namd2

12 exit

F.3.2 First Order Derivative Calculation

A script to compute and plot the first order derivative of the free-energy profile is shown

below:

1 %% Direction 1

2 A1 = importdata(’pmf_exp_aver_dir1.dat ’);

3 dist1 = A1(:,1);

4 dist1_tan = A1 (1:100:650000 ,1);

5 pmf1 = A1(:,2);

6

7 %%%%% First Order Derivative %%%%%

8 dy1=diff(pmf1 )./ diff(dist1);

9 k=6001; % point number 6001

10 tang1=(dist1 -dist1(k))* dy1(k)+pmf1(k);

11 m1 = dy1(k);

12 dy1_tan = dy1 (1:100:650000 ,1);

13 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

14

15 dy1_tan_smooth = smoothdata(dy1_tan ,’sgolay ’,80);

16 TAN1_smooth = plot(dist1_tan ,dy1_tan_smooth );

17 TAN1_smooth.LineWidth = 5;

18 TAN1_smooth.Color = ’red ’;

19 hold on

20 TAN1 = plot(dist1_tan ,dy1_tan );
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21 TAN1.LineWidth = 3;

22 TAN1.Color = ’1 0 0 0.2’;

23

24 h2 = plot ([0 15] , [0 0]);

25 h2.Color =’[0.5 0.5 0.5]’;

26 h2.LineStyle = ’--’;

27 h2.LineWidth = 3;

28

29 set(gca ,’box ’,’off ’,’TickDir ’,’out ’,’fontweight ’,’bold ’,’fontsize ’,50,

30 ’linewidth ’,8,’Xticklabel ’,[]);

31 a=gca;

32 a.YAxis.MinorTick = ’on ’; % Must turn on minor ticks if they are off

33 a.YAxis.MinorTickValues = [ -5:5:20];

34 xticks (0:5:15);

35 yticks ( -5:10:20);

36 xlim ([0 15]);

37 ylim([-5 20]);
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APPENDIX G

SUPPORTING INFORMATION FOR CHAPTER 6

G.1 Preliminary Kinetics Calculations

In the study presented in chapter 6, I also performed preliminary estimates on kinetics of

the base flipping in the dsRNA. The PMF profile (Figure 6.3B) was used to calculate the

rate constant using the transition state theory (TST) [348,349]

kTST =
ωR

2π
e
−∆G

kBT , (G.1)

where ωR represents the harmonic frequency around the free energy minimum of state I and

∆G is the activation energy estimated from the free-energy profile.

To compute the harmonic frequency (ωR), I used the following equation:

ωR =

√

k

m
(G.2)

where k is related to the coefficients of the quadratic equation that is fitted to the energy

minimum of the reactant state (state I) or the metastable state (state M) and m is the

effective mass. To estimate k, I obtained the coefficients of the quadratic equation (y =

ax2 + bx+ c) that described the energy minimum of the corresponding state I or M (Figure

G.9A). I then took a second order derivative of the fitted quadratic equation and estimated

k = 2a. The mass was computed using the following equation:

m =
3kBT

v2
(G.3)
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where v is the velocity that was computed from all shooting trajectories by extracting points

which had RC values that were within the range of the free energy minimum of the states I or

M. The velocity was thus computed by taking a difference in the subsequent RC values over

time difference (v = ∆RC
∆t

) between those two steps that described the free energy minimum

of states I or M.

The rate constant can also be estimated from the inverse of mean first passage time

(MFPT) [350]:

kI→O = D(r∗)[

∫

∩

e
G(r)
kBT dr

∫

∪

e
−

G(r)
kBT dr]−1 (G.4)

where D(r∗) is the diffusivity at the barrier with r∗ being the RC value at the barrier and

G(r) is the free-energy. The diffusivity across the free-energy barrier is calculated by the

mean squared displacement using the following equation:

〈ω2[r(t)− r∗]2〉 = e2ω
2D(r∗)t − 1 (G.5)

where −ω2 is the curvature of the free energy barrier at r∗. I fitted the free energy barrier

with an equation of the form, y = ax2 + bx+ c, to estimate the curvature at x = r∗ (Figure

G.9B).

Based on the free-energy profile (Figure 6.3B), the base flipping event can be perceived as

a single or as a two step process. To estimate the reaction rate for a one step reaction, from

the inward state to the outward state (I → O), the harmonic frequency ωR was computed

at the minimum of the free energy basin of the inward state and was calculated to be

9.28 × 1010 s−1. The function fitted to the energy minimum of state I to obtain ωR is

shown on Figure G.9A. Using ωR and the transition state theory [348, 349], I estimated the

rate constant to be 1.34 × 109 s−1. Using MFPT, the rate constant was estimated to be

1.09× 108 s−1. The function fitted to the energy barrier between states I and O to compute

the curvature is shown on Figure G.9B.
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Since the base flipping occurred in two steps, I estimated the reaction rates for each

transition: between the inward and metastable states (I →M) and between the metastable

and outward states (M → O). Using ωR that was obtained from functions fitted to the

energy minima of states I and M (Figure G.9A) and the transition state theory, I estimated

that kI→M = 5.29 × 109 s−1 and kM→O = 1.39 × 109 s−1. Using MFPT the rate constant

was estimated to be kI→M = 9.65× 108 s−1 and kM→O = 3.27× 108 s−1 using the curvature

values obtained from functions fitted to the energy barriers (Figure G.9B). Based on TST

and MFPT methods, I concluded that the second step (M → O) is the rate determining

step since it is the slowest step. Moreover, the value of the rate constant for the second

step is close to the single step rate constant in each method. To my knowledge, the rate

constant of base flipping in dsRNA molecules has not been reported yet. However, based

on the timescales suggested by Al-Hashimi et al., [45] base flipping likely occurs on ns-ms

timescale range which is consistent with our prediction of the rate constant.
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Table G.1: List of relevant CVs and the upper (U) and lower (L) boundaries of CVs in each
of the stable states (I, inward; and O, outward)

# CV IL IU OL OU

1 φ1 -70° 70° 100°/-120° 180°/-180°
2 φ2 0° 50° -150° -35°
3 d1 3.5 Å 7 Å 7.5 Å 13 Å
4 d2 3.5 Å 7.5 Å 8 Å 14 Å
5 d3 5.5 Å 9 Å 10 Å 16 Å
6 α1 25° 95° 100° 180°
7 α2 0° 60° 90° 180°
8 α3 0° 60° 90° 180°
9 NW 60 92 97 128
10 E1 -8 -0.5 0 1.5
11 E2 -6.5 -0.5 0 1
12 E3 -7.5 -0.5 0 1
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Table G.2: Likelihood scores for single-variable reaction coordinate models
a0 q1 a1 ln(L) rank

-0.63 d1 0.6989 -542.839 1
-0.63 φ2 -0.6328 -549.832 2
-0.30 d3 0.5419 -577.899 3
-0.30 d2 0.5008 -589.915 4
0.19 E2 0.3037 -649.798 5
0.17 E3 0.3265 -652.817 6
-0.24 α1 0.2954 -653.589 7
-0.22 NW 0.1979 -674.77 8
-0.01 E1 0.1825 -676.978 9
-0.33 α3 0.1489 -682.314 10
-0.12 φ1 0.1051 -687.709 11
-0.01 α2 0.0043 -693.138 12

Table G.3: Five two-variable reaction coordinate models with the highest likelihood scores
a0 q1 a1 q2 a2 ln(L) rank

-0.84 d1 0.4753 φ2 -0.3941 -510.534 1
-0.62 d1 0.5552 d2 0.2373 -528.551 2
-0.60 d1 0.5347 d3 0.2310 -532.742 3
-0.62 φ2 -0.6382 NW 0.1977 -535.738 4
-0.64 d1 0.6513 E2 0.1324 -537.245 5

Table G.4: Five three-variable reaction coordinate models with the highest likelihood scores
a0 q1 a1 q2 a2 q3 a3 ln(L) rank

-0.84 d1 0.4476 φ2 -0.4057 E1 0.0464 -509.876 1
-0.84 d1 0.4401 φ2 -0.4136 NW 0.0503 -509.885 2
-0.84 d1 0.4754 φ2 -0.4261 E2 -0.0492 -510.009 3
-0.84 d1 0.4766 φ2 -0.4012 φ1 -0.0332 -510.199 4
-0.84 d1 0.4644 φ2 -0.3672 d2 0.0419 -510.265 5
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Figure G.1: System setup: Shown is a side-view of the simulation domain: RNA, white
cartoon; water molecules, gray points; sodium ions, yellow; and the bounding box, gray.
Each key nucleotide is highlighted in a unique color. See also Figure 1.6.
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Figure G.2: Time traces of the primary OP (φ1) in the seed trajectory (red) and 3 other
conventional MD simulations. A cyan rectangle highlights the shooting region. See also
Figure 6.1.
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Figure G.3: The population distributions of CVs at terminal points are shown. (A) The
distance between the centers of mass of bases A18 and A19. (B) The hydrogen bond distance
between bases A18 and C54. (C) The angle between A18 and C28. (D) The interplane angle
between G17 and A18. (E) The interplane angle between A18 and A19. (F) The number of
water molecules. (G) The stacking energy between bases G17 and A18. (H) The stacking
energy between bases A18 and A19. (I) The interaction energy between bases A18 and C54.
See also Figure 6.2 .

Figure G.4: Key metrics of the refined RC (black line) along with top 5 three-variable RC
models are shown: (A) Distributions of the RC and (B) Free energy profiles corresponding
to each individual RC model. Labels 1 through 5 indicate model rankings from Table G.4.
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Figure G.5: Evolution of the RC along additional representative trajectories. See also Figure
6.3A.

Figure G.6: The population distribution of the refined RC calculated using shooting trajec-
tories.
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Figure G.7: Snapshots of the dsRNA are shown at (A) the initial state, and (B) the tran-
sition barrier. The stem loop is highlighted in magenta (corresponding to state I) and gray
(corresponding to transition region; ‡). Color scheme for nucleotides is same as in Figure
1.6.
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Figure G.8: The population distributions of several physical variables from the transition
path ensemble. The numbers in each panel correspond to metrics computed for specific
nucleotides (see inset in panel A). The conformational metrics shown are: (A) the hydrogen
bond distance between the N6 atom of A18 and the O4 atom of U53; (B) the dihedral angle
that describes the flipping of C28; (C) the hydrogen bond distance between A18 and U53;
and (D) the hydrogen bond distance between the N6 atom of A18 and the O2 atom of U53.

242



-2 -1 0 1
r

3

4

5

6

7

8

G
 (

k B
T

)

-2 -1 0 1
r

I

O

I

O

M M

A B

Figure G.9: Shown are the functions fitted to the free energy minima (panel A) or barrier
regions (panel B) for rate calculations. See Figure 6.3B for definitions of states I, M, and O.
Fitted curves are in the same color scheme as the label for each state. To estimate the rate
constants using the transition state theory (equation G.1), the harmonic frequencies (ωR)
were calculated based on fitted curves shown in panel A, and to estimate the diffusivities
using equation G.5, the curvatures of the barrier regions (−ω2) were calculated based on
fitted curves shown in panel B.

243



APPENDIX H

SCRIPTS FOR CHAPTER 6

H.1 Overview

In this appendix, I provide the scripts that I have used to set up and conduct TPS simulations

in chapter 6 using various software packages.

H.2 Set Up of TPS Simulations

A script file containing all commands to generate input files for shooting trajectories is shown

below. If all the pathways are specified and all the files are located in the corresponding

directories which are defined in the first block, then the script can be executed by typing

.\aimless.sh in the terminal window. It is also possible to run each individual portion of

the script separately (described below). This script was originally created by Dr. Sanjib

Paul.

1 #!/ bin/csh -fx

2

3 #########################################################

4 set echo

5

6 #########################################################

7 # Set environment variables

8 #########################################################

9

10

11 #BLOCK 1: location of scripts and input files to generate input files

12 for a given system

13 #setenv WORKDIR /home/levintov/ds_rna/r4/shooting_dih/job_run

14

15 # location of amber executable file

16 #setenv PROGRAM /home/software/AMBER12/amber12/bin/pmemd.cuda.MPI
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17

18 # location of system -specific input files

19 #setenv INPUTDIR /home/levintov/ds_rna/r4/shooting_dih/input

20

21 # location of seed directory

22 #setenv SEEDDIR /home/levintov/ds_rna/r4/shooting_dih/seed

23

24 #location of Source directory

25 #setenv SOURCEDIR /home/levintov/ds_rna/r4/shooting_dih/Source

26

27 #location of output directory

28 setenv OUTDIR /home/levintov/ds_rna/r4/shooting_dih/run

29

30

31 # +++++++++++++++++++++++++++++++++++++++++++++

32 # BLOCK 2: Copy data files & execute scripts

33 # +++++++++++++++++++++++++++++++++++++++++++++

34

35

36 cp -f $INPUTDIR /* $WORKDIR /.

37 cp -f $SEEDDIR /* $WORKDIR /.

38 cp -f $SOURCEDIR /* $WORKDIR /.

39

40 gfortran -O read_prmtop.f -o readprm

41 gfortran -O det_barrier.f -o op_barr

42 gfortran -O getsp.f -o getsp

43 gfortran -O shoot3.f -o shoot

44 gfortran -O det_lastframe.f -o detlast

45 f95 -O all_op_barrier .f -o allop

46

47

48 # setting up general variables

49

50 set parm_in = "dsrna_final.prmtop"

51

52 set atmid_in = "atom_id.in"

53

54 set natom = 39305

55

56 set nres = 12709

57

58 set nsnap = 20000

59

60 set ind_out = "index.out"

61

62 # extracting indices of atoms defining order parameters

63

64 ./ readprm $parm_in $atmid_in $nres $natom $ind_out

65

66

67 #looping over different shooting points

68

69 ./ op_barr ../ shooting/ds_run.crd $ind_out barrier.in mass_dih.in

70 $natom $nsnap op_barrier.out
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71

72 set nc = ‘wc op_barrier.out | awk ’{print $1}’‘

73 echo $nc

74

75 set n0 = 1

76

77 set n0max = $nc

78

79 while ($n0 <= $n0max )

80

81 mkdir -p $OUTDIR/sp_$n0

82

83 setenv OUTDIR2 /home/levintov/ds_rna/r4/shooting_dih/run/sp_$n0

84

85

86 ./ getsp ../ shooting/ds_run.crd ../ shooting/ds_run.vel op_barrier.out $nc

87 $n0 $natom $nsnap stock_rst.in barrier.rst

88

89 #setting up loop variables for shooting trials from a given shooting point

90

91 set ns = 1

92 set nmax = 1

93

94 while ($ns <= $nmax)

95

96 mkdir -p $OUTDIR2/shoot_$ns

97

98 set nr = ‘wc random.in | awk ’{print $1}’‘

99 echo $nr

100

101 ./ shoot barrier.rst $natom mass.in momentum.in random.in $nr $ns

102 velocity.out shoot.out shoot.rst

103

104 /usr/mpi/gcc/openmpi -1.6.4/ bin/mpirun -np 4 $PROGRAM -O -i NVT.in -o

105 ds_forward.out -p $parm_in -c shoot.rst -r hca_forward.rst -x

106 ds_forward.mdcrd -v ds_forward.mdvel

107

108 ./ detlast ds_forward.rst $ind_out state.in mass_dih.in $natom terstate.out

109

110 ./ allop shoot.rst $ind_out $natom allop_shoot.out

111

112 bzip2 hca_forward.mdcrd

113 bzip2 hca_forward.mdvel

114

115 mv hca_forward.out $OUTDIR2/shoot_$ns

116 mv shoot.out $OUTDIR2/shoot_$ns

117 mv shoot.rst $OUTDIR2/shoot_$ns

118 cp /home/levintov/ds_rna/r4/common_dsrna /* $OUTDIR2/shoot_$n0

119 mv hca_forward.rst $OUTDIR2/shoot_$ns

120 mv terstate.out $OUTDIR2/shoot_$ns

121 mv allop_shoot.out $OUTDIR2/shoot_$ns

122 mv hca_forward.mdcrd $OUTDIR2/shoot_$ns

123 mv hca_forward.mdvel $OUTDIR2/shoot_$ns

124
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125 @ ns++

126 end

127

128 @ n0 = $n0 + 7

129 end

130 #

131 unset echo

132

133 #####################################################

The first step is to generate a file with masses of all particles in the system. To do that, I

execute the file getmass.f in the terminal window by typing gfortran getmass.f and then

.\a.out. This script was originally created by Dr. Sanjib Paul.

1 c This program reads prmtop file and extract the value of mass of

2 c each atom and the calculates the square root of those mass values.

3 c ------------------------------------------------------------------

4 implicit real*4 (a-h,o-z)

5 c

6 parameter (n1 = 50000, natom = 39305)

7 dimension amass(n1)

8 character *80 pline

9 c

10 open(11, file = "dsrna_final.prmtop", status = "old")

11 c

12 10 read (11,3) pline

13 3 format(a)

14 if(pline (7:10). eq.’MASS ’)then

15 read (11,*)

16 read (11 ,1)( amass(i), i = 1,natom)

17 1 format (5e16 .8)

18 else

19 go to 10

20 end if

21 c

22 close (11)

23 open(13, file = "mass.out", status = "unknown ")

24 c

25 do 20 i =1, natom

26 smass = sqrt(amass(i))

27 write (13,*) amass(i), smass

28 20 continue

29 c

30 stop

31 end

Next step is to generate an index file (index.out) which contains indices of atoms which

are used as order parameters. The index.out file can be generated either using the script
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below (getmass.f) or by manually writing the file. This script was originally created by Dr.

Sanjib Paul.

1 c read_prmtop

2 c

3 c This program reads prmtop file and then finds out the indices of

4 c atoms & write the indices in index_out file. atom information

5 c (residue numbers & atom names) is given in atomid_in file.

6 c------------------------------------------------------------------------

7 parameter (n1 = 15000, n2 = 50000, n3 = 100, n4=50)

8 c

9 implicit real*4 (a-h,o-z)

10 dimension ires(n1), inpres(n3 ,n4), iopt(n3)

11 character *80 pline

12 character *8 atmnam(n2),inpatm(n3 ,n4),nam

13 character *256 prmtop_in ,atomid_in ,numres ,numatm ,index_out

14 c

15 call getarg(1, prmtop_in)

16 call getarg(2, atomid_in)

17 call getarg(3, numres)

18 call getarg(4, numatm)

19 call getarg(5, index_out)

20 c

21 c Reading input variables

22 c----------------------------------

23 read(numres ,*) nres ! # of residues

24 read(numatm ,*) natom ! # of atom

25 c----------------------------------

26 c reading input on order parameters

27 c

28 open(11, file = atomid_in , status= "old")

29 c

30 read (11,*) nop ! # of order parameters

31 do i=1,nop

32 read (11,*)it ! type of OP (=2 dist)

33 ! write (*,*)i,it

34 do j=1,it

35 read (11,*) inpres(i,j), inpatm(i,j) ! residue no. & atom name

36 ! write (*,*) inpres(i,j), inpatm(i,j) ! residue no. & atom name

37 end do

38 iopt(i)=it

39 end do

40 close (11)

41 c--------------------------------------------------

42 c reading input topology file

43 c

44 open(12, file = prmtop_in , status= "unknown ")

45 c

46 100 read (12,1) pline

47 1 format(a)

48 c

49 if(pline (7:15). eq.’ATOM_NAME ’)then
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50 read (12,*)

51 read (12,2) (atmnam(j), j = 1, natom)

52 2 format (20a4)

53 else

54 go to 100

55 end if

56 c

57 110 read (12,1) pline

58 if(pline (7:21). eq.’RESIDUE_POINTER ’)then

59 read (12,*)

60 read (12 ,3)( ires(j), j = 1, nres)

61 3 format (10i8)

62 else

63 go to 110

64 end if

65 c

66 close (12)

67 c------------------------------------------------

68 c retrieving indices of atoms defining order parameters

69 c

70 open(13, file = index_out , status= "unknown ")

71 c

72 write (13,*) nop

73 do 20 i = 1, nop

74 it=iopt(i)

75 write (13,*)it

76 do 25 k=1,it

77 ik=inpres(i,k)

78 nam=inpatm(i,k)

79 ! write (*,*)ik ,nam

80 do 30 j = ires(ik), ires(ik+1)-1

81 if (nam.eq.atmnam(j)) write (13,*)j

82 30 continue

83 25 continue

84 20 continue

85 close (13)

86 c

87 stop

88 end

The index.out file format is shown below:

1 1 ### Two atoms constitute an OP here , type atom indices as 1,2, and so

2 2 ###on if necessary.

3 441 ### Then type the actual atom indices from the coordinate file

4 475

Next, create a barrier.in file which contains information on the range of values of the barrier

region based on the defined order parameter. The format of the barrier.in file is shown

below:
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1 2 ### Number of OPs

2 1 7 8 ### List variables (1,2,...) and ranges (e.g. 7 8)

3 2 5 6

Next, create a state.in file which contains a slightly wider range of values compared to what

was set in the barrier.in file. The format is shown below:

1 6.5 8.5

2 4.5 6.5

Then, run the following lines from the aimless.csh file:

1 gfortran -O op_barrier.f -o op_barr

2

3 # setting up general variables

4

5 set parm_in = "dsrna_final.prmtop"

6

7 set atmid_in = "atom_id.in"

8

9 set natom = 39305

10

11 set nres = 12709

12

13 set nsnap = 20000

14

15 set ind_out = "index.out"

16 ./ op_barr ds.crd $ind_out $natom $nsnap barrier.in state.in opbarrier.out

By executing this command, the script will output an opbarrier.out file which contains a list

of frames from the seed trajectory (labeled as ds.crd in the above script) which correspond

to a barrier region defined in the barrier.in file. The next step is to create the stockrst.in

file which contains information on the dimensions of the water box. The format of the file

is shown below:

1 default_name

2 39305 0.2000000E+06 #Number of atoms and water box dimensions below

3 70.2068726 70.5446739 80.4372217 90.0000000 90.0000000 90.0000000

Next, the restart files for shooting trajectories are created by executing the following lines

in the aimless.csh file:

1 #location of output directory
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2 setenv OUTDIR /home/levintov/ds_rna/r4/shooting/run

3

4 gfortran -O getsp.f -o getsp

5 gfortran -O shoot3.f -o shoot

6

7 # setting up general variables

8

9 set parm_in = "dsrna_final.prmtop"

10

11 set atmid_in = "atom_id.in"

12

13 set natom = 39305

14

15 set nres = 12709

16

17 set nsnap = 20000

18

19 set ind_out = "index.out"

20

21 set nc = ‘wc op_barrier.out | awk ’{print $1}’‘

22 echo $nc

23

24 set n0 = 1

25

26 set n0max = $nc

27

28 while ($n0 <= $n0max )

29

30

31 mkdir -p $OUTDIR/sp_$n0

32

33 setenv OUTDIR2 /home/levintov/dsrna/r4/shooting/run/sp_$n0

34

35 ./ getsp ds.crd ds.vel op_barrier.out $nc $n0 $natom $nsnap

36 stock_rst.in barrier.rst

37

38 #setting up loop variables for shooting trials from a given shooting point

39

40 set ns = 1

41 set nmax = 1

42

43 while ($ns <= $nmax)

44

45 mkdir -p $OUTDIR/shoot_$n0

46

47 set nr = ‘wc random.in | awk ’{print $1}’‘

48 echo $nr

49

50 ./ shoot barrier.rst $natom mass.in momentum.in random.in $nr $ns

51 velocity.out shoot.out shoot.rst

52

53 mv shoot.rst $OUTDIR/shoot_$n0

54

55 @ ns++
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56 end

57

58 @ n0 = $n0 + 50 ### Define which frames to extract from seed trajectory

59 end

The script uses the getsp.f file which extracts the coordinate, velocity and restart infor-

mation from the seed trajectory coordinate and velocity files and the shoot3.f file which

generates new velocities for particles and generates a new restart file for a shooting simu-

lation. The getsp.f file is shown below. This script was originally created by Dr. Sanjib

Paul.

1 c program getsp (Version 2)

2 c

3 c this version works with TPS -AMBER for aimless shooting

4 c used to carry out forward propagation only

5 c

6 c for use in calculation of reaction coordinate by likelihood

7 c maximization

8 c*************************************************************

9 c this program

10 c (1) reads in a trajectory ,

11 c (2) generate restart files at barrier regions.

12 c*************************************************************

13 implicit real*4 (a-h, o-z)

14 c

15 parameter (n1=50000 , n2= 1000)

16 c

17 character *255 mdcrd_in , op_in

18 character *255 rststock_in , mdvel_in

19 character *255 sp_out , ibar

20 character *255 numset , numatom , numbar

21 c

22 character *80 lstock1 ,lstock2 ,lstock3

23 c

24 dimension x0(n1),y0(n1),z0(n1)

25 dimension vx0(n1),vy0(n1),vz0(n1)

26 dimension vx(n1),vy(n1),vz(n1)

27 dimension ibarrier(n2)

28 c**********************************************************************

29 c reading inputs

30 c------------------------

31 c command line inputs

32 c

33 call getarg (1, mdcrd_in) ! name of AMBER Coord file , input

34 call getarg (2, mdvel_in) ! name of AMBER velocity file

35 call getarg (3, op_in) ! time slices in which seed trj. in

36 !barrier region.

37 call getarg (4, numbar) ! total # of sanps in which seed trj.

38 !in barrier region.
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39 call getarg (5, ibar) ! which no. snaps going to extract.

40 call getarg (6, numatom) ! # of atom in system.

41 call getarg (7, numset) ! # of snaps.

42 call getarg (8, rststock_in)

43 call getarg (9, sp_out) ! output file at Amber .restart file

44 c

45 read(numset ,*) nset

46 read(numatom ,*) natom

47 read(numbar ,*) nbar

48 read(ibar ,*)ib

49 c

50 write (*,*)’nset , natom = ’,nset ,natom

51 write (*,*)’nbar = ’,nbar

52 c--------------------------

53 c reading information on order parameter

54 c calculated along input trajectory

55 c

56 open(unit=31,file=op_in ,status=’old ’)

57 c

58 do i=1,nbar

59 read (31,*) ibarrier(i) ! trj time slice # residing at barrier

60 end do

61 close (31)

62 ipb = ibarrier(ib)

63 c------------------------------------------------------------------------

64 c reading stock information for restart file

65 c

66 open(unit=56, file=rststock_in ,status=’old ’)

67 c

68 read (56,9) lstock1

69 read (56,9) lstock2

70 read (56,9) lstock3

71 close (56)

72 9 format(a)

73 c---------------------------

74 c

75 c READING of INPUT FILES ENDS HERE

76 c

77 c****************************************************************

78 c----------------------------------------------------------------

79 c retrieving and recording at the shooting point

80 c coordinate and velocity of each atom from input mdcrd file

81 c

82 do i=1,natom

83 x0(i)=0.0 ! initializing array for coordinates & velocities

84 y0(i)=0.0 ! at the chosen shooting point

85 z0(i)=0.0

86 vx0(i)=0.0

87 vy0(i)=0.0

88 vz0(i)=0.0

89 end do

90 c

91 write (*,*)’ retrieving mass weighted coordinates and velocities ’

92 c
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93 call getcoord(mdcrd_in ,nset ,ipb ,natom ,x0 ,y0 ,z0)

94 call getvel(mdvel_in ,nset ,ipb ,natom ,vx0 ,vy0 ,vz0)

95 c

96 write (*,91)x0(1),y0(1),z0(1)

97 write (*,91) vx0(1),vy0(1),vz0 (1)

98 write (*,91)x0(natom),y0(natom),z0(natom)

99 write (*,91) vx0(natom),vy0(natom),vz0(natom)

100 91 format (3f12 .3)

101 c

102 c----------------------------------------------------------------------

103 open(unit=68,file=sp_out ,status=’unknown ’)

104 c

105 write (68,9) lstock1

106 write (68,9) lstock2

107 write (68 ,77)(x0(i),y0(i),z0(i),i=1,natom)

108 write (68 ,77)( vx0(i),vy0(i),vz0(i),i=1,natom)

109 write (68,9) lstock3

110 c

111 close (68)

112 77 format (6f12 .7)

113 c--------------------------------------------------------------------

114 stop

115 end

116 c*************************************************************************

117 c Subroutines start here

118 c*************************************************************************

119 subroutine getcoord(mdcrd_in ,nset ,iset ,natom ,x0,y0 ,z0)

120 c

121 implicit real*4 (a-h, o-z)

122 c

123 character *255 mdcrd_in

124 character *80 mline

125 c

126 dimension x0(natom),y0(natom),z0(natom)

127 dimension x(natom),y(natom),z(natom)

128 c

129 open(unit=12,file=mdcrd_in ,status=’old ’)

130 c

131 read (12 ,88) mline

132 88 format(a)

133 c

134 do i=1,nset

135 read (12 ,99)(x(j),y(j),z(j),j=1,natom)

136 99 format (10f8.3)

137 read (12,*)

138 if(i.eq.iset) then

139 do j=1,natom

140 x0(j)=x(j)

141 y0(j)=y(j)

142 z0(j)=z(j)

143 end do

144

145 endif

146 c
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147 end do

148 close (12)

149 c

150 return

151 end

152 c*************************************************************************

153 subroutine getvel(mdvel_in ,nset ,iset ,natom ,vx0 ,vy0 ,vz0)

154 c

155 implicit real*4 (a-h, o-z)

156 c

157 character *255 mdvel_in

158 character *80 mline

159 c

160 dimension vx0(natom),vy0(natom),vz0(natom)

161 dimension vx(natom),vy(natom),vz(natom)

162 c

163 open(unit=22,file=mdvel_in ,status=’old ’)

164 c

165 read (22 ,98) mline

166 98 format(a)

167 c

168 do i=1,nset

169 read (22 ,99)(vx(j),vy(j),vz(j),j=1,natom)

170 99 format (10f8.3)

171 if(i.eq.iset) then

172 do j=1,natom

173 vx0(j)=vx(j)

174 vy0(j)=vy(j)

175 vz0(j)=vz(j)

176 end do

177 endif

178 cc

179 end do

180 close (22)

181 c

182 return

183 end

184 c*************************************************************************

The shoot3.f file is shown below. This script was originally created by Dr. Sanjib Paul.

1 c program shoot_amber (Version 2)

2 c

3 c this version works with TPS -AMBER for aimless shooting

4 c used to carry out forward propagation only

5 c

6 c for use in calculation of reaction coordinate by likelihood

7 c maximization

8 c*************************************************************

9 c this program

10 c (1) reads coordinates ,velocites and box information from file

11 c generated by getsp.f.

12 c (2) generate new velocity.
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13 c (3) prepares the input for subsequent forward AMBER run

14 c

15 c Important note:

16 c

17 c After a random momentum displacement , this program sets the

18 c c.o.m at rest and then introduces correction for changes

19 c in total angular momentum. Finally a temperature rescaling is

20 c carried out and ensured that c.o.m. is at rest

21 c*************************************************************

22 implicit real*4 (a-h, o-z)

23 c

24 parameter (n1=50000 , n2= 100)

25 c

26 character *255 mass_in , momentum_in ,random_in

27 character *255 shoot_rst

28 character *255 velocity_out , shoot_out , sp_out

29 character *255 numatom , numran , num_call

30 c

31 character *80 lstock1 ,lstock2 ,lstock3

32 c

33 dimension x0(n1),y0(n1),z0(n1)

34 dimension vx0(n1),vy0(n1),vz0(n1)

35 dimension vx(n1),vy(n1),vz(n1)

36 dimension vxn(n1),vyn(n1),vzn(n1)

37 dimension ibarrier(n2)

38 dimension amass(n1), smass(n1)

39 c*********************************************************************

40 c reading inputs

41 c------------------------

42 c command line inputs

43 c

44 call getarg (1, sp_out) ! configuration at barrier region

45 call getarg (2, numatom) ! # of atoms in the system

46 call getarg (3, mass_in) ! mass of each atom

47 call getarg (4, momentum_in) ! input for momentum displacement

48 call getarg (5, random_in) ! input for idum

49 call getarg (6, numran) ! # of entries in random_in

50 call getarg (7, num_call) ! shooting step #

51 call getarg (8, velocity_out) ! output

52 call getarg (9, shoot_out) ! record of time slice of shooting

53 call getarg (10, shoot_rst) ! file for restarting shooting step

54 c

55 read(numatom ,*) natom

56 read(numran ,*) nrtot

57 read(num_call ,*) nshoot

58 c

59 write (*,*)’ natom = ’, natom

60 write (*,*)’ nrtot = ’, nrtot

61 write (*,*)’ nshoot = ’,nshoot

62 c------------------------------------------------------------------------

63 c reading input for momentum displacement

64 c

65 open(unit=13,file=momentum_in ,status=’old ’)

66 c
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67 read (13,*) idum ! seed for random number generator

68 read (13,*) iscale ! For iscale = 1, updated velocities

69 ! are scaled to maintain constant temp

70 read (13,*) sigvel ! unit conversion factor for velocity

71 read (13,*) temp ! temperature

72 read (13,*)nc ! # of constraints

73 read (13,*) pdbvelfact ! pdb vel factor

74 read (13,*) constfact ! a constant factor

75 !added JACS , 2005, 127, 13822

76 close (13)

77 c------------------------------------------------------------------------

78 c reading input for mass of atoms

79 c

80 open(unit=76,file=mass_in ,status=’old ’)

81 c

82 totmass =0.0

83 do i=1,natom

84 read (76,*) amass(i),smass(i) ! mass & square root of mass of each atom

85 totmass=totmass+amass(i)

86 end do

87 totmass2 = sqrt(totmass)

88 close (76)

89 c

90 write(*,*)’ total mass of the system =’,totmass

91 write(*,*)’ square root of total mass of the system =’,totmass2

92 c--------------------------

93 c reading input of random number

94 c

95 open(unit=54,file=random_in ,status=’old ’)

96 c

97 do i=1,nrtot

98 read (54,*) xrr

99 if(i.eq.nshoot) xran=xrr !! caution: nrtot > = nshoot

100 end do

101 close (54)

102 c---------------------------

103 c

104 c READING of INPUT FILES ENDS HERE

105 c

106 c******************************************************************

107 c retrieving and recording at the shooting point

108 c coordinate and velocity of each atom from input mdcrd file

109 c

110 do i=1,natom

111 x0(i)=0.0 ! initializing array for coordinates & velocities

112 y0(i)=0.0 ! at the chosen shooting point

113 z0(i)=0.0

114 vx0(i)=0.0

115 vy0(i)=0.0

116 vz0(i)=0.0

117 vxn(i)=0.0

118 vyn(i)=0.0

119 vzn(i)=0.0

120 end do
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121 c

122 write (*,*)’ retrieving mass weighted coordinates and velocities ’

123 c

124 open(12, file = sp_out , status = "old")

125 read (12,9) lstock1

126 read (12,9) lstock2

127 read (12 ,77)(x0(j),y0(j),z0(j),j=1,natom)

128 read (12 ,77)( vx0(j),vy0(j),vz0(j), j=1,natom)

129 read (12,9) lstock3

130 9 format(a)

131 c

132 write (*,91)x0(1),y0(1),z0(1)

133 write (*,91) vx0(1),vy0(1),vz0 (1)

134 write (*,91)x0(natom),y0(natom),z0(natom)

135 write (*,91) vx0(natom),vy0(natom),vz0(natom)

136 91 format (3f12 .3)

137 c

138 c---------------------------------------------------------------

139 c modification of velocity using the momentum displacement

140 c

141 write (*,*)’ applying momentum displacement ’

142 c

143 call momdisp(pdbvelfact ,temp ,natom ,sigvel ,constfact ,

144 # smass ,amass ,vx0 ,vy0 ,vz0 ,x0 ,y0 ,z0 ,nc,vxn ,vyn ,vzn ,idum ,totmass ,

145 $ totmass2)

146 c

147 write (*,*)’new and old momenta ’

148 write (*,*)’ particle 1’

149 write (*,91) vxn(1),vyn(1),vzn (1)

150 write (*,91) vx0(1),vy0(1),vz0 (1)

151 write (*,*)’particle ’,natom

152 write (*,91) vxn(natom),vyn(natom),vzn(natom)

153 write (*,91) vx0(natom),vy0(natom),vz0(natom)

154 c

155 call scale_velocity (natom ,vxn ,vyn ,vzn ,amass ,totmass ,temp ,iscale)

156 c

157 write (*,*)’ after temperature rescaling ’

158 write (*,*)’new and old momenta ’

159 write (*,*)’ particle 1’

160 write (*,91) vxn(1),vyn(1),vzn (1)

161 write (*,91)vx(1),vy(1),vz(1)

162 write (*,*)’ particle ’,natom

163 write (*,91) vxn(natom),vyn(natom),vzn(natom)

164 write (*,91)vx(natom),vy(natom),vz(natom)

165 c**********************************************************************

166 c writing the output

167 c------------------------------------------------------------------

168 c

169 c recording modified velocities

170 c

171 open(unit=67,file=velocity_out ,status=’unknown ’)

172 c

173 do i=1,natom

174 write (67 ,91) vxn(i),vyn(i),vzn(i)
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175 end do

176 close (67)

177 c----------------------------------------------------------------------

178 c preparation of restart files for further dynamical propagation

179 c----------------------------------------------------------------------

180 open(unit=68,file=shoot_rst ,status=’unknown ’)

181 c

182 write (68,9) lstock1

183 write (68,9) lstock2

184 write (68 ,77)(x0(i),y0(i),z0(i),i=1,natom)

185 write (68 ,77)( vxn(i),vyn(i),vzn(i),i=1,natom)

186 write (68,9) lstock3

187 c

188 close (68)

189 77 format (6f12 .7)

190 c--------------------------------------------------------------------

191 stop

192 end

193 c*************************************************************************

194 c Subroutines start here

195 c*************************************************************************

196 subroutine momdisp(pdbvelfact ,temp ,nat ,sigvel ,constfact ,

197 #smass1 ,amass1 ,vx ,vy ,vz ,x0 ,y0 ,z0,nc,vxnew ,vynew ,vznew ,idum ,totmass ,

198 $totmass2)

199 c

200 implicit real*4 (a-h, o-z)

201 c

202 dimension x(nat),y(nat),z(nat)

203 dimension x0(nat),y0(nat),z0(nat)

204 dimension vx(nat),vy(nat),vz(nat)

205 dimension vx1(nat),vy1(nat),vz1(nat)

206 dimension vx2(nat),vy2(nat),vz2(nat)

207 dimension vx0(nat),vy0(nat),vz0(nat)

208 dimension delw0 (3)

209 dimension fact1(nat),xc(nat),yc(nat),zc(nat)

210 dimension vxnew(nat),vynew(nat),vznew(nat), smass1(nat)

211 dimension amass1(nat)

212 dimension a(3,3),ym(3,3)

213 dimension u(3),v(3),cr(3)

214 dimension u1(3),v1(3),cr1 (3)

215 dimension qa(3),pa(3),qcp(3),totl (3)

216 dimension omega (3,1),omp(3), delvl (3)

217 c----------------------------------------------------------------------------

218 c checking input information

219 c

220 npart=nat

221 xnp=float(npart)

222 write(*,*)’ within momdisp ’,npart ,xnp ,totmass , totmass2

223 c---------------------------------------------------------------------------

224 c Step 1: scaling coordinates and velocities with individual atom masses

225

226 xcom = 0.0

227 ycom = 0.0

228 zcom = 0.0
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229 do i=1,npart

230 sm=smass1(i) ! square root of m_{i}

231 am = amass1(i)

232 vx1(i)=vx(i)*sm

233 vy1(i)=vy(i)*sm ! mass weighted velocities

234 vz1(i)=vz(i)*sm

235 c

236 xcom = xcom + x0(i)*am

237 ycom = ycom + y0(i)*am

238 zcom = zcom + z0(i)*am

239

240 c write (42 ,455)x(i),y(i),z(i),vx1(i),vy1(i),vz1(i)

241 end do

242

243 xcom = xcom / totmass

244 ycom = ycom / totmass

245 zcom = zcom / totmass

246

247 do i = 1, npart

248 sm=smass1(i)

249 xc(i) = (x0(i)-xcom)*sm

250 yc(i) = (y0(i)-ycom)*sm

251 zc(i) = (z0(i)-zcom)*sm

252 enddo

253 c-------------------------------------------------------------------

254 c Step 2: generating the random velocity from

255 c Maxwell -Boltzmann distribution

256 c

257 np3 =3* npart ! 3 * # of particles

258 c

259 do j=1,npart

260 sm = smass1(j)

261 fact1(j)=sqrt(temp)* sigvel*constfact ! sigvel: to convert

262 !velocity to (amu )^{1/2} Ang ps -1

263 end do ! given temp is in K and mass is in amu

264 c

265 vxsum =0.0

266 vysum =0.0

267 vzsum =0.0

268 c

269 do i=1,npart

270 c

271 do j=1,3

272 xi1=ran3(idum)

273 xi2=ran3(idum)

274 c

275 x1=log(xi1)

276 x2=-2.0*x1

277 xpart1=sqrt(x2)

278 c

279 pi =4.0* atan (1.0)

280 x3 =2.0*pi*xi2

281 xpart2=cos(x3)

282
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283 c

284 delw0(j)= xpart1*xpart2*fact1(i)

285 c

286 end do

287

288 vx2(i)=vx1(i)+ delw0 (1) ! new momenta after adding

289 vy2(i)=vy1(i)+ delw0 (2) ! momentum displacement from

290 vz2(i)=vz1(i)+ delw0 (3) ! gaussian distribution

291 c

292 c write (43 ,455) vx2(i),vy2(i),vz2(i),(delw0(j),j=1,3)

293 c

294 sm=smass1(i)

295 am = amass1(i)

296 vxsum=vxsum +(sm*vx2(i))

297 vysum=vysum +(sm*vy2(i))

298 vzsum=vzsum +(sm*vz2(i))

299 end do

300 c

301 vxs=vxsum/totmass2 ! com momentum

302 vys=vysum/totmass2

303 vzs=vzsum/totmass2

304 c

305 write(*,*)’ velocities of c.o.m after random displacement ’

306 write (*,*)vxs ,vys ,vzs

307 c-------------------------------------------------------------------

308 c Step 3: Construction of new momenta setting velocity of

309 c the c.o.m. to zero

310 c

311 do i=1,npart

312 sm = smass1(i)

313 vx0(i)=( vx2(i)-vxs)

314 vy0(i)=( vy2(i)-vys)

315 vz0(i)=( vz2(i)-vzs)

316 c

317 c write (45 ,455)x(i),y(i),z(i),vx0(i),vy0(i),vz0(i)

318 c write (45 ,455) vx2(i),vy2(i),vz2(i),vx0(i),vy0(i),vz0(i)

319 c455 format (6f15 .5)

320 end do ! end of correction for total linear momentum

321 c-------------------------------------------------------------------------

322 c Step 4: Calculation of the correction from angular momentum

323 c

324 c calculation of the moment of inertia tensor

325 c

326 n=3 ! initialization

327 np=3

328 do i=1,n

329 do j=1,n

330 a(i,j)=0.0

331 end do

332 end do

333 c

334 sum2yz =0.0 ! initializing summations needed

335 sum2xz =0.0 ! to evaluate elements of moment

336 sum2xy =0.0 ! of inertia tensor as a 3X3 matrix
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337 sumxy =0.0

338 sumxz =0.0

339 sumyz =0.0

340 c

341 do i=1,npart

342 xi=xc(i)

343 yi=yc(i)

344 zi=zc(i)

345 sum2yz=sum2yz +(yi*yi)+(zi*zi)

346 sum2xz=sum2xz +(xi*xi)+(zi*zi)

347 sum2xy=sum2xy +(xi*xi)+(yi*yi)

348 sumxy=sumxy +(xi*yi)

349 sumxz=sumxz +(xi*zi)

350 sumyz=sumyz +(yi*zi)

351 end do

352 c

353 a(1,1)= sum2yz

354 a(2,2)= sum2xz

355 a(3,3)= sum2xy

356 a(1,2)=- sumxy

357 a(2,1)=- sumxy

358 a(1,3)=- sumxz

359 a(3,1)=- sumxz

360 a(2,3)=- sumyz

361 a(3,2)=- sumyz

362 c

363 write(*,*)’ elements of MOI matrix ’

364 do i=1,3

365 write (*,*)(a(i,j),j=1,3)

366 end do

367 c

368 c calculating the inverse of moment of inertia tensor

369 c

370 call ainverse(a,n,np ,ym)

371 c

372 write(*,*)’ elements of inverted MOI matrix ’

373 do i=1,3

374 write (*,*)(ym(i,j),j=1,3)

375 end do

376 c

377 c calculation of the total angular momentum

378 c

379 do i=1,3

380 totl(i)=0.0

381 end do

382 c

383 do i=1,npart

384 qa(1)=xc(i)

385 qa(2)=yc(i)

386 qa(3)=zc(i)

387 pa(1)= vx0(i)

388 pa(2)= vy0(i)

389 pa(3)= vz0(i)

390 c
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391 c write (46 ,455)(qa(m),m=1,3),(pa(k),k=1,3)

392 c

393 call cross(qa,pa,qcp)

394 do j=1,3

395 totl(j)=totl(j)+qcp(j)

396 end do

397 end do

398 c

399 write(*,*)’x,y,z components of total angular momentum ’

400 write (*,*)( totl(j),j=1,3)

401 c

402 c calculation of the angular velocity

403 c

404 call matmult(3,3,ym ,3,1,totl ,omega)

405 c

406 write(*,*)’ components of angular velocity ’

407 write (*,*)( omega(i,1),i=1,3)

408 c

409 c modified velocity after constraining angular momentum

410 c and removal of mass weighting

411 c

412 omp (1)= omega (1,1)

413 omp (2)= omega (2,1)

414 omp (3)= omega (3,1)

415 c

416 do i=1,npart

417 qa(1)=xc(i)

418 qa(2)=yc(i)

419 qa(3)=zc(i)

420 call cross(omp ,qa ,delvl)

421 c

422 sm=smass1(i)

423 vxnew(i)=( vx0(i)-delvl (1))/sm

424 vynew(i)=( vy0(i)-delvl (2))/sm

425 vznew(i)=( vz0(i)-delvl (3))/sm

426 end do

427 c

428 write(*,*)’ completed momdisp ’

429 c

430 return

431 end

432 c*************************************************************

433 subroutine cross(u,v,z)

434 c

435 c calculation of the components of a vector z resulting from

436 c a cross product of the 3 dimensional vectors u and v

437 c

438 implicit real*4 (a-h, o-z)

439 dimension u(3),v(3),z(3)

440 c

441 z(1)=u(2)*v(3)-u(3)*v(2)

442 c

443 z(2)=u(3)*v(1)-u(1)*v(3)

444 c
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445 z(3)=u(1)*v(2)-u(2)*v(1)

446 c

447 return

448 end

449 c*************************************************************

450 subroutine ainverse(a,n,np ,y)

451 c

452 implicit real*4 (a-h, o-z)

453 c

454 dimension indx (3)

455 dimension a(3,3),y(3,3)

456 c

457 c INTEGER np ,indx(np)

458 c REAL a(np ,np),y(np ,np)

459 c

460 do i=1,n

461 do j=1,n

462 y(i,j)=0.0

463 enddo

464 y(i,i)=1.0

465 enddo

466 c

467 call ludcmp(a,n,np ,indx ,d)

468 do j=1,n

469 call lubksb(a,n,np,indx ,y(1,j))

470 enddo

471 c

472 return

473 end

474 c------------------------------------------------------

475 subroutine ludcmp(a,n,np ,indx ,d)

476 c

477 implicit real*4 (a-h, o-z)

478 c

479 PARAMETER (NMAX =500, TINY =1.0e-20)

480 dimension indx(3),a(3,3)

481 dimension vv(NMAX)

482 c

483 c INTEGER n,np ,indx(n),NMAX

484 c REAL d,a(np ,np),TINY

485 c PARAMETER (NMAX =500, TINY =1.0e-20)

486 c INTEGER i,imax ,j,k

487 c REAL aamax ,dum ,sum ,vv(NMAX)

488 c

489 d=1.

490 do 12 i=1,n

491 aamax =0.

492 do 11 j=1,n

493 if (abs(a(i,j)).gt.aamax) aamax=abs(a(i,j))

494 11 continue

495 if (aamax.eq.0.) then

496 write (*,*) ’singular matrix in ludcmp ’

497 stop

498 else
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499 vv(i)=1./ aamax

500 endif

501 12 continue

502 do 19 j=1,n

503 do 14 i=1,j-1

504 sum=a(i,j)

505 do 13 k=1,i-1

506 sum=sum -a(i,k)*a(k,j)

507 13 continue

508 a(i,j)=sum

509 14 continue

510 aamax =0.

511 do 16 i=j,n

512 sum=a(i,j)

513 do 15 k=1,j-1

514 sum=sum -a(i,k)*a(k,j)

515 15 continue

516 a(i,j)=sum

517 dum=vv(i)*abs(sum)

518 if (dum.ge.aamax) then

519 imax=i

520 aamax=dum

521 endif

522 16 continue

523 if (j.ne.imax)then

524 do 17 k=1,n

525 dum=a(imax ,k)

526 a(imax ,k)=a(j,k)

527 a(j,k)=dum

528 17 continue

529 d=-d

530 vv(imax)=vv(j)

531 endif

532 indx(j)=imax

533 if(a(j,j).eq.0.)a(j,j)=TINY

534 if(j.ne.n)then

535 dum =1./a(j,j)

536 do 18 i=j+1,n

537 a(i,j)=a(i,j)*dum

538 18 continue

539 endif

540 19 continue

541 return

542 END

543 c------------------------------------

544 subroutine lubksb(a,n,np ,indx ,b)

545 c

546 implicit real*4 (a-h, o-z)

547 c

548 dimension indx(3), a(3,3),b(3)

549 c

550 c INTEGER n,np ,indx(n)

551 c REAL a(np ,np),b(n)

552 c INTEGER i,ii ,j,ll
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553 c REAL sum

554 c

555 ii=0

556 do 12 i=1,n

557 ll=indx(i)

558 sum=b(ll)

559 b(ll)=b(i)

560 if (ii.ne.0) then

561 do 11 j=ii ,i-1

562 sum=sum -a(i,j)*b(j)

563 11 continue

564 else if (sum.ne.0.) then

565 ii=i

566 endif

567 b(i)=sum

568 12 continue

569 do 14 i=n,1,-1

570 sum=b(i)

571 do 13 j=i+1,n

572 sum=sum -a(i,j)*b(j)

573 13 continue

574 b(i)=sum/a(i,i)

575 14 continue

576 return

577 END

578 c******************************************************************

579 c subroutine to carry out matrix multiplication

580 c

581 subroutine matmult(m1 ,n1,a,m2,n2,b,e)

582 c

583 implicit real *4(a-h, o-z)

584 c

585 dimension a(3,3),b(3,1),e(3,1)

586 c

587 if(n1.ne.m2) then

588 write(*,*)’ multiplication not possible ’

589 stop

590 endif

591 c

592 c write(*,*)’ inside matmult ’

593 do i=1,m1

594 do j=1,n2

595 sumij =0.0

596 do k=1,n1

597 sumij=sumij+(a(i,k)*b(k,j))

598 end do

599 e(i,j)= sumij

600 c write (*,*) sumij

601 end do

602 end do

603 c

604 return

605 end

606
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607

608 c********************************************************

609 c subroutine for scaling of velocities to maintain overall kinetic energy

610 c

611 subroutine scale_velocity (npart ,vx ,vy ,vz ,amass1 ,totmass ,

612 + temp ,iscale)

613 c

614 implicit real*4 (a-h, o-z)

615 c

616 dimension vx(npart),vy(npart),vz(npart)

617 dimension amass1(npart)

618 c

619 xn =1.0/(3.0* float(npart))

620 c

621 if(iscale.eq.1) then

622 sumvx2 =0.0

623 sumvy2 =0.0

624 sumvz2 =0.0

625 sumvx =0.0

626 sumvy =0.0

627 sumvz =0.0

628 c

629 do i=1,npart

630 am = amass1(i)

631 vxi=vx(i)

632 vyi=vy(i)

633 vzi=vz(i)

634 c

635 sumvx=sumvx +(vxi*am)

636 sumvy=sumvy +(vyi*am)

637 sumvz=sumvz +(vzi*am)

638 c

639 sumvx2=sumvx2 +(am*(vxi **2))

640 sumvy2=sumvy2 +(am*(vyi **2))

641 sumvz2=sumvz2 +(am*(vzi **2))

642 end do

643 c

644 sumvx = sumvx/totmass

645 sumvy = sumvy/totmass

646 sumvz = sumvz/totmass

647 sumv2=( sumvx2+sumvy2+sumvz2 )*xn

648 c

649 fs=sqrt ((0.001988* temp)/ sumv2)

650 write(*,*)’ temperature scaling factor =’,fs

651 c

652 do i=1,npart

653 vx(i)=fs*(vx(i)-sumvx)

654 vy(i)=fs*(vy(i)-sumvy)

655 vz(i)=fs*(vz(i)-sumvz)

656 end do

657

658 endif

659 c

660 return
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661 end

662 c*********************************************************************

663 FUNCTION ran3(idum)

664 INTEGER idum

665 INTEGER MBIG ,MSEED ,MZ

666 C REAL MBIG ,MSEED ,MZ

667 REAL ran3 ,FAC

668 PARAMETER (MBIG =1000000000 , MSEED =161803398 , MZ=0,FAC =1./ MBIG)

669 C PARAMETER (MBIG =4000000. , MSEED =1618033. ,MZ=0.,FAC =1./ MBIG)

670 INTEGER i,iff ,ii ,inext ,inextp ,k

671 INTEGER mj ,mk,ma(55)

672 C REAL mj ,mk ,ma(55)

673 SAVE iff ,inext ,inextp ,ma

674 DATA iff /0/

675 if(idum.lt.0.or.iff.eq.0) then

676 iff=1

677 mj=MSEED -iabs(idum)

678 mj=mod(mj ,MBIG)

679 ma (55)=mj

680 mk=1

681 do 11 i=1,54

682 ii=mod (21*i,55)

683 ma(ii)=mk

684 mk=mj -mk

685 if(mk.lt.MZ)mk=mk+MBIG

686 mj=ma(ii)

687 11 continue

688 do 13 k=1,4

689 do 12 i=1,55

690 ma(i)=ma(i)-ma(1+ mod(i+30 ,55))

691 if(ma(i).lt.MZ)ma(i)=ma(i)+MBIG

692 12 continue

693 13 continue

694 inext=0

695 inextp =31

696 idum=1

697 endif

698 inext=inext +1

699 if(inext.eq.56) inext=1

700 inextp=inextp +1

701 if(inextp.eq.56) inextp =1

702 mj=ma(inext)-ma(inextp)

703 if(mj.lt.MZ)mj=mj+MBIG

704 ma(inext )=mj

705 ran3=mj*FAC

706 return

707 END

Restart files for shooting trajectories are generated using the above scripts which can then

be used for conducting a short MD simulation. In the study presented in chapter 6, each

shooting trajectory was 1 ns long. After the shooting trajectories were completed, I checked
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the last frame of the simulation and determined a value of the OP to understand if the

simulation terminated in the reactant or product state. If the simulation terminates in one

of the defined states, then the shooting trajectory is used as a new seed trajectory and the

whole procedure is repeated from the step when the opbarrier.out file is generated.

H.2.1 Likelihood Maximization Method

I used a MATLAB script to perform the likelihood maximization method. Firstly, I executed

the following script (getCVs.csh) to collect values of a set of CVs from each shooting

trajectory. This script was originally created by Dr. Sanjib Paul.

1 setenv PATHDIR /run/media/levintov/easystore2/tps_dih/paths

2 gfortran -O All_Op_Barrier .f -o allop

3 set natom = 39305

4

5 set n0 = 1

6

7 set n0max = 1000

8

9 while ($n0 <= $n0max )

10 ./ allop $PATHDIR/path$n0/shoot.rst cv.in

11 $PATHDIR/path$n0/terstate.out $natom CVin.out CVout.out

12

13 @ n0++

14 end

This script also requires the AllOpBarrier.f file which is shown below. This script was

originally created by Dr. Sanjib Paul.

1 c This program reads rst file generated from shoot.f and then

2 c calculates OP values at shooting point.

3 c---------------------------------------------------------------------

4

5 parameter (n1 = 40000, n2 = 100)

6 implicit real*4 (a-h,o-z)

7 c

8 dimension x(n1), y(n1), z(n1), indx(n2 ,n2), iopt(n2)

9 dimension xind(n2), yind(n2), zind(n2), rop(n2)

10 dimension vx(n1), vy(n1), vz(n1)

11 c

12 character *256 rst_in ,numatom ,op_in ,op1_out ,op2_out ,terstate_out

13

14 call getarg(1, rst_in)

15 call getarg(2, op_in)
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16 call getarg(3, terstate_out)

17 call getarg(4, numatom)

18 call getarg(5, op1_out)

19 call getarg(6, op2_out)

20 c

21 open(18, file = op1_out , status = "unknown",access = "append ")

22 open(19, file = op2_out , status = "unknown",access = "append ")

23 open(91, file = terstate_out , status = "old")

24 read (91,*) iter

25 c -----------------------------------

26 c Reading input variables from scripts.

27 c ------------------------------------

28 read(numatom ,*) natom ! # of atoms

29 c----------------------------------------------

30 c reading input on barier and individual states from file

31 c

32 open(11, file = op_in , status = "old")

33 c

34 read (11,*) nop ! # of OP

35 do 10 i = 1, nop

36 read (11,*)it ! type of OP

37 do 15 j = 1, it

38 read (11,*) indx(i,j)

39 15 continue

40 iopt(i) = it ! type of i-th OP

41 10 continue

42 close (11)

43 c

44 ! do 110 i = 1, nop

45 ! do 120 j = 1, iopt(i)

46 ! write (*,*) indx(i,j)

47 !120 continue

48 !110 continue

49 c

50 c ---------------------------------------------------------------

51 c reading of rst file & calculation of OP.

52 c ----------------------------------------------------------------

53 c

54 open(12, file = rst_in , status = "unknown ")

55 c

56 read (12,*) ! to skip the heading

57 read (12,*)

58 c

59 read (12 ,99)(x(j), y(j), z(j), j = 1, natom) ! coordinate reading

60 99 format (6f12 .7)

61 c

62 read (12 ,99)(vx(j), vy(j), vz(j), j = 1, natom)

63 read (12 ,99)a, b, c, aa , ba , ca

64

65 c

66 do 30 j = 1,nop

67 ip = iopt(j)

68 do 50 k = 1,ip

69 ik=indx(j,k)
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70 xind(k) = x(ik)

71 yind(k) = y(ik)

72 zind(k) = z(ik)

73 50 continue

74 call opbar(ip,xind ,yind ,zind ,a,b,c,vop)

75 rop(j) = vop

76 30 end do

77 if(iter.eq.1) then

78 write (18 ,1)( rop(j),j=1,nop)

79 end if

80 if(iter.eq.-1)then

81 write (19 ,1)( rop(j),j=1,nop)

82 end if

83 1 format (13 f10 .3)

84 stop

85 end

86 c***********************************************************

87 c Subroutines starts here.

88 c------------------------------

89 subroutine opbar(ip ,xind ,yind ,zind ,a,b,c,vop)

90 c

91 implicit real*4 (a-h, o-z)

92 c

93 dimension xind(ip),yind(ip),zind(ip)

94 c

95 if(ip.eq.2) call getdis (xind , yind , zind , a,b,c, vop)

96 if(ip.eq.3) call getang (xind , yind , zind , a,b,c, vop)

97 if(ip.eq.4) call getdih (xind , yind , zind , a,b,c, vop)

98 c

99

100 return

101 end

102 c----------------------------------------------------------

103 subroutine getdih (xi, yi , zi , a,b,c,dih)

104 real xi(4), yi(4), zi(4), v21(3), v23(3), v34 (3)

105

106 v21 (1) = xi(1) - xi(2)

107 v21 (2) = yi(1) - yi(2)

108 v21 (3) = zi(1) - zi(2)

109

110 v23 (1) = xi(3) - xi(2)

111 v23 (2) = yi(3) - yi(2)

112 v23 (3) = zi(3) - zi(2)

113

114 v34 (1) = xi(4) - xi(3)

115 v34 (2) = yi(4) - yi(3)

116 v34 (3) = zi(4) - zi(3)

117

118 call orthonorm (v23 , v21)

119 call orthonorm (v23 , v34)

120

121 cdih = dot(v21 , v34)

122

123 call xcross (v23 , v21 , pn)
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124

125 sdih = dot(pn , v34)

126

127 dih = atan2(sdih , cdih)

128

129 pi = 4.0* atan (1.0)

130 dih = (dih *180.0)/ pi

131

132 return

133 end

134 c---------------------------------------------------------

135 subroutine orthonorm ( v1 , v2 )

136 c

137 real v1 ( 3 ), v2 ( 3 )

138 c

139 rv1m1 = 1.0 / veclen ( v1 )

140 c

141 v1 ( 1 ) = v1 ( 1 ) * rv1m1

142 v1 ( 2 ) = v1 ( 2 ) * rv1m1

143 v1 ( 3 ) = v1 ( 3 ) * rv1m1

144 c

145 v1dv2 = dot ( v1, v2 )

146 c

147 v2 ( 1 ) = v2 ( 1 ) - v1dv2 * v1 ( 1 )

148 v2 ( 2 ) = v2 ( 2 ) - v1dv2 * v1 ( 2 )

149 v2 ( 3 ) = v2 ( 3 ) - v1dv2 * v1 ( 3 )

150 rv2m1 = 1.0 / veclen ( v2 )

151 c

152 v2 ( 1 ) = v2 ( 1 ) * rv2m1

153 v2 ( 2 ) = v2 ( 2 ) * rv2m1

154 v2 ( 3 ) = v2 ( 3 ) * rv2m1

155 return

156 end

157 c----------------------------------------------------------

158 subroutine xcross ( v1 , v2, v3 )

159 real v1(3), v2(3), v3(3)

160 v3 ( 1 ) = v1 ( 2 ) * v2 ( 3 ) - v1 ( 3 ) * v2 ( 2 )

161 v3 ( 2 ) = v1 ( 3 ) * v2 ( 1 ) - v1 ( 1 ) * v2 ( 3 )

162 v3 ( 3 ) = v1 ( 1 ) * v2 ( 2 ) - v1 ( 2 ) * v2 ( 1 )

163

164 return

165 end

166 c---------------------------------------------------------

167 function dot ( v1 , v2 )

168 c

169 real v1 ( 3 ), v2 ( 3 )

170 dot = v1 ( 1 ) * v2 ( 1 ) + v1 ( 2 ) * v2 ( 2 )

171 $ + v1 ( 3 ) * v2 ( 3 )

172 c

173 return

174 end

175 c---------------------------------------------------------

176 c

177 function veclen ( v )
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178 c

179 real v ( 3 )

180 c

181 veclen = sqrt ( v ( 1 ) ** 2 + v ( 2 ) ** 2 + v ( 3 ) ** 2 )

182 c

183 return

184 end

185 c--------------------------------------------------------

186

187 subroutine getdis (xi, yi , zi , a,b,c,dis)

188 real xi(2), yi(2), zi(2), v(3)

189 v(1) = xi(2) - xi(1)

190 v(1) = v(1) - a*anint(v(1)/a)

191 v(2) = yi(2) - yi(1)

192 v(2) = v(2) - b*anint(v(2)/b)

193 v(3) = zi(2) - zi(1)

194 v(3) = v(3) - c*anint(v(3)/c)

195 dis = veclen(v)

196 return

197 end

198 c--------------------------------------------------------

199 subroutine getang (xi, yi , zi , a,b,c,ang)

200 real xi(3), yi(3), zi(3), v1(3), v2(3)

201 v1(1) = xi(1) - xi(2)

202 v1(2) = yi(1) - yi(2)

203 v1(3) = zi(1) - zi(2)

204 v2(1) = xi(3) - xi(2)

205 v2(2) = yi(3) - yi(2)

206 v2(3) = zi(3) - zi(2)

207 r1 = veclen(v1)

208 r2 = veclen(v2)

209 dotp = dot(v1 ,v2)

210 theta = acos(dotp/(r1*r2))

211 pi = 4.0* atan (1.0)

212 ang = (theta *180.0)/ pi

213

214 return

215 end

216 c----------------------------------------------------------

217 c END

218 c----------------------------------------------------------

The resulting CV values are normalized using MATLAB:

1 load -ASCII CV_all.mat

2 N1 = normalize(CV_all ,1);

Next, the likelihood maximization script is shown below. It should be executed once. This

script was originally created by Dr. Sanjib Paul.

1 %To select different CVs , vary the value in the CV_all_nor (:,12)
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2 function l=log_lik(alpha ,CV_all_nor)

3 r=CV_all_nor (: ,12)* alpha (1); %Single variable model

4 % r=CV_all_nor (:,[1 4])* alpha ([1;2]); %Two variable model

5 % r=CV_all_nor (:,[10 11 12])* alpha ([1;2;3]); %Three variable model

6 % r=CV_all_nor (:,[11 12 13 14])* alpha ([1;2;3;4]);

7 % r=CV_all_nor (:,[1 9 10 12 16])* alpha ([1;2;3;4;5]);

8 p=(1+ tanh(r))/2;

9 l=0;

10 for i=1:252 %%% Outward simulations

11 l=l+log(p(i));

12 end

13 for i=253:1000 %%% Inward simulations

14 l=l+log(1-p(i));

15 end

16 l=-l;

17 end

Then, the following lines of code should be typed in the MATLAB console:

1 load -ASCII CV_all_nor.mat

2 options = optimset(’Display ’,’iter ’,’MaxIter ’,10000,’TolX ’,10^-6

3 ,’TolFun ’,10^-6);

4 alpha0 =[0.05];

5 [alpha ,fval ,exitflag ,output ,grad ,hessian ]= fminunc(’log_lik ’

6 ,alpha0 ,options ,CV_all );

The first line loads the data file, the second and third lines define the options for maximizing

the likelihood function, the fourth line defines the initial a0 parameter which is then optimized

to produce the maximum value of the likelihood function, and the last two lines execute the

likelihood maximization script. The number of CVs can be varied by varying r model in

the likelihood maximization script. Another a0 value needs to be added to the fourth line

when an additional CV is added to the model. After execution of the script, the MATLAB

program outputs likelihood scores and an values. In case if the script output states that the

results were not converged, one needs to vary the a0 values until the convergence is reached.
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APPENDIX I

FORCE-FIELD FILES

I.1 Preparation of Parameter Files for Small Molecules Using GAFF

The first step is to use the Antechamber program to generate files (.PREPI and .FRC-

MOD) which will contain geometry and charge information of the modeled ligand and will

be read as input by the TLEAP later.

1 $AMBERHOME/bin/antechamber -i my.pdb -fi pdb -o my.prepi -fo prepi -nc 0

2 -pf y -c bcc

3

4 -help print these instructions and other that are not included here

5 -i input file name

6 -fi input file format

7 -o output file name

8 -fo output file format

9 -c charge method

10 -nc net molecular charge

11 -pf remove the intermediate files: can be yes (y) and no (n, default)

12 -rn residue name , if not available in the input file

13

14 List of file formats that can be used as output files:

15

16 $AMBERHOME/bin/parmchk -i my.prepi -f prepi -o my.frcmod

I.2 Parameter Files for Small Molecules

I am providing the parameters from the .PREPI and .FRCMOD files that were generated

in studies presented in chapters 3, 4, and 7. Each file is labeled by the PDB name.

I.2.1 PDB Code: 1LVJ

The .PREPI file is shown below:
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1 0 0 2

2

3 This is a remark line

4 molecule.res

5 PMZ INT 0

6 CORRECT OMIT DU BEG

7 0.0000

8 1 DUMM DU M 0 -1 -2 0.000 .0 .0 .00000

9 2 DUMM DU M 1 0 -1 1.449 .0 .0 .00000

10 3 DUMM DU M 2 1 0 1.523 111.21 .0 .00000

11 4 CE1 c3 M 3 2 1 1.540 111.208 -180.000 0.157100

12 5 HE11 h1 E 4 3 2 1.079 83.882 19.719 0.032200

13 6 HE12 h1 E 4 3 2 1.080 79.216 -91.729 0.032200

14 7 HE13 h1 E 4 3 2 1.084 159.299 150.960 0.032200

15 8 ND n3 M 4 3 2 1.486 50.453 141.450 -0.738600

16 9 CE2 c3 3 8 4 3 1.504 111.659 -88.694 0.157100

17 10 HE21 h1 E 9 8 4 1.081 109.840 154.724 0.032200

18 11 HE22 h1 E 9 8 4 1.080 109.887 34.388 0.032200

19 12 HE23 h1 E 9 8 4 1.082 109.268 -85.594 0.032200

20 13 CG c3 M 8 4 3 1.485 111.469 147.025 0.172800

21 14 HG1 h1 E 13 8 4 1.076 107.235 89.377 0.050200

22 15 HG2 h1 E 13 8 4 1.069 108.057 -154.698 0.050200

23 16 CB1 c3 M 13 8 4 1.567 117.660 -32.040 -0.155400

24 17 HB11 hc E 16 13 8 1.078 108.543 -69.134 0.054700

25 18 HB12 hc E 16 13 8 1.069 109.120 48.655 0.054700

26 19 CA1 c3 M 16 13 8 1.565 113.474 170.739 0.042300

27 20 HA11 h1 E 19 16 13 1.074 107.640 6.642 0.060700

28 21 HA12 h1 E 19 16 13 1.069 107.996 123.054 0.060700

29 22 N1 na M 19 16 13 1.484 117.127 -115.427 -0.168100

30 23 C6 ca M 22 19 16 1.366 120.197 -67.022 0.060700

31 24 C1 ca M 23 22 19 1.402 121.164 17.607 -0.139000

32 25 H1 ha E 24 23 22 1.078 120.219 0.537 0.140000

33 26 C2 ca M 24 23 22 1.401 119.813 -179.615 -0.150600

34 27 CA2 c B 26 24 23 1.502 120.296 -179.606 0.575700

35 28 CB2 c3 3 27 26 24 1.510 121.948 14.107 -0.198100

36 29 HB21 hc E 28 27 26 1.078 109.599 -169.614 0.064367

37 30 HB22 hc E 28 27 26 1.083 108.898 70.557 0.064367

38 31 HB23 hc E 28 27 26 1.081 109.437 -49.285 0.064367

39 32 OB3 o E 27 26 24 1.221 119.381 -169.241 -0.532100

40 33 C3 ca M 26 24 23 1.392 120.239 0.210 -0.092000

41 34 H3 ha E 33 26 24 1.080 120.029 179.968 0.160000

42 35 C4 ca M 33 26 24 1.391 119.917 -0.222 -0.107000

43 36 H4 ha E 35 33 26 1.072 119.790 179.911 0.148000

44 37 C5 ca M 35 33 26 1.393 120.340 0.100 0.002900

45 38 S5 ss M 37 35 33 1.767 119.583 -179.717 -0.147800

46 39 C7 ca M 38 37 35 1.765 91.786 140.255 -0.031100

47 40 C8 ca M 39 38 37 1.398 120.091 -140.324 -0.083000

48 41 H8 ha E 40 39 38 1.080 120.090 0.476 0.143000

49 42 C9 ca M 40 39 38 1.398 119.911 -179.760 -0.151000

50 43 H9 ha E 42 40 39 1.081 120.043 -179.985 0.138000

51 44 C10 ca M 42 40 39 1.399 119.865 0.199 -0.097000

52 45 H10 ha E 44 42 40 1.079 120.043 179.971 0.134000

53 46 C11 ca M 44 42 40 1.395 119.929 -0.163 -0.176000

54 47 H11 ha E 46 44 42 1.069 120.117 179.558 0.138000
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55 48 C12 ca M 46 44 42 1.388 120.373 -0.050 0.079700

56

57

58 LOOP

59 C12 N1

60 C5 C6

61 C12 C7

62

63 IMPROPER

64 CA1 C6 N1 C12

65 C1 C5 C6 N1

66 C6 C2 C1 H1

67 CA2 C1 C2 C3

68 CB2 C2 CA2 OB3

69 C2 C4 C3 H3

70 C3 C5 C4 H4

71 C6 C4 C5 S5

72 C8 C12 C7 S5

73 C7 C9 C8 H8

74 C8 C10 C9 H9

75 C9 C11 C10 H10

76 C10 C12 C11 H11

77 C7 C11 C12 N1

78

79 DONE

80 STOP

The .FRCMOD file is shown below:

1 1LVJ

2 remark goes here

3 MASS

4

5 BOND

6

7 ANGLE

8

9 DIHE

10

11 IMPROPER

12 ca -ca -ca -na 1.1 180.0 2.0 Using default value

13 ca -ca -ca -ha 1.1 180.0 2.0 General improper

14 torsional angle (2 general atom types)

15 c -ca -ca -ca 1.1 180.0 2.0 Using default value

16 c3 -ca -c -o 10.5 180.0 2.0 General improper

17 torsional angle (2 general atom types)

18 ca -ca -ca -ss 1.1 180.0 2.0 Using default value

19

20 NONBON
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I.2.2 PDB Code: 2L8H

The .PREPI file is shown below:

1 0 0 2

2

3 This is a remark line

4 molecule.res

5 L8H INT 0

6 CORRECT OMIT DU BEG

7 0.0000

8 1 DUMM DU M 0 -1 -2 0.000 .0 .0 .00000

9 2 DUMM DU M 1 0 -1 1.449 .0 .0 .00000

10 3 DUMM DU M 2 1 0 1.523 111.21 .0 .00000

11 4 NH1 N2 M 3 2 1 1.540 111.208 -180.000 -0.493200

12 5 HH11 H E 4 3 2 1.000 32.436 173.577 0.333450

13 6 HH12 H E 4 3 2 1.000 146.080 -138.341 0.333450

14 7 CZ CA M 4 3 2 1.306 90.790 17.880 0.526300

15 8 NH2 N2 B 7 4 3 1.305 120.210 -165.542 -0.493200

16 9 HH21 H E 8 7 4 1.001 120.040 -179.713 0.333450

17 10 HH22 H E 8 7 4 0.999 120.026 0.576 0.333450

18 11 NE N2 M 7 4 3 1.328 119.983 14.793 -0.415100

19 12 HE H E 11 7 4 0.979 119.522 0.151 0.329700

20 13 CD CT M 11 7 4 1.456 121.113 -179.946 0.011300

21 14 HD2 H1 E 13 11 7 1.079 109.352 -44.021 0.100200

22 15 HD3 H1 E 13 11 7 1.081 109.482 -163.649 0.100200

23 16 CG CT M 13 11 7 1.527 110.204 76.224 -0.112400

24 17 HG2 HC E 16 13 11 1.079 109.477 -50.677 0.066200

25 18 HG3 HC E 16 13 11 1.079 109.407 -170.687 0.066200

26 19 CB CT M 16 13 11 1.530 110.070 69.276 -0.105400

27 20 HB2 HC E 19 16 13 1.083 109.777 83.177 0.096700

28 21 HB3 HC E 19 16 13 1.081 109.528 -37.159 0.096700

29 22 CA CT M 19 16 13 1.534 108.550 -156.875 0.014500

30 23 N N3 3 22 19 16 1.491 110.097 62.857 -0.838600

31 24 H2 H E 23 22 19 1.041 109.400 129.921 0.469133

32 25 H H E 23 22 19 1.039 109.679 9.660 0.469133

33 26 HXT H E 23 22 19 1.040 109.343 -110.285 0.469133

34 27 HA HP E 22 19 16 1.079 109.195 -177.318 0.151700

35 28 C C M 22 19 16 1.529 109.568 -57.350 0.641100

36 29 O O E 28 22 19 1.232 120.832 -104.047 -0.536100

37 30 NA N2 M 28 22 19 1.329 115.866 75.174 -0.446100

38 31 HN H E 30 28 22 0.980 119.536 -0.319 0.304500

39 32 CAT CA M 30 28 22 1.334 121.059 -179.398 0.032600

40 33 CAJ CA M 32 30 28 1.395 120.597 -1.587 -0.252000

41 34 HAJ HA E 33 32 30 1.002 119.887 -10.676 0.158000

42 35 CAU CA M 33 32 30 1.393 119.530 -178.959 0.197100

43 36 OAQ OS S 35 33 32 1.356 119.943 179.593 -0.306900

44 37 CAA CT 3 36 35 33 1.429 108.777 -85.805 0.107700

45 38 HAA H1 E 37 36 35 1.000 116.058 60.456 0.057033

46 39 HAAA H1 E 37 36 35 1.000 105.755 177.810 0.057033

47 40 HAAB H1 E 37 36 35 0.999 116.165 -64.806 0.057033

48 41 CAW CA M 35 33 32 1.390 120.456 -0.052 -0.053000
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49 42 CAI CA M 41 35 33 1.393 120.218 177.999 -0.085000

50 43 HAI HA E 42 41 35 1.000 119.848 6.293 0.166000

51 44 CAG CA M 42 41 35 1.391 120.258 -178.313 -0.115000

52 45 HAG HA E 44 42 41 0.999 119.743 -168.464 0.159000

53 46 CAF CA M 44 42 41 1.393 119.767 -0.770 -0.085000

54 47 HAF HA E 46 44 42 1.000 119.505 -167.730 0.154000

55 48 CAH CA M 46 44 42 1.392 119.901 0.892 -0.140000

56 49 HAH HA E 48 46 44 1.004 119.761 176.668 0.137000

57 50 CAV CA M 48 46 44 1.391 120.246 -0.221 -0.003000

58 51 CAK CA M 50 48 46 1.391 120.203 177.918 -0.174000

59 52 HAK HA E 51 50 48 1.001 119.731 -15.308 0.128000

60

61

62 LOOP

63 CAK CAT

64 CAV CAW

65

66 IMPROPER

67 NE NH1 CZ NH2

68 CA NA C O

69 C CAT NA HN

70 CAJ CAK CAT NA

71 CAT CAU CAJ HAJ

72 CAJ CAW CAU OAQ

73 CAU CAI CAW CAV

74 CAW CAG CAI HAI

75 CAI CAF CAG HAG

76 CAG CAH CAF HAF

77 CAF CAV CAH HAH

78 CAW CAH CAV CAK

79 CAT CAV CAK HAK

80

81 DONE

82 STOP

The .FRCMOD file is shown below:

1 2L8H

2 remark goes here

3 MASS

4 N2 14.010 0.530 same as n3

5 H 1.008 0.161 same as hn

6 CA 12.010 0.360 same as c2

7 CT 12.010 0.878 same as c3

8 H1 1.008 0.135 same as hc

9 HC 1.008 0.135 same as hc

10 N3 14.010 0.530 same as n4

11 HP 1.008 0.135 same as hc

12 C 12.010 0.616 same as c

13 O 16.000 0.434 same as o

14 HA 1.008 0.135 same as hc

15 OS 16.000 0.465 same as os

16
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17 BOND

18 N2 -H 392.40 1.019 same as hn -n3

19 N2 -CA 417.90 1.386 same as ca -nh

20 N2 -CT 325.90 1.465 same as c3 -n3

21 CT -H1 330.60 1.097 same as c3 -hc

22 CT -CT 300.90 1.538 same as c3 -c3

23 CT -HC 330.60 1.097 same as c3 -hc

24 CT -N3 283.30 1.511 same as c3 -n4

25 CT -HP 330.60 1.097 same as c3 -hc

26 CT -C 313.00 1.524 same as c -c3

27 N3 -H 373.20 1.030 same as hn -n4

28 C -O 637.70 1.218 same as c -o

29 C -N2 490.00 1.335

30 CA -CA 461.10 1.398 same as ca -ca

31 CA -HA 344.30 1.087 same as c2 -hc

32 CA -OS 389.20 1.360 same as c2 -os

33 OS -CT 308.60 1.432 same as c3 -os

34

35 ANGLE

36 N2 -CA -N2 70.270 120.980 same as nh -ca-nh

37 H -N2 -H 41.400 106.400 same as hn -n3-hn

38 H -N2 -CA 49.100 119.380 same as c2 -n3-hn

39 CA -N2 -CT 64.646 118.515 Calculated with empirical approach

40 N2 -CT -H1 49.550 109.800 same as hc -c3-n3

41 N2 -CT -CT 66.020 111.040 same as c3 -c3-n3

42 H -N2 -CT 47.420 109.290 same as c3 -n3-hn

43 CT -CT -HC 46.340 109.800 same as c3 -c3-hc

44 CT -CT -CT 62.860 111.510 same as c3 -c3-c3

45 H1 -CT -H1 39.400 107.580 same as hc -c3-hc

46 H1 -CT -CT 46.391 109.545 Calculated with empirical approach

47 HC -CT -HC 39.400 107.580 same as hc -c3-hc

48 CT -CT -N3 64.180 114.210 same as c3 -c3-n4

49 CT -CT -HP 46.340 109.800 same as c3 -c3-hc

50 CT -CT -C 63.270 111.040 same as c -c3-c3

51 CT -N3 -H 45.850 110.110 same as c3 -n4-hn

52 CT -C -O 67.400 123.200 same as c3 -c -o

53 CT -C -N2 70.000 116.000

54 N3 -CT -HP 48.640 107.900 same as hc -c3-n4

55 N3 -CT -C 65.470 110.730 same as c -c3-n4

56 H -N3 -H 40.580 108.300 same as hn -n4-hn

57 HP -CT -C 46.930 108.770 same as c -c3-hc

58 C -N2 -H 48.330 117.550

59 C -N2 -CA 63.82 123.71

60 O -C -N2 74.22 123.05

61 N2 -CA -CA 68.290 120.950 same as ca -ca-nh

62 CA -CA -HA 50.010 119.700 same as c2 -c2-hc

63 CA -CA -CA 66.620 120.020 same as ca -ca-ca

64 CA -CA -OS 70.710 121.870 same as c2 -c2-os

65 CA -OS -CT 63.360 115.590 same as c2 -os-c3

66 OS -CT -H1 51.050 108.700 same as hc -c3-os

67

68 DIHE

69 N2 -CA -N2 -H 1 0.300 180.000 2.000 same as X -c2 -n3 -X

70 N2 -CA -N2 -CT 1 0.300 180.000 2.000 same as X -c2 -n3 -X

280



71 CA -N2 -CT -H1 1 0.300 0.000 3.000 same as X -c3 -n3 -X

72 CA -N2 -CT -CT 1 0.300 0.000 3.000 same as X -c3 -n3 -X

73 N2 -CT -CT -HC 1 0.156 0.000 3.000 same as X -c3 -c3 -X

74 N2 -CT -CT -CT 1 0.156 0.000 3.000 same as X -c3 -c3 -X

75 H -N2 -CT -H1 1 0.300 0.000 3.000 same as X -c3 -n3 -X

76 H -N2 -CT -CT 1 0.300 0.000 3.000 same as X -c3 -n3 -X

77 CT -CT -CT -HC 1 0.160 0.000 3.000 same as hc -c3 -c3 -c3

78 CT -CT -CT -CT 1 0.180 0.000 -3.000 same as c3 -c3 -c3 -c3

79 CT -CT -CT -CT 1 0.250 180.000 -2.000 same as c3 -c3 -c3 -c3

80 CT -CT -CT -CT 1 0.200 180.000 1.000 same as c3 -c3 -c3 -c3

81 H1 -CT -CT -HC 1 0.150 0.000 3.000 same as hc -c3 -c3 -hc

82 H1 -CT -CT -CT 1 0.160 0.000 3.000 same as hc -c3 -c3 -c3

83 CT -CT -CT -N3 1 0.156 0.000 3.000 same as X -c3 -c3 -X

84 CT -CT -CT -HP 1 0.160 0.000 3.000 same as hc -c3 -c3 -c3

85 CT -CT -CT -C 1 0.156 0.000 3.000 same as X -c3 -c3 -X

86 HC -CT -CT -HC 1 0.150 0.000 3.000 same as hc -c3 -c3 -hc

87 CT -CT -N3 -H 1 0.156 0.000 3.000 same as X -c3 -n4 -X

88 CT -CT -C -O 1 0.000 180.000 2.000 same as X -c -c3 -X

89 CT -CT -C -N2 1 0.000 180.000 2.000 same as X -c -c3 -X

90 HC -CT -CT -N3 1 0.156 0.000 3.000 same as X -c3 -c3 -X

91 HC -CT -CT -HP 1 0.150 0.000 3.000 same as hc -c3 -c3 -hc

92 HC -CT -CT -C 1 0.156 0.000 3.000 same as X -c3 -c3 -X

93 CT -C -N2 -H 1 10.00 180.00 2.000 same as X -C -N -X

94 CT -C -N2 -CA 1 10.00 180.00 2.000 same as X -C -N -X

95 N3 -CT -C -O 1 0.000 180.000 2.000 same as X -c -c3 -X

96 N3 -CT -C -N2 1 0.000 180.000 2.000 same as X -c -c3 -X

97 H -N3 -CT -HP 1 0.156 0.000 3.000 same as X -c3 -n4 -X

98 H -N3 -CT -C 1 0.156 0.000 3.000 same as X -c3 -n4 -X

99 HP -CT -C -O 1 0.800 0.000 -1.000 same as hc -c3 -c -o

100 HP -CT -C -O 1 0.000 0.000 -2.000 same as hc -c3 -c -o

101 HP -CT -C -O 1 0.080 180.000 3.000 same as hc -c3 -c -o

102 HP -CT -C -N2 1 0.000 180.000 2.000 same as X -c -c3 -X

103 C -N2 -CA -CA 1 0.300 180.000 2.000 same as X -c2 -n3 -X

104 O -C -N2 -H 1 10.00 180.000 2.000 ATTN , need revision

105 O -C -N2 -CA 1 10.00 180.000 2.000 ATTN , need revision

106 N2 -CA -CA -HA 1 6.650 180.000 2.000 same as X -c2 -c2 -X

107 N2 -CA -CA -CA 1 3.625 180.000 2.000 same as X -ca -ca -X

108 H -N2 -CA -CA 1 0.300 180.000 2.000 same as X -c2 -n3 -X

109 CA -CA -CA -OS 1 6.650 180.000 2.000 same as X -c2 -c2 -X

110 CA -CA -CA -CA 1 3.625 180.000 2.000 same as X -ca -ca -X

111 CA -CA -CA -HA 1 6.650 180.000 2.000 same as X -c2 -c2 -X

112 CA -CA -OS -CT 1 1.050 180.000 2.000 same as X -c2 -os -X

113 HA -CA -CA -OS 1 6.650 180.000 2.000 same as X -c2 -c2 -X

114 CA -OS -CT -H1 1 0.383 0.000 3.000 same as X -c3 -os -X

115 HA -CA -CA -HA 1 6.650 180.000 2.000 same as X -c2 -c2 -X

116

117 IMPROPER

118 N2 -N2 -CT -N2 1.1 180.0 2.0 Using default value

119 CT -N2 -C -O 1.1 180.0 2.0 Using default value

120 C -CA -N2 -H 1.1 180.0 2.0 Using default value

121 CA -CA -CA -N2 1.1 180.0 2.0 Using default value

122 CA -CA -CA -HA 1.1 180.0 2.0 Using default value

123 CA -CA -CA -OS 1.1 180.0 2.0 Using default value

124 CA -CA -CA -CA 1.1 180.0 2.0 Using default value
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125

126 NONBON

127 N2 1.8240 0.1700 same as nh

128 H 0.6000 0.0157 same as hn

129 CA 1.9080 0.0860 same as ca

130 CT 1.9080 0.1094 same as c3

131 H1 1.4870 0.0157 same as hc

132 HC 1.4870 0.0157 same as hc

133 N3 1.8240 0.1700 same as n4

134 HP 1.4870 0.0157 same as hc

135 C 1.9080 0.0860 same as c

136 O 1.6612 0.2100 same as o

137 HA 1.4870 0.0157 same as hc

138 OS 1.6837 0.1700 same as os

I.2.3 PDB Code: 1UTS

The .PREPI file is shown below:

1 0 0 2

2

3 This is a remark line

4 molecule.res

5 P13 INT 0

6 CORRECT OMIT DU BEG

7 0.0000

8 1 DUMM DU M 0 -1 -2 0.000 .0 .0 .00000

9 2 DUMM DU M 1 0 -1 1.449 .0 .0 .00000

10 3 DUMM DU M 2 1 0 1.523 111.21 .0 .00000

11 4 C91 ca M 3 2 1 1.540 111.208 -180.000 -0.097800

12 5 C41 ca S 4 3 2 1.381 139.869 -99.505 -0.042000

13 6 H4 ha E 5 4 3 1.076 118.839 26.688 0.136000

14 7 C31 cd M 4 3 2 1.429 19.539 -21.089 -0.183200

15 8 H31 ha E 7 4 3 1.081 125.436 -119.422 0.178000

16 9 C21 cc M 7 4 3 1.361 108.352 60.738 -0.062100

17 10 H2 h4 E 9 7 4 1.081 128.214 178.179 0.200000

18 11 N1 na M 9 7 4 1.387 107.020 -0.925 -0.168400

19 12 HN1 hn E 11 9 7 1.012 124.700 179.543 0.322700

20 13 C81 ca M 11 9 7 1.371 111.223 0.501 -0.021200

21 14 C71 ca M 13 11 9 1.382 133.001 179.000 -0.126000

22 15 H7 ha E 14 13 11 1.073 119.856 2.476 0.154000

23 16 C61 ca M 14 13 11 1.398 119.215 -177.184 -0.113000

24 17 H61 ha E 16 14 13 1.079 119.178 178.532 0.115000

25 18 C51 cp M 16 14 13 1.413 120.726 -1.839 -0.158000

26 19 C2 cp M 18 16 14 1.508 121.273 178.253 0.032000

27 20 C3 ca S 19 18 16 1.402 119.055 -56.029 -0.120000

28 21 H3 ha E 20 19 18 1.089 116.062 3.355 0.132000

29 22 C1 ca M 19 18 16 1.404 121.857 126.236 -0.022000

30 23 H1 ha E 22 19 18 1.085 118.473 -4.137 0.187000

31 24 C6 ca M 22 19 18 1.403 120.399 176.263 -0.197000

32 25 H6 ha E 24 22 19 1.079 115.993 177.871 0.154000
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33 26 C5 ca M 24 22 19 1.427 121.474 -2.698 0.157100

34 27 O os S 26 24 22 1.458 122.896 -174.348 -0.350900

35 28 C c3 3 27 26 24 1.447 118.788 31.527 0.137400

36 29 CA c3 3 28 27 26 1.564 114.749 -136.166 -0.149400

37 30 CB c3 3 29 28 27 1.556 117.500 -61.301 0.102800

38 31 N n4 3 30 29 28 1.509 111.337 -175.607 -0.836600

39 32 HN1A hn E 31 30 29 1.042 111.899 -178.994 0.474467

40 33 HN2 hn E 31 30 29 1.041 110.864 -58.962 0.474467

41 34 HN3 hn E 31 30 29 1.041 111.559 60.190 0.474467

42 35 HB1 hx E 30 29 28 1.103 111.447 -55.560 0.121200

43 36 HB2 hx E 30 29 28 1.103 110.282 64.669 0.121200

44 37 HA1 hc E 29 28 27 1.118 106.626 176.459 0.086200

45 38 HA2 hc E 29 28 27 1.116 106.809 61.986 0.086200

46 39 HC1 h1 E 28 27 26 1.113 112.644 -16.321 0.085700

47 40 HC2 h1 E 28 27 26 1.111 108.878 98.903 0.085700

48 41 C4 ca M 26 24 22 1.442 117.474 5.561 -0.239300

49 42 CA1 c3 M 41 26 24 1.534 126.532 178.547 0.219100

50 43 HA11 hx E 42 41 26 1.113 108.479 -102.843 0.115200

51 44 HA12 hx E 42 41 26 1.111 109.529 136.341 0.115200

52 45 NB n4 M 42 41 26 1.543 113.067 16.716 -0.785000

53 46 HB11 hn E 45 42 41 1.013 103.579 25.935 0.463300

54 47 HB12 hn E 45 42 41 1.014 100.360 -79.803 0.463300

55 48 CG c3 M 45 42 41 1.566 122.078 158.993 0.079800

56 49 HG1 hx E 48 45 42 1.105 103.928 150.997 0.124700

57 50 HG2 hx E 48 45 42 1.114 102.394 39.157 0.124700

58 51 CD c3 M 48 45 42 1.604 120.280 -82.888 0.081800

59 52 HD1 hx E 51 48 45 1.105 110.229 133.343 0.135200

60 53 HD2 hx E 51 48 45 1.103 108.253 14.815 0.135200

61 54 NE n4 M 51 48 45 1.612 117.890 -106.236 -0.694400

62 55 HE hn E 54 51 48 1.044 105.228 45.772 0.467800

63 56 CH1 c3 M 54 51 48 1.584 116.475 -70.340 0.080300

64 57 HH11 hx E 56 54 51 1.105 104.895 -59.391 0.151950

65 58 HH12 hx E 56 54 51 1.099 106.042 57.577 0.151950

66 59 CI1 c3 M 56 54 51 1.591 114.176 179.032 0.072800

67 60 HI11 hx E 59 56 54 1.109 110.504 -70.270 0.168450

68 61 HI12 hx E 59 56 54 1.109 111.535 167.457 0.168450

69 62 NJ n4 M 59 56 54 1.548 114.508 47.835 -0.769000

70 63 HJ1 hn E 62 59 56 1.025 108.862 -169.641 0.501800

71 64 HJ2 hn E 62 59 56 1.023 112.035 80.025 0.501800

72 65 CI2 c3 M 62 59 56 1.552 113.907 -47.830 0.072800

73 66 HI21 hx E 65 62 59 1.108 105.581 171.773 0.168450

74 67 HI22 hx E 65 62 59 1.110 104.444 -72.886 0.168450

75 68 CH2 c3 M 65 62 59 1.592 113.708 48.005 0.080300

76 69 HH21 hx E 68 65 62 1.105 108.849 -167.984 0.151950

77 70 HH22 hx E 68 65 62 1.108 110.845 70.849 0.151950

78

79

80 LOOP

81 C81 C91

82 C51 C41

83 C4 C3

84 CH2 NE

85

86 IMPROPER
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87 C81 C41 C91 C31

88 C91 C51 C41 H4

89 C91 C21 C31 H31

90 C31 H2 C21 N1

91 C81 C21 N1 HN1

92 C71 C91 C81 N1

93 C81 C61 C71 H7

94 C71 C51 C61 H61

95 C61 C41 C51 C2

96 C3 C1 C2 C51

97 C4 C2 C3 H3

98 C6 C2 C1 H1

99 C1 C5 C6 H6

100 C6 C4 C5 O

101 CA1 C3 C4 C5

102

103 DONE

104 STOP

The .FRCMOD file is shown below:

1 1UTS

2

3 remark goes here

4 MASS

5

6 BOND

7

8 ANGLE

9

10 DIHE

11 ca -ca -cd -ha 1 0.700 180.000 2.000 same as X -c2 -ca -X

12 ca -ca -cd -cc 1 0.700 180.000 2.000 same as X -c2 -ca -X

13

14 IMPROPER

15 ca -ca -ca -cd 1.1 180.0 2.0 Using default value

16 ca -cp -ca -ha 1.1 180.0 2.0 General improper

17 torsional angle (2 general atom types)

18 ca -cc -cd -ha 1.1 180.0 2.0 Using default value

19 cd -h4 -cc -na 1.1 180.0 2.0 Using default value

20 ca -cc -na -hn 1.1 180.0 2.0 General improper

21 torsional angle (2 general atom types)

22 ca -ca -ca -na 1.1 180.0 2.0 Using default value

23 ca -ca -ca -ha 1.1 180.0 2.0 General improper

24 torsional angle (2 general atom types)

25 ca -ca -cp -cp 1.1 180.0 2.0 Using default value

26 ca -ca -ca -os 1.1 180.0 2.0 Using default value

27

28 NONBON
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I.2.4 PDB Code: 1UUD

The .PREPI file is shown below:

1 0 0 2

2

3 This is a remark line

4 molecule.res

5 P14 INT 0

6 CORRECT OMIT DU BEG

7 0.0000

8 1 DUMM DU M 0 -1 -2 0.000 .0 .0 .00000

9 2 DUMM DU M 1 0 -1 1.449 .0 .0 .00000

10 3 DUMM DU M 2 1 0 1.523 111.21 .0 .00000

11 4 NZ1 nh M 3 2 1 1.540 111.208 -180.000 -0.493700

12 5 HZ11 hn E 4 3 2 0.979 63.110 -100.487 0.334450

13 6 HZ12 hn E 4 3 2 0.980 137.616 5.210 0.334450

14 7 CE cz M 4 3 2 1.368 73.651 121.668 0.529300

15 8 NZ2 nh B 7 4 3 1.358 119.260 -136.077 -0.493700

16 9 HZ21 hn E 8 7 4 0.981 119.988 0.056 0.334450

17 10 HZ22 hn E 8 7 4 0.980 120.016 179.980 0.334450

18 11 ND nh M 7 4 3 1.320 121.505 43.991 -0.419100

19 12 HD hn E 11 7 4 0.980 119.162 179.899 0.326700

20 13 CG c3 M 11 7 4 1.312 121.520 -0.648 -0.006700

21 14 HG1 h1 E 13 11 7 1.081 109.437 -164.767 0.080700

22 15 HG2 h1 E 13 11 7 1.080 109.400 -45.074 0.080700

23 16 CB c3 M 13 11 7 1.535 109.914 75.092 0.114400

24 17 HB1 h1 E 16 13 11 1.080 109.286 -57.373 0.087700

25 18 HB2 h1 E 16 13 11 1.079 109.198 -176.880 0.087700

26 19 OA os M 16 13 11 1.435 110.180 62.826 -0.365900

27 20 C1 ca M 19 16 13 1.433 110.091 72.571 0.068100

28 21 C6 ca B 20 19 16 1.423 119.673 -106.474 -0.116000

29 22 C5 ca B 21 20 19 1.421 119.899 179.068 -0.088000

30 23 C4 ca B 22 21 20 1.421 120.061 0.672 0.169100

31 24 C3 ca S 23 22 21 1.420 120.071 0.079 -0.205000

32 25 H3 ha E 24 23 22 1.080 119.919 179.913 0.148000

33 26 O1 os S 23 22 21 1.430 119.983 179.975 -0.288900

34 27 C11 c3 3 26 23 22 1.431 109.570 -111.118 0.102700

35 28 H11 h1 E 27 26 23 1.080 109.471 172.948 0.066033

36 29 H12 h1 E 27 26 23 1.080 109.426 52.964 0.066033

37 30 H13 h1 E 27 26 23 1.079 109.438 -67.034 0.066033

38 31 H5 ha E 22 21 20 1.078 119.999 -179.298 0.194000

39 32 H6 ha E 21 20 19 1.083 120.121 -0.344 0.153000

40 33 C2 ca M 20 19 16 1.425 120.342 74.186 -0.153300

41 34 CA c3 M 33 20 19 1.543 120.486 0.478 0.178100

42 35 HA1 hx E 34 33 20 1.080 109.615 -78.172 0.108700

43 36 HA2 hx E 34 33 20 1.080 109.208 162.154 0.108700

44 37 NB n4 M 34 33 20 1.484 109.712 42.108 -0.767000

45 38 HB11 hn E 37 34 33 1.030 109.460 33.693 0.461300

46 39 HB12 hn E 37 34 33 1.029 109.485 -86.218 0.461300

47 40 CG1 c3 M 37 34 33 1.482 109.799 153.747 0.100800

48 41 HG11 hx E 40 37 34 1.080 109.423 -48.688 0.112200
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49 42 HG12 hx E 40 37 34 1.081 109.357 -168.481 0.112200

50 43 CD c3 M 40 37 34 1.533 109.537 71.232 -0.100400

51 44 HD1 hc E 43 40 37 1.080 109.342 -108.569 0.073200

52 45 HD2 hc E 43 40 37 1.080 109.362 11.170 0.073200

53 46 CE1 c3 M 43 40 37 1.533 109.881 131.432 -0.113400

54 47 HE1 hc E 46 43 40 1.079 109.477 23.433 0.072200

55 48 HE2 hc E 46 43 40 1.081 109.443 143.408 0.072200

56 49 CZ c3 M 46 43 40 1.531 109.519 -96.639 0.031300

57 50 HZ1 h1 E 49 46 43 1.081 109.405 -56.803 0.085200

58 51 HZ2 h1 E 49 46 43 1.080 109.371 62.967 0.085200

59 52 NH nh M 49 46 43 1.312 109.846 -176.957 -0.418100

60 53 HH hn E 52 49 46 0.981 119.285 -105.358 0.329700

61 54 CI cz M 52 49 46 1.319 121.502 75.570 0.530300

62 55 NJ2 nh B 54 52 49 1.366 121.543 -1.284 -0.490700

63 56 HJ21 hn E 55 54 52 0.980 119.765 179.943 0.334200

64 57 HJ22 hn E 55 54 52 0.980 120.486 -0.079 0.334200

65 58 NJ1 nh M 54 52 49 1.358 119.191 178.206 -0.490700

66 59 HJ11 hn E 58 54 52 0.979 120.035 179.993 0.334200

67 60 HJ12 hn E 58 54 52 0.980 119.946 -0.131 0.334200

68

69

70 LOOP

71 C2 C3

72

73 IMPROPER

74 ND NZ1 CE NZ2

75 C6 C2 C1 OA

76 C1 C5 C6 H6

77 C6 C4 C5 H5

78 C5 C3 C4 O1

79 C4 C2 C3 H3

80 CA C1 C2 C3

81 NH NJ2 CI NJ1

82

83 DONE

84 STOP

The .FRCMOD file is shown below:

1 1UUD

2

3 remark goes here

4 MASS

5

6 BOND

7

8 ANGLE

9

10 DIHE

11 nh -cz -nh -hn 1 0.675 180.000 2.000 same as X -c2 -nh -X

12 nh -cz -nh -c3 1 0.675 180.000 2.000 same as X -c2 -nh -X

13

14 IMPROPER
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15 nh -nh -cz -nh 1.1 180.0 2.0 Using default value

16 ca -ca -ca -os 1.1 180.0 2.0 Using default value

17 ca -ca -ca -ha 1.1 180.0 2.0 General improper

18 torsional angle (2 general atom types)

19

20 NONBON

I.2.5 PDB Code: 1UUI

The .PREPI file is shown below:

1 0 0 2

2

3 This is a remark line

4 molecule.res

5 P12 INT 0

6 CORRECT OMIT DU BEG

7 0.0000

8 1 DUMM DU M 0 -1 -2 0.000 .0 .0 .00000

9 2 DUMM DU M 1 0 -1 1.449 .0 .0 .00000

10 3 DUMM DU M 2 1 0 1.523 111.21 .0 .00000

11 4 CG1 c3 M 3 2 1 1.540 111.208 -180.000 0.099300

12 5 HG11 hx E 4 3 2 1.080 5.145 78.690 0.129450

13 6 HG12 hx E 4 3 2 1.079 110.911 146.783 0.129450

14 7 CD1 c3 M 4 3 2 1.538 103.842 -96.459 0.000300

15 8 HD11 h1 E 7 4 3 1.077 108.291 -133.130 0.098700

16 9 HD12 h1 E 7 4 3 1.080 109.046 -14.556 0.098700

17 10 NE1 nh M 7 4 3 1.497 112.100 106.363 -0.325100

18 11 CZ cz B 10 7 4 1.407 118.810 159.635 0.529300

19 12 NH1 nh B 11 10 7 1.363 120.751 -9.200 -0.463200

20 13 HH11 hn E 12 11 10 0.981 119.622 -179.886 0.342700

21 14 HH12 hn E 12 11 10 0.975 120.670 0.393 0.342700

22 15 NH2 nh B 11 10 7 1.364 120.693 177.444 -0.463200

23 16 HH21 hn E 15 11 10 0.980 119.721 179.847 0.342700

24 17 HH22 hn E 15 11 10 0.976 120.597 -0.299 0.342700

25 18 CD2 c3 M 10 7 4 1.496 121.331 -32.407 0.000300

26 19 HD21 h1 E 18 10 7 1.077 109.075 150.975 0.098700

27 20 HD22 h1 E 18 10 7 1.079 109.089 -89.920 0.098700

28 21 CG2 c3 M 18 10 7 1.538 112.057 31.015 0.099300

29 22 HG21 hx E 21 18 10 1.079 109.156 -103.336 0.129450

30 23 HG22 hx E 21 18 10 1.081 108.913 137.661 0.129450

31 24 NB n4 M 21 18 10 1.487 111.639 17.336 -0.692400

32 25 HB hn E 24 21 18 1.029 108.120 178.600 0.479800

33 26 CA c3 M 24 21 18 1.500 110.933 59.612 0.186100

34 27 HA1 hx E 26 24 21 1.082 109.398 19.346 0.106700

35 28 HA2 hx E 26 24 21 1.080 109.774 -100.432 0.106700

36 29 C2 ca M 26 24 21 1.546 110.110 139.248 -0.159300

37 30 C3 ca M 29 26 24 1.423 120.406 33.458 -0.185000

38 31 H3 ha E 30 29 26 1.078 120.091 -0.090 0.149000

39 32 C4 ca M 30 29 26 1.421 120.029 -179.855 0.159100

40 33 OA1 os S 32 30 29 1.430 119.952 179.914 -0.288900
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41 34 CB1 c3 3 33 32 30 1.430 109.502 71.638 0.103700

42 35 HB11 h1 E 34 33 32 1.080 109.485 -55.153 0.065700

43 36 HB12 h1 E 34 33 32 1.080 109.461 64.790 0.065700

44 37 HB3 h1 E 34 33 32 1.080 109.479 -175.152 0.065700

45 38 C5 ca M 32 30 29 1.420 120.044 -0.059 -0.073000

46 39 H5 ha E 38 32 30 1.080 119.976 179.924 0.196000

47 40 C6 ca M 38 32 30 1.420 119.977 0.111 -0.134000

48 41 H6 ha E 40 38 32 1.080 119.957 179.844 0.150000

49 42 C1 ca M 40 38 32 1.420 120.060 -0.102 0.073100

50 43 OA os M 42 40 38 1.430 119.908 179.841 -0.378900

51 44 CB c3 M 43 42 40 1.433 110.036 70.070 0.137400

52 45 HB1 h1 E 44 43 42 1.081 109.895 -40.718 0.080200

53 46 HB2 h1 E 44 43 42 1.080 109.400 79.536 0.080200

54 47 CG c3 M 44 43 42 1.529 109.074 -160.623 -0.140400

55 48 HG1 hc E 47 44 43 1.078 109.202 -39.696 0.082200

56 49 HG2 hc E 47 44 43 1.080 109.368 79.936 0.082200

57 50 CD c3 M 47 44 43 1.532 109.988 -159.890 0.100800

58 51 HD1 hx E 50 47 44 1.082 109.570 140.705 0.121200

59 52 HD2 hx E 50 47 44 1.080 109.546 20.746 0.121200

60 53 NE n4 M 50 47 44 1.480 109.493 -99.287 -0.836600

61 54 HE1 hn E 53 50 47 1.030 109.488 162.398 0.472800

62 55 HE2 hn E 53 50 47 1.030 109.439 -77.546 0.472800

63 56 HE3 hn E 53 50 47 1.030 109.455 42.425 0.472800

64

65

66 LOOP

67 NB CG1

68 C1 C2

69

70 IMPROPER

71 NH1 NH2 CZ NE1

72 CA C3 C2 C1

73 C2 C4 C3 H3

74 C3 C5 C4 OA1

75 C4 C6 C5 H5

76 C5 C1 C6 H6

77 C2 C6 C1 OA

78

79 DONE

80 STOP

The .FRCMOD file is shown below:

1 1UUI

2

3 remark goes here

4 MASS

5

6 BOND

7

8 ANGLE

9

10 DIHE
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11 c3 -nh -cz -nh 1 0.675 180.000 2.000 same as X -c2-nh -X

12 nh -cz -nh -hn 1 0.675 180.000 2.000 same as X -c2-nh -X

13

14 IMPROPER

15 nh -nh -cz -nh 1.1 180.0 2.0 Using default value

16 ca -ca -ca -ha 1.1 180.0 2.0 General improper

17 torsional angle (2 general atom types)

18 ca -ca -ca -os 1.1 180.0 2.0 Using default value

19

20 NONBON

I.2.6 Porphyrin: DPD Molecule

The .PREPI file is shown below:

1 0 0 2

2

3 This is a remark line

4 molecule.res

5 LIG INT 0

6 CORRECT OMIT DU BEG

7 0.0000

8 1 DUMM DU M 0 -1 -2 0.000 .0 .0 .00000

9 2 DUMM DU M 1 0 -1 1.449 .0 .0 .00000

10 3 DUMM DU M 2 1 0 1.523 111.21 .0 .00000

11 4 N7 nb M 3 2 1 1.540 111.208 -180.000 -0.846500

12 5 C26 ca B 4 3 2 1.321 90.651 54.397 0.794700

13 6 C25 ca S 5 4 3 1.404 119.142 -89.871 -0.268200

14 7 N5 nc E 6 5 4 1.373 133.232 -179.506 -0.500600

15 8 N9 nh B 5 4 3 1.343 118.893 89.202 -0.958500

16 9 H12 hn E 8 5 4 0.994 118.370 10.576 0.447550

17 10 H11 hn E 8 5 4 0.993 119.527 170.196 0.447550

18 11 C27 ca M 4 3 2 1.339 89.315 -64.181 0.926400

19 12 N10 nh B 11 4 3 1.359 115.257 -91.536 -0.928500

20 13 H13 hn E 12 11 4 0.994 116.619 18.053 0.428050

21 14 H14 hn E 12 11 4 0.994 116.666 163.807 0.428050

22 15 N8 nb M 11 4 3 1.323 127.956 89.820 -0.796500

23 16 C24 ca M 15 11 4 1.327 111.971 0.916 0.502300

24 17 N6 na M 16 15 11 1.357 127.964 179.515 -0.253500

25 18 C28 c3 3 17 16 15 1.447 126.497 -0.206 0.035100

26 19 H15 h1 E 18 17 16 1.082 110.560 -118.652 0.058200

27 20 H16 h1 E 18 17 16 1.082 110.545 120.087 0.058200

28 21 H17 h1 E 18 17 16 1.079 107.623 0.684 0.058200

29 22 C23 cd M 17 16 15 1.383 105.781 -179.918 0.444200

30 23 C22 ch M 22 17 16 1.430 121.641 -179.931 -0.119200

31 24 C21 cg M 23 22 17 1.190 178.709 170.287 -0.095300

32 25 C10 ce M 24 23 22 1.439 178.421 5.300 0.105600

33 26 C8 cd S 25 24 23 1.362 118.022 1.967 0.132600

34 27 N2 nd S 26 25 24 1.383 125.261 -179.908 -0.631800

35 28 C6 cc B 27 26 25 1.303 106.114 179.852 0.437900

36 29 C7 cc B 28 27 26 1.466 112.002 0.100 -0.251100
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37 30 C9 cd S 29 28 27 1.334 106.119 -0.105 -0.147500

38 31 H5 ha E 30 29 28 1.070 128.555 179.984 0.168500

39 32 H4 ha E 29 28 27 1.071 125.368 -179.992 0.156000

40 33 C5 ce B 28 27 26 1.435 126.134 179.998 -0.170600

41 34 C2 cd S 33 28 27 1.348 126.991 0.013 0.094000

42 35 N1 na B 34 33 28 1.368 128.313 -0.103 -0.534800

43 36 C1 cc S 35 34 33 1.360 111.514 -179.933 0.117000

44 37 C3 cc B 36 35 34 1.462 105.987 0.053 -0.147500

45 38 C4 cd S 37 36 35 1.332 108.292 -0.079 -0.147500

46 39 H2 ha E 38 37 36 1.072 127.779 -179.970 0.161000

47 40 H1 ha E 37 36 35 1.070 123.701 -179.875 0.160500

48 41 H21 hn E 35 34 33 0.996 125.056 0.141 0.500800

49 42 H3 ha E 33 28 27 1.074 116.422 179.957 0.148500

50 43 C11 cc M 25 24 23 1.443 115.984 -177.964 -0.001100

51 44 C12 cd B 43 25 24 1.389 128.040 0.139 -0.147500

52 45 C14 cd S 44 43 25 1.391 107.337 179.863 -0.147500

53 46 H7 ha E 45 44 43 1.071 127.200 179.945 0.161000

54 47 H6 ha E 44 43 25 1.069 125.389 -0.223 0.160500

55 48 N3 na M 43 25 24 1.355 124.444 -179.996 -0.167100

56 49 H22 hn E 48 43 25 0.995 124.306 -0.052 0.345700

57 50 C13 cc M 48 43 25 1.355 110.194 -179.848 -0.024100

58 51 C15 ce M 50 48 43 1.430 125.777 179.997 -0.072200

59 52 H8 ha E 51 50 48 1.076 114.074 179.896 0.148500

60 53 C16 cd M 51 50 48 1.348 129.266 -0.070 0.117600

61 54 C17 cd B 53 51 50 1.458 124.053 -179.977 -0.164500

62 55 C18 cc S 54 53 51 1.334 106.705 179.959 -0.234100

63 56 H10 ha E 55 54 53 1.070 128.857 -179.953 0.168500

64 57 H9 ha E 54 53 51 1.072 125.108 0.014 0.156000

65 58 N4 nd M 53 51 50 1.388 126.668 0.021 -0.631800

66 59 C19 cd M 58 53 51 1.300 106.118 -179.981 0.452900

67 60 C20 cf M 59 58 53 1.452 124.579 179.902 0.007200

68 61 C29 ch M 60 59 58 1.434 117.649 179.721 -0.095300

69 62 C30 cg M 61 60 59 1.192 177.422 -0.649 -0.119200

70 63 C31 cc M 62 61 60 1.429 178.948 0.185 0.444200

71 64 N11 na S 63 62 61 1.384 121.466 -173.951 -0.253500

72 65 C34 c3 3 64 63 62 1.446 127.726 -0.085 0.035100

73 66 H18 h1 E 65 64 63 1.082 110.499 57.260 0.058200

74 67 H19 h1 E 65 64 63 1.083 110.657 -64.069 0.058200

75 68 H20 h1 E 65 64 63 1.079 107.688 176.635 0.058200

76 69 N12 nd M 63 62 61 1.286 125.153 5.825 -0.500600

77 70 C32 ca M 69 63 62 1.376 104.354 -179.788 -0.268200

78 71 C33 ca M 70 69 63 1.378 110.970 -0.012 0.502300

79 72 N13 nb M 71 70 69 1.326 126.654 179.889 -0.796500

80 73 C35 ca M 72 71 70 1.323 111.928 -0.495 0.926400

81 74 N16 nh B 73 72 71 1.360 116.728 -177.674 -0.928500

82 75 H23 hn E 74 73 72 0.995 116.421 -162.603 0.428050

83 76 H24 hn E 74 73 72 0.994 116.527 -17.955 0.428050

84 77 N14 nb M 73 72 71 1.338 127.904 1.016 -0.846500

85 78 C36 ca M 77 73 72 1.322 118.571 -0.675 0.794700

86 79 N15 nh M 78 77 73 1.344 118.743 178.706 -0.958500

87 80 H25 hn E 79 78 77 0.994 118.262 11.424 0.447550

88 81 H26 hn E 79 78 77 0.994 119.326 169.650 0.447550

89

90
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91 LOOP

92 C24 C25

93 C23 N5

94 C9 C8

95 C4 C2

96 C20 C1

97 C13 C14

98 C19 C18

99 C33 N11

100 C36 C32

101

102 IMPROPER

103 C25 N7 C26 N9

104 C24 C26 C25 N5

105 C26 H12 N9 H11

106 N8 N7 C27 N10

107 C27 H13 N10 H14

108 C25 N6 C24 N8

109 C28 C24 N6 C23

110 C22 N6 C23 N5

111 C11 C8 C10 C21

112 C9 C10 C8 N2

113 C7 C5 C6 N2

114 C6 C9 C7 H4

115 C7 C8 C9 H5

116 C6 C2 C5 H3

117 C4 C5 C2 N1

118 C1 C2 N1 H21

119 C3 C20 C1 N1

120 C1 C4 C3 H1

121 C3 C2 C4 H2

122 C12 C10 C11 N3

123 C11 C14 C12 H6

124 C13 C12 C14 H7

125 C11 C13 N3 H22

126 C14 C15 C13 N3

127 C13 C16 C15 H8

128 C17 C15 C16 N4

129 C18 C16 C17 H9

130 C17 C19 C18 H10

131 C18 C20 C19 N4

132 C1 C19 C20 C29

133 C30 N11 C31 N12

134 C34 C33 N11 C31

135 C33 C36 C32 N12

136 C32 N11 C33 N13

137 N13 N14 C35 N16

138 C35 H23 N16 H24

139 C32 N14 C36 N15

140 C36 H25 N15 H26

141

142 DONE

143 STOP
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The .FRCMOD file is shown below:

1 DPD

2

3 remark goes here

4 MASS

5

6 BOND

7

8 ANGLE

9 nc -cd -ch 75.218 115.295 Calculated with empirical approach

10 cg -ce -cc 66.080 114.640 same as ce -ce-cg

11 cd -cf -ch 66.120 123.130 same as ce -cf-ch

12 cg -cc -nd 75.218 115.295 Calculated with empirical approach

13

14 DIHE

15 nc -cd -ch -cg 1 0.000 180.000 2.000 same as X -c1-cd -X

16 na -cd -ch -cg 1 0.000 180.000 2.000 same as X -c1-cd -X

17 ch -cg -ce -cd 1 0.000 180.000 2.000 same as X -c1-ce -X

18 ch -cg -ce -cc 1 0.000 180.000 2.000 same as X -c1-ce -X

19 cg -ce -cd -nd 1 1.000 180.000 2.000 same as X -ce-ce -X

20 cg -ce -cd -cd 1 1.000 180.000 2.000 same as X -ce-ce -X

21 cg -ce -cc -cd 1 1.000 180.000 2.000 same as X -ce-ce -X

22 cg -ce -cc -na 1 1.000 180.000 2.000 same as X -ce-ce -X

23 cd -ce -cc -cd 1 1.000 180.000 2.000 same as X -ce-ce -X

24 cd -ce -cc -na 1 1.000 180.000 2.000 same as X -ce-ce -X

25 nd -cd -ce -cc 1 1.000 180.000 2.000 same as X -ce-ce -X

26 nd -cc -ce -cd 1 1.000 180.000 2.000 same as X -ce-ce -X

27 nd -cc -ce -ha 1 1.000 180.000 2.000 same as X -ce-ce -X

28 cc -ce -cd -na 1 1.000 180.000 2.000 same as X -ce-ce -X

29 cc -ce -cd -cd 1 1.000 180.000 2.000 same as X -ce-ce -X

30 cc -cc -ce -cd 1 1.000 180.000 2.000 same as X -ce-ce -X

31 cc -cc -ce -ha 1 1.000 180.000 2.000 same as X -ce-ce -X

32 na -cd -ce -ha 1 1.000 180.000 2.000 same as X -ce-ce -X

33 na -cc -cf -cd 1 6.650 180.000 2.000 same as X -ce-cf -X

34 na -cc -cf -ch 1 6.650 180.000 2.000 same as X -ce-cf -X

35 cc -cf -cd -cc 1 6.650 180.000 2.000 same as X -ce-cf -X

36 cc -cf -cd -nd 1 6.650 180.000 2.000 same as X -ce-cf -X

37 cc -cf -ch -cg 1 0.000 180.000 2.000 same as X -c1-cf -X

38 cc -cc -cf -cd 1 6.650 180.000 2.000 same as X -ce-cf -X

39 cc -cc -cf -ch 1 6.650 180.000 2.000 same as X -ce-cf -X

40 cd -cd -ce -ha 1 1.000 180.000 2.000 same as X -ce-ce -X

41 cd -cc -ce -ha 1 1.000 180.000 2.000 same as X -ce-ce -X

42 na -cc -ce -ha 1 1.000 180.000 2.000 same as X -ce-ce -X

43 ha -ce -cd -nd 1 1.000 180.000 2.000 same as X -ce-ce -X

44 cc -cd -cf -ch 1 6.650 180.000 2.000 same as X -ce-cf -X

45 nd -cd -cf -ch 1 6.650 180.000 2.000 same as X -ce-cf -X

46 cd -cf -ch -cg 1 0.000 180.000 2.000 same as X -c1-cf -X

47 ch -cg -cc -na 1 0.000 180.000 2.000 same as X -c1-cc -X

48 ch -cg -cc -nd 1 0.000 180.000 2.000 same as X -c1-cc -X

49

50 IMPROPER

51 ca -nb -ca -nh 1.1 180.0 2.0 Using default value
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52 ca -ca -ca -nc 1.1 180.0 2.0 Using default value

53 ca -hn -nh -hn 1.1 180.0 2.0 Using default value

54 nb -nb -ca -nh 1.1 180.0 2.0 Using default value

55 ca -na -ca -nb 1.1 180.0 2.0 Using default value

56 c3 -ca -na -cd 1.1 180.0 2.0 Using default value

57 ch -na -cd -nc 1.1 180.0 2.0 Using default value

58 cc -cd -ce -cg 1.1 180.0 2.0 Using default value

59 cd -ce -cd -nd 1.1 180.0 2.0 Using default value

60 cc -ce -cc -nd 1.1 180.0 2.0 Using default value

61 cc -cd -cc -ha 1.1 180.0 2.0 Using default value

62 cc -cd -cd -ha 1.1 180.0 2.0 Using default value

63 cc -cd -ce -ha 1.1 180.0 2.0 Using default value

64 cd -ce -cd -na 1.1 180.0 2.0 Using default value

65 cc -cd -na -hn 1.1 180.0 2.0 General improper

66 torsional angle (2 general atom types)

67 cc -cf -cc -na 1.1 180.0 2.0 Using default value

68 cd -ce -cc -na 1.1 180.0 2.0 Using default value

69 cc -cc -na -hn 1.1 180.0 2.0 General improper

70 torsional angle (2 general atom types)

71 cd -cd -cc -ha 1.1 180.0 2.0 Using default value

72 cc -cf -cd -nd 1.1 180.0 2.0 Using default value

73 cc -cd -cf -ch 1.1 180.0 2.0 Using default value

74 cg -na -cc -nd 1.1 180.0 2.0 Using default value

75 c3 -ca -na -cc 1.1 180.0 2.0 Using default value

76 ca -ca -ca -nd 1.1 180.0 2.0 Using default value

77

78 NONBON
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APPENDIX J

MEDIA COVERAGE OF PUBLISHED WORK

The work on ligand recognition in RNA which is presented in chapter 4 has been highlighted

by multiple media sources. In this appendix, I provide the links to these media sources.

UNH NEWS

https://www.unh.edu/unhtoday/news/release/2020/07/21/unh-researchers-discover-new-

pathways-could-help-treat-rna-viruses

UNH TODAY

https://www.unh.edu/unhtoday/2020/07/new-pathways-could-help-treat-rna-viruses-

discovered

FOSTERS.COM

https://www.fosters.com/story/news/coronavirus/2020/07/21/unh-researchers-discover-

pathways-that-could-help-treat-rna-viruses/113776498/

SEACOASTONLINE

https://www.seacoastonline.com/story/news/coronavirus/2020/07/21/unh-researchers-

discover-pathways-that-could-help-treat-rna-viruses/113776498/

GRANITE-GEEK

https://granitegeek.concordmonitor.com/2020/07/20/new-pathways-could-help-treat-rna-

viruses/

NEWS-MED-LIFESCI

https://www.news-medical.net/news/20201217/Supercomputer-simulations-lead-to-an-

important-viral-inhibitor-discovery.aspx
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XSEDE

https://www.xsede.org/-/supercomputers-simulate-new-pathways-for-potential-rna-virus-

treatment

UCSD

https://ucsdnews.ucsd.edu/pressrelease/supercomputers-simulate-new-pathways-for-

potential-rna-virus-treatment
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APPENDIX K

CURRICULUM VITAE

K.1 Education

University of New Hampshire, BS, Chemical Engineering, May 2016

K.2 Publications

Tannir, S., Levintov, L., Townley, M. A., Leonard, B. M., Kubelka, J., Vashisth, H.,

Varga, K., and Balaz, M. (2020). “Functional nanoassemblies with mirror-image chiroptical

properties templated by a single homochiral DNA strand.” Chem. Mater., 32(6), 22722281.

(PDF)

Levintov, L., and Vashisth, H. (2020). “Ligand recognition in viral RNA necessitates rare

conformational transitions.” J. Phys. Chem. Lett., 11(14), 54265432. (PDF)

Levintov, L., Paul, S., and Vashisth, H. (2021) “Reaction coordinate and thermodynamics

of base flipping in RNA.” J. Chem. Theory Comput., 17(3), 19141921. (PDF)

Levintov, L., and Vashisth, H. (2021). “Role of conformational heterogeneity in ligand

recognition by viral RNAmolecules.” Phys. Chem. Chem. Phys., DOI: 10.1039/D1CP00679G.

(PDF)

Levintov, L., and Vashisth, H. (2021). “Role of salt-bridging interactions in recognition of

viral RNA by arginine-rich peptides.” Biophys. J., (Under review).
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https://pubs.acs.org/doi/pdf/10.1021/acs.chemmater.9b04092
https://pubs.acs.org/doi/pdf/10.1021/acs.jpclett.0c01390
https://pubs.acs.org/doi/pdf/10.1021/acs.jctc.0c01199
https://pubs.rsc.org/en/content/articlepdf/2021/CP/D1CP00679G?page=search


K.3 Presentations

Lev Levintov, Harish Vashisth. Simulation Study of Supramolecular Nanoassembly

2018 Department of Chemical Engineering Spring 2018 Seminar Series, Durham, NH 30

March 2018.

2018 Graduate Research Conference, Durham, NH 9 April 2018.

2018 UNH Bioengineering Symposium, Durham, NH 8 May 2018.

Lev Levintov, Harish Vashisth. Atomistic simulation studies of DNA-Porphyrin nanoassem-

blies

78th Physical Electronics Conference, Durham, NH 25 Jun 2018.

AIChE Annual Meeting, Pittsburgh, PA 30 Oct 2018.

Lev Levintov, Harish Vashisth. Atomically resolved simulation studies of RNA/small-

molecule interactions

Annual Fall Meeting of the American Chemical Society, Boston, MA 21 August 2018.

Lev Levintov, Harish Vashisth. Conformational Mapping of Viral RNA Elements Using

Atomistic Simulations

AIChE Annual Meeting, Pittsburgh, PA 29 October, 2018.

Lev Levintov, Harish Vashisth. Conformational mapping of HIV-1 TAR RNA

Graduate Research Conference, Durham, NH 1 April, 2019.

UNH Bioengineering Symposium, Durham, NH 8 May, 2019.

Lev Levintov, Harish Vashisth. Conformational heterogeneity and its role in ligand recog-

nition by RNA molecules

Molecular Biophysics in the Northeast, Boston, MA 9 November, 2019.

Lev Levintov, Harish Vashisth. Long Time-Scale Atomistic Simulations of HIV-1 TAR

RNA

Annual Meeting, Orlando, FL 11 November, 2019.

Lev Levintov, Harish Vashisth. Studies on Conformational Transitions in RNA upon
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Ligand Binding

2020 Departmental Seminar Series, UNH Chemical Engineering, Durham, NH 30 October

2020.

Lev Levintov, Sanjib Paul, Harish Vashisth. Transition Path Sampling Simulations of Base

Flipping in RNA

2020 Virtual AIChE Annual Meeting, 18 November 2020.

Lev Levintov, Harish Vashisth. Rare conformational transition in viral RNA upon ligand

binding

65th Biophysical Society Virtual Annual Meeting, 26 February 2021.
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