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ABSTRACT 

 

DEVELOPMENT OF A SUNKEN OIL TRANSPORT TOOL 

USING MESOSCALE EXPERIMENTS 

Oil spilled into fresh or saline water can float, become submerged in the water column (i.e., 

submerged oil), or sink to the bottom (i.e., sunken oil).  Once introduced to the environment, oil 

can negatively impact ecological and public health, and the economy.  Non-floating oil spills pose 

unique challenges to responders including the complexity of trajectory modeling; the inability to 

detect, track and recover oil due to limited visibility; the lack of readily deployable response 

technology; and limited understanding of how bottom substrate dynamics influence its fate and 

behavior.   

This dissertation research determined that the driving factors used to predict sunken oil 

transport are the oil’s kinematic viscosity (𝑣𝑜) and the median sediment size (𝑑50).  The stages of 

oil transport were characterized based on 𝑣𝑜, and empirical relationships using 𝑣𝑜 and 𝑑50 were 

derived to predict the oil’s critical shear stress (CSS).  For 𝑣𝑜< 2x104 cSt, thresholds of movement 

were defined as: (1) gravity dispersion, (2) rope formation, (3) ripple formation, and (4) break-

apart/resuspension.  For 𝑣𝑜 > 6x104 cSt, the stages include: (1) type II erosions, and (2) bedload 

transport.   

Using the experimentally derived oil transport equations, a prototype sunken oil transport 

tool (SOTT) was developed to predict sunken oil transport in a current driven environment.  In the 

event of a non-floating oil spill, responders can input the spilled oil’s characteristics (i.e., density, 

viscosity) and in-situ environmental conditions (e.g., water velocity, temperature, sediment type) 

to evaluate if oil will transport along the bottom, resuspend into the water column, or be buried by 

sediments.    
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CHAPTER 1 

 

INTRODUCTION 

1.1 Motivation and Background  

Once spilled into saline or fresh water, oil can negatively impact ecological and public 

health, and the economy.  The fate and transport of the spilled oil depends upon the oil type; how 

and where it is spilled; in-situ environmental conditions; and the ability for responders to detect, 

monitor and remove it.  The oil’s density relative to the receiving water dictates if it will float (i.e., 

floating), be neutrally buoyant in the water column (i.e., submerged), or sink to the bottom (i.e., 

sunken), and viscosity quantifies the oil’s resistance to flow.  Over time, the density and viscosity 

of the oil can change due to temperature, weathering processes (e.g., evaporation, photo-

oxidation), interactions with sediment, minerals or marine snow, and in-situ hydrodynamic 

conditions (e.g., waves, currents).   

Challenges when responding to sunken oil include the complexity of trajectory modeling; 

the inability to detect, track and recover oil due to limited visibility; the lack of readily deployable 

response technology; and limited understanding of how bottom substrate dynamics influence its 

fate and behavior (ICCOPR, 2015; Michel & Hansen, 2017; NRC, 1999; Stout & Wang, 2016).  

The aim of this research is to address knowledge gaps through a series of laboratory and flume-

based experiments with No. 6 Heavy Fuel Oil (HFO) to determine environmental conditions that 

could mobilize sunken oil.   

The bed shear stress (BSS) quantifies the frictional force exerted by the fluid on the 

boundary (i.e., force per unit area) and is used to characterize thresholds of sediment transport as 

a function of in-situ hydrodynamics, skin-friction induced by bed roughness, form drag, and 
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momentum transfer caused by mobilized grains (Nelson et al., 1995; Shields, 1936; Soulsby, 

1997).  When sediment transport is initiated, the BSS has exceeded the sediment’s critical shear 

stress (CSS), providing a quantitative indicator that can be used to estimate sediment transport 

rates (Shields, 1936).  The concept of using CSS thresholds to predict sediment transport was 

applied to predicting sunken oil transport.  The focus of this dissertation was to define the stages 

of sunken oil transport, quantify the oil’s CSS at those thresholds, and develop a tool based on oil 

CSS experiments that responders can use to predict if in-situ environmental conditions are 

sufficient to mobilize sunken oil.   

All flume-based experiments were conducted in the MacFarlane Flume, at the University 

of New Hampshire’s (UNH) Coastal Response Research Center (CRRC).  The MacFarlane Flume 

was designed to study the transport and remediation of non-floating oil.  The preliminary design 

phase began in October 2016 and the first round of construction was completed in October 2017.  

In December 2017, the flume’s test section cracked and revealed that the load-bearing beams were 

deflecting when it was full of water.  After a year of testing and redesign, a central overhead 

structural support was installed in December 2018.  

Prior to conducting oil CSS experiments, a hydraulic analysis on the MacFarlane flume 

was required to correlate in-situ velocity with motor settings, and characterize in-situ flow 

conditions, evaluate instrument limitations, and determine which BSS methods were valid over 

the working range of the motors. 

1.2 Dissertation Organization 

This dissertation is in the form of a methods paper (Chapter 2) and two journal publications 

(Chapters 3 and 4).  Each chapter begins by introducing the problem and outlining the objectives.  

The Methods section describes the materials, processes, and protocols used to complete the 
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objectives of that chapter.  The Results and Discussion section presents the experimental data, an 

interpretation of the results, and limitations to the research.  Lastly, each chapter contains its own 

Conclusions and Recommended Future Research section to highlight the major findings, 

applications of research, and knowledge gaps that remain.  Chapter 5 summarizes the major 

conclusions and recommended future research from Chapters 2, 3 and 4.  Each chapter has its own 

appendix for supplementary information, but all protocols developed and used in this dissertation 

can be found in Appendix D: Protocols and Methods. 

• Chapter 2 includes a hydraulic analysis of the MacFarlane Flume.  The hydraulic 

analysis characterized in-situ flow conditions of the flume, boundary characteristics, and 

the operating limitations for instruments over the working range of the motors.  Chapter 

2 provided the foundation to support which BSS methods were valid for use in the 

flume.  Many of the methods developed in Chapter 2 (e.g., post-processing velocity data, 

calculating BSS) were used in the subsequent CSS experiments.  Additionally, results 

from the Chapter 2 sensitivity analysis were referenced and applied in Chapter 4 when 

discussing what field measurements responders should prioritize to improve BSS 

predictions. 

• Chapter 3 describes the laboratory experiments that quantified the oil properties and 

sediment characteristics, and a series of flume-based experiments performed to 

determine the oil’s CSS.  This chapter discusses the process by which the oil’s 

thresholds of movement were defined, how image and video data was post-processed, 

the driving factors used to predict oil movement, and the empirical relationships derived 

from experimental data to predict oil CSS as a function of sediment size and oil 

viscosity. 
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• Chapter 4 outlines the process of developing the sunken oil transport tool (SOTT).  The 

results from the oil CSS experiments were discussed with spill responders from multiple 

agencies (e.g., U.S. Army Corps, USGS) that provided feedback as to how the data 

should be used and visualized in the SOTT.  Chapter 4 includes a detailed description of 

the equations used to develop the Excel-based tool and the limitations and applications 

of the SOTT.  A case study provides an example of how to use the tool, and interpret 

results, and validation for using the SOTT to predict sunken oil transport in a river. 
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CHAPTER 2 

 

HYDRAULIC ANALYSIS OF A RECIRCULATING FLUME AND 

THE EFFECT OF BOUNDARY ROUGHNESS ON BED SHEAR 

STRESS 

2.1 Abstract 

A comprehensive hydraulic analysis of the Coastal Response Research Center’s (CRRC) 

MacFarlane Flume was conducted to establish baseline flow conditions, identify instrument 

limitations, and determine the bed shear stress (BSS) methods valid under variable flow regimes.  

Near-bed velocity observations, using an acoustic Doppler velocimeter (ADV), were collected 

over four, static substrates (i.e., acrylic, sand, fine pebble, medium pebble) as velocity increased 

from 0.06±0.01 m/s to 1.04±0.05m/s in 0.08±0.02 m/s intervals.  The velocity profile was 

analyzed, BSS was estimated using eight computational methods, and boundary parameters were 

calculated and compared with literature values.  A sensitivity analysis was performed on select 

BSS methods to quantify the individual impact and establish relative importance of the input 

parameters on the estimates.   

Major findings from the hydraulic analysis included: (1) empirical relationships to predict 

in-situ velocity based on motor settings; (2) the flow conditions that invalidated ADV 

measurements; (3) characterization of the flow regime at each velocity interval (i.e., laminar vs. 

turbulent, steady vs. unsteady); (4) identifying the Turbulent Kinetic Energy, Law of the Wall – 

Single Point, Quadratic Friction Law, Chézy/Momentum, and Manning/Momentum methods to be 

the most suitable BSS methods in the MacFarlane Flume; and (5) that local BSS estimates were 

equally sensitive to velocity and roughness variability, whereas the global methods tended to be 

more sensitive to roughness variability.   
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2.2 Introduction 

Hydrodynamic forcing elements (e.g., tides, currents, waves) influence the dynamics of 

sediment transport by exerting friction on the bed of a water body.  Bed shear stress (BSS) 

quantifies the frictional force exerted by the fluid on the boundary (i.e., force per unit area) and is 

used to characterize thresholds of sediment transport as a function of in-situ hydrodynamics, skin-

friction induced by bed roughness, form drag, and momentum transfer caused by mobilized grains 

(Nelson et al., 1995; Shields, 1936; Soulsby, 1997).   

The thresholds of sediment transport are classified as incipient motion, bedload transport, 

and entrainment or suspended load transport.  Incipient motion occurs when individual grains 

begin to move, while the majority of sediment remains immobile.  Bedload transport is identified 

by grains rolling, hopping and sliding along the bed, ultimately transporting material in the 

direction of the forcing element.  Entrainment, recognized as the suspension of sediments into the 

water column, can occur through frictional exertion of the fluid and be exacerbated by turbulent 

diffusion (Soulsby, 1997).  When sediment transport is initiated, the BSS has exceeded the 

sediment’s critical shear stress (CSS), providing a quantitative indicator that can be used to 

estimate bedload and suspended sediment transport rates (Shields, 1936).  In-situ measurements 

are necessary to quantify the relationship between the forcing and resistance elements (e.g., water 

velocity, particle size) when predicting sediment transport rates (Wilcock, 1996).   

As flow moves over a flat plate or uniform bed, a boundary layer develops due to the no 

slip condition (Figure 2-1) (Elger et al., 2013; Yen, 2002).  The boundary layer minimizes the 

momentum transferred from the flow field to the bed and depends on the flow velocity, sediment 

median grain size, and the viscosity of the water.  A laminar sublayer forms adjacent to the 

boundary and is a function of the fluid’s viscosity.  The height of the sublayer increases further 

away from the leading edge of the plate or wall until small vortices, due to viscous drag, become 
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unstable causing the boundary layer to transition to a turbulent state.  An artificially induced 

transition can occur, known as tripping the boundary layer, if there is a disturbance in the flow 

field or roughness elements (e.g., presence of a rock).  A turbulent boundary layer is divided into 

three regions: the viscous sublayer, the logarithmic layer and the velocity defect region (Elger et 

al., 2013).  

 

 

 

 

 

 

 

 

 

BSS, for a Newtonian fluid (e.g., water), is considered constant in the viscous sublayer and can be 

described by Newton’s Law of Viscosity (Eq. 2-1) (Elger et al., 2013; Soulsby, 1997; Yen, 2002).   

𝜏𝑣 = 𝜇𝑤

𝑑𝑢

𝑑𝑧
 

Eq. 2-1 

where: 𝜏𝑣 = BSS in the viscous sublayer (Pa), 
𝑑𝑢

𝑑𝑧
 = velocity gradient in the viscous sublayer (1/s), 

and 𝜇𝑤 = dynamic viscosity of the fluid (Pa*s).  Newton’s Law of Viscosity is limited to laminar 

or smooth turbulent flow with minimal turbulent contributions near the boundary (i.e., when 

roughness elements do not protrude into the viscous sublayer) (Boudreau & Jorgensen, 2001; 

Figure 2-1: A simplified velocity profile and subsequent boundary layer as it 

develops over a plate, illustrating the viscous sublayer adjacent to the boundary, 

the logarithmic layer and the velocity defect region. 
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Soulsby, 1997).  Depending upon boundary roughness, fluid type, and average free-stream 

velocity, a small buffer layer may form between the viscous and turbulent layers.  A logarithmic 

layer forms above the viscous layer or buffer layer, if present, and it transitions into the velocity 

defect region.  The velocity defect region extends vertically into the water column until the velocity 

reaches 99% the free-stream velocity (𝑈) of the bulk liquid (Elger et al., 2013; Yen, 2002).  Free-

stream velocity occurs some elevation above the bed where velocity is constant.  Depending on 

where in the boundary layer the velocity is measured, the velocity profile can be expressed using 

a logarithmic function, a power law distribution or an exponential distribution (Yen, 2002).  A 

velocity component is required to estimate BSS.  Therefore, the method used to calculate BSS 

(e.g., Turbulent Kinetic Energy, Quadratic Friction Law) depends on how the velocity is calculated 

or measured, and if in-situ conditions fulfill method assumptions (e.g., steady state).  Within the 

turbulent region of the boundary layer, for uniform, steady state conditions, BSS can be related to 

a surrogate value, friction velocity (Eq. 2-2) (Nelson et al., 1995).   

𝑢𝑤
∗ = √

𝜏𝑤

𝜌𝑤
  

Eq. 2-2 

where: 𝑢𝑤
∗  = friction velocity (m/s), 𝜏𝑤 = BSS (Pa), and 𝜌𝑤= water density (kg/m3).  𝜏𝑤 can also 

be expressed as a dimensionless value (𝜏∗) (Eq. 2-3) (Buscombe & Conley, 2012; Shields, 1936).   

𝜏∗ =
𝜏𝑤

𝑔(𝜌𝑠 − 𝜌𝑤)𝑑50
 Eq. 2-3 

where: 𝜏∗ = Shields Parameter (unitless), 𝑔 = gravity (m/s2), 𝜌𝑠 = sediment density (kg/m3), and 

𝑑50 = median grain size (m).  Dynamic similarity can be used to translate lab-based experiments 

to full-scale conditions with some measure of accuracy (Garcia, 2000; Shields, 1936; Soulsby, 

1997; Vanoni, 2006).  Based on laboratory experiments, Shields (1936) developed a diagram that 

can be used to estimate sediment transport by relating 𝜏∗ to the grain Reynolds number (Eq. 2-4).  
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𝑅𝑒∗ =
𝑢𝑤

∗  𝑑50

𝜐𝑤
=

𝑢𝑤
∗  𝑘𝑠

𝜐𝑤
  Eq. 2-4 

where: 𝑅𝑒∗ = grain Reynolds number (unitless), 𝑘𝑠 = Nikuradse roughness length (m), and 𝜐𝑤 = 

kinematic viscosity of water (m2/s).  𝑅𝑒∗ is used to describe the environmental forcing conditions 

at the boundary.  Flow is considered: hydraulically smooth for 𝑅𝑒∗< 5, transitional if 5 < 𝑅𝑒∗< 70, 

and hydraulically rough for 𝑅𝑒∗ > 70.  The black line in Figure 2-2, fitted from experimental data, 

illustrates the critical threshold of motion, “at which only a minor part (~1–10%) of the bed surface 

is moving (e.g., sliding, rolling, and colliding along the bed)” (van Rijn, 2007).  The critical 

threshold (𝜏𝑐) is synonymous with CSS and is characteristic of the sediment’s properties.  

Sediment transport is initiated when 𝜏𝑤 ≥ 𝜏𝑐.   

 

 

 

 

 

 

 

 

 

Establishing thresholds of sediment movement and quantifying transport has applications across a 

variety of disciplines (e.g., riverine related scour, deposition and channel change (Biron et al., 

Figure 2-2: Shields Diagram, adjusted from Madsen and Grant (1976), illustrating the 

relationship developed by Shields (1936) between dimensionless hydraulic (𝑹𝒆∗) and shear 

stress parameters (𝝉∗).   
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2004; Wilcock, 1996), nutrient diffusion into the water column (Wengrove et al., 2015), the 

transport of sunken oil (Cloutier et al., 2002; Simecek-Beatty, 2007)).  

This chapter describes experiments conducted in CRRC’s 2270-L recirculating flume.  The 

flume was built as a result of a generous donation from Neil and Ora MacFarlane (Newport Beach, 

CA).  Near-bed velocity observations (i.e., 0 to 9 cm from the bottom) were collected over four 

static substrates (i.e., acrylic, sand, fine pebble, medium pebble) as 𝑈 increased from 0.06±0.01 

m/s to 1.04±0.05 m/s in 0.08±0.02 m/s intervals.  A sieve analysis was performed to establish the 

particle size distribution for each substrate and determine common sediment descriptors (e.g., 𝑑50).  

For each experimental setting, the velocity profile was analyzed, BSS was estimated using eight 

methods, and boundary parameters were calculated and compared with literature values.   

Research Objectives: 

1. Correlate in-situ water velocity with flume motor speeds. 

2. Identify motor settings that exhibit unsteady, non-uniform, supercritical, or turbulent flow 

regimes. 

3. Establish acoustic Doppler velocimeter (ADV) settings and limitations over the working 

range of the motors for acrylic, sand, fine pebble, and medium pebble substrates. 

4. Characterize boundary parameters for an immobile acrylic (smooth), fine sand, fine 

pebble, and medium pebble substrates as a function of water velocity.  

5. Calculate BSS based upon instantaneous velocity measurements and compare results for 

each experimental condition.   

6. Perform a sensitivity analysis to quantify the impact of the hydraulic and boundary 

parameters on BSS estimates.   
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Eight methods were chosen to calculate BSS based upon their applicability to current 

driven flow regimes and sediment types, the diversity of input parameters, and the means to obtain 

input parameters (e.g., observational vs. derived).  The methods were: (1) Newton’s Law of 

Viscosity, (2) Law of the Wall – Logarithmic Profile, (3) Law of the Wall – Single Point, (4) the 

Quadratic Friction Law, (5) Indicator Function, (6) Turbulent Kinetic Energy, (7) the Momentum 

equation using the Chézy resistance coefficient, and (8) the Momentum equation using Manning’s 

roughness coefficient.  The findings provided an understanding of baseline conditions and were 

used to interpret results obtained in subsequent sunken oil CSS experiments using the recirculating 

flume (Chapter 3).   

2.3 Methods and Materials 

2.3.1 Facility: MacFarlane Flume   

The MacFarlane Flume is a bottom-to-top recirculating system (Figure 2-3).  The water is 

propelled by two 10 3/8 inch1 propellers, housed in the lower tank, each driven by a 10 hp motor 

(ABB/Baldor Electric; Fort Smith, AR, USA).  Each motor is controlled independently by an ABB 

variable frequency drive (VFD) from 0 to 20 Hz at 0.1 Hz intervals.  Precise motor control ensures 

reproducible in-situ flow conditions based on the VFD setting.  The lower tank, 1ft deep, 4 ft wide, 

16 ft long, is enclosed on all four sides by acrylic panels.  There are two openings in the bottom 

tank, an entrance and exit, allowing water to be funneled vertically into the upper channel and 

recirculated back down to the lower tank.  The upper channel, 1 ft 10 inch deep, 1 ft wide, 13 ft 

long, consists of an open top, acrylic sidewalls, an acrylic bottom with zero slope.  The acrylic 

 

1 The dimensions in Section 2.1 are the only ones given in English units because that is how the flume was designed 

and constructed. 
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sidewalls provide optimal viewing along the length of the upper channel, and the open top allows 

easy installations, adjustment, and removal of instruments before, during and after experiments.  

 

Figure 2-3: Longitudinal section of the MacFarlane Flume.  

2.3.2 Velocimetry Measurements 

The Vectrino Profiler II (Nortek Scientific; Vangroken, Norway), an ADV, measured the 

instantaneous longitudinal or stream wise (𝑥), transverse (𝑦), and vertical (𝑧) velocity components 

(𝑢, 𝑣, and 𝑤, respectively).  [N.B., Average velocities are denoted using an overbar (e.g., �̅�) and 

fluctuations from the mean are denoted by an apostrophe (e.g., 𝑢′)].  The Vectrino samples a 30 

mm range at a spatial resolution of 1 mm; the sampling range begins 40 mm below the center beam 

to avoid flow-field interference (Figure 2-4) (Nortek AS, 2017).  The sampling duration for each 

trial was a minimum of three minutes, to capture small scale turbulence events, using a sampling 

rate of 25 Hz resulting in approximately 4,625 data points per trial (Babaeyan-Koopaei et al., 2002; 

Pope et al., 2006; van Rijn, 2007).  
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Before each experiment, 20 grams of kaolinite clay were added to the water as a seeding 

material to improve the Vectrino’s Signal-to-Noise Ratio (SNR) and %Correlation (%Corr).  A 

pulse is transmitted from the central transducer, reflected off the particles in the water rather than 

the water itself, and is detected by the four receivers (Nortek Scientific, 2012).  The Vectrino’s 

“Ping Settings” (e.g., ping algorithm, velocity range) were adjusted for each trial based on water 

velocity and boundary conditions to minimize or eliminate weak spots and optimize the %Corr 

and SNR (Koca et al., 2017). 

Data collected by the Vectrino was exported and evaluated using MatLab (MathWorks®; 

Natick, MA).  All raw velocity datasets underwent a two-step filtering process.  As recommended 

by the manufacturer, the first step evaluated data quality based on %Corr and SNR using a low 

pass filter.  Data points were replaced with “Not a Number” (NaN) if the %Corr <70 or SNR <10; 

replacement rather than removal of data points was done to maintain the length of the time-series 

(Biron et al., 2004).  A three pass, despiking filter was applied to each data set.  With each pass, 

�̅�, �̅�, and �̅�, and the standard deviation, σ, were calculated for each sampling depth.  Velocity data 

Figure 2-4: Vectrino Profiler II ADV measured  instantaneous velocity used in BSS 

calculations. 
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within each vertical bin exhibited a normal (Gaussian).  Therefore, outliers in each bin were 

detected and replaced with NaN if outside �̅�± 3σu, �̅�± 3σv, and �̅�±3σw. 

2.3.3 Hydraulic Analysis 

2.3.3.1 Longitudinal: Acrylic Boundary 

A longitudinal hydraulic analysis, over the acrylic boundary, identified the ideal test 

location within the upper channel and informed where within the test section the Vectrino was 

placed.  Once determined, the Vectrino’s location stayed constant for the remainder of the flume 

experiments.  Flow conditions (e.g., Froude (𝐹𝑟) and Reynolds (𝑅𝑒) Numbers) for each VFD 

setting were calculated based on the measured velocity, water depth, and distance from the 

entrance.  Results from the hydraulic analysis, were summarized in tables (Table 2-1) with non-

uniform, unsteady, supercritical, and turbulent conditions highlighted in red.   

Table 2-1: Format of summary tables from the hydraulic analyses. 

 

The sampling locations for the longitudinal analysis were: A) near the entrance, B), at the 

centerline, and C) within the test section (Figure 2-5).  

VFD 

Setting 

(Hz) 

𝑼 ± σ 

(m/s) 

 

𝑹𝒆 

(Laminar < 750) 

(Turbulent >750) 

𝑭𝒓 

(Subcritical <1) 

(Critical =1) 

(Supercritical >1) 

Uniform or 

Non-uniform 

Steady or 

Unsteady 

1 
. 

. 

. 

17 
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A series of preliminary experiments established that a working water depth, ℎ, of 30.5±1 

cm ensured the upper range of the VFD settings could be used while minimizing effects of the 

hydraulic jump in the test section.  The hydraulic radius was 10.2 cm.  It was determined using Eq. 

2-5 based on ℎ = 30.5 cm and was applied in calculations throughout this chapter.  

𝑅ℎ =
𝐴

𝑃𝑤
 

Eq. 2-5 

where: 𝑅ℎ = hydraulic radius (m), 𝐴 = cross-sectional area of flow (m2), and 𝑃𝑤 = wetted perimeter 

(m).  At each VFD setting and sampling location, the water level, distance along the length of the 

flume, and velocity were measured.  The sampling location “A” moved further from the entrance 

as velocity increased to account for the lowest water level induced by the hydraulic jump.  At 

sampling locations, A, B and C, for each VFD setting, 30-second time averaged velocity 

measurements were made using a flow probe held constant at 60% of the water depth (Global 

Water, FP211, USA).  To compare flow probe measurements and determine 𝑈, instantaneous 

velocity was recorded by the Vectrino at sampling location C at 60% of the water depth.  At 

sampling locations, A and B, the Vectrino’s instantaneous velocity measurements did not meet 

data quality metrics as specified by the manufacturer due to fluctuations in the water level and 

turbulence induced by the hydraulic jump.  [N.B., The flow probe has a lower resolution than the 

Vectrino, when comparing the measured velocities; the flow probe velocity estimates were slightly 

larger (Appendix A.1: Hydraulic Analysis)]. 

Figure 2-5: Sampling locations of the longitudinal hydraulic analysis. 
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Based on measured values, 𝑅𝑒, a dimensionless parameter used to establish if the flow 

regime is laminar (i.e., viscous dominated) or turbulent (i.e., inertia dominated), was calculated for 

sampling location C (Eq. 2-6).   

𝑅𝑒 =
𝑈𝑅ℎ

𝜐𝑤
 

Eq. 2-6 

where: 𝑈 = free-stream velocity (m/s).  For open channel flow conditions 𝑅ℎ is used as the 

characteristic length scale when calculating 𝑅𝑒;  flow was considered turbulent for 𝑅𝑒 >750 (Elger 

et al., 2013).  Results from the longitudinal analysis were used to calculate Specific Energy, 𝐸, 

(Eq. 2-7) as a function of water velocity.   

𝐸 = 𝑦 +  
𝑈2

2𝑔
 

Eq. 2-7 

where: 𝐸 = specific energy (m) and 𝑦 = water level (m).  A minimum 𝐸 value indicates a minimum 

flow energy relative to the flow rate, specifying a critical flow depth, 𝑦𝑐 (Eq. 2-8).   

𝑈2

2𝑔
=

1

2
𝑦𝑐 

Eq. 2-8 

The corresponding velocity at that depth is the critical velocity (Chaudhry, 2008).  𝐹𝑟 is used to 

describe 𝐸 in a dimensionless form by relating inertial and gravitational forces within the flow 

regime (Eq. 2-9).   

𝐹𝑟 =
𝑈

√𝑔ℎ
 

Eq. 2-9 

where flow is considered subcritical if 𝐹𝑟 < 1, supercritical for 𝐹𝑟 > 1, or critical when 𝐹𝑟 = 1 

(Chaudhry, 2008).  𝐹𝑟 and 𝑅𝑒 are hydraulic descriptors useful when: (1) characterizing the flume’s 

flow regime, and (2) scaling research findings from flume-based experiments to the natural 

environment. 
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When predicting sediment transport rates and estimating BSS, the flow regime is often 

assumed to be uniform and at steady state.  It took between 10 and 15 seconds after changing the 

VFD setting for the test section to reach steady state.  Steady state occurs when the velocity at a 

fixed point does not change with time (Le Roux, 2005; Vanoni, 2006).  Confirmation that 

conditions within the test section were at steady state was accomplished by calculating and 

evaluating the root mean square (RMS) of 𝑢 over a 20-second moving window (Eq. 2-10). 

𝑢𝑟𝑚𝑠 = √
1

𝑁
∑ 𝑢𝑖

2

𝑁

𝑖=1

 

Eq. 2-10 

where: 𝑢𝑟𝑚𝑠 = velocity root mean square (m/s), 𝑁 = number of data points, and 𝑢𝑖 = instantaneous 

water velocity (m/s).  N was set as a moving window equal to 500 data points, including 250 

velocity measurements before and after 𝑢𝑖.  Steady state was confirmed as long as the 𝑢𝑟𝑚𝑠 was 

within the 95% confidence interval of �̅� for the duration of the trial run. 

Flow conditions classified as uniform occur when the velocity vector is held constant 

through space, and are generally characterized by a constant flow depth (White, 2003).  Using the 

velocity time series, flow was determined to be uniform as long as �̅� was significantly greater than 

�̅� and �̅�, and when �̅� and �̅� were approximately zero (Nikora & Goring, 2000).   

2.3.3.2 Cross-Sectional: Acrylic Boundary 

The velocity was measured 3.2 m from the entrance (discussed in Section 2.3.3.1 Longitudinal: 

Acrylic Boundary) at three locations within the cross-section to evaluate wall effects on 𝑈.  

Measurements were taken 6 cm, 15 cm, and 24 cm from the right sidewall across the channel.  All 

velocity measurements were made using the Vectrino, set to a sampling range of 0 to 3 cm from 

the acrylic bottom.  The velocity was held constant for three minutes while the Vectrino measured 
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velocity, and then the velocity was increased by 0.08±0.02 m/s (i.e., 1 Hz) intervals until the upper 

range of the VFD setting was reached (i.e., 17 Hz). 

Results from this section were used to determine if wall shear stress impacted BSS at the 

center of the channel.  Based on the smooth boundary layer theory, the thickness of the boundary 

should range from 0.5 cm to 4 cm using Eq. 2-11and Eq. 2-12, indicating that wall shear stress 

should not interfere with central BSS estimates (see Section 2.3.3.4 Boundary Layer Calculations).  

Comparison of near-wall and central BSS, using a Student’s t-test, indicated that BSS estimates 

were not significantly different (P-value > 0.05) within the central 17 cm of the cross-section 

(Appendix A.2: Cross-Sectional Hydraulic Analysis).  The practical implication of this finding 

applied to subsequent oil CSS experiments was that the diameter of the sunken oil blob should be 

less than 17 cm and injected into the center of the channel.  

2.3.3.3 Vertical Analysis: Acrylic, Sand, Fine Pebble, Medium Pebble Boundaries 

A vertical hydraulic analysis (e.g., 0 to 9 cm) was performed as a function of bottom 

roughness and water velocity.  The Vectrino was placed 3.2 m from the entrance of the channel in 

the center of the cross-section.  The sampling heights were divided into three segments based on 

the Vectrino’s 3 cm sampling range, 0 to 3 cm, 3 to 6 cm, 6 to 9 cm, to develop a 9-cm velocity 

profile for each substrate.  Data were collected for three minutes at each sampling height and 

velocity interval.  Results from this analysis established the baseline boundary conditions and 

parameters of interest used to calculate BSS and evaluated the effect of bottom roughness on near-

bed velocity profiles.  

2.3.3.4 Boundary Layer Calculations 

𝑅𝑒𝑥 was calculated (Eq. 2-11) to understand the boundary layer’s development over the 

length of the substrate.   
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𝑅𝑒𝑥 =
𝑈𝑋

𝜐𝑤
 

Eq. 2-11 

where:  𝑅𝑒𝑥 = boundary Reynolds number (unitless) and 𝑋 = distance from the leading edge of the 

disturbance (m).  For 𝑅𝑒𝑥 < 5*105, the flow is considered laminar and the boundary layer thickness 

on a flat plate, 𝛿′ (m), was calculated using Eq. 2-12.  When 𝑅𝑒𝑥 > 5*105, the boundary layer 

thickness, 𝛿 (m), was calculated (Elger et al., 2013) using Eq. 2-13.   

𝛿′ =
5𝑋

𝑅𝑒𝑥
1/2

 
Eq. 2-12 

𝛿 =
0.16𝑋

𝑅𝑒𝑥
1/7

 
Eq. 2-13 

𝛿 was compared with the 𝑑84 for sand, fine pebble, and medium pebble substrates to determine if 

the particle size was sufficient to trip the boundary layer (i.e., if 𝑑84> 1/6*𝛿, boundary layer is 

tripped) (Elger et al., 2013) (Appendix A.3: Boundary Layer Conditions).  Fine pebble and 

medium pebble substrates were large enough to trip the boundary layer at the start of the substrate, 

whereas the sand sediment size was not.  Therefore, to ensure all boundary layers were turbulent, 

pebbles were glued to the leading edge of each sand substrate.  𝑅𝑒∗ was also used to determine the 

presence of a viscous sublayer for each substrate material and velocity setting (Eq. 2-4).   

2.3.4 Bottom Substrate 

Three replicate sieve analyses were conducted to determine the particle size distribution 

(PSD) for sand, fine pebble, and medium pebble substrates (Table 2-2) (ASTM, 2017b) and 

characterized based on the Wentworth Grade Scale (Appendix A.4: Particle Size Distribution) 

(Williams et al., 2006).  Substrates used in experimental trials were adhered to 1.5 m long by 11.5 

cm wide metal flashing with contact cement and centered within the test section.  



 20 

Table 2-2: Sieve analysis showing the particle size distribution.   

  

Sediment Size (mm) 

Sand Fine Pebble Medium Pebble 

𝒅𝟏𝟎  0.25 4.60 9.00 

𝒅𝟐𝟓  0.30 5.50 10.3 

𝒅𝟓𝟎  0.42 6.50 10.6 

𝒅𝟖𝟒  1.20 8.50 11.1 

𝒅𝟗𝟎  1.50 9.00 11.2 

2.3.5 BSS Calculations  

This section details the equations used to calculate BSS (𝜏𝑤), their limitations, and 

assumptions essential to the validity of each method.  A general overview of BSS calculations is 

outlined in the flowchart shown in Figure 2-6.  [N.B., The term BSS and 𝜏𝑤 were used when 

discussing shear stress for all methods, even for methods evaluating shear stress some elevation 

(𝑧) above the boundary, where 0 cm < 𝑧 < 3 cm].  
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2.3.5.1 Newton’s Law of Viscosity 

Assuming the presence of a viscous sublayer, Newton’s Law of Viscosity (Eq. 2-1) was 

used to estimate 𝜏𝑣; see Section 2.2 for this method’s assumptions and limitations. 

2.3.5.2 Turbulent Kinetic Energy (TKE) 

To calculate BSS, the TKE method uses 3D velocity fluctuations (i.e., 𝑢′, 𝑣′, 𝑤′) (Eq. 2-14-

Eq. 2-17).   

𝑢′ = 𝑢 − �̅� 
Eq. 2-14 

𝑣′ = 𝑣 − �̅� 
Eq. 2-15 

𝑤′ = 𝑤 − �̅� 
Eq. 2-16 

𝜏𝑤 = C ⌊
1

2
⌋ 𝜌𝑤((𝑢′2)̅̅ ̅̅ ̅̅ ̅ + (𝑣′2)̅̅ ̅̅ ̅̅ ̅ + (𝑤′2)̅̅ ̅̅ ̅̅ ̅) 

Eq. 2-17 

where: C = 0.19, and C is a fitting parameter valid for oceanic conditions and rough-bed open 

channel flow (Bagherimiyab & Lemmin, 2013; Biron et al., 2004; Pope et al., 2006; Soulsby, 1997; 

Stapleton & Huntley, 1995; Wren et al., 2017).  𝜏𝑤 is determined by multiplying the sum of the 

squares of the averaged velocity fluctuations by C*½*𝜌𝑤.  The TKE method has been used to 

calculate 𝜏𝑤 in flume and field studies (e.g., riverine and estuarine) under simple and complex 

flow conditions (Biron et al., 2004; Kim et al., 2000; Nikora & Goring, 2000; Pope et al., 2006; 

Stapleton & Huntley, 1995).  𝜏𝑤 varies with height above the bed, experiencing a maximum at 

0.1*ℎ and decreasing until it reaches the boundary; therefore, all 𝜏𝑤 estimates obtained from this 

method were calculated at 𝑧 ~3 cm for ℎ = 30.5 cm (Bagherimiyab & Lemmin, 2013; Biron et al., 

2004). 

TKE estimates of 𝜏𝑤 are limited by Doppler backscatter and the ADV sampling volume.  

Backscatter can be a result of increased Doppler noise from positive and negative buoyancy of 
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particles in the sampling volume, small-scale turbulence, acoustic beam divergence, and boundary 

interference (Kim et al., 2000; Pope et al., 2006).  

2.3.5.3 Law of Wall – Logarithmic Profile (LP) 

The Law of the Wall assumes a logarithmic velocity profile for steady, uniform flow in 

subcritical conditions and is commonly used in riverine and marine environments for fixed and 

weakly mobile sand and gravel beds (Le Roux, 2005; Pope et al., 2006; Soulsby, 1997; Wilcock, 

1996).  Following the assumption of a no slip condition for fully turbulent flow regimes, the natural 

log of the sampling depth is plotted against the velocity profile (Eq. 2-18) (Soulsby, 1997).   

𝑢(𝑧) =
𝑢𝑤

∗  

𝜅
ln (

𝑧

𝑧0
)  Eq. 2-18 

where: von Karman’s constant, 𝜅 = 0.4, 𝑧 = elevation above the bed (m), and 𝑧𝑜 = characteristic 

roughness length (m).  𝑧𝑜 and 𝑢𝑤
∗  were derived from the velocity profile using linear regression 

(Nikora & Goring, 2000; Soulsby, 1997; Whiting & Dietrich, 1990) and 𝜏𝑤 was calculated by 

substituting 𝑢𝑤
∗  into Eq. 2-2. 

2. 3.5.4 Law of Wall – Single Point 

The single point velocity method, the vertically-averaged form of Law of the Wall, assumes 

a logarithmic velocity profile and requires information describing the sediment size (e.g., 𝑑84) (Eq. 

2-19) (Whiting & Dietrich, 1990).   

𝜏𝑤 =
𝜌(𝑢𝑧∗𝜅)2

ln(
10∗𝑧

𝑑84
)

2   Eq. 2-19 

where: �̅�𝑧 = average velocity (m/s) at 𝑧 and 𝜅 = 0.4.  This method has been applied and proved 

successful in sand-bedded river bends (Dietrich & Smith, 1983) and gravel-bed channels (Whiting 

& Dietrich, 1990).  𝑑84 is representative of boundary features that dominate flow resistance 

because it accounts for the protrusion of larger grains into the flow field (Whiting & Dietrich, 
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1990).  Depending on in-situ conditions, the single point average velocity must be based on a 

minimum sampling duration of 50-100 seconds, at measurements below a height of 2/10ths the 

flow depth and 2 cm above an immobile bed of coarse sand or fine gravel substrate.  If the bed is 

mobile, then sampling location should be just above the top of the bedload layer, or at the height 

of the largest grains rolling on the bed (Whiting & Dietrich, 1990; Wilcock, 1996). 

2. 3.5.5 Indicator Function 

A major limitation to the Law of the Wall – LP method is that 𝑧𝑜 is derived from 

experimental data and precise measurement of 𝑧 is necessary.  An alternative graphical method 

that does not require estimation of 𝑧𝑜 is known as the indicator function (Eq. 2-20).   

𝑢𝑤
∗ =

𝑑𝑢

𝑑𝑧
𝑧𝜅  Eq. 2-20 

where: 𝜅 = 0.4.  This method uses the derivative of the velocity profile with respect to 𝑧 to calculate 

𝑢𝑤
∗ .  𝜏𝑤 was calculated using 𝑢∗̅̅ ̅, an average of the upper portion of the 𝑢𝑤

∗  profile after its peak 

and Eq. 2-2 (Örlü et al., 2010; Wengrove & Foster, 2014).   

2. 3.5.6 Quadratic Friction Law 

The Quadratic Friction Law applies to current driven environments with a steady, uniform, 

fully turbulent flow regime by quantifying the momentum dissipation due to bottom roughness 

(Eq. 2-21) (Pope et al., 2006; Soulsby, 1997; Wengrove et al., 2015).   

𝜏𝑤 = 𝜌𝑤𝐶𝐷�̅�2  Eq. 2-21 

where: 𝐶𝐷 = the drag coefficient (unitless) and �̅� = depth-averaged water velocity (m/s).  

Accurately estimating 𝐶𝐷 is challenging due to spatial variability of natural flow regimes and the 

presence of bed forms (Biron et al., 2004).  In many cases it is estimated using a constant value 

found in the literature.  For this dissertation, empirical relationships derived from the velocity 

profile used a fitted power-law function to calculate 𝐶𝐷 based upon 𝑧𝑜  (Eq. 2-22) (Soulsby, 1997).   
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𝐶𝐷 = 𝛼 (
𝑧0

ℎ
)

𝛽

  
Eq. 2-22 

where: 𝑧𝑜 was derived from the Law of the Wall – LP method, and 𝛼 and β are coefficients that 

change as a function of bottom substrate material, relative roughness, and bed mobility.  Three 

methods can be used to fit the power-law function: Manning-Strickler, Dawson-Johns, and 

Soulsby.  Soulsby’s (1997) power-law coefficients apply to estimates of skin-friction for flat 

mobile and immobile beds of sand with steady flows in flumes.  The Manning-Strickler (Strickler, 

1923) applies to open channel and pipe flow, and Dawson-Johns (Dawson et al., 1983) pertains to 

shallow water flow over topography in coastal environments.  The Dawson-Johns and Soulsby 

coefficients were derived based on experiments in oceanic environments, generally with a small 

relative roughness (i.e., 10-7 < 
𝑧𝑜

ℎ
 < 10-2), whereas Manning-Strickler applies to flow regimes with 

large relative roughness factors (i.e., 
𝑧𝑜

ℎ
 > 10-4) characteristic of pipe and channel flow (Mehaute & 

Hanes, 2005).  For all experimental conditions in this dissertation research, 
𝑧𝑜

ℎ
>10-4 and 

experiments were conducted in an open channel, therefore, only the Manning-Strickler approach 

was used to calculate 𝐶𝐷, where 𝛼 = 0.0474 and β = 1/3.   

2. 3.5.7 Chézy/Momentum 

The Chézy/Momentum approach is the simplest method to calculate a global BSS, but it 

does not capture local, small-scale variation (Biron et al., 2004; Yen, 2002).  The force balance 

approach uses the Chézy resistance coefficient (𝐶) to calculate BSS for a section of river with 

similar hydrologic conditions (i.e., reach-averaged BSS) (Eq. 2-23).   

𝐶 = √8𝑔 ∗ [1.2 + 2.03 log (
𝑅ℎ

𝑑84
)]

2

  
Eq. 2-23 

This method is generally applied to open channel flow (e.g., rivers, streams) under steady, uniform, 

and non-uniform hydraulic conditions.  𝐶 was estimated using an empirical relationship, originally 
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developed to calculate the Darcy-Weisbach friction factor, 𝑓, by relating 𝑑84 and 𝑅ℎ (Elger et al., 

2013; Leopold & Wolman, 1957; Limerinos, 1970).  Eq. 2-23 was modified to directly calculate 

𝐶, using 𝐶 = √
8𝑔

𝑓
 (Chaudhry, 2008; Elger et al., 2013).  For the purpose of this dissertation 

research, the slope of the energy grade line or friction slope, 𝑆𝑓, was used because it applies to 

uniform and non-uniform conditions (Eq. 2-24). 

𝑆𝑓 =
(

𝑈

𝐶
)

2

𝑅ℎ
  

Eq. 2-24 

𝑈 is the representative velocity component used in calculations, making it a global predictor of 

BSS (Babaeyan-Koopaei et al., 2002; Yen, 2002).  𝜏𝑤 was calculated by substituting Eq. 2-24 into 

Eq. 2-25. 

𝜏𝑤 = 𝛾𝑤𝑅ℎ𝑆𝑓  Eq. 2-25 

where: 𝛾𝑤 = specific weight of water (N/m3). 

2.3.5.8 Manning/Momentum 

The Manning formula is commonly used to estimate stream flow, velocity, or friction slope 

in open channels (Yen, 2002).  For this research, 𝑈 was known and the Manning formula was used 

to calculate 𝑆𝑓 for uniform, steady state conditions (Eq. 2-26) (Limerinos, 1970).  

where:  𝑛 = Manning’s roughness parameter quantifies friction and form losses, and varies with 

water discharge and bed material size (U.S. Army Corp of Engineers, 1993).  𝑛 has commonly 

been used to represent cross-sectional and reach resistance coefficients (Yen, 2002).  Seven 

methods were used to estimate 𝑛 based upon the PSD and of these, the median value was selected 

for use in BSS calculations (Appendix A.5: Estimating Manning’s n).  For the acrylic boundary, 

𝑆𝑓 = (
𝑈∗𝑛

𝑅
ℎ
2/3)

2

  
 Eq. 2-26 
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𝑛= 0.009 was selected based on typical literature values for Lucite (Chaudhry, 2008). [N.B., Lucite 

is another term used to describe acrylic].  𝜏𝑤 was then calculated using Eq. 2-25.   

2.3.6 Sensitivity Analysis of BSS Methods 

Based on results from the vertical hydraulic analysis, the methods that produced consistent 

estimates of BSS, regardless of flow condition or boundary type, were selected to undergo a 

sensitivity analysis.  The purpose of the sensitivity analysis was to quantify the impact of input 

parameter variability on BSS estimates.  Velocity and a roughness coefficient rely on in-situ 

conditions to estimate BSS.  Therefore, the effects of experimental variability associated with those 

parameters on BSS estimates were evaluated.   

The effect of velocity variability on BSS estimates was evaluated using the average 

velocity value and its associated standard deviation.  For example, 𝑈 was used to calculate BSS 

following the Chézy/Momentum method.  Therefore, 𝑈±σ represented the lower and upper 

velocity bounds in the sensitivity analysis.  The variability associated with roughness parameters 

was determined by converting 𝑧𝑜, 𝐶𝐷, 𝐶, 𝑛, 𝑑50, and 𝑑84 to like terms and using the minimum and 

maximum values as the lower and upper limits, respectively.  Results from the sand substrate 

experiments were used for all velocity intervals as the reference conditions, varying only one input 

parameter at a time while holding all others constant.  

2.4 Results and Discussion  

Based on results from the longitudinal analysis and for ℎ = 30.5±1 cm, all experiments 

used the Vectrino to collect velocimetry data 3.2 m from the entrance as velocity was increased in 

a stepwise manner from 0.06 m/s to 1.1 m/s in 0.07 m/s intervals (i.e., for VFD settings from 1 to 

17 Hz in 1 Hz intervals).  The location was selected so that turbulence induced by the hydraulic 

jump and backwash effects as the water recirculates to the lower tank were minimized.  Water 



 28 

temperature was kept constant (25±2°C) for all experiments, therefore, the physical properties used 

in these calculations assumed a water temperature of 25°C.  This proved to be a valid assumption 

because regardless of the method, when BSS was analyzed using 𝜌𝑤 or 𝛾𝑤 at 10°C rather than 

25°C, BSS increased by 0.3%.  A temperature of 10°C was used as the lower threshold because 

that is the minimum experimental temperature selected for the subsequent oil CSS experiments. 

The results from the longitudinal, cross-sectional, horizontal, and vertical hydraulic 

analyses are presented in the following order: (1) correlation of VFD settings with in-situ velocity 

measurements, (2) characterization of the flow regime as a function of water velocity and substrate 

type, (3) identification of ADV limitations, (4) classification of boundary parameters and 

roughness coefficients, (5) BSS predictions using all valid methods, and (6) evaluation of BSS 

sensitivity on input parameter variability.   

2.4.1 Hydraulic Analysis: Acrylic Boundary 

2.4.1.1 VFD Correlation 

Using data collected in the longitudinal hydraulic analysis, the VFD settings (x) were 

correlated with 𝑈 (m/s) by averaging the upper 3 mm of the 0 to 9 cm profile for each substrate 

type (Figure 2-7).   
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 𝑈 was calculated within the upper region of the measured profile because velocity was 

constant with respect to 𝑧.  This fitted relationship only applied to VFD settings between 0 and 

14 Hz and when ℎ = 30.5±1 cm.  The fitted line fell within 𝑈±σ of the measured values 

regardless of substrate type.  The relatively small variability in 𝑈 was attributed to changes in 

water depth, sampling distance from the bed, sediment type, and measurement error due to 

bubble formation on the front prong of the Vectrino at high water velocities (i.e., for fine pebble 

and medium pebble at VFD settings ≥ 13 Hz). 

The findings from this section quantified the relationship between the VFD settings 

and in-situ velocity for 𝒉 = 30.5±1 cm.  The correlation between VFD setting and velocity 

provided an estimate for 𝑼 used in these calculations and subsequent chapters. 

2.4.1.2 Characterizing the Flow Regime: Acrylic Boundary 

The second objective of this research was to determine which VFD settings caused the test 

section’s flow regime to be unsteady, non-uniform, turbulent, or supercritical for 𝑅ℎ= 10.2 cm 

Figure 2-7: Compilation of velocity measurements for acrylic, sand, fine pebble, and 

medium pebble; a line of best fit relates VFD Setting (Hz) with U (m/s) for 𝒉= 30.5±1 cm. 
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(Table 2-3).  Further information about 𝐹𝑟, 𝐸, water level, and head loss due to the hydraulic jump 

as a function of velocity is given in Appendix A.1: Hydraulic Analysis.  Uniform and steady state 

conditions were confirmed for VFD settings between 1 and 14 Hz, and non-uniform, unsteady 

flow occurred at VFD settings 15 to 17 Hz.  Uniform (Figure 2-8a), non-uniform (Figure 2-8b), 

steady (Figure 2-9a) and unsteady (Figure 2-9b) conditions were compared for VFD settings of 4 

Hz and 16 Hz.  Calculation of 𝑅𝑒 indicated that flow was turbulent for all VFD settings.  Flow 

within the test section was subcritical (𝐹𝑟 < 1) for VFD settings 1 to 7 Hz, transitioned to critical 

(𝐹𝑟 = 1) at 8 and 9 Hz, and was supercritical (𝐹𝑟 > 1) at VFD settings 10 to 17 Hz.  [N.B., Small, 

non-breaking standing waves began forming just after the flume entrance at 5 Hz]. 

These results were used to determine which velocities and corresponding VFD 

settings violated method assumptions necessary to BSS approximations.  VFD settings of 1 

to 14 Hz correspond to 𝑼 of 0.06±0.01m/s to 1.04±0.05 m/s, and an increase in the VFD setting 

by 1 Hz results in an increase of 𝑼 by 0.08±0.02 m/s.   
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2.4.1.3 Vectrino Limitations 

Instantaneous velocity measurements were deemed reliable at VFD settings based upon the 

percent of data points removed and data quality metrics: 1 to 14 Hz for an acrylic and sand 

boundary, 1 to 13 Hz for the medium pebble substrate, and 1 to 12 Hz over fine pebble substrate.  

The percent removal of data points was calculated by relating the total number of raw data points 

and the number of data points eliminated during post-processing (Appendix A.6: Percent Removal 

of Velocity Data).  Experimental trials with high removal rates (>18%) were repeated using 

different Vectrino settings to confirm that results were due to instrument error rather than user 

error.  A threshold of 18% was selected based on experimenal results because trials exceeding that 

removal rate tended to have gaps in the velocity time-series as a result of low SNR or low %Corr 

which led to erroneous velocity measurements.  High removal rates were attributed to weak spots 

within the sampling volume as a result of irregular boundary conditions, the instrument shaking 

due to turbulence and motor vibrations, and bubble formation on the front prong for 𝑧 > 3 cm. 

Although the instantaneous velocity measurements for fine pebble and medium pebble 

substrates exhibited higher percent removal values at 13 Hz and 14 Hz, especially for profiles 

measured at 𝑧 >3 cm, subsequent CSS experiments were conducted for VFD settings up to 14 Hz 

to analyze oil movement for 𝑈 >1 m/s.  Based on these findings, the Vectrino recorded near-

bed profiles (𝒛 = 0 to 3 cm), minimizing bubble formation at higher velocities, in subsequent 

studies of how oil movement was impacted as flow transitioned from sub- to super-critical 

conditions and for 𝑼 >1 m/s.  

2.4.2 Boundary Characteristics: All Substrate Materials 

The velocity profile was analyzed and compiled for acrylic (Figure 2-10a), sand (Figure 

2-10b), fine pebble (Figure 2-10c), and medium pebble (Figure 2-10d) substrates as a function of 
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water velocity.  Three independent sampling locations (e.g., 0 to 3 cm, 3 to 6 cm, 6 to 9 cm) were 

compiled into a single velocity profile of �̅�(𝑧) for 𝑈 of 0.06 to 1.04 m/s in 0.07 m/s intervals.  

Because the height of the Vectrino needed to be changed to measure these sections and due to an 

irregular boundary, the compilation of the three profiles resulted in slight discontinuity in the 0 to 

9 cm velocity profile.  [N.B., Boundary parameters are presented in terms of “mm”].  The red 

dotted lines for sand, fine pebble, and medium pebble represent the sediment 𝑑84.  Whereas, for 

the acrylic velocity profile the red dotted line is the boundary’s equivalent 𝑘𝑠.  This was classified 

as “smooth” using the Moody Diagram’s Equivalent Sand Grain Roughness for plastic or glass 

pipe materials (Elger et al., 2013).
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The boundary parameters were calculated based on the velocity profiles and were used in 

BSS calculations.  A small gap in the medium pebble profile (𝑧 = 3.6 to 3.7 cm) occurred because 

data points were not plotted due to a sampling weak spot causing erratic velocity measurements.  

Common boundary descriptors (e.g., 𝑘𝑠), relative roughness, and the theoretical logarithmic profile 

region for sand, fine pebble and medium pebble substrates (Soulsby, 1997; Whiting & Dietrich, 

1990) were derived based on the PSD (Table 2-4). 

The presence of a viscous sublayer was analyzed using 𝑅𝑒∗, by rearranging Eq. 2-2 and 

using BSS calculated from the TKE method to solve for 𝑢𝑤
∗ .  The TKE method was chosen as the 

reference because it: (1) is independent of elevation measurements, (2) is specific to local BSS 

estimates, and (3) aligns with literature values (Bagherimiyab & Lemmin, 2013; Pope et al., 2006; 

Thompson et al., 2006).  A hydraulically-smooth boundary layer (𝑅𝑒∗ < 5) was identified between 

0.06 m/s to 1.04 m/s over the acrylic.  A transitional boundary layer (5 < 𝑅𝑒∗ < 70) occurred over 

the velocity range of 0.06 m/s to 1.04 m/s over the sand.  Hydraulically-rough flows (𝑅𝑒∗ > 70) 

were observed over fine pebble and medium pebble beds between 0.06 m/s to 1.04 m/s.  

The Law of the Wall – LP method assumes measurements are taken within the logarithmic 

region of the velocity profile, 𝑧𝐿𝑃, which changes as a function of sediment size and water depth.  

The acrylic and sand estimates of 𝑧𝑜 were analyzed within 0 to 3 cm from the bottom and had RSD 

values of 13% and 22%, respectively.  The fine pebble and medium pebble estimates were derived 

from the 3 to 6 cm profiles and had higher levels of  variability associated with 𝑧𝑜.  Based on the 

RSD for fine pebble (52%) and medium pebble (50%), 𝑧𝑜 variability suggested that this method 

was not as reliable for irregular boundaries because of its reliance on precise measurements of 

elevations above the bed and the associated velocity (Pope et al., 2006).  Some variability is 

expected with 𝑧𝑜 because boundary roughness varies spatially and 𝑧𝑜 is not constant with velocity.  
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As shown by the data for acrylic, sand, and fine pebble, 𝑧𝑜 increases with velocity until an 

inflection point, then decreases as velocity increases.  This inflection suggests the velocity 

threshold where the effect of boundary roughness becomes less prominent due to an increasingly 

turbulent boundary.  For acrylic and sand, 𝑧𝑜 increased until it reached a peak at 𝑈 = 0.46 m/s, and 

then consistently decreased until 𝑈 = 1.04 m/s.  Fine pebble 𝑧𝑜 values followed a similar trend in 

that values increased until 𝑈 = 0.68 m/s and then decreased until 𝑈 = 1.04 m/s.  Alternatively, 

medium pebble 𝑧𝑜 values consistently increased until it reached a peak and plateaued for 𝑈 >0.88 

m/s.  This suggests that the velocities analyzed in this research were not fast enough for turbulence 

to minimize the effect of grain-induced drag for this sediment size.  For each substrate type, the 

average 𝑧𝑜 (𝑧�̅�) and the standard deviation (𝜎𝑧𝑜
) were determined over the three-minute sampling 

duration (Table 2-4).
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𝑧�̅� values determined in this research were on the same order of magnitude as those found 

in literature (Soulsby, 1997); the experimentally-derived values of 𝑧�̅� over sand were larger by a 

factor of two, while those for medium pebble fell slightly below the literature value.  The larger 

sand estimate may be attributed to 𝑧𝑜 being derived from the 0 to 3 cm profile as opposed to using 

velocity profiles further from the bed or for over wider profile range.  In general, 𝑧𝑜 is often derived 

from profiles measured within 2 m from the bed, supporting the fact that a lower 𝑧𝑜 value from 

literature is expected (Thompson et al., 2003).  Additionally, when evaluated over a wider profile 

range (0 to 9 cm), 𝑧𝑜 over the sand substrate decreased from 0.9 mm to 0.3 mm.  As a result of the 

rapid rate of change in velocity near the bed, the fitted equation from the velocity profile tended 

to have a steeper slope and a larger y-intercept (𝑧𝑜).   

𝐶𝐷 was calculated from 𝑧𝑜.  Hence, the region in which these values were obtained varies 

depending on 𝑧𝐿𝑃, and changes with respect to velocity.  Unlike 𝐶𝐷, an advantage to using the 

Manning formula and 𝑛 is that when flow is fully turbulent over a rough rigid surface, 𝑛 remains 

nearly constant and independent of flow depth, Reynolds number, or relative roughness (Yen, 

2002). 

2.4.3 Comparison of Roughness Parameters 

To compare the different roughness parameters, 𝐶 and 𝑛 were expressed in terms of 𝐶𝐷 

using, 𝐶𝐷 =
𝑔

𝐶2 =
𝑔𝑛2

ℎ1/3 (Soulsby, 1997), and 𝐶𝐷 based on sediment size by substituting 𝑧𝑜 =
𝑑50

12
 

and 𝑧𝑜 = 0.1 ∗ 𝑑84 into Eq. 2-22 (Table 2-5).   
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Table 2-5: Comparison of 𝑪𝑫 values calculated from various methods derived within 𝒛𝑳𝑷.  

Method & Parameter Acrylic Sand Fine Pebble Medium Pebble 

𝑪𝑫 based on 𝒛𝒐̅̅ ̅ 0.0065 0.0068 0.0086 0.0091 

𝑪𝑫 based on 𝒅𝟓𝟎 n/a 0.0031 0.0040 0.0042 

𝑪𝑫 based on 𝒅𝟖𝟒 n/a 0.0035 0.0067 0.0073 

𝑪𝑫 based on 𝐶 0.0026 0.0048 0.0109 0.0126 

𝑪𝑫 based on 𝒏 0.0012 0.0031 0.0061 0.0069 

 

For every sediment substrate, 𝐶𝐷 based on 𝑑50 provided the lowest estimate, followed by 

𝐶𝐷 adjusted from 𝑛, and 𝐶𝐷 calculated from 𝑑84.  For acrylic and sand, the next largest 𝐶𝐷 was 

based on 𝐶 and the largest derived from 𝑧�̅� .  Alternatively, for fine pebble and medium pebble, 

the second largest 𝐶𝐷 was calculated from 𝑧�̅� and the largest value estimated by 𝐶.   

Four of the seven methods to calculate 𝑛 rely on 𝑑50 as the representative grain size, one 

uses 𝑑84, and two use 𝑑90.  𝑛 is then selected based on the median of those seven methods, 

therefore, as shown by these results, estimates should fall between those made using 𝑑50 and 𝑑84.  

For sand and acrylic, 𝐶𝐷 based on 𝑛 and 𝐶 are slightly lower than when derived from 𝑧�̅�  because 

𝑧�̅�  estimates were taken close to the boundary (i.e., 𝑧 = 0 to 3 cm).  Fine pebble and medium 

pebble 𝑧�̅� values were derived at a higher elevation from the bed (i.e., 𝑧 = 3 to 6 cm), where the 

effect of a rapidly increasing velocity profile was minimized resulting in a smaller 𝑧�̅�.  

Additionally, the increase in 𝐶𝐷 based on 𝐶 from sand to fine pebble occurred because 𝑑84 is the 

only variable in the equation, and 𝑑84 for fine pebble is ~7x larger than for sand (e.g., 8.5 mm/1.2 

mm = 7.08). 

𝐶𝐷 = 0.004 at 𝑧 = 15 cm is a commonly cited 𝐶𝐷 value  (i.e., Sternberg’s smooth bed 

constant, 𝐶𝐷 = 0.003 adjusted from 𝑧 = 10 cm) (Sternberg, 1973), however, values may vary 

depending upon velocity and depth of measurement and therefore a range is expected (Thompson 
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et al., 2004).  For example, Soulsby (1997) showed a spread in 𝐶𝐷 of 0.004 to 0.01 for 
𝑧0

ℎ
 = 10-3, 

and Thompson et al. (2003) found that 𝐶𝐷 varied between 0.0005 to 0.006 at 𝑧 = 15 cm for a 

smooth boundary.  In the CRRC flume experiments, the adjusted 𝐶𝐷 values were less than 0.01, 

with the exception of fine pebble and medium pebble 𝐶𝐷 based on 𝐶.  To relate findings from this 

research to literature values, 𝐶𝐷 was adjusting to 𝑧 = 15 cm following Eq.18 and 𝐶𝐷𝑧
= (

𝑢𝑤
∗

𝑢(𝑧)
)

2

, 

where 𝑢𝑤
∗  was calculated from the Quadratic Friction Law.   

After adjusting 𝐶𝐷 to 𝑧 = 15 cm, the average 𝐶𝐷 over acrylic decreased from 0.007 to 0.006.  

Adjusted 𝐶𝐷 values were then evaluated with respect to velocity, and the results showed that as 𝑈 

increased from 0.06 m/s to 1.04 m/s, 𝐶𝐷 decreased from 0.006 to 0.005, respectively.  Using the 

Quadratic Friction Law over an acrylic boundary, Thompson et al. (2004) found a decrease and 

plateauing of 𝐶𝐷 = 0.005 as velocity increased, a similar value to those found in this research.  A 

range of 𝐶𝐷 values is expected and can be attributed to the different methods of approach, the 

elevation above the boundary where drag is calculated, the relative roughness, and the 

representative sediment grain size used in calculations.  

Excluding the acrylic boundary, the median roughness parameter for all other substrate 

types was estimated using 𝑧𝑜 = 0.1 ∗ 𝑑84 and Eq. 2-22.  In the field, where no direct boundary 

information or measurements can be collected, this method of obtaining 𝐶𝐷 is recommended for 

open channel flow under similar hydraulic conditions.  [N.B., The effect of roughness parameter 

on BSS estimates will be analyzed further in 2.4.6 Sensitivity Analysis of BSS Methods]. 

This research corroborated the literature that 𝑪𝑫 varies at different depths, velocities, 

relative roughness, and bottom roughness.  Hence, 𝑪𝑫 must be derived from the measured 

velocity profiles (𝒛 = 0 to 3 cm) for each experimental condition in the CRRC flume to 

represent in-situ near-bed conditions.  The range of 𝑪𝑫 values was applied as the lower and 
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upper bounds for the roughness parameters when conducting the sensitivity analysis on the 

Quadratic Friction Law, the Chézy/Momentum, and the Manning/Momentum methods. 

2.4.4 Evaluating BSS: All Substrate Materials 

2.4.4.1 Method Applicability 

BSS was calculated based on eight methods: (1) Newton’s Law of Viscosity, (2) TKE, (3) 

Law of the Wall – LP, (4) Law of the Wall – Single Point, (5) Indicator Function, (6) Quadratic 

Friction Law, (7) Chézy/Momentum, and (8) Manning/Momentum.  These methods were chosen 

based on their commonality among field and laboratory experiments, applicability to fluvial and 

marine current-driven environments, the diversity of velocity measurements, and variability in 

calculating roughness coefficients.  All methods used to calculate BSS require a velocity 

measurement, but the type and location of the measurement depends upon the method’s 

assumptions.  Five of the eight methods assume a uniform, steady flow regime making all methods 

valid in the MacFarlane Flume for 𝑈 between 0.06 and 1.04 m/s (i.e., VFD settings of 1 and 14 

Hz).  A summary of the velocities for which each BSS method is valid for use in the MacFarlane 

Flume is shown in Table 2-6.   
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Table 2-6: Velocities for which BSS methods are valid in the MacFarlane Flume. 

Method Name 
Acrylic 

(m/s) 

Sand 

(m/s) 

Fine Pebble 

(m/s) 

Medium Pebble 

(m/s) 

Newton’s Law of Viscosity 0 to 0.77 0 to 0.61 0 to 0.27 N/A 

TKE 0 to 1.04 0 to 1.04 0 to 1.04 0 to 1.04 

Law of Wall – LP 0 to 0.61 0 to 0.61 0 to 0.61 0 to 0.61 

Law of Wall – Single Point 0 to 1.04 0 to 1.04 0 to 1.04 0 to 1.04 

Indicator Function 0 to 1.04 0 to 1.04 0 to 1.04 0 to 1.04 

Quadratic Friction Law 0 to 1.04 0 to 1.04 0 to 1.04 0 to 1.04 

Chézy/Momentum 0 to 1.04 0 to 1.04 0 to 1.04 0 to 1.04 

Manning/Momentum 0 to 1.04 0 to 1.04 0 to 1.04 0 to 1.04 

 

The TKE, Indicator Function, Quadratic Friction Law, Chézy/Momentum, and 

Manning/Momentum were applicable for all hydraulic and boundary conditions exhibited during 

these experimental trials.  The Law of the Wall – LP method was limited to subcritical hydraulic 

conditions (Wilcock, 1996) and, therefore, becomes invalid for 𝑈  > 0.61 m/s in this flume for ℎ = 

30.5 cm.  In addition, velocity measurements for the LP and Single Point methods require that the 

velocity used in BSS calculations is within 𝑧𝐿𝑃.  For this to hold true, fine pebble and medium 

pebble velocity measurements were obtained using sampling profiles within the range of 3 to 6 

cm.  [N.B., 𝑧𝐿𝑃 for the other substrates was 0 to 3 cm]. 

Validity of the Newton’s Law of Viscosity depends on the presence of a viscous sublayer.  

A smooth hydraulic boundary layer is a strong indication that a viscous sublayer is present.  The 

presence of a sublayer was confirmed using eddy diffusivity, 𝐸(𝑧), (Eq. 2-27) and plotting it 

against the dimensionless height, 𝑍+, (Eq. 2-28) (Boudreau & Jorgensen, 2001).  A viscous 

sublayer was identified for: acrylic (𝑈 < 0.77 m/s), sand (𝑈 < 0.61 m/s), fine pebble (𝑈<0.27 m/s), 

and medium pebble (N/A for 𝑈) (Appendix A.7: Eddy Diffusivity (E(z)) vs. Dimensionless Height 

(Z+)). 
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𝐸(𝑧) = 𝜅𝑢𝑤
∗ 𝑧  Eq. 2-27 

𝑍+ =
𝑧𝑢𝑤

∗

𝜐𝑤
  Eq. 2-28 

Some methods are applicable for each boundary material, but are invalid at high velocities 

(e.g., Law of the Wall – LP).  Alternatively, a method may not be valid over a rough boundary and 

may be restricted by sediment size (e.g., Newton’s Law of Viscosity).  These exceptions are noted 

in the subsequent discussions.  

2.4.4.2 BSS Estimates Evaluated by Substrate 

A compilation of BSS estimates over acrylic (Figure 2-11a), sand (Figure 2-11b), fine 

pebble (Figure 2-11c), and medium pebble (Figure 2-11d) substrates are illustrated as a function 

of water velocity.  The location of the velocity measurement used to calculate BSS changes are 

documented in Appendix A.8: Velocity Measurement Location.  Figures for each method as a 

function of substrate type can be found in Appendix A.9: BSS Method for All Substrate Types.  

Acrylic 

Over the acrylic boundary, Newton’s Law of Viscosity is valid for 𝑈 <0.77 m/s and Law 

of the Wall – LP is valid for 𝑈 <0.68 m/s.  Newton’s Law of Viscosity produces the largest BSS 

estimate for values where 𝑈 ≤0.20 m/s.  For 0.27 m/s≤ 𝑈 ≤0.61 m/s, the Law of the Wall – LP 

BSS estimates were larger than all other methods.  For 𝑈 >0.61 m/s, the Quadratic Friction Law 

produced the largest BSS estimates.  The minimum estimate alternated between the Indicator 

Function and the Manning/Momentum methods for 𝑈 ≤1.04 m/s.  The TKE and Quadratic Friction 

Law were similar and followed closely along the arithmetic mean until 𝑈 = 0.54 m/s, after this 

threshold the average increased at a faster rate than TKE and at a slower rate than the Quadratic 

Friction Law.  The arithmetic average of all BSS estimates (𝜏𝑤̅̅̅̅ ) at 𝑈 = 1.04 m/s, excluding the 

invalid methods, was 2.31±1.34 Pa. 



 

46 

 

F
ig

u
re

 2
-1

1
: 

E
ig

h
t 

B
S

S
 e

st
im

a
te

s 
ca

lc
u

la
te

d
 f

o
r 

(a
) 

a
cr

y
li

c,
 (

b
) 

sa
n

d
),

 (
c
) 

fi
n

e 
p

eb
b

le
, 
a
n

d
 (

d
) 

m
ed

iu
m

 p
eb

b
le

. 
 



 

47 

Sand 

For the sand substrate, the Law of the Wall – LP and Newton’s Law of Viscosity are valid 

for 𝑈<0.68 m/s.  Similar to the acrylic boundary, BSS estimates over the sand substrate were the 

largest for Newton’s Law of Viscosity method until 𝑈 >0.20 m/s.  From 0.27 m/s≤ 𝑈 ≤0.61 m/s, 

the maximum BSS estimate was calculated using the Law of the Wall – LP method.  For 0.77 m/s≤ 

𝑈 ≤1.04 m/s, the highest value was calculated using the Chézy/Momentum formula, with the 

Quadratic Friction Law and Manning/Momentum producing similar estimates to the 

Chézy/Momentum.  The Indicator Function method produced the lowest BSS estimates for all 

velocities.  At 𝑈 = 1.04 m/s, the Indicator Function produced a BSS estimate of 0.83 Pa, while the 

Chézy/Momentum estimate was 4.97 Pa.  Omitting the invalid methods, 𝜏𝑤̅̅̅̅ ±σ at 𝑈 = 1.04 m/s was 

3.86±1.13 Pa.  Assuming 𝜌𝑠 = 2650 kg/m3 for sand and from Eq. 2-3, 𝜏∗ = 0.57±0.17.  With the 

exception of the Law of the Wall – LP, the Indicator Function, and Newton’s Law of Viscosity, 

all other BSS estimates fell within the 𝜏𝑤̅̅̅̅ ±σ. 

Fine Pebble 

Over the fine pebble boundary, Newton’s Law of Viscosity and the Law of the Wall – LP 

were invalid for 𝑈 <0.34 m/s and 𝑈 <0.68 m/s, respectively.  Contrary to the acrylic and sand BSS 

estimates, for fine pebble, the Indicator Function estimates were highest for five of the 14 

experimental trials (e.g., 0.06 m/s, 0.13 m/s, 0.34 m/s, 0.40 m/s, 0.54 m/s) and showed high 

variability at 0.06 and 0.13 m/s, peaked at 0.54 m/s, and then tracked closely with the arithmetic 

mean for 𝑈 >0.61 m/s.  The Law of the Wall – LP method followed a pattern similar to that of 

acrylic and sand, producing some of the largest BSS estimates for  𝑈 ≤0.61 m/s.  The 

Chézy/Momentum estimates were largest for 𝑈 ≥0.68 m/s.  At 𝑈 = 1.04 m/s, 𝜏𝑤̅̅̅̅ ±σ was 7.62±2.75 
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Pa for all valid methods.  Assuming 𝜌𝑠 = 2650 kg/m3 for fine pebble and from Eq. 2-3, 𝜏∗ = 

0.07±0.03.   

Medium Pebble 

Over the medium pebble substrate, Newton’s Law of Viscosity was invalid at all velocities.  

The Law of the Wall – LP was invalid for 𝑈 <0.68 m/s.  BSS estimates made by the Indicator 

Function were largest for all water velocities, and when included in averages it increased the RSD 

from 35% to 95%.  In the fine pebble and medium pebble experiments, the Indicator Function 

based BSS estimates peaked prior to the flow becoming critical and then decreased until values 

followed with the trend established prior to the critical transition.  BSS estimates obtained using 

the Quadratic Friction Law were lowest 0.06 m/s≤ 𝑈 ≤0.40 m/s.  For 𝑈 >0.40 m/s, the lowest BSS 

estimate was made using the TKE method.  Similar to acrylic, sand, and fine pebble, BSS estimates 

using the Law of the Wall – LP were higher compared to other methods.  BSS values based on the 

Manning/Momentum method were at either the median value or were close to the median for the 

entire velocity range.  At 𝑈 = 1.04 m/s, 𝜏𝑤̅̅̅̅ ±σ, for all valid methods was 12.21±6.08 Pa.  When the 

Indicator Function was excluded, 𝜏𝑤̅̅̅̅ ±σ decreased to 10.16±3.84 Pa.  Assuming 𝜌𝑠 = 2650 kg/m3 

for medium pebble and from Eq. 2-3, 𝜏∗ = 0.06±0.02.  Due to the 60% increase in RSD when 

including this method, the Indicator Function was excluded in any averages for the medium pebble 

substrate and should not be used for estimating BSS in this flume when flow transitions from sub- 

to super-critical. 

In the event where direct boundary measurements cannot be made, the roughness 

parameters and the drag coefficient determined in this research can be applied to similar in-situ 

flow conditions in the field.  Overall, for each substrate type, the BSS estimates increased in 

magnitude with respect to 𝑈, while the RSD decreased.  A wider spread in BSS estimates was 
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associated with rougher substrates, at 𝑈 = 1.04 m/s, σ increased from 1.34, 1.13, 2.75, and 3.84 

for acrylic, sand, fine pebble, and medium pebble, respectively.  Wren et al. (2011) noted a 2 to 3 

Pa spread in BSS between three methods for a discharge of 50 L/s (𝑈~0.68 m/s) and 65 L/s 

( 𝑈~0.81 m/s).  Additionally, the high variability associated with BSS estimates for medium pebble 

was corroborated by Buffington & Montgomery (1997), concluding “there is no definitive 𝜏𝑐50
∗  for 

rough, turbulent flow characteristics of gravel bedded rivers, but rather there is a range of values 

that differs between investigative methodologies”.  This makes it challenging to determine an 

accurate CSS estimate, especially for rough boundaries, and underscores the importance of using 

multiple methods to calculate BSS in the laboratory, so the range of global and local BSS field 

estimates can be readily compared. 

For example, if heavy oil spilled into a gravel-bedded river and sank to the bottom, then 

responders would want to know for what in-situ BSS the oil could mobilize.  If CRRC conducted 

oil CSS experiments in the MacFarlane Flume and determined that the oil resuspended at 𝑈=1.04 

m/s on the medium pebble substrate, then the corresponding 𝜏𝑤̅̅̅̅ ±σ would be 10.16±3.84 Pa.  Using 

a global method, the oil CSS would be upwards of ~13 Pa, whereas the local method may predict 

oil CSS to be ~7 Pa.  Depending on the method used, oil spill modelers can use the lower and 

upper oil CSS values to compare with the predicted in-situ BSS in relative terms to predict oil 

mobility. 

Additionally, there was no consistent relationship to relate local and global estimates 

because results varied with respect to method, velocity, and boundary roughness.  It is important 

to note that the disparity between local and global estimates were more prominent for rougher 

boundaries (i.e., fine pebble, medium pebble) than for the smoother substrates (i.e., acrylic, sand).  

When comparing TKE with Chézy/Momentum estimates on acrylic, TKE BSS estimates were 
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larger than Chézy/Momentum for 𝑈 <0.77 m/s.  On sand, TKE BSS estimates were larger than 

Chézy/Momentum when 𝑈 <0.54 m/s.  Whereas, over the fine pebble substrate Chézy/Momentum 

BSS was larger for all velocities and increased between 47% and 173% from TKE BSS estimates.  

Over the medium pebble substrate, Chézy/Momentum BSS was larger for all velocities and 

increased between 91% to 202% from TKE BSS estimates. 

2.4.4.5 BSS Estimates Evaluated by Method 

Newton’s Law of Viscosity 

Newton’s Law of Viscosity is valid over acrylic, sand, and fine pebble substrates up to 𝑈 

of 0.77 m/s, 0.61 m/s and 0.27 m/s, respectively.  With respect to substrate type, this method was 

the only one that estimated BSS to be largest over the acrylic boundary for four of the 14 velocity 

increments, followed by sand, fine pebble and medium pebble.  Larger BSS estimates are 

anticipated over a smooth boundary in the viscous sublayer because the rate of change in velocity 

profile in this small region is larger than in the absence of roughness elements.  The medium pebble 

substrate did not have a viscous sublayer, but a linear trend in the near- bed velocity profile (z  <7 

mm) was identified as a roughness layer.  This method requires confirmation of the presence of a 

viscous sublayer using specialized equipment to measure near-bed velocity profiles.  In the event 

of an oil spill, it is unlikely responders will be able to confirm the presence of a viscous 

sublayer, therefore, this method is not recommended for use in the subsequent flume 

experiments. 

TKE 

The TKE method requires an instrument capable of obtaining instantaneous 3D 

velocimetry data.  This method can be leveraged to produce a BSS profile or a single point 

estimate.  This method is valid for all velocities and substrate types.  For 0.20 m/s< 𝑈 ≤1.04 m/s, 
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BSS over the acrylic was consistently lower compared to the other boundary types.  When 

evaluating the TKE method, for 𝑈 ≤0.46 m/s, this method produced fairly similar BSS estimates 

regardless of boundary roughness.  When 0.54 m/s≤ 𝑈 ≤1.04 m/s, BSS estimates diverged from 

one another, showing that the rougher boundaries produced more turbulence and higher BSS 

approximations.  The acrylic estimates of BSS plateaued whereas the rougher substrates continued 

to increase BSS with 𝑈, this is likely an artifact of the smoothness of the acrylic material limiting 

the excess turbulence even at 𝑈 ~ 1.04 m/s. 

BSS estimates based on TKE method were compared with a fitted equation (𝜏𝑤 =

1.7885 ∗ 𝑢2), derived from experimental data over a smooth boundary by Pope et al. (2006) and 

a fitted equation (𝜏𝑤 = 4.59 ∗ 𝑢2) for rough bed flows over gravel (𝑑50= 1.5 cm) substrate 

developed by Bagherimiyab and Lemmin (2013) (Figure 2-12).  

The sampling volume for Pope et al. (2006) was centered at 𝑧 = 5 cm (~14% flow depth), 

whereas estimates presented from this research using the TKE method were obtained at 10% of 

Figure 2-12: Comparison of BSS calculated using the TKE method over acrylic, sand, fine 

pebble, and medium pebble substrates, and quadratic relationships between average velocity 

and BSS established by Bagherimiyab and Lemmin (2013) and Pope et al. (2006).   
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the flow depth.  As previously discussed, a higher 𝑧 may produce lower BSS estimates because a 

maximum value occurs at 10% of the flow depth and decreases with increasing 𝑧.  Estimates by 

Pope et al. (2006) are lower than predictions from this research for 𝑈 <0.77 m/s, but converge for 

𝑈 >0.77 m/s.  The fitted equation for the smooth boundary produced lower BSS estimates 

compared to the field and flume data used to calculate it, indicating that a quadratic relationship 

does not accurately represent BSS estimates at low velocities.  

Bagherimiyab and Lemmin (2013) measured the velocity profile throughout the entire 

water depth (ℎ =19 to 20 cm) and fitted a quadratic formula to the average BSS calculated using 

five methods (e.g., logarithmic velocity profile, TKE, Reynolds stress, wall similarity, spectral 

method).  Based on the sediment size, BSS estimates would likely fall between the sand and fine 

pebble substrates.  The fitted equation produced BSS estimates lower than those estimated over an 

acrylic bed for 𝑈 <0.40 m/s, for 0.40 m/s< 𝑈 <0.85 m/s estimates were between sand and fine 

pebble.  When 𝑈 >0.85 m/s, BSS increased at a faster rate and converged with estimates predicted 

over the medium pebble substrate at 𝑈 = 1.04 m/s.  Both of the fitted quadratic relationships, using 

the average water velocity as a predictor for BSS, underestimated BSS at low velocities and 

predicted an exponential increase in BSS for 𝑈 >1 m/s. 

Results calculated from the TKE method indicated that the BSS’s rate of change slowed as 

velocity increased and may plateau.  This trend was clear for the acrylic BSS estimates, calculated 

using the TKE method for 𝑈 of 0.68 to 1.04 m/s, BSS increased from 1.22 to 1.74 Pa.  For that 

same interval, using the Quadratic Friction Law, BSS estimates increased from 2.1 to 4.8 Pa.  

These findings indicated that a quadratic relationship may not be a good predictor for in-situ, local 

BSS estimates.  This method was used in subsequent CSS experiments with this flume because 
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it produced consistent BSS estimates that captured localized turbulence and can be applied 

to any flow or boundary condition.  

Law of the Wall – LP  

The Law of the Wall – LP method was invalid in the MacFarlane Flume for 𝑈 <0.68 m/s 

because conditions within the test section become supercritical and no longer satisfied method 

assumptions.  When 𝑈 ≤0.54 m/s, BSS estimates were similar regardless of boundary type (i.e., 

BSS ranged ±0.60 Pa), and for 𝑈 ≥0.61 m/s, estimates increased at a faster rate with respect to 

boundary roughness causing deviations in BSS estimates.  For 𝑈 <0.77 m/s, this method 

consistently estimated BSS over medium pebble to be largest, followed by fine pebble, acrylic, 

and sand.  When 𝑈 >0.77 m/s, acrylic estimates exceeded sand BSS; this trend was not expected 

but has been noted by Biron et al. (2004) when comparing sand and acrylic boundaries in a flume 

study. 

Results from this research showed a divergence in BSS estimates that coincided with the 

transition from sub- to super-critical conditions, supporting the claim that this method is only valid 

for sub-critical conditions and simple flow regimes (Pope et al., 2006).  A higher standard deviation 

was associated with 𝑧𝑜 for fine pebble and medium pebble substrates than for acrylic or sand.  

Biron et al. (2004) found the Law of the Wall – LP to be sensitive to bottom roughness because 

BSS estimates rely on precise near-bed velocity and elevation measurements.  High variability 

associated with 𝑧𝑜 for fine pebble and medium pebble may lead to inflated estimates of BSS.  At 

higher water velocities, the Vectrino started to vibrate and bubbles formed on the front prong.  This 

issue was exacerbated for non-uniform beds because the variability in grain size led to erroneous 

elevation measurements.   
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As documented in previous studies, the Law of the Wall – LP tends to over predict BSS 

compared with other methods (Bagherimiyab & Lemmin, 2013; Biron et al., 2004; Pope et al., 

2006; Wilcock, 1996).  For acrylic and sand, BSS estimates based on the Law of the Wall – LP 

were larger when compared with other all other methods.  Over fine pebble, the Indicator Function 

sometimes produced higher estimates, and medium pebble the Law of the Wall – LP predicted 

high BSS estimates, only second to the Indicator Function (Bagherimiyab & Lemmin, 2013; Biron 

et al., 2004; Kim et al., 2000).  After evaluating the roughness coefficients calculated from this 

method, 𝑧𝑜 and 𝐶𝐷 calculated from 𝑧𝑜, these parameters were consistent with literature values.  

This suggested that the high BSS estimates were a result of inflated 𝑢𝑤
∗  values.  𝑢𝑤

∗  is a function 

of the slope of the fitted regression line and near-bed velocity profiles used in the derivation were 

skewed by the rapidly increasing velocity close to the boundary. 

The Law of the Wall – LP method was used in the oil CSS experiments to calculate 

𝑪𝑫 for the Quadratic Friction Law, but because of the high BSS estimates and limited 

application based on flow conditions it was not used to calculate BSS.  

Law of the Wall – Single Point 

The Law of the Wall – Single Point leverages in-situ measurable characteristics rather than 

values derived from the velocity profile (e.g., 𝑑84) and therefore was applicable for all 

experimental conditions.  BSS estimates calculated using this method increased with velocity and 

bottom roughness (e.g., BSS over medium pebble was largest, followed by fine pebble, sand, and 

acrylic).  For all substrate types and velocity intervals, BSS estimates using Law of the Wall – 

Single Point produced values that fell within 𝜏𝑤̅̅̅̅ ±σ.  This suggests that 𝑑84 should be used as a 

representative grain size for all sediment types used in the oil CSS experiments.  The Law of the 

Wall – Single Point provides a local estimate of BSS because it uses near-bed velocity data 
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(�̅�𝑧=2𝑐𝑚), but does not require instruments capable of high spatial and temporal resolution 

necessary to measure a velocity profile.  Therefore, in the event where resources are limited 

and only single-point flow meters are available, this method could be used to provide a 

reliable BSS prediction.  This method was used in subsequent CSS experiments and in the 

sunken oil transport tool (See Chapter 4). 

Indicator Function 

The Indicator Function was theoretically applicable for all flow regimes and boundary 

types conducted in this research.  Interestingly, BSS estimates reached a local peak for acrylic, 

fine pebble, and medium pebble at 𝑈 of 0.46 m/s, 0.54 m/s, and 0.54 m/s, respectively, which 

corresponded to a flow regime just prior to the transition from sub- to super-critical conditions.  

After peaking, the BSS estimates decreased to fall back in line with the previously established 

trend for 𝑈 >0.61 m/s.  Therefore, if using this method in flumes or the field, it is important to 

identify when conditions transition from sub- to super-critical.  If this cannot be done, the Indicator 

Function method should not be used.  With respect to boundary type, BSS estimates for acrylic 

were larger than sand for 𝑈 of 0.2 m/s, 0.27 m/s, and 0.46 m/s.  For all other velocities, estimates 

followed the anticipated trend that a rougher substrate produced higher BSS values.  The high BSS 

estimates using this method on rough substrates are likely due to the way velocity was measured, 

as it relies on a continuously measured and relatively smooth velocity profile to accurately estimate 

BSS.  Further research should be conducted regarding the validity of the Indicator Function method 

for rough boundaries and in super-critical conditions.  Based on the inconsistent estimates of 

BSS and limited use in rough bed conditions, the Indicator Function was not used in oil CSS 

experiments. 
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Quadratic Friction Law 

The Quadratic Friction Law was applicable for all experimental conditions in this flume.  

It followed a similar pattern as the Law of the Wall – LP because 𝐶𝐷 was derived from 𝑧𝑜.  

However,  the magnitude of the Quadratic Friction Law estimates were smaller because it used �̅� 

rather than calculating BSS from 𝑢𝑤
∗ .  For 𝑈 ≤0.46 m/s, the average variability for BSS estimates 

for all substrates was ±0.18 Pa; when 𝑈 ≥0.54 m/s the average range increased to ±2.18 Pa.  As 

velocity increased, the effect of sediment size on BSS estimates was exacerbated, especially for 

rough substrates, which was attributed to variability associated with 𝑧𝑜.  As with the Law of the 

Wall – LP method, sand BSS estimates were larger than acrylic for 𝑈 <0.77 m/s, but when 0.77 

m/s≤ 𝑈 ≤1.04 m/s, the acrylic estimates were larger.   

Thompson et al. (2006) developed a fitted equation (𝜏𝑤 = 3 ∗ 𝑢2) to estimate BSS using 

the Quadratic Friction Law based on experimental data collected in clear water at  𝑧 = 15 cm.  To 

relate values calculated from this research, BSS was adjusted to 𝑧 = 15 cm (Figure 2-13).   

Figure 2-13: Acrylic and sand BSS calculated using the Quadratic Friction Law compared 

with results from Thompson et al. (2006).  
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The fitted equation produced slightly lower values than those estimated in this research.  

For 𝑈 <0.54 m/s, the difference between measured and predicted values averaged ±0.12 Pa.  When 

𝑈 >0.54 m/s, the average range increased to ±0.71 Pa, with the largest difference of 1.05 Pa 

occurring at 𝑈 = 0.85 m/s.  The variability in estimates may be due to: (1) the flume configuration 

(i.e., annular vs. straight), (2) the measured velocity values, or (3) the derived drag coefficients. 

The Quadratic Friction Law is a hybrid between local and global estimates because it uses 

a derived roughness parameter which captures the effect of velocity on drag, while using a global 

velocity value.  Based on its agreement with literature, its widespread use, and the unique 

mixture of input parameters, the Quadratic Friction Law was used in oil CSS experiments. 

Chézy/Momentum  

The Chézy/Momentum method was valid for all experimental conditions.  BSS estimates 

were based on the ratio of  
𝑅ℎ

𝑑84
 and 𝑈, both of which varied as a function of ℎ.  The representative 

roughness components were held constant, and the velocity component increased in a stepwise 

manner.  Therefore, BSS followed the anticipated trend that estimates were largest when water 

velocity and bed roughness were highest.  For 0.06 m/s≤ 𝑈 ≤1.04 m/s, the medium pebble BSS 

estimates were largest, followed by fine pebble, sand, and acrylic.   

The Chézy/Momentum method can be used when sophisticated velocity measurements are 

not readily available or when only stream gauge data are available to provide a velocity prediction.  

Although this method provides a globalized BSS estimate and generally produced higher estimates 

compared with other methods, it followed the theory that steeper curves are expected with 

increasing roughness (Bagherimiyab & Lemmin, 2013; Pope et al., 2006).  Due to the nature of 

the equation, BSS continued to increase at a faster rate for higher velocities.  This method was 

used in oil CSS experiments because it provided consistent BSS estimates for all boundary 
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types, applies to riverine environments regardless of flow condition, and uses one-

dimensional velocity values that can be readily measured or estimated by stream gauge data. 

Manning/Momentum 

The Manning/Momentum method was valid for all experimental conditions, and is a good 

descriptor of river hydraulics for a slowly varying water level (Boufadel et al., 2019).  When 

comparing BSS estimates with respect to substrate type, this method followed the expected trend 

that a rougher surface causes a higher BSS value.  This method is similar to the Chézy/Momentum 

approach in that it uses a constant roughness parameter and the globalized velocity values.  Global 

estimates do not deviate from the anticipated trend because they are independent of localized 

turbulence and because velocity does not affect the roughness parameters.  However, it provides a 

reliable BSS estimate that can be predicted using values found in literature and readily measured 

hydraulic parameters such as depth, cross-sectional area, and average velocity.  Therefore, the 

Manning/Momentum method was used in oil CSS experiments because it would likely be 

leveraged to predict an initial estimate of in-situ BSS during a response.  The limitation to 

using global estimates is that they predict BSS to be higher than local methods, especially for 

rough boundaries.  Therefore, when comparing in-situ BSS to CSS data it is essential to know how 

the CSS value was calculated. 

2.4.5 Research Limitations and Method Selection  

A major limitation to this research is that experiments were conducted for an immobile 

boundary for non-cohesive sediments, therefore bed forms did not develop and only skin-friction 

was addressed.  Bed forms generally increase drag coefficient estimates and are especially 

important for sand beds.  For example, unrippled sand has a 𝑧𝑜 = 0.04 mm compared with rippled 

sand where 𝑧𝑜 = 6 mm (Soulsby, 1997).  Therefore, above the sediment’s CSS threshold (i.e., the 
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critical BSS at which sediment transport occurs), 𝑧0 estimates would likely be larger than those 

predicted in this research.  Using each material’s 𝑑50 and the Shields Diagram, the CSS was 

estimated to be approximately 0.29 Pa, 4.8 Pa, and 9.6 Pa for sand, fine pebble, and medium 

pebble, respectively.  Based on 𝜏𝑤̅̅̅̅ ± σ estimates for all valid methods with respect to each boundary 

type; 0.29 Pa on a static sand bed corresponded to 𝑈 >0.2 m/s, 4.8 Pa over the fine pebble substrate 

correlated to 𝑈~ 0.77 m/s, and 9.6 Pa with a medium pebble bed related to 𝑈~ 0.94 m/s.   

Multiple methods were used in this research so that results would be related to literature 

values and translated from flume-based experiments to the field regardless of instrument 

availability, boundary type or flow conditions (Table 2-7).  Since BSS is not a readily-measured 

parameter in the field and because it relies on assumed, derived, or measured input values, it was 

expected that multiple methods would produce a range of BSS estimates (i.e., 2-3 Pa spread) (Wren 

et al., 2011).  A range in BSS values may depend on how and where velocity is measured, 

characterization of boundary conditions and subsequent roughness parameterization, or the 

method used to calculate BSS.  Therefore, it is important to use global and local methods when 

quantifying CSS thresholds in the laboratory, so that in the field, any BSS method can be used and 

appropriately related to CSS values. 
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Table 2-7: Summary of BSS method scale and application. Note: the bold text indicates the 

methods used in subsequent CSS experiments. 

Method Name Scale  Reasoning: 

Newton’s Law of 

Viscosity 

Local Uses precise near-bed velocity measurements to confirm the presence 

of a viscous sublayer.  This method did not apply to fine pebble and 

medium pebble substrate at all velocity intervals.   

Indicator Function Local Further evaluation on the applicability and reliability of the Indicator 

Function is necessary; compared with the other methods it under 

predicted BSS over acrylic and sand substrates, fell in line with fine 

pebble BSS estimates, but greatly overpredicted BSS for medium 

pebble. 

Law of the Wall – LP Local Did not apply to U >0.61 m/s.  With some exceptions, the Law of the 

Wall – LP approach produced the highest BSS approximations 

compared with the other methods.  However, the derived 𝑧𝑜 proved to 

be a reliable roughness length and captured the effect of velocity on 

roughness coefficients and should be used to calculate 𝐶𝐷.   

TKE  Local This method applies to simple and complex flow regimes and all 

boundary types.  Uses 3D instantaneous velocity measurements to 

relate turbulent fluctuations with BSS.  Results produced consistent 

BSS estimates for all boundary types, similar to literature values 

without the use of a roughness parameter.   

Law of the Wall – 

Single Point 

Local Applies to all boundary and uniform, steady state flow conditions, 

and produced reliable local BSS estimates using single point velocity 

measurements and a readily measurable roughness length. 

Quadratic Friction 

Law 

Hybrid Applies to all boundary and uniform, steady state flow conditions.  

Results aligned well with literature values, and derived drag 

coefficients were similar to commonly cited values.  Uses local 

roughness lengths to estimate the drag coefficient, therefore 

considering the effect of velocity on drag.  If necessary, drag 

coefficients can also be leveraged from literature values.  It uses a 

global velocity value (e.g., depth-averaged velocity), limiting the 

impact of velocity variability on BSS estimates.  BSS approximations 

agreed with literature values.    

Chézy/Momentum Global Commonly used method for open channel flow and is applicable to 

all flow and boundary conditions.  It provides a reliable BSS estimate 

using readily measurable input parameters, and if limited information 

is available, the depth-slope method can be applied to provide an 

initial BSS approximation.   

Manning/Momentum Global Applies to uniform, steady state conditions and is widely used in open 

channels (e.g., streams, rivers).  Uses the free-stream velocity, which 

can be readily measured.  There are multiple methods that relate the 

particle size to a roughness coefficient.  For all substrate types, BSS 

estimates were consistently within 𝜏𝑤̅̅̅̅ ± σ. 
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2.4.6 Sensitivity Analysis of BSS Methods 

2.4.6.1 Describing Parameter Bounds 

A sensitivity analysis was performed on the input parameters used to calculate BSS for 

methods that rely on derived or measured values (i.e., Law of the Wall – Single Point, the 

Quadratic Friction Law, Chézy/Momentum, Manning/Momentum).  The reference values used in 

the sensitivity analysis were obtained from results over the sand substrate (Appendix A.10: 

Sensitivity Analysis Plots). 

The upper and lower velocity bounds used in the analysis were �̅�𝑧=2𝑐𝑚±σ, �̅�±σ, and 𝑈±σ 

for Law of the Wall – Single Point, Quadratic Friction Law, Chézy/Momentum and 

Manning/Momentum methods, respectively.  Except for the Law of the Wall – Single Point, which 

uses 𝑑84 as the characteristic roughness length, the roughness parameters used in the Quadratic 

Friction Law, Chézy/Momentum and Manning/Momentum were related to one another, and 

compared as like terms in Table 2-5 (2.4.3 Comparison of Roughness Parameters).  The range of 

the 𝐶𝐷 values was then converted to 𝐶 and 𝑛, and used as bounds for the Chézy/Momentum and 

Manning/Momentum analyses, respectively.  For the Law of the Wall – Single Point method the 

effect of roughness on BSS estimates was evaluated using 𝑑10 and 𝑑90 as the lower and upper 

limits, respectively.   

2.4.6.2 Sensitivity Analysis Results 

For the Quadratic Friction Law, Chézy/Momentum and Manning/Momentum, if the 

velocity and characteristic roughness parameters were adjusted by the same amount (e.g., ±10%), 

the effect of velocity was greater than that of the roughness parameter, especially at high velocities.  

When the velocity changed as a function of σ and over the range of roughness parameters, the 
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spread in BSS was related to the driving functions in the method’s equations, and estimates were 

more sensitive to roughness parameter than velocity σ.   

The effect of velocity was more prominent for the Law of the Wall – Single Point compared 

with the other three methods because they rely on global velocity values, and the RSD associated 

with them is smaller than the locally-measured velocity.  For example, on a sand substrate, the 

average RSD for �̅�𝑧=2𝑐𝑚 was 16% whereas for 𝑈 and �̅�, the average RSDs were 5% and 3%, 

respectively.  The associated variability was expected for �̅�𝑧=2𝑐𝑚 because near-bed velocity values 

were subject to excess turbulence caused by boundary roughness, whereas 𝑈 was measured further 

from the boundary, therefore, minimally impacted by turbulence due to bed roughness, and �̅� is a 

spatially-averaged value. 

For all methods, variability increased as velocity increased resulting in a wider spread of 

BSS estimates.  Using the Law of the Wall – Single Point, when �̅�𝑧=2𝑐𝑚 = 0.16 m/s, the range of 

BSS was 0.10 Pa to 0.20 Pa, whereas for �̅�𝑧=2𝑐𝑚 = 0.81 m/s, BSS estimates ranged from 2.8 to 4.9 

Pa.  At the same experimental settings, the Quadratic Friction Law BSS estimates were 0.19 to 

0.20 Pa and 4.3 to 4.9 Pa.  The Chézy /Momentum estimates were 0.16 to 0.21 Pa and 4.5 to 5.4 

Pa, and the Manning/Momentum estimates were 0.15 to 0.19 Pa and 4.3 to 5.1 Pa.  The global 

BSS methods tended to predict higher magnitude BSS estimates, but had a smaller range.  For 𝑈 

<0.85, the lowest BSS estimate was calculated by the local method, the Law of the Wall – Single 

Point, followed by Manning/ Momentum, Chézy /Momentum, and the Quadratic Friction Law.  

When  𝑈 ≥0.85, BSS approximations from the Quadratic Friction Law were smaller than those 

from the Chézy/Momentum method because 𝐶𝐷 decreased at high velocities and 𝐶 remained 

constant.  
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The Law of the Wall – Single Point uses 𝑑84 as the reference characteristic roughness 

length.  As expected, when 𝑑10 was used as the roughness length, BSS estimates decreased by 

69% compared to the reference value, whereas if 𝑑90 is used BSS increases by 8% relative to the 

reference value.   

For the Quadratic Friction Law, Chézy /Momentum and Manning/Momentum methods, 

BSS estimates were more sensitive to the variability associated with the roughness parameters than 

with velocity 𝑈±σ.  The effect of roughness parameter variability on BSS estimates differed for 

each method.  When using the Manning/Momentum approach, the lower limit had no relative 

change when compared with the reference value because when compared as like terms, 𝑛 was the 

smallest value of all of the roughness parameters for sand.  Using the upper roughness limit and 

the Manning/Momentum approach, estimates increased by 54% relative to the reference value. 

When analyzed with respect to the smallest roughness parameter and using the Quadratic 

Friction Law, BSS decreased on average by 119% relative to the reference value.  For the largest 

roughness parameter at 𝑈 <0.54 m/s, estimates decreased on average by 4% relative to the 

reference value; when 𝑈 >0.68 m/s, approximations were larger by 7% relative to the reference 

value.  The inconsistent effect of the upper roughness limit on BSS estimates occurred because 𝐶𝐷 

was held constant at 0.0068 for the sensitivity analysis, but the reference value’s 𝐶𝐷 changed with 

respect to velocity.  This suggested that, when possible, 𝐶𝐷 should be derived from the velocity 

profile rather than using a single value.  An averaged 𝐶𝐷 value may underestimate the effect of 

boundary roughness at lower velocities and overestimate drag at higher velocities. 

The Chézy/Momentum approach is unique because 𝐶 follows an inverse relationship with 

roughness, in that 𝐶 decreases with increasing boundary roughness.  Therefore, if all other factors 

are held constant, the largest 𝐶 produces the smallest BSS estimate.  The lower limit of 𝐶 caused 
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BSS estimates to increase by 30% at all velocity settings relative to the reference value, and the 

upper limit of 𝐶 decreased BSS estimates, relative to the reference value, by 54% for all velocities. 

Based on findings from this section, assuming uniform, steady state conditions, if BSS 

is calculated using a local method, then velocity and roughness variability are of equal 

importance.  Global BSS estimates are more sensitive to roughness parameter variability.  

These findings suggest that bathymetric surveys and characterization of the bed should be a 

priority when using global methods in the field.  Recording near-bed velocity variability is 

essential to produce accurate ranges of in-situ BSS estimates when using local methods.  If 

obtaining sediment cores, performing sieve analyses or conducting bathymetric surveys 

cannot be accomplished, then BSS should be calculated over a range of sediment sizes 

representative of in-situ conditions until more thorough measurements can be made. 
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2.5 Conclusion and Future Research 

The findings from the hydraulic analysis conducted for CRRC’s flume, the evaluation of 

BSS methods applicable for use in the flume, and the sensitivity analysis on BSS input parameters, 

are summarized as follows:  

Conclusions relevant to the CRRC MacFarlane Flume: 

1. The VFD settings (x) were correlated to in-situ free-stream velocity (𝑈) for ℎ = 30.5±1 

cm by the fitted equation: 𝑈 (m/s) = 0.0009x2 + 0.0604x. 

2. The flow regime was classified at each VFD setting for ℎ = 30.5±1 cm (Table 2-3).  

Flow conditions were considered uniform, steady state at VFD settings 1 to 14 Hz (0.06 

m/s to 1.04 m/s).  Flow transitioned from sub- to super-critical at VFD settings 8 and 9 

Hz (0.54 m/s to 0.61 m/s).  

3. For all substrate types, the ADV collected reliable, near-bed velocity profiles for VFD 

settings 1 to 14 Hz. 

Conclusions relevant to external laboratories and field research:  

4. The boundary parameters for immobile acrylic, sand, fine pebble, and medium pebble 

beds were quantified using near-bed velocity measurements and PSD results (Table 

2-4).  The calculated roughness parameters were then put in terms of 𝐶𝐷 and compared 

as like terms; the range of the values produced were used as the upper and lower 

roughness parameter limits in the sensitivity analysis (Table 2-5).  In the event where 

only a sieve analysis can be conducted to determine a roughness coefficient in an open 

channel, use of 𝑧𝑜 = 0.1 ∗ 𝑑84 and Eq. 2-22 as the representative 𝐶𝐷 is recommended.  

Compared to the five other methods used to calculate roughness characteristics, this 



 66 

approach produced median 𝐶𝐷 values for sand, fine pebble, and medium pebble 

substrates. 

5. When using the Quadratic Friction Law to calculate BSS, 𝐶𝐷 should be derived from 

the velocity profile rather than using a single value because it changes as a function of 

velocity. 

6. The effect of in-situ water velocity and boundary roughness on BSS estimates was 

evaluated using eight computational methods.  Multiple methods were used so that 

results could be related to literature values and be translated from flume-based 

experiments to the field regardless of instrument availability, boundary type or flow 

conditions.  The method application, scale of use, and reason for using the method in 

future experiments were summarized in Table 2-7.  The TKE, Law of the Wall – Single 

Point, Quadratic Friction Law (using Law of the Wall – LP to calculate 𝐶𝐷), 

Chézy/Momentum, and Manning/Momentum methods were suitable for use in 

subsequent oil CSS experiments. 

7. If using the Indicator Function method in flumes or the field, it is important to identify 

when conditions transition from sub- to super-critical.  If this cannot be done, the 

Indicator Function method should not be used.  Further research should be conducted to 

evaluate if adjusting the height of the velocity profile measurement or using a different 

von Karman constant would improve BSS predictions in super-critical conditions.  

Conclusions from the sensitivity analysis: 

8. Based on the sensitivity analysis, local BSS estimates were equally sensitive to velocity 

and roughness variability, whereas the global methods tended to be more sensitive to 

roughness variability.  Therefore, in the event of  an oil spill, the first priorities are to 
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determine the expected velocity range and then to collect sediment cores to determine 

particle size distribution.  Providing a velocity range and knowing the particle size 

distribution will improve the accuracy of global BSS estimates.  As more information 

becomes available and instruments can be deployed to measure near-bed velocity, then 

local methods could be used to predict in-situ BSS and sediment or oil transport 

processes.   

Further research using a mobile sediment bed in the CRRC flume is recommended to 

validate the sediment’s CSS thresholds estimated from the Shields curve to provide “true” CSS 

thresholds.  The sediment’s CSS thresholds should be further refined into incipient motion, 

bedload transport, and suspended load transport, and the effect of these processes on roughness 

parameter estimates should be quantified.  Additional research should be conducted for fine 

sediments with cohesive properties (e.g., clays) to evaluate the applicability of BSS methods for a 

mobile, cohesive bed in the flume.  If using a different water depth, then the transitions from sub- 

to super-critical and laminar to turbulent should be recalculated and the associated VFD settings 

defined.  This change would alter the empirical relationships between VFD setting and free-stream 

velocity and depth-averaged velocity, and the velocity ranges for which each BSS method is valid. 
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CHAPTER 3 

 

CRITICAL SHEAR STRESS OF SUNKEN, NO. 6 HEAVY FUEL 

OIL IN FRESH WATER 

3.1 Abstract 

A series of flume- and laboratory-based experiments defined and quantified the thresholds 

of oil transport (sunken, No.6 heavy fuel oil mixed with kaolinite clay (24% by weight, g clay:g 

oil) in fresh water).  When the sunken oil became mobile, the current-induced bed shear stress 

(BSS) had exceeded a threshold value specific to the oil, known as the critical shear stress (CSS).  

The oil’s CSS was evaluated as a function of water velocity (0.06 to 1.04 m/s by 0.08±0.02 m/s 

intervals), water temperature (10±1.5ºC, 17.5±0.5ºC, 24±2ºC), oil condition (fresh, weathered), 

and sediment median size (𝑑50= 0.42 mm, 6.5 mm, 10.6 mm).  Based on experimental results, the 

stages of oil transport were defined and empirical relationships using the oil’s kinematic viscosity 

(𝑣𝑜) and sediment 𝑑50 were developed to predict oil CSS at each transport stage.  Additionally, for 

𝑣𝑜<2x104 cSt, multiple thresholds of movement were observed: (1) gravity dispersion, (2) rope 

formation, (3) ripple formation, (4) break-apart/resuspension.  When 𝑣𝑜> 6x104 cSt, transport was 

more likely to occur as a single event with the oil remaining intact, saltating over the bed in the 

direction of flow (i.e., oil bedload transport). 
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3.2 Introduction 

When oil is released into water as a non-aqueous phase, the relative density between spilled 

oil and the receiving water dictates if the oil will float on the water’s surface (i.e., floating), be 

neutrally buoyant and remain in the water column (i.e., submerged), or be negatively buoyant and 

sink to the bottom (i.e., sunken) (API, 2016b; CRRC, 2007; Michel & Bambach, 2020).  Oil spill 

response tactics have been shaped by the assumption that when spilled into water, most oil will 

float on the water’s surface (CRRC, 2007; Harper et al., 2018).  However, non-floating oil spills 

have been documented in marine and fresh water environments, and because they are less frequent 

than floating oil spills, testing new response equipment, validating models, and maintaining 

operational expertise is challenging (CRRC, 2007).  Non-floating oils often contain higher 

concentrations of paraffin waxes, asphaltenes and resins which hinder natural remediation 

processes, potentially smothering benthic organisms, and introducing them to the chronic exposure 

of persistent hydrocarbons (Gustitus & Clement, 2017; Martin et al., 2014). 

The propensity for the spilled product to float, submerge or sink can change as a function 

of oil type, in-situ environmental conditions (e.g., water temperature, current velocity, wind), 

weathering processes (e.g., evaporation, dissolution, biodegradation, emulsification), and 

interaction with sediments, minerals or marine snow (CRRC, 2007; Fitzpatrick et al., 2015a; 

Gustitus & Clement, 2017; Khelifa et al., 2002; Lee, 2002; Michel & Bambach, 2020; Michel & 

Galt, 1995; Passow, 2016).  For example, during the T/B DBL-152 spill in 2005, blended slurry oil 

(API ~ 4 to 4.5°; density, 𝜌𝑜 ~ 1.04 g/cm3) was discharged into the Gulf of Mexico, sank 

immediately upon entry into the water and was sporadically remobilized by storm events (Beegle-

Krause et al., 2006; Michel, 2008).  In 1994, during the Morris J. Berman spill of No. 6 heavy fuel 

oil (HFO) (API ~ 9.5°; 𝜌𝑜~1.004 g/cm3), the spilled product initially floated, with limited 

evaporation occurring at the leading edge of the slick which formed tarballs that readily dispersed.  
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Some of the oil was transported inland where it mixed with sediments through wave action, sank 

to the bottom, and was stranded in a lagoon.  The oil-sediment mixture remained on the seabed 

overnight, but separated from the sediments and resurfaced throughout the day as water 

temperatures increased (Petrae, 1995; NRC, 1999).   

Depending on in-situ turbulence, suspended sediment concentrations and oil viscosity, the 

oil-sediment mixtures can form microscopic aggregates (<1 mm) or macroscopic agglomerates 

(>1 mm).  This manuscript discusses the transport of macroscopic agglomerates.  Macroscopic 

agglomerates are characterized based on their size.  1 mm to 10 cm are called sand-oil 

agglomerates (SOA); 10 cm to 1 m sediment-oil patties (SOP), and agglomerates >1 m sunken oil 

mats (SOM) (Gustitus & Clement, 2017).  Pieces of an SOM can break apart into SOAs or SOPs.  

SOAs and SOPs can be: (1) driven onshore during high energy events causing long-term shoreline 

oiling, (2) buried and/or exhumed under normal wave events, (3) carried alongshore or 

downstream under high current velocities, and (4) deposited into low energy environments such 

as tributary mouths, sheltered lagoons, estuaries, troughs, or deep parts of channels (Dalyander et 

al., 2014; Dollhopf et al., 2014).   

Since the National Research Council’s (NRC) call to improve non-floating oil spill 

response in 1999 (NRC, 1999): (1) new tactics and tools have been developed to monitor, track 

and contain non-floating oil (Fitzpatrick et al., 2015a; M. Fitzpatrick et al., 2014; Hansen et al., 

2014), (2) guidance documents have been published to optimize response operations  (API, 2016a; 

Harper et al., 2018; Michel & Bambach, 2020; NRC, 1999), and (3) development of submerged 

and sunken oil trajectory models has greatly improved (Dalyander et al., 2014; Echavarria-Gregory 

& Englehardt, 2015; Englehardt et al., 2010; Jacketti et al., 2020, 2019; Zhao et al., 2016).  The 

techniques used by modelers to predict sunken oil transport have been adapted from sediment 
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transport theories, research and practice.  Specifically, Simecek-Beatty (2007) recommended 

applying the concept of bed shear stress (BSS) to predict sunken oil transport.  BSS is the frictional 

force exerted by the fluid on the boundary (i.e., force per area), and is used to characterize 

thresholds of sediment transport as a function of in-situ hydrodynamics, skin-friction induced by 

bed roughness, form drag, and momentum transfer caused by mobilized grains (Nelson et al., 1995; 

Shields, 1936; Soulsby, 1997).  The threshold BSS which causes the sediment (or oil) to move is 

known as the critical shear stress (CSS) and is a function of the sediment’s (or oil’s) physical 

properties (e.g., density, size).   

In the event of an oil spill, modelers have relied on surrogate values or previous research 

to predict the remobilization of sunken oil.  In 2004, the hull of the M/V Athos I was punctured and 

over 260,000 gallons of Bachaquero crude oil (API~13.6°; 𝜌𝑜 ~ 0.943 to 0.978 g/cm3) were 

released into the Delaware River (API, 2016b).  As it exited the hull, the jetting action caused the 

oil to mix with mud and clay resulting in pools of oil near the discharge site, formation of tarballs 

and tarmats and subsurface transport.  Before more data became available about the M/V Athos I 

spilled product, modelers relied on a single reference value (Cloutier et al., 2002) to predict the 

resuspension of the sunken oil.  The reference value provided a lower threshold of movement 

because the Hibernian crude oil (𝜌𝑜= 0.875 g/cm3), upon which it was based, was more buoyant 

and had a viscosity several orders of magnitude lower than that of the spilled oil (DARRP, 2018; 

Michel, 2008; NOAA, 2018; Simecek-Beatty, 2007).   

Two major spill events occurred in 2010, the Enbridge Line 6b and Deepwater Horizon.  

In both scenarios, a floating oil weathered or emulsified and then mixed with sediments (e.g., sand, 

clay) to create a negatively-buoyant oil.  These events forced responders to perform impromptu 
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flume- and field-based experiments to determine the CSS of the spilled product; experimental 

results were then used to inform model predictions on the transport of the sunken oil.   

The Enbridge Line 6b pipeline spill released diluted bitumen (API ~20°; 𝜌𝑜 ~ 0.938 g/cm3) 

into Talmadge Creek (MI) which fed into the Kalamazoo River.  Some of the oil submerged and 

was transported with the currents until it reached a low velocity area downstream and deposited 

(USEPA, 2016).  Response and recovery efforts relied on CSS thresholds for clay and silt-sized 

fine-grained sediment as surrogates for submerged oil (<2 mm droplets) and oiled sediment 

because oil was deposited in slow moving reaches of the river (Dollhopf et al., 2014).  Field-, 

flume-, and laboratory-based experiments were conducted to support the empirical models used to 

simulate resuspension, migration, and deposition of the oil-particle aggregates (Fitzpatrick et al., 

2015b).   

During Deepwater Horizon recovery operations, chronic re-oiling of cleaned beaches drove 

researchers to investigate and model the subsurface transport of SOAs and SOPs (Dalyander et al., 

2014).  The authors found that the model was sensitive to CSS thresholds, and uncertainty 

associated with model prediction could be reduced by more accurate oil CSS estimates.  This led 

to a series of field experiments where the CSS of cm-sized sandy (> 60% sand by weight), artificial 

SOAs (aSOA) were placed atop the sea bed (𝜌𝑜 = 1.689±0.85 g/cm3) (Dalyander et al., 2015; 

Michel & Bambach, 2020).  BSS was calculated using multiple theories applicable to nearshore 

coastal environments described by Shields (1936) and extended to a wider range of particle sizes 

by Soulsby & Whitehouse (1997).  Researchers determined that a lower CSS threshold, calculated 

from an unmodified Shields parameter using SOA properties, was the best predictor of SOA 

mobility.  The authors highlighted the importance of selecting an accurate CSS value, and 
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recommended that further CSS research be conducted in a laboratory setting “where visibility is 

improved and the flow conditions can be precisely controlled” (Dalyander et al., 2015). 

Although progress has been made to widen the known oil CSS thresholds, no prior 

published number exists to establish CSS thresholds for HFO.  HFO, widely used by ships, has a 

density (0.95-1.03 g/cm3 at 15°C) that makes it prone to sinking.  Its high viscosity increases the 

propensity to interact and mix with sediments furthering the potential to sink (NOAA Scientific 

Support Team, 2012).  Of 33 globally-recorded sunken oil spills, 16 of the incidents were of heavy 

refined products (Michel & Hansen, 2017).  Results from HFO research could be applied in the 

event of shipping accidents.  Additionally, No. 6 HFO is geographically-relevant to researchers 

because it is used as fuel source in power plants.  For example, a power plant that burns HFO sits 

alongside the Piscataqua River (NH), which connects Portsmouth Harbor to the Great Bay Estuary.  

High current velocities (>2 m/s), expansive mudflats, relatively cold water, and a fresh water input 

increase the risk for a floating oil to submerge and sink.  

A series of flume- and laboratory-based experiments were conducted by the Coastal 

Response Research Center (CRRC) at the University of New Hampshire (UNH) using 100 grams 

of No.6 HFO on immobile substrates.  The aim of this research was to: (1) provide modelers and 

responders with CSS thresholds of No. 6 HFO over a range of environmental conditions in fresh 

water to be used as a reference point in the event of a non-floating oil spill, (2) identify factors 

driving sunken oil transport, and (3) evaluate how boundary roughness impacts an oil’s CSS 

thresholds.  Oil CSS experiments were conducted as a function of water velocity (0.06 to 1.04 m/s 

by 0.08±0.02 m/s intervals), water temperature (10±1.5ºC, 17.5±0.5ºC, 24±2ºC), oil condition 

(fresh, weathered), and sediment size (𝑑50 = 0.42 mm, 6.5 mm, 10.6 mm).   
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Results indicated that CSS thresholds were higher at 10±1.5ºC due to the increase in oil 

kinematic viscosity (𝑣𝑜) and for larger sediment sizes (i.e., 𝑑5𝑜  = 10.6 mm).  Additionally, entire 

SOPs are likely to move at a single CSS threshold for 𝑣𝑜 >2x104 cSt; when 𝑣𝑜 <2x104 cSt,  they 

exhibit multiple stages of transport.  Criteria were developed to convert qualitative video 

observations into CSS values.  For water >17.5±0.5°C, the CSS thresholds were defined as: (1) 

gravity dispersion, (2) rope formation, (3) ripple formation, and (4) oil break apart/resuspension.  

In the event of a sunken oil spill, modelers and responders can compare in-situ BSS values with 

the oil’s CSS thresholds to predict mobility.  Based on the sediment sizes present at the boundary, 

modelers can also compare sediment CSS with oil CSS to determine if burial and exhumation 

processes are relevant.   

3.3 Methods and Materials 

3.3.1 Oil Preparation and Properties 

Granite Shore Power (Newington, NH) supplied the No. 6 HFO used in the CSS 

experiments.  Half of the oil samples underwent open pan evaporation in a fume hood at 18±1°C 

following protocols obtained in Environment Canada (2013) and Fieldhouse et al. (2010) until 5% 

mass loss was achieved (Eq. 3-1).   

%𝐸𝑣 =  1.296𝑙𝑛(𝑡)  −  3.6183 Eq. 3-1 

where: %𝐸𝑣 = percent mass loss (by weight), 𝑡 = time spent weathering (hours).  The fitted 

relationship between %𝐸𝑣 and 𝑡 was determined from 16 replicate samples (R2 = 0.9839); %𝐸𝑣 = 

5 was achieved in ~35 days. 

The density was measured following ASTM D1298 - 12b (2017a).  The density of the fresh 

(𝜌𝑜(𝐹)= 0.96 ±0.001 g/cm3 at 15°C) and weathered (𝜌𝑜(𝑊) = 0.97±0.001 g/cm3 at 15°C) samples 

indicated that the oil would not readily sink in freshwater.  Therefore, kaolinite clay (24% by 
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weight) was added as a sinking agent to ensure the oil would sink.  [N.B., Sand was initially used 

as the sinking agent, but the mixture separated when injected into water >17.5±0.5°C (as observed 

in the Morris J. Berman spill)].  [N.B., The experimental oil will herein be referred to as an “oily” 

SOM because the mixture was composed >40% oil by weight (Michel & Bambach, 2020)].  

Density measurements for the fresh oil+clay (FC) (𝜌𝑜(𝐹𝐶) = 1.13±0.001 g/cm3 at 15°C) and 

weathered oil+clay (WC) (𝜌𝑜(𝑊𝐶) = 1.13±0.001 g/cm3 at 15°C) samples confirmed that these 

mixtures would readily sink when injected into fresh water (𝜌𝑤  ~ 0.997 to 1 g/cm3) for all 

experimental conditions. 

The complex viscosity of the oil, 𝜂𝑜 (Pa*s), for all four oil mixtures, was measured using 

a TA Instruments (New Castle, DE) HR-1 Discovery Hybrid Rheometer (DHR) following ASTM 

D7175-15 (ASTM, 2015a).  Viscosity measurements were conducted using a 25 mm diameter 

oscillating parallel plate geometry with 1 mm gap settings in a temperature sweep mode (-6°C to 

12°C or 18°C depending on the instrument’s upper working limit) with tests at strain rates between 

0.1 rad/s to 100 rad/s (intervals of 10 rad/s).   

To measure viscosities at higher temperatures, a Wells-Brookfield Dial Viscometer 

(Middleboro, MA) was used following protocols described by Manual No. M/85-150-P700 

(Brookfield Engineering, n.d.)  The dynamic viscosity, 𝜇𝑜 (Pa*s), was measured using a Wells-

Brookfield Dial Viscometer (model RVT), in cone/plate geometries using the cup-and-cone CP-

41 (2mL sample cup, 3ᵒ cone angle).  As specified by the manufacturer, the range of measurable 

viscosities is 1.229 Pa*s to 24.576 Pa*s at shear rates of 20 sec-1 and 1 sec-1, respectively.  Viscosity 

readings have a precision of ±1% of the torque reading resulting in a ±1.5% variability in viscosity 

measurements (Brookfield Engineering, n.d.).  Temperature was controlled by a Lauda Super 

RMS-6 bath circulator (Lauda-Brinkmann, Germany) within ±0.1ᵒC of the test temperature.  The 
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viscosity was analyzed between 15°C and 50°C for all samples, except for the WC mixture which 

exceeded instrument limitations for samples below 19°C. 

3.3.2 Substrate Classification 

Sediments sizes chosen for these experiments represented the three most abundant grain 

size classes found in the upper and lower Mississippi River.  The Mississippi is navigable water 

that has historically experienced sunken oil spills, the most recent spills occurred in 2015 and 2016 

(International Maritime Organization, 2014; NOAA ORR, 2019).  For the upper and lower 

Mississippi River, the sediment sizes range from silt to gravel, with the majority of the sediment 

distribution between ~0.125 mm to greater than 2 mm (Gaines & Priestas, 2013). 

Three replicate sieve analyses were conducted to determine the particle size distribution (PSD) for 

substrates used in the experiments (Table 3-1) (ASTM, 2017b).  Based on the Wentworth Grade 

Scale (Williams et al., 2006) and the median grain size, 𝑑50 (mm), the substrates were 

characterized as medium sand (referred to as sand), fine pebble, and medium pebble substrates. 

[N.B., Using particle size classification from Berenbrock & Tranmer, (2008) and  Buffington & 

Montgomery, (1999) fine pebble and medium pebble can also be referred to as fine gravel and 

medium gravel].  
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Table 3-1: Sieve analysis showing the Particle Size Distribution (PSD) and Mean Texture 

Depth (MTD). 

 Sediment Size and MTD (mm) 

Sand Fine Pebble Medium Pebble 

𝒅𝟏𝟎 0.25 4.60 9.00 

𝒅𝟐𝟓 0.30 5.50 10.3 

𝒅𝟓𝟎 0.42 6.50 10.6 

𝒅𝟖𝟒 1.20 8.50 11.1 

𝒅𝟗𝟎 1.50 9.00 11.2 

MTD 1.40 6.70 8.40 

 

Substrates used in experimental trials were glued to 1.5 m long by 11.5 cm wide metal 

flashing using contact cement (DAP Products Inc, Baltimore, MD) and centered within the flume’s 

test segment (See Chapter 2).  Macrotexture depth experiments (ASTM E965 – 15) were conducted 

to determine the mean texture depth (MTD) (ASTM, 2015b).  MTDs for sand, fine pebble, and 

medium pebble were 1.4 mm, 6.7 mm, and 8.4 mm, respectively.  The sand MTD can be 

represented by 𝑑90, fine pebble by 𝑑50, and medium pebble by 𝑑10.   

3.3.3 Hydraulic Conditions  

3.3.3.1 Recirculating Flume 

The oil CSS experiments were conducted in the MacFarlane Flume (Figure 3-1), a bottom 

to top recirculating flume, owned and operated by the Coastal Response Research Center (CRRC) 

at the University of New Hampshire (Durham, NH).  [N.B., Flume dimensions are the only ones 

given in English units because that is how the flume was constructed].  The lower tank, 1 ft deep, 

4 ft wide, and 16 ft long (30.5 m deep, 1.22 m wide, 4.88 m long), is enclosed on all four sides by 

acrylic panels.  There are two openings in the bottom tank that connect to the upper channel, an 

entrance and exit, allowing water to be funneled vertically into the upper channel and recirculated 

back down to the lower tank.  The upper channel (1 ft 10 inch deep, 1 ft wide, 13 ft long (55.3 cm 
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deep, 30.5 cm wide, 3.96 m long)), consists of an open top, acrylic sidewalls, and an acrylic base 

with zero slope.  

 

 

The water is propelled by two 10 3/8 inch (26.35 cm) propellers, housed in the lower tank, 

each driven by a 10 hp motor (ABB/Baldor Electric, Fort Smith, AR).  Each motor is controlled 

independently by an ABB variable frequency drive (VFD).  Precise motor control ensures 

experimental reproducibility with respect to in-situ flow conditions; at a working water depth (ℎ) 

of 31±1 cm, flow was considered to be uniform and at steady state for all experimental conditions 

(See Chapter 2).  

 

Figure 3-1: Plan view (top) and longitudinal section (bottom) of the MacFarlane Flume. 
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3.3.3.2  Velocity Measurements  

In-situ free-stream velocity, 𝑈 (m/s) and depth-averaged velocity, �̅� (m/s) were correlated 

with VFD frequencies, 𝑥 (Hz), following Eq. 3-2 and Eq. 3-3, respectively (See Chapter 2). 

𝑈 =  0.0009𝑥2  +  0.0604𝑥 Eq. 3-2 

�̅� =  0.0594𝑥 Eq. 3-3 

where: Eq. 3-2 (R2 = 0.9992) and Eq. 3-3 (R2 = 0.9986) are applicable for 0 Hz<𝑥<14 Hz.   

The Vectrino Profiler II (Nortek Scientific; Vangroken, Norway), an acoustic Doppler 

velocimeter (ADV), measured the instantaneous longitudinal or stream-wise (𝑥), transverse (𝑦), 

and vertical (𝑧) velocity components (𝑢, 𝑣, and 𝑤, respectively).  Average velocities were denoted 

using an overbar (e.g., �̅�) and fluctuations from the mean are denoted by an apostrophe (e.g., 𝑢′).  

The Vectrino sampled a 30 mm range at a spatial resolution of 1 mm; the sampling range began 

40 mm below the center beam to avoid flow field interference (Nortek AS, 2017).  The sampling 

duration for each trial was a minimum of 15 minutes using a sampling rate of 25 Hz (Babaeyan-

Koopaei et al., 2002; Pope et al., 2006; van Rijn, 2007).  Near-bed velocity measurements were 

captured 0 to 3 cm above the boundary, where 𝑧 (cm) was the distance above the boundary.  The 

Vectrino’s “Ping Settings” (e.g., ping algorithm, velocity range) were adjusted for each trial based 

on water velocity and boundary conditions to minimize or eliminate weak spots and optimize the 

%Corr and SNR (Koca et al., 2017).   

Data collected by the Vectrino was exported and evaluated using MatLab (MathWorks, 

Natick, MA).  All raw velocity datasets underwent a two-step filtering process as recommended 

by the manufacturer.  First, the data quality based on %Corr and SNR (using a low pass filter) was 

evaluated.  To maintain the length of the time-series, data points below %Corr < 70 or SNR<10 

were replaced with “Not a Number” (NaN) (Biron et al., 2004).  The second step applied a three 
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pass, despiking filter to each data set.  With each pass, �̅�, �̅�, and �̅�, and the standard deviations, σ, 

were calculated at each sampling depth.  Data exhibited a normal (Gaussian) distribution.  Outliers 

were detected and replaced with NaN if outside �̅�± 3σu, �̅�± 3σv, and �̅�±3σw. 

3.3.3.3 BSS Calculations 

BSS was calculated using a combination of local and global methods: (1) Turbulent Kinetic Energy 

(TKE), (2) Law of the Wall – Single Point, (3) Quadratic Friction Law, (4) the Momentum 

equation using the Chézy resistance coefficient (Chézy/Momentum), and (5) the Momentum 

equation using Manning’s roughness coefficient (Manning/Momentum).  These methods were 

chosen based on their commonality among field and laboratory experiments, applicability to 

fluvial and marine current-driven environments, the diversity of necessary velocity measurements, 

and variability in calculating roughness coefficients.  Multiple methods were selected to calculate 

BSS because the “best method will likely depend on the logistics of deploying field equipment, 

instrument availability and technical support”(Simecek-Beatty, 2007).  Hence, modelers and 

responders will be able to compare in-situ BSS estimates with the CSS thresholds calculated 

regardless of technology limitations.  [N.B., For further explanation as to why these methods were 

selected see Chapter 2].  For this dissertation research, the term BSS and 𝜏𝑤 were used when 

describing shear stress for all methods, even for methods evaluating shear stress some elevation 

(𝑧) above the boundary where 0 cm < 𝑧 < 3 cm). 
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TKE 

To calculate BSS (𝜏𝑤), the TKE method uses 3D velocity fluctuations (e.g., 𝑢′, 𝑣′, 𝑤′) (Eq. 3-4 to 

Eq. 3-7).   

𝑢′ = 𝑢 − �̅� Eq. 3-4 

𝑣′ = 𝑣 − �̅�  Eq. 3-5 

𝑤′ = 𝑤 − �̅� Eq. 3-6 

𝜏𝑤 = C ⌊
1

2
⌋ 𝜌𝑤((𝑢′2)̅̅ ̅̅ ̅̅ ̅ + (𝑣′2)̅̅ ̅̅ ̅̅ ̅ + (𝑤′2)̅̅ ̅̅ ̅̅ ̅)   Eq. 3-7 

where: C, a fitting parameter valid for offshore oceanic conditions and rough-bed open channel 

flow, is 0.19 (Bagherimiyab & Lemmin, 2013; Biron et al., 2004; Pope et al., 2006; Soulsby, 1997; 

Stapleton & Huntley, 1995; Wren et al., 2017).  The TKE method has been used to estimate 𝜏𝑤 in 

flume and field studies (e.g., riverine, estuarine) under simple and complex flow conditions (Biron 

et al., 2004; Kim et al., 2000; Nikora & Goring, 2000; Pope et al., 2006; Stapleton & Huntley, 

1995).  𝜏𝑤 varies with height above the bed, experiencing a maximum at 0.1*ℎ and decreasing 

until it reaches the boundary.  All 𝜏𝑤 estimates obtained from this method were calculated at 𝑧 = 

2 to 3 cm (Bagherimiyab & Lemmin, 2013; Biron et al., 2004).  TKE estimates of 𝜏𝑤 are limited 

by Doppler backscatter and the ADV sampling volume.  Backscatter can be a result of increased 

Doppler noise from positive and negative buoyancy of particles in the sampling volume, small-

scale turbulence, acoustic beam divergence, and boundary interference (Kim et al., 2000; Pope et 

al., 2006).  

Law of Wall – Single Point  

The single point velocity method, the vertically-averaged form of Law of the Wall, assumes 

a logarithmic velocity profile and requires information describing the sediment size (e.g., 𝑑84) (Eq. 

3-8) (Whiting & Dietrich, 1990).   
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𝜏𝑤 =
𝜌(�̅�𝑧 ∗ 𝜅)2

𝑙𝑛 (
10 ∗ 𝑧

𝑑84
)

2 
Eq. 3-8 

where: 𝜅 = 0.4 and �̅�𝑧 = average velocity (m/s) at 𝑧.  This method has been successful in sand-

bedded river bends (Dietrich & Smith, 1983) and gravel-bed channels (Whiting & Dietrich, 1990).  

𝑑84 is representative of boundary features that dominate flow resistance because it accounts for 

the protrusion of larger grains into the flow field (Whiting & Dietrich, 1990).  Depending on in-

situ conditions, the single point average velocity must be based on a minimum sampling duration 

of 50-100 seconds, at measurements below a height of 2/10ths the flow depth and 2 cm above the 

bed of coarse sand or fine gravel bed for an immobile boundary (Whiting & Dietrich, 1990; 

Wilcock, 1996). 

Quadratic Friction Law 

The Quadratic Friction Law applies to current-driven environments with a steady, uniform, 

fully turbulent flow regime by quantifying the momentum dissipation due to bottom roughness 

(Eq. 3-9) (Pope et al., 2006; Soulsby, 1997; Wengrove et al., 2015).   

𝜏𝑤 = 𝜌𝑤𝐶𝐷�̅�2 Eq. 3-9 

where: 𝐶𝐷 = the drag coefficient (dimensionless).  Accurately estimating 𝐶𝐷 is challenging due to 

spatial variability of natural flow regimes and the presence of bed forms (Biron et al., 2004).  In 

many cases, 𝐶𝐷 is estimated using a constant value found in literature.  For this dissertation, 

empirical relationships, derived from the velocity profile, used a fitted power-law function to 

calculate 𝐶𝐷 based on the elevation above the bed where velocity goes to zero (𝑧𝑜) (Eq. 3-10) 

(Soulsby, 1997).   



 83 

𝐶𝐷 = 𝛼 (
𝑧0

ℎ
)

𝛽

 
Eq. 3-10 

where: 𝑧𝑜 was derived from the Law of the Wall – logarithmic profile method, and 𝛼 (0.0474) and 

β (1/3) are coefficients that change as a function of bottom substrate material, relative roughness, 

and bed mobility.  𝛼 and β were selected based on the Manning-Strickler Law (Strickler, 1923) as 

it applies to open channel and pipe flow regimes with large relative roughness factors (
𝑧𝑜

ℎ
 >10-4) 

(Mehaute & Hanes, 2005).  For all experimental conditions in this dissertation research  
𝑧𝑜

ℎ
>104 

and experiments were conducted in an open channel. 

Chézy/Momentum 

The Chézy/Momentum approach is the simplest method to calculate BSS, but it does not 

capture local, small-scale variations (Biron et al., 2004; Yen, 2002).  Because 𝑈 is the 

representative velocity component used in calculations, it is referred to as global predictor of BSS 

(Babaeyan-Koopaei et al., 2002; Yen, 2002).  The force balance approach uses the Chézy 

resistance coefficient (𝐶) to calculate BSS for a section of river with similar hydrologic conditions 

(i.e., reach-averaged BSS) (Eq. 3-11).   

𝐶 = √8𝑔 ∗ [1.2 + 2.03 log (
𝑅ℎ

𝑑84
)]

2

 

Eq. 3-11 

where 𝑅ℎ= hydraulic radius; 𝑅ℎ is calculated from the channel’s cross-sectional area (𝐴) and 

wetted perimeter (𝑃𝑤) using 𝑅ℎ =
𝐴

𝑃𝑤
.  This method is generally applied to open channel flow (e.g., 

rivers, streams) under steady, uniform, and non-uniform hydraulic conditions.  𝐶 was estimated 

using an empirical relationship, originally developed to calculate the Darcy-Weisbach friction 

factor, 𝑓, by relating 𝑑84 and 𝑅ℎ (Elger et al., 2013; Leopold & Wolman, 1957; Limerinos, 1970).  
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Eq. 3-11 was modified to directly calculate 𝐶, from 𝐶 = √
8𝑔

𝑓
 (Chaudhry, 2008; Elger et al., 2013).  

For the purpose of this dissertation research, the slope of the energy grade line or friction slope, 

𝑆𝑓, was used because it applies to uniform and non-uniform conditions (Eq. 3-12). 

𝑆𝑓 =
(

𝑈
𝐶)

2

𝑅ℎ
 

Eq. 3-12 

𝜏𝑤 was calculated by substituting Eq. 3-12 into Eq. 3-13 and multiplying by the specific 

weight of water, 𝛾𝑤 (N/m3). 

𝜏𝑤 = 𝛾𝑤𝑅ℎ𝑆𝑓  Eq. 3-13 

Manning/Momentum 

The Manning formula is commonly used to estimate stream flow, velocity, or friction slope 

in open channels (Yen, 2002).  For this research, 𝑈 was known and the Manning formula was used 

to calculate 𝑆𝑓 for uniform, steady state conditions (Eq. 3-14) (Limerinos, 1970).  

where:  𝑛 = Manning’s roughness parameter quantifies friction and form losses and varies with 

water discharge and bed material size (U.S. Army Corp of Engineers, 1993).  𝑛 has commonly 

been used to represent cross-sectional and reach resistance coefficients (Yen, 2002).  Seven 

methods were used to estimate 𝑛 based upon the PSD.  Of the seven estimates, the median value 

was selected for use in BSS calculations (see Appendix A.5: Estimating Manning’s n).  𝜏𝑤 was 

calculated by substituting Eq. 3-14 into Eq. 3-13.   

𝑆𝑓 = (
𝑈 ∗ 𝑛

𝑅ℎ
2/3

)

2

 

Eq. 3-14 
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3.3.4 Oil CSS Experiments 

Experiments were designed using the JMP 15 statistical software (SAS Institute; Cary, NC) 

to create a randomized, custom design that captured potential interaction between the main and 

quadratic effects (Table 3-2).  Additionally, four replicates and three center points were included 

in the design as indicators of reproducibility, and to identify experimental variability between oil 

CSS thresholds under identical conditions.  Because the oil was a non-Newtonian fluid, and 

viscosity changes with temperature, the temperature center points were included in the 

experimental design to document any curvature in the measured responses (i.e., to highlight 

temperatures’ non-linear influence on viscosity).  The experimental design for this research was 

developed so that results could be compared to Cloutier et al. (2002) which used a step-wise 

increase in velocity by ~0.07 m/s intervals.    



 86 

Table 3-2: Summary of experimental conditions. 

Trial Number Oil Condition Water Temperature (°C) Boundary Type 

1a Fresh Oil+Clay 8.6 Sand 

2a Fresh Oil+Clay 9.9 Sand 

3b Fresh Oil+Clay 24 Sand 

4b Fresh Oil+Clay 25 Sand 

5* Weathered Oil+Clay 7.2 Sand 

6+ Weathered Oil+Clay 10 Sand 

7 Weathered Oil+Clay 17 Sand 

8 Weathered Oil+Clay 24 Sand 

9c Fresh Oil+Clay 10 Fine Pebble 

10c Fresh Oil+Clay 10 Fine Pebble 

11 Fresh Oil+Clay 25 Fine Pebble 

12 Weathered Oil+Clay 10 Fine Pebble 

13 Weathered Oil+Clay 18 Fine Pebble 

14 Weathered Oil+Clay 25 Fine Pebble 

15 Fresh Oil+Clay 9.5 Medium Pebble 

16 Fresh Oil+Clay 18 Medium Pebble 

17 Fresh Oil+Clay 22 Medium Pebble 

18 Weathered Oil+Clay 11 Medium Pebble 

19d Weathered Oil+Clay 25 Medium Pebble 

20d Weathered Oil+Clay 25 Medium Pebble 
a,b,c,d Replicate experiments 
* Water temperature was below experimental setting of 10±1.5°C and therefore trial was redone 

(Trial 6), however, results from Trial 5 were retained and analyzed in the results. 
+ Trial 5 redo. 

 

Prior to each experiment, residual oil was removed from the upper channel using 

CitraSolve (Citra Solve, LLC; Danbury, CT), followed by liquid Dawn dish soap (Procter & 

Gamble; Cincinnati, OH), and rinsed using warm tap water.  The upper channel and test segment 

were dried and disinfected using rubbing alcohol.  Prior to filling the flume with water, the 

substrate was centered within the test segment and adhered to the bottom.  As the flume filled with 

water, the temperature was adjusted based on the experimental condition, and GoPro cameras and 

the Vectrino were secured into place and tested.  In-situ water temperature was held constant 

(±1°C) for the duration of each experiment.  The oil was then added (99±6 g) into quiescent water 

via subsurface injection.  The actual oil mass applied to the substrate was determined 
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gravimetrically by weighing the syringe used before and after injection.  Based on the oil mass 

injected and the substrate type, the diameter of the SOP ranged between 10 cm and 13 cm, 

classifying this experimental oil as an oily SOP (Gustitus & Clement, 2017).  

The water remained at zero velocity for a minimum of two minutes.  It was then increased 

to the lowest velocity setting (𝑈 = 0.06±0.01 m/s).  The velocity was held constant for 15 minutes 

and then increased step-wise by 0.08±0.02 m/s until: (1) all of the oil had eroded from the substrate, 

or (2) a maximum velocity of 1.04 m/s was reached.  An overhead flashing light was used to 

indicate that the velocity was being increased to the next interval; this allowed the overhead and 

side-view video recordings to be synchronized during data post-processing.  Once the velocity was 

increased and the test segment reached steady state (~15 seconds), the Vectrino began measuring 

instantaneous velocity; velocity measurements were then used to calculate in-situ BSS.   

The video recordings and photographs were compiled and edited using Adobe Premiere 

Pro and Adobe Photoshop, respectively.  Two responses were measured to evaluate the SOP’s 

movement: (1) the number of oil droplets or pieces of oil (type II erosions) that broke away from 

the SOP, and (2) spreading of oil along the bottom (i.e., SOP footprint).  Cloutier et al. (2002) 

characterized oil droplets which detached from oil stranded on their flume base as type II erosions.  

They defined the CSS threshold as “the threshold velocity under which visual deformation and 

erosion of the [oil’s] surface take place”.  After compiling the videos for each experimental trial, 

the number of type II erosions were counted for each velocity interval.  In this research, type II 

erosions were counted when they left the field of view of both cameras. 

The spreading distance along the bottom was quantified using overhead and side-view 

images of the oil at the end of each velocity interval.  The area of substrate covered by the oil’s 

footprint was measured using Adobe Photoshop’s pixel count and converted to cm2 using an in-



 88 

situ scale.  Additionally, the oil’s dimensions (e.g., length, width, thickness) were measured at the 

end of each velocity interval.   

3.4 Results  

Laboratory experiments were conducted to measure the physical parameters of the 

experimental oil (i.e., 𝜌𝑜,𝜇𝑜), and the substrates’ boundary roughness was characterized by a sieve 

analysis and MTD experiments.  A series of flume-based experiments (20 trials) were conducted 

over a range of environmental conditions (i.e., water velocity, water temperature, sediment size) 

to determine the oil’s CSS.  Instantaneous, 3D velocity measurements were collected using the 

Vectrino and used to calculate 𝜏𝑤 using five methods.  Side-view and overhead video recordings 

captured the oil’s behavior.  Videos were compiled and correlated to each velocity interval; videos 

and images were used to define the thresholds of oil movement.  The SOP’s CSS thresholds were 

determined based on the thresholds of movement and in-situ 𝜏𝑤 estimates. 

3.4.1 Viscosity Analysis 

The measured viscosity values of FC and WC oil samples collected using the Wells-

Brookfield viscometer (number of replicates at each test condition, n=2 to3), were plotted with 

respect to temperature (Figure 3-2) (Appendix B.1: Fresh & Weathered Brookfield Viscosity).   
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Two fitted relationships were developed based on �̅�𝑜(𝐹𝐶) and �̅�𝑜(𝑊𝐶) (mPa*s = cP) to 

predict viscosities outside the working range of the instrument for FC oil < 15°C (Eq. 3-15; 

R2=0.9730) and WC oil < 19°C (Eq. 3-16; R2=0.9634).  

�̅�𝑜(𝐹𝐶)  =  2𝐸 + 8(𝑇)−3.408 Eq. 3-15 

�̅�𝑜(𝑊𝐶)  =  6𝐸 + 8(𝑇)−3.6 Eq. 3-16 

where: 𝑇 = temperature (ᵒC) and Eq. 3-15 and Eq. 3-16 apply for 5°C<T<50°C.  This relationship 

was verified with measurements made using the DHR for T<10°C (Appendix B.2: DHR and 

Brookfield Viscosity).  HFO is a viscoelastic material which exhibits shear-thinning behavior, a 

decrease in viscosity as shear rate increases, for temperatures <50°C.  The DHR viscosity 

measurements showed exacerbated effects at lower temperatures (<18°C).  Weathered oils have a 

higher viscosity than their fresh counterparts, this has been document in many spill responses (e.g., 

Enbridge Line 6b) (USEPA, 2016), observed through laboratory experiments (Environment 

Figure 3-2: Wells-Brookfield viscosity measurements for FC and WC oil. 
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Canada, 2013), and modeled (Etkin et al., 2007).  As expected, the WC oil samples were more 

viscous at all temperatures when compared with those of FC.   

The variability associated with the Wells-Brookfield viscosity measurements, from which 

the fitted equation was calculated, was evaluated using JMP statistical software’s 

variability/attribute gauge chart.  The viscoelastic material exhibited different viscosities based on 

the applied shear rate at a single temperature, thus creating a spread in viscosity data with respect 

to temperature.  Results from the variability analyses indicated that sampling variability increased 

as temperature decreased and quantified the associated 𝜎 along with other statistical parameters 

(e.g., 95% confidence interval).  The highest RSD based on these results was 20%, henceforth, 

error bars associated with viscosity were set to 20% (Appendix B.3: Wells-Brookfield Viscosity 

Variability).  

𝑣𝑜(cSt) was calculated over the experimental temperature range using the measured 𝜌𝑜 and 

𝜇𝑜, where 𝑣𝑜 = (
𝜇𝑜

𝜌𝑜
) (Figure 3-3).  Responders can estimate if a floating oil has the potential to 

form SOM’s based on the 𝑣𝑜.  Typically, estimate an upper and lower limit of SOM formation at 

10,000 cSt and 100,000 cSt, respectively (Michel & Bambach, 2020).  Based on the thresholds 

identified by Michel & Bambach (2020), SOM formation for the HFO in this research would most 

likely occur in water temperatures between 10°C and 17.5±0.5°C.  
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3.4.2 Oil CSS Experiments 

3.4.2.1 Defining Thresholds of Oil Movement 

The criteria describing the oil’s CSS thresholds was developed based on the measured 

responses, spreading of the oil, number of type II erosions, and SOP dimensions (i.e., width, length, 

thickness).  To characterize the thresholds of movement and quantify the corresponding critical 

velocity, the overhead and side view area measurements and number of type II erosions were 

plotted with respect to 𝑈.  The criteria describing the thresholds of movement was defined based 

on observations from this research, the literature, and historic spill events.  The thresholds of 

movement were different for cold water trials (i.e., 10±1.5°C) compared with warmer water trials 

(i.e., >17.5±0.5°C).  10±1.5°C tests often exhibited a single threshold of movement that 
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Figure 3-3: Formation of SOP based ρo and 𝑣𝑜  for all oil conditions and experimental 
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transported a majority of oil at one time (Figure 3-4) (Appendix B.4: Plots of Measured 

Responses). 

Figure 3-4 is representative of most 10±1.5°C trials, with the area of the SOP remaining 

constant, and suddenly decreasing to zero at a corresponding erosion event.  That particular trial 

had a total of two erosion events that took place at 𝑈=0.54 m/s: one was a small droplet or piece 

of oil that occurred just prior to the second where the remaining SOP left the substrate.  In all nine 

cold water trials, a type II erosion that resuspended a piece or droplet of oil occurred before a 

significant portion of the SOP mobilized.  For eight of the nine trials, the type II erosion was driven 

by current velocity, whereas in one trial, the type II erosion happened just after the oil was injected 

at zero velocity.  By referring to the area measurements, a distinction could be made between the 

type II erosion threshold and an erosion event which caused the entire SOP to mobilize.  Based on 

trends identified after plotting the measured responses, two thresholds of oil transport were defined 

for cold water trials: (1) type II erosions, and (2) bedload transport (Table 3-3).  SOP bedload 
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transport was established as a single event that transported a significant portion or the entire SOP.  

The SOP, which remained intact rather than breaking into small pieces, bounced along the bottom.  

For trials where the type II erosion event and bedload transport threshold occurred at different 

velocities, the SOP bedload transport threshold could be differentiated from a type II erosion event 

that removed a single droplet or small piece of oil by an immediate decline in the oil’s area on the 

substrate. 
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A higher number of type II erosion events occurred in the >17.5±0.5°C trials than in the 10±1.5°C 

counterpart (Figure 3-5).  [N.B., Erosion event (#) axis scale is different than Figure 3-4]. 

This particular trial had 250 cumulative type II erosions, with a maximum number of 

erosions (51) occurring at 𝑈 = 0.85 m/s.  Unlike the 10±1.5°C trials, type II erosions occurred in 

all 11 warm water trials when 𝑈 = 0 m/s.  In general, the number of type II erosion events increased 

as temperature increased for all substrate sizes.  Based on the fact that type II erosions occurred in 

all of the warm water trials in stagnant water, this threshold of movement will not be displayed in 

future plots.   

For the fine pebble, 25°C, FC trial, the side view area remained constant, while the 

overhead increased to a maximum, until both area measurements simultaneously declined when 𝑈 

= 0.34 m/s.  This pattern was common for most warm water experiments on sand and fine pebble 

substrates, whereas on medium pebble substrates, the peak was less distinct and area measurements 

often declined as velocity increased.  For sand and fine pebble substrates, the area of oil increased 

with increasing velocity until it reached a peak; the side view maximum generally occurred at a 
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velocity interval before the overhead area maximum.  Once the maximum was reached, the trend 

was similar to that for the medium pebble, and area declined as velocity increased.   

The thresholds of movement for warm water trials were divided into three categories: (1) 

gravity spreading, (2) advective spreading (i.e., migration along the bed), and (3) SOP break-

apart/resuspension (Table 3-4).  Using the width and length measurements collected from the 

overhead camera, gravity spreading was classified by proportional spreading in the 𝑥- and 𝑦-

dimensions.  Gravity spreading on the sand and fine pebble substrates for FC occurred when 

𝑈<0.06 m/s and for WC at 𝑈<0.13 m/s.  On the medium pebble substrate, gravity spreading 

occurred at 𝑈<0.20 m/s and 𝑈<0.13 m/s for FC and WC, respectively.  Advective spreading was 

divided into two subcategories, a lower threshold classified as rope formation (Figure 3-6) and an 

upper threshold termed ripple formation (Figure 3-7). 

 

Figure 3-6: Rope formation (red box) at U=0.13 m/s during Trial 4 (FC oil, 25°C, sand). 
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Rope formation was characterized using the length and width dimensions, and the overhead 

and side view area measurements.  Preliminary rope formation coincided with a slight increase in 

oil area followed by a rapid increase in either the width or length of the SOP.  On sand and fine 

pebble, rope formation was readily observable by an increase in the width, while the length 

remained constant or decreased.  On the medium pebble substrate, the length increased, while the 

width remained constant.  Ripple formation was identified by oil waves developing at the down-

stream side of the SOP which proceeded to propagate down its length causing oil to actively 

migrate in the direction of flow.  Ripple formation was first identified when reviewing the video 

recordings and later confirmed by the side view and overhead area measurements.  Formation of 

oil waves led to the elongation of the SOP which often corresponded with a rapid increase or peak 

in area or length measurements.   

The SOP break-apart/resuspension threshold was identified by a peak in type II erosion 

(Figure 3-8) events that corresponded with a decline in oil area.  This threshold was confirmed by 

comparing images of the oil at the end of each velocity interval.  The SOP was deemed “broken 

apart” if the SOP was no longer present on the substrate or was not a continuous mass.  It would 

Figure 3-7: Ripple formation (red arrows) at U=0.27 m/s during Trial 8 (WC oil, 24°C, sand). 
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be challenging for responders to recover the broken-apart/resuspended SOP.  With the exception 

of FC oil on sand at 25°C, as velocity increased the oil continued to fragment and break into smaller 

droplets.  Type II erosions that took place at low velocities (𝑈<0.13 m/s) occurred randomly 

throughout the SOP footprint.  Type II erosions that occurred as a consequence of advective 

spreading, separated from the leading edge of the SOP. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-8: Type II erosion (red circle) at U=0.2 m/s during Trial 17 (FC oil, 22°C, 

medium pebble). 
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For low velocity erosions, the oil droplets tended to rise to the surface, whereas erosions 

coinciding with advective spreading remained suspended in the water column.  Unlike the 

10±1.5°C trials, in warm water conditions the SOP did not remain intact at the break-

apart/resuspension threshold, but rather fragmented into many droplets which then became: (1) 

lodged in pore spaces on the substrate, (2) saltated along the bed, or (3) suspended into the water 

column. 

The pattern of erosion events as velocity increased differed with respect to substrate size 

for water temperatures >17.5±0.5°C.  On the sand substrate, the number of erosions increased with 

velocity until it reached a peak and then declined as velocity continued to increase.  For fine pebble 

experiments, erosion events increased with respect to increasing velocity until reaching a 

maximum and plateaued around that value even as velocity continued to increase.  For medium 

pebble, erosion events reached local maxima, but steadily increased as velocity increased.  For all 

medium pebble trials, the highest number of erosions occurred when 𝑈 >0.94 m/s.  For rougher 

substrates, some oil stayed within pore spaces at high velocities (𝑈~1.04 m/s), thus providing a 

continuous source of oil droplets to the environment. 

Regardless of boundary type, for trials with water temperatures >17.5±0.5°C, the side view 

areas tended to peak at a velocity interval below the overhead areas.  This occurred because the 

oil’s thickness reached a maximum value at a lower velocity than the length.  This suggested that 

the oil gets thicker before it lengthens.   

3.4.2.2 Converting Critical Velocity to CSS 

Once the critical thresholds were defined, the corresponding critical velocity interval was 

determined and used to calculate CSS based on the in-situ hydraulic and boundary conditions 

specific to each trial.  Over the 15 minute period for each velocity interval, the arithmetic average 
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of BSS (𝜏𝑤̅̅̅̅ ) was calculated using the five approaches (See Section 3.3.3.3 BSS Calculations) 

(Figure 3-9). 

The CSS values for all applicable thresholds are summarized for the 20 trials (Table 3-5).  

In the event of an HFO spill, modelers could select the oil CSS threshold(s), determined from this 

research, that represent in-situ spill conditions, to predict the transport of the sunken oil.   

The primary factors driving the oil’s thresholds of movement were evaluated for rope formation, 

ripple formation, and SOP break-apart/resuspension using the standard least squares model in the 

JMP statistical software.  SOP break-apart and SOP bedload transport (SOP break-

apart/resuspension) were evaluated together because both thresholds were based on the underlying 

assumption that the SOP was no longer recoverable in the location where it was initially stranded.  

Based on model outputs, 𝑑50 was identified as a statistically significant parameter for the model 

(i.e., p <0.05) when predicting rope formation, ripple formation, and SOP break-

apart/resuspension.  Additionally, the log(𝑣𝑜) was significant for the model for ripple formation 

and SOP break-apart/resuspension.   
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Based on these findings, the oil’s CSS thresholds were plotted with respect to 𝑣𝑜 for 

experiments conducted on sand (Figure 3-10), fine pebble (Figure 3-11), and medium pebble 

(Figure 3-12) substrates.  The horizontal error bars represent the 20% RSD associated with 

viscosity measurements.  The vertical error bars correspond to 𝜏𝑤̅̅̅̅  ±𝜎𝜏𝑤̅̅ ̅̅  .  Dalyander et al. (2015) 

noted the importance of burial and exhumation processes influencing the fate and behavior of 

SOPs which can take place within the order of 10 minutes.  Based on their finding and because 

sediments were glued to the boundary in this dissertation research, a range of sediment CSS 

thresholds corresponding to the substrate’s PSD, were plotted to compare sediment mobility with 

oil mobility (Berenbrock & Tranmer, 2008).  The fitted relationships and associated R2 for each 

of the thresholds in Figure 3-10 to Figure 3-12 are summarized in Table 3-6.  

For experiments conducted >17.5±0.5°C, CSS progressively increased from gravity 

spreading to rope formation, ripple formation, and break-apart thresholds.  Regardless of substrate 

type, trials conducted at 24±2°C had the smallest CSS for rope formation, ripple formation, and 

break-apart/resuspension thresholds.  Additionally, CSS thresholds increased as water temperature 

decreased.  Out of the 20 trials, two trials (replicates) conducted on the sand substrate using FC oil 

at 24±2°C had the same CSS for ripple formation and break-apart/resuspension thresholds.  The 

thresholds of movement, especially for rope formation, were most clearly observable on the sand 

substrate, and became less distinct as substrate size increased.  

Regardless of substrate type, the highest CSS value that initiated SOP break-

apart/resuspension was not observed for the most viscous oil.  For the sand substrate, CSS was 

largest for 𝑣𝑜 ~ 115,000 cSt (maximum 𝑣𝑜= 431,724 cSt).  For fine pebble, it occurred at 𝑣𝑜 ~ 

62,000 cSt (maximum 𝑣𝑜= 113,269 cSt).  On medium pebble it was at 𝑣𝑜 ~ 83,000 cSt (maximum 
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𝑣𝑜= 105,816 cSt).  The results from this research identified the factors significant to predicting oil 

CSS thresholds are 𝑣𝑜and 𝑑50. 

For the medium pebble at 9.5°C with FC oil, the SOP did not partially or fully mobilize at 

the CSS; this was the only case where the majority of the SOP remained on the substrate for 𝑈 = 

1.04 m/s.  The WC trial under the same experimental conditions, did exhibit SOP bedload transport 

at 𝑈 = 1.04 m/s.  To capture the increased CSS for the FC trial, the FC CSS was represented in the 

results as the upper BSS threshold when 𝑈 = 1.04 m/s (i.e., 𝜏𝑤̅̅̅̅  ±𝜎𝜏𝑤̅̅ ̅̅   = 11 Pa).  Further research 

should be conducted to determine the true CSS value for this experimental condition (i.e., FC oil, 

at 10±1.5°C, medium pebble). 

The lines of best fit correlated fairly well with data (R2 >0.6467) (Table 3-6) except for the 

medium pebble, gravity spreading threshold (R² = 0.0180) which showed a decline in CSS with 

increasing viscosity and may be a result of the oil filling in pore spaces rather than spreading 

(Figure 3-12).  This decline suggests that the slightly less viscous oils required a higher threshold 

of movement as they tended to fill in the open pore spaces and be shielded from the flow field by 

the medium sized pebbles.  Polynomial equations were initially used to describe the fine pebble 

and medium pebble break-apart/resuspension thresholds as it had a better fit and captured the non-

linear nature of transport due to the shear-thinning fluid.  However, if a 𝑣𝑜 outside of the 

experimental data range was used, the predicted CSS became a negative value which is not 

probable.  Therefore, the natural log equations were selected to reflect the anticipated transport 

patterns more accurately.   

For water temperatures of 10±1.5°C, the thresholds of movement no longer followed the 

gravity spreading → rope formation → ripple formation → break-apart/resuspension pattern (i.e., 

the validity of the fitted equations failed for gravity spreading, rope formation, and ripple 
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formation when 𝑣𝑜 >2x104 cSt).  Based on the experimental conditions and results, the break-

apart/resuspension fitted equations were valid for 𝑣𝑜<431,000 cSt on sand, 𝑣𝑜<115,000 cSt on fine 

pebble, and 𝑣𝑜<106,000cSt for medium pebble.           

 The oil CSS values were converted to the corresponding dimensionless shear stress (𝑂𝑖𝑙 𝜏∗) 

and grain Reynolds number (𝑂𝑖𝑙 𝑅𝑒∗) using Eq. 3-17 and Eq. 3-18, respectively.  These values 

were then plotted for the gravity spreading, rope formation, ripple formation, and break-

apart/resuspension thresholds in the form of a Shield’s Curve (Figure 3-13).   

𝑂𝑖𝑙 𝜏∗ =
𝜏𝑤̅̅̅̅

𝑔(𝜌𝑜 − 𝜌𝑤)𝑑50
 

Eq. 3-17 

𝑂𝑖𝑙 𝑅𝑒∗ =
𝑢𝑤

∗  𝑑50

𝜐𝑜
 

Eq. 3-18 

where: 𝜏𝑤̅̅̅̅ = threshold BSS for oil transport (i.e., oil CSS) (Pa),  𝑔 = gravity (m/s2), 𝜌𝑜 = oil density 

(kg/m3), 𝑑50 = median grain size (m), 𝑢𝑤
∗  = friction velocity (m/s) using  𝑢𝑤

∗ = √
𝜏𝑤̅̅ ̅̅

𝜌𝑤
 , and 𝜐𝑜 = 

kinematic viscosity of oil (m2/s).   

  Figure 3-13 is analogous to a sediment Shield’s Curve in that each threshold is represented 

by a fitted line that corresponds to a threshold of movement.  When values fall above the threshold 

line then that threshold has been exceeded and oil transport was likely initiated.  Alternatively, 

when values fall below the line, that transport threshold has not been reached. 

𝜐𝑜 is the fundamental parameter controlling 𝑂𝑖𝑙 𝑅𝑒∗ and 𝜏𝑤̅̅̅̅  is the primary value 

driving 𝑂𝑖𝑙 𝜏∗.  Smaller 𝑂𝑖𝑙 𝑅𝑒∗ values represent cold water experiments (i.e., higher oil viscosity) 

and larger 𝑂𝑖𝑙 𝑅𝑒∗ values indicate warmer trials (i.e., lower oil viscosity).  The larger 𝑂𝑖𝑙 𝜏∗ 

associated with the smaller 𝑂𝑖𝑙 𝑅𝑒∗ suggests that more viscous oils require larger oil CSS values 

to achieve that transport threshold.  The equations shown in Figure 3-13 are valid only within the 

experimental range from this research, 3x10-5< 𝑂𝑖𝑙 𝑅𝑒∗ <10-1 and 3x10-3< 𝑂𝑖𝑙 𝜏∗ <101. 
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As would be expected, the stages are staggered with gravity spreading requiring the lowest 

𝑂𝑖𝑙 𝜏∗, followed by rope formation, ripple formation, and the largest 𝑂𝑖𝑙 𝜏∗ required for break-

apart/resuspension.  The break-apart/resuspension fitted equation diverges from the data points as  

𝑂𝑖𝑙 𝑅𝑒∗ approaches 10-1.  This divergence was likely due to the influence of sediment size on oil 

CSS and the type of equation selected to represent this threshold. As with the other curves and 

associated equations, further research should be conducted to refine these relationships, especially 

towards the edge of the validity range, as they are representative of one oil type on an immobile 

bed.  
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3.4.2.3 Experimental Variability  

Based on the four replicates, experimental variability was higher for 10±1.5°C trials than 

trials with water temperatures >17.5±0.5°C.  For example, FC oil on the sand substrate reached its 

CSS SOP break-apart/resuspension threshold at 1.4±0.4 Pa and 1.0±0.2 Pa.  [N.B., The higher CSS 

threshold is associated with a slightly colder water temperature (e.g., 8.6°C vs. 9.9°C)].  This was 

expected because 𝑣𝑜 is lower at a colder temperature, thus increasing the SOP’s resistance to 

deformation.  24±2°C replicates on sand using FC oil, had CSS values of 0.2±0.07 Pa and 0.2±0.04 

Pa; the temperature for one of the replicates was also slightly lower (i.e., 24°C vs. 25°C).  Although 

the oil was completely eroded from the substrate by the end of the 0.20 m/s velocity interval for 

both replicates, fewer erosions occurred at 𝑈 <0.20 m/s and the SOP took longer to erode once at 

𝑈 = 0.20 m/s for the 24°C than the 25°C replicate.   

10±1.5°C replicates were conducted on the fine pebble substrate using FC oil.  The SOP 

break-apart/resuspension thresholds occurred at 1.7±0.5 Pa and 2.3±0.7 Pa.  The lower CSS 

threshold had a larger initial average oil thickness (ℎ𝑜) of 1.6 cm compared with 1.3 cm.  For the 

24±2°C replicates on medium pebble substrate using WC oil, the CSS break-apart/resuspension 

thresholds were 2.33±0.8 Pa and 2.51±0.8 Pa.  In this case, ℎ𝑜 was smaller (i.e., 0.9 cm vs. 1.2 cm) 

for the lower CSS threshold.  ℎ𝑜 was not a statistically significant parameter for predicting oil CSS 

thresholds for the oil type, weathering state, quantity, and variables (e.g., temperature, water 

velocity) evaluated in these experiments. 
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3.5 Discussion 

3.5.1 Oil CSS Experiments 

The findings from this research suggest that the thresholds for oil movement should be 

defined differently when predicting the transport of sunken oils with high viscosity compared with 

low viscosity.  Based on the experimental test conditions and oil type used, the viscosity threshold 

for oil transport of low and high viscosity oils was defined as 𝑣𝑜 <18,000 cSt and 𝑣𝑜 >62,000 cSt, 

respectively (herein referred to as 𝑣𝑜 <2x104 cSt and 𝑣𝑜 >6 x104 cSt).  When 𝑣𝑜 <2x104cSt, the 

SOP will likely be broken into multiple pieces and move in stages.  For 𝑣𝑜 >6 x104, the SOP is 

likely to remain intact and erode all at once.  Because no experiments were conducted on oil 

viscosities between the high and low viscosity threshold limits, future experiments should be 

conducted to resolve these ranges.  The results also indicated that the oil’s CSS increased as a 

function of bottom roughness.  The substrate’s 𝑑50 and 𝑣𝑜 were statistically significant when 

predicting SOP movement. 

In 10±1.5°C trials, the lowest SOP bedload transport CSS (0.53±0.1 Pa) occurred on the 

sand substrate with WC oil.  The highest observed CSS (10.8±3.4 Pa) occurred for FC oil on 

medium pebble substrate at 9.5°C.  Because the SOP did not fully erode this suggests the CSS is 

likely >11 Pa.   

For >17.5±0.5°C experiments, the lowest CSS for rope formation (0.08±0.03 Pa) and SOP 

break-apart/resuspension (0.19±0.04 Pa) occurred for FC oil at 24.7°C on sand.  Initial SOP 

transport at 0.08 Pa corresponded to a critical velocity of 0.13 m/s; this value agreed with the 0.1 

m/s threshold identified as sufficient for resuspending submerged oil in rivers (API, 2016b).  

Alternatively, the largest CSS values for rope formation (0.53±0.22 Pa) and SOP break-

apart/resuspension (2.5±0.81 Pa) occurred for WC oil at 25.1°C on medium pebble substrate.   
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The experimental BSS range was chosen to represent as wide of a range as possible, while 

maintaining uniform, steady state conditions.  Because BSS is highly dependent on current velocity 

which fluctuates in the natural environment (e.g., flood, storm conditions), a wide range of values 

is expected.  Fluctuations in current velocity affects sediment transport mechanisms (e.g., 

suspended vs. bedload transport), the presence of bed forms, channel geometry, and boundary 

roughness (Berenbrock & Tranmer, 2008).  For example, in the Great Bay Estuary (NH), a shallow 

estuary with muddy-sand sediments, the maximum BSS observed under non-storm conditions was 

0.10 Pa, whereas in storm conditions it peaked at 0.58 Pa (Wengrove et al., 2015).  In Solfatara 

Creek (Yellowstone National Park, WY), for a gravel bed channel (5.2 m wide, 0.4 m deep) the 

local BSS was mapped over a midchannel bar and values ranged between 0 to 10 Pa along a 20 m 

reach (Whiting & Dietrich, 1990).  The potential environmental variability highlights the 

importance of determining in-situ sediment sizes, current velocities, and water temperatures 

throughout response and recovery operations to predict SOP transport.    

3.5.2 Caveats to Research Findings 

Because the sediments were adhered to the boundary, they could not transport, therefore 

subsequent contributions to BSS (e.g., form drag, suspended sediment interactions) were not 

considered (Soulsby, 1997).  When applying this research to mobile boundaries, the contribution 

of form drag to and the effect of suspended sediment concentration on BSS should be considered.  

The CSS for sand, fine pebble, and medium pebble were approximately 0.29 Pa, 4.8 Pa, and 9.6 

Pa, respectively.  Because the oil remained submerged for the duration of each experimental trial, 

the thresholds can only be applied to submerged conditions (e.g., not an area exposed at low tide).   
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3.5.3 Factors Driving SOP Transport  

3.5.3.1 Oil’s Kinematic Viscosity  

Based on experimental and model results, 𝑣𝑜 was identified as a statistically significant 

factor when predicting CSS thresholds for advective spreading and break-apart/resuspension.  This 

result was expected because viscosity is a driving parameter when predicting droplet size 

distribution of floating oil slicks in turbulent conditions (Delvigne & Sweeney, 1988; Zhao et al., 

2014), and a shoreline’s capacity to retain oil (Etkin et al., 2007).  Cloutier et al. (2002) credited 

the lack of type II erosions at 4°C to the increase in oil viscosity at cold temperatures. 

Regardless of substrate type, the highest break-apart/resuspension CSS value was not 

associated with the most viscous oil or coldest temperature.  For 10±1.5°C trials, FC SOPs tended 

to have a higher SOP bedload transport CSS than their WC counterparts.  Alternatively, for 

>17.5±0.5°C trials, WC SOPs had a higher SOP break-apart CSS than FC oil.  This inflection may 

be attributed to the oil’s shear-thinning properties, thus reducing the viscosity of oil at higher shear 

rates.  Shear rate can be calculated from the rate of change in the velocity profile over the height 

for which velocity is measured.  Higher current velocities generally result in higher shear rates.  

Based on the concept of shear thinning, at higher velocities the viscosity of oil may be reduced 

further.  Because WC oil is more viscous than FC oil, the effect of shear-thinning may be 

exacerbated for warmer temperatures.  The addition of clay to the fresh and weathered oil resulted 

in a more viscous oil.  The weathered only had similar viscosities to the FC oil, whereas WC oil 

was more viscous than fresh oil, weathered oil, and FC oil.  

The viscoelastic nature of heavy fuels is due to the complex compounds (e.g., asphaltenes, 

resins, wax crystals) present in the oil, and the temperature-dependent internal interaction of 

molecules (e.g., van der Waals, hydrogen bonding, 𝜋-stacking) (Abivin et al., 2012).  Abivin et al. 
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(2012) also attributed the elastic tendencies at low temperatures to the reduction of thermal energy 

which draws the molecules together increasing the material’s internal friction causing the oil to act 

as a solid rather than a liquid.  For heavy oils, the asphaltene content has been used to predict the 

dynamic viscosity (Luo & Gu, 2007) and other viscoelastic properties using the Williams-Landel-

Ferry model over a wide range of temperatures (Abivin et al., 2012). 

3.5.3.2 Sediment Size 

For all of the thresholds of movement, the substrate’s 𝑑50 was a statistically significant 

parameter for predicting sunken oil transport.  Experimental results showed that oil CSS thresholds 

increased with increasing boundary roughness (i.e., oil stranded on a sand stream bed would 

require a lower CSS than if stranded on a gravel bed under the same environmental conditions). 

Burial and exhumation processes were evaluated by plotting the sediment’s CSS with oil 

CSS.  On sand, rope formation was initiated prior to sediment incipient motion (𝑑50=0.25 mm) for 

all trials with water temperature >17.5±0.5°C.  At the warmest conditions (~25°C), the oil reached 

ripple formation and break-apart/resuspension thresholds before incipient motion began.  This 

suggested that the SOP may move before being buried by the surrounding sand.  Alternatively, 

because the oil CSS increased as oil viscosity increased, burial and exhumation processes should 

be considered an important factor on sand substrates when 𝑣𝑜 >6x103 cSt. 

For fine pebble experiments, all oil CSS thresholds were smaller than the corresponding 

sediment CSS thresholds (𝑑50= 4 mm).  When oil CSS thresholds are compared to smaller 

sediment’s CSS (𝑑50= 0.25 mm), incipient motion would begin before ripple formation or break-

apart/resuspension CSS thresholds.  Hence, burial and exhumation processes for the smaller 

sediment fraction would be important considerations when predicting the location of SOPs.  A 

similar pattern is true for medium pebble substrates, however in this case, for all temperature 
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conditions, the rope formation threshold is larger than sediment CSS (𝑑50= 0.25 mm) by ~0.3 Pa.  

Although it may be inferred that the oil would not be buried by sediments in some of these cases, 

in the natural environment, sediment distribution is not uniform with smaller sediments co-

occurring.  If there is co-occurrence, the SOP may be covered by smaller sediments before it can 

erode, potentially burying it until a flood event remobilizes the smaller sediments.   

In the case where sediments become mobile before the oil, the CSS thresholds determined 

in this research may underestimate the oil’s CSS due to the SOP being buried or because SOP 

density increases as a result of sediments (i.e., silt, sand, clay) adhering.  Alternatively, an unstable 

bed may result in premature oil mobility being driven by movement of surrounding sediments, 

thus initiating oil transport a lower CSS thresholds.  In the case where an active layer of transport 

or bed forms exist, the shear stress components related to those processes should be considered.  

For example, Cloutier et al. (2002) found that oil erosion rates were highest at moderate suspended 

sediment concentrations (SSC) (200-250 mg/L), and that oil erosion rates decreased when SSC 

increased to >250 mg/L.  It is recommended that further research be conducted to evaluate the 

effect of a mobile bed on oil CSS thresholds. 

3.5.4 Comparison to Literature 

Cloutier et al. (2002) is the only published research that evaluated the CSS of sunken oil in 

its fluid form; other oil CSS experiments have been conducted using aSOAs (Dalyander et al., 

2015) and microscopic aggregates known as oil-particle aggregates (OPAs) (Hayter et al., 2015).  

Cloutier et al. (2002) used an annular flume to analyze the transport of weathered Hibernia Crude 

(𝜇𝑜~ 4003 mPa*s at 15°C) at 4°C and 13°C in clear sea water on a smooth (acrylic) boundary.  

Minor erosion thresholds (i.e., type I erosions (non-visible droplet formation or dissolution)) were 

determined by an increase in oil concentrations without visual erosion of the oil surface.  Type II 
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erosions were defined using visual deformation of the slick, specifically by three types of 

movement: disturbance of the slick surface, ripple formation, and suspension of visible oil 

droplets.  None of the Hibernia crude eroded even at the strongest current velocity (0.75 m/s) at 

4°C, whereas, at 13°C, the type I erosions were observed at a CSS of 0.52 Pa to 1.88 Pa.  Type II 

erosions occurred at a CSS of 5.0 Pa and critical velocity of 0.55 m/s.  To adequately compare 

findings from this dissertation research and Cloutier et al. (2002) experimental trials conducted at 

for 24±2°C can be used because a similar viscosity to Hibernia crude was achieved for FC oil (𝜇𝑜~ 

4071) at 23.8 °C  and WC oil (𝜇𝑜~ 4002 mPa*s) at 27.4°C.  Additionally, because water column 

concentrations of oil were not measured in this experiment, only the type II erosion threshold 

identified by Cloutier et al. (2002) can be compared. 

The range of CSS values for ripple formation to SOP break-apart/resuspension thresholds 

on sand, fine pebble, and medium pebble occurred between 0.12–0.63 Pa, 0.33–1.55 Pa, and 0.43–

3.32 Pa, respectively.  FC/WC oil CSS ranges for all substrate types were well below the type II 

erosion threshold identified for Hibernia crude (5.0 Pa).  This disparity between CSS thresholds 

for FC/WC No. 6 HFO and Hibernia crude may be attributed to a number of factors.  First, Hibernia 

crude was injected into the flume before it was filled with water; this provided ample time for the 

oil to spread to a thickness of  2 mm.  A thinner slick is less exposed to bulk flow; therefore, a 

higher critical velocity may be required to erode the oil.  Secondly, Hibernia CSS was evaluated 

on an acrylic, smooth boundary, and because acrylic is derived from petroleum products, the oil 

has a higher propensity to stick to the acrylic bed compared with a sediment boundary.  Cloutier 

et al. (2002) did address the limitations of using a smooth boundary, speculating that a reduced 

erosion rate was due to turbulence suppression, and that in the natural environment, “bed 

roughness would increase turbulence levels in the water column, therefore, enhancing 
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fluid/sediment interaction with the seabed and the erosion rates of oils”.  The reduced CSS 

threshold identified in this research supports that statement, and therefore by conducting sunken 

oil transport experiments on an acrylic boundary, the CSS threshold may be inflated when 

compared with experiments on rougher (non-oleophilic) substrates.  

Lastly, the configuration of the flume (annular vs. straight) or the methods used to calculate 

BSS could have contributed to the higher CSS threshold for a less viscous oil.  As with sediment 

transport research, a major challenge is defining CSS thresholds consistently between research 

groups and using similar investigative methodologies so that research results can be compared 

(Buffington & Montgomery, 1997).   

Findings from the aSOA CSS experiments (Dalyander et al., 2015) could only be 

qualitatively compared with results from this research because the Dalyander et al. (2015) 

experiments were in wave-dominated regimes on mobile sand substrates.  They found that the 

smaller the aSOA, the lower the CSS required to mobilize it.  Hence, when using the empirically-

derived equations from this dissertation research to predict sunken oil transport in the field, it 

should be noted that an SOP < 10 cm may mobilize at a lower CSS than identified and an SOP 

larger than 13 cm may have a higher CSS range. 

A short-coming of this dissertation research is the inability to determine how the oil and 

mobile sediment would interact.  Further research should be conducted to evaluate the impacts of 

a mobile bed on oil CSS and how sediment mobility changes with the addition of oil.   

3.6 Conclusions and Future Research  

The CSS thresholds for fresh and weathered No. 6 HFO mixed with kaolinite clay (24% 

by weight, g oil: g clay) were determined under variable environmental conditions.  By a series of 

laboratory- and flume-based experiments, historic spill events, and literature, criteria defining the 
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thresholds of movement were developed for 10 – 25°C that can be applied to sunken oil spills.  In 

the event of a non-floating oil spill, where the spilled product sinks and strands on the bottom, 

results from this research could be used to inform response operations.   

The major findings from this research are: (1) oil kinematic viscosity (𝑣𝑜) and the median 

grain size (𝑑50) are two measurable parameters that can be used to predict oil CSS; (2) oil CSS 

increases as 𝑑50 increases; (3) for 𝑣𝑜 <2x104 cSt, there are multiple thresholds of movement and 

the number of visible oil droplets leaving the SOP increases; and (4) for 𝑣𝑜 >6x104 cSt, transport 

is more likely to occur as a single event with the SOP remaining intact.  Using these CSS thresholds 

and the factors driving SOP transport, an Excel-based tool was developed (See Chapter 4) so that 

responders can input environmental conditions (i.e., water temperature, water velocity, sediment 

type) and properties of the spilled product (i.e., oil viscosity, oil density) to predict if the 

environmental conditions are sufficient to initiate rope formation, ripple formation, break-

apart/resuspension thresholds and to compare SOP transport with sediment mobility.   

A limitation of this research was conducting experiments on an immobile bed (i.e., glued 

substrate).  Therefore, future research should be conducted on mobile boundaries (i.e., non-glued 

substrate) to determine the relationship between oil and sediment mobility and evaluate sediment 

uptake or adherence of sediments by the SOPs.  Experiments should be performed in cohesive 

sediments and mixed beds to determine how the size class of sediments controls CSS thresholds.  

Although this research can be used to represent No. 6 HFO/Bunker C sunken oils, a wider range 

of oil’s (i.e., with different viscosities and densities) should be tested under cold and warm water 

conditions.  Regardless of the approach, an oil’s physical properties (e.g., density, viscosity) should 

be measured over the range of experimental conditions because temperature controls many of the 

physical properties important to predicting its fate and transport. 
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CHAPTER 4 

 

SUNKEN OIL TRANSPORT TOOL 

4.1 Abstract 

The multi-year process of developing a prototype sunken oil transport tool (SOTT) is 

described in this paper including : (1) discussions between the Coastal Response Research Center 

(CRRC) and the National Oceanic and Atmospheric Administration’s (NOAA) Office of Response 

and Restoration (OR&R) regarding responders’ needs, (2) development and structure of the SOTT, 

(3) algorithms and relationships used in the SOTT, and (4) application of the SOTT to the Enbridge 

Line 6b (i.e., Kalamazoo River) spill as a case study.  The SOTT was developed from 

experimentally-derived oil transport equations using sunken No. 6 heavy fuel oil mixed with 

kaolinite clay, and is valid for current-driven flow regimes with uniform, steady state conditions.  

The SOTT allows responders to input in-situ environmental conditions and properties of the spilled 

oil to predict if oil could transport along the bed, be resuspended into the water column, or be 

buried by sediments.  Findings from the case study suggest that this tool provides an estimate of 

sunken oil transport that could be used to assist response operations during a sunken oil spill.  

  



122 

4.2 Introduction 

Following two major non-floating oil spill events, the 2004 (Athos I) and 2005 (Tank/Barge 

DBL-152), the National Oceanic and Atmospheric Administration’s (NOAA) Office of Response 

and Restoration (OR&R) and the Coastal Response Research Center (CRRC) partnered to host a 

workshop focused on non-floating oil spill response.  Specifically, workshop participants 

discussed the state-of-practice, challenges and knowledge gaps associated with non-floating oil 

spill response.  Non-floating oil was defined as submerged oil  (i.e., neutrally buoyant oil in the 

water column) or sunken oil (i.e., negatively buoyant oil that sinks to the bottom) (CRRC, 2007).  

Over the past 13 years, CRRC has funded research projects to improve sunken oil modeling 

(Englehardt et al., 2010); built two flumes specifically designed to study the transport of sunken 

oil (Gloekler et al., 2017; Watkins, 2015) and optimize detection techniques for non-floating oils 

(Verfaillie et al., 2021); and performed flume studies to support OR&R’s response during a 2015 

slurry oil spill in the Mississippi River (Apex 3508) (NOAA, 2015). 

In 2017, based on the research needs identified by the U.S. Interagency Coordinating 

Committee on Oil Pollution Research (ICCOPR, 2015), OR&R and CRRC shifted their focus from 

flume-based experiments on smooth boundaries to the effect of boundary roughness and sediment 

dynamics on sunken oil transport.  Based on multiple discussions with OR&R, CRRC proposed a 

series of laboratory- and flume-based experiments to determine: (1) what factors control sunken 

oil transport, (2) under what in-situ environmental conditions sunken oil will resuspend or move 

along the bottom in a current-driven flow regime, and (3) the critical shear stress (CSS) associated 

with an oil’s stages of transport.  

The research on No. 6 heavy fuel oil (HFO) was divided into three phases: (1) a benchtop 

analysis of the oil’s properties (density and viscosity) and sensitivity analysis to evaluate the 

relative importance of the input parameters on bed shear stress (BSS) estimates; (2) flume 
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experiments to evaluate the transport as a function of bottom roughness, water velocity, water 

temperature, and oil condition; and (3) development of a tool that can be used by oil spill 

responders to predict whether in-situ conditions are sufficient to mobilize sunken oil.   

The first phase was necessary to establish oil density-temperature and oil viscosity-

temperature relationships and characterize the particle size distribution (PSD) of the three 

substrates used in the second experiments.  That phase quantified the applied BSS, the frictional 

force exerted by the fluid on the boundary (i.e., force per area), that would mobilize the sunken oil 

(i.e., the CSS).  The oil’s CSS was significantly influenced by the oil’s kinematic viscosity and 

substrate sediment median grain size (𝑑50), and the stages of transport were different in cold water 

(e.g., <11°) and warmer water (e.g., >17.5°).  Using the empirically-derived relationships, a sunken 

oil transport tool (SOTT) was developed.  A reference curve was created and a catalogue of images 

was compiled from the No. 6 HFO CSS experiments as supplemental information (Appendix C.1: 

Catalogue of Sunken Oil Images).   

The prototype SOTT does not replace complex trajectory models (e.g., NOAA’s GNOME, 

RPS OILMAP/SIMAP) as it uses one-dimensional current information and was only calibrated 

from mesoscale experiments.  For more detailed descriptions of sunken oil nomenclature, 

behavior, available response technologies, and model descriptions see recent publications by API 

(2016), Gustitus & Clement (2017), Jacketti et al. (2020), and Michel & Bambach (2020).   

This paper describes the: (1) discussions between CRRC and OR&R regarding responders’ 

needs, (2) development of the SOTT, (3) algorithms and relationships used in the SOTT, and (4) 

application of the SOTT using the Enbridge Line 6b (i.e., Kalamazoo River) spill as a case study. 
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4.3 Methods: Tool Development 

4.3.1 Stakeholder Engagement  

In June 2020, the results of the BSS/CSS flume studies with No.6 HFO were presented to 

OR&R’s scientific support coordinators, modelers, and assessment and restoration (ARD) experts, 

so that the research could be leveraged into an operational tool.  From this discussion, multiple 

types of response- and recovery-oriented questions to be answered by the SOTT were defined: 

1. What are the clean-up termination endpoints?  

2. Will the sunken oil remain as a continuous mat or break into smaller pieces? 

3. Where should responders look for the sunken oil? 

4. What field data can responders provide to modelers to inform decision-making? 

5. Will the sunken oil be buried and exhumed over time?  

In coordination with the USCG Region 1 NOAA scientific support coordinator, the stages of 

oil transport were outlined and criteria defining the oil’s thresholds of movement, using language 

specific to spill response, were developed from observations during the oil CSS flume experiments.  

The criteria were different for oil kinematic viscosities (𝑣𝑜) >6x104 cSt (Table 4-1) compared to 

𝑣𝑜<2x104 cSt (Table 4-2) environments.  [N.B., For a more detailed explanation of how the 

thresholds were defined, see Chapter 3]. 

Images of type II erosions (Figure 4-1a), rope formation (Figure 4-1b), and ripple formation 

(Figure 4-1c) are shown along with a more detailed Catalogue of Sunken Oil Images in Appendix 

C.1. 
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Figure 4-1: Representative images of (a) type II erosions (red circle), (b) rope formation, 

and (c) ripple formation (red arrows) of oil on medium pebble, sand, and fine pebble 

substrates, respectively. 
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As recommended by OR&R, the concept of the SOTT was socialized throughout the spill 

response community.  First, CRRC conducted an interagency (e.g., United States Geological 

Survey (USGS), U.S. Army Corp of Engineers) meeting in August 2020 with representatives from 

the Inland Riverine Oil Spill (IROS) collaborative.  The focus of IROS is to bring together groups 

conducting research and developing oil spill response tools specific to rivers.  Members from this 

group agreed with the substrate sizes and BSS range used in the flume experiments and encouraged 

further development of the SOTT.  The group was especially interested in the documentation (e.g., 

pictures, videos) used to describe the stages of oil movement and the criteria describing the 

thresholds.  IROS representatives noted this tool would be helpful in small rivers where bathymetry 

data is not available, and assumptions need to be made about hydraulics, bed type, and other in-

situ conditions.   

Preliminary findings were also presented to >150 participants watching NOAA’s “You 

don’t know what you don’t know” webinar series in September 2020.  Participants at the webinar 

represented groups from oil spill response organizations, industry, international governments (e.g., 

Environment Canada), academia, and the USCG.  Based on input from multiple stakeholder groups 

and discussions with OR&R from 2017-2020, the development of the SOTT prototype was 

encouraged.  The SOTT, developed in Excel to provide a user-friendly interface in a platform (no 

Wi-Fi connectivity required), provides oil spill responders with an initial “best estimate” of the 

extent of sunken oil transport.   

4.3.2 SOTT Structure  

The SOTT was developed using empirical relationships established from flume-based 

experiments in a sustained current-driven environment over an immobile boundary.  Hence, the 

SOTT does not apply to wave-dominated flow regimes (e.g., surf zone) and only accounts for skin-



129 

friction-induced BSS.  The relationships were developed for sediment-oil patties (SOP) with an 

initial diameter of  ~10 cm (Gustitus & Clement, 2017) stranded on top of an immobile sediment 

bed.  A flow chart (Figure 4-2) was developed to illustrate the major processes used in the SOTT 

to predict oil transport by referencing the relevant equations, tables, and figures discussed in this 

chapter.  This figure can be referenced by the SOTT user in the sheet titled “5_Flow Chart”.  

Upon opening the Excel spreadsheet, the user selects the “1_Questionnaire” tab before 

continuing, reads the instructions and then answers a series of questions.  The questions ensure the 

SOTT applies to the in-situ conditions under evaluation; the SOTT assumes uniform, steady state 

conditions and is limited to a current-driven environment.  Therefore, if the user enters “Yes” when 

asked if the oil spilled in a wave-dominated environment (e.g., surf zone), the user would be 

warned that the SOTT does not apply (Table 4-3).  [N.B., The SOTT does not physically lock the 

user out, however, if any assumptions do not apply then results from the SOTT are invalid].  

Alternatively, if the in-situ conditions follow SOTT assumptions, then the user is alerted by a 

green-bar showing the word “Applicable” and may continue to the “2_Input” tab (Table 4-4).   
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4.3.2.1 Environmental Calculations 

The SOTT allows the user to define the in-situ environmental conditions (e.g., water 

temperature, salinity, current velocity range, sediment type) from a series of drop-down menus 

and individual input parameters (Table 4-5).   

Based on the input salinity and temperature, the water density (Millero et al., 1980) and 

water viscosity (El-Dessouky & Ettouney, 2002) are calculated.  Water density is not adjusted for 

depth; however, the overall effect of depth on water density and, hence, BSS estimates is 

negligible.  For example, using a water temperature of 5°C, salinity of 35 ‰, and assuming 

pressure of 0 Pa, the calculated water density is 1027.7 kg/m3.  Using the same input parameters, 

but adjusting pressure to a depth of 30 m (304,600.5 Pa), the calculated water density increases 

slightly to 1027.85 kg/m3.  Using the Oceanic (offshore) methods to calculate 𝜏𝑤, assuming 

velocity remains constant at 1 m/s, a density of 1027.7 and 1027.85 kg/m3 result in a 0.001 Pa 

difference in 𝜏𝑤 which is negligible.   

To calculate applied BSS (𝜏𝑤), the user must enter the free-stream velocity range (𝑈min and 

𝑈max), the water depth (ℎ), and sediment type.  For rivers/streams/lakes, the channel width (𝑏) is 

also a required input parameter.  Depending on the water body type, 𝜏𝑤 is calculated using one or 

more of the following methods: Quadratic Friction Law, Law of the Wall – Single Point, the 

Chézy/Momentum, and the Manning/Momentum.  [N.B., The subscript “w” designates water (e.g., 

𝜏𝑤, 𝜇𝑤), “s” represents “sediment” (e.g., 𝑅𝑒𝑠
∗), “o” indicates “oil” (𝜇𝑜), and “c” denotes the critical 

threshold (e.g., 𝑅𝑒𝑠𝑐
∗ , 𝜏𝑜𝑐)]. 
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Sediment Type & Characteristics 

For each of the sediment types available in the drop-down menu, there is an associated 

sediment size range (𝑑50) and CSS (𝜏𝑠𝑐) (Table 4-6) (Berenbrock & Tranmer, 2008).   

Table 4-6: Particle size range and associated CSS range used as input in the SOTT. 

Classification Name Particle Size Range 
Particle Critical Shear 

Stress Range 

Sediment Type 
Min 𝑑50 Max 𝑑50 Min 𝜏𝑠𝑐 Max 𝜏𝑠𝑐 

(mm) (N/m2) 

Coarse cobble 128 256 112 223 

Fine cobble 64 128 53.8 112 

Very coarse gravel 32 64 25.9 53.8 

Coarse gravel 16 32 12.2 25.9 

Medium gravel 8 16 5.7 12.2 

Fine gravel 4 8 2.7 5.7 

Very fine gravel 2 4 1.3 2.7 

Very coarse sand 1 2 0.47 1.3 

Coarse sand 0.5 1 0.27 0.47 

Medium sand 0.25 0.5 0.194 0.27 

Fine sand 0.125 0.25 0.145 0.194 

Very fine sand 0.0625 0.125 0.11 0.145 

Coarse silt 0.031 0.0625 0.083 0.11 

Medium silt 0.0156 0.031 0.063 0.0826 

Fine silt 0.0078 0.0156 0.0378 0.063 

 

The 𝜏𝑠𝑐 range is transformed into the critical friction velocity (𝑢𝑠𝑐
∗ ) (Eq. 4-1) and then the range is 

converted into the critical grain Reynold’s Number (𝑅𝑒𝑠𝑐
∗ ) (Eq. 4-2) using the associated 𝑑50 range.   

𝑢𝑠𝑐
∗  = √

𝜏𝑠𝑐

𝜌𝑤
 

Eq. 4-1 

𝑅𝑒𝑠𝑐
∗ =

𝑢𝑠𝑐
∗  ∗ 𝑑50

𝑣𝑤
 

Eq. 4-2 

The sediment’s 𝑑50 is also used to calculate the Law of the Wall’s characteristic roughness 

length, 𝑧𝑜, (Eq. 4-3) (Soulsby, 1997).   
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𝑧𝑜 =
𝑑50

12
 

Eq. 4-3 

As described in the next section (4.3.2.2 Calculating BSS), the 𝑑50 and 𝑧𝑜 ranges are used 

to calculate the roughness coefficients 𝐶𝐷, 𝐶, 𝑛 for the Quadratic Friction Law, Momentum/Chézy, 

and Momentum/Manning equations, respectively.   

4.3.2.2 Calculating BSS 

For this dissertation research, the term BSS and 𝜏𝑤 were used when describing shear stress for all 

methods, even for methods evaluating shear stress some elevation (𝑧) above the boundary where 

0 cm < 𝑧 < 3 cm. 

Quadratic Friction Law 

The Quadratic Friction Law uses 𝐶𝐷 to quantify drag associated with bed roughness or bed 

forms.  Because 𝐶𝐷 varies depending on the relative roughness (
 𝑧𝑜

ℎ
) and water body type (e.g., 

river, offshore oceanic) (Soulsby, 1997), the fitted parameters, α and β, are condition specific.  For 

example, if 𝐶𝐷 is calculated (Eq. 4-4) for shallow water flow (10-7< 
 𝑧𝑜

ℎ
< 10-2), over bed forms in 

coastal waters, α=0.019 and β=0.208 (Dawson et al., 1983).  For flat mobile or immobile beds of 

sand with steady flows in flumes or oceanic environments, α=0.0415 and β=0.286 (Soulsby, 1997).  

Alternatively, in open channel flow, such as rivers or streams (
 𝑧𝑜

ℎ
  >10-4), 𝐶𝐷 is calculated using 

α=0.047 and β=0.33 (Eq. 4-4) (Soulsby, 1997; Strickler, 1923).  

𝐶𝐷 = 𝛼 (
𝑧0

ℎ
)

𝛽

 
Eq. 4-4 

Because the Dawson et al. (1983) and Soulsby (1997) approaches were derived in oceanic 

and coastal waters, when the user selects “Oceanic (offshore)” or “Estuary” in the SOTT the 

arithmetic mean of 𝐶𝐷 is then used to calculate BSS (Eq. 4-5).  When the SOTT user selects 
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“River/Stream/Lake”, the Manning-Strickler specific α and β coefficients are used to calculate 𝐶𝐷 

(Eq. 4-4).  

𝜏𝑤 = 𝜌𝑤𝐶𝐷�̅�2 Eq. 4-5 

where 𝜌𝑤 = water density (kg/m3) and �̅� = depth averaged velocity (m/s), which is assumed to be 

0.8*𝑈 for ℎ<2 m, and 0.85*𝑈 for ℎ>2 m.  

Law of the Wall – Single Point  

The Law of the Wall – Single Point uses readily measurable parameters to directly calculate 

BSS (Eq. 4-6) and applies to sand- and gravel-bedded rivers (Dietrich & Smith, 1983; Whiting & 

Dietrich, 1990; Wilcock, 1996).  The equation calls for 𝑑84 as the representative sediment size, 

but due to the limited data available for 𝑑84 ranges with associated 𝜏𝑠𝑐, the comprehensive data set 

for 𝑑50 from Berenbrock & Tranmer, (2008) was used in the SOTT.  Using the PSD from Chapter 

2 and holding all other parameters constant, replacing 𝑑50 with 𝑑84 reduces 𝜏𝑤 for sand, fine 

pebble, and medium pebble substrates by 44%, 17%, and 3%, respectively.  [N.B., As these 

reduction calculations are specific to the PSD measured in Chapter 2, the effect on 𝜏𝑤 would vary 

depending on the in-situ PSD, grain uniformity, water body type, and hydraulic regime].  The 

reduction in 𝜏𝑤 for sand is larger than fine and medium pebble because the relative change from 

𝑑50 to 𝑑84 is greater for sand.  To minimize the impact of using 𝑑50 vs 𝑑84 in the SOTT, 𝜏𝑤 is 

calculated using the range of 𝑑50 (min to max) for the selected sediment type (Table 4-6). 

𝜏𝑤 =
𝜌𝑤(�̅�𝑧 ∗ 𝜅)2

𝑙𝑛 (
10 ∗ 𝑧

𝑑50
)

2 
Eq. 4-6 

where 𝜅 = 0.4 (von Karman Constant), 𝑧 = elevation above the bed (m), and �̅�𝑧 = near-bed velocity 

(m/s), calculated using the relationship �̅�(𝑧) = (
𝑧

0.32ℎ
)

1/7

∗ �̅� (Soulsby, 1997).  For all 

calculations, �̅�𝑧 is adjusted to 𝑧 = 3 cm because the method requires velocity measurements to be 
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below 2/10ths of the flow depth and 2 cm above the bed of coarse sand or fine gravel for an 

immobile boundary (Whiting & Dietrich, 1990; Wilcock, 1996).   

Chézy/Momentum 

The Chézy, 𝐶, is estimated using an empirical relationship, originally developed to 

calculate the Darcy-Weisbach friction factor (𝑓) by relating the inverse of relative roughness to 

the friction factor (Elger et al., 2013; Leopold & Wolman, 1957; Limerinos, 1970).  Eq. 4-7 was 

modified to directly calculate 𝐶, using 𝐶 = √
8𝑔

𝑓
 (Chaudhry, 2008; Elger et al., 2013).   

𝐶 = √8𝑔 ∗ [1.2 + 2.03 log (
𝑅ℎ

𝑑50
)]

2

 

Eq. 4-7 

where 𝑔 = gravity (m/s2), 𝑅ℎ = hydraulic radius (m), and 𝑑50 = median grain size (m).  The 

equation normally uses 𝑑84, but as previously described, the SOTT uses a range of 𝑑50 for each 

sediment class because limited data was available for 𝑑84 and the associated 𝜏𝑠𝑐.  Using the PSD 

from Chapter 2 and holding all other parameters constant, replacing 𝑑50 with 𝑑84 reduces 𝜏𝑤 for 

sand, fine pebble, and medium pebble substrates by 39%, 14%, and 2.6%, respectively.  As with 

the Law of the Wall – Single Point, 𝐶 is calculated using a representative sediment size range 

based on the selected sediment type.  Following Eq. 4-8,  𝐶 is used to estimate friction slope, 𝑆𝑓, 

and 𝑆𝑓 is substituted into the Eq. 4-9 to calculate BSS.  

𝑆𝑓 =
(

𝑈
𝐶)

2

𝑅ℎ
 

Eq. 4-8 

𝜏𝑤 = 𝛾𝑤𝑅ℎ𝑆𝑓 Eq. 4-9 

where 𝛾𝑤 = specific weight of water (N/m3), and 𝑈 = free-stream velocity (m/s).  
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Manning/Momentum 

Manning’s, 𝑛, is estimated by 𝑛 = 𝐾𝑢𝑑50
1/6

, where 𝐾𝑢 is a coefficient derived by fitting 

empirical relationships to flume or field data.  Three methods are used in the SOTT to estimate 𝐾𝑢 

(Chow, 1959; Anderson et al., 1970; Strickler, 1923).  The median 𝑛 value of the three methods is 

used to calculate 𝑆𝑓 (Eq. 4-10) to avoid averaging them as they are independent empirically derived 

values.  

𝑆𝑓 = (
𝑈 ∗ 𝑛

𝑅ℎ
2/3

)

2

 

Eq. 4-10 

where 𝐾𝑢= 0.0417, 𝐾𝑢= 0.0482, and 𝐾𝑢= 0.0474 based on Chow (1959), Anderson et al. (1970), 

and Strickler (1923), respectively.  𝑆𝑓 is then substituted into Eq. 4-9 to estimate BSS. 

Depending on the hydraulic regimes (e.g., open channel vs. offshore oceanic), an arithmetic 

mean 𝜏𝑤̅̅̅̅  of the valid methods is used in subsequent calculations.  For river/streams, 𝜏𝑤̅̅̅̅  is estimated 

from the Quadratic Friction Law (using Strickler (1923) α and β),  Law of the Wall – Single Point, 

the Chézy/Momentum, and Manning/Momentum approaches.  In oceanic (offshore) or estuarine 

environments, 𝜏𝑤̅̅̅̅   is calculated using the Dawson et al. (1983) and Soulsby (1997) Quadratic 

Friction Law approaches.  

4.3.2.3 Calculating 𝐑𝐞𝐰
∗  

𝜏𝑤̅̅̅̅  is used to calculate the in-situ friction (shear) velocity, 𝑢𝑤
∗  (m/s), (Eq. 4-11) and the 

corresponding grain Reynold’s number, 𝑅𝑒𝑤
∗ , (Eq. 4-12).  𝑅𝑒𝑤

∗  represents the SOTT estimated in-

situ 𝜏𝑤 which is controlled by the user’s selected environmental conditions (e.g., water velocity, 

temperature, sediment type).  This value will be used in the reference curve to relate the critical 

thresholds of movement for oil and sediment to determine if in-situ conditions are sufficient to 

mobilize them.  
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𝑢𝑤
∗  = √

𝜏𝑤̅̅̅̅

𝜌𝑤
 

Eq. 4-11 

𝑅𝑒𝑤
∗ =

𝑢𝑤
∗  ∗ 𝑑50

𝑣𝑤
 

Eq. 4-12 

where 𝜌𝑤 = density of water (kg/m3),  𝑣𝑤 = water kinematic viscosity (m2/s), and 𝑑50 = median 

grain size (m).  Along with the range of 𝑅𝑒𝑠𝑐
∗  (i.e., the critical grain Reynolds Number of the 

selected sediment), a range of 𝑅𝑒𝑤
∗  is displayed in the SOTT reference curve. 

4.3.2.4 Oil Property Calculations 

The user then enters the spilled oil’s properties (e.g., API, density, viscosity) or selects a 

proxy oil from the SOTT’s oil database (Table 4-7).  The database was developed using oil types 

from NOAA’s Automated Data Inquiry for Oil Spills (ADIOS2) model (Lehr et al., 2002).  Oils 

were added to the SOTT database if the API <15° (i.e., oils most likely to sink) and at least two 

datapoints for oil viscosity and density were available.  A minimum of two reference datapoints, 

at two temperatures for each oil type, were required so that oil density (𝐾𝑡) and oil viscosity (𝐶𝑇) 

coefficients could be calculated using measured values.  𝐾𝑡 and 𝐶𝑇 are used in the SOTT to adjust 

oil density and viscosity to the user’s selected water temperature; it is assumed that 𝐾𝑡 and 𝐶𝑇 are 

do not vary with temperature.  [N.B., This assumption was necessary based on available equations, 

but should be further investigated especially 𝐶𝑇 for high viscosity oils in water temperatures near 

their pour point]. 

The oil’s density, 𝜌𝑜, (Eq. 4-13) is calculated at the user’s selected water temperature using 

formulas from NOAA’s ADIOS2 technical manual and 𝐾𝑡.  [N.B., They are not adjusted for 

emulsification or weathering.]   
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𝜌𝑜 = 𝜌1(1 − 𝐾𝑡(𝑇2 − 𝑇1)) Eq. 4-13 

where 𝜌1 is the density (kg/m3) at temperature, 𝑇1 (°C), from the database, and 𝑇2 (°C) is the user’s 

selected water temperature.   

The oil’s dynamic viscosity, 𝜇𝑜, (Eq. 4-14), is also calculated at the user’s selected water 

temperature using equations from NOAA’s ADIOS2 technical manual and 𝐶𝑇. 

ln (
𝜇𝑜

𝜇1
) = 𝐶𝑇 (

1

𝑇2
−

1

𝑇1
) 

Eq. 4-14 

where 𝜇1 is the dynamic viscosity (cP) at temperature, 𝑇1 (°K), from the database, and 𝑇2 (°K) is 

the user’s selected water temperature. 

𝜌𝑜 and 𝜇𝑜 are used to calculate the oil’s kinematic viscosity, 𝑣𝑜, (m2/s) (Eq. 4-15). 

𝑣𝑜 =
𝜇𝑜

𝜌𝑜
 Eq. 4-15 

4.3.2.5 Calculating Oil CSS 

Based on a series of flume-based experiments, using No. 6 HFO, multiple empirical 

relationships were developed using 𝑣𝑜 (cSt) and 𝑑50 to estimate the oil’s CSS (𝜏𝑜𝑐) for gravity 

spreading, rope formation, ripple formation, and break-apart/resuspension thresholds (See Chapter 

3).  𝜏𝑜𝑐 (Pa) is calculated using the sand equations for 𝑑50<6.5 mm, fine pebble equations when 

6.5mm< 𝑑50 <10.5 mm, and medium pebble when 𝑑50 >10.5 mm (Table 4-8). 

To be conservative in predicting oil transport and avoid overpredicting 𝜏𝑜𝑐, because 𝜏𝑜𝑐 

increases with increasing 𝑑50, the SOTT uses the sediment’s lower 𝑑50 value as a threshold to 

determine which empirical relationship is used.  Because the equations relating 𝑣𝑜 to 𝜏𝑜𝑐 were 

developed from the oil CSS experiments (See Chapter 3), the fitted relationships are bounded by 

the conditions they were derived from.  The fitted equations for gravity spreading, rope formation, 

and ripple formation are valid for 𝑣𝑜<2x104 cSt on all sediment types.  The break-
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apart/resuspension fitted equations are valid for 𝑣𝑜<431,000 cSt on sand, 𝑣𝑜 <115,000 cSt on fine 

pebble, and 𝑣𝑜 <106,000 cSt for medium pebble.  Note that the medium pebble’s gravity spreading 

equation shows a decline in 𝜏𝑜𝑐 as 𝑣𝑜.  This decline suggests that the slightly less viscous oils 

required a higher threshold of movement as they tended to fill in the open pore spaces and be 

shielded from the flow field by the medium sized pebbles.  Using the rope formation 𝜏𝑜𝑐 as a lower 

threshold of movement and the break-apart/resuspension, 𝜏𝑜𝑐 as an upper threshold, 𝜏𝑜𝑐 was 

converted to the oil’s critical friction (shear) velocity, 𝑢𝑜𝑐
∗ , (Eq. 4-16) and the oil’s critical grain 

Reynold’s number, 𝑅𝑒𝑜𝑐
∗  (Eq. 4-17). 

𝑢𝑜𝑐
∗ = √

𝜏𝑜𝑐

𝜌𝑤
 

Eq. 4-16 

𝑅𝑒𝑜𝑐
∗ =

𝑢𝑜𝑐
∗ ∗ 𝑑50

𝑣𝑤
 

Eq. 4-17 

The range of 𝑅𝑒𝑠𝑐
∗  and 𝑅𝑒𝑤

∗  are plotted with the predicted upper and lower 𝑅𝑒𝑜𝑐
∗  estimates 

on the SOTT reference curve.  
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4.3.2.6 SOTT Uncertainty 

The uncertainty associated with the effects of shear rate on oil viscosity and sample 

variability for No. 6 HFO at temperatures >10°C is quantified as  ± 20% of 𝜇𝑜 over the range of 

temperatures and shear rates tested (See Chapter 3).  The upper bound (𝜇𝑢𝑝𝑝𝑒𝑟 = 1.2𝜇𝑜) and the 

lower bound (𝜇𝑙𝑜𝑤𝑒𝑟 = 0.8𝜇𝑜) values are used to calculate oil CSS, 𝑢𝑜𝑐
∗ , and the 𝑅𝑒𝑜𝑐

∗  range.  The 

minimum 𝑅𝑒𝑜𝑐
∗ , calculated from 𝜇𝑢𝑝𝑝𝑒𝑟 and 𝜇𝑙𝑜𝑤𝑒𝑟, is used as an uncertainty bound for rope 

formation and maximum 𝑅𝑒𝑜𝑐
∗  represents the break-apart/resuspension thresholds.  The uncertainty 

bounds are overlayed with the predicted 𝑅𝑒𝑜𝑐
∗  range of the input oil in the reference curve. 

If the SOTT is used at temperatures <10°C the shear-thinning effect for oils (e.g., No.6 

HFO) becomes more prominent, but is not captured because 𝜇𝑜 is adjusted only to temperature 

using the Arrhenius-type equation (Eq. 4-15) and not based on shear rate.  There is a potential for 

the SOTT to underpredict 𝜏𝑜𝑐 at high shear velocities as the shear-thinning fluid would have a 

lower 𝜏𝑜𝑐.  Therefore, potentially underpredicting oil transport.  Additionally, the viscoelastic 

nature may be more pronounced for lower temperatures and may not be accurately captured using 

the Arrhenius-type equation thus potentially underestimating 𝜇𝑜 for more viscous, weathered oils.  

Because many transport processes rely on 𝜇𝑜, characterization of 𝜇𝑜 over wide temperature ranges 

and at multiple shear rates should be considered in future research to improve model predictions.  

It is recommended that further research be done to quantify shear-thinning effects, especially near 

the oil’s pour point, of heavy crude or refined products, weathered, and emulsified oils to develop 

an empirical relationship over a range of shear rates (0.1 to 16 Hz) and environmentally relevant 

temperatures (0 to 35°C) to ensure 𝜇𝑜 is accurately predicted. 
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4.3.2.7 SOTT Reference Curve 

Based on the input parameters selected by the user, the reference curve provides a visual 

representation of how the estimated in-situ 𝜏𝑤 (i.e., applied BSS) compares with in-situ 𝜏𝑠𝑐 (i.e., 

sediment incipient motion threshold) and the predicted 𝜏𝑜𝑐 range (i.e., oil CSS thresholds) (Figure 

4-3).  The results displayed the 𝜏𝑜𝑐 (Table 4-9) and reference curve (Table 4-10) values; these are 

summarized for the SOTT user in the “4_Summary Tables” tab.  

Based on the fact that 𝑣𝑜 is a significant factor used to estimate oil transport (see Chapter 

3), 𝑅𝑒𝑜𝑐
∗  is plotted with respect to 𝑣𝑜, and  𝑅𝑒𝑤

∗  and 𝑅𝑒𝑠𝑐
∗  are plotted over the range of 𝑣𝑜 valid to 

the SOTT.  The errors bars in the reference curve show the 𝜏𝑜𝑐 variability based on 𝑣𝑜±20% 

because exact 𝑣𝑜 measurements at the in-situ temperature are challenging to obtain and the SOTT 

relies heavily on this parameter. 
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Figure 4-3: Example of the SOTT output displayed as a reference curve. 
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Oil Kinematic Viscosity, 𝑣𝑜, (cSt)

Re*oc (νo = 7485 cSt) Re*oc Uncertainty
Re*w (at U = 0.05 m/s) Re*w (at U = 2 m/s)
Coarse gravel Re*sc (d50 = 16 mm) Coarse gravel Re*sc (d50 = 32 mm)

NOTE: The lower range of Re*oc represents the rope formation threshold and the upper range of Re*oc represents the break-

apart/resuspension threshold. (1) If the lower threshold of Re*oc (green dot/line) is greater than Re*w (red-dashed/dotted lines), then oil 

rope formation may occur. If the upper threshold of Re*oc is greater than Re*w, then the break-apart/resuspension threshold for oil may be 
exceeded and oil may no longer be where it sank. (2) If Re*oc (green dot/lines) are less than Re*sc (black-dotted lines) and Re*w (red-

dashed/dotted line) is greater than both, then sediments may move before the oil. Alternatively, If Re*oc is greater than Re*sc, and Re*w 

is greater than both, oil may move before the surrounding sediments.

Transport Threshold τoc (Pa)

Rope Formation 0.616

Ripple Formation 0.96

Break-Apart/Resuspension 2.81

Oil Critical Shear Stress (τoc) Summary Table

U (m/s) = 0.05 U (m/s) = 2

Oil Kinematic Viscosity (cSt) 7485

Sediment Type & Size Coarse gravel

d50 (mm) 16

d50 (mm) 32

Sediment and Oil Transport Summary Table

No Sediment Transport

No Sediment Transport

Sediment Incipient Motion

No Sediment Transport

No Oil Movement Oil Break-Apart/Resuspension

Table 4-3: Example of the sediment and oil transport summary table. 

Table 4-2: Example of the 𝝉𝒐𝒄 summary table. 
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The SOTT output is plotted so that responders can evaluate a range of conditions which 

may cause sunken oil transport.  Alternatively, the responder could input information about the 

spill scenario and then tune the SOTT to determine at over what velocity the oil may migrate along 

the bed, break-apart into non-recoverable droplets, or become buried by surrounding sediments 

(See example in Section 4.4.1 Kalamazoo River Case Study). 

In general, 𝑅𝑒∗ increases for higher current velocities, larger sediment sizes, or increased 

water viscosity.  In the reference curve, the lower and upper ranges of 𝑅𝑒𝑜𝑐
∗  represents the rope 

formation threshold and break-apart/resuspension thresholds, respectively.  If the lower threshold 

of 𝑅𝑒𝑜𝑐
∗  is greater than 𝑅𝑒𝑤

∗ , then oil rope formation may occur.  If the upper threshold of 𝑅𝑒𝑜𝑐
∗  is 

greater than 𝑅𝑒𝑤
∗ , then the break-apart/resuspension threshold for oil may be exceeded and oil may 

no longer be where it sank.  If the range of 𝑅𝑒𝑜𝑐
∗  is less than 𝑅𝑒𝑠𝑐

∗ , and 𝑅𝑒𝑤
∗  is greater than both, 

then sediments may move before the oil.  Alternatively, if 𝑅𝑒𝑜𝑐
∗  is greater than 𝑅𝑒𝑠𝑐

∗ , and 𝑅𝑒𝑤
∗  is 

greater than both, oil may move before the surrounding sediments. 

As shown in Figure 4-3, 𝑅𝑒𝑜𝑐
∗  and 𝑅𝑒𝑠𝑐

∗  are greater than the lower 𝑅𝑒𝑤
∗  threshold, suggesting 

that the applied 𝜏𝑤 at 𝑈 = 0.05 m/s is unlikely to cause bulk oil or sediment transport.  If 𝑅𝑒𝑜𝑐
∗  is 

less than the upper 𝑅𝑒𝑤
∗  and the range of 𝑅𝑒𝑠𝑐

∗ , the applied 𝜏𝑤 at 𝑈 = 2 m/s may cause oil to 

resuspend or break-apart prior to incipient motion of the surrounding sediment.  If the 𝑅𝑒𝑠𝑐
∗  

thresholds are below 𝑅𝑒𝑜𝑐
∗ , this would imply that the surrounding sediment may mobilize prior to 

oil transport and burial and exhumation processes could occur.  [N.B. The SOTT only accounts 

for the sediment type and associate size range selected by the user.  Therefore, if a smaller sediment 

fraction is present in-situ, then burial/exhumation of oil may occur before the SOTT indicates].  
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4.4 Results and Discussion 

4.4.1 Kalamazoo River Case Study 

4.4.1.1 Spill Description  

The Enbridge Line 6b pipeline spilled 843,000 gallons of diluted bitumen (Cold Lake 

Bitumen (CLB), API=9.5°) into a wetland during July 2010 in Marshall, MI (Fitzpatrick et al., 

2015b; USEPA, 2016).  The spill occurred during a flood and caused the oil to travel from the 

wetland into Talmadge Creek and the Kalamazoo River, where it proceeded to deposit along 38 

miles and enter Morrow Lake.  Due to the nature of the oil spilled, the increased turbulence, and 

high suspended sediment concentration, the initially buoyant oil mixed with river sediment and 

submerged so responders could not see it.  The fraction of oil that remained on the water’s surface 

weathered over time and the diluent evaporated.  This caused the floating oil’s density to increase, 

and it submerged and interacted with suspended sediments.  The weathered and sediment-laden 

oil transported with the currents until it reached low velocity areas (<0.3 m/s) and deposited on the 

river bed in channel margins, backwaters, side channels, and oxbows (Fitzpatrick et al., 2015b).   

Response operations and oil spill modelers worked to develop hydrodynamic and sediment 

transport models representative of in-situ conditions.  New techniques were developed to detect 

sunken oil (e.g., probing the bottom with poles (i.e., poling)), determine the water depth, and 

identify oil depositional areas (Fitzpatrick et al., 2015b).  Sediment cores were collected to 

determine sediment type, and sediment layering structure and develop a grain size distribution.  

The river bottom bathymetry was mapped using LIDAR.  Flume studies used the sediment 

collected from depositional areas to estimate the erosion rates and 𝜏𝑠𝑐 of in-situ sediment or 𝜏𝑜𝑐 of 

the sediment/oil mixtures.  𝜏𝑜𝑐 = 0.4 Pa was calculated as the erosion threshold for the sediment-

oil mixture (Perkey et al., 2014; Waterman et al., 2015).  Laboratory studies evaluated 
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resuspension of oil-particle aggregates (OPAs) which were then incorporated into an existing 

sediment transport model (e.g., SEDZLJ) (Hayter et al., 2015).  Because depositional areas of oil 

were associated with fine grained soft sediments, modelers used the 𝜏𝑠𝑐 of silt-sized sediments, 

𝜏𝑠𝑐= 0.05 Pa, as a proxy for OPAs (Dollhopf et al., 2014; Fitzpatrick et al., 2015b).  

4.4.1.2 SOTT Inputs  

To accurately model the Enbridge Line 6b oil spill, environmental conditions (e.g., water 

temperature) and riverine characteristics (e.g., width, depth) were obtained from literature.  Using 

a 𝑏:ℎ of 40 and a river width, 𝑏, of 22.86 m (75 ft), a water depth, ℎ, of 0.57 m (1.88 ft) was 

calculated and used for all of the scenarios (Fitzpatrick et al., 2015b).  Dollhopf et al. (2014) noted 

that the submerged oil aggregated with fine-grained soft sediment (silt, clay, and organic 

accumulations).  Coarse silt (𝑑50 range = 0.031 to 0.0625 mm) was selected as the sediment type 

for all SOTT simulations.  Flume studies determined that typical 𝜏𝑠𝑐 values in the Kalamazoo 

River were between 0.10 and 0.15 Pa (Waterman et al., 2015).  The coarse silt used in the SOTT 

had an associated 𝜏𝑠𝑐 range of 0.083 to 0.11 Pa.  Because oil density and viscosity are influenced 

by temperature, and viscosity is a factor driving sunken oil transport, two temperatures were 

evaluated for this case study.  An upper temperature limit of 22.2°C (72 °F) was used to represent 

summer water temperatures at the time of the spill (Fitzpatrick et al., 2015b), and 15.6°C (60°F) 

was selected as the lower limit because poling operations were terminated for temperatures below 

that (Dollhopf et al., 2014; USEPA, 2016). 

There is a higher relative concern of weathered diluted bitumen sinking as compared to 

fresh diluted bitumen (NASEM, 2016).  Additionally, the associated response to a 

sunken/submerged oil is “more complex” and the recovery is “less effective”.  The focus of the 

SOTT is on sunken oil transport, therefore, two weathered Cold Lake bitumen (CLB) oils (Percent 
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Evaporation (%Ev) =16.9 and 25.3) were selected as representative to capture the influence of 

weathering state and its effects on physical properties.  CLB (%Ev=16.9) was included in the 

analysis because King et al. (2014) conducted laboratory- and flume-based experiments to study 

the effect of weathering (e.g., evaporation, photo-oxidation) on floating CLB, and found that the 

density remained below 1.00 g/cm3 even after 300 hours of weathering.  This suggests that the oil 

was not dense enough to sink without the incorporation of sediment, but may be the most 

representative oil condition for the Kalamazoo River spill simulations. 

The dynamic viscosity and density of the weathered CLB (Table 4-11) were parameterized 

by Environment Canada (2013).  The values were adjusted based on the SOTT input temperatures 

(16°C and 22°C).  Four scenarios were simulated for the case study (Table 4-12).  To show how 

the SOTT can be tuned to predict the velocity range that would initiate oil transport, a velocity 

range was not chosen as an input parameter, but is presented in the output.
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Table 4-11: SOTT input parameters used for the Kalamazoo River oil spill case study. 

 

Table 4-12: Summary table describing Kalamazoo River dimensions, water temperature, 

and oil condition for each SOTT scenario. 

 

 

 

 

4.4.1.3 SOTT Results 

Oil CSS Predictions 

After inputting the scenario-related parameters, the velocity range was tuned to find the critical 

velocity (𝑈𝑐) associated with oil rope formation and break-apart/resuspension (Table 4-13).  In the 

event of a spill, responders can gain an initial “best estimate” as to the range of current velocities 

that may initiate oil transport along the bed or resuspension into the water column.  The minimum 

𝑅𝑒𝑜𝑐
∗ , corresponding to 𝜏𝑜𝑐 for rope formation, and maximum 𝑅𝑒𝑜𝑐

∗ , representing 𝜏𝑜𝑐 for break-

apart/resuspension, were calculated (when valid) for Scenarios 1-4 (Table 4-14).  All valid 𝜏𝑜𝑐 

estimates for rope formation, ripple formation, and break-apart/resuspension thresholds are 

presented in Figure 4-4.  [N.B., Rope formation indicated with an open symbol, ripple formation 

by a symbol with horizontal hatched lines, and the break-apart/resuspension symbol with a solid 

fill].    

Temperature 

(°C) 

Oil Type 

(%Ev) 

𝝆𝒐 

 (g/cm3) 

𝝁𝒐  

(cP) 

𝒗𝒐  

(cSt) 

16 CLB (16.9) 0.981 16,996 17,325 

22 CLB (16.9) 0.977 7,690 7,871 

16 CLB (25.3) 1.003 337,907 336,896 

22 CLB (25.3) 0.999 70,569 70,640 

Scenario 

Number 

h    

(m) 

b    

(m) 

Water Temperature 

(°C) 
Oil Type 

(%Ev) 

1 0.57 22.86 16 CLB (16.9%) 

2 0.57 22.86 22 CLB (16.9%) 

3 0.57 22.86 16 CLB (25.3%) 

4 0.57 22.86 22 CLB (25.3%) 
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Table 4-13: SOTT results summarizing 𝑼𝒄 for each scenario. 

 

 

 

 

Table 4-14: SOTT results summarizing the predicted oil 𝝉𝒐𝒄 thresholds and the range of 

𝑹𝒆𝒐𝒄
∗  for each scenario. 

Scenario Number 

(Description) 

Parameter 

(units) 

Rope 

Formation 

Ripple 

Formation 

Break-Apart/ 

Resuspension 

1 

(16°C & 16.9%Ev) 

𝜏𝑜𝑐 (Pa) 0.19±0.01 0.33±0.02 0.58±0.05 

Minimum 𝑅𝑒𝑜𝑐
∗  0.39 0.50 0.67 

Maximum 𝑅𝑒𝑜𝑐
∗  0.78 1.01 1.34 

2 

(22°C & 16.9%Ev) 

𝜏𝑜𝑐 (Pa) 0.14±0.01 0.27±0.02 0.41±0.05 

Minimum 𝑅𝑒𝑜𝑐
∗  0.39 0.52 0.65 

Maximum 𝑅𝑒𝑜𝑐
∗  0.79 1.05 1.31 

3 

(16°C & 25.3%Ev) 

𝜏𝑜𝑐 (Pa) N/A N/A 1.22±0.05 

Minimum 𝑅𝑒𝑜𝑐
∗  N/A N/A 0.97 

Maximum 𝑅𝑒𝑜𝑐
∗  N/A N/A 1.96 

4 

(22°C & 25.3%Ev) 

𝜏𝑜𝑐 (Pa) N/A N/A 0.88±0.05 

Minimum 𝑅𝑒𝑜𝑐
∗  N/A N/A 0.98 

Maximum 𝑅𝑒𝑜𝑐
∗  N/A N/A 1.97 

 

Scenario Number 

(Description) 

Rope Formation 

𝑼𝒄 (m/s) 

Break-Apart/Resuspension 

𝑼𝒄 (m/s) 

1 (16°C & 16.9%Ev) 0.44 0.75 

2 (22°C & 16.9%Ev) 0.38 0.60 

3 (16°C & 25.3%Ev) N/A 1.1 

4 (22°C & 25.3%Ev) N/A 0.95 
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The 𝑣𝑜 values of CLB (25.3%) at 16°C and 22°C were outside of the applicable viscosity 

range, thus invalidating 𝜏𝑜𝑐 predictions of rope formation and ripple formation for Scenarios 3 and 

4.  Therefore, 𝑈𝑐, 𝜏𝑜𝑐, and the 𝑅𝑒𝑜𝑐
∗  range, for these scenarios are only presented for the 

resuspension/break-apart threshold.  

The SOTT results showed that Scenario 2 had the lowest predicted 𝜏𝑜𝑐 for all thresholds, 

and the smallest spread in 𝜏𝑜𝑐 values.  Scenario 1 results predicted slightly higher 𝜏𝑜𝑐 values for 

all thresholds and the range of predicted 𝜏𝑜𝑐 values was wider because the oil was more viscous 

due to the colder temperature.  Scenario 4 had the second largest predicted 𝜏𝑜𝑐 and Scenario 3 had 

the largest break-apart/resuspension because a more weathered oil has a higher viscosity and the 

impact of water temperature on viscosity is greater.  As expected, the more viscous oils (due to 

evaporation and compounded by cold water temperatures) had the highest predicted 𝜏𝑜𝑐.  Because 

𝜏𝑜𝑐 was used to calculate 𝑈𝑐, the same pattern is true for the magnitude and range of 𝑈𝑐 thresholds.   

The uncertainty in SOTT predictions (shown as error bars for the 𝜏𝑜𝑐 ranges in the reference 

curve) comes from the assumed 𝑣𝑜, the empirical relationship used to adjust it based on water 

Figure 4-4: Comparison of scenario’s valid oil CSS thresholds with respect to 𝑣𝑜. 
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temperature, and the fitted relationship used to calculate 𝜏𝑜𝑐.  The fitted relationship was developed 

by corresponding the oil’s movement to 𝑈𝑐 and calculating 𝜏𝑜𝑐 based on 𝑈𝑐.   

Five methods were used to calculate applied 𝜏𝑤, and the mean of the five methods (𝜏𝑤̅̅̅̅ ) 

was designated as the 𝜏𝑜𝑐.  The variability associated with 𝜏𝑤̅̅̅̅  was captured using ±1 standard 

deviation (σ) from the mean (See Chapter 3 for true CSS values).  The spread in estimates of 2-3 

Pa is expected, especially at high velocities (~0.7 m/s) because 𝜏𝑤 is difficult to estimate as it relies 

on assumed, derived, or measured input values (Wren et al., 2011).  The variability in 𝜏𝑤 may also 

depend on how and where velocity is measured, the characterization of boundary conditions and 

subsequent roughness parameterization, relative roughness, or the method used to calculate it. 

To determine the largest source of uncertainty for the SOTT, the variability in 𝜏𝑜𝑐 estimates 

associated with 𝑣𝑜±20% and variability in 𝜏𝑤 calculated from flume trials were compared.  For 

example, Scenario 1(16°C & 16.9%Ev) assumed 𝑣𝑜 = 17,325 cSt.  When comparing the 

uncertainty associated with 𝑣𝑜±20% on the rope formation, ripple formation, and break-

apart/resuspension 𝜏𝑜𝑐, the error bars accounted for ±0.01 Pa, ±0.02 Pa, and ±0.05 Pa, respectively.  

In a flume trial on sand with 𝑣𝑜 = 18,001 cSt; the corresponding 𝜏𝑜𝑐±σ  for rope formation, ripple 

formation, and break-apart/resuspension thresholds were 0.18±0.06, 0.31±0.12, and 0.48±0.2 Pa, 

respectively.   

It is clear that the method uncertainty associated with estimating 𝜏𝑜𝑐 is larger than the 

uncertainty caused by 𝑣𝑜±20%.  Therefore, to capture variability when predicting 𝜏𝑜𝑐 thresholds 

using the SOTT, it is important to compare results with 𝜏𝑜𝑐 ranges for similar oil viscosities and 

sediment sizes determined from flume-based experiments (See Table 3-5 in Chapter 3 in for a 

summary of 𝜏𝑜𝑐 values).  Dalyander et al. (2015) found that the uncertainty associated with 𝜏𝑤 was 

less influential than 𝜏𝑜𝑐 in predicting the transport of sand-oil agglomerates in low energy 
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environments, but the uncertainty associated with high energy environments propagated “through 

to 𝜏𝑤 and potentially dominate(d) the uncertainty in choice of 𝜏𝑜𝑐”.  Therefore, to minimize SOTT 

uncertainty, spatially- and temporally-varying in-situ measurements of 𝑈 should be used, if 

available, to estimate the anticipated range of 𝜏𝑤 estimates and compared with 𝜏𝑜𝑐.  In addition, 

accurate estimates of 𝑣𝑜 at the in-situ water temperature will reduce uncertainty associated with  

𝜏𝑜𝑐 and improve the SOTT’s prediction of oil transport. 

Comparing Oil and Sediment Mobility  

To compare predicted oil mobility with the anticipated range of sediment transport 

thresholds, the four reference curves, displaying SOTT results, are presented below (Figure 4-5 to 

Figure 4-8).  Based on the prediction that typical sediment 𝜏𝑠𝑐 in the Kalamazoo River ranges 

between 0.10 and 0.15 Pa (Waterman et al., 2015), Scenario 2 was the only one with a 𝜏𝑜𝑐 value 

(0.14 Pa) within the 𝜏𝑠𝑐 range.  This suggests that migration of oil along the bed may have initiated, 

for the assumed conditions, prior to the oil being buried by the silt/clay fraction in the river.  For 

all other scenarios, the silt/clay would likely have moved prior to oil migration or resuspension, 

potentially burying, or coating the oil.  For Scenario 2, at 𝑈𝑐 = 0.38 m/s, the 𝑅𝑒𝑠𝑐
∗  for 𝑑50=0.031 

mm was smaller than the minimum 𝑅𝑒𝑜𝑐
∗ , therefore, incipient motion of the smallest fraction of 

sediment would likely occur prior to oil rope formation.  Similarly, at 𝑈𝑐 = 0.60 m/s, the sediment 

would likely move prior to oil reaching the break-apart/resuspension threshold. 

In Scenario 1, when 𝑈𝑐 = 0.44 m/s, the smallest fraction of sediment (𝑑50=0.031 mm) 

would likely undergo incipient motion before the oil started to migrate along the bed.  At 𝑈𝑐=0.75 

m/s, the oil’s break-apart/resuspension threshold, the entire sediment range would likely be 

moving as bedload or suspended load transport.   
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Scenarios 3 and 4 are different from Scenarios 1 and 2 because the 𝜏𝑜𝑐 values are larger.  

Therefore, even the largest sediment fraction (𝑑50= 0.0625 mm) would likely be mobilized at or 

slightly below the rope formation 𝑈𝑐 threshold.  For Scenario 3 (𝑈𝑐 = 0.6 m/s) and Scenario 4 (𝑈𝑐 

= 0.5 m/s), the smaller sediment fraction would likely already be in motion prior to oil movement 

thus causing the oil to be buried or coated with silt/clay.  At the oil’s break-apart/resuspension 

threshold in Scenario 3 (𝑈𝑐 = 1.1 m/s) and Scenario 4 (𝑈𝑐 = 0.95 m/s), the bed would likely be 

unstable due to silt/clay’s relatively low 𝜏𝑠𝑐, thus increasing the importance of burial and 

exhumation processes when locating the oil. 
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Figure 4-6: SOTT reference curve from Scenario 2. 

Figure 4-5: SOTT reference curve from Scenario 1. 
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Figure 4-8: SOTT reference curve from Scenario 4. 

Figure 4-7: SOTT reference curve from Scenario 3. 
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4.4.1.4 Comparison to Literature 

Scenario 2 (22°C & 16.9%Ev) most closely represents the Kalamazoo River spill 

conditions.  The SOTT rope formation, ripple formation, and break-apart/resuspension 𝜏𝑜𝑐 

predictions for this scenario were 0.14 Pa, 0.27 Pa, and 0.41 Pa, respectively.  Laboratory- (Perkey 

et al., 2014) and field- (Waterman et al., 2015) flume studies were conducted on Kalamazoo River 

oiled sediment “to identify erosion parameters that can be implemented in a numerical 

hydrodynamic and sediment transport model to represent erosional characteristics of oiled 

sediment in depositional areas of the Kalamazoo River” (Waterman et al., 2015).  Perkey et al. 

(2014) determined the erosion 𝜏𝑠𝑐 (i.e., displacement of the sediment surface) for the top 5 cm of 

a river sediment core to be between 0.1 and 1.6 Pa.  Waterman et al. (2015) evaluated oiled 

sediment erosion thresholds at five locations within depositional areas of the Kalamazoo River.  

They determined the typical 𝜏𝑠𝑐 fell between 0.10 and 0.15 Pa with values ranging up to 0.67 Pa . 

Provided all available information, a conservative 𝜏𝑜𝑐 threshold of 0.4 Pa was used to model the 

sunken oil erodibility for the river (Fitzpatrick et al., 2015b).   

The SOTT predicted rope formation 𝜏𝑜𝑐 (0.14 Pa) fell within measured Waterman et al. 

(2015) erosion 𝜏𝑜𝑐 (0.1 to 0.15 Pa).  The SOTT estimated ripple formation 𝜏𝑜𝑐 (0.27 Pa) was 

slightly larger.  The SOTT predicted break-apart/resuspension 𝜏𝑜𝑐 (0.41 Pa) compared well with 

the sunken oil erosion 𝜏𝑜𝑐 used in the Kalamazoo River models (Fitzpatrick et al., 2015b).  The 

0.01 Pa variation between the measured 𝜏𝑜𝑐 and the SOTT predicted break-apart/resuspension 𝜏𝑜𝑐 

suggests that this tool provides a reasonable estimate of sunken oil transport and could have been 

used to assist decision-makers during the Kalamazoo River spill response. 
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4.4.2 Application to Sunken Oil Spill  

In the event of a sunken oil spill, responders could use the SOTT as an initial estimate of 

sunken oil transport using data from the in-situ environmental conditions (e.g., current velocity, 

sediment type), open-source databases (e.g., NOAA’s ERMA, USGS Stream Stats) or the literature 

to predict the range of 𝜏𝑤.  As more information becomes available during the spill, and in-situ 

conditions can be measured (e.g., current velocity, substrate type, water temperature) predictions 

of sunken oil transport can be refined.  The Kalamazoo River case study provided one way in 

which the SOTT could be tested to predict the critical velocity required to transport the oil.  If the 

in-situ velocity range is known, then the SOTT could be tuned to evaluate the effects of diurnal 

temperature fluctuations, the effect of oil weathering on the viscosity range, or the influence of 

bed roughness (i.e., sediment size) on the transport of sunken oil.  Because the SOTT uses 

generalized assumptions to adjust 𝑈 to �̅� and �̅�(𝑧), more accurate estimates of 𝜏𝑤 may be 

calculated using external sources with the capability of using direct measurements of �̅� and �̅�(𝑧) 

or different methods (e.g., Turbulent Kinetic Energy) to compare with oil CSS estimates.  

Based on results from the sensitivity analysis conducted in Chapter 2, when using global 

methods (e.g., Chezy/Momentum, Manning/Momentum), 𝜏𝑤 estimates are more sensitive to 

roughness parameter variability, whereas local methods (e.g., Law of the Wall – Single Point) 

require accurate estimates of near-bed velocity and velocity fluctuations.  Therefore, bathymetric 

surveys and characterization of the bed should be a priority when using these global methods in 

the field.  Recording near-bed velocity variability is essential to produce accurate ranges of in-situ 

𝜏𝑤 estimates when using local methods.  In those spills where a sieve analysis using sediment 

cores or bathymetric surveys is not possible, 𝜏𝑤 can be calculated over the anticipated range of 

sediment types and sizes. 
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4.5 Conclusions and Future Research  

This chapter described the multi-year process of developing a prototype sunken oil 

transport tool (SOTT).  The methods and data used to predict sunken oil transport and a case study 

using an actual spill application of the tool and interpretation of results were discussed.  The 

process began through a series of meetings facilitated by CRRC with OR&R to identify the 

relevant questions asked by responders in the event of a sunken oil spill to improve response 

decision-making.  CRRC and OR&R developed laboratory- and flume-based experiments to 

answer the identified response questions and minimize knowledge gaps.  The experiments 

identified the factors driving sunken oil transport.  Empirical relationships were developed to relate 

oil viscosity to CSS thresholds.   

The results from the oil CSS experiments were discussed by spill responders from multiple 

agencies (e.g., U.S. Army Corps, USGS) that provided feedback as to how the data should be used 

and visualized in the SOTT.  In the event of a sunken oil spill, responders can input the spilled 

oil’s characteristics (i.e., density, viscosity) and in-situ environmental conditions (i.e., water 

velocity, density, sediment size) to evaluate if oil will likely transport along the bottom, mobilize 

into the water column, or be buried by sediments.  SOTT results could: (1) help inform placement 

of response assets, (2) relevant response techniques (e.g., poling operations, water column 

snare/pom-pom configurations), and (3) direct where responders look for sunken oil (e.g., 

downstream, where the oil sank).  

In the event of a spill, an accurate estimate or range of the spilled oil’s kinematic viscosity 

(for fresh and weathered conditions) at the in-situ water temperature should be used in the SOTT.  

Ideally, viscosity would be measured directly, but if instruments are unavailable, then a range of 

viscosities can be obtained using an existing database (e.g., ADIOS, Environment Canada).  The 

environmental conditions can be initially estimated using values found in literature or 
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environmental databases (e.g., AXIOM, ERMA).  To improve the accuracy of oil and sediment 

transport predictions throughout the spill event, values from the literature and databases should be 

replaced with in-situ measurements of water velocity (near-bed and depth-averaged) and grain size 

distribution. 

Relationships used in the SOTT were developed from oil CSS experiments conducted on 

a glued (immobile) boundary.  Therefore, further research should be conducted to understand how 

mobile sediment and an unstable bed would impact oil CSS thresholds.  Experiments were 

conducted using No. 6 HFO mixed with clay, therefore, further research should be conducted using 

other oils with the propensity to sink in fresh water environments (e.g., diluted bitumen) over a 

wide temperature range to capture the non-linear influence of oil viscosity.  Additionally, further 

improvements to the SOTT could include integrating direct measurements of in-situ velocity 

profiles from acoustic doppler current profilers to calculate BSS (e.g., Turbulent Kinetic Energy 

Method).  

A database could be developed that would allow responders to query information from the 

catalogue of sunken oil experimental images and videos.  Key name searches could be based on 

the input criteria (e.g., oil properties, environmental conditions), and would direct users to relevant 

images of sunken oil that could be compared to visual observations of the spilled oil obtained in-

situ by remotely operated vehicles or diver observations. 
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CONCLUSIONS AND RECOMMENDATIONS 

5.1 Conclusions 

 This section summarizes the major conclusions developed from this dissertation research, 

highlights their significance, and recommends future research to fill relevant knowledge gaps.  The 

overarching objective of this dissertation was to define the stages of transport using sunken, No. 6 

HFO, quantify the oil’s CSS at those thresholds, and develop a tool using the experimental data 

that can be used by responders to predict if in-situ environmental conditions are sufficient to 

mobilize sunken oil. 

To accomplish the research objectives, a comprehensive hydraulic analysis (See Chapter 

2) was necessary as it had never been done for the newly-constructed MacFarlane Flume.  [N.B., 

Findings from the hydraulic analysis are not described in detail here unless directly related to 

predicting sunken oil transport].  The hydraulic analysis was necessary to quantify baseline flow 

conditions, identify instrument limitations, and determine which BSS methods were valid under 

various flow regimes.  Findings from Chapter 2 provided the foundation for all BSS calculations 

and methods used in the oil CSS experiments and to develop the SOTT. 

Based on the sensitivity analysis (See Chapter 2), local BSS estimates were equally 

sensitive to velocity and roughness variability, whereas the global methods tended to be more 

sensitive to roughness variability alone.  Therefore, in the event of  an oil spill, the first priorities 

are to determine the expected velocity range and then to collect sediment cores to determine 

particle size distribution (PSD).  Providing a velocity range and knowing the PSD will improve 

the accuracy of global BSS estimates.  If more information becomes available and instruments can 

be deployed to measure near-bed velocity, then local methods could be used to predict in-situ BSS 

and more accurately predict sediment or oil transport processes.   
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From the oil CSS experiments (See Chapter 3), the driving factors used to predict sunken 

oil transport were the oil’s kinematic viscosity (𝑣𝑜) and the median sediment size (𝑑50).  Empirical 

relationships using 𝑣𝑜 and 𝑑50 were developed to predict an oil’s CSS for multiple stages of 

movement.  These are two measurable parameters that can be leveraged in a spill event to predict 

sunken oil transport thresholds.  Additionally, for 𝑣𝑜 < 2x104 cSt, there are multiple thresholds of 

movement and the number of oil droplets leaving the oil increases.  When 𝑣𝑜 > 6x104 cSt, transport 

is more likely to occur as a single event with the oil remaining intact, resulting in bedload transport 

in the direction of flow. 

The SOTT provides a user-friendly platform for responders to input the in-situ 

environmental conditions (i.e., water velocity, density, sediment size) and oil properties (i.e., 

density, viscosity)  to predict sunken oil transport.  SOTT results are presented in the form of a 

reference curve and summary tables so that responders can predict if oil may be transported along 

the bottom, resuspended into the water column, or buried by sediments.  SOTT results could help 

inform placement of response assets, evaluate relevant response techniques (e.g., poling 

operations, water column snare/pom-pom configurations), and direct where responders look for 

the sunken oil (e.g., downstream, where the oil sank).   

5.2 Significance  

 Prior to this research, there was limited experimentally-derived data available for oil spill 

response operations regarding the CSS of sunken oils.  This research provides the CSS of No. 6 

HFO, a commonly-transported oil with a propensity to sink, over a range of environmentally-

relevant conditions and oil viscosities.  The empirically-derived equations could be incorporated 

into existing models or used by oil spill modelers to predict the trajectory of sunken oil more 

accurately.  The SOTT provides a user-friendly, open-source tool that is readily available to oil 
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spill responders in the event of a sunken oil spill.  Understanding the range of environmental 

conditions that may cause oil to move can help locate the oil, estimate if it has been buried by 

sediments, and direct the type and placement of response assets. 

5.3 Recommendations for Future Research 

Recommended future research projects specific to CRRC’s flume: 

• Conduct experiments on mobile sediments to validate the applicability of estimating the 

sediment’s CSS thresholds using the Shields curve.   

• Re-evaluate all hydrodynamic conditions in case of using a different water depth.  The 

transitions from sub- to super-critical and laminar to turbulent should be recalculated 

and the associated VFD settings defined.  This change would alter the empirical 

relationships between VFD setting and free-stream velocity and depth-averaged 

velocity, and the velocity ranges for which each BSS method is valid. 

Recommended future research projects relevant to external laboratories and field research: 

• Evaluate the effects of current velocity on sinking mechanisms to determine the 

variability in size, shape, thickness, and morphology of the oil once settled to the bed. 

• Using variable stranding patterns, conduct experiments to evaluate the impacts of 

morphology, thickness, size, and shape on CSS thresholds.  

• Assess the influence of sloping beds or bedforms on CSS values and compare the 

thresholds of movement determined in this dissertation for a zero-sloping bed.  

Specifically for the gravity spreading, rope formation, and ripple formation thresholds as 

a downward sloping bed (in the direction of flow) would initiate movement for low 

viscosity oils in environments with no or minimal velocity present.  Therefore, 

potentially reducing the CSS required to initiate oil transport.  Alternatively, how would 
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the CSS of the oil change once it is trapped in a local bedform or offshore trench, and 

how would these values compare with CSS of oil on a zero-sloping bed. 

• Conduct experiments on a mobile bed (i.e., non-adhered substrate) to determine the 

relationship between oil and sediment mobility, and to evaluate sediment uptake or 

adherence of sediments to the oil.  Experiments should be performed with cohesive 

sediments and with heterogenous mixed beds to determine what size class of sediments 

controls CSS thresholds.   

• Characterize oil viscosity for heavy refined or crude products over a wide temperature 

(e.g., 0 to 35°C) and shear rate (e.g., 0.01 to 16 Hz) ranges to establish oil-specific 

relationships.  Establish temperature-viscosity relationships for various oil types and 

weathering states to allow modelers to adjust oil viscosity more accurately to in-situ 

temperatures, thus improving oil spill trajectory and fate modeling.  

• Compile the images, videos, experimental properties, and oil thresholds from this 

research into a database, so that responders can obtain information in a single location.  

Queries could be based on the input criteria (e.g., oil properties, environmental 

conditions), and direct users to relevant images of sunken oil to compare with visual 

observations of the in-situ oil obtained by remotely operated vehicles or diver 

observations. 

• Using the SOTT, conduct an additional sensitivity analysis on the various input 

parameters.  Further refine the influence of the mechanistic factors potentially driving 

transport. 
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APPENDIX A: Chapter 2 Appendices 

Appendix A.1: Hydraulic Analysis 

Flow Probe Correlation 
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Specific Energy 
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Head Loss Calculations 

 

 

Friction Slope Calculations 
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Appendix A.2: Cross-Sectional Hydraulic Analysis 
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Appendix A.3: Boundary Layer Conditions 
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Appendix A.4: Particle Size Distribution 
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Wentworth Grade Scale:  
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Appendix A.5: Estimating Manning’s n 

Reference Equation Variables 
Values 
(meters) Sand 

Fine 
Pebble 

Medium 
Pebble 

VT Chow 
(1959) n=KuDx^1/6 

Ku 0.042 
0.0114 0.0180 0.0195 

D50 see PSD 

Anderson et 
al. (1970) n=KuDx^1/6 

Ku 0.048 
0.0132 0.0208 0.0226 

D50 see PSD 

US Army 
Corp of Eng 

(1991) n=KuDx^1/6 

Ku 0.046 
0.0156 0.0210 0.0218 

D90 see PSD 

Strickler 
(1923) n=KuDx^1/6 

Ku 0.047 
0.0130 0.0205 0.0222 

D50 see PSD 

Wong and 
Parker (2006) n=KuDx^1/6 

Ku 0.043 
0.0146 0.0197 0.0204 

D90 see PSD 

Manning-
Strickler 

u/u*=α(H/Dx)^1/6 

Rh 0.102 

0.0202 0.0150 0.0145 D90 see PSD 
α=8.1 for mountain, gravel-bed 

streams α 0.010 

Limerinos  

n=(Ku*Yo^1/6)/1.16+2log(Yo/D84) 

Ku 0.113 

0.0155 0.0217 0.0230 Yo  0.305 

D84 see PSD 

Use median Manning "n" in BSS calculations Median n 0.0146 0.0205 0.0218 

 

  

Sediment Size (m) 

Sand Fine Pebble Medium Pebble 

D10 0.0003 0.0046 0.0090 

D25 0.0003 0.0055 0.0103 

D50 0.0004 0.0065 0.0106 

D75 0.0009 0.0079 0.0108 

D84 0.0012 0.0085 0.0111 

D90 0.0015 0.0090 0.0112 

LOG(Yo/D84) 2.40 1.55 1.44 
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Appendix A.7: Eddy Diffusivity (E(z)) vs. Dimensionless Height (Z+) 
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Appendix A.8: Velocity Measurement Location 

Method Name Velocity 

measurement 

used in BSS 

calculations 

Measurement Location: Distance from the 

Bottom, z, (cm) 

Acrylic Sand Fine 

pebble 

Medium 

pebble 

Newton’s Law of 

Viscosity 

Derivative of 

velocity profile in 

viscous sublayer 

0.13-0.54 0.20–0.51 0.51-0.81 n/a 

TKE Turbulent 

fluctuations (0.1h) 
0.027 0.028 0.027 0.027 

Law of Wall – LP Time averaged 

profile  
0.13-3.13 0.20-3.20 3.20-6.20 3.70-6.70 

Law of Wall – Single 

Point 

Time averaged 

between 2 cm and 

2/10ths flow depth 

2.20 

 

2.30 

 

5.20 

 

5.80 

 

Quadratic Friction Law  Depth and time 

averaged velocity 

(0 to 9 cm) 

0.13-8.87 0.20-9.23 0.23-9.24 1.04-10.67 

Indicator Function Derivative of time 

averaged profile 
0.13-2.82 0.20-2.88 0.19-2.46 1.04-4.00 

Chézy/Momentum Free-stream 

velocity 
8.90 9.20 9.20 9.50 

Manning/Momentum Free-stream 

velocity 
8.90 9.20 9.20 9.50 
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Appendix A.9: BSS Method for All Substrate Types 
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Appendix A.10: Sensitivity Analysis Plots 
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APPENDIX B: Chapter 3 Appendices 

Appendix B.1: Fresh & Weathered Brookfield Viscosity 
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Appendix B.2: DHR and Brookfield Viscosity  
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Appendix B.3: Wells-Brookfield Viscosity Variability 

Fresh+Clay Sample 

Variability Guage Chart for Viscosity (mPa*s=cP) 
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Variability Summary for Viscosity (mPa*s=cP) 

 
 

 

 

Note: The viscosity variability was a function of shear rate (1/s = Hz) and temperature (°C).  Non-

Newtonian fluids, such as No. 6 HFO, do not have constant viscosities, at a constant temperature, 

with increasing or decreasing shear rates.  For example, at 25°C and shear-rate of 2 Hz, viscosity 

= 2,308 mPa*s.  At 25°C and shear-rate of 5 Hz, viscosity was 2,251 mPa*s.  The decline in 

viscosity as shear-rate increases suggests that this fluid is a shear-thinning fluid. 

 

 

 

Fresh+Clay Mean Std Dev RSD CV Std Err Mean Lower 95% Upper 95% Minimum Maximum Range Median Observations

Viscosity (mPa*s=cP) 3,754 4,618 123% 123 523 2713 4796 294 24078 23784 2219 78

Temperature (°C)[15] 22,390 2,051 9% 9 1,184 17294 27486 20107 24078 3971 22986 3

Temperature (°C)[17.5] 10,457 1,654 16% 16 827 7825 13088 8440 12287 3847 10549.5 4

Temperature (°C)[18] 10,712 579 5% 5 410 5508 15915 10302 11121 819 10711.5 2

Temperature (°C)[20] 6,299 231 4% 4 94 6057 6541 6082 6677 595 6249.5 6

Temperature (°C)[22] 3,739 209 6% 6 70 3578 3899 3475 4046 571 3704 9

Temperature (°C)[23.5] 2,943 94 3% 3 31 2870 3015 2780 3053 273 2954 9

Temperature (°C)[25] 2,256 73 3% 3 24 2200 2312 2162 2395 233 2234 9

Temperature (°C)[27] 1,765 72 4% 4 24 1710 1820 1681 1862 181 1738 9

Temperature (°C)[28.5] 1,512 112 7% 7 37 1426 1597 1403 1676 273 1460 9

Temperature (°C)[30] 1,327 126 9% 10 42 1230 1424 1195 1514 319 1268 9

Temperature (°C)[50] 306 8 3% 3 3 299 312 294 315 21 308 9

Temperature (°C)[15] Shear Rate (1/s)[1] 22,390 2,051 9% 9 1,184 17294 27486 20107 24078 3971 22986 3

Temperature (°C)[17.5] Shear Rate (1/s)[1] 11,108 1,667 15% 15 1,179 -3873 26089 9929 12287 2358 11108 2

Temperature (°C)[17.5] Shear Rate (1/s)[2] 9,805 1,930 20% 20 1,365 -7539 27149 8440 11170 2730 9805 2

Temperature (°C)[18] Shear Rate (1/s)[1] 11,121 . #VALUE! . . . . 11121 11121 0 11121 1

Temperature (°C)[18] Shear Rate (1/s)[2] 10,302 . #VALUE! . . . . 10302 10302 0 10302 1

Temperature (°C)[20] Shear Rate (1/s)[1] 6,404 301 5% 5 174 5658 7151 6082 6677 595 6454 3

Temperature (°C)[20] Shear Rate (1/s)[2] 6,194 98 2% 2 57 5949 6438 6082 6268 186 6231 3

Temperature (°C)[22] Shear Rate (1/s)[1] 3,847 323 8% 8 186 3046 4649 3475 4046 571 4021 3

Temperature (°C)[22] Shear Rate (1/s)[2] 3,761 138 4% 4 80 3418 4104 3637 3910 273 3736 3

Temperature (°C)[22] Shear Rate (1/s)[5] 3,608 84 2% 2 48 3400 3816 3550 3704 154 3570 3

Temperature (°C)[23.5] Shear Rate (1/s)[1] 3,012 51 2% 2 30 2884 3140 2954 3053 99 3028 3

Temperature (°C)[23.5] Shear Rate (1/s)[2] 2,942 94 3% 3 54 2709 3174 2855 3041 186 2929 3

Temperature (°C)[23.5] Shear Rate (1/s)[5] 2,875 100 3% 3 58 2627 3123 2780 2979 199 2865 3

Temperature (°C)[25] Shear Rate (1/s)[2] 2,308 81 4% 4 47 2107 2510 2234 2395 161 2296 3

Temperature (°C)[25] Shear Rate (1/s)[5] 2,251 57 3% 3 33 2109 2392 2204 2314 110 2234 3

Temperature (°C)[25] Shear Rate (1/s)[10] 2,209 63 3% 3 37 2052 2366 2162 2281 119 2184 3

Temperature (°C)[27] Shear Rate (1/s)[2] 1,783 68 4% 4 39 1613 1953 1738 1862 124 1750 3

Temperature (°C)[27] Shear Rate (1/s)[5] 1,763 90 5% 5 52 1540 1985 1688 1862 174 1738 3

Temperature (°C)[27] Shear Rate (1/s)[10] 1,749 85 5% 5 49 1539 1960 1681 1844 163 1723 3

Temperature (°C)[28.5] Shear Rate (1/s)[2] 1,527 130 9% 8 75 1205 1849 1440 1676 236 1465 3

Temperature (°C)[28.5] Shear Rate (1/s)[5] 1,509 131 9% 9 76 1184 1835 1410 1658 248 1460 3

Temperature (°C)[28.5] Shear Rate (1/s)[10] 1,499 123 8% 8 71 1192 1805 1403 1638 235 1455 3

Temperature (°C)[30] Shear Rate (1/s)[2] 1,409 149 11% 11 106 68 2749 1303 1514 211 1408.5 2

Temperature (°C)[30] Shear Rate (1/s)[5] 1,332 137 10% 10 79 993 1671 1241 1489 248 1266 3

Temperature (°C)[30] Shear Rate (1/s)[10] 1,312 136 10% 10 79 974 1650 1204 1465 261 1268 3

Temperature (°C)[30] Shear Rate (1/s)[20] 1,195 . #VALUE! . . . . 1195 1195 0 1195 1

Temperature (°C)[50] Shear Rate (1/s)[10] 307 8 3% 3 5 287 327 298 313 15 310 3

Temperature (°C)[50] Shear Rate (1/s)[20] 306 11 4% 3 6 279 332 294 315 21 308 3

Temperature (°C)[50] Shear Rate (1/s)[40] 304 9 3% 3 5 281 327 294 312 18 307 3
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Weathered+Clay Sample 

Variability Guage Chart for Viscosity (mPa*s=cP) 
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Variability Summary for Viscosity (mPa*s=cP) 
 

 
 

 

 

 

 

Note: The viscosity variability was a function of shear rate (1/s = Hz) and temperature (°C).  Non-

Newtonian fluids, such as No. 6 HFO, do not have constant viscosities, at a constant temperature, 

with increasing or decreasing shear rates.  For example, at 25°C and shear-rate of 2 Hz, viscosity 

= 4708 mPa*s.  At 25°C and shear-rate of 5 Hz, viscosity was 4510 mPa*s.  The decline in 

viscosity as shear-rate increases suggests that this fluid is a shear-thinning fluid. 

 

 

Weathered+Clay Mean Std Dev RSD CV Std Err Mean Lower 95% Upper 95% Minimum Maximum Range Median Observations

Viscosity (mPa*s=cP) 4984 4990 100% 100 644 3695 6273 496 22837 22341 3240 60

Temperature (°C)[19] 22341 702 3% 3 497 16032 28649 21844 22837 993 22341 2

Temperature (°C)[20] 17244 961 6% 6 555 14855 19632 16135 17848 1713 17748 3

Temperature (°C)[22] 9532 363 4% 4 182 8954 10110 9209 10053 844 9433 4

Temperature (°C)[23.5] 6773 212 3% 3 86 6550 6995 6566 7075 509 6733 6

Temperature (°C)[25] 4705 196 4% 4 65 4555 4856 4419 4965 546 4679 9

Temperature (°C)[27] 3370 201 6% 6 67 3215 3525 3148 3699 551 3252 9

Temperature (°C)[28.5] 2916 218 7% 7 73 2749 3083 2631 3227 596 2855 9

Temperature (°C)[30] 2259 40 2% 2 13 2228 2290 2197 2309 112 2259 9

Temperature (°C)[50] 511 8 2% 2 3 504 517 496 521 25 509 9

Temperature (°C)[19] Shear Rate (1/s)[1] 22341 702 3% 3 497 16032 28649 21844 22837 993 22341 2

Temperature (°C)[20] Shear Rate (1/s)[1] 17244 961 6% 6 555 14855 19632 16135 17848 1713 17748 3

Temperature (°C)[22] Shear Rate (1/s)[1] 9743 438 4% 4 310 5804 13682 9433 10053 620 9743 2

Temperature (°C)[22] Shear Rate (1/s)[2] 9321 158 2% 2 112 7898 10744 9209 9433 224 9321 2

Temperature (°C)[23.5] Shear Rate (1/s)[1] 6950 125 2% 2 72 6641 7260 6826 7075 249 6950 3

Temperature (°C)[23.5] Shear Rate (1/s)[2] 6595 40 1% 1 23 6496 6693 6566 6640 74 6578 3

Temperature (°C)[25] Shear Rate (1/s)[1] 4898 63 1% 1 36 4742 5055 4840 4965 125 4890 3

Temperature (°C)[25] Shear Rate (1/s)[2] 4708 133 3% 3 77 4378 5038 4592 4853 261 4679 3

Temperature (°C)[25] Shear Rate (1/s)[5] 4510 137 3% 3 79 4170 4849 4419 4667 248 4443 3

Temperature (°C)[27] Shear Rate (1/s)[1] 3434 235 7% 7 136 2851 4017 3252 3699 447 3351 3

Temperature (°C)[27] Shear Rate (1/s)[2] 3368 222 7% 7 128 2815 3920 3227 3624 397 3252 3

Temperature (°C)[27] Shear Rate (1/s)[5] 3308 213 6% 6 123 2779 3837 3148 3550 402 3227 3

Temperature (°C)[28.5] Shear Rate (1/s)[1] 2979 215 7% 7 124 2445 3513 2855 3227 372 2855 3

Temperature (°C)[28.5] Shear Rate (1/s)[2] 2929 262 9% 9 152 2277 3581 2731 3227 496 2830 3

Temperature (°C)[28.5] Shear Rate (1/s)[5] 2840 244 9% 9 141 2233 3446 2631 3108 477 2780 3

Temperature (°C)[30] Shear Rate (1/s)[2] 2300 8 0% 0 4 2282 2319 2296 2309 13 2296 3

Temperature (°C)[30] Shear Rate (1/s)[5] 2254 26 1% 1 15 2188 2320 2234 2284 50 2244 3

Temperature (°C)[30] Shear Rate (1/s)[10] 2222 33 1% 1 19 2140 2303 2197 2259 62 2209 3

Temperature (°C)[50] Shear Rate (1/s)[10] 513 7 1% 1 4 496 530 509 521 12 509 3

Temperature (°C)[50] Shear Rate (1/s)[20] 511 9 2% 2 5 488 534 503 521 18 509 3

Temperature (°C)[50] Shear Rate (1/s)[40] 508 12 2% 2 7 479 537 496 519 23 509 3
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Appendix B.4: Plots of Measured Responses 
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APPENDIX C: Chapter 4 Appendices 

Appendix C.1: Catalogue of Sunken Oil Images 

NOTE: Due to the size of the catalogue, it was saved as an external document (Sunken Oil Catalogue.pdf) 
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APPENDIX D: Protocols and Methods 

Appendix D.1: MacFarlane Flume Protocol 

Set-up and Start-up:  

 
1. Check distance between the bottom of the cradle to top of plastic at each steel rod 

location using a speed square or a carpenter’s square.  The gap between the cradle and the 

plastic furthest from the center should be ~5/8”.  Moving from outside rods towards the 

center, the gap should increase by 1/8” at each rod.  The gap under the central rods 

should be ~1”.  For example: 

a. If the gap is less than the desired value, tighten the nuts at the top of the rods 

while holding the rod in place.  Otherwise, rod will spin and nothing will tighten.  
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b. After tightening, check the lower nut to make sure the bottom of the rod is flush 

with the bottom of the nut.  If not, adjust upper nut while restraining the bottom 

one from spinning- this will draw the steel rod vertically and allow for the bottom 

to be flush. 

2. Check the tension of each rod.  Start by pulling up on each rod to make 

sure there is no space between the lower nut and the cradle.  Once all are 

taught, tighten the top nut using a 7/16” wrench until you feel resistance.  

Check the tightness by trying to move the washer under the top nut, if you 

can move the washer, tighten the nut a ¼ turn.  Do so until the washer 

does not move. 

a. If you tension the rods, go back to step 1, and make sure spacing 

between cradle and plastic is correct. 

3. In locations where the upper/lower section come in contact (NE side, 

second and third steel rod from when facing the Flume signs), place 

gasket material under the nuts to minimize damage to the plastic when they come in 

contact.  At higher velocities, the lower section bulges more.  

4. Make sure blocking material is placed along the length of the flume; the blocking 

material ensures beams do not rotate towards the center when loaded with water 

5. Check the hardware on the end-posts (1” wrench) and end-beam (#15 wrench) to make 

sure it is tight.  If any bolts or nuts are loose, tighten them.  Do not overtighten. 

Step 4: 
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6. Put on all hatch covers.  Make sure not to force the cover into place, all of them are 

labeled “L” (i.e., Left) and “R” (i.e., Right) side.  Place the covers on-top of the hatch, 

each one fits into the cutout; move the left and ride side up and down until it moves freely 

in the hatch cutout.  If you make contact with the plastic, work the cover around until it 

moves freely as you push up and down on the left and right sides.  

a. Before securing the latch, check that each rubber knob is secured.  If it is not, 

tighten the nuts.  In order to secure the latches, sit on top of the hatch.  As you’re 

sitting on the hatch, secure the front right corner first, followed by the back left 

corner, back right corner and front left corner.  

b. The hatch above the propeller closest to the workbench, requires a plastic shim 

under the front right latch.  Place the thickest part of the shim under the latch and 

then secure. 

c. Put lead blocks on the three largest hatches (a good indicator to not step near them 

and minimize unwanted leaking).  
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d. Sometimes the latches break off- in order to fix it, get a ¼”- 20 tap and die set, a 

3/16” drill bit with power drill, a vacuum, rubbing alcohol, paper towels/oil rags, 

a chisel, 1” stainless steel machine screws, and acrylic glue.  Using the chisel, 

remove excess glue from the flume’s plastic and plastic block to make sure fit is 

flush for future connection.  Align the holes in the block with the holes in the 

flume top-sheet, secure in place with a clamp or machine screws; if using machine 

screws place in 2 opposing corners.  Once secure, measure 1” on the 3/16” drill 

bit and mark with masking tape.  Drill 1” through the holes and into the flume’s 

plastic top (~0.25”).  Remove as much excess material as possible.  DO NOT 

DRILL THROUGH THE FLUME TOP.  Vacuum out excess material from the 

holes, once clean, tap the holes.  If you feel resistance while tapping, back it out 

and remove excess material.  Do so to all 4 holes.  Test the new 1” machine 

screws to make sure they fit and secure the block in place.  Clean the faces being 

glued together using rubbing alcohol.  Apply acrylic glue (make sure to wear a 

respirator), and secure in place by tightening screws down.  Allow to dry for 24 

hours before using latch. 

7. For experiments using substrates, install at this point following Protocol for Substrate 

Preparation and Installation.  

8. Fill the flume by placing the hose behind the white turning section near the garage door.  

If both hot and cold nozzles are fully open, the lower section takes approximately 45 

minutes to fill.  As the water reaches the upper section, you’ll hear bubbling.  This is 

normal as the central part of the flume in the lower section needs to fill with water.  
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9. Turn down the flow for hot and cold, to slowly fill the upper section with water.  Fill the 

top section until the depth is 12” or less depending upon the experiment (critical flow 

depth~9”). 

10. Filter water using the fine screen baskets; this eliminates unwanted particles from the 

water.  May take 10-15 minutes – make sure to hold the baskets in place.  

11. Install the Vectrino, see Vectrino Protocol.  

12. Turn on motors using both VFDs; to turn on VFDs, move the emergency off switch from 

“off” to “on”.  This provides power to the system.  Allow the VFDs to warm up for 1 

minute prior to using. 
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13. Set VFDs to 1 Hz prior to turning on using the “up” and “down” arrows on the control 

system. 

 

14. Warm up motors: turn on motors using VFD control system, by pressing “Start”.  Allow 

to remain at 1 Hz for 1 minute, slowly increase the VFD setting to 5 Hz and leave at this 

setting for 1 minute.  Increase VFD setting to 8 Hz, and leave at this setting for 1 minute 

(helps mix the seeding material prior to oil injection).  Finally, lower the VFD setting 

from 8 to 1 Hz and then press stop using the VFD controller NOT the emergency shut 

off.  

15. You are now ready to conduct experiments in the MacFarlane Flume. 
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Clean-up and Shut-Down: 

1. Simultaneously, lower both VFD frequencies to 1 Hz using the up/down arrows.  Turn 

off the VFDs by switching the emergency shut off from “on” to “off”.  

2. Remove the hose used to fill the flume with water and coil it around the hose rack. 

3. Place the sump-pump in the lower section of the flume by lowering it through the turning 

section closest to the motors so it rests on the bottom of the lower tank.  Place the hose in 

the drain and then plug the sump pump into the outlet.   

4. Once the top section is emptied, unplug the sump-pump, and allow the sump to drain the 

lower section using the established suction. 

5. Unscrew and disconnect the cord from the Vectrino and remove it from the flume.  Using 

Kim wipes and Citra-Solve gently wipe the prongs and shaft of the Vectrino by spraying 

the solvent onto the Kim wipe and then wiping the instrument.  Once cleaned, place the 

Vectrino back into the blue “Vectrino” box and store the box in a safe location.  

6. Remove the substrate from the bottom (it is easier while the tape is still wet); if the 

substrate is contaminated with oil, coil, and place in hazardous waste bin.  Clean the test 

section (acrylic bottom and sides) using soap and water if no oil was in flume.  If oil was 

used, clean bottom and sidewalls using Citra-Solve (make sure to wear a respirator, 

gloves, safety glasses, and lab coat).  

a. Sweep water out of upper section using the clean broom (it won’t drain on its 

own) 

b. Wipe out any additional water using the paper towel/oil towels 

c. Using rubbing alcohol, wipe down acrylic where you’re attaching substrate or 

filming through.  
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7. Once the water level is below the hatch level, remove all hatches to ensure gaskets 

recover to their original shape.  Wipe away oil using the oil rags and dispose 

contaminated rags in the hazardous waste bucket.  Do not put hatches back into place 

until using the flume again.   

8. When ~1” of water remains in the lower section of the flume remove the sump pump and 

vacuum out the rest of the water using the shop vac.   

a. Remove the shop vac’s filter. 

b. Vacuum any water that pooled on the wood deck (allow the wood to dry out as 

much as possible).  

c. Clean propellors, propellor shafts, and stands after every trial.  The brass will 

corrode if in contact with oil. 

9. Clean the lower section using Citra-solve  and oil rags to remove oil from the acrylic 

sidewalls, top, and bottom.   

a. Wash flume out with hot water.   
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b. Start vacuuming the oil/water/citrasolve mixture at the garage door side of the 

flume.  The water drains towards the end of the flume with the propellors.  

c. Vacuum acrylic until dry. 

d. Dispose any oiled rags in the hazardous waste bin.  
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Appendix D.2: Nortek Vectrino Profiler II Protocol 

**See Nortek Vectrino Manuals for further information/clarification** 

1. Hardware: 

a. Place and secure the Vectrino stand in the sampling location (~10.5ft from 

Entrance); tighten sides using Alan wrench.  Make sure stand is level in all 

directions, otherwise the Vectrino is pitched for experiments (introducing excess 

noise). 

 

 

 

 

 

 

 

 

 

 

b. Remove Vectrino from the blue case, clean prongs, and central beam with Kim 

Wipes prior to installation.  

c. Secure Vectrino in the stand using hose clamps; hose clamps should align with 

grooves in Vectrino.  The red-tabbed probe should face in the direction of flow.  

Beam 1 (i.e., X), moving clockwise, and Beam 2 (i.e,. Y) measure horizontal 

velocity components, and Beam 3 (i.e., Z1) and Beam 4 (i.e., Z2) measure the 

vertical velocity components. 
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d. Adjust the location of the Vectrino by sliding the 80-20 material horizontally and 

vertically, fasteners are tightened using an Alan wrench.  If measuring velocity in 

the center, place Vectrino equal distance from both side-walls.  Vertical 

adjustments depend upon sampling location in the water column.  For example, if 

measuring the bottom 3 cm, the center probe should be roughly 7 cm from the 

bottom. 

e.   Make sure the Vectrino prongs are equal distance from the 

bottom (i.e., no horizontal pitch in either direction).  Prongs 1 

and 3 should be parallel to flow direction, and Prongs 2 and 4 

should be perpendicular to the flow direction.  

f. Plug the blue-USB into the computer (this connects the 

Vectrino to the computer) 

g. Plug the blue-corded cable into the top of the Vectrino 

(match up the prong pattern); the plug should sit flush on top 

of the Vectrino.  Screw down the cap to protect from water 

damage.  

h. Final vertical adjustments of the Vectrino should be made using the Vectrino’s 

“Bottom Check” function.    

2. Software: 

a. Turn on the computer 

b. Plug in the computer power cord 

c. Computer Account password: bubba1234 

Flow 
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d. Open the “Vectrino Profiling” Icon 

e. Select “Communication” →”Connect “→”Vectrino 

Profiler”→”Serial Port” = COM3 → “Port Speed = 937500 → “Port 

Timeout”=2000 

 

 

f. A successful connection is indicated by the three green lights (shown in red 

circle), and successful data collection is shown by four green lights.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

COM3 
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Icon Descriptions:  

 

 

 

 

 

 

A.  Start and stop data collection (blue highlight = data collection started) 

B. Pause data collection 

C. Save data being collected (indicated by blue highlight) 

D. Configuration (Doppler, Bottom Check, File Parameters) 

E. Option to show different plots 

F. Time span and instantaneous  

G. Standard deviation shown in plots 

H. Selection of plots 

g. Open Configuration Icon → File Parameters → Select locations for Vectrino Files 

to be saved in (generally easiest to make a single file on the desktop and direct 

files into that location). 

i. File completion: complete based on time 

ii. On completion: stop sampling 

iii. Collection time (hh:mm:ss): e.g., 00:15:00 = 15 minute collection duration 

(or whatever the duration of the experiment is). 

A B C D E F G H 
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h. Adjust Doppler Settings: 

i. Click on the “instrument configuration” icon, and the Vectrino Profiler.  

Configuration window should show, select the “Doppler” tab:  



 

D.2-6 

 

ii. Adjust the Sampling rate (Hz) as needed, the higher the sampling rate the 

better the temporal resolution (however, if the sampling rate is too high 

then the computer drops sampling records and which disrupts the time 

series, rendering the record useless).  A sampling rate of 25 Hz is 

recommended for data collection of about 15-17 minutes.  A sampling rate 

of 10 Hz is recommended for data collection of 60 minutes.  

iii. Ping Algorithm: Adaptive 

iv. Adaptive check: once  

v. Velocity range adjusted depending upon in-situ flow conditions.  

1. Velocity Range: Function of Velocity, changes with VFD settings 

and bottom substrate type. 

a. VFD Setting: 1 to 8 Hz → Velocity Range = 1.5 

b. VFD Setting: 9 to 11Hz→Velocity Range = 2.0 
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c. VFD Setting 12 to 13 Hz → Velocity Range = 2.5 

d. VFD Setting 14 to 17 Hz → Velocity Range = 3 

vi. Range to first cell: 40 

vii. Range to last cell: 69 

viii. Click: Apply at the bottom right corner to save settings 

i. Bottom Check:  

i. Open “Configuration” icon → Bottom Check 

ii. Check the “Enable” box 

iii. Set the range (mm) of where the bottom is expected to be, if Vectrino 

probe is placed 7 cm from bottom, then settings should be: 

iv. If probe is placed higher in the water column, adjust the minimum depth 

and maximum depth to the desired range. 
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j. Once the Vectrino is in position and settings are correct; start data collection. 

k. Start by not saving data while collecting data to adjust the Ping Algorithm and 

Velocity Range to optimize data quality.  These adjustments move the weak spot 

and improve %Correlation and SNR (signal to noise ratio).   

i. Note: the acrylic boundary will cause increased back scatter and poor data 

quality because the Vectrino cannot identify the bottom.  Place multiple 

strips of black gorilla tape to improve the signal or a dark/thin alternative.  

ii. Check data quality and weak spot location by clicking on the 

“Correlation” tab (red circle).  Correlation should range be higher than 

70%, but 100% is ideal. 

iii. Check data quality using SNR (orange circle); this value should be greater 

than 10, but the higher the better.  

l. When %correlation and SNR show high values and minimal weak spots are 

detected; stop the data collection, restart to make sure settings are adequate.  

Allow data to collect for 5 seconds without saving; after 5 seconds, click the 

“save” icon.  During that 5 second period, determine if the signal is strong or if 

interference is taking place.  If the system is showing a lot of noise, stop and 

restart the collection process.  
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m. After data collection has been stopped, name the file with descriptive title (e.g., 

WeatheredOil_10C).  Note: do not use any “.” in the file name or Matlab will not 

correctly import the file.  

n. After collecting data, export into Matlab files: select “Data” tab in toolbar → 

export as MatLab file → select the file and save to external hard drive.  

o. Unscrew/unplug the cord and remove the Vectrino from the flume.  Using Kim 

wipes and Citra-Solve gently wipe the prongs and shaft of the Vectrino by 

spraying the solvent onto the Kim wipe and then wiping the instrument.  Once 

cleaned, place the Vectrino back into the blue “Vectrino” box and store the box in 

a safe location.  
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Appendix D.3: Creation and Installation of Substrates Protocol 

Materials: 

• Respirator 

• Lab Coat/Gloves/Closed-toed shoes/long pants 

• 14”x50’ roll of metal flashing 

• Razor blade/box cutter 

• Gorilla tape 

• Small paint brush 

• Metal-cutting shears/scissors (i.e., Tin snips) 

• Yardstick  

• Sharpie 

• Aggregate (3/4 screen sand, 3/4” stone, 1/8” pea stone) Enough to cover an 11.5”x5’ sheet 

of metal flashing 

• Rubber contact cement 

• Tape measure 

• Rubbing alcohol 

• Sandpaper 

• Paper towels 

• Large roll of paper wider than 14” (perform construction on paper, easier clean up) 

• Cinder blocks (x2) 

 

Creation of Substrate: 

1. Put on gloves and safety glasses. 

2. Unroll 6 ft of the metal flashing and place cinder blocks to hold down flashing.  Measure 

5 ft from the edge in two locations along the width of the metal flashing, mark with a 

sharpie and draw a line across the width at 5 ft using the yard stick.   

3. Keeping the yard stick in the same spot, score the line using a razor blade/box cutter 

creating a preformation that runs the length of the yard stick. 

4. Using the tin snips cut across the line.  Once a small distance of the flashing has been cut, 

peel apart the flashing on either side of the score line to make a more precise cut resulting 

in a 14 inch by 5t ft sheet of flashing. 
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5. Using the yard stick measure 2.5” from one edge of the flashing width.  Mark this 2.5” 

about 5-6 times down the length of the flashing and connect the markings to create one 

line. 

6. Score the flashing down the line using the box cutter so there is a visible perforation.  

Make a small cut in the perforation using the tin snips and peel away the 2.5” of flashing.  

There should now be a piece of flashing 5’ in length and 11.5” in width  

7. Using sand paper, sand one entire side of flashing and then wipe with paper towels and 

rubbing alcohol after to remove particles. 

8. Mark the taping sections on the flashing.  This is where the tape will be placed to hold the 

completed substrate in the flume.  Mark ¾” from the edge of the width of the sheet on 

both sides.  Use five or six markings that span the length of the flashing and connect 

these markings to make one straight line ¾” inside the width of the flashing.  Repeat this 

for the other side of the flashing.  There should be two straight lines, both ¾” from the 

edge of both sides of the flashing width.  These lines should run the whole 5ft length of 

the flashing.   

9. Using the same procedure as step 7 create 1” taping sections on the at both ends of the 

flashing.  The marks should run the width of the flashing.  Mark 1” from the edge of the 

top and bottom of the flashing, use multiple markings to draw a straight line across the 

width of the flashing.  There should be two straight lines, both 1” from the edge on the 

top and bottom of the flashing.  

10. Lay a paper sheet on the ground and tape down the marked and cut flashing on top of the 

paper sheet using gorilla tape (only a small piece on all four corners).  This will allow for 

an easy clean up after applying the contact cement and aggregate. 
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11. Put on a respirator and a lab coat.  Open the rubber contact cement and mix according to 

the directions on the can.  Using the small paint brush, apply the cement to the flashing 

being careful not to get any in the marked taping sections.  In general, the bigger the 

aggregate size the more glue will be needed to ensure the aggregate sticks to the flashing.  

It is best to pour the cement onto the flashing and spread it using the paintbrush. 

12. Once the rubber contact has been applied, apply the aggregate.  Always put on more 

aggregate than you presume you may need; ensure all spaces are filled with sediment.  

The excess will fall off once the contact cement dries.  Be sure to fill in all areas within 

the taping section with aggregate, once finished wipe any glue or aggregate that may 

have moved onto the taping section off the flashing.  

13. Glue in a scale or draw in using sharpie (cm x cm grid paper for the length of the 

substrate –  do not cut laminated paper or it will bleed when wet) 

14. Let the rubber cement dry for a minimum of 12 hours. 

15. Turn the sheet over, allowing the excess aggregate to fall off the sheet.  Collect this and 

use to make the next sheet. 

16. The finished “substrate”, 11.5 inch wide by 5 ft long metal flashing with the adhered 

substrate, is now ready for installation into the flume. 

Substrate Installation:  

17. Use rubbing alcohol to clean the bottom of the flume and the lower 1 inch of the each of 

the side walls where the substrate is adhered.  If the flume is dirty or wet the tape will not 

adhere to the acrylic and the substrate will lift up during trials.  

18. Allow adequate time for rubbing alcohol to dry or wipe with paper towels. 

19. Place sheet into the upper section of the flume.  The end of the substrate should be 

adhered 3 inches from the exit. 
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20. Using the gorilla tape, tape one end of the substrate to the acrylic flume bottom.  Ensure 

the substrate edges are parallel with the flume side walls.  NOTE: For best results insert 

substrate 24 hours before experiment. 

21. Tape does not need to span the entire sides of the sheet.  Use 4 pieces of tape about 1’ 

long and space them 6” apart from one another.  Make sure to press the tape into the 

corner of the flume (tape should be ~1/2” up the sidewall).  Ensure the edge of the tape is 

flush with the sharpie lines on the sheet to avoid bubbles in the tape (this is why no 

aggregate/rubber cement can be outside of the sharpie lines).  

22. Finally, tape the other end of the substrate.  Rub hand along the taped sections to ensure 

adequate contact.  
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Appendix D.4: Oil Open Pan Evaporative Protocol 

Materials: 

• Glass petri dish (139 mm) 

• Ohaus Balance with high precision (0.0001 g) 

• Sample oil (14.000 g) 

• Thermometer 

• Ruler  

• Timer/clock 

• PYREX 11”x17” glass pan 

• 10 mL Syringe  

Methodology: 

1. Obtain 4, 139-mm glass Petri dishes 

2. Wipe the inside and outside of each glass petri dish with a kim wipe 

and acetone. 

3. Label the outside of the dishes: 1, 2, 3, 4. 

4. Using the high precision scale (0.0001g), weigh the labeled glass 

petri dishes.  (*Don’t assume all are the same weight). 

a. Note: check the scale’s leveling bubble, it should be inside of the designated 

circle.  If it is not, adjust the scale’s feet to ensure bubble is inside the designated 

circle. 

5. Record the weight in “g” and tare the petri dishes. 

6. While on the scale, add 14 g of No.6 oil to the pan using 10 mL syringe  

7. Keep thermometer in vicinity of sample to document air temperature at each weighing 

interval.  
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a. Air temperature will be approximately 16 °C in the hood 

8. Weigh sample weight every day; document the time and date. 

9. Record the mass of the dish – repeat steps 6-7 until your desired 

%evaporation is reached.  

a. Example: No.6 experimental oil reached %Ev=5 in 

approximately 35 days 

10. Place petri dish in the fume hood between sampling intervals.  

11. If large batches of oil need to be evaporated, use a PYREX 

11”x17” glass pan.  

12. Add oil to the center of the pan, allow to spread until the 

minimum thickness is reached.  Oil thickness should be ~1.5 mm thick.  

13. Place PYREX pans into the fume hood, allow evaporation to occur until all 4 of the petri 

dish %Ev have reached the desired value.  
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Appendix D.5: Clay-Oil Mixtures and Testing Protocol 

Materials: 

 

• Respirator 

• Lab coat 

• Safety glasses 

• Disposable gloves 

• Distilled water 

• Testing water (fresh water at testing 

temperature from sink) 

• Squirt bottle 

• Kiln-dried kaolinite clay (“clay”) 

• No.6 fuel oil 

• Box scale 

• Hot plate and rubber holders 

• Thermometer 

• Hydrometer  

• 125 mL Erlenmeyer flask (“flask”) 

with cap or stopper  

• 100 mL beaker  

• 500 mL beaker 

• Plastic weigh boat 

• Flat metal spatula (“spatula”) 

• Container with lid for mixture (e.g., 

mason jar) (“container”) 

• Mixing table 

• Duct tape 

• Soil Particle Density Data Sheet: 

https://www.globe.gov/documents/3

52961/6588fef2-7084-46a7-9531-

2031f3cc193c 
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Procedure: 

Determine the Density of the Kaolinite Clay 

1. Place distilled water in a clean squirt bottle. 

2. At the top of the Soil Particle Density Data Sheet, note the length of time since the clay 

was dried in a kiln, and how the clay has been stored (e.g. in plastic bag, air tight 

container, other). 

3. Measure the mass of the empty flask without its cap. Record the mass on the Soil Particle 

Density Data Sheet. 

4. Measure 25 g of clay in the flask. 

5. Measure the mass of the flask containing the clay (without the stopper/cap).  Record the 

mass on the Soil Particle Density Data Sheet. 

6. Use the squirt bottle to wash any clay sticking to the neck of the flask down to the bottom 

of the flask.  Add about 50 mL of distilled water to the clay in the flask. 

7. Bring the clay/water mixture to a gentle boil by placing the flask on a hot plate.  Gently 

swirl the flask (using the rubber holders) for 10 seconds once every minute to keep the 

clay/water mixture from foaming over.  Boil for 10 minutes to remove air bubbles. 

8. Remove the flask from the heat and allow the mixture to cool. 

9. Once the flask has cooled, cap the flask, and let it sit for 24 hours. 

10. After 24 hours, remove the cap and fill the flask with distilled water so that the bottom of 

the meniscus is at the 100 mL line. 

11. Weigh the 100 mL-clay/water mixture in the flask (without the cap).  Record the mass of 

the mixture on the Soil Particle Density Data Sheet. 

12. Place the bulb of the thermometer in the flask for 2-3 minutes.  When the temperature has 

stabilized, record the temperature of the mixture on the Soil Particle Density Data Sheet. 
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13. Follow the Soil Particle Density Data Sheet to compute calculations. 

Determine the Mass Percentage of Clay and Oil for the Mixture 

14. Determine specific gravity of the fresh water at the test temperature.  

15. Using the 500 mL graduated cylinder, fill the graduated cylinder with 400 mL of water at 

your specified test temperature.  Record the temperature. 

16. Place the hydrometer into the 400 mL of water; once it has settled record the specific 

gravity and temperature.  (To get the water at the testing temperature, use different 

temperatures from the sink and a thermometer to fully mix the water and read the 

temperature.) 

17. Use the following equation to determine the specific gravity of oil and clay: 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝐺𝑟𝑎𝑣𝑖𝑡𝑦 𝑜𝑓 𝑆𝑢𝑏𝑠𝑡𝑎𝑛𝑐𝑒 =
𝐷𝑒𝑛𝑠𝑖𝑡𝑦 𝑜𝑓 𝑆𝑢𝑏𝑠𝑡𝑎𝑛𝑐𝑒 

𝐷𝑒𝑛𝑠𝑖𝑡𝑦 𝑜𝑓 𝑊𝑎𝑡𝑒𝑟
 

18. The kaolinite clay’s specific gravity is approximately 1.3 

19. For sunken oil, specific gravity should be greater than that of water and for submerged 

oil, specific gravity should be the same as that of water.  Therefore, set the following 

equation equal to the specific gravity of water to determine the minimum specific gravity 

required for the mixture to sink.  Calculate x₁.  Since the minimum specific gravity of the 

mixture was determined, and a higher clay percentage would help the mixture sink. 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝐺𝑟𝑎𝑣𝑖𝑡𝑦 𝑜𝑓 𝑀𝑖𝑥𝑡𝑢𝑟𝑒 =
1

𝑥1

𝑆𝐺𝑐𝑙𝑎𝑦
 +  

𝑥2

𝑆𝐺𝑜𝑖𝑙

 

 

o x₁ is the % weight of clay in the mixture (as a decimal) 

o x₂ is the % weight of oil in the mixture (as a decimal) 

▪ x₂ = 1 – x₁ 

o 𝑆𝐺𝑐𝑙𝑎𝑦 = specific gravity of clay = 1.3 (determined in part A) 
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o 𝑆𝐺𝑜𝑖𝑙 = specific gravity of oil (determined using ASTM D1298-12b (2017)) 

 

Example spreadsheet/calculation to determine starting clay:oil ratio given SG of oil and SG of 

clay: 

 

Preparing the Oil: Clay Mixture 

 

20. Calculate the amount of oil and clay to be used based on weight percentage and total 

weight of mixture that will be tested.  For example, if 20% clay is required, and the total 

weight of the mixture will be 14 grams, then 14 g * 0.20 = 2.8 g of clay and 14 g – 2.8 g 

= 11.2 g of oil. 

21. Label containers with: Date, name of person preparing mixtures, oil type, clay:oil mixture 

ratio, mixture quantity (in grams). 

22. If container does not max out scale: tare scale with container and measure out the exact 

amount of required oil into the container. 
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a. If container does max out the scale: tare scale with 100mL beaker and spatula and 

measure out the required mass of oil, with an additional about 0.75g to account 

for oil stuck on the sides and spatula.  

23. Record mass of oil in 100 mL beaker (measure with spatula in 100 mL beaker as well 

since it is accounted for in the tare and oil will be on spatula).  

24. Transfer ½ of the oil from the 100 mL beaker into the final storage container using the 

spatula.  (Be sure to avoid contaminating anything other than the container, 100 mL 

beaker, and the spatula).  

25. Tare scale with weigh boat and measure out the amount of required clay, with an 

additional about 0.0020 g.  

26. Transfer clay into container with oil.  It is OK to bend weigh boat; avoid using other 

materials to transfer the clay to minimize losses.  

27. Measure the amount of clay remaining in the weigh boat.  Subtract this value from the 

initial total amount of clay to determine the actual amount of clay transferred into the 

container. 

28. Transfer the second, ½ of oil remaining in the 100 mL beaker on top of the clay (layering 

the oil and clay helps minimize losses during mixing). 
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29. Measure the oil remaining in the 100 mL beaker and on the spatula.  

Record values and subtract from the Initial total amount of oil 

measurement to determine the actual oil quantity (try to get this 

amount to the amount of additional oil added). 

30. Cap/cover the oil/clay sample while setting up the over-head mixer. 

31. Using the actual amounts of clay and oil added, calculate the actual 

weight percentage. 

32. Using the same type of container, making sure it is empty, adjust the 

overhead mixer so that the blade falls within the center of the container.  The blade 

should be 0.5 cm to 1 cm above the bottom of the container.  Ensure the bottom of the 

container is resting flat.  

33. Once the overhead mixer is properly adjusted, secure the actual oil/clay mixture in place 

using ring-stand clamps.  

34. Slowly increase the overhead mixer motor; depending on the quantity of the mixture the 

rpm’s necessary to adequately mix the sample varies.   

35. When no more clay is visible, the overhead motor can be turned off.  

Visually inspect all sides of the container to determine mixing is 

complete.  If residual clay remains on the sides or bottom of the 

container, adjust the blade within the container to adequately mix that location.  

36. To minimize oil loss, turn on overhead motor and hold blade inside of container.  Allow 

blades to spin to remove excess oil. 

37. Store the mixture at room temperature in a dark location to minimize photo-oxidation; if 

the container is clear, wrap it in tinfoil (make sure the label is visible when storing). 
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38. MAKE SURE THERE IS NO HEADSPACE IN CONTAINER WHILE STORING!! 

Testing the Oil:Clay Mixture 

 

39. Using a 1000 mL beaker, fill the beaker ~800 mL with water.  The temperature of water 

depends on the experimental goals and will vary from person to person.  If using water 

with a temperature higher than that of the room, expect the water temperature to drop. 

40. Record the temperature and the clay:oil mixture being tested. 

41. If you wish to set up a GoPro or phone to record the experimental observations, do prior 

to coming in contact with the oil. 

42. Using a 5 mL syringe, suck up the necessary quantity of oil.  Make sure all air bubbles 

have been removed from the syringe by titling the syringe upside down and allowing the 

oil to move towards the back.  Press the syringe so that some oil comes out of the 

opening, once only oil is coming out of the opening you are ready to inject it into the 

water. 

43. Clean off the outside of the syringe. 

44. Check the water temperature before injecting, if necessary, place the cap on the syringe 

opening and adjust the water temperature.  

45. Depending upon your experimental objectives, either place the syringe above or below 

the water surface and inject the oil in one smooth, continuous motion. 

46. Record the %clay:oil mixture, the temperature of the water and any observations (e.g., 

100% of the oil sank to the bottom). 
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Appendix D.6: Density for Heavy Fuel Oil 

Adjusted for No. 6 Fuel Oil, following: ASTM D1298 – 12b (reapproved 2017) 

 

Materials: 

- Respirator 

- Lab Coat/Gloves/Closed toes shoes/safety glasses/long pants 

- Hydrometer (Range 0.6 to 1.1) 

- 500 mL Graduated Cylinder (Inner diameter of cylinder needs to be 25 mm greater than 

diameter of hydrometer) 

- Thermometer 

- Oil sample of 500 mL 

- Temperature control room (15°C or 60°F) 

- Syringe with steel tipped needle 

- Funnel 

- Tongue depressor  

Methodology: 

1. Set-up a ring stand, use a clamp to secure the 500 mL graduated cylinder; above the 

graduated cylinder tighten down another clamp.  This will be used for holding the 

thermometer and hydrometer while they drip after sampling.  

2. Using a funnel with a cut-off spout, add oil into the 500 mL 

graduated cylinder without fouling the sides.  Add 500 mL of 

oil.  Allow the funnel to drip, avoid fouling sides of the dish 

above the 500 mL line.  If fouled, use a cleaning brush wrapped 

in an oil rag.  Swirling the covered brush until oil residue is 

removed from the sides. 
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3. Place oil sample in temperature control room/in constant temperature bath [N.B. 

submerge graduated cylinder just above the 500 mL line] covering entire graduated 

cylinder column) for 24 hours; cover the top of the cylinder with aluminum foil.  

4. After 24 hours, using the thermometer, mix the sample to ensure uniform temperature 

prior to testing.  

5. Allow the oil to settle and pop any air bubbles on the oil’s surface using a steel tipped 

needle. 

6. Place hydrometer in the fluid, and slowly release in a 

twisting motion.  Do not let the hydrometer hit the sides; 

use the clamp as guides for the top of the hydrometer.  

Allow hydrometer to settle until it reaches an equilibrium.  

7. When hydrometer has come to rest floating freely away 

from the walls of the cylinder, read to nearest one-fifth or 

one-tenth of a full-scale division depending upon the number of subdivisions that is 5 or 

10, respectively.  

8. For opaque liquids record the hydrometer reading at the point on the hydrometer scale to 

which the sample rises above its main surface (Figure 2 in ASTM D1298-12b) 

a. This reading requires a meniscus correction using the nominal values shown in 

table 1; record as meniscus correction. 
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9. Record specific gravity to the nearest measurement 

depending upon ASTM standards/ranges of hydrometer.  

Using the clamp, allow oil to drip for 2 minutes and then 

scrape the rest of oil of using a tongue depressor while 

slowly spinning the hydrometer.  Remove as much oil as 

possible without fouling the sides of the graduated cylinder.  

Entirely remove hydrometer and wipe down using an oil 

rag. 

10.  Place the thermometer as far into the sample as possible 

without covering necessary temperature range.  Record 

temperature to nearest 0.1 °C.  If this temperature differs from previous measurement by 

0.05°C, repeat the hydrometer observations and thermometer observations until 

temperature becomes stable. 

11. Repeat experiment 3 times. 

12. Perform Calculation; see attached sample calculation and ASTMD1298-12b Section 10 

for specific calculation instructions.  Use 

https://my.hostmysite.com/ssl/30/thermotab.net/TAB/main.aspx and ASTM Standard 

Guide for Use of the Petroleum Measurement Tables (D1250-08, 2013) to calculate Step 

4b.   

https://my.hostmysite.com/ssl/30/thermotab.net/TAB/main.aspx
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13. Clean all instruments, table tops and equipment using oil rags and Pro-Chem’s Citra-Solv 

solvent.  

14. Dispose of all oil and solvent contaminated rags or single use items (e.g., gloves, paint 

stirrers) in the labeled Hazardous Waste Bucket. 

15. Put all equipment/glassware back where it was found. 
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Sample Calculation: 
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Appendix D.7: Sunken Oil Critical Shear Stress Experimental Protocol 

 

Preparation/Execution of Trial: 

1. Install the substrate following the “Substrate Creation and Installation Protocol”. 

2. Start filling the flume following the “MacFarlane Flume Protocol”.  

3. The desired water temperature will determine how long the filling will take.  Cold water 

in summer ~21°C and ~8°C in winter.  Check the temperature with a thermometer while 

filling and adjust the temperature input as needed [N.B. do not rely on the Vectrino’s 

temperature read-out].  Stop the water when the top channel has ~5” of water. 

4. Charge GoPro batteries and clear SD cards.  

5. Mix oil to ensure the clay is well distributed within the entire sample.   

6. Add oil to the syringe: 

a. Unscrew the plunger from the syringe.   

b. Cap the syringe opening.   

 

 

 

 

 

 

 

 

c. Place the syringe, capped opening down, into the cylinder so that it stands 

vertically with the plunger opening at the top.   

d. Place a funnel in the plunger opening and scrape the oil sample into the syringe 

(e.g., 100g of oil).   
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e. Add an extra 30 g more than the desired mass (i.e., 130 grams) because ~30 

grams gets trapped in the syringe when it is injected.  

f. Be sure to scrape the excess oil from the funnel.   

g. Holding the syringe and capped opening, carefully put the plunger back into the 

opening and screw into place.  While holding the cap, slowly release the cap to 

allow air to leave the syringe.  Work the plunger so that it pushes the oil mass 

toward the syringe opening and all of the air has been worked out of the sample.  

h. Re-cap the syringe opening. 

i. Weigh the filled syringe (including the cap).  Record the mass. 
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j. Set-aside the syringe until injection. 

7. Following the “Vectrino Protocol” to set-up the Vectrino stand; be sure to level and 

center the system before securing with clamps. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

8. Conduct the Vectrino’s bottom check once prongs are submerged by water.  Adjust the 

Vectrino so that it reads 7 cm from the bottom, the red-tabbed prong is pointing in the 

direction of flow, and there is no pitch/yaw/roll in the four prongs. 
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9. Check the placement of the overhead GoPro using the Wi-Fi connection.  Using the 

Hero4 and an application on your phone, use the Wi-Fi connect to adjust the overhead 

camera’s placement [N.B. the Wi-Fi connection is inhibited by water]. 

a. GoPro Usernames (Passwords): 

i. Hero 4: SailorCam1 (Flume123) 

ii. Hero 5: Flume Camera (Climb3889) 

10. Finish filling the upper channel to 12” of water.  If conducting cold water experiments, 

stop filling at 11” to leave room for ice addition.  

11. If you need colder temperature water, use the 5th floor elevator key (found in Room 237) 

to access the 5th floor.  There is an ice machine along the wall directly outside of the 

elevator.  Using 2 five-gallon buckets, fill them with ice, and then bring them back down 

to the high bay.  Return the key.  

12. To mix the water, turn on the VFD’s allowing them to warm up for 2 minutes.  Then 

slowly increase the water velocity until you reach 10 Hz.  Stay at 10 Hz for a minimum 

of 1 minute. 

13. Adjust the Vectrino settings to optimize data quality based on substrate type and velocity.  

Increase the water velocity to the highest level expected in experimentation.  Be sure the 

bottom is detected at this velocity.   

14. If SNR is low, add 10 grams of clay to the upper channel and allow to mix.   

15. Install Go Pros (overhead/sideview) and GoPro light.  Attach the light using clamps, 

secure just downstream of oil mass. 
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a. Side view camera sits outside of the water if you need more charge. Buy an 

external battery pack or run an extension cord.  GoPro can still record while 

charging. 

16. Turn on light and start GoPro recordings (red light will blink when recording). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

17. Start a timer. 

18. Inject oil, be sure to submerge opening before injection.  To avoid oil drops, place oil rag 

under syringe while transferring it to the scale. 

 

 

 

 

 

 

 

 

 

 

19. Put cap back-on syringe opening 



 

D.7-6 

20. Dry syringe using a rag 

21. Weigh the empty syringe.  Record the mass. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

22. When timer reaches 2 minutes (or allotted time period).  Switch the light to “flashing” 

mode, turn on motor to 1 Hz (or allotted velocity). 

23. Start Vectrino, check that data collection is being saved.  

24. Switch off “flashing” mode to the brightest continuous light.  

25. Before increasing the velocity, switch light to flashing mode, increase the velocity on the 

VFD frequency, start Vectrino, and then turn light back to the brightest continuous light. 

26. If bubbles start to collect on the Vectrino prongs, data quality is diminished.  Using 

gloved fingers, gently remove bubbles.  

27. Overhead GoPro battery will likely die around 2.5 hours, remove system from the water.  

Replace the pack.  Put back into place.  Note the time at which it occurs. 

28. If water level lowers, adjust water level back to starting level using hose or by adding ice. 
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Break-down & Clean-up: 

1. Simultaneously lower VFD frequencies to 1 Hz.  Shut off VFD by turning emergency 

shut-off lever from “on” to “off”. 

2. Drain the flume using the sump.  

3. Stop GoPro recordings.  Disassemble, dry-off, clean any oil from case.  

4. Export videos from SD card to hard drive then erase from SD card.  

5. Place GoPro batteries in charger 

6. Rename Vectrino files, export to Matlab, save on hard drive 

7. Remove the substrate 

8. Once water level is below hatch level, remove, and clean hatches. 

9. Vacuum remaining water from the lower tank using the Shop Vac 

10. Clean oil from: 

a. Vectrino 

b. Upper channel and test section acrylic sidewalls and bottom 

c. Propellers (including shafts and stands) and lower tank acrylic walls/bottom/top. 

d. GoPro cases 

e. Syringe (take apart and clean each individual section!) 

f. Container that held oil sample 

g. Tools/instruments used throughout experiment 

11. Dispose oiled rags in the Hazardous Waste Bucket. 
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