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GSFC  Goddard Space Flight Center within NASA 

i.i.d.  Independent and identically distributed random variables 

𝐼𝑓,𝑑(x )  An indicator function used to evaluate f[d] at x 

𝐼𝒙[t]  An indicator function used to evaluate 𝝃 as a function of x at time-step t 

len(X)  The span of the longest dimension of the domain of f, namely X 

LJ   Luus–Jaakola algorithm 

  The scale parameter of 𝑞𝚫𝒙  

𝜆̂[𝑡]   The time-varying scale parameter of 𝑞̂[𝑡] 

MBH   Monotonic Basin Hopping 

MCH   Multiple Communicating Hoppers 

MCM   Multiple Communicating MBH processes 
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x*  The location (argmin) of the global minimum of objective function f, namely 

argminglobal(f) 

x# The location of a local minimum that is not the global minimum 

x[t]  The current incumbent location in 𝑋𝔽of the most f-minimizing x 
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ABSTRACT 

The need to find the global minimum of a highly non-convex, non-smooth objective 

function over a high-dimensional and possibly disconnected, feasible domain, within a practical 

amount of computing time, arises in many fields. Such objective functions and/or feasible domains 

are so poorly-behaved that gradient-based optimization methods are useful only locally – if at all. 

Random search methods offer a viable alternative, but their convergence properties are not well-

studied. The present work adapts a proof by Baba et al. (1977) to establish asymptotic convergence 

for Monotonic Basin Hopping, a random search method used in molecular modeling and 

interplanetary spacecraft trajectory optimization. In addition, the present work uses the framework 

of First Passage Times (the time required for the first arrival to within a very small distance of the 

global minimum) and Gamma distribution approximations to First Passage Time Densities, to 

study MBH convergence speed. The present work then provides analytically supported methods 

for speeding up Monotonic Basin Hopping. The speed-up methods are novel, complementary, and 

can be used separately or in combination. Their effectiveness is shown to be dramatic in the case 

of MBH operating on different highly non-convex, non-smooth objective functions and 

complicated feasible domains. In addition, explanations are provided as to why some speed-up 

methods are very effective on some highly non-convex, non-smooth objective functions having 

complicated feasible domains, but other methods are relatively ineffective. The present work is the 

first systematic study of the MBH convergence process and methods for speeding it up, as opposed 

to applications of MBH.  
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INTRODUCTION 

Finding the value and location of the global minimum of a non-smooth and/or non-convex 

objective function over a high-dimensional and possibly disconnected and sparse feasible domain, 

is a requirement in many fields of science and engineering. Often, the objective function and/or 

feasible domains are so poorly-behaved that conventional gradient-based optimization methods 

are useful only in very small local neighborhoods – if at all. Therefore, global optimization 

methods based on random search are used. Such optimization problems involving non-smooth 

and/or non-convex objective functions over high-dimensional spaces are common in the design of 

trajectories for interplanetary spacecraft missions, molecular modeling, and the modeling of fitness 

landscapes in evolution [1, 2, 3]. The extent to which non-smooth and/or non-convex objective 

functions also exist in Deep Learning is an active area of research in the Machine Learning 

community [4, 5].  

One random search-based method of global optimization that has been widely applied to 

spacecraft design and molecular modeling is Monotonic Basin Hopping (MBH). However, until 

the present work, MBH had not been supported by any analytical foundation. The present work 

departs from the historical literature of MBH by focusing on the analysis and speed-up of the MBH 

process itself, rather than on the application problem to which it is applied. 

The first literature addressing the application of MBH in molecular modeling goes back to 

1997. The first literature addressing  the application of MBH in spacecraft trajectory design goes 

back to 2010. Until the present work (and papers co-authored by the present author), any analysis 

in the MBH literature focused on the physics that generates the objective function. From that, 
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intuition-based hypotheses were offered to explain why MBH “should” be effective on such 

objective functions.  

The present work extends papers, co-authored by the present author, on factors that impact 

the speed of MBH convergence. The first such paper, published by Englander and Englander in 

2014, addressed the impact of the choice of the probability distribution from which MBH hops are 

drawn [6]. That paper provided empirical findings unsupported by any analytical framework. The 

first paper to provide an analytical framework for the 2014 paper was published by Englander, 

Englander, and Carter in 2020 [7]. 

That 2020 paper adapted to MBH an asymptotic convergence proof for global optimization 

by random search, first published in 1977, and showed its applicability to MBH under sufficient 

conditions . At the time, it was believed that MBH was not guaranteed to eventually converge but 

that did not worry most MBH practitioners because they were using MBH to solve optimization 

problems that were widely found to be otherwise unsolvable. Further, from a practical point-of-

view, a guarantee of asymptotic convergence is unimportant because if an MBH requires more 

time to converge than is allowed in real-world engineering settings, that is essentially the same as 

a failure of the MBH to converge. The idea that MBHs are guaranteed to converge – and would in 

practical amounts of time if they could be sufficiently sped-up – had not yet been recognized. Even 

if it had been, because the MBH convergence process was not yet understood, there was no 

systematic, let alone analytically supportable, method for speeding it up.  

It was observed years ago that while MBH convergence times seemed unpredictable, they 

took longer to the extent that the objective function was non-convex and/or non-smooth, and/or 

the subspaces over which f was feasible was high-dimensional and/or disconnected and sparse. 

Yet, most spacecraft trajectory optimization problems are very much like that, as are many 
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molecular modeling problems that are posed as optimization problems involving energy 

landscapes.  

It was also observed years ago that MBH convergence was slower when f  was non-smooth, 

for example sharply textured, in its feasible domain but that too is characteristic of objective 

functions in many real problems to which MBH is applied because of the physics involved and/or 

because of numerical effects. The presence of sharp texture is also interesting because it can 

severely limit the effectiveness, or at least the efficiency, of gradient based methods that one might 

use instead of, or with, MBH. 

Because of the need to perform such optimizations within practical project deadlines, MBH 

was originally developed heuristically, often with a naïve understanding of the factors that 

determined MBH convergence time. 

Two sets of methods for speeding-up MBH convergence are provided and supported 

analytically in the present work: The first set of methods involves biasing the shape of the 

probability distribution of random hop distances, and the second set of methods involves biasing 

the location from which next hops are taken. Both sets of methods and their analysis are novel, 

although they build upon empirically-based and applications-oriented discussions between the 

present author and Jacob Englander  during the past decade. 

Chapters IV and V are complementary. Chapter IV, regarding biasing the hop length 

distribution, addresses speeding-up MBH by increasing the efficiency of the search across the 

feasible domain for the location of the global minimum. Chapter V, regarding biasing the location 

from which the next hop is taken, addresses speeding-up MBH by increasing the efficiency of 

descent of the objective function at the hopper’s current location to the global minimum. 
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The present work uses First Passage Times (FPTs) and Gamma distribution approximation 

of  First Passage Time Density functions (FPTDs) to characterize the speed of MBH convergence, 

how that speed is impacted by f and/or the geometry of its feasible domain, the distribution from 

which incremental hop distances are drawn, and the extent to which methods for speeding up 

convergence are effective. The present work defines an MBH FPT as the number of MBH time-

steps required for an MBH to travel from its starting location to its first arrival at the position of 

the global minimum (or within a defined small epsilon ball around it). Although the location and 

value of the global minimum are unknown in real-world applications of MBH, FPTs can be 

observed in simulated or hypothetical problems in which the global minimum and first passages 

are known by construction. 

The probability density of FPTs, approximated by the fitting of a Gamma distribution to 

FPTs generated by a large number independent trials of the same MBH operating on the same 

objective function and feasible domain, driven by random increments drawn from the same 

distribution, and using the same (or no) method of speed-up, is the FPTD for that set of FPTs. 

FPTDs are an essential part of the present work because they reveal, and enable the comparison 

of, important factors that impact MBH FPTs and therefore MBH convergence speed. First Passage 

Time Probability Mass Functions (FPT-PMFs) can used instead of FPTDs but FPTDs are more 

time-efficient because far fewer FPTs are needed to construct a well-fit Gamma distribution as a 

FPTD than are needed to construct a high-fidelity histogram. In addition, PMFs are reserved for 

use in Chapter V as part of a method for measuring the similarity between two probability 

distributions that are un-related to FPTs. The empirical justification for using a Gamma 

distribution is provided in Appendix B. A hypothesis for an analytical justification for using a 

Gamma distribution is provided as area for future work in Chapter VII. 
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MBH FPTDs are also used to characterize the benefits of designing or adapting the 

distribution from which incremental hop distances are drawn in a manner that makes that 

distribution  similar to the distribution of incremental hop distances that move the MBH toward 

the global minimum. In that context, measuring the similarity between the two distributions is 

important. In the present work, the tool used for measuring the similarity between two probability 

distributions is the Kullback-Leibler divergence (DK-L) which was originally developed in the 

literature of Information Theory, has been used in many statistical applications, and has been 

adopted by the Machine Learning Community. The inputs to DK-L are specially constructed           

DK-L-compliant PMFs (histograms) that should not be confused with the Gamma-fit FPTDs of 

MBH FPTs. 

The use of FPTs and Gamma distributions fit as FPTDs of FPTs, as a way to investigate 

MBH convergence rates and methods for speeding-up MBH, is novel. Likewise, the use of  DK-L 

in Chapter IV, to explain the effect and benefit of adapting the shape of the distribution from which 

hop increments are drawn, is novel.  

Novel contributions to engineering practice of the present work includes analytically 

supported methods for speeding-up MBH. One method is provided in Chapter IV and two methods 

are provided in Chapter V. Their combined use is illustrated in Chapter VI. The key thought for 

practitioners is that MBH inevitably converges to the global minimum; the only question is how 

long that convergence will take. What practitioners consider failure to converge is simply failure 

to a converge within the calendar time allowed by a project schedule (e.g., failure to converge by 

next Monday). The present work provides methods that speed-up MBH on many realistic objective 

functions and geometries of feasible subspaces, thereby enabling MBH to “succeed” when applied 
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to challenging optimization problems that arise in molecular biology and spacecraft trajectory 

optimization and practitioners are given relatively tight project schedules.  

The following Figures 0.a, 0.b and 0.c below are prototypical 1-dimensional examples of 

an objective function and its feasible domain. These, among others, will be used as test cases, 

through the present work. The Pioneer 11 spacecraft trajectory optimization use-case in Chapter 

VI uses use a 3-dimensional poorly-behaved objective function with disconnected, sparse feasible 

subspaces. 

 

Figure 0.a: Prototypical 1-dimensional non-convex objective function f having a feasible domain that is 

the entirety of the domain. The light brown horizontal line passes through maximum feasible f.   
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Figure 0.b: Prototypical 1-dimensional non-convex objective function f having disconnected, sparse 

feasible sub-domains. The light brown horizontal line passes through maximum feasible f.  

 

 

Figure 0.c: Textured prototypical 1-dimensional non-convex f having disconnected, sparse feasible sub-

domains. The light brown horizontal line passes through maximum feasible f.  
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I.  PRIOR WORK 

I.a. Prior work on MBH 

Other than papers co-authored by the present author, almost all of the prior literature on 

MBH addresses the applicability and applications of MBH rather than the convergence of MBH 

and how to speed it up. The exceptions are a few papers that provide improved methods for so-

called local gradient search, referred to in Chapter V as Deterministic Constrained Local Search 

(DCLS) [8, 9]. However, those papers focus on deterministic properties of known constraints on 

feasible subspaces and do not address MBH being a form of random global search.  

Wales and Doye provided one of the earliest papers on MBH [10]. They used a form of 

MBH to find the lowest energy structures of Lennard-Jones clusters (a macro-molecular system) 

containing up to 110 atoms. Their success was a landmark achievement in global non-convex 

optimization. They hypothesized that the effectiveness of MBH on their application problem was 

due to features they believed were present in the energy landscapes of Lennard-Jones clusters: 

global non-convexity combined with local convexity in very small neighborhoods. For them, that 

was a prescription for MBH combining what they called local gradient search with global random 

search. They were apparently unaware that Baba et al. (1977) had already proven, as shown in 

Appendix A, that local search was already inherent in random search if particular conditions are 

met [11]. The present work addresses the incorporation of local gradient search into global random 

search in Chapter V. There, the present author distinguishes between Deterministic Constrained 

Local Search (DCLS) and Stochastic Constrained Local Search (SCLS). Wales and Doye, as well 

as their followers up to the present work, used what the present author refers to as DCLS. In so 

doing they launched an approach that becomes ineffective when the assumed “local convexity” is 
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sharply textured. The application by Wales and Doye of MBH to energy landscapes that are 

globally non-convex but locally convex, in particular Lennard-Jones atomic clusters, represents 

the start of MBH literature. Therefore, local gradient search in the sense of DCLS was considered 

part of MBH from the beginning. Nonetheless, because of the possible non-smooth objective 

functions being considered in the present work, DCLS was purposely not used. 

In 2000, Leary discussed a form of MBH in his work on global optimization on funneling 

landscapes in molecular modeling in general [12]. Leary regarded MBH as a method for finding a 

manageable set of very deep local minima from which the global minimum could later be chosen. 

Apparently, he did not investigate whether or how MBH could be used to find the one global 

minimum directly. 

Like Wales and Doye, Locatelli and Schoen applied MBH to Lennard-Jones clusters [13]. 

Like Leary, they regarded MBH as being a method for finding a set of deep local minima which 

they referred to as a set of “putative” global minima in the domain being searched. They reported 

dramatic results for the performance of their version of MBH applied to the most difficult 

Lennard-Jones clusters being investigated at their time: improvements “… by two orders of 

magnitude … in finding the global optima of clusters of 75, 98 and 102 atoms”. They  carried on 

the earlier incorporation of “local gradient search” into MBH, originated by Wales and Doye, 

without questioning it. They continued the application-focus of MBH literature and did not 

analyze the MBH convergence process. 

Vasile, Minisci, and Locatelli provided a detailed comparison of global optimization 

methods applicable to spacecraft trajectory design, including MBH [14]. Their paper was a 

contribution to the optimization of planetary “transfers” modeled as Lambert’s problem in orbital 

mechanics. They used the physics of planetary transfers to show that the optimization problems 
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were globally non-convex but, in small neighborhoods, locally convex. On that basis, they argued 

that the optimization of spacecraft trajectories would benefit from methods like MBH. Their 

argument was similar to that of Wales and Doye, Leary, and Locatelli and Schoen in the context 

of molecular modeling problems. Locatelli had recently transitioned from molecular modeling to 

spacecraft optimization and, in the process, brought with him the belief that so-called local gradient 

search was a necessary complement to the random global search aspects of MBH. Like MBH 

researchers before them, Vasile, Minisci, and Locatelli did not investigate whether or to what 

extent MBH might work without local gradient search. Nor did they seek to analyze whether and 

why “local gradient search” speeds-up the convergence of MBH to the global minimum, as is done 

in Chapter V of the present work. They were focused on using local gradient search to speed-up 

finding local minima that were candidates for being the “putative global minimum”.  

In 2011, Yam, Lorenzo, and Izzo published the first solution for the semi-autonomous 

design and global optimization of low-thrust (ion propelled) spacecraft missions. Semi-

autonomous design and optimization means that the selection of targets of “fly-by” gravity assists 

(e.g., planets and moons) were performed by humans, whereas the transfer trajectories between 

“fly-bys” were optimized by machine [15]. Yam, Lorenzo, and Izzo made important contributions 

to applications of MBH, including ways of measuring, documenting, and displaying the 

performance of empirical results. However, they did not provide any analysis of the convergence 

of MBH or address how to speed-up its convergence. They did further entrench “local gradient 

search” in the MBH recipe. 

In 2012, Olson, Hashmi, Molloy, and Shehu wrote about “basin hopping as a general and 

versatile optimization framework for the characterization of biological macromolecules” [16]. 

They extended the lineage of Wales and Doye, and Locatelli and Schoen, to protein structure 
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prediction and molecular docking, and made important contributions to the method and 

applications of basin hopping. They did not question whether or why “local gradient search” was 

needed, presumably because by then it was so entrenched in the literature. They did not provide 

any analysis of the convergence of MBH or methods for speeding-up MBH. 

Englander, J., and Conway published the first solution for the fully autonomous (totally 

machine-generated) design and global optimization of low-thrust spacecraft missions [17]. The 

solution was based on using MBH in an inner optimization loop to optimize trajectories given 

choices of “fly-by” targets, and an outer optimization loop that used a Genetic Algorithm (GA) to 

choose “fly-by” targets. Earlier, Englander, Conway, and Williams published the first solution to 

fully autonomous design and global optimization of missions using chemical combustion 

propulsion [18]. Objective functions for chemical combustion propelled missions are simpler than 

objective functions for low-thrust ion propelled missions.  

In 2014, Jacob Englander and the present author published the first empirical evidence that, 

for MBH operating on real and high-dimensional spacecraft trajectory optimization problems as 

well as synthetic low-dimensional optimization problems, convergence times are significantly 

impacted by the probability distribution from which the random search increments (“hop” 

distances) are drawn [6]. Furthermore, it was shown that for a wide variety of objective functions, 

specific probability distributions sped-up MBH convergence much more than others. While the 

empirical results described in that paper were sufficiently compelling to be used to improve the 

MBH-based trajectory optimization software at NASA Goddard Space Flight Center, the present 

author was dissatisfied by the lack of analytical support for those empirical results. The then-

missing analytical support is provided in Chapter IV and Appendix C of the present work. In that 

2014 paper, the empirical results provided by Jacob Englander were generated by an MBH that 
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incorporated a form of  constrained local gradient search  referred to in the present work as DCLS, 

whereas the empirical results provided by the present author were generated by MBH that used 

random search alone. Because the contribution by Jacob Englander involved a higher-dimensional, 

and real rather than synthetic problem, and the paper focused on the probability distribution from 

which the random search increments (“hop” distances) are drawn, the role and necessity of  local 

gradient search  was not investigated. However, at that point the present author not only committed 

himself to an analytical investigation of the effects of the hop length distribution, but also to 

investigating the previously then unquestioned role of  local gradient search  in MBH. Chapter IV 

of the present work purposely does not use or address the use of local gradient search in MBH. 

Chapter V addresses two versions of constrained local gradient search, referring to them as 

Deterministic Constrained Local Search (DCLS) and Stochastic Constrained Local Search 

(SCLS), and provides an analytical explanation of their benefits and liabilities. In Chapter VI, 

lessons from Chapter IV and parts of Chapter V are applied to the re-design and re-optimization 

of the historic Pioneer 11 spacecraft trajectory. However, no form of local gradient search is used, 

if only to demonstrate that it was not needed in at least that real spacecraft trajectory optimization 

use-case. Despite not using any form of local gradient search in the use-case in Chapter VI, the 

benefit of SCLS is illustrated at the end of Chapter V using simulation-based evidence from an 

MBH operating on a 1-D Gibsonian objective function after an explanation for SCLS is provided.  

In late 2017, the present author developed the idea of speeding-up MBH by using 

Multiple Communicating Hoppers (MCH) as described in Chapter V. At the time, the idea was 

based on intuition confirmed by simulation experiments. The resulting performance benefits on a 

wide variety of objective functions were so dramatic that the present author discussed them with 

Jacob Englander and Kyle Hughes at NASA’s Goddard Space Flight Center (Mission Design 



   

13 

and Guidance Branch) in early 2018. Englander, Englander, and Hughes then proposed an 

internal research project within Goddard to investigate the method’s applicability to especially 

challenging spacecraft trajectory optimization problems [19]. The internal project was funded, 

and applications within Goddard have since been developed as have conceptually related 

methods such as Multiple Communicating MBHs (MCM) [20]. Meanwhile, an analytic 

explanation of MCH and its benefits remained missing until the present work.  

In 2019, Izzo and the Advanced Concepts Team that he manages at the European Space 

Agency published a set of Python modules named PyKep for solving Kepler’s models for celestial 

mechanics using Lagrange’s solutions to Lambert’s problem [21]. A few years earlier, they had 

published models of historical spacecraft missions that could be designed and optimized by casting 

their objective functions in a form generated by previous versions of PyKep. The combination of 

PyKep and PyKep-compatible data-sets for modeling historical spacecraft missions have been 

used in the present work to benchmark use-case applications based on the analytical framework 

described in this paper.  

I.b. Prior literature on random search for the global extremum 

In 1977, Baba, Shoman, and Sawargi, working in Operations Research (OR), provided a 

general asymptotic convergence proof for stochastic global optimization under specified sufficient 

conditions [11]. An adaptation of their asymptotic convergence proof to MBH is contained in 

Appendix A of the present work. In 1981, Solis and Wets, also working the field of OR, re-stated 

the proof by Baba et al. and provided additional examples of it [22]. Neither the 1977 paper by 

Baba, Shoman, and Sawargi, or the 1981 paper by Solis and Wets, limited the dimensionality of 

the domain of the objective function except that it be finite. The asymptotic convergence proof for 
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stochastic global optimization by Baba et al. is summarized in the 2003 lecture slides by Aghassi 

[23]. 

I.b. Prior literature on other approaches to the random search for the global extremum 

The literature of random global search contains approaches other than MBH. Some of these 

branches involve algorithms that are similar to MBH, but they appear to have been developed 

without an awareness of MBH, and MBH seems to have developed without an awareness of them. 

Like MBH, these other approaches were first developed as heuristics to solve specific difficult 

optimization problems. Unlike MBH, some of these branches evolved in ways in which 

mathematically talented contributors eventually provided convergence proofs and some level of 

analysis. Three of the approaches that have been given strong analytical foundations include: the 

Luus–Jaakola (LJ) algorithm; Pattern Search (PS); and Simulated Annealing (SA). 

LJ is interesting in the context of the present work because of its close resemblance to MBH 

even though MBH is not mentioned in the LJ literature, nor does the literature of MBH mention 

LJ. Like the literature of MBH (until the present work), the literature of LJ does not appear to refer 

to the work of Baba et al. (1977). 

The LJ algorithm is often referred to as a heuristic for stochastic global optimization but 

given the formalism brought to it later, it more than simply a heuristic. It was first proposed by 

computer scientists Luus and Jaakola in 1973 and further developed by Luus thereafter [24, 25, 

26, 27]. The LJ algorithm uses a fixed uniform distribution for the increments that drive the random 

search, and does not use, presuppose, or therefore require, gradients. 

In 1979, Nair and Gopalakrishnan proved asymptotic convergence for LJ in the restricted 

case in which  f  is twice continuously differentiable [28]. Nair and Gopalakrishnan also proved 

that the worst-case complexity of minimization on the class of uni-modal objective functions 
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grows exponentially in the dimension of the problem, according to the analysis of Yudin and 

Nemirovsky [29]. Further, they point out that the Yudin-Nemirovsky analysis implies that no 

method can be “fast” on high-dimensional problems that lack convexity. Of course, that raises 

questions about the definition of “fast”. Simulation experiments for MBH, undertaken as part of 

the present work,  suggest that the relationship between dimensionality and convergence times is 

much more complicated and rarely as onerous as Nair and Gopalakrishnan hypothesized it was for 

PS. 

In any case, with respect to the present work, the results and hypotheses of Nair and 

Gopalakrishnan, and Yudin and Nemirovsky, are tangential because the focus here is speeding up 

the convergence of MBH, specifically when p is chosen, designed, or adapted to q, rather than 

when p is a single fixed probability distribution used on all f. Moreover, the present work is focused 

on multi-modal f.  

The present work shows that (MBH) convergence time depends upon the geometry (hyper-

geometry) of multi-modal  f as much or more than the dimensionality of f when p is designed or 

adapted to be similar to q. But the point here is not to agree with or dispute Nair and 

Gopalakrishnan, but simply to point out that in parallel with the development MBH another branch 

of stochastic global optimization, namely LJ, was developed. Further, neither LJ nor MBH appear 

to have referred to, or learned from, each other. In addition, LJ assumed, as did MBH at the time, 

that  p was fixed for all f and for the duration of optimization process, rather than p being designed 

or adapted so as to be especially well-suited to f. There was no research into whether, by making 

p well-suited to f, convergence could be sped-up and/or terminal accuracy could be improved. 

PS is related to JL in the sense that, like JL, PS does use or require gradients. The literature 

of PS includes a family of algorithms that – because they do not require gradients – are useful 
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when measurements of the objective function are noisy. PS is considered by some to be a variant 

of an algorithm attributed to Fermi and Metropolis when they worked at Los Alamos National 

Laboratory, as described by Davidon [30]. If one were to ask when PS algorithms became 

identifiably different from the earlier work by Fermi and Metropolis, it appears that would be the  

in the work of Hooke and Jeeves in 1961 [31]. In 1997 Torczon, and in 2003 Dolan, Lewis, and 

Torczon, provided convergence proofs for special cases of PS algorithms operating on special 

cases of objective functions [32, 33]. 

The literature of PS does refer to the literature of JL, but not to the literature of MBH. Nor 

did the literature of MBH refer to the literature of JL or PS until the present work. As in the 

literature of JL, PS assumes a fixed p for all f, and does not appear to address a p that is well suited 

to f  by design or adaptation.  

Another descendent of the work at Los Alamos attributed to Fermi and Metropolis is SA. 

The development of SA is attributed to Pincus in 1970, and to Kirkpatrick et al. in 1983 [34, 35].    

SA is generally thought of as an adaptation of  a so-called Monte Carlo sampling method, called 

the Metropolis-Hastings algorithm, used to generate simulated sample states of a thermodynamic 

system. The Metropolis-Hastings algorithm is attributed to Metropolis et al. in 1953, and to 

Hastings who published it as a Monte Carlo sampling method explainable by Markov chains in 

1970 [36, 37, 38]. Excellent overviews of SA are provided by Schneider and Kirkpatrick, and by 

Spall [39, 40]. 

SA is a rich subject that is steeped in analogies to physics, especially statistical 

thermodynamics. It has an extensive literature that is outside the scope of this paper. However, a 

few observations about SA are warranted here: While the SA literature does include an asymptotic 

convergence proof, as well as some level of analysis for special cases of objective functions, it too 
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lacks any analytically supportable notion of a p that is well suited to  f  by design or adaptation. 

Typically, SA literature presupposes that p is a Boltzmann distribution that has a time-varying 

parameter that is varied by a schedule rather than by properties of f or the statistical dynamics of 

the on-going optimization process. Therefore, while SA is related in some respects to MBH, it is 

tangential to the central theme of the present work. 

The literature of SA does not appear to refer to MBH, JL or PS, just as the literature of 

MBH (with the exception of the Englander, Englander 2014 paper which refers to SA, and the 

present work) refer to JL, PS or SA. Nonetheless, all these branches of stochastic global search are 

related.  

Missing from all of these branches of stochastic global search, including MBH until now, 

were the concepts and tools of the analytical framework used in the present work.  
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II. MONOTONIC BASIN HOPPING (MBH) 

II.a Definition of MBH and the specification of the basic MBH algorithm  

MBH is an iterative method for randomly searching for the global minimum of an objective 

function f over domain X. The global minimum is written as minglobal(f(X)) = f*.  X is a Cartesian 

product of bounded subspaces in ℝ𝑁. Values of f are only of interest for 𝑿𝔽 ⊂  𝑿, a set of possibly 

disconnected, sparse subspaces in 𝑿. In practice, X is non-uniformly discretized with a granularity 

of IEEE floating point precision which some practitioners regard as approximately continuous. For 

other practitioners,  the granularity of IEEE floating point precision introduces a kind of “noise” 

with which they have learned to contend.  

In the present work, the objective function f  is non-convex and/or non-smooth and, if only 

for those reasons, is referred to as being “poorly-behaved”. The definition of convex is: 

f convex ⟺ 0 ≤ 𝛼 ≤ 1 , 𝑓(𝛼𝒙1 + (1 − 𝛼)𝒙2) ≤  𝛼𝑓(𝒙1) + (1 − 𝛼)𝑓(𝒙2) 

for all 𝒙𝟏, 𝒙2 ∈  𝑿 such that 𝒙1 ≠ 𝒙2  

The definition of non-smooth is that the first derivative or gradient (or a numerical approximation 

to the first derivative of f or gradient) is discontinuous or non-existent at various points in 𝑿𝔽 

because of  kinks or other discontinuities in the hypersurface of  f on 𝑿𝔽. Even though the objective 

function f is non-convex and non-smooth, it is assumed that f is not a random function on X.  

The location in 𝑿𝔽 of the search probe (or particle), referred to in MBH literature as the 

hopper, is defined as x[t] where t is the current iteration number, referred to as the MBH time-step. 

At this point in the present work, t has no particular relationship to more conventional definitions 

of time, e.g.,  wall-clock time,  calendar-time, CPU execution time, etc. In later Chapters, t will be 

given more specific meaning.  
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f[x[t]] is the value of f at hopper location x[t]. Convergence to f* is defined as the first 

arrival by f[x[t]] to within a small epsilon distance of f*. The value of t at the first arrival is referred 

to as the First Passage Time (FPT). Although f* is unknown in real applications of MBH, f* is 

known in simulation experiments and analyses in which f is constructed. 

Although 𝑿𝔽 is often disconnected and sparse, thereby slowing MBH convergence, the 

boundaries of 𝑿𝔽 can defined either by a hypersurface that is not part of f, or by adding penalty 

functions to f. In practice, there may be reasons to define the boundaries of 𝑿𝔽 by a hypersurface 

that is distinct from f. However, for analytical purposes, defining the boundaries of 𝑿𝔽 by one or 

more penalty functions added to f is equivalent and enables the present work to refer to “poorly-

behaved f” as a way of saying that the problem is hard because either f is non-convex and/or non-

smooth, or because 𝑿𝔽is disconnected and sparse, or both. 

In many of the simulation experiments included in the present work, X is a Cartesian 

product of bounded subspaces of non-negative ℤ𝐍, but every attempt has been made to make    𝑿 ⊂ 

non-negative ℤN as fine-grained, uniformly discretized as can be allowed by available memory in 

order to approximate 𝑿 ⊂ ℝ𝐍 as closely as possible. When N = 1, X and 𝑿𝔽 are written X and 𝑋𝔽. 

Points in  X and 𝑿𝔽 are written as x = {x
1
, x

2
, … , x

N
}, whereas points in X and 𝑋𝔽 are written as 

x. Incremental signed distances in X and 𝑿𝔽 are written as 𝚫x = {Δx
1
, Δx

2
, … , Δx

N
}, whereas 

incremental signed distances in X and 𝑋𝔽 are written as Δx.  

In the present work, when 𝑿 ⊂ ℝN or 𝑿 ⊂  ℤN, the incremental signed distances 𝚫x are 

vector random variables drawn from joint probability distribution 𝑝𝚫𝒙 , whereas when 𝑋 ⊂ ℝ1 or 

𝑋 ⊂  ℤ1, the Δx are scalar random variables drawn from probability distribution 𝑝Δ𝑥 .  Except where 

noted otherwise, it is assumed that when 𝑝𝚫𝒙  is a joint probability distribution, it is rotationally 

symmetric (“iso-directional”) and the variables of x are i.i.d. across N. That assumption is based 
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on f being unknown. If one had some knowledge of f it might be beneficial to use a p that is not 

iso-directional, however that is not investigated in the present work. In the present work, because 

𝑝𝚫𝒙 is iso-directional and the variables of x are i.i.d. across N, discussions involving the 

adaptation of the shape of 𝑝𝚫𝒙  are indifferent to N, refer to any of the marginal distributions of 

𝑝𝚫𝒙 , and are developed in the same manner as they would be in the case of univariate 𝑝Δ𝑥. A small 

neighborhood around x is written as x+/-b, whereas a small neighborhood around x is written as 

x+/-b. 

Because MBH problems are typically multi-dimensional, although 1-dimensional 

problems are constructed for analysis and simulation, X, 𝑿𝔽, 𝚫x and x are written in boldface 

throughout.  

The feasible subspace 𝑿𝔽 is defined by j penalty functions j(X) that are specific to the  

engineering application of MBH. Often, the j(X) have physical meaning (e.g., not allowing a 

spacecraft to fly too close to the Sun) and are known by MBH practitioners even though f cannot 

be known.  

MBH returns both f* = minglobal(f(X)) and x* = argminglobal(f) presuming convergence in 

acceptable time. Both f* and x* are assumed to exist. In practical applications, it is allowable that 

f* and/or x* are not unique provided that one pair (x*, f*) or  (x*+/-,  f*+/-), for sufficiently 

small  and , is found within the allowable search time. There may be arbitrarily many local 

minima that are arbitrarily located and nearly as deep as 𝑓*. 

In general, both x* and f* are unknown except to an oracle. In the present work, the oracle 

is the author who constructs f(X).The oracle’s knowledge of x* and f* is used throughout the 

present work to construct FPT histograms which are used to characterize the convergence rates of 
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MBHs, and methods for accelerating them. In real applications of MBH, FPT histograms cannot 

be constructed within reasonable time frames.  

The basic MBH algorithm, embellished in Chapter V, is specified as follows: 

1. At every MBH time-step t, 𝒙[t-1] was defined by the previous time-step t-1 and was 

necessarily in 𝑿𝔽. Likewise, 𝑓[𝒙[t-1]] was evaluated in the previous time-step t-1. For 

t=1, 𝒙[0] is chosen randomly but constrained to be in 𝑿𝔽, thereby defining 𝑓[𝒙[0]]. 

2. Then, within the same MBH time-step t, draw 𝒙  ~ 𝒑𝚫𝒙  and generate [t] = (𝒙[t] + 𝒙). 

3. Determine whether [t] is in the feasible subspace 𝑿𝔽 of X. If it is not, draw another 

𝒙 and, thereby, form another [t].  

4. Evaluate 𝑓[[t]] and compare 𝑓[[t]] to 𝑓[𝒙[t]]. 

5. If 𝑓[[t]] < 𝑓[𝒙[t]], then replace 𝑓[𝒙[t]] with 𝑓[[t]] and 𝒙[t] with [t]. If 

𝑓[[t]] ≥ 𝑓[𝒙[t]], then 𝑓[𝒙[t]] and 𝒙[t] remain unchanged. 

6. Advance the iteration counter t and return to Step 1. 

Thus, at every MBH time-step t, 𝒙[t] only moves if that move reduces 𝑓[𝒙[t]]. Otherwise, 

𝒙[t] is forced to wait-in-place.  

Increment x is the random perturbation on x[t-1] that defines 𝝃[𝑡] and is drawn from 

distribution 𝒑𝚫𝒙 . For brevity, 𝒑𝚫𝒙 is written as p even when X is, multi-dimensional. Distribution 

p is chosen, designed, and in Chapter IV adaptively shaped. It is constructed so as to have zero 

mean. In the present work, even when p is univariate it is constructed in such a manner that it is 

isotropic. Therefore, the marginal distributions of p are identical and the [ Δ𝑥𝟏 , Δ𝑥𝟐, …] are i.i.d. 

Distribution p is easily generalized so that it is anisotropic if there is reason to provide different 

scale factors in different dimensions, and/or cross-correlations between variates in different 
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dimensions. Doing so may be useful if f and/or 𝑿𝔽 were known to some extent or could be 

“learned” by an on-going MBH. That is left for future work. 

Distribution p is said to be "well-suited” to f if, by the shape of p, 𝝃[t] = (x[t-1] +x) is 

frequently accepted as x[t+1]. Distribution q is the distribution of “accepted” hop increments, 

meaning the distribution of 𝒙 such that 𝝃[t] = (x[t-1] +x) is accepted as x[t] because 

𝑓[[t]] < 𝑓[𝒙[t-1]]. Distribution q cannot be known a priori. In fact, its existence is a conjecture. 

However, a near-real-time estimate of q, namely 𝑞̂, can be constructed by a Monte Carlo method 

that is described in Chapter IV. 

Figures II.1 through II.3 depict the basic MBH process operation on three versions of 

prototypical f. Figure II.4 depicts the histogram of the { 𝒙 } drawn from the fixed (non-adaptive) 

non-Gaussian p used to drive the MBH search in the above figures II.1, II.2, and II.3.  

 

Figure II.1: Prototypical 1-dimensional non-convex f and an example of its associated incumbent path                

{𝒙[t]; t = 1, 2, 3, …} in blue and candidate path {𝝃[t]; t = 1, 2, 3, …} in tan 
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Figure II.2: The same 1-dimensional non-convex f as in Figure II.1, except with a disconnected, sparse 

𝑿𝔽, and an example of its associated {𝒙[t]; t = 1, 2, 3, …} in blue and candidate path {𝝃[t]; t = 1, 2, 3, …} 

in tan 
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Figure II.3: The same 1-dimensional non-convex f as in Figure II.1, except with a disconnected, sparse 

𝑿𝔽 and texture, and an example of its associated {𝒙[t]; t = 1, 2, 3, …} in blue and candidate path        

{𝝃[t]; t = 1, 2, 3, …} in tan 

 

 

Figure II.4: Histogram of  { 𝒙 } drawn from the fixed non-Gaussian p used to drive the MBH search in 

the above figures II.1, II.2, and II.3.  
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II.b. Visualizing the MBH convergence process by plotting f[x[t]] 

The MBH convergence process can be visualized by plotting 𝑓[𝒙[t]], which is one-

dimensional for X having any finite integer dimension. Plotting 𝑓[𝒙[t]] not only illustrates the rate 

of the convergence of MBH operating on a given f having feasible domain 𝑿𝔽, driven by 

incremental hop distances drawn from a given p; it also illustrates the variability in the 

convergence rates given multiple trials of MBH operating on the same problem. The variability in 

the convergence rate is important because it suggests the likelihood of whether a given MBH 

convergence will require as little time as the fastest descending plot of 𝑓[𝒙[t]] or slowest 

descending plot 𝑓[𝒙[t]]. In Chapter IV, more sophisticated methods, based on MBH FPTs, and fits 

of FPTs to Gamma distributions as MBH FPTDs, will be developed for characterizing MBH 

convergence rates. They provide a way to quantify and classify the distribution of MBH 

convergence times for an MBH operating on a given f sped-up by one method or another. Fits of 

FPTs to Gamma distributions as MBH FPTDs are an essential tool in assessing the effectiveness 

of methods for speeding-up MBH that will be provided in Chapters IV and V. Meanwhile, here, 

plots of 𝑓[𝒙[t]] are sufficient to illustrate, in Figures II.5, II.6, and II.7, below, and Chapter III, the 

convergence impacting properties of various objective functions f given a fixed p. 

In Figures II.5, II.6, and II.7 below, the upper panel shows the f upon which the MBH is 

operating. The lower panel shows the corresponding 𝑓[𝒙[t]], illustrating the advancement of a 

trial’s descent towards the global minimum. In all cases, the p from which the incremental hop 

distances 𝒙 are drawn, is the fixed narrow-bodied, long-tailed p having the histogram shown 

below in Figure II.4. 

In Figures II.6 and II.7, the impact of disconnected 𝑿𝔽 is apparent in the greater variability 

in the convergence times especially for convergence within MBH time-steps < 500. 
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Figure II.5:  

Upper panel: The same prototypical 1-dimensional non-convex f shown in Figure 0.a. The light brown 

horizontal line passes through maximum feasible f.   

Lower panel: The corresponding f[x[t]] for 32 trials of an MBH,  all of which are using the same fixed 

non-Gaussian p having the histogram shown in Figure II.4. The horizonal axis is in units of MBH time-

steps. The vertical axis is in units of values of f. 

  



   

27 

 

Figure II.6:  

Upper panel: The same prototypical 1-dimensional non-convex f with a disconnected, sparse domain shown 

in Figure 0.b. The light brown horizontal line passes through maximum feasible f.   

Lower panel: The corresponding f[x[t]] for 32 trials of an MBH,  all of which are using the same fixed 

non-Gaussian p having the histogram shown in Figure II.4. The horizonal axis is in units of MBH time-

steps. The vertical axis is in units of values of f.  
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Figure II.7:  

Upper panel: The same textured prototypical 1-dimensional non-convex f with a disconnected, sparse 

domain shown in Figure 0.c. The light brown horizontal line passes through maximum feasible f.   

Lower panel: The corresponding f[x[t]] for 32 trials of an MBH,  all of which are using the same fixed 

non-Gaussian p having the histogram shown in Figure II.4. The horizonal axis is in units of MBH time-

steps. The vertical axis is in units of values of f   
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Function g[d] 

In order to analyze the dynamics of f[𝒙[𝑡]], a function g[d] is useful. g[d] is the remaining 

volume of productive search space when f[x] = d.  The set (level set) Uf[d] = f -1[d], where f -1,  is 

the set inverse.  The sub-sets 𝑈̃𝑓[𝑑] are those x 𝜖 𝑿𝔽 such that Uf[𝑑́] ⊂ Uf[d] for all 𝑑́ < d. This 

leads to the definition of g[d]: 

g[d] ≜ (1/ 𝜇(𝑿𝔽))∫ 𝐼𝑓,𝑑
𝑿𝔽

𝑚𝑎𝑥

𝑿𝔽
𝑚𝑖𝑛

(𝒙) dV  

where 𝐼𝑓,𝑑(x ) = 1{
  1 𝑖𝑓 𝑓[𝒙]  <  𝑑

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  

and dV is the infinitesimal volume for the space X. 𝜇(𝑿𝔽) is the volume of the feasible search 

space, and 𝜇(𝑿𝔽) = ∫ 1
𝑿𝔽

𝑚𝑎𝑥

𝑿𝔽
𝑚𝑖𝑛

∙ dV .  

Function g[d] is related to the probability, at depth d, of a random probe finding a yet 

smaller value of 𝑓 at depths deeper than d, meaning that 𝝃[t] = (x[t-1] +x) is accepted as x[t] 

because f[𝒙[t-1]+𝒙] < f[𝒙[t-1]] . Thus, g[d] is a relative measure of the likelihood of drawing an 

acceptable x ~ p, therefore a relative measure of the expected rate of progress toward f*, given 

𝑓[𝒙[t]] = d. Thus, g[d] is determined by 𝑓 and shows that the relative measure of the expected 

rate of progress toward f* depends on f. 

The construction of g[d] requires knowledge of f. In real applications of MBH, f is query-

able at a limited number of points x but otherwise unknown. So, g[d] cannot be constructed in 

practice. However, for analytical purposes and in simulations in the present work, g[d] can be 

constructed because f is known by construction.. However, g[d] establishes a bound on the 

probability of an accepted hop based on the remaining productive search volume. 
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g[d] is a non-increasing function. g[d] is normalized to be independent of the range of f(X), 

so max(g) = 1.0 when  d = max(f[x[t]]) and min(g) = 0 when d = f*. As d → f*, g[d] → 0 because 

smaller values of 𝑓 become increasingly rare.  g[d] is depicted for two different f in Figure II.8. 

The different rates at which g[d] decays, depending upon the geometry of  f, is apparent. 

 

Figure II.8:  

Left: g[d] as it would be constructed by an “oracle” given a unimodal globally and locally smooth f. Upper 

panel: The process of deriving g[d] from f per the definition of g[d] provided in the text above. Lower panel: 

The resulting g[d] 

Right: g[d] as it would be constructed by an “oracle” given a multi-modal, non-convex but locally smooth 

f. Upper panel: The process of deriving g[d] from f per the definition of g[d] provided in the text above. 

Lower panel: The resulting g[d]  
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Figure II.9:  

Upper panel: A simple f for which for which 𝑿𝔽 is all of X.  

Middle panel: The corresponding g[d] 

Lower panel: The corresponding f[x[t] for an MBH operating on f using x drawn from a fixed Laplace(0,1) 

p scaled to cover the extent of X 
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Figure II.10:  

Upper panel: Globally rugged  f for which for which 𝑿𝔽 is all of X.  

Middle panel: The corresponding g[d] 

Lower panel: The corresponding f[x[t] for an MBH operating on f using x drawn from a fixed Laplace(0,1) 

p scaled to cover the extent of X. 
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Figure II.11: Prototypical 1-dimensional non-convex f and its associated g[d]. 

 

 

Figure II.12: Prototypical 1-dimensional non-convex f having disconnected and sparse feasible sub-

domains, and its associated g[d].  
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III. THE BEHAVIOR OF f AND  𝑿𝔽 IMPACT MBH CONVERGENCE TIME 

III.a The nature of the objective function f and its feasible domain 𝑿𝔽 

Recall that objective function f is assumed to be non-convex, and possibly non-smooth, 

and defined over the feasible domain 𝑿𝔽 ⊂  𝑿. The feasible neighborhood surrounding any 

minimum in f is referred to as a basin. Their shapes, locations, and the minima within them, are 

known only by an oracle. In physics and microbiology, particularly in protein-folding research, 

where f is thought of as an “energy landscape”, basins are referred to as “funnels”. The funnels are 

drawn as though they are three dimensional, but they are typically high-dimensional (e.g., 150 

dimensions.) In spacecraft trajectory optimization, where the term basin is used, X, therefore the 

basins, may be 500 dimensional (or higher), although the spacecraft trajectory optimization 

problem chosen as the use-case in Chapter VI is 3-dimensional.  
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Figure III.1: 3-dimensional “funnels” that are used as pedagogical models of energy landscapes in 

protein-folding literature, and that that microbiologists intuitively extend to higher dimensions [41, 42] 

 

Although multi-dimensional “funnels” are accepted in microbiology as intuitively sensible, 

multi-dimensional basins warrant a formal definition: A basin is a neighborhood around a local 

minimum x# in which f[x] is everywhere greater than f[x#]. This definition allows basins to be 

nested inside of one another or spread far apart, and it is meaningful in any number of dimensions. 

At saddle points in f, the definition needs to be extended to a basin being a neighborhood around 

a local minimum x# in which f[x#] is everywhere greater than f[x#] in some but not necessarily all 

dimensions. The added precision in the definition should not be construed to imply that saddle 

points in f pose challenges for MBH.  

Despite the fact that, in practice, f and X are represented in IEEE floating point precision 

and therefore “noisy” at a “microscopic” scale, in the present work f is not a random variable on 

X. Both f* and x* exist, although there may be arbitrarily many local minima that are arbitrarily 

located, and nearly as deep as 𝑓*. Because 𝑿 is bounded, then f has an upper bound except where 

it may have a singularity. f has a lower bound at f*. Without loss of generality, f may be transformed 

to have its minimum be zero and thereby be non-negative throughout 𝑿. In most of the simulations 

in the present work,  f  has negative values that are minimized. In the use-case, f  has positive 

values that are minimized. In the use case, f is the integral in change in velocity that results from 

the necessarily non-negative consumption of on-board propellent. 

The MBH convergence process is inherently slower and harder to speed-up when f is 

poorly-behaved. Visual evidence for this can be seen by comparing figures II.5, II.6, and II.7, and 

II.9 versus II.10 in Chapter II. Because the present work focuses on random search on poorly-
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behaved f, it is important to describe examples of poorly-behaved f and how they arise in real-

world optimization problems.  

III.b An extreme example of poorly-behaved f and its impact on MBH convergence time 

 A poorly-behaved f that imposes severe adverse impacts on MBH convergence speed, is 

one in which f* is far in X from a local minimum that is nearly as deep as f* and resides in a much 

wider basin than the basin in which f* resides. The present work refers to such poorly-behaved f 

as Gibsonian f in gratitude to Professor John Gibson who first proposed it in conversation [August 

28, 2020]. The challenge of Gibsonian f is that a candidate hop has a vector probability distribution 

that is required to generate sufficiently many long hops when x[t] is within the wide basin of the 

sub-optimal local minimum, to enable [t] = (x[t-1]+x) to hop to the narrow basin in which x* 

resides. However, once x[t] is inside the narrow basin in which x* resides, those long hops cause 

[t] to “overshoot” x[t], slowing the convergence to f*. As will be shown in Chapter V, MBH on 

Gibsonian f can nonetheless be sped-up, thereby enabling MBH optimizations on many examples 

of Gibsonian f to find the global minimum within allowable periods of time. The methods provided 

in Chapter V for speeding-up MBH on Gibsonian f speeds-up the descent of f[x[t]] deeper into 

g[d[t]], closer to f*, regardless of whether x[t] moved closer to x*.  

Figures III.2 illustrates Gibsonian f. As in the case of Figure III.1 above from the literature 

of protein folding, Gibsonian f may imagined as a projection onto one dimension of a high-

dimensional f that may be Gibsonian in some but not all dimensions. Real-world applications of 

MBH often involve a multi-dimensional f that is Gibsonian or otherwise severely poorly-behaved  

when projected onto some but not all dimensions. The use-case described in Chapter VI involves 

a 3-dimensional f that is differently poorly-behaved when projected upon each of the three 

dimensions. 
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Methods for speeding-up MBH that are provided and analyzed in Chapter IV are not very 

effective when MBH is operating on the 1-dimensional Gibsonian f depicted in Figure III.2. 

However, methods provided in Chapter V are highly effective for speeding up MBH operating on 

the 1-dimensional Gibsonian f depicted in Figure III.2 (as will be shown in Figures V.1 through 

V.3).  Methods provided in Chapter V are also highly effective for speeding up MBH operating 

on a 2-dimensional Gibsonian f  that will be depicted in Figure V.8 as will be shown in Figures 

V.9 through V.11.  

Figure III.2 and III.3 below illustrate the special challenge posed by Gibsonian f being 

operated upon by the basic MBH algorithm without any speed-up method. The lower panel of 

Figure III.2 is a magnification of the time-step axis of the lower panel in Figure III.3. In Figure 

III.2, it can be seen that all of the 48 trials shown find the non-global minimum in the wide basin 

to the left quickly, i.e., in fewer than 300 MBH time-steps and in most of the trials in fewer than 

100 MBH time-steps. However, Figure III. 3 shows that many of the 48 trials did not converge to 

the global minimum sooner than the 100,000th  MBH time-step, and one of the 48 trials did not 

find the global minimum until after the 500,000th MBH time-step.  

While the eventual convergence the global minimum by the slowest trial in Figure III.3 is 

an empirical confirmation that MBH will eventually converge, in this case after 500,000 MBH 

time-steps, as assured by the asymptotic convergence proof, the large number of MBH time-steps 

required for convergence on this 1-dimensional example of Gibsonian f demonstrates why 

practitioners would regard MBH as having failed to converge in practically allowable time. When, 

in Chapter V, a method is provided for speeding up the convergence of MBH operating on this 

example of 1-dimensional Gibsonian f, it will be illustrated using plots that have, as their lower 
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panel time-step axis,  [0,2000] as is typically used in the present work, because a lower panel time-

step axis of [0, 650000] will no longer be needed. 

 

Figure III.2:  

Upper panel: 1-dimensional Gibsonian f  for which 𝑿𝔽 is all of X. The MBH used fixed non-Gaussian p, 

the histogram for which is shown in Figure II.4. The light brown horizontal line passes through maximum 

feasible f   

Lower panel: f[x[t,n]] for t being the first 650 of 650,000 MBH time-steps, n being the first 48 of 50 trials.  
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Figure III.3:  

Upper panel: 1-dimensional Gibsonian f for which 𝑿𝔽 is all of X. The MBH used fixed non-Gaussian p, the 

histogram for which is shown in Figure II.4. The light brown horizontal line passes through maximum 

feasible f 

Lower panel: f[x[t,n]] for t being 650,000 MBH time-steps, n being the first 48 of 50 trials.  

 

  



   

40 

III.c Causes of poorly-behaved f in optimization applications 

Examples and causes of poorly-behaved f and/or 𝑿𝔽 in real-world optimization applications 

are plentiful in optimization-based approaches to molecular modeling and in spacecraft trajectory 

optimization. 

In modeling molecular configurations by minimizing energy landscapes, non-convexities 

and non-smoothness in f are inherent in physical laws that are assumed (e.g., multi-molecule 

Lennard-Jones potentials) [43]. These physical laws also define 𝑿𝔽 that are sometimes 

disconnected and sparse. In addition, some researchers hypothesize that, at least in the case of 

protein folding, energy landscapes are multifractal (therefore very rough) to an extent that 

corresponds to the “wetness” of the immediate micro-environment in which the protein is folding 

[44, 45]. 

In inter-planetary spacecraft trajectory optimization problems, non-convexity and non-

smoothness in f  may result from one or more of several sources: periodicities and resonances 

between the gravitational forces imposed on spacecraft by large planets and the Sun; non-

linearities in feasible flight control actions; and close proximity in 𝑿𝔽 to singularities in trajectory 

models, such as arise from the use of Lambert’s problem [21]. Disconnected and sparse 𝑿𝔽 results 

from singularities in trajectory models, as well as having to avoid traveling through time or space 

into un-survivable conditions. In addition, disconnected and sparse 𝑿𝔽 results from the infeasibility 

of some flight control actions, and the fact that celestial bodies are in motion and therefore they 

are only “in range” if launches from Earth and “fly-bys” around certain planets occur within 

narrow temporal windows.  The resulting poorly-behaved f is depicted Chapter VI where the f for 

the Pioneer 11 trajectory optimization use-case is illustrated. 
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Severe poor-behavior in f arises in a class of inter-planetary spacecraft trajectory 

optimization problems called “moon tours” which involve complicated trajectories around a moon 

or multiple. The severe poor-behavior in f that results from such resonances arise in tens, out of 

hundreds, of dimensions in X. 

Poorly-behaved  f  also arise in economics (where Paul Samuelson wrote that the 

difficulties of studying anything other than pure concavity were “shrouded in eternal darkness”), 

“fitness landscapes” in models of evolution, as well as other fields [46, 47, 48].  Poorly-behaved f 

also arise in abstract and in hypothetical physical models, such as in the theory of large-scale 

energy landscapes of randomly pinned manifolds which have been proposed as models of pinned 

flux lines in superconductors [49]. 
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IV. ACCELERATING MBH BY ADAPTIVELY SHAPING THE DISTRIBUTION FROM 

WHICH INCREMENTAL HOP DISTANCES ARE DRAWN 

This chapter concerns biasing the probability distribution of incremental hop distances in 

such a manner that makes a “beneficial sequence” of incremental hop distances {x[t]} more likely 

to be drawn. “Beneficial sequence” means a sequence of short versus long incremental hop 

distances  {x[t]} that is likely to speed-up the convergence of the MBH to f* given f and 𝑿𝔽 by 

providing x that will cause [t] = (x[t-1] + x)  to be “accepted” as the new x[t] by satisfying the 

conditions  (x[t-1] + x) ⊂ 𝑿𝔽 and f[(x[t-1] + x)] < f[x[t-1]]. 

IV.a Three questions addressed in this chapter 

This chapter asks and answers the following three questions: First, given an f and 𝑿𝔽, what 

is the impact of the shape of distribution p, from which the x are drawn, on the MBH convergence 

time? Second, for a set of f and 𝑿𝔽, e.g., some appropriately defined equivalence class 𝒞 ≡ 

{(𝑓𝑖,𝑿𝑖
𝔽)} that have similar local minima structure, is there a p that is universal in the sense that its 

use results in faster convergence on all (𝑓𝑖, 𝑿𝑖
𝔽)  ⊂ 𝒞 compared to different p? And third, given a 

particular unknown f and 𝑿𝔽, is there a method for adaptively shaping p so that MBH convergence 

can be sped-up?  

IV.b Additional concepts and tools for the analytical framework 

In order to answer these three questions, new concepts and tools need to be added to the 

analytical framework that currently contains g[d].  Each new concept and tool is introduced as it 

is needed, and its use builds upon the concepts and tool already introduced. Because the first 

question is the most general of the three, the concept and tool it requires is the first addition to the 
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analytical framework: the expected MBH search efficiency over the time-step interval [a : b]. By 

itself, expected MBH search efficiency is used to answer question one. 

The second question was addressed empirically in a 2014 paper by Englander and 

Englander wherein it was demonstrated that the answer is affirmative, and the properties of such 

p were described. But the analysis supporting those empirical findings was not developed until 

2020 when parts of this chapter were first published. The analytical answer to question two requires 

that more tools be added to the analytical framework: A specification of assumptions on an 

idealized distribution q comprised of the x that resulted in “accepted” [t], amounting to a 

description of the nature of q; a Monte Carlo method for constructing an estimate of q, namely 𝑞̂; 

the Kullback-Leibler divergence DK-L(p, 𝑞̂) used to measure the similarity between p and 𝑞̂; and 

the use of First Passage Times (FPTs), First Passage Time Probability Mass Functions (FPT-

PMFs), and fits of Gamma distributions to FPTs as First Passage Time Densities (FPTDs), to 

characterize and quantify the speed-up of MBH convergence that is achieved by p making similar 

to 𝑞̂. 

The third question, which is a natural extension of questions one and two, is also addressed 

analytically in this chapter. After explaining the answer analytically, it is illustrated by figures 

within this chapter and applied to the use-case described in Chapter VI. The analytical answer to 

question three requires that additional tools be added to the analytical framework:  definitions, 

assumptions, and methods for adapting p to 𝑞̂ in order to make the shape of p similar to the shape 

of 𝑞̂. Then FPTs and FPTDs are used to characterize and quantify the additional speed-up of MBH 

convergence that is achieved by making p similar to 𝑞̂ by adaptation rather than by using well-

chosen or well-designed fixed p. It will be shown that the source of additional speed-up is the fact 

that the shape of 𝑞̂ is time-varying during the MBH convergence process and that any fixed p can 
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at best be a compromise between being similar to 𝑞̂ when the MBH is far from converging versus 

similar to 𝑞̂ as the MBH approaches convergence. 

IV.c Expected MBH search efficiency  

The expected MBH search efficiency over the time-step interval [a : b]: 

𝔼([a : b]) = (1/(b - a)) ∑ 𝐼𝒙(𝑗)𝜏𝑏
𝑗=𝜏𝑎

 

  𝐼𝒙[t] = 1 if 𝝃[t] = (x[t-1] +x) is accepted as x[t], and 𝐼𝒙[t] = 0 if 𝜉[t] = (x[t-1] +x) is “rejected”, 

therefore 𝔼([a : b]) is dependent on upon the magnitude of x making 𝝃[t] = (x[t-1] +x) 

“acceptable” sufficiently often, because the more often 𝝃[t] is “accepted”, the less often the MBH 

process is forced to “wait-in-place”, and the fewer MBH time-steps are required for to reach f*.  

The efficiency of the search is dependent on f, 𝑿𝔽, and the frequency during time-step interval      

[a : b] with which draws from p produce x that form acceptable 𝝃[t].  𝔼([a : b] ) = 1 is 

completely efficient and 𝔼([a : b] ) = 0 is completely inefficient. 

In order for an MBH process to move efficiently, p needs to provide a sufficient number of 

long-distance hops in a sequence that cannot be predicted but can be described using scenarios. 

For example, as x[t] approaches near to x*, short-distance hops are needed to reduce the frequency 

of  𝝃[t] = (x[t-1] +x) being “unacceptable because long hops would result in 𝝃[t] “overshooting” 

x*. When x[t] is far from x* long-distance hops are needed, especially if x[t] is “trapped” in a 

basin far from x* that contains a sub-optimal local minimum. This implies that if one could choose 

a p that provides a high likelihood of generating x that would result in “accepted”                            

𝝃[t] = (x[t-1] +x), one could increase the efficiency as defined above, and thereby speed-up MBH 

convergence.  

IV.d Expected efficiency answers question one and begins to answer question two 
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By itself, the definition of expected MBH search efficiency provides the answer to question 

one: given an f and 𝑿𝔽, what is the impact of the shape of distribution p, from which the x are 

drawn, on the MBH convergence time? The answer is obvious: The shape of p that provides x 

that cause 𝝃[t] = (x[t-1] +x) to be accepted as x[t+1] the most often and forces the MBH  to wait 

in place least often, contributes the most to speeding-up MBH convergence. But that begs the 

question: what is that shape and how does one determine or estimate it? Further, it raises question 

two: for a set of (f , 𝑿𝔽) pairs, i.e., some appropriately defined equivalence class 𝒞 ≡ {(𝑓𝑖,𝑿𝑖
𝔽)}, 

for which each (f , 𝑿𝔽) pair in the equivalence class impacts the MBH rate in a manner that is 

similar to other (f , 𝑿𝔽) pairs in the equivalence class, is there a p that is especially effective in 

speeding-up the MBH? To be more precise, is there a p that by its shape results in faster 

convergence on all (𝑓𝑖, 𝑿𝑖
𝔽) ⊂ 𝒞 compared to other p, when MBH convergence speed is measured 

by Gamma distributions fit as FPTDs to FPTs from large numbers of trials of MBH on the various 

members of each class and across the different equivalence classes?  

The empirical answer, based on extensive simulation experiments, is yes. That p is iso-

directional, zero mean, has a very tall mid-section (“head”) at its mean, and very long, thin tails 

(similar to the p having the histogram shown in Figure II.2, in as many dimensions as, and scaled 

to the span of, domain X). That p is highly effective for most f – especially for f that is non-convex 

and/or non-smooth – and/or when 𝑿𝔽 is disconnected and sparse. Empirical evidence of the 

unusually high effectiveness of such a p compared to Gaussian-shaped and other-shaped p is 

documented in Englander and Englander, 2014.  

If one were to colloquially explain why that shape is so effective, it is because that shape 

enables the MBH to follow an efficient path to f* by frequently providing draws x that result in 

𝝃[t] = (x[t-1] +x) that are “accepted” as the new x[t]. That shape of p provides a favorable mix 
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of long incremental hop distances required to “escape” from neighborhoods around local minima, 

and short incremental hop distances which are required to “close-in” on the global minimum in a 

small convex, reasonably smooth, neighborhood that surrounds the global minimum.  

But the present work aims to explain this formally rather colloquially. For that purpose: 

sub-section IV.e will posit the existence of distribution q comprised of x that cause the                 

𝝃[t] = (x[t-1] +x) to be “accepted” and thereby enable the MBH to more toward the global 

minimum rather than be forced to wait-in-place; sub-section IV.f will provide a method for 

constructing an estimate of the conjectured q, namely 𝑞̂;  sub-sections IV.g through IV.i will show 

that the similarity between the shape of p and the shape of 𝑞̂ as measured by the the Kullback-

Leibler divergence DK-L(p, 𝑞̂) correlates strongly with MBH convergence speed; and sub-sections 

IV.k through IV.n will explain the speed-up in MBH convergence that is achievable by adapting 

the shape of p to the shape of 𝑞̂ as a realizable  approximation to the non-realizable goal of adapting 

the shape of p to the shape of the conjectured q. 

IV.e Distribution q 

Distribution q is a joint probability distribution of the same dimension as p and X when X 

is multi-dimensional. Like p, q has zero mean if only because the x ~ q are on  𝝃[t] = (x[t-1] +x) 

being “accepted” and 𝝃[t] is often not “accepted”. Because q is defined by the condition that 𝝃[t] 

is “accepted”, which depends (at least) on f and 𝑿𝔽, q is dependent upon f and 𝑿𝔽.   

The existence of q is a conjecture supported by an estimate of q, namely 𝑞̂, and the 

effectiveness of a method that uses 𝑞̂ to speed-up MBH. Distribution q is not directly observable. 

The importance of q is that the similarity between its estimate 𝑞̂ and p, as measured by the 

Kullback-Leibler divergence DK-L(p, 𝑞̂), correlates strongly with the speed of an MBH operating 

on f using p as the distribution from which hop distances are drawn, characterized by Gamma 
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distributions fit to MBH FPTs as their FPTD. Further, the speed-up of MBH that is achievable by 

adapting p to 𝑞̂, as explained and demonstrated later in this chapter and in Chapter VI, provides 

additional support for the conjecture that q exists and is a useful concept. 

The Monte Carlo method used to estimate 𝑞̂ is described in the next sub-section, IV.f. 

Before explaining the Monte Carlo method for estimating 𝑞̂ it is worth emphasizing that 𝑞̂ is only 

needed to calculate DK-L(p, 𝑞̂); DK-L(p, 𝑞̂) is calculated to show the similarity or dissimilarity 

between p and 𝑞̂; and the similarity or dissimilarity between p and 𝑞̂ is important because it is 

predictive of the convergence speed of an MBH operating on f constrained by 𝑿𝔽 when using p as 

the distribution from which hop distances are drawn. Here, saying that DK-L(p, 𝑞̂) is predictive of 

the convergence speed of an MBH means that values of DK-L(p, 𝑞̂) are strongly correlated with 

MBH FPTDs, and MBH FPTDs characterize MBH convergence times. Thus, as explained in Sub-

sections IV.f through IV.i,  the Monte Carlo estimate 𝑞̂ is required for explanatory and predictive 

purposes. However, the Monte Carlo estimate 𝑞̂ is not required for the adaptation of p to 𝑞̂; only 

an estimate of the scale parameter of 𝑞̂, namely 𝜆̂, is required as explained in Sub-sections IV.l 

through IV.n. The challenge therein is that because MBH is a stochastic process comprised of 

time-varying increments, 𝜆̂ is a time-varying scale parameter 𝜆̂[𝑡]. That is addressed in Sub-

sections IV.l through IV.n, and in Chapter VI. Strictly speaking, adaptation of p to 𝑞̂ is an 

adaptation of p to 𝜆̂[𝑡] as will be shown by an equation in Sub-section IV.n. Nonetheless, the 

present work refers to the adaptation of p to 𝜆̂[𝑡] as the adaptation of p to 𝑞̂[𝑡] because the key 

element of the supporting analysis is DK-L(p, 𝑞̂).  

The key concepts and relationships are: The conjectured the existence of q; the Monte 

Carlo estimation of 𝑞̂; the measure of similarity DK-L(p, 𝑞̂); the empirical establishment that          

DK-L(p, 𝑞̂) correlates strongly with MBH PFT-PMFs and Gamma distributions fit to MBH FPTs, 
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and, thereby that DK-L(p, 𝑞̂) correlates strongly with speeding-up MBH; and that MBH is sped-up 

by adapting p to 𝑞̂.  The effectiveness of the resulting speed-up resulting from adapting p to 𝑞̂ is 

an empirical validation of the conjectured existence of q, as well the usefulness of conjecturing the 

existence of q.  

IV.f A Monte Carlo method for collecting x ~ q in order to estimate 𝒒̂ for use in DK-L(p, 𝒒̂) 

 Collecting a statistically sufficient set of x ~ q, for the purpose of measuring the similarity 

of p and q by using DK-L(p, 𝑞̂), is achieved by the following method: 

A time-series is generated by inserting into it x at each time-step t if  𝝃[t] = (x[t-1] +x) 

is “accepted” as the new x[t] and zero otherwise. Given that x is often not “accepted” and 

therefore the time-series contains many zeros, sufficient statistics for obtaining a meaningful 

histogram of 𝑞̂ are assured by building the time-series using the x from multiple concurrent but 

independent MBH processes operating on the same f and 𝑿𝔽, using the same p. The independence 

of these MBH processes is essential and their respective “accepted” x cannot be summed or 

averaged. For the purposes of building a histogram of 𝑞̂, the respective x only need to be 

aggregated, i.e., appended. In a later sub-section, when the estimation of  𝑞̂[𝑡] is addressed, it will 

be shown that the respective x can be input concurrently to a single low-pass filter but that the 

resulting temporal correlation is helpful in reducing the temporal variance in  𝑞̂[𝑡] as long as the 

lag introduced by the low-pass filter does not cause too-slow a rate of adaption of p to 𝑞̂[𝑡]. 

However, where only the histogram of 𝑞̂ is important, as is the case so far, the respective x are 

only, and must only be, aggregated without introducing dependence between them. 

Figures IV.1 and IV.2 illustrate time-series comprised of “accepted” x for particular f 

operated upon by using a particular p. n Figures IV.1 and IV.2  x is referred to as “dx_preferred”. 

As an idealization, q is dependent on f and 𝑿𝔽 but independent of p. However, 𝑞̂ is sensitive to the 
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choice or design of p. Nonetheless, 𝑞̂ is reasonably insensitive to a wide range of p when the 

similarity between p and 𝑞̂ is measured by DK-L(p, 𝑞̂). Thus, the small sensitivities of 𝑞̂ to p are a 

very small concern in the sub-sections that follow. Comparing the lower panels in Figures IV.1 

and IV.2, respectively, shows that the MBH convergence process takes longer and is more 

complicated on globally rugged f compared to unimodal f, consistent with Figures II.9 and II.10, 

respectively.  

 

Figure IV.1:  

Upper panel: Unimodal  f for which 𝑿𝔽 is all of X 

Lower Panel: x ~  𝑞̂ collected from 64 concurrent but independent trials of MBH operating on the f shown 

in the upper panel, using a fixed p having a Laplace(0,1) shape scaled to the domain of this f 
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Figure IV.2:  

Upper panel: Globally rugged f for which 𝑿𝔽 is all of X. 

Lower Panel: x ~ 𝑞̂ collected from 64 concurrent but independent trials of MBH operating on the f shown 

in the upper panel, using a fixed p having a Laplace(0,1) shape scaled to the domain of this f. 

 

IV.g The Kullback-Leibler divergence DK-L(p, 𝒒̂) 

 

The method for measuring the similarity between p and 𝑞̂ is the Kullback-Leibler 

divergence DK-L(p, 𝑞̂), sometimes written as DKL(p || 𝑞̂). DK-L(p,𝑞̂) is a measure of “similarity” 

between two PMFs that can be obtained from pdfs or from a large amount of empirical data 

provided that the two PMFs are prepared in the same manner. In particular, the frequencies of 

occurrence for the two PMFs need to be “binned” in such a way that binned probability pi in a 

PMF p covers the same range of values as binned probability qi in a PMF q, all of the bins in q 

and p are equal in width, and the corresponding values they cover are aligned. Technically, non-

uniform quantization is acceptable, but rarely used. In addition, the two PMFs must be 

normalized so that their respective frequencies of occurrence sum to 1 and no bin can contain 

zero occurrences because logs of the values in each bin, meaning the occurrences, will be taken 

[50, 51].  
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Then: 

DK-L(p, 𝑞̂) = ∑ 𝑝𝑖 (log𝑏
𝑝𝑖

 𝑞̂𝑖
𝑖 ) where b is the base of the logarithm.  

The bases that are commonly used are b = 2 for measurements in bits, and b = e for 

measurement in units of nats. From the definition above, is clear that as p becomes more “similar” 

to 𝑞̂,  DK-L(p, 𝑞̂)  →  0 because 
𝑝𝑖

𝑞̂𝑖
  →  1 ∀ 𝑖,   therefore log𝑏

𝑝𝑖

𝑞̂𝑖
→  0 ∀ 𝑖. 

DK-L(p, 𝑞̂) compares the similarities between two distributions in a manner that would 

otherwise require the calculation and comparison of a large number of moments. In that sense,    

DK-L(p, 𝑞̂) is not only effective, but also parsimonious and computationally simple as long as the 

probability mass functions are properly normalized, and their bins are properly constructed and 

aligned. By the definition of entropy used in information theory, DK-L(p, 𝑞̂) is the relative entropy 

between p and 𝑞̂.   

In Figure IV.3 below, p is Laplace(0,k) where k is the length of X (in this case 2,500), and 

𝑞̂ is the narrow-bodied, long-tailed, blue histogram in the middle panel generated by the 

“dx_preferred” time-series in the middle panel of Figure IV.2 above. The DK-L(p, 𝑞̂) is shown in 

the middle panel as 2.938. Since, DK-L(p, 𝑞̂) approaches zero as the shape of p approaches the 

shape of 𝑞̂, DK-L(p, 𝑞̂) being 2.938 indicates that the shapes of p and 𝑞̂ are not similar (as is evident 

visually). 
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Figure IV.3:  

Upper panel: Globally rugged f for which 𝑿𝔽 is all of X. 

Middle panel: Histograms of p (orange) and 𝑞̂ (blue) collected from a time-series (shown in the lower panel 

of Figure IV.2) comprised of “accepted” x from 64 concurrent but independent trials of MBH operating 

on the f shown in the upper panel, using a fixed p having a Laplace(0,1) shape scaled to the domain of  f 

Lower panel: The Gamma distribution fit to the FPTs of 500 independent trials. Later, this panel will be 

compared with the lower panel in Figure IV.5 to show the speed-up that is achieved by using a p that is 

adaptive and thereby made highly similar to 𝑞̂. 
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IV.h MBH FPTs and the fit of Gamma distributions to MBH FPTs as MBH FPTDs 

In the present work, MBH FPTs and the fit of Gamma distributions to FPTs as FPTDs, are 

used to characterize the speed-up that is achievable by the methods provided in this chapter and 

Chapter V. In this chapter, MBH FPTs and the fit of Gamma distributions to FPTs as FPTDs, are 

used to characterize the speed-up of MBH that is achievable by making p being similar to 𝑞̂, 

including by adapting p to 𝑞̂. For that purpose, fits of Gamma distributions to FPTs as FPTDs are 

correlated with DK-L(p, 𝑞̂) to show that MBH speeds up as p is made similar to 𝑞̂. Correlations 

between Gamma distributions fit to FPTs as FPTDs are also used in Chapter VI to demonstrate the 

speed-up of MBH that is achieved by additional methods.  

IV.i The correlation between fits of MBH FPTs to a Gamma distribution as a measure 

MBH convergence speed, and DK-L(p, 𝒒̂) as a measure of the similarity between p and 𝒒̂ 

Figure IV.4 below shows that Gamma distributions fit to MBH FPTs as FPTDs have taller 

modes, more area concentrated under their mode, and thinner tails, as DK-L(p, 𝑞̂) indicates greater 

similarity between p and 𝑞̂. Gamma distributions fit to MBH FPTs as FPTDs that have taller 

modes, more area concentrated under their mode, and thinner tails, indicate fast MBH convergence 

and less variability in convergence times across MBH trials. In each case below, the f upon which 

the MBH is operating is the objective function shown in the inset in the sub-plot in Figure IV.4 

below. The distribution p from which the x are drawn is a fixed distribution labeled in the inset 

table, distribution 𝑞̂ is the narrow-bodied, long-tailed, blue histogram shown in the middle panel 

of Figure IV.3 that is characteristic of the f upon which the MBH is operating, and the numerical 

value of DK-L(p, 𝑞̂) is shown in the inset table. The corresponding Gamma distribution 

corresponding to each (p, 𝑞̂) pair is color-coded as indicated in the legend under the plot. The 

figure indicates that over a range of hop length distributions p used by MBH to operate on f,  the 
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p that were most similar to 𝑞̂, meaning produced the smallest values of DK-L(p, 𝑞̂), sped-up the 

MBH convergence rate the most. In all cases, f is as shown in the left inset sub-figure and 𝑞̂ is the 

narrow-bodied, long-tailed, blue histogram shown in the middle panel of Figure IV.3 comprised 

of the x ~ 𝑞̂ shown in Figure IV.2. 

 

Figure IV.4: A set of Gamma distributions fit to MBH FPTs, and their corresponding DK-L(p, 𝑞̂) for 

distributions p listed in the right inset table. In all cases, f is as shown in the left inset sub-figure and 𝑞̂ is 

the narrow-bodied, long-tailed, blue histogram shown in the middle panel of Figure IV.3 comprised of the 

x ~ 𝑞̂ shown in Figure IV.2 
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IV.j Estimators of parameters used to fit FPTs to a Gamma distribution as the FPTD 

The probability density function of a Gamma distribution parameterized by shape 

parameter  and scale parameter  is: 

𝑓(𝑥)  =  
1

Γ(𝛼)𝜃𝛼 𝑥𝛼−1𝑒− 
𝑥

𝜃 

The parameter estimators used in the present work to fit N FPTs, each y MBH time-steps 

in length, to a Gamma distribution as their FPTD are the well-known estimators: 

Shape parameter 𝛼 ̂= 
𝑁 ∑ 𝑦𝑖

𝑁
𝑖 = 1

𝑁 ∑ 𝑦𝑖𝑙𝑛(𝑦𝑖) − ∑ 𝑙𝑛(𝑦𝑖) ∑ 𝑦𝑖
𝑁
𝑖 = 1

𝑁
𝑖 = 1

𝑁
 𝑖 = 1

 

Scale parameter 𝜃 = 
1

𝑁2( N∑ 𝑦𝑖
𝑁
𝑖  = 1 𝑙𝑛(𝑦𝑖) - ∑ 𝑦𝑖𝑙𝑛(𝑦𝑖) ∑ 𝑦𝑖

𝑁
𝑖 = 1

𝑁
𝑖 = 1  ) 

In charts that refer to an estimated rate parameter 𝛽̂, 𝛽̂ = 1/𝜃. 

See Hogg and Craig (1978), and Papoulis (1984) for an overview, and Zhi-Sheng Ye & Nan Chen 

(2017), and Francisco Louzada, Pedro L. Ramos, and Eduardo Ramos (2019) for a discussion of 

consistency and bias, including methods for correcting biases[52, 53, 54, 55]. In the present work 

these estimators were used without correcting for biases which, as they are defined, appear to be 

very small for N=1,000, or 100 (or even in one case involving 2-dimensional Gibsonian f , N=50). 

In addition, in the present work the Gamma distributions parameters are used for comparative 

purposes only. 

IV.k Additional concepts and tools required to answer question three 

Question three requires a few additional tools. Recall question three: given a particular 

unknown f and 𝑿𝔽, is there a method for adaptively shaping p so that MBH convergence can be 

sped-up? The answer is yes. By adapting p to 𝑞̂ in such a manner that p is made similar to 𝑞̂, the 

speed-up of MBH convergence can be achieved. As will become clear in Sections IV.l, IV.m and 
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IV.n, adapting p to 𝑞̂ does not require an estimate of 𝑞̂ but rather only its time-varying scale 

parameter 𝜆̂[𝑡] which is time-varying for reasons explained in Sections IV.m and IV.n.  

Until question three was asked by the present author, practitioners had little motivation to 

pursue an analytic answer to question two because the empirical results published in 2014 were all 

that were needed to achieve very effective implementations. However, once question three was 

asked, and such adaptive strategies were demonstrated to yield large improvements in MBH 

convergence rates as shown in the figures at the end of this chapter and in Chapter VI, the notions 

of q, 𝑞̂, measuring the similarity between p to 𝑞̂, and adapting p to 𝑞,̂  became practically as well 

as analytically important.  

By describing the nature of distribution q comprised of hop lengths 𝚫𝒙 that resulted in 

“accepted” [t],  a Monte Carlo method for estimating q, namely 𝑞̂, and the Kullback-Leibler 

divergence DK-L(p, 𝑞̂) used to measure the similarity between p and 𝑞̂, question three can be 

answered. Because the notion of q, the Monte Carlo method for estimating 𝑞̂, and the use of          

DK-L(p, 𝑞̂) are general, question three can be answered generally rather than specific to the any 

example or the use-case in the present work. Nonetheless, once question three is answered in 

general, and its answer is used to explain the adaptation of p to 𝑞̂, specific examples of the speed-

up of MBH convergence achieved by adapting p to 𝑞̂ are demonstrated using simulation 

experiments. 

Although DK-L(p,𝑞̂) is used to measure the similarity between p and 𝑞,̂ the MBH speed-up 

achieved by adapting p to 𝑞 ̂ only involves adapting the scale parameter of p to 𝜆̂ within bounds 

that are required to assure that p will always retain some minimal probability of generating large 

increment hop distances. In the present work, 𝑞̂ is modeled as being isotropic (therefore having 

equal marginal distributions in each coordinate random variable) and comprised of x that are 
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independent across dimensions. Therefore, the adaptation of p to 𝑞 ̂ involves a single 𝜆 ̂that is used 

in all dimensions. The iso-directionality of the scale parameters of p and 𝑞 ̂ can easily be 

generalized, but that is not done so here. It can be argued that anisotropies in realistic f and 𝑿𝔽 

would give rise to non-iso-directional scale parameters, therefore a vector rather than scalar-valued 

𝜆 ̂, but the non-iso-directionality of 𝑞 ̂ and therefore p was not investigated in the present work. 

IV.l Adapting p to 𝒒̂   

The adaptation of p to 𝑞̂  requires timely estimates of  𝑞̂ without which the adaptation of p 

to 𝑞̂ often cannot be achieved. Therefore, before explaining the adaptation of p to 𝑞̂, timely 

estimates of  𝑞̂ are discussed. 

 Effective estimates of 𝑞̂ can be achieved by estimating only the scale parameter of 𝑞̂, 

namely 𝜆.̂ But parameter 𝜆̂ is dependent on x[t] and f[x[t]] and their respective proximity to x* and 

f*. Therefore, 𝜆̂ is time-varying and is written as 𝜆̂[𝑡]. In that case, 𝑞̂ is written as 𝑞̂[𝑡]. Because 

𝜆̂[𝑡], and therefore the shape of 𝑞̂, is time-varying, the adaptation of p to 𝑞̂[𝑡] requires a timely 

estimation of 𝜆̂[𝑡]. Indeed, the benefit of adapting p to 𝑞̂ is that p is made suitable to f in a timely 

manner, in approximate accordance with f[x[t]], rather than in a way that is a compromise with the 

respect to the p that is most suitable for the search overall. Thus, for purposes of adapting p to 𝑞̂, 

methods that rapidly estimate 𝜆̂[𝑡] are more effective than methods that estimate 𝜆̂[𝑡] slowly, 

especially as x[t] approaches x* or f[x[t]] approaches f*. One implementation for estimating 𝜆̂[𝑡] 

is based on a moving-window variance estimator, described immediately below. The 

implementation used in the Pioneer 11 trajectory optimization case use-case is provided in    

Chapter VI.  
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IV.m Estimation of 𝝀̂[𝒕], thereby 𝒒[𝒕]̂ , based on a moving-window variance estimator 

The estimation of 𝜆̂[𝑡] based on a moving-window variance estimator involves taking the 

running variance of the time-series of the x[t] that result in the “acceptance” of                                   

𝝃[t] = (x[t-1] +x) as the new x[t].  However, whereas taking the running variance of a time-series 

requires a history of some length [(t- ) t, the variance of x[t] and therefore the scale parameter 

of 𝜆̂[𝑡] are dependent on f[x[t-1]], 𝑿𝔽 at x[t-1], and x[t-1]. Therefore short-term 𝜆̂[𝑡], meaning 𝜆̂[𝑡] 

estimated over t-1 MBH time-steps, is different from long-term 𝜆̂[𝑡], meaning 𝜆̂[𝑡] estimated over 

t-2 MBH time-steps, for 2 significantly larger than 1. In practice, estimating 𝜆̂[𝑡] as a surrogate 

for  𝑞̂[𝑡] and adapting p to  𝑞̂[𝑡] thereby, are most effective when they are implemented in near-

real time and the width of the temporal sliding window length [(t- ) t is kept narrow.  

However, if f is highly non-convex or non-smooth, the running estimates of the variance 

of time-series of x, therefore 𝜆̂[𝑡], need to be low pass-filtered because a very noisy 𝜆̂[𝑡] may de-

stabilize the algorithm that adapts p to 𝑞̂. That low-pass filter introduces further delay in the 

estimation of 𝑞̂ and therefore to the adaptation of p to 𝑞̂. Thus, there is an engineering trade-off in 

the design of the low-pass filter: Too much low-pass filtering may reduce the effectiveness of 

adapting p to 𝑞̂, especially as x[t] approaches x*, at which time the shape (scale parameter) of 𝑞̂ 

may be changing rapidly and adapting p quickly may provide the most benefit; too little low-pass 

filtering may result in such a noisy 𝜆̂[𝑡] that it makes the adaptation process less stable and 

effective. Fortunately, in practice, the tuning of the low-pass filter is not critical or difficult.  

 An algorithm for adapting p to 𝑞̂ is empirically shown to be highly effective in Figure IV.5 

of this chapter, less effective in Figures IV.10 and IV.12 of this chapter, and highly effective in 

the Pioneer 11 use-case in Chapter VI. Adapting p to 𝑞̂ is not effective on the 1-dimensional 
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example of Gibsonian f shown in Figures III.2 and III.3, but methods that are very effective for 

speeding-up MBH operating on Gibsonian f are provided in Chapter V. 

IV.n Adaption of p to 𝒒̂ after a low-delay estimate of  𝒒̂[𝒕] is formed  

After a low-delay estimate of 𝜆̂[𝑡] is formed according to the first and second the equations 

below, p[t] is controlled according to the third equation below. 

𝜓[𝑡] = 𝜎(𝑦[𝑡 − 𝜏: 𝑡]) for t > 𝜏,  

where y is the collection of x s.t. 𝝃[t] = (x[t-1] +x) was “accepted”; and 𝜎 is the running 

standard deviation of the 𝑦[𝑡 − 𝜏: 𝑡] in the sliding temporal window [𝑡 − 𝜏: 𝑡]. 

𝜆̂[t] = ((1-a)∙(𝜓[𝑡]) +(a∙ 𝜆̂[𝑡 − 1]) 

𝑝[𝑡] = k ∙ ( (1 − 𝑏) ∙ Laplace(0, (c ∙ 𝜆̂[𝑡 − 1])) + (b∙Laplace(0,1) ), 

where k = len(X)/2; Laplace(0,s) is a Laplace distribution of mean = 0 and scale factor = s; and 

len(X) is the span of X in one dimension assuming that all dimensions of X have equal spans or 

that X and f are rescaled so that all rescaled dimensions of X have equal spans. Typically, at least 

one of these two assumptions are true practice. Distribution 𝑝[𝑡] is an additive mixture model 

comprised of two Laplace distributions. The proportionality of the weighting of Laplace 

distribution having the time-varying scale factor, to the Laplace distribution having the fixed scale 

factor, controlled by c, is typically 0.95:0.05. The purpose of the Laplace distribution having the 

fixed scale factor is to assure that long hops have at least a small probability of occurring despite 

the adaptation process. Parameter c controls the gain of the effect of 𝜆̂[𝑡 − 1] . 𝜆̂[𝑡 − 1] is used 

rather than 𝜆̂[𝑡] because the point in each MBH iteration at which 𝑝[𝑡] is calculated and used is 

prior to the calculation of 𝜆̂[𝑡]. 

In practice, the tuning of parameters is not critical except that when the adaptation of p to  

𝑞[𝑡] is applied to an MBH operating on a highly non-convex and or non-smooth f, and/or a highly 
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disconnected, sparse 𝑿𝔽 , the tuning of parameter a can be important. Nonetheless, typically a is 

approximately 0.9 to 0.95 and the user can easily tune a using a small amount of experimentation.  

For the most part, the adaptation of p to 𝑞̂[𝑡] is either very effective in speeding up MBH on a 

given f and 𝑿𝔽 without careful tuning of parameters, or a method provided in Chapter V should be 

used instead or in addition. 

An example of the speed-up of MBH convergence that results from the adaptation of p to 

𝑞̂[𝑡] is illustrated by comparing Figure IV.3 above to Figure IV.5 below. In addition, a similar 

demonstration will be seen in Chapter VI when comparing Figure VI.4 to Figure VI.5. In Figure 

IV.5,  𝑞̂[𝑡] was estimated using 16  concurrent but independent hoppers while the MBH operated 

on f driven by the adaptive p. This raises the question of whether feedback introduced by the way 

in which adaptive p “excited” the “accepted” x differently than was done by the fixed Laplace p, 

and thereby biased the estimate of  𝑞̂[𝑡]. While this was not investigated systematically, it appeared 

not to have any affect in practice to the speed-up of MBH enabled by the adaptation of p to 𝑞̂[𝑡] . 

Note that, whereas in the middle panel of Figure IV.3 where DK-L(p,𝑞̂) was 2.938, DK-L(p,𝑞̂) is now 

0.1969 indicating that p and 𝑞̂ are now much more similar. In the lower panel of Figure IV.5 the 

very tall left-hand side of this Gamma distribution and the fact that most of the probability density 

is now amassed very close to the mode, indicates that convergence was sped-up significantly 

adapting p to 𝑞̂[𝑡].  
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Figure IV.5:  

Upper panel: Globally rugged  f for which 𝑿𝔽 is all of X. 

Middle panel: Histograms of p (orange) adapted to 𝑞[𝑡]̂  (blue) collected from a time-series (shown in the 

lower panel of Figure IV.2) comprised of “accepted” x 

Lower panel: The Gamma distribution fit to the FPTs of 500 independent trials. Compare to the lower panel 

of Figure IV.3.  

 

The effectiveness of adapting p to 𝑞̂[𝑡] can also be demonstrated using the prototypical                 

1-dimensional f  shown in Figure 0.a. First, the histogram of a fixed Gaussian p is shown in order 

to make comparisons of MBH convergence speed when the MBH is operating on a f using a fixed 

Gaussian p, a fixed non-Gaussian p having the histogram shown in Figure II.4, and an adaptive p. 

In order to make comparisons of MBH convergence times given different p, a fixed 

Gaussian p is used along with the fixed non-Gaussian p having the histogram depicted in Figure 

II.4, as well as (by definition) f-specific adaptive p. Figure IV.6 depicts the histogram of the fixed 

Gaussian p. 
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Figure IV.6: Histogram of fixed Gaussian p 

 

 

Figure IV.7 below shows, in the top panel, prototypical f for which 𝑿𝔽 is all of X, upon 

which MBH operated using the fixed Gaussian p illustrated in Figure IV.6; in the middle panel,  

f[x[t,n]] indicating the progress of the MBH in 48 independent trials; and, in the lower panel, a 

Gamma distribution fit to the 2,500 FPTs as their FPTD. A maximum of 50,000 MBH time-steps 

per trial was used to assure the convergence of every trial because MBH operating on 

prototypical f  using fixed Gaussian p is inherently slower than MBH operating on prototypical f  

using fixed non-Gaussian p. In Figure IV.7 it is evident that all 48 trials shown converged to the 

global minimum within 1,600 MBH time-steps 
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Figure IV.7:  

Upper panel: Prototypical f for which 𝑿𝔽 is all of X, upon which MBH operated using the fixed Gaussian 

p illustrated in Figure IV.6. 

Middle panel: f[x[t,n]] for t being the first 2,000 of 50,000 MBH time-steps, n being the first 48 of 2,500 

trials.  

Bottom panel: (,) fit as the FPTD of the 2,500 FPTs 

 

Figure IV.8 below shows, in the top panel, prototypical f for which 𝑿𝔽 is all of X, upon 

which MBH operated using the fixed non-Gaussian p illustrated in Figure II.4; in the middle 

panel,  f[x[t,n]] indicating the progress of the MBH in 48 independent trials; and, in the lower 

panel, a Gamma distribution fit to the 2,500 FPTs as their FPTD. A maximum of 50,000 MBH 

time-steps per trial was used to assure the convergence of every trial because MBH operating on 

prototypical f  using fixed Gaussian p is inherently slower than MBH operating on prototypical f  

using fixed non-Gaussian p. In Figure IV.8 it is evident that all 48 trials shown converged to the 

global minimum within 650 MBH time-steps (as opposed to in Figure IV.8 using a fixed 

Gauusian p, which required 1,600 MBH time-steps on the same f).  
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Figure IV.8:  

Upper panel: Prototypical f for which 𝑿𝔽 is all of X, upon which MBH operated using the fixed non-

Gaussian p illustrated in Figure II.4. 

Middle panel: f[x[t,n]] for t being the first 2,000 of 10,000 MBH time-steps, n being the first 48 of 2,500 

trials  

Bottom panel: (,  ) fit as the FPTD of the 2,500 FPTs 

 

Figure IV.9 below shows, in the top panel, prototypical f for which 𝑿𝔽 is all of X, upon 

which MBH operated using adaptive p; in the middle panel,  f[x[t,n]] indicating the progress of the 

MBH in 48 independent trials; and, in the lower panel, a Gamma distribution fit to the 2,500 FPTs 

as their FPTD. A maximum of 50,000 MBH time-steps per trial was used to assure the convergence 

of every trial because MBH operating on prototypical f  using fixed Gaussian p is inherently slower 

than MBH operating on prototypical f  using fixed non-Gaussian p. In Figure IV.9 it is evident that 

all 48 trials shown converged to the global minimum within 650 MBH time-steps, and all but 3 of 

the 48 trials converged within 300 MBH time-steps. The improvement between the use of fixed 

non-Gaussian p and adaptive p is evident in the scale parameter theta of the Gamma-fit for the 
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adaptive p (211.95) vs. fixed non-Gaussian p (481.65). The large improvement between the result 

of using fixed Gaussian p (Figure IV.6), compared to both fixed non-Gaussian p (Figure II.4) and 

adaptive p, indicates that Gaussian p is a poor shape choice for an MBH operating on textured 

prototypical f  having a disconnected, sparse feasible domain. 

 

Figure IV.9:  

Upper panel: Prototypical f for which 𝑿𝔽 is all of X, upon which MBH operated using adaptive p 

Middle panel: f[x[t,n]] for t being the first 2,000 of 10,000 MBH time-steps, n being the first 48 of 2,500 

trials 

Bottom panel: (,  ) fit as the FPTD of the 2,500 FPTs 

 

Likewise, the effectiveness of a well-chosen p, or adapting p to 𝑞̂[𝑡], when the MBH is 

operating on the 1-dmensional example of textured prototypical f with a disconnected and sparse 

feasible domain is illustrated below. 
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Figure IV.10:  

Upper panel: Textured prototypical f  having a disconnected and sparse feasible domain, upon which MBH 

operated using the fixed Gaussian p illustrated in Figure IV.6 

Middle panel: f[x[t,n]] for t being the first 2,000 of 50,000 MBH time-steps, n being the first 48 of 2500 

trials  

Bottom panel: (,  ) fit as the FPTD of the 2,500 FPTs 
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Figure IV.11:  

Upper panel: Textured prototypical f  having a disconnected and sparse feasible domain, upon which MBH 

operated using the fixed non-Gaussian p illustrated in Figure II.4 

Middle panel: f[x[t,n]] for t being the first 2,000 of 10,000 MBH time-steps, n being the first 48 of 2500 

trials  

Bottom panel: (,  ) fit as the FPTD of the 2,500 FPTs 
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Figure IV.12:  

Upper panel: Textured prototypical f  having a disconnected and sparse feasible domain, upon which MBH 

operated using adaptive p  

Middle panel: f[x[t,n]] for t being the first 2,000 of 10,000 MBH time-steps, n being the first 48 of 2500 

trials   

Bottom panel: (,  ) fit as the FPTD of the 2,500 FPTs 

 

Finally, it can be shown that when the MBH is operating on the 1-dimensional example of 

Gibsonian f, using a well-chosen p or adapting p to 𝑞[𝑡]̂ , does not by itself speed-up the MBH 

effectively.  That is because, when operating on Gibsonian f, regardless of the shape of p, the 

probability of x[t] being and remaining within the wide basin containing the local minimum is 

much higher than the probability of x[t] being within or hopping to the narrow, distant basin 

containing the global minimum. Therefore, at each MBH time-step, the probability of drawing an 

x that will cause x[t] find its way into the narrow basin and then travel down to f* is small. The 

reason that adaptive p is particularly ineffective in speeding-up MBH operating on Gibsonian f is 

that the wide, smooth, locally convex basin containing the nearly as deep local minimum causes 
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faulty (mis-timed) estimates of the scale parameter of 𝑞̂[𝑡] and, as a result, a mal-adaption of p[t] 

to 𝑞̂[𝑡].  

However, the ineffectiveness of speeding up an MBH operating on the 1-dimensional 

example of Gibsonian by biasing the shape of the hop length distribution p motivates Chapter V 

where a different method for speeding up MBH convergence on Gibsonian f is shown to be highly 

effective. 

IV.o The special case of adapting p to 𝒒̂ when minglobal(f) is known to be small and non-

negative 

In many applications the physics of the problem are such f[x[0]] for almost any randomly 

chosen x[0] in 𝑿𝔽is large but minglobal(f) is known to be small and non-negative (e.g., when f is 

energy or the sum or integral of change in velocity corresponding to the consumption of 

propellant). In such cases, the adaptation of p to 𝑞̂ can be simplified as follows: Assume the 

existence of a distribution q such that x ~ q. 𝑞̂[𝑡] is estimable from the x[t]. As in sections IV.m 

and IV.n, the goal is to match the scale parameter of adapted p[t] to the scale parameter of 𝑞̂[𝑡], 

but in this case one can use f[x[i,t]] of i = 1, 2, 3, …, I concurrent hoppers (whether they are 

operating independently or cooperating in a manner that will be described as Multiple 

Communicating Hoppers in Chapter V). I  > 1 hoppers are used simply to establish needed statistics 

regarding f[x[i,t]].  I  > 4 is used to reduce the variance in the needed statistics. In most applications,  

I > 16 is unnecessary. This case of adapting p to 𝑞̂ applies to, and was employed in, the use-case 

in Chapter VI.  

Mean(f[:,t]), where : is across the i concurrent hoppers, is their mean incumbent value of f 

at MBH time-step t. Max(f[:,t]), where : is across the i concurrent hoppers, is their max incumbent 

value of  f at MBH time-step t. Max(f[:,0]), where : is across the i concurrent hoppers, is their max 
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initial incumbent value of f at initial MBH time-step t0. s[t] = mean(f [x[:,t-1]])/max(f [x[:,0]]);  

s[t] → 𝜀 as mean(f [x[:,t]]) → min(f ). [t] = (a∙s[t])+((1-a)∙1.0); where a ≅ 0.8 and a<1 minimizes 

Prob(detrimental adaptation process) by assuring that the scale parameter of the distribution 

generating the hops never goes to zero. p
 
[t] = 𝑝ℷ(0, [t]) where 𝑝ℷ(0, [t]) is the non-Gaussian 

distribution illustrated in Figure II.4 but with variable scale parameter [t]. Figures IV.13, IV.14, 

and IV.15 illustrate the use of this special case of the adaptation of p to 𝑞̂. Figure IV.13 shows 

MBH operating on an f using a fixed Laplace(0,1) p that is not similar to 𝑞̂. Figure IV.14 shows 

MBH operating on the same f using a fixed 𝑝ℷ (fixed in the sense that  in 𝑝ℷ(0, ) is time-

invariant). Figure IV.15 shows MBH operating on the same f using 𝑝ℷ(0, [t]) adapted to 𝑞̂[𝑡], 

where [t] was generated as described above. In Figure IV.15, 16 independent hoppers are used (I 

= 16). 
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Figure IV.13:  

Upper panel: f  upon which MBH operated using a fixed Laplace(0,1) p  

Second panel: DK-L(p,𝑞̂) where 𝑞̂ is written as q only because of limitations in graphics fonts 

Third panel: f[x[t,n]] for t being 5000 MBH time-steps, n being every 10th of 100 trials  

Bottom panel: (,  ) fit as the FPTD of the 100 FPTs 
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Figure IV.14:  

Upper panel: f  upon which MBH operated using a fixed 𝑝ℷ 

Second panel: DK-L(p,𝑞̂) where 𝑞̂ is written as q only because of limitations in graphics fonts 

Third panel: f[x[t,n]] for t being 5000 MBH time-steps, n being every 10th of 100 trials  

Bottom panel: (,  ) fit as the FPTD of the 100 FPTs 
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Figure IV.15:  

Upper panel: f  upon which MBH operated using 𝑝ℷ(0, [t]) adapted to 𝑞̂[𝑡] 

Second panel: DK-L(p,𝑞̂) where 𝑞̂ is written as q only because of limitations in graphics fonts 

Third panel: f[x[t,n]] for t being 5000 MBH time-steps, n being every 10th of 100 trials  

Bottom panel: (,  ) fit as the FPTD of the 100 FPTs 

 

IV.p Chapter Summary 

The central theme of this chapter is that whereas p, the distribution from which the x are 

drawn, is chosen or designed by the MBH engineer, or is shape-adapted by a method described in 

this chapter, distribution q, which is comprised of x that caused candidate hops [t] to be accepted 

as the next incumbent hop x[t], is a property of f , 𝑿𝔽  and the path x[0:t-1]. Therefore, while p is 

known by construction, q is an abstraction. At best, an approximation to q, namely 𝑞̂ can be 

estimated using a Monte Carlo method. However, this chapter has shown that to the extent that the 

shape of p is similar to q as measured by the Kullback-Leibler divergence DK-L(p, 𝑞̂), the 

convergence of the MBH operating on an f and 𝑿𝔽  will be sped-up. Moreover, it was explained 

that 𝑞̂ is time-varying and so any choice or design of a fixed p is at best a compromise. With that 
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in mind, a method for adapting p to 𝑞̂ is provided as a way of making the shape of p similar to the 

shape of 𝑞̂[𝑡] and thereby speed-up the convergence of MBH. The limited effectiveness in 

speeding-up MBH on very poorly-behaved f by (or only by) biasing the shape of the hop length 

distribution q motivates Chapter V where other highly effective methods for speeding-up MBH 

operating on very poorly-behaved f  – including Gibsonian f – are  provided.  

IV.q Answers to the three questions with which this chapter began, and the tools used  

This chapter began with three questions. In order to answer these questions, new tools were 

added to the analytic framework. The following table lists each of the three questions, summarizes 

their answers, and lists the concepts and tools that were added to the analytical framework to 

develop those answers. 
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TABLE I 

Question Answer Concept or tool used 

Given an f and 𝑿𝔽, what is the 

impact of the shape of 

distribution p on the MBH 

convergence time? 

Empirically, it has been shown that  

that the shape of p directly impacts 

the expected efficiency of the 

MBH search and therefore the 

MBH convergence time. This was 

first reported in Englander and 

Englander (2014). Intuitively, it is 

understandable that p must provide 

a sufficient number of long hop 

distances in order to escape from 

basins containing a local minimum 

but not the global minimum, and 

short hop distances in order to 

converge to the global minimum as 

the MBH approaches it. The 

formalization of that intuition 

requires Questions and Answers 2 

and 3, and Appendix C. 

Expected MBH search 

efficiency as defined in this 

chapter 

For a set of f and 𝑿𝔽, e.g., 

some appropriately defined 

equivalence class                    

𝒞 ≡ {(𝑓𝑖,𝑿𝑖
𝔽)} that have 

similar local minima structure, 

is there a p that is universal in 

the sense that its use results in 

faster convergence on all 

(𝑓𝑖, 𝑿𝑖
𝔽) ⊂ 𝒞 compared to 

different p? 

Yes. An iso-directional p having a 

zero mean, a very tall mid-section 

(“head”) at its mean, and very 

long, thin tails, is effective for a 

wide range of f and especially for f 

that is non-convex and/or non-

smooth, and/or if  𝑿𝔽 is 

disconnected and sparse 

• Conjecture of the existence 

of distribution q 

• Estimate 𝑞̂ 

• DK-L(p, 𝑞̂) as a measure of 

similarity between p and 𝑞̂ 

• MBH FPTs and fitting  of 

FPTs to Gamma to FPTs as 

their (as MBH FPTDs) 

• Use of FPTDs to measure 

the speed-up of MBH that 

is achieved by making p is 

similar to 𝑞̂ 

Given a particular unknown f 

and 𝑿𝔽, is there a method for 

adaptively shaping p so that 

MBH convergence can be 

sped-up? 

Yes. The adaptation of p to 𝑞̂[𝑡]  • Timely estimate of 𝑞̂[𝑡]  

• Methods for adapting p to 

𝑞̂[𝑡] and assumptions made 

in constructing those 

methods 
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V. ACCELERATING MBH CONVERGENCE BY BIASING THE                                      

“HOP FROM” LOCATION 

This chapter is complementary to Chapter IV both conceptually and practically. It is 

complementary in concept by addressing the speed-up of MBH by biasing the “hop from” location 

rather than the biasing the shape of the distribution from which incremental hop distances are 

drawn. Like the methods provided in Chapter IV, the methods provided here are novel. 

The methods described in this chapter speed-up the MBH by accelerating the descent of 

f[x[t]] into g[d], the bottom of which is f*, regardless of whether the search drives x[t] further way 

from x* in the short-term. This chapter is complementary in practice by providing MBH speed-up 

methods that are highly effective on poorly-behaved f  for which the speed-up methods in Chapter 

IV were shown to be minimally effective or ineffective – the most dramatic example being the 

case of Gibsonian f. 

V.1 Primary theme of this chapter 

The primary theme of this chapter is: Speeding-up the descent of f[x[t]] = d into g[d], 

regardless of whether the descent is sped-up into a basin containing a local minimum or the basin 

containing the global minimum, speeds-up the convergence to the global minimum. This is 

accomplished by a two-layer search process in which the inner layer seeks to descend more deeply 

into g[d] into some basin within every MBH time-step. 

The reason this is effective is that the MBH algorithm prevents f[x[t]] from increasing, 

therefore the descent of  f[x[t]] = d into g[d] is a non-increasing process. Therefore, the faster the 

MBH descends even into a “wrong” basin, i.e., a basin that contains a local minimum but not the 

global minimum, and which is necessarily less deep than the basin containing the global minimum, 
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the lower the probability that the MBH will remain in the wrong basin.  Appendix C provides 

analytical as well as geometrically constructed support for this assertion. 

The methods described in this chapter can be used in combination with the methods 

provided in Chapter IV. One such combination is demonstrated in the use-case described in 

Chapter VI. Further, evidence in this chapter, Chapter IV and Chapter V shows that MBHs 

operating on different f and 𝑿𝔽 respond differently to different speed-up methods. Further, that 

suggests that response to speed-up methods may be a way for an on-going MBH to autonomously 

characterize and classify the f and 𝑿𝔽 upon which it is operating. That open question is taken up 

in Chapter VII after the supporting evidence has been presented.   

This chapter provides two methods for speeding-up MBH by biasing the “hop from” 

location: Stochastic Constrained Local Search (SCLS) and Multiple Communicating Hoppers 

(MCH). Both provide an inner layer to the basic MBH algorithm (per Chapter II) during each 

MBH time-step. SCLS provides opportunities for improvement to [t] and thereby f[[t]]], and 

MCH provides opportunities improvement to x[t-1] and thereby f[x[t-1]]], before the test of 

whether f[[t]]] < f[x[t-1]]] is applied in order to determine whether x[t] be will set equal to [t] or 

remain equal to x[t-1], and f[x[t]] will be  set equal to f[[t]] or remain equal to f[x[t-1]]. 

Because Chapter IV ended with clear evidence that the methods of Chapter IV, biasing the 

shape of the distribution from which incremental hop distances are drawn, are ineffective on 

Gibsonian f, whereas SCLS is highly effective on Gibsonian f, this chapter begins with SCLS. 

V.2 Stochastic Constrained Local Search (SCLS) 

Before presenting the SCLS algorithm incorporated into the basic MBH algorithm, and 

then showing its effectives on Gibsonian f , and on textured prototypical f having a disconnected, 

sparse feasible domain, some historical context is helpful. Recall from Chapter I that early MBH 
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researchers and users believed that some form of local search needed to be incorporated into MBH 

when working on problems for which f is globally non-convex but convex in small local 

neighborhoods. The idea was that the combination of some form of local search and global random 

search could produce a set of “putative” global minima that could be later compared to determine 

which is actually the global minimum. There was no understanding that incorporating some form 

of local search into global random search could speed-up an MBH directly to the global minimum. 

To the present author’s knowledge, the first MBH incorporation of deterministic local search into 

global random search specifically for the purpose of accelerating MBH directly to the global 

minimum was Jacob Englander, with improvements later made by Ellison and Ozemik [8, 9]. Their 

applications involved high-dimensional spacecraft trajectory optimization problems, and their 

local search method involved a deterministic gradient search method using a Non-linear 

Programming NLP solver named Sparse Nonlinear OPTimizer (SNOPT) [56].  That method has 

many issues and challenges that are summarized in the table at the end of this chapter, in which it 

is referred by the present author as Deterministic Constrained Local Search (DCLS). DCLS 

frequently generates singularities or otherwise fails numerically when it is operating in a 

neighborhood of X in which f is too flat or too rough, and it provides little benefit when 𝑿𝔽 is 

severely disconnected and sparse. As a result, DCLS fails to provide any benefit during many 

MBH time-steps and wastes a great deal of CPU execution time depending upon the failure rates 

and modes that are dependent upon f and 𝑿𝔽.  

Despite the drawbacks of  DCLS, Englander and Ellison found by experimentation that 

they could not solve their MBH application problems in allowable time without using it [57]. They 

did not investigate why it made the difference between application “success” or failure” within 

allowable time, why it worked despite failing during a majority of MBH time-steps, or whether a 
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stochastic version might be an improvement. Those topics are addressed in this chapter. They did 

make important contributions to their use of SNOPT, and through their close relationship with the 

SNOPT development, to SNOPT itself. 

SCLS was developed by the present author as a way of achieving some of the benefits of 

DCLS without its liabilities. 

In order to benefit from a close proximity to evidence in Chapter IV that biasing the shape 

of the distribution from which incremental hop distances are drawn is ineffective on Gibsonian f, 

the application of SCLS to Gibsonian f is presented here, before the algorithm is defined and then 

applied to textured prototypical f over a disconnected, sparse domain. Figure V.1 depicts 

Gibsonian f upon which MBH operated using fixed non-Gaussian p and SCLS for which a 

maximum of 32 local steps per MBH time-step was allowed. Note that the speed-up of 

convergence provided by SCLS enables f[x[t,n]] for Gibsonian f to be plotted on a horizontal axis 

in the range of [0, 2000] as was with prototypical f, such as in Figures II.5, II.6 and II.7, rather 

than [0,650000] used in Figure III.3. Also note in Figure V.1 that in all of the 48 trials, the MBH 

quickly found the local minimum in the wide basin that is not the global minimum in the narrow 

basin and found the global minimum in many of the 48 trials but not all of them. Then note that in 

Figure V.2 that, not only plotted on a horizontal axis [0, 2000], but also, in all of the 48 trials, the 

MBH quickly found the local minimum in the wide basin that is not the global minimum in the 

narrow basin – and found the global minimum in all of them before MBH time-step 2,000. 

Compare this to Figure II.3 in which, without SCLS, convergence to the lobal minimum required 

hundreds of thousands of MBH times-steps, and for one trial, 500,000. Finally, note that Figure 

V.3 is not only plotted on a horizontal axis [0, 2000], but also, in all of the 48 trials, the MBH 
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quickly found the local minimum in the wide basin that is not the global minimum in the narrow 

basin – and found the global minimum in all of them before MBH time-step 1,000. 

 

 

Figure V.1:  

Upper panel: Gibsonian f upon which MBH operated using fixed non-Gaussian p and SCLS for which a 

maximum of 32 local steps per MBH time-step was allowed 

Middle panel: f[x[t,n]] for t being the first 2,000 of 10,000 MBH time-steps, n being the first 48 of 1000 

trials.  

Bottom panel: (,  ) fit as the FPTD of the 1,000 FPTs. 
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Figure V.2:  

Upper panel: Gibsonian f upon which MBH operated using fixed non-Gaussian p and SCLS for which a 

maximum of 64 local steps per MBH time-step was allowed 

Middle panel: f[x[t,n]] for t being the first 2,000 of 10,000 MBH time-steps, n being the first 48 of 1,000 

trials.  

Bottom panel: (,  ) fit as the FPTD of the 1,000 FPTs. 
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Figure V.3:  

Upper panel: Gibsonian f upon which MBH operated using fixed non-Gaussian p and SCLS for which a 

maximum of 96 local steps per MBH time-step was allowed  

Middle panel: f[x[t,n]] for t being the first 2,000 of 10,000 MBH time-steps, n being the first 48 of 1,000 

trials  

Bottom panel: (,  ) fit as the FPTD of the 1,000 FPTs 

 

SCLS is a stochastic version of DCLS that is related to the work of Robbins and Munro in 

that it retains the notion of the gradient descent (in this case stochastic gradient descent) except 

that the number of allowable local search steps is limited, forcing the stochastic gradient descent 

to be on a tether of a prescribed length [58, 59, 60, 61]. SCLS is related to the work of  Robbins 

and Monro, as well as Kiefer and Wolfowitz, in that SCLS entails (in this case local) convex 

optimization. However, in the present work, stochastic gradient descent is used only as an inner-

layer of constrained local search within an otherwise random search for a global minimum of a 

non-convex objective function.  
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The MBH algorithm incorporating SCLS is specified as follows: 

1. At every MBH time-step t, 𝒙[t-1] was defined by the previous time-step t-1 and was 

necessarily in 𝑿𝔽. Likewise, 𝑓[𝒙[t-1]] was evaluated in the previous time-step t-1. 

2. Then, within the current MBH time-step t, draw 𝒙  ~ p and generate [t] = (𝒙[t] + 𝒙). 

3. For j = 1, 2, 3, …, J where J is the number of potential sub-time-step allowed: 

a. [t] = ([t] + x) if f[([t] + x)] < f[([t])], otherwise [t] = [t].  

4. Determine whether [t] is the feasible subspace 𝑿𝔽 of X. If it is not, draw another 𝒙 and, 

thereby, form another [t].  

5. Evaluate 𝑓[[t]] and compare 𝑓[[t]] to 𝑓[𝒙[t]]. 

6. If 𝑓[[t]] < 𝑓[𝒙[t]], then replace 𝑓[𝒙[t]] with 𝑓[[t]] and 𝒙[t] with [t]. If 

𝑓[[t]] ≥ 𝑓[𝒙[t]], then 𝑓[𝒙[t]] and 𝒙[t] remain unchanged. 

7. Advance the iteration counter t and return to Step 1. 

Regarding step 3.a: [t] is a constrained conditional random walk that stochastically 

attempts to descend the downward local gradient around (𝒙[t] + 𝒙). The range in X of that 

constrained conditional random walk is dependent on the scale factor of the distribution from 

which the x are drawn, namely 𝑝𝛅𝒙 , and on J. The scale parameter of 𝑝𝛅𝒙  is chosen to be small 

and J is chosen to be a large as possible without adversely impacting the CPU time that is added 

by the use of SCLS. Distribution 𝑝𝛅𝒙 is not the same as distribution 𝑝𝚫𝒙. Distribution 𝑝𝛅𝒙 has a 

small scale parameter and does not need to have a narrow mid-section or long-tails because the 

search (conditional random walk) that it drives is highly local. Simulation evidence indicates that 

the speed-up of MBH due to the use of SCLS is not sensitive to the shape of 𝑝𝛅𝒙. However, that 

warrants further investigation. In contrast to DCLS, if  f is severely non-smooth or flat in the local 

neighborhood around (𝒙[t] + 𝒙), SCLS may not provide any benefit, however the amount of time 
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it will waste is bounded by J. Further, the amount of time wasted is consistent and not aggravated 

by numerical complications such as singularities of matrices that cannot be inverted and the error 

messages and recovery mechanisms that such pathologies involve. 

By comparing the specification above to the specification of MBH in Chapter II, one can 

see that SCLS is not difficult to implement. The effectiveness of SCLS on Gibsonian f was 

illustrated in Figures V.1, V.2 and V.3 above. Its effectiveness on textured f having a disconnected, 

sparse feasible domain is illustrated in Figures V.4, V.5, V6 and V.7 below. The texture used often 

poses challenges to DCLS. 
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Figure V.4:  

Upper panel: Textured prototypical f having a disconnected and sparse domain, upon which MBH 

operated using fixed non-Gaussian p and SCLS in which a maximum of 16 local steps per MBH time-step 

was allowed  

Middle panel: f[x[t,n]] for t being the first 2,000 of 10,000 MBH time-steps, n being the first 48 of 1,000 

trials  

Bottom panel: (,) fit as the FPTD of the 1,000 FPTs. 
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Figure V.5:  

Upper panel: Textured prototypical f having a disconnected and sparse domain upon which MBH 

operated using fixed non-Gaussian p and SCLS for which a maximum of 32 local steps per MBH time-

step was allowed  

Middle panel: f[x[t,n]] for t being the first 2,000 of 10,000 MBH time-steps, n being the first 48 of 1,000 

trials  

Bottom panel: (,  ) fit as the FPTD of the 1,000 FPTs. 
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Figure V.6:  

Upper panel: Textured prototypical f having a disconnected, sparse domain upon which MBH operated 

using fixed non-Gaussian p and SCLS for which a maximum of 64 local steps per MBH time-step was 

allowed 

Middle panel: f[x[t,n]] for t being the first 2,000 of 10,000 MBH time-steps, n being the first 48 of 1,000 

trials  

Bottom panel: (, ) fit as the FPTD of the 1,000 FPTs. 
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Figure V.7:  

Upper panel: Textured prototypical f having a disconnected and sparse domain upon which MBH 

operated using fixed non-Gaussian p and SCLS for which a maximum of 96 local steps per MBH time-

step was allowed  

Middle panel: f[x[t,n]] for t being the first 2,000 of 10,000 MBH time-steps, n being the first 48 of 1,000 

trials  

Bottom panel: (, ) fit as the FPTD of the 1,000 FPTs. 

 

By comparing the sequence of Figures V.4, V.5,  V.6 and V.7, it is apparent that increasing 

the number of allowable local steps per MBH  time-step does not make a significant difference for 

an MBH operating on textured f having a disconnected, sparse domain when fixed non-Gaussian 

p is used. Further, by comparing the sequence of Figures V.1, V.2 and  V.3, to the sequence of 

Figures V.4, V.5,  V.6 and V.7, it is apparent that MBH operating on different f respond differently 

to the same speed-up method. Here, the MBH operating on Gibsonian f continues to benefit 

significantly by increasing the number of  allowable local SCLS hops per MBH time-step when 

using fixed non-Gaussian p, whereas the MBH operating on textured f  having a disconnected, 

sparse domain does not.  
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V.3 Multiple Communicating Hoppers (MCH) 

MCH is used in the Pioneer 11 trajectory optimization use-case described in Chapter VI. 

MCH involves M = {1, 2, 3, …} simultaneous hoppers. The notation for specifying it requires 

that 𝒙[t-1] be rewritten as  𝒙[t-1,m] = 𝒙[t-1,ℵ] ∀ 𝑚,  where ℵ is the “best” x found by the collection 

of M hoppers at time-step t-1 and “best” is defined as the most  f-minimizing 𝒙[t-1,m]. Then,   

𝝃[t,m] = (𝒙[t-1,ℵ]  + x) and x[t,m] is set equal to 𝝃[t,m] ∀ 𝑚 if and only if 𝑓[𝝃[t,m]] < f[𝒙[t-1,𝑚]] 

meaning  f[(𝒙[t-1,ℵ]  + x)] <  f[𝒙[t-1,ℵ]]. For a single-CPU machine, increasing M increases the 

speed-up of MBH convergence measured in MBH time-steps. Empirical results suggest that 8 < 

M < 16 and consumes little additional CPU time compared to smaller choices of M, choosing M 

larger than 32 increases the CPU time required per MBH time-step to an extent that is undesirable. 

Just as SCLS is related to the work of  Robbins and Monro, as well as Kiefer and 

Wolfowitz, which is a valid comparison because SCLS entails (in this case local) convex 

optimization, MCH is related to the work of Spall [62] as a form of multi-agent (in this case local) 

convex optimization . However, as in the case of the relationship between SCLS and the work of  

Robbins and Monro, as well as Kiefer and Wolfowitz, in the present work, MCH is different from 

the work of Spall in that MCH is only as an inner-layer within an otherwise random search for a 

global minimum of a non-convex objective function.  
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The MBH algorithm incorporating MCH is specified below: 

1. At every MBH time-step t, 𝒙[t-1,m] = 𝒙[t-1,ℵ] ∀ 𝑚 was defined in the previous time-step, 

where ℵ is the “best” x found by the collection of M hoppers at time-step t-1 and “best” is 

defined as the most f-minimizing 𝒙[t-1,m]. 𝒙[t-1,ℵ] was necessarily in 𝑿𝔽. Likewise, 

𝑓[𝒙[t-1,ℵ]] was evaluated at the previous time-step. 

2. Then, within the current time-step t, for multiple M simultaneous hoppers                      

{1, 2, 3, …, m}:  

a. Draw 𝒙[𝑚]  ~ p and form [t,m] = (𝒙[t-1,ℵ] + 𝒙[𝑚])   

b. Test whether [t,m] ⊂ 𝑿𝔽. If [t,m] ⊄ 𝑿𝔽, draw a different 𝒙[𝑚]  ~ p and form 

[t,m] as many times as is necessary to form [t,m] ∈ 𝑿𝔽 

c. Evaluate f[[t,m]] 

d. Test whether f[[t,m]] < f[𝒙[t-1,ℵ]] 

e. If f[[t,m]] < f[𝒙[t-1,ℵ]] then set x[t,m] = [t,m]. Otherwise set x[t,m] = 𝒙[t-1,ℵ] 

3. At the end of time-step t, compare f[[t,:]] where : is across all m ∈ M. Label 

argminm(f[x[t,m]]) as mbest 

4. For multiple M simultaneous hoppers {1, 2, 3, …, m}:  

a. If m is not mbest, set  x[t,m] = x[t, mbest] and f[x[t,m]] = f[x[t, mbest]] 

5. Advance the iteration counter t and return to Step 1. 

The speed-up of MBH by MCH is illustrated in Figures V.8 through V.16 below and in 

Chapter VI where MCH was applied to the Pioneer 11 trajectory optimization use-case. In Figures 

V.8 through V.11, the effectiveness of MCH on a 2-dimensional f  that is Gibsonian when projected 

onto an axis that is diagonal to the x and y axes in the sense of being the linear combination of 

equal x and y components. For brevity, this  f is referred to loosely as 2-dimensional Gibsonian  f. 
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Figure V.8 shows the heatmap of  f. Figure V.9 shows the convergence speed when no MCH is 

used. Figure V.10 shows the convergence speed when MCH is applied using 4 simultaneous 

hoppers. Figure V.11 shows the convergence speed when MCH is applied using 8 simultaneous 

hoppers. In Figure V.9, all trials converge to the global minimum, and the last trial to converge 

required approximately 2,250,000 MBH time-steps. In Figure V.10, all trials converge to the 

global minimum, and the last trial to converge required approximately 600,000 MBH time-steps. 

In Figure V.11, all trials converge to the global minimum, and the last trial to converge required 

approximately 300,000 rather than or 2,500,000 or even 600,000 MBH time-steps. It is noteworthy 

that, in this case,  f is 2-dimensional and while the speed-up due to MCH is approximately linear 

with respect to the number M of MCH hoppers used, it is independent of dimensionality. The cost 

of using MCH on a low dimensional problem is roughly the same as the cost of using MCH on a 

high dimensional problem. This is very different from SCLS, where the computational cost 

increases as a power of dimensionality. Moreover, code being developed to implement MCH in 

real engineering settings queries the hardware as to the number of parallelizable CPUs available, 

and automatically parallelizes the MCH operations accordingly, thereby further increasing the 

speed-up achieved by MCH.  
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Figure V.8: Heatmap of a 2-dimensional Gibsonian f. Blue indicates the lowest values of f. Red indicates 

high values of f. Yellow indicates intermediate values of f. 
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Figure V.9: Convergence performance of MBH operating on 2-dimensional Gibsonian f  using                

2-dimensional fixed non-Gaussian p that generated i.i.d incremental hop distances, no SCLS, and no 

MCH.  

Upper panel: f[x[t,n],y[t,n]] for t being each of 3,200,000 MBH time-steps, n being the first 48 of 100 

trials  

Bottom panel: (,  ) fit as the FPTD of the 100 FPTs 

  



   

94 

 

Figure V.10: Convergence performance of MBH operating on 2-dimensional Gibsonian f using 2-

dimensional fixed non-Gaussian p that generated i.i.d incremental hop distances, no SCLS, but MCH with 

4 simultaneous communicating hoppers.  

Upper panel: f[x[t,n],y[t,n]] for t being each of 3,200,000 MBH time-steps, n being the first 48 of 100 

trials  

Bottom panel: (,  ) fit as the FPTD of the 100 FPTs. 
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Figure V.11: Convergence performance of MBH operating on 2-dimensional Gibsonian f using 2-

dimensional fixed non-Gaussian p that generated i.i.d incremental hop distances, no SCLS, but MCH with 

8 simultaneous communicating hoppers.  

Upper panel: f[x[t,n],y[t,n]] for t being each of 3,200,000 MBH time-steps, n being the first 48 of 100 

trials  

Bottom panel: (,  ) fit as the FPTD of the 100 FPTs 

 

In Figures V.12, V.13 and V.14, the effectiveness of MCH on 1-dimensional prototypical 

f, for which 𝑿𝔽 is the entirety of X, is illustrated.  
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Figure V.12:  

Upper panel: Prototypical f for which 𝑿𝔽is the entirety of X. The light brown horizontal line passes through 

maximum feasible f   

Middle panel: f[x[t,n]] for t being each of 2,000 MBH time-steps, n being the first 48 of 100 trials , using 

2 MCH and fixed non-Gaussian p having the histogram shown in Figure II.4  

Bottom panel: (,  ) fit as the FPTD of the 1,000 FPTs. 
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Figure V.13:  

Upper panel: Prototypical f for which 𝑿𝔽 is the entirety of X.  The light brown horizontal line passes through 

maximum feasible f 

Middle panel: f[x[t,n]] for t being each of 2,000 MBH time-steps, n being the first 48 of 100 trials , using 

6 MCH and fixed non-Gaussian p having the histogram shown in Figure II.4  

Bottom panel: (,  ) fit as the FPTD of the 1,000 FPTs. 

 

The effectiveness of MCH on prototypical f with a disconnected sparse feasible domain, 

and on textured prototypical f with a disconnected sparse feasible domain, is similar but weaker 

than it is on prototypical f for which 𝑿𝔽 is the entirety of X. That can be seen in Figures V.14 and 

through V.16. In Figure V.14, it is apparent that by using 12 MCH hoppers, in the middle panel 

all of 48 trials converged within the first 125 MBH time-steps, and in the lower panel the height 

of the Gamma-fit FPTD does not even fit on the standard y-axis used on other charts. In Figure 

V.15, it is apparent that using 12 MCH hoppers, in the middle panel a few of the 48 trials do not 

converge within the first 2,000 MBH time-steps, and in the lower panel the height of the Gamma-

fit FPTD does not extend much higher than the upper limit of the y-axis. In Figure V.16, it is 
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apparent that by using 12 MCH hoppers, in the middle panel many of the 48 trials do not converge 

within the first 2,000 MBH time-steps, and in the lower panel the height of the Gamma-fit FPTD 

does not reach the upper limit of the y-axis. 

 

Figure V.14:  

Upper panel:  Prototypical f for which 𝑿𝔽 is the entirety of X upon which MBH operated using fixed non-

Gaussian p and 12 MCH hoppers. The light brown horizontal line passes through maximum feasible f.   

Middle panel: f[x[t,n]] for t being each of 2,000 MBH time-steps, n being the first 48 of 100 trials , using 

12 MCH and fixed non-Gaussian p having the histogram shown in Figure II.4  

Bottom panel: (, ) fit as the FPTD of the 1,000 FPTs. 
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Figure V.15:  

Upper panel: Prototypical f having a disconnected, sparse domain upon which MBH operated using fixed 

non-Gaussian p and 12 MCH hoppers. The light brown horizontal line passes through maximum feasible f   

Middle panel: f[x[t,n]] for t being each of 2,000 MBH time-steps, n being the first 48 of 100 trials , using 

12 MCH and fixed non-Gaussian p having the histogram shown in Figure II.4  

Bottom panel: (, )  fit as the FPTD of the 1,000 FPTs 
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Figure V.16:  

Upper panel: Textured f having a disconnected and sparse domain upon which MBH operated using fixed 

non-Gaussian p and MCH using 12 communicating hoppers. The light brown horizontal line passes through 

maximum feasible f   

Middle panel: f[x[t,n]] for t being each of 2,000 MBH time-steps, n being the first 48 of 100 trials , using 

12 MCH and fixed non-Gaussian p having the histogram shown in Figure II.4  

Bottom panel: (, ) fit as the FPTD of the 1000 FPTs 

 

The effectiveness of MCH will also be illustrated in Chapter VI where it is applied to the 

Pioneer 11 trajectory optimization use-case.  

V.4 Combinations of methods 

The methods provided in this chapter and Chapter IV can be combined. For example, adapting p 

to 𝑞̂ combines naturally with MCH because the multiple hoppers used for MCH can also be used 

to reduce the variance in the estimate of the time-varying scale parameter of 𝑞̂[𝑡], as is done in the 

use-case described in Chapter VI.  
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V.5 Computational costs of SCLS versus MCH 

Depending upon how one defines computational costs, SCLS and MCH incur those costs 

differently. One natural way to measure computational costs is in units of queries to the “oracle” 

or physics model of the objective function f. In SCLS, where a maximum of S local constrained 

search steps are allowed per MBH time-step for the one hopper, that would be the number of 

queries to the “oracle” or physics model of the objective function f[[t,s]].  In MCH, where a 

maximum of M simultaneous communicating hoppers are used, that would be the number of 

queries to the “oracle” or physics model of the value f[x[t,m]]. 

The number of queries of the objective function  f[[t,s]] is dependent upon the maximum 

of S local constrained search steps that is allowed per MBH time-step for the one hopper, raised 

to the power of the dimensionality of X. If X is one dimensional and S = 50, the number of 

queries required is 50.  But if  S = 50 and X is 2-dimensional, the number of queries required is 

502 = 2,500 If  S = 50 and X is 3-dimensional, the number of queries required is 503 = 125,000. If 

S = 50 and X is 100-dimensional, the number of queries is 5050 = 8.882 E+84. Many real MBH 

applications entail 50 or even 100 dimensions. Fortunately, in real high-dimensional applications 

of MBH, the queries of the objective function are not, by themselves, time-consuming 

operations. However, this suggests that S should not be large as the dimensionality of X grows.  

The number of queries of the value  f[x[t,m]] is dependent upon the number M of 

simultaneous communicating hoppers that are used. Whereas the number of queries to f[[t,s]] is 

dependent upon the maximum of S local constrained search steps are allowed per MBH time-step 

for the one hopper, raised to the power of the dimensionality of X, the number of queries to 

f[x[t,m]] is proportional to M times the dimensionality of X. If M is increased from 8 to 16, and X 

is 1-dimensional, the number of queries to f[x[t,m]] doubles. If M is increased from 8 to 16, and 
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X is 2-dimensional, the number of queries to f[x[t,m]] quadruples. If M is increased from 8 to 16, 

and X is 3-dimensional, the number of queries to f[x[t,m]] increases by a multiplicative factor of 

6. If M is increased from 8 to 16, and X is 100-dimensional, the number of queries to f[x[t,m]] 

increases by a multiplicative factor of 200 rather than 2100. 

This should not be construed to suggest that using MCH is always better than using 

SCLS because the effectiveness on the speed-up of an MBH, by MCH versus SCLS depends on 

f, 𝑿𝔽, and p, and tend to be non-linear in M or S respectively. Therefore, the speed-up of MBH 

on some combinations of  f, 𝑿𝔽, and p, achieved by SCLS may be more significant than the 

speed-up provided by MCH and outweigh the cost of additional queries even when X is high-

dimensional provided that S is kept sufficiently small. The use-case in Chapter VI shows that 

MCH provides the additional benefit of providing M concurrent samples of “accepted” x that 

can be used to reduce the variance in the estimation of 𝑞̂[𝑡] as will be shown. 

V.6 Both SCLS and MCH, in different ways, reduce the variance between FPTs 

Figures V.17 and V.18 below show as simulation-based evidence that both SCLS and MCH 

reduce the variance between FPTs. In Figures V,17 and V.18, in each of 1,000 trials, the MBH is 

operating on the same f with the same p. The f is prototypical f illustrated in Figure 0.a, and 

distribution p is the fixed non-Gaussian p having the histogram in Figure II.4.  Figure V.17 shows 

the relationship between the number of MCH communicating hoppers per MBH time-step and the 

standard deviation across 1,000 FPTs, using the same f with the same p. The implication of Figure 

V.17 is that SCLS reduces the variance across the FPTs. Figure V.18 shows the relationship 

between the number of MCH communicating hoppers per MBH time-step and the standard 

deviation across 1,000 FPTs, using the same f with the same p. The implication of Figure V.18 is 

that MCH reduces the variance across the FPTs. 
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Figure V.17: The relationship between the number of SCLS local steps per MBH time-step and the standard 

deviation across 1,000 FPTs using the same f with the same p.  
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Figure V.18: The relationship between the number of MCH communicating hoppers per MBH time-step 

and the standard deviation across 1,000 FPTs using the same f with the same p.  
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V.7 Chapter summary 

The central theme of this chapter is that speeding-up the descent of f[x[t]] = d into g[d] 

speeds-up the convergence to f* by an MBH operating on f and 𝑿𝔽, regardless of whether that 

speed-up of the descent of f[x[t]] further down into g[d] causes, in the short-term, x[t] to move 

farther from x*. That is because the descent of  f[x[t]] deeper into g[d] is a non-increasing process. 

Speeding-up the descent of MBH into the “wrong” basin, i.e., the basin that contains a local 

minimum but the global minimum, speeds-up the decrease in the probability that the hopper will 

remain in the “wrong” basin. A formal explanation for this is given in Appendix C.  

Two methods for accelerating the descent of f[x[t]] = d into g[d], thereby the speed-up of 

the convergence of the MBH to f*, were provided. SCLS was shown in to be effective on the 1-

dimensional example of Gibsonian f in Figures V.1, V.2 and V.3, and MCH was shown to be 

effective on a 2-dimensional example of Gibsonian f as shown in Figures V.8 through V.11. These 

are methods complementary to, and can be used with, the speed-up methods provided and 

explained in Chapter IV. Further, for some f, the methods in Chapter V are more effective than the 

methods in Chapter IV, but when used to augment the methods in Chapter IV make the methods 

in Chapter IV more effective. 

Finally, it was demonstrated by simulation-based evidence that the methods in Chapter V 

speed-up MBH differently depending upon f, 𝑿𝔽, and p. 
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The following table summarizes the methods described in this chapter: 

TABLE II 

Method Benefit Drawbacks 

DCLS • Long history of successful use in the 
optimization of difficult high-

dimensional trajectory optimization 
problems 

• Incorporates widely-used and 
respected SNOPT Non-linear solver 

• Improvement over several years and 
versions by J. Englander, D. Ellison, 

and M. Ozimek 

• Numerically brittle where f is flat or 
severely non-smooth, or 𝑋𝔽 is 

disconnected and sparse 

• High rates of failure per MBH time-step  

• Many of the failure modes are very time-
consuming 

• Large variance in CPU clock-time 
consumed per MBH time-step 

• Time-inefficient – except that it enables 
convergence times that would otherwise be 
non-feasible with respect to project 
schedules 

SCLS • Simpler than DCLS or MCH 

• Faster than DCLS or MCH for low-
dimensional problems 

• Inherently robust 

 

• Recent development 

• Execution time increases with the number 
of dimensions if a constant number of 
SCLS local search steps is maintained as 
the problem dimensionality increases 

• Not yet tested on difficult high-
dimensional trajectory optimization 

problems 

• Not yet published 

• Not yet validated by other researchers 

• Comparison to DCLS in high-dimensional 
problems not yet investigated 

MCH • Developed by the present author in 
2017  

• Improved and extended by the 
trajectory optimization team at the 
NASA Goddard Space Flight Center 

• Faster than DCLS or SCLS for high-

dimensional problems 

• Robust 

• Simple 

• Demonstrated in the Pioneer 11 
trajectory optimization use-case 
described in Chapter VI and 

published in 2020 

• Execution time increases with the number 
of communicating hoppers but not with the 
dimensionality of the problem 

• Comparison to DCLS in high-dimensional 
problems not yet investigated 
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VI. THE PIONEER 11 TRAJECTORY OPTIMIZATION USE-CASE 

This chapter describes an application of speeding-up MBH by biasing the shape of the 

distribution from which incremental hop distances are drawn, namely p, per Chapter IV and by 

biasing the location from which each next hop is taken using MCH per Chapter V. 

The use-case is  the re-optimization of the historical Pioneer 11 mission, using the European 

Space Agency (ESA) Advanced Concept Team’s (ACT’s) PyKep 2-body model. In addition, 

colleagues at NASA Goddard Space Flight Center advised on the development of some of the code 

needed for interfacing between PyKep and the code developed by the present author for the 

experiments and graphics provided below. 

X, the space of decision variables, which comprise the domain of  f, is 3-dimensional. The 

first dimension represents the epoch (day, hour, minute, second,… millisecond, …) of launch from 

the Earth. The second dimension represents the travel time (Time of Flight, a.k.a. TOF) to the 

targeted closest (nearest “flyby”) point to Jupiter at which point the trajectory is adjusted to head 

towards Saturn, and the third dimension represents the travel time (Time of Flight, a.k.a. TOF) to 

the closest point to Saturn at which point the trajectory is adjusted to head toward a target outside 

the Solar System. Like the epoch of launch, TOFs are resolved to finer than milliseconds. The 

objective function to be minimized, namely f[x] where x = [x1, x2, x3], is the integral over the time-

span of the trajectory of the spacecraft – from its detachment from the Earth-launch vehicle to the 

targeted closest (nearest “flyby”) point to Saturn – of |Δ𝑣|, the change in velocity achieved by the 

consumption of on-board propellant. Practitioners simply refer to f as “v” rather than as the time 

integral of v because the meaning of the expression v is widely understood. Further, for 

practitioners, f is a surrogate for the consumption of propellant. The consumption of propellant 
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needs to be minimized because the mass required for propellant competes with “dry mass” that 

includes scientific instruments. By design, only very small amounts of propellant are available on-

board to maximize the mass dedicated to instruments that support the science mission. The value 

of f[x] is obtained by a query to PyKep after specifying  x. Pykep returns f[x] based on its physics 

model which includes a specification of the Pioneer 11 spacecraft, orbital models based on 

Lambert’s problem, and an ephemeris that describes the position and velocity of all significant and 

relevant celestial bodies at every point in time. The value of f and all three dimensions of X are 

modeled as being continuously defined, but in practice they are each modelled using the IEEE 

Standard 754 for floating point numbers. A description of PyKep is provided in papers by the ESA 

ACT team [21]. The way in which PyKep maps [x1, x2, x3] to f[x1, x2, x3], including its simplifying 

assumptions that limit it to being a low-to-mid fidelity model, is explained in Appendix E. 

The objective function  differently is poorly-behaved when projected upon each of the 

three dimensions (practitioners say, “f is different in each of the three dimensions”). Although f 

can be queried everywhere in X,  𝑿𝔽 is sparse in the sense that most values of f are not feasible 

because of the tight constraints with respect to on-board propellant. In addition,  𝑿𝔽 is 

disconnected. Because X contains an enormous number of points, exhaustively searching for 

 𝑿𝔽, let alone minglobal(f(𝑿𝔽)) is prohibitive. Some of the properties of f that adversely impact 

convergence include near-singularities due to penalty functions that have been introduced into f 

to prevent an NLP gradient-search solver (commonly used, but not used here) from encountering 

singularities that would cause errors and time-consuming fault recoveries.   

The output of the MBH optimization is x* = [x*1, x*2, x*3] that globally minimizes feasible 

f[x]. Point x* in the space of decision variables is used to generate the least propellent-consuming 

trajectory to reach Saturn. The log10 values of the objective function f(X) in a small neighborhood 
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around x* is depicted as three heatmaps in Figure VI.1. Log10 values of the objective function f(X) 

are shown because, even in a small neighborhood around x*, the range of f(X) is so large that the 

variations in f(X) would be unreadable if a linear scale was used. Figure VI.2 shows linear f(X) in 

the same neighborhood but clipped to show only f(X) < 10 where 10 was the NASA Goddard 

estimate of the upper limit on so-called “v” that would make an f, therefore a trajectory, feasible. 

f  ≥ 10 implies that the mission is “un-flyable” because it would require too much on-board 

propellant. 

The small neighborhood shown in Figures VI.1 and VI.2 is the MBH-found                  

minglobal(f) within +/- 64 days in the date of launch from Earth, the time to the nearest flyby of 

Juniper, and the time to the nearest flyby of Saturn, respectively. In each heatmap, minglobal(𝑓) is 

at the center. It is apparent that mis-designing the trajectory by even one day with respect to any 

of the three decision variables can lead to a sub-optimal solution. Figure VI.2 shows that such a 

small mis-design of the trajectory can result in a non-feasible solution, which in this case means 

an “un-flyable” mission. Figure VI.2 also shows that  𝑿𝔽 is disconnected and sparse. In both sets 

of heatmaps, dark blue corresponds to the lowest value of f. 

 

 

Figure VI.1: Heatmaps of Log10(f[x1, x2, x3]) in the +/- 64 3-dimensional neighborhood around xn*. The 

three heatmaps above illustrate the complexities of the hyper-geometry of 𝑓 even in a small 3-dimensional 

neighborhood around argminglobal(𝑓).  
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Figure VI.2: Heatmaps of min(10,(f[x1, x2, x3])) in the +/- 64 3-dimensional neighborhood around xn*.  

 

The table shown after Figure VI.3 below documents that the methods used in the use-case 

consistently minimized f to values between 0.0003 and 0.0250. Figure VI.3 below shows the          

𝑓* = 0.003 Pioneer 11 trajectory found by the use-case MBH, rendered using PyKep. For a sense 

of perspective, the value of f exceeds 15,000 at most points in X.  

In Figure VI.3, the z-axis of the optimal trajectory is magnified 5x, making the trajectory 

to Saturn appear to be more “out-of-plane” with respect to the sub-trajectory from Earth to Jupiter 

than it really is. Drawing the trajectory in this way is a common aerospace engineering convention 

used to make it easier to visually inspect for any lack of “smoothness” in the transition from one 

“leg” of a mission to the next. NASA colleagues who know how to visually inspect such plots 

reported to the present author that this solution is very “smooth”, which is consistent with a very 

small use of propellant. In this case the 5x magnification of the z-axis is built into the PyKep 

trajectory rendering software. It is a meaningless coincidence that the trajectory is in three 

dimensions and the space of decision variables, 𝑿, is also in three dimensions.   
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Figure VI.3: The 𝑓* = 0.003 Pioneer 11 trajectory, found by the use-case MBH, rendered using the ESA 

ACT's PyKep toolkit  

 

 

The challenging behavior of f and 𝑿𝔽, and the 3-dimensionality of X, make this a suitable 

use-case for the present work. The physics and modeling issues that are the source of the of the 

challenging behavior of f and 𝑿𝔽, as well as the historic nature of the Pioneer 11 mission, makes 

the present work directly applicable to MBH practitioners in the astronautical engineering 

community. Members of that community will note that no form of Constrained Local Search 

including DCLS, the use of which commonly taken for granted, is used at all. Instead, the use-case 

only involves the adaptation of p to 𝑞̂[𝑡] per Chapter IV and MCH per Chapter V. 

Pioneer 11 was launched by NASA in April of 1973. Its scientific mission was to study the 

asteroid belt, as well as solar wind and cosmic rays, around Jupiter and Saturn. Pioneer 11 was the 

first probe to encounter Saturn, and the second to fly through the asteroid belt and perform a flyby 

of Jupiter. Pioneer 11 then achieved escape velocity that enabled it to leave the Solar System. Due 

to power constraints and the vast distance to the spacecraft, the last routine contact with the 
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spacecraft was on September 30, 1995. The last transmission of scientifically useful data from 

Pioneer 11 was received on November 24, 1995. Here, Pioneer 11’s trajectory refers to the path 

from Earth to Jupiter, and then Jupiter to Saturn. 

Pioneer 11 was equipped with a very small tank for propellant. Therefore, the optimal 

trajectory is known a priori to be one that used very little propellant, which implies a very small 

integrated total change in velocity due to thrusting, so-called “v” in meters per second. 

The precision and fidelity of the model used in the current work is not fine enough to 

determine whether the solution provided here uses more or less fuel than the historic mission. 

However, the significance of the performance achieved with this use-case, as shown in TABLE III 

below, is that, because the problem’s f  and  𝑿𝔽 are poorly-behaved, the use-case is a good test of 

the analytical framework and methods proposed in Chapters IV and V. Those poor-behaviors in f 

and 𝑿𝔽  problem arise from: quasi-periodicities due to the relative positions of the probe, Earth, 

Jupiter, and Saturn, throughout the mission; penalty functions imposed by the PyKep team to steer 

NLP solvers (not used here) from encountering singularities in the model (transcription) due to 

Lagrange’s solution to Lambert’s problem in orbital mechanics being undefined at transfer angles 

of 180 degrees. Those poor-behaviors in f are visible in the small neighborhoods around the 

solution’s estimated minimum f, namely 𝑓 ∗̂, shown in the heatmaps in Figure VI.1 above. Here, 

the transfer angle is the angular change in the z-plane relative to the x/y plane defined by the 

elliptical orbit from Earth to Jupiter, that is required transfer to the plane that defines the elliptical 

orbit from Jupiter to Saturn.   
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TABLE III: Comparison of 𝒇* for various p using the PyKep model for Pioneer 11 

 

p Number 

of 

hoppers 

Number 

of 

hops 

Number 

of 

PyKep 

queries 

min(𝑓*) max(𝑓*) average(𝑓*) std. 

dev(𝑓*) 

Adaptive 16 500 8,000 0.0003 0.0250 0.0067 0.0082 

Fixed 

Laplace-like 

(leptokurtic) 

1 500 500 0.5991 17.5510 4.3793 5.0067 

1 10,000 10,000 0.0242 0.8234 0.2245 0.2541 

Fixed 

Gaussian 

1 500 500 2.5302 242.3553 90.8899 83.0177 

1 10,000 10,000 0.7494 15.2358 6.7022 5.0392 

 

A paper on this use-case, co-authored by Arnold C. Englander, Jacob A. Englander, and 

Michael J. Carter, was presented to the Astrodynamics Specialist Conference of the American 

Astronautical Society and the American Institute of Aeronautics and Astronautics (AAS/AIAA, 

both of which are international organizations despite their names). The paper is available through 

NASA [7]. 

Among the practical benefits of using European Space Agency’s Advanced Concepts 

Team (ACT) model is that it is server-based, written in C++, and exposed to Python via an 

Application Programming Interface (API). The implementation described in this  paper was 

coded in Python and only needed to query the server-based ACT model relatively infrequently: a 

maximum of 500 times per typical MBH optimization of the use-case, for each of 16 

simultaneous hoppers, totaling a maximum of 8,000 queries. This enabled an implementation of 

a 3-dimensional model that has extremely fine granularity (IEEE Floating Point precision) in 𝑓 

and 𝑿 to perform each MBH in less than a few minutes on a conventional laptop. 
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The inputs into PyKep are three decision variables, each of which represents a date and 

time in PyKep coordinates. Each of the three decision variables is bounded so as to stay within a 

range centered around the corresponding dates of the historical Pioneer 11 mission. The calendar 

coordinates for the center-points in each dimension are: Launch from Earth on April 6, 1973, 

02:11:00 UTC; flyby of Jupiter on  December 3, 1974; and flyby of Saturn on September 1, 1979. 

The range on x1 is ( -9861.25, -9494.50 ); the range on x2 is ( 0.25, 1000.00 ); and the range 

on x3 is ( 0.25, 2000.0 ). All dimensions use units of integer plus fractional days. The bounds on x1 

are set by PyKep. The negative value for x1 is the result of PyKep using January 1, 2000, 

00:00:00 UTC as its zero reference and Pioneer having launched from Earth on April 6, 1973.  

Using the adaptive p combined with MCH employing 16 hoppers that communicate as 

specified in the PSEUDO-CODE below, 𝑓* in the range from 0.0003 to 0.0285, with 10-trial 

average of 0.0067, was found within fewer than 500 MBH time-steps. Many tens of repeated and 

independent optimizations, in which all 16 hoppers were independently initialized by a uniform 

random distribution over X, suggest that the performance is not sensitive to the initial positions 

of the 16 communicating hoppers. The same is suggested by all simulations of MCH illustrated 

in Chapter V. 
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PSEUDO-CODE FOR THE PIONEER 11 TRAJECTORY RE-OPTIMIZATION PROBLEM 

=============================================================== 
______________________________________________________________________________ 

if t = 0: 

# t is the MBH time-step 

for m in range (1, Num_hoppers): 

Randomly initialize of 𝒙[m,0] and evaluate 𝑓[𝒙[m,0]]  

# Num_hoppers = 16; 𝒙[𝑚, 𝑡] is an N-dimensional vector;  𝑓[𝒙[𝑚, 𝑡]] is a scalar 

for t in range(1,Terminus): 

for m in range (1, Num_hoppers): 

evaluate 𝑓[𝒙[m,t-1]] 

for n in range (1, Num_dimensions): 

draw 𝑥pn,m
 ~ p[[t-1] and generate [m,t]n = (𝑥[m,t] + 𝑥p[m,t])n .  

 [m,t]n  and (𝑥[m,t] + 𝑥p[m,t])n  are the nth dimensional component of vectors [m,t]  
and (𝒙[m,t] + xp[m,t]), respectively 

 𝑥p
n,m

 = [t-1] ⋅ kn ⋅  ∏ 𝛿3
1  where kn is a scale factor applied to each of the three 

dimensions as to their respective ranges, and 𝛿 is an independent draw from 𝓝(0,1). 

 [m,t] is an N-dimensional vector comprised of elements [m,t]n bounded so that [m,t]n 

⊂ X 

evaluate 𝑓[[m,t]] #  𝑓[[t]] is a scalar 

if 𝑓[[m,t]] < 𝑓[𝒙[m, t-1]]: 

set 𝑓[𝒙[m,t]] = 𝑓[[m,t]] and 𝒙[m,t] = [m,t] 

if 𝑓[[m,t]] ≥ 𝑓[𝒙[m,t-1]]: 

set 𝑓[𝒙[m,t]] = 𝑓[𝒙[m,t-1]] and 𝒙[m,t] = 𝒙[m,t-1] 

hopperbest = argminm(𝑓[𝒙[:,t]]) # : denotes across the M hoppers 

  for all m<> hopperbest: 

𝒙[m,t] = 𝒙[hopperbest, t] 

𝑓[𝒙[m,t] ] = 𝑓 𝒙[hopperbest, t] 

[t] = ((max(𝑓[𝒙[: , 𝑡]]))/(max(𝑓[𝒙[: , 𝑡 − 1)]])  +  ε)  

# : denotes across the m hoppers and ε  is a small positive constant that prevents the denominator from going 

to zero if max(𝑓[𝑥[: , 𝑡 − 1)]] ever goes to zero  

t = t + 1 

______________________________________________________________________________ 
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Because of the low-to-mid level of fidelity of PyKep (due to its simplifying assumptions 

explained in Appendix E), the present work did not evaluate the performance of the use-case by 

comparing it to the PyKep 𝑓* for the historical Pioneer 11 mission. Instead, the use-case used  

PyKep as it was intended by its developers: as a generator of a challenging 𝑓, and as a bench-

marking tool for comparing different optimization methodologies – here, the adaptive shaping of 

p[t] per Chapter IV and the biasing of “hop from” locations per Chapter V. 

Figures VI.4 and VI.5 illustrate that as the adaptation of p[t] to 𝑞̂[𝑡] drives p[t] to become 

similar to 𝑞̂[𝑡], convergence becomes more accurate and speeds up, strongly suggesting that the 

increased similarity of p[t] and 𝑞̂[𝑡] is the source of the MBH performance improvement. Although 

in Chapter IV, similarity between distributions, in this case p[t] and 𝑞̂[𝑡], is formalized using  DK-

L(p, 𝑞̂), that is not possible in the use-case because the MBH approaches solution’s estimated 

minimum f, namely 𝑓 ∗̂, in such a small number of MBH time-steps that the statistically meaningful 

data required to perform DK-L(p,𝑞̂) could not be obtained. Nonetheless, based on the intuition 

provided in Chapter IV in Figures IV.3 and IV.5 that the similarity (or dissimilarity) between p 

and 𝑞̂, as measured by DK-L(p,𝑞̂), is apparent by visually comparing their histograms, it is clear 

that p[t] and 𝑞̂[𝑡] are not similar in Figure VI.4 but they are similar in Figure VI.5. In Figure V. 4, 

the visually dissimilar shapes of the histograms is apparent in the right panel, whereas in Figure 

V. 5, the visually similar shape of the histograms is apparent.  In Figure V. 5, also note the speed 

at which the lower left panel converges to zero, reflecting the speed with which the MBH finds 𝑓 ∗̂. 
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Figure VI.4: 

Left upper panel: 𝚫𝒙𝒑[t] ~ p[t] not adapted to 𝑞̂[𝑡] (and not using MCH). 

Left lower panel: 𝚫𝒙𝒒[t] ~ 𝑞̂[𝑡] (not using MCH). 

In the left panel, the colors red, green, and blue correspond to the three dimensions of X. 

Right panel: Histograms of 𝚫𝒙𝒑[t] (cyan) and 𝚫𝒙𝒒[t] (magenta), respectively 

 

 

Figure VI.5: 

Left upper panel: 𝚫𝒙𝒑[t] ~ p[t] adapted to 𝑞̂[𝑡] (while using MCH– the impact of which, in this graphic, 

is barely visible or significant). Left lower panel: 𝚫𝒙𝒒[t] ~ 𝑞̂[𝑡] (while using MCH – the impact of which, 

in this graphic, is barely visible or significant).  

In the left panel, the colors red, green, and blue correspond to the three dimensions of X 

Right panel: Histograms of 𝚫𝒙𝒑[t] (cyan) and 𝚫𝒙𝒒[t] (magenta), respectively 

 

  

Δ𝒙𝒑[t] for mth hopper in dim = {1,2,3}   

Δ𝒙𝒒[t] for mth hopper in dim = {1,2,3}   

Δ𝒙𝒒[t] for mth hopper in dim = {1,2,3}   

Δ𝒙𝒑[t] for mth hopper in dim = {1,2,3}   
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Figure VI.6 illustrates the speed-up achieved by using adaptive p and MCH as opposed to 

using a fixed Laplace-like p and no MCH. Although the fixed Laplace-like p was designed to be 

well-suited to f in the sense explained in Chapter IV, the upper panel of Figure VI.6 shows that 

whereas, using fixed Laplace-like p, MBH does not drive 𝑓 ∗̂ below 16.066 (a non-feasible 

solution) until after 500 time-steps (500 PyKep queries), In contrast, the lower panel shows that 

by using adaptive p and 16-hopper MCH, the MBH converges to 0.0097 in 7 MBH time-steps (112 

queries to PyKep). Thus, it is clear that using adaptive p and 16-hopper MCH not only speeds up 

MBH but also provides a much better (much smaller, feasible rather than non-feasible) solution. 

When comparing the upper and lower plots of Figure VI.6, recall that the objective function f is 

exactly the same in both cases. Note too that not only does the search driven by adaptive p converge 

faster, but that the non-adaptive p results in f [x[t>t
Convergence

]] = 16.0655, whereas the adaptive p 

results in  f [x[t>t
Convergences

]] = 0.0097. This indicates that the convergence in the case of the 

adaptive p is not only faster, it also results in a better solution. 
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Figure IV.6. The progress of the MBH, in MBH time-steps, toward convergence to minglobal(f) 

Upper plot: A single f_incumbent[t] also referred to as f[x[t]], being operated upon by an MBH using a 

fixed, non-adaptive Laplace-like p, converging toward minglobal(f) and arriving in approximately 35 MBH 

time-steps 

Lower plot: f_incumbent[m,t] also referred to as f[x[m,t]], for m = {1,2,3,…,16} hoppers, being operated 

upon by an MBH using the adaptive p, converging toward minglobal(f) and arriving in approximately 7 MBH 

time-steps 

 

When this use-case was presented to the Astrodynamics Specialist Conference of the 

American Astronautical Society and the American Institute of Aeronautics and Astronautics 

(AAS/AIAA) in early August 2020, participants found the performance results to be remarkable. 

During the second half of 2021, the present author looks forward to working with practitioners to 

empirically test the methods of the present work’s Chapters IV and V on real high-dimensional 

inter-planetary spacecraft trajectory optimization problems. 
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VII. OPEN QUESTIONS AND HYPOTHESES 

This chapter poses the following two open question and provides hypotheses that the 

present author hopes will prove useful when answers for them are pursued: (1) How to formally 

explain the strong fit of Gamma distributions as FPTDs of MBH FPTs; and (2) How to develop a 

method for detecting and characterizing “poorly-behaved” f and/or disconnected, sparse 𝑿𝔽 in near 

real-time, autonomously, by an ongoing MBH as a way of alerting the user that convergence may 

be slow and suggesting that additional speed-up methods be applied and/or that the project 

deadline be revised. 

Regarding (1): Throughout the present work, Gamma distributions have been fit to MBH 

FPTs as FPTDs as a way of characterizing MBH convergence times and their variability on various 

f and 𝑿𝔽, as well as their speed-up by various methods. Moreover, in Appendix B the high quality 

of those fits to Gamma distributions are examined and the usefulness of those fits is expounded 

upon. That raises the natural question of why Gamma distributions fit so well as FPTDs of MBH 

FPTs.  

This is a difficult question, if only because the variation in the FPTs depends on f, 𝑿𝔽, the 

distribution p from which the x are drawn,  and the path of x[t]. This deserves a level of analysis 

that the present author has been unable to achieve. 

The present author’s hypothesis is that MBH FPTs may be perturbed-Poisson distributed 

events, generally referred to as Renewal Processes [63]. The fact that they are not Poisson 

distributed can easily be seen by their mean not being equal to their variance, which is a 

requirement for Poisson-distributed random variables. If MBH FPTs were Poisson distributed, 

their FPTD (or FPT-PMF) being Gamma distributed can be shown by a derivation that involves a 
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large number of algebraic steps but is conceptually straight forward. But since MBH FPTs are 

not  Poisson distributed, the Gamma distribution-like shape of MBH FPTDs cannot be attributed 

to the fact that Gamma distributions are the density function for Poisson-distributed random 

variables. Nonetheless, generalized Poisson-distributed processes, referred to as Renewal 

processes, are not required to have their mean equal their variance. The formal definition of a 

Poisson process is a set of random events (in this case arrivals) that are exponentially distributed. 

A Renewal processes is a set of random events (in this case arrivals) that may come from any 

distribution, including an exponential distribution to which Gaussian noise has been added as a 

perturbing process [64]. In that case, there are analytical and numerical results that show that the 

density function resembles a Gamma distribution – at least for reasonable large values of the 

independent variable. i.e., t in the case of the random variables being FPTs. That literature can be 

used to shed some light on why Gamma distributions fit so well as the FPTD of collections of 

MBH FPTs to the extent that one is willing to model MBH FPTs as a Renewal Process that is a 

Poisson-distributed process perturbed by additive Gaussian noise. The present author hypothesizes 

that it is not unreasonable to model MBH FPTs as mixture models of a Poisson distributed process 

and additive Gaussian noise. However, the empirical evidence in Figure VII.2 below, compared to 

the empirical evidence in Appendix B that uses actual MBH FPT data, suggests that modeling 

MBH FPTs as a Poisson process with additive Gaussian noise is not entirely appropriate. 

Figure VII.1 below shows empirical evidence from numerical simulations that illustrate 

random variables from a Poisson-distributed process used as surrogates for MBH FPTs, their 

histogram, and their fit to Gamma distribution as their density function. It is well-known that a 

Gamma distribution is the density function for Poisson-distributed random variables, and it can be 

shown algebraically. Figure VII.2 below shows empirical evidence from a numerical simulation 
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that illustrates random variables from a Renewal process used as surrogates for MBH FPTs, their 

histogram, and their fit to Gamma distribution as their density function. The Renewal process used 

was a mixture model composed of a Poisson distributed process and a perturbing process is 

comprised of additive Gaussian noise. It is clear that the Gamma distribution fit to the random 

variables used as surrogates for MBH FPTs resembles the histogram. However, here the Gamma 

distribution does not resemble the histogram as closely as Gamma distributions fit histograms of 

MBH FPTS throughout the present work, as is especially evident in Appendix B.  

 

Figure VII.1:  

Upper panel: 1,600 Poisson-distributed random variables used as surrogates for FPTs 

Middle panel: The histogram (PMF) of the 1,600 Poisson-distributed random variables 

Lower panel: The fit of a Gamma-distribution to the 1,600 Poisson-distributed random variables as their 

approximated FPTD 
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Figure VII.2:  

Upper panel: 1,600 Poisson-distributed random variables perturbed by Gaussian noise, used as surrogates 

for FPTs 

Middle panel: The histogram (PMF) of the 1,600 Poisson-distributed random variables perturbed by 

Gaussian noise 

Lower panel: The fit of a Gamma-distribution to the 1,600 Poisson-distributed random variables 

perturbed by Gaussian noise as their approximated FPTD 

 

Regarding open question (2): The present work provides multiple methods for speeding-

up MBH and shows that different methods are more and less effective on different f and 𝑿𝔽. That 

raises the possibility that different methods could be systematically applied, autonomously by an 

on-going MBH, and used to classify different f and 𝑿𝔽 by how effectively the MBH operating 

upon them is sped-up. This would require the construction of equivalence classes of f that are 

classified according to how they respond to various MBH speed-up methods, but the present work 

provides some evidence that suggests such equivalence classes may exist and be separable to a 

useful extent. Pattern recognition methods written about by Duda and Hart and more recently by 

Bishop, could be used to formulate the classification process [65, 66]. Such an approach to 



   

124 

diagnosis by trials of various treatments is used in medicine, albeit within an empirical framework 

[67]. In this case, the features would be performance scores representing the extent to which 

methods in Chapter IV and V resulted in speeding-up the convergence rate (the minimization of f) 

during a sample period while the MBH is in progress. Those performance scores would need to be 

realizable, such as can be derived from f[x[t]], with or without SCLS or MCH, even though the 

scores could not be based on FPTS and FPTDs because the MBH has not yet converged and, more 

important, because f* is unknown. 

In addition, Appendix C, which addresses the probability of advancement for an MBH 

operating on a known 1-dimensional Gibsonian f while using a known p, raises the question: Since 

the probability of advancement can be determined at each depth d given knowledge of d, f and p, 

could d be inferred from the running statistics of the advancement of an on-going MBH if f is 

known to belong to an equivalence class of convergence time-impacting f ? Likewise, can the 

equivalence class of convergence time-impacting f to which the f being operated belongs, be 

inferred from running statistics empirically describing the probability of advancement of an on-

going MBH? While these questions could not be addressed within the scope of the present work, 

the questions are intriguing to practitioners because they point to possible approaches to 

developing some kind of “progress indicator” or indicator of “remaining time to convergence” for 

MBH. Unlike MBH researchers whose work is analytical and/or simulation-based, and FPTs and 

FPTDs can be derived because f, 𝑿𝔽, and f* are known by construction, MBH practitioners 

constantly face the possibility of stopping an MBH process either too soon or long after it has 

already found the optimal (or near-optimal) solution. Therefore, to practitioners, some kind of 

“progress indicator” or indicator of “remaining time to convergence” would be of great practical 

value.  
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VIII. SUMMARY 

The present work has provided the first systematic investigation of the convergence rates 

of MBH and ways to speed them up. Two approaches to speeding up MBH have been provided: 

biasing the shape of the probability distribution from which hop distances are drawn; and biasing 

the location from which each next hop is taken. Further, two stochastic methods are provided for 

biasing the location from which each next hop is taken: SCLS and MCH. While the methods for 

speeding-up MBH are variably effective on different f and 𝑿𝔽, nonetheless some combination of 

methods is shown to be highly effective on each of the f and 𝑿𝔽 investigated in the present work 

by simulation experiments and the Pioneer 11 spacecraft trajectory optimization use-case. 

Formal abstract concepts including the accepted hop distribution and the remaining 

productive search volume g[d] have been introduced and developed, as have been algorithmically 

realizable concepts including the estimation of 𝑞̂ and 𝑞̂[𝑡], and the adaptation of p to 𝑞̂[𝑡]. The 

analytical framework used includes DK-L(p, 𝑞̂), MBH FPTs and the fit, thereby the 

parameterization, of Gamma distributions to FPTs as their FPTD. 

The novel analytic contributions are the building blocks used to state and explain the 

impact on the convergence rate of an MBH operating on an f and 𝑿𝔽, of biasing the shape of p, the 

distribution from which hop distances are drawn, and biasing the location from which each next 

hop is taken. These statements and explanations involved novel formalisms and/or novel uses of 

existing formalisms. In addition, these statements and explanations resulted in novel contributions 

to engineering practice. 

The explanation of the impact of biasing the shape of p involved: Conjecturing the 

existence of a distribution q comprised of hop distances x such that f[x[t]+ x] < f[x[t]] and are 
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therefore “accepted” by the MBH algorithm in the sense that they move the process toward the 

global minimum of f rather than forcing the process to wait-in-place; estimating, by means of a 

Monte Carlo method, 𝑞̂; using the Kullback-Leiber divergence DK-L(p, 𝑞̂) to measure the similarity 

between a p and 𝑞̂; using the correlation between MBH FPTs, and their approximate FPTD, and 

DK-L(p, 𝑞̂) to show that making p more similar to 𝑞̂ speeds-up the convergence of the MBH; and, 

because 𝑞̂ is time-varying over the course of the MBH process, adapting p[t] to 𝑞̂[𝑡] in near real-

time can result in making p similar to 𝑞̂ not only across the MBH process but within various stages 

of the MBH process, thereby further speeding up the convergence of the MBH. As a guide for 

developing the linkages between each of these building blocks, the present author developed g[d] 

as a measure of the remaining volume, at each objective function depth d, that contains yet smaller 

values of f. This is the contribution of Chapter IV. 

The explanation of the impact of biasing the location from which each next hop is taken, 

is explained colloquially in Chapter V and rigorously in Appendix C. Chapter V provides two 

methods for speeding-up the convergence of the MBH by biasing the location from which each 

next hop is taken. They have different properties in some regards, e.g., their computational 

requirements as dimensionality grows, and they have similar properties in other regards, e.g., they 

both minimize the variance across FPTs corresponding to independent trials of MBH operating on 

the same f and, using the same p, as well as speeding-up the convergence time of the MBH 

operating on that same f and using that same p.  

The approaches and methods provided in Chapters IV and V are also differently effective 

on different f and 𝑿𝔽. This is easy to show empirically by simulation experiments, especially by 

using Gibsonian f  for which MBH is sped-up significantly by biasing the location from which 
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each next hop is taken but insignificantly by biasing the shape of p, the distribution from which 

hop distances are drawn. The analytical explanation, however, is provided by Appendix C. 

The present work’s focus on speeding-up MBH is enabled and informed by the proof of 

asymptotic convergence of global optimization based on random search, by Baba et. al (1997), 

shown to be applicable to MBH by the present author. This application of the proof by Baba et. al 

provided the MBH research and practitioner community with the previously missing guarantee 

that if mild conditions are satisfied, the question is not whether MBH will converge, but when. In 

addition, it focused the present author on the question of why convergence takes as long as it takes, 

and how to speed it up. 

The novel contributions to engineering practice include two approaches (three methods) 

for speeding up MBH. The three methods can be used separately or in combination. Their 

effectiveness has been demonstrated in simulations and in the Pioneer 11 spacecraft optimization 

use-case. In the use-case, the effectiveness of combining the first and third method was 

demonstrated on a real 3-dimensional problem.  

While the present work is restricted to 1-dimensional, 2-dimensional, and  3-dimensional 

problems, colleagues of the present author are already exploring implications of the present work 

in their engineering practice using problems that are high dimensional. In addition, question two 

in Chapter VI is highly relevant to practitioners and was inspired by the present author’s 

discussions with practitioners at NASA Goddard Space Flight Center over the past several years. 
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X. APPENDICES 

A. Asymptotic convergence proof by Baba et al., applicable to MBH 

The following is based on an asymptotic convergence proof by Baba, Shoman, and 

Sawaragi (1977) that was generalized by Solis and Wets (1981).  

Conceptual Algorithm: 

Here, all notation has been revised to align with the notation used in the analytical 

framework presented above, including replacing x0 with 𝑥[0], ξ𝑘  with 𝜉[𝑡], x𝑘 with 𝑥[t], S with 

X, and probability measure 𝜇𝑘 with p[t]. In the present work, t is the discretized index of successive 

MBH operations, the same as k is in the asymptotic convergence proofs by Baba, Shoman, and 

Sawaragi, and Solis and Wets. X replaces S, not only to align the notation with the analytic support 

provided above, but because MBH is typically thought of as operating on an 𝑓 having a domain 

that is hyper-cube rather than a hyper-sphere. No changes in meaning or loss of generality resulted 

from these changes in notation. 

1. Choose 𝑥[0] ∈ X. Set t : = 0 

2. Generate 𝜉[𝑡] ∈ ℝ𝑛 (random) from distribution p[t]. More precisely, in order to adapt this 

asymptotic convergence proof to MBH, generate [t]  = (𝑥[t-1] + 𝑥𝑝[t]), 𝑥𝑝[t] random,   

𝑥𝑝[t] ~ p[t],  𝜉[𝑡] ∈ X, 𝑓[𝝃[𝑡]] ∈  ℝ 

3. Set 𝑥[t] = D(𝑥[t-1], ξ[𝑡] ). In order to adapt this asymptotic convergence proof to MBH, 

define D as the operation of choosing ξ[t] if 𝑓[ξ[t] ] <  𝑓[𝑥[t-1]] , otherwise choose 𝑥[t-1] 

4. Go to step 1 

This provides both local search and global search. 
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Local search ⟹ supp(p[t]) is bounded and v(X ⋂ supp(p[t]) < v(X), where supp denotes 

support and v is a Lebesque measure, or n-dimensional volume of the set. 

Global search ⟹ supp(p[t]) is such that v(X ⋂ supp(p[t]) = v(X) 

Sufficient conditions for Convergence: 

1. D s.t. { 𝑓[𝑥[t]] } is non-increasing. This is satisfied by the MBH algorithm. 

a. 𝑓[D(𝑥, ξ)]  ≤  𝑓[(𝑥[𝑡 − 1]]  

b. 𝜉[𝑡] ∈ X ⟹  𝑓[D(𝑥, ξ)]  ≤ min{ [𝜉[t] ], 𝑓[𝑥[t-1]] } 

2. Zero probability of repeatedly missing any positive volume subset of X 

a. Stated formally, ∀ 𝐴 ⊆ X, where 𝐴 is some subspace (or the entirety) of X, s.t.       

v(𝐴) > 0,  ∏ (1 −  𝑝[𝑡](𝐴))∞
𝑡 =0   = 0  

b. In other words, the sampling strategy based on p[t] cannot consistently ignore any part 

of X  with positive volume 

Example given by Baba et al.:  

D =  {
𝜉[𝑡], 𝜉[𝑡]  ∈  𝑋, 𝑓[𝜉[𝑡]]  < 𝑓[𝑥[𝑡 − 1]]    

𝑥[𝑡 − 1], 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
     

p = 𝓝(𝑥[𝑡 − 1], 𝐈) meaning Gaussian, centered on x[t-1] with unit variance in each 

coordinate 

Sufficient Condition 1, D s.t. {𝑓[𝑥[t]]}𝑡 = 0
∞  is non-increasing, is satisfied by construction. 

Sufficient Condition 2, Zero probability of repeatedly missing any positive volume subset of X, 

is satisfied because X is contained in the support of 𝓝(𝑥[𝑡 − 1], 𝐈)   

This is MBH when the domain of 𝑓 is the unit hyper-sphere S and p is Gaussian.  The 

asymptotic convergence (occurring at some unspecified time prior to t = infinity) is proven. 
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In the case of MBH, the speed of convergence was not studied prior to the present work. 

The central theme and novelty of Chapter IV of the present work, that convergence is sped-up 

when p is chosen to be similar to 𝑞[𝑡]̂ , rather than when p is chosen for mathematical convenience, 

implies that p = 𝓝(𝑥[𝑡 − 1], 𝐈) results in convergence times that are much slower than can be 

achieved when p is non-Gaussian.  
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B. Justification for fitting a Gamma distribution to MBH FPTs as their FPTD 

Usefulness 

Throughout the present work, Gamma distributions fit as density functions of MBH FPTs 

are used. The benefits of using Gamma distributions as FPTDs rather than histograms as              

FPT-PMFs include: Because Gamma distributions are defined by two parameters, estimates of 

those parameters enable mapping a set of FPTs from an MBH operating on the same f and 𝑿𝔽 with 

the same fixed p, or a p adapted in the same way, into a 2-dimensional parametric space of 

estimated FPTDs. Moreover, different methods of the accelerating that MBH operating on the 

same f and 𝑿𝔽 with the same fixed p, or a p adapted in the same way, can be compared by their 

relative positions in that 2-dimensional parametric space. In addition, by being continuous 

probability density functions, Gamma distributions facilitate the calculation of quartiles, which 

provides a tool for characterizing the estimated time-to-convergence that an MBH operating on a 

given same f and 𝑿𝔽 with the same fixed p, or a p adapted in the same way, will require. Finally, 

because FPTDs are not unique to specific f and 𝑿𝔽 , they can be useful in establishing equivalence 

classes 𝒞𝐼  = { 𝑓𝑖, 𝑿
𝔽

𝑖 } and thereby characterize the estimated time-to-convergence that an MBH 

operating on members of a 𝒞𝐼 given a fixed chosen or designed p, or a p adapted in the same way, 

with or without various methods of MBH speed-up. 

Empirical justification 

The following figures show fits of Gamma distributions to FPTs as approximations of 

FPTDs, in comparison to FPT-PMFs of the same FPTs. The parametrization of the Gamma 

distributions were obtained using the estimators provided in Chapter IV. The f used was the 

prototypical 1-dimensional f shown in Figure 0.a. By inspection, one can see that the fits of the 
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Gamma distributions are very good. The p used was the non-Gaussian p having the histogram 

illustrated in Figure II.4. Figures Appendix B.1 through Appendix B.3  below shows the Gamma 

distribution-approximated FPTD (as a red line) drawn on top of the FPT-PMFs (histograms shown 

as blue bars) when SCLS is used and S = {8, 16, and 24}. Likewise, Figures Appendix B.4  through 

Appendix B.6  below shows Gamma distribution-approximated FPTD (as a red line) drawn on top 

of the FPT-PMFs histograms (blue bars) when using the same f but the Gaussian p having the 

histogram illustrated in Figure IV.8. SCLS is used and again S = {8, 16, and 24}. These figures 

not only illustrate the quality of fit between the Gamma distribution-approximated FPTD and the 

FPT-PMFs histograms; they once again show the MBH speed-p that is achieved by using a p that 

is well suited to f as defined in Chapter IV. 

 

Figure Appendix B.1: The Gamma distribution-approximated FPTD (as a red line) drawn on top of the 

FPT-PMFs (histograms shown as blue bars) when SCLS is used and S = 8. The f used was the 

prototypical 1-dimensional f shown in Figure 0.a. The p used was the fixed non-Gaussian p having the 

histogram illustrated in Figure II.4. 
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Figure Appendix B.2: The Gamma distribution-approximated FPTD (as a red line) drawn on top of the 

FPT-PMFs (histograms shown as blue bars) when SCLS is used and S = 16. The f used was the 

prototypical 1-dimensional f shown in Figure 0.a. The p used was the fixed non-Gaussian p having the 

histogram illustrated in Figure II.4. 
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Figure Appendix B.3: The Gamma distribution-approximated FPTD (as a red line) drawn on top of the 

FPT-PMFs (histograms shown as blue bars) when SCLS is used and S = 24. The f used was the 

prototypical 1-dimensional f shown in Figure 0.a. The p used was the fixed non-Gaussian p having the 

histogram illustrated in Figure II.4. 
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Figure Appendix B.4: The Gamma distribution-approximated FPTD (as a red line) drawn on top of the 

FPT-PMFs (histograms shown as blue bars) when SCLS is used and S = 8. The f used was the 

prototypical 1-dimensional f shown in Figure 0.a. The p used was the fixed Gaussian p having the 

histogram illustrated in Figure IV.6 

  



   

143 

 

Figure Appendix B.5: The Gamma distribution-approximated FPTD (as a red line) drawn on top of the 

FPT-PMFs (histograms shown as blue bars) when SCLS is used and S = 16. The f used was the 

prototypical 1-dimensional f shown in Figure 0.a. The p used was the fixed Gaussian p having the 

histogram illustrated in Figure IV.6 

  



   

144 

 

Figure Appendix B.6: The Gamma distribution-approximated FPTD (as a red line) drawn on top of the 

FPT-PMFs (histograms shown as blue bars) when SCLS is used and S = 8. The f used was the 

prototypical 1-dimensional f shown in Figure 0.a. The p used was the fixed Gaussian p having the 

histogram illustrated in Figure IV.6 
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The formal justification for the apparent goodness of fit is raised as an open question in 

Chapter VII. There, the present author’s hypothesis is offered. 

Demonstration of Use 

The figures below illustrate how methods of the accelerating MBH operating on the same 

f and 𝑿𝔽 with the same or different fixed p can be compared by their relative positions in a 2-

dimensional parametric space comprised of the shape parameter and the scale parameter that 

defines Gamma distributions fit to MBH FPTs. Because the figures involve the same f and the 

same speed-up method (SCLS) but different fixed p, they also illustrate the impact on convergence 

of using different p for the MBH operating on the same f and 𝑿𝔽 . 

The (,  ) plane is useful for characterizing the impact of different p on the same f 

Figure Appendix B.7 below shows the impact of different p on the same f shown as a 

scatter-plot on the (,  ) plane. The green circular markers show the impact on the parameters 

of the Gamma-fit of using Gaussian p illustrated in Figure IV.6, and SCLS with 1, 8, 16, and 32 

maximum allowable local steps per MBH time-step for one hopper operating upon on 

prototypical f illustrated in Figure 0.a.   The red circular markers show the impact on the 

parameters of the Gamma-fit of using non-Gaussian p illustrated in II.4, and SCLS with 1, 8, 16, 

and 32 maximum allowable local steps per MBH time-step for one hopper operating upon 

prototypical f illustrated in Figure 0.a. The impact on MBH convergence speed of using of fixed 

non-Gaussian p and SCLS with 8, 16, 24 and 32 local steps per MBH time-step, versus fixed 

Gaussian p and SCLS with 8, 16, 24 and 32 local steps per MBH time-step, is illustrated by the 

location of the green versus red points in the (,  ) plane.  

In Figure Appendix B.7, note how nearly separable the data points for MBH operating on 

prototypical f using non-Gaussian p (red) are from MBH operating on prototypical f using 
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Gaussian p (blue). This illustrates that the same f responds differently to different p being used in 

combination with SCLS. 

 

Figure Appendix B.7: Impact of different p on the same f when using SCLS is shown as a scatter-plot on 

the (,  ) plane 

x-axis:  

y-axis:  

Blue circular markers: The position in the (,  ) plane of S SCLS sub-steps for S = 8, 16, 24, and 32 

maximum allowable local steps per MBH time-step when f is prototypical f and p is fixed Gaussian  

Red circular markers: The position in the (,  ) plane of S SCLS sub-steps for S = 8, 16, 24, and 32 

maximum allowable local steps per MBH time-step when f is prototypical f and p is fixed non-Gaussian 

 

The (,  ) plane is also useful for characterizing the impact of the same SCLS methods on 

different  f 

Likewise, the (,  ) plane can be used to character the impact of the same speed-up 

method (here SCLS) on different f (here, 1-dimensional prototypical f per Figure 0.a, versus 1-

dimensional Gibsonian f per Figure III.2). Figure Appendix B.8 below shows in purple diamond 

markers, the impact on the parameters of the Gamma-fit by SCLS for 8, 16, 32, 40, 48, 56, and 64 
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maximum allowable local steps per MBH time-step for one hopper when f is Gibsonian f as 

illustrated in Figure III.3. The blue circular markers show the impact on the parameters of the 

Gamma-fit by SCLS for 8, 16, 32, 40, 48, 56, and 64 maximum allowable local steps per MBH 

time-step for one hopper when f is prototypical f as illustrated in Figure 0.a. Note that the separation 

between purple diamond markers and the green circular markers suggests that the ( ,  ) plane 

could be used as a space in which to position and classify equivalence classes for some f if the 

members of those classes impact convergence rates as differently as the 1-dimensional example of 

prototypical f compared to the 1-dimensional example of Gibsonian f. 

In Figure Appendix B.8 note how separable the data points for prototypical f (green) vs. 

Gibsonian f (purple) appear to be, again indicating that different f respond differently to the speed-

up methods provided in Chapters IV and V. Chapter VII provides a hypothesis that the ways in 

which different f respond differently to different speed-up methods provided in the present work 

might be used to assign an unknown  f to a convergence time-impacting equivalence class within 

an on-going MBH. 
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Figure Appendix B.8: Impact of number of SCLS local steps per MBH time-step on prototypical f vs. 

Gibsonian f as a scatter-plot on the (,  ) plane 

x-axis:  

y-axis:  

Purple diamond markers: The position in the (,  ) plane of S SCLS sub-steps for S = 8, 16, 32, 40, 48, 

56, and 64 maximum allowable local steps per MBH time-step when f is Gibsonian f 

Blue circular markers: The position in the (,  ) plane of S SCLS sub-steps for S = 8, 16, 32, 40, 48, 56, 

and 64 maximum allowable local steps per MBH time-step when f is prototypical f 
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C. Probability of advancement on a 1-dimensional Gibsonian f 

This appendix addresses the question: For a given f and p, at depth f[x[t]] = d, what is the 

probability of a hopper at any point x = f 
-1

[d] descending more deeply into f, i.e., of drawing a  x 

such that  f[x[t]+x] < f[x[t]] ? As an example, choose f to be 1-dimensional Gibsonian shown in 

Figures III.2 and III.3 so that there are exactly four points x = f 
-1

[d] while d > min
local

(f ), each of 

which are necessarily on a different side of one of the two basins, respectively, and there are exactly 

two points x = f 
-1

[d] while min
global

(f ) < d < min
local

(f ), each of which are necessarily on the left 

and right side of the narrow basin . 

The answer explains the impact on the speed of MBH convergence of biasing the shape of 

p by showing how p affects the probability of the MBH advancing toward min
global

(f ) at each next 

MBH time-step t+1 given x[t] =  f 
-1

[d]. This provides an additional way to explain the material in 

Chapter IV.  

The answer also explains the impact on the speed of MBH convergence of biasing the 

location from which each next hop is taken, and how f 
-1

[d] at that biased location affects the 

probability of the MBH advancing toward min
global

(f ) at each next MBH time-step t+1 given         

x[t] =  f 
-1

[d]. This provides an additional way to explain the material in Chapter V, including why 

speeding up the descent of the hopper into the “wrong” basin, meaning the basin that contains 

min
local

(f ) but not min
global

(f ), speeds-up the convergence to min
global

(f ). 

Further, the answer can be used to investigate several issues that are not included in the 

present work, but which have been encountered many times during the research that culminates in 

the present work. These issues include: The impact on MBH convergence speed of the distance 
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across X between argminlocal(f) and argminglobal(f); the distance across (the “width”) of the wide 

basin that contains minlocal(f) but not minglobal(f), compared to distance across (the “width”) of the 

narrow basin that contains minglobal(f) but not minlocal(f); the depth minlocal(f) but not minglobal(f), 

compared to the depth; and why the convergence of an MBH operating on a Gibsonian f is slower 

than the convergence of an MBH operating on a “nested’ f – where nest f has its minglobal(f) in a 

basin that is very close to, or within, the basin that contains minlocal(f). 

Figure Appendix C.1 illustrates f and the  x[t] =  f 
-1

[d].  Figure Appendix C.2 provides 

the probabilities of descent at each depth d assuming that p is scaled to len(X). After                    

d ≤ minnon-global(f), the probability for an entry into the wide basin from the narrow basin goes to 

zero, although the probability of the MBH being force to wait-in-place at minnon-global(f) remains 

non-zero until a x is drawn such that the hopper hops from minnon-global(f) in the wide basin to 

somewhere lower in the narrow basin. 

Figures Appendix C.3 through Appendix C.10 illustrate probabilities of descent down each 

basin, at each depth d, for each x[t] =  f 
-1

[d] , respectively, assuming that p is scaled to len(X). 
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Figure Appendix C.1: f and the x[t] =  f 
-1

[d] 
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 Figure Appendix C.2: Transition probabilities while d > minnon-global(f) assuming that p is scaled to len(X). 

After d ≤ minnon-global(f), the probability for an entry into the wide basin from the narrow basin goes to 

zero although the probability of the MBH being force to wait-in-place at minnon-global(f) remains non-zero 

until a x is drawn such that the hopper hops from minnon-global(f) in the wide basin to somewhere lower in 

the narrow basin. 
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Figure Appendix C.3: Prob(x
A
 descends the wide basin) 

 

 

Figure Appendix C.4: Prob(x
B 

descends the wide basin) 
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Figure Appendix C.5: Prob(x
C  

descends the narrow basin) 

 

 

Figure Appendix C.6: Prob(x
D  descends the narrow basin) 
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Figure Appendix C.7: Prob(x
A descends the narrow basin) 

 

 

Figure Appendix C.8: Prob(x
B  descends the narrow basin) 
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Figure Appendix C.9: Prob(x
C  descends the wide basin) 

 

 

Figure Appendix C.10: Prob(x
D  descends the narrow basin) 
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Figures Appendix C.11 through Appendix C.14 illustrate probabilities of descent down 

each basin, at each depth d, for each x[t] =  f 
-1

[d] , respectively, assuming that p is scaled to len(X). 

In Figure Appendix C.14 it can be seen that, using p  = len(X)∙Laplace( 0, ½ ) on this f provides a 

greater probability of hopping into the narrow basin, and remaining in the narrow basin, compared 

to using p  = len(X)∙Laplace( 0, 1 ) or p = len(X)∙Gaussian( 0, ½ ). 

 

Figure Appendix C.11: f used in the computer-generated example 
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Figure Appendix C.12: In the computer-generated example, the probabilities at each depth d given f and  

p = len(X)∙Laplace( 0, 1 ) 

 

 

Figure Appendix C.13: In the computer-generated example, the probabilities at each depth d given f and  

p = len (X)∙Gaussian( 0, ½ ) 
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Figure Appendix C.14: In the computer-generated example, the probabilities at each depth d given f and  

p = len (X)∙Laplace( 0, ½ ) 
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D. Python code used to generate simulated f  

To generate: 

 

import numpy as np 

extent=10000 

f=np.zeros(extent) 

x_c1=int(0.20*extent) 

x_c6=int((float(500)/float(extent))*extent)  

kf6=4000.0  

b6=12000.0  

x_c7=int((float(1000)/float(extent))*extent)  

kf7=1200.0  

b7=9600.0  

x_c8=int((float(2500)/float(extent))*extent)  

kf8=5000.0  

b8=12000.0  

x_c8a=int((float(4250)/float(extent))*extent)  

kf8a=11000.0  

b8a=58500.0  

x_c9=int((float(4725)/float(extent))*extent)  

kf9=7200.0  

b9=16000.0 

x_c9a=int((float(5500)/float(extent))*extent)  

kf9a=10000.0  
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b9a=40000.0         

x_c10=int((float(7500)/float(extent))*extent)  

kf10=5000.0  

b10=20000.0  

 

for x_index in range(0,extent):  

     f[x_index]=-2480.0/(((x_index-x_c1)*(x_index-x_c1))+170000.0) 

f[x_index]=f[x_index]-kf6/(((x_index-x_c6)*(x_index-x_c6))+b6)  

         f[x_index]=f[x_index]-kf7/(((x_index-x_c7)*(x_index-x_c7))+b7)  

         f[x_index]=f[x_index]-kf8/(((x_index-x_c8)*(x_index-x_c8))+b8)  

         f[x_index]=f[x_index]-kf8a/(((x_index-x_c8a)*(x_index-x_c8a))+b8a)  

         f[x_index]=f[x_index]-kf9/(((x_index-x_c9)*(x_index-x_c9))+b9)  

         f[x_index]=f[x_index]-kf9a/(((x_index-x_c9a)*(x_index-x_c9a))+b9a)  

         f[x_index]=f[x_index]-kf10/(((x_index-x_c10)*(x_index-x_c10))+b10)  

 

         f[x_index]=f[x_index]*0.1*0.299996 
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To generate: 

 

After the code provided above, add: 

disconnected_X=True 

if disconnected_X==True:  

    for x_index in range(0,extent):     

if ((x_index>250 and x_index<450) or (x_index>1180 and x_index<1750) or (x_index>2000 and x_index<2450) or 

(x_index>2600 and x_index<3850) or (x_index>4000 and x_index<4150) or(x_index>4450 and x_index<4650) or 

(x_index>4752 and x_index<7000)) 

f[x_index]=10.0  
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To generate: 

 

 

After the code provided above, add: 

for x_index in range(0,extent): 

        f[x_index]=f[x_index]-(0.000350*( np.cos(128.0*pi*float(x_index)/float(extent)) )) 

        f[x_index]=f[x_index]-(0.000325*( np.cos(183.0*pi*float(x_index)/float(extent)) )) 

        f[x_index]=f[x_index]-(0.000300*( np.cos(231.0*pi*float(x_index)/float(extent)) )) 

        f[x_index]=f[x_index]-(0.000275*( np.cos(311.0*pi*float(x_index)/float(extent)) )) 

        f[x_index]=f[x_index]-(0.000250*( np.cos(397.0*pi*float(x_index)/float(extent)) )) 

        f[x_index]=f[x_index]-(0.000225*( np.cos(431.0*pi*float(x_index)/float(extent)) )) 

        f[x_index]=f[x_index]-(0.000200*( np.cos(517.0*pi*float(x_index)/float(extent)) )) 

        f[x_index]=f[x_index]-(0.000175*( np.cos(603.0*pi*float(x_index)/float(extent)) )) 

        f[x_index]=f[x_index]-(0.000150*( np.cos(671.0*pi*float(x_index)/float(extent)) )) 

        f[x_index]=f[x_index]-(0.000125*( np.cos(749.0*pi*float(x_index)/float(extent)) )) 

        f[x_index]=f[x_index]-(0.000100*( np.cos(861.0*pi*float(x_index)/float(extent)) )) 

 

Finally, for generating any of the three versions of prototypical 1-dimensional f, after the code 

provided above, add: 

f=20000.0*f  
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To generate: 

 

import numpy as np 

extent=10000 

f=np.zeros(extent) 

x_c1=int(0.20*extent) 

x_c2=int(0.925*extent)  

kf=1.0 

for x_index in range(0,extent):  

     f[x_index]=-2480.0/(((x_index-x_c1)*(x_index-x_c1))+170000.0)# 2480.0, 170000.0 

         f[x_index]=f[x_index]-(kf*(0.0985)/(((x_index-x_c2)*(x_index-x_c2))+6.5)) 

f=20000.0*f  
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  To generate: 

 

import numpy as np 

extent=2048 

q=np.zeros(extent) 

q_x_offset=int(0.25*Num_x) 

for x in range(0,Num_x): 

if (x>=xa and x<int(0.5*Num_x)): 

q[x]=q[x-1]-0.75  

 if (x>=int(0.5*Num_x) and x<=Num_x-xa): 

         q[x]=q[x-1]+0.75           

q=-0.01*(q*q) 
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To generate: 

 

import numpy as np 

extent=2048 

z_simp=np.zeros(extent) 

Num_x=float(extent) 

scale_f=1.5 

arg_z_star=int(0.5*Num_x) 

arg_z_star2=int(0.332*Num_x) 

arg_z_star3=int(0.6125*Num_x) 

arg_z_star4=int(0.365*Num_x) 

arg_z_star5=int(0.626*Num_x) 

arg_z_star6=int(0.425*Num_x) 

arg_z_star7=int(0.675*Num_x) 

arg_z_star8=int(0.295*Num_x) 

arg_z_star9=int(0.545*Num_x) 

arg_z_star10=int(0.29*Num_x) 

arg_z_star11=int(0.72*Num_x) 

arg_z_star12=int(0.24*Num_x) 

arg_z_star13=int(0.75*Num_x) 

arg_z_star14=int(0.48*Num_x) 

arg_z_star15=int(0.51*Num_x) 

arg_z_star16=int(0.43*Num_x) 

 Kx=float(Num_x)/512.0 

 scale_f_per_span_of_x=float(Num_x)/512.00 
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for x in range(0,Num_x): 

        if (x>=x_a and x<=Num_x-x_a): 

            z_simp[x]=-(scale_f*scale_f_per_span_of_x*1050.0/( (float(x-arg_z_star)*float(x-arg_z_star) )+2.5))  

            z_simp[x]=z_simp[x]-(scale_f*scale_f_per_span_of_x*900.0/( (float(x-arg_z_star2)*float(x-arg_z_star2) )+5.25))  

            z_simp[x]=z_simp[x]-(scale_f*scale_f_per_span_of_x*1350.0/( (float(x-arg_z_star3)*float(x-arg_z_star3) )+3.25))  

            z_simp[x]=z_simp[x]-(scale_f*scale_f_per_span_of_x*950.0/( (float(x-arg_z_star4)*float(x-arg_z_star4) )+3.25))  

            z_simp[x]=z_simp[x]-(scale_f*scale_f_per_span_of_x*800.0/( (float(x-arg_z_star5)*float(x-arg_z_star5) )+2.75))  

            z_simp[x]=z_simp[x]-(scale_f*scale_f_per_span_of_x*1700.0/( (float(x-arg_z_star6)*float(x-arg_z_star6) )+8.75)) 

            z_simp[x]=z_simp[x]-(scale_f*scale_f_per_span_of_x*20500.0/( (float(x-arg_z_star)*float(x-arg_z_star) )+600.15))  

    

 f=z_simp 

  



   

168 

 

To generate: 

 

import numpy as np 

extent=1000 # A lattice of 1 million squares  

f=np.zeros((extent,extent)) 

u=np.zeros(extent) 

v=np.zeros(extent) 

 

x = np.arange(0,extent,1) 

y = np.arange(0,extent,1) 

X, Y = np.meshgrid(x, y) 

         

g = -17000000.0*mlab.bivariate_normal(X-int(0.85*extent), Y-int(0.85*extent), 5, 7, 0, 0)  

# Variance, variance, mean, mean 

 h = -25550000000.0*mlab.bivariate_normal(X-int(0.125*extent), Y-int(0.125*extent), 300, 400, 0, 0)  

# Variance, variance, mean, mean 

f = 0.1*(g + h)   
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To generate: 

 

import numpy as np 

np.zeros(extent) 

f=np.zeros(extent) 

f1=np.zeros(extent) 

f2=np.zeros(extent) 

x_c1=int(0.45*extent)  

x_c2=int(0.95*extent)  

x_array=arange(0,extent,1) 

f1=(-100.0)*mlab.normpdf(x_array,x_c1,120)  

f2=(-6.0)*mlab.normpdf(x_array,x_c2,6)  

 

f=(f1+f2)*215.0 
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To generate: 

   

import numpy as np 

loc_a=np.zeros(100)  

loc_b=np.zeros(100)  

loc_c=np.zeros(100)  

loc_d=np.zeros(100)  

depth=np.zeros(100)      

local_min_at_depth=np.zeros(100)   

for i in range(0,100): 

depth[i]=float(-i)-120 

loc_a[i]=(local_min-float(i)) 

loc_b[i]=(local_min+float(i)) 

loc_c[i]=(global_min-float(i)) 

loc_d[i]=(global_min+float(i))   

if i<>23: 

      local_min_at_depth[i]=(local_min) 

        loc_a[i]=(local_min-(float(i)*0.4875)) 

         loc_b[i]=(local_min+(float(i)*0.4875)) 

if i==29: 

            loc_a[i]=(local_min-(float(i)*0.475)) 

             loc_b[i]=(local_min+(float(i)*0.475))   
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if i==30: 

             loc_a[i]=(local_min-(float(i)*0.465)) 

             loc_b[i]=(local_min+(float(i)*0.465))   

if i==31: 

            loc_a[i]=(local_min-(float(i)*0.45)) 

             loc_b[i]=(local_min+(float(i)*0.45))  

 if i==30: 

            loc_a[i]=(local_min-(float(i)*0.40)) 

             loc_b[i]=(local_min+(float(i)*0.40))   

if i==29: 

            loc_a[i]=(local_min-(float(i)*0.35)) 

             loc_b[i]=(local_min+(float(i)*0.35))     

if i==28: 

             loc_a[i]=(local_min-(float(i)*0.30)) 

             loc_b[i]=(local_min+(float(i)*0.30)) 

if i==27: 

            loc_a[i]=(local_min-(float(i)*0.25)) 

            loc_b[i]=(local_min+(float(i)*0.25))    

if i==26: 

            loc_a[i]=(local_min-(float(i)*0.20)) 

            loc_b[i]=(local_min+(float(i)*0.20)) 

if i==25: 

            loc_a[i]=(local_min-(float(i)*0.15)) 

            loc_b[i]=(local_min+(float(i)*0.15))      

 if i==24: 

            loc_a[i]=(local_min-(float(i)*0.075)) 

             loc_b[i]=(local_min+(float(i)*0.075))   

 if i<=23: 

             loc_a[i]=(local_min) 

             loc_b[i]=(local_min) 

              

loc_c[i]=(global_min - (float(i)*0.025)) 

loc_d[i]=(global_min + (float(i)*0.025)) 
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E. Details regarding the PyKep model  

f  in the use-case as returned by PyKep queries 

In the use-case,  f is the total change in velocity (|Δ𝑣|), in units of meters per second, 

attributable to the consumption of propellant on-board the spacecraft only. f does not include |Δ𝑣| 

attributable to the consumption of propellant on-board the launch vehicle. The exclusion from f of 

|Δ𝑣| attributable to the consumption of propellant on-board the launch vehicle is assured by the 

manner in which PyKep is set up and PyKep queries are coded. That will be specified below. 

The manner in which the control parameters [x1, x2, x3], where x1 is the epoch of launch 

from Earth, x2 is the duration of the voyage from Earth to the nearest approach to Jupiter, and x3 is 

the duration of the voyage from the nearest approach to Jupiter to the nearest approach to Saturn, 

and x1, x2, and x3 are real numbers in IEEE Floating Point representation, are mapped to f is 

performed by what trajectory optimization practitioners refer to as a transcription. The 

transcription used by PyKep to map a given vector of  control parameters [x1, x2, x3] to f[x1, x2, x3] 

is called Multiple Gravity Assist (MGA). Epoch of launch from Earth refers to the exact time of 

launch including date, hour, minutes, seconds, and fractions of seconds (no more coarse than 

milliseconds). 

Transcriptions typically make simplifying assumptions in both their mathematics and 

physics models. Sometimes these simplifying assumptions limit the precision and/or the fidelity 

(realism) with which the transcription maps [x1, x2, x3] to f[x1, x2, x3]. MGA makes the following 

simplifying assumptions: 

• The physics model assumes 2-body gravitational dynamics, i.e., the spacecraft and one natural 

body. When very close to a planet, the model takes into account the gravity of only that planet. 

When not close to a planet, the model takes into account the gravity of only the Sun. This is a 
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simplification in the sense that at various times in the set of candidate solutions evaluated by 

the MBH process, the spacecraft is simultaneously affected by the gravity of the Sun and all 

other bodies in the solar system. However, the perturbations caused by additional bodies are 

small, and so the two-body approximation is reasonable and historically applied in preliminary 

design. 

• Because the voyage is long compared to the propellant-consuming control maneuvers, the 

impact of the control maneuvers is modeled as a sum of small number of infinitesimal-duration 

impulse functions rather than as the integration of finite-duration forcing functions within a 

second order differential equation. 

• Because, by Kepler’s equations, the trajectories from Earth to Jupiter and Jupiter to Saturn 

approximately lie on respective conic sections, a numerical root-finding solution to Lambert’s 

problem is used to map the travel time from x1 to x2, and x2 to x3, to conic sections and the 

changes in velocity that are required to transfer the spacecraft from one conic section to 

another. The use of Lambert’s problem, and particularly a numerical solution to Lambert’s 

problem, is an approximation. The use of Lambert’s problem has various implications, 

including: 

o Lambert’s problem assumes 2-body gravitational dynamics. 

o Numerical (e.g., root-finding) solutions to Lambert’s problem are unstable when the 

angle of transfer from one conic section to another the other is 180 degrees. If the 

optimal solution that globally minimizes f[x1, x2, x3] requires a transfer angle equal to 

or nearly 180 degrees, use of Lambert’s problem may return an erroneous f or an error 

message instead of a value for f. To prevent this, PyKep’s MGA transcription includes 

a penalty function near every point f[x1, x2, x3] such that [x1, x2, x3] corresponds to a 
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transfer angle equal to or nearly 180 degrees. The problem with that is that if the global 

minimum f[x1, x2, x3] requires a transfer angle equal to or nearly 180 degrees, that f may 

never be found because it is obscured by the penalty function. 

• The MGA transcription allows for a single maneuver at the point of closest approach (periapse) 

to each flyby planet. In the case of the example problem in this work, there is only one flyby 

planet (Jupiter). The maneuver |Δ𝑣| is equal to the difference in periapse velocity between the 

incoming and outgoing hyperbolas at the flyby planet. These hyperbolas are approximated 

from the incoming and outgoing velocity vectors that are the result of solving Lambert’s 

problem. This approximation is called the method of patched conics. 

Wikipedia provides an article on Lambert’s problem at Lambert's problem - Wikipedia. 

For interested readers, that article points to many papers on the subject including an article on 

MGA. In addition, MGA and its use of Lambert’s problem are explained in [21, 68 - 71]. 

XF in the use-case 

Because the propellant tanks on-board the Pioneer 11 spacecraft were very small (in order to 

maximize the payload of scientific instruments), according to one expert at NASA Goddard’s 

Space Flight Center, any f >10 would have been totally un-flyable (non-feasible). In the use-case, 

that makes XF appear to be, as best as can be determined, disconnected and sparse. In the opinion 

of a different expert at NASA Goddard’s Space Flight Center, any f >3 is totally un-flyable (non-

feasible). That implies that XF may be even more severely  disconnected and sparse. That is simply 

a debate about how disconnected and sparse XF may be. The use-case results provided f << 3. As 

shown in Table III in Chapter VI, across 100 MBH trials made, the present author’s methodology 

produced a mean(𝑓∗  ̂) = 0.0067, a max(𝑓∗  ̂) = 0.0250, and a min(𝑓∗  ̂) = 0.0003, where 𝑓∗  ̂ is the 

global minimum of  f found by the MBH process in each of the 100 trials. Therefore, the debate 

https://en.wikipedia.org/wiki/Lambert%27s_problem
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over whether f >3 or f >10 is totally un-flyable (non-feasible) is, in the context of the use-case, 

moot.  

Assuring, by the set-up of PyKep, and how PyKep queries are coded, that changes in velocity 

due to the consumption of propellant on-board the launch vehicle are excluded from f   

A small Python Class named MGA_intercept was provided to the present author by Jacob 

A. Englander as an aid in the development of the use-case software. Essential portions of that 

code and an example of its use are provided below. Comments are provided in non-bold Times 

New Roman font and Python code is provided in Bold Calabri font. 

import MGA_intercept  

Set up the MGA_intercept code and thereby PyKep. 

Pioneer11 = MGA_intercept.MGA_intercept(seq=seq, t0=[-9863.0, -9948.0], tof=[800.0, 

2000.0], vinf=12.0, tof_encoding='direct') 

Launch from Earth may occur any time in 1974. Flight time from Earth to Jupiter is 

between 0 and 800 days. Flight time from Jupiter to Saturn is between 0 and 2000 days. The 

hyperbolic excess velocity attributable to the consumption of propellant on-board the launch 

vehicle at Earth departure may be up to, but no more than, 10 km/s. If it is more than 10 km/s 

then the spacecraft must maneuver, and f will increase because of a change in velocity 

attributable to the consumption of propellant on-board the launch vehicle at Earth. As long as 

vinf<=10.0 km/s, then the f returned by PyKep will not include any |Δ𝑣| attributable to the 

consumption of propellant on-board the launch vehicle. Jacob A. Englander assured the present 

author that the change in velocity attributable to the consumption of propellant on-board the 

launch vehicle could not have exceeded 10.0 km/s because 10.0 km/s is larger than the launch 

vehicle injection velocity necessary to reach Jupiter. tof_encoding='direct' selects one of three 
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transcriptions provided by PyKep, one in which the entries of x directly represent time in units of 

days, e.g., x2 = 986.598496203486… days.  

The following code provides a crude candidate x for a query to PyKep and shows how 

the query is structured. Convert calendar dates to Modified Julian Dates relative to January 1, 

2000 (MJD2000 dates) and flight times: April 6, 1973 = MJD 41778 which translates into 

MJD2000 = -9767 (this should really be an IEEE Floating Point value); Dec 3, 1974 = MJD 

42384 which makes Time-of-Flight (TOF) from Earth to Jupiter 606 days (this should really be 

an IEEE Floating Point value); September 1, 1979 = MJD 44117 which makes Time-of-Flight 

(TOF) from Jupiter to Saturn 1733 days (this should really be an IEEE Floating Point value). 

x = [-9766.0, 606.0, 1733.0]  

The precision of this example of x is inadequate for the use-case. The following line of 

code evaluates F(x): 

F = Pioneer11.fitness(x)  

Because each query of PyKep returns F as a Python list, that list needs to be parsed by adding the 

line of code:  

f_candidate=F[0] 
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