University of New Hampshire University of New Hampshire Scholars' Repository

Doctoral Dissertations

Student Scholarship

Spring 2021

Nickel – Iron Catalysts for Low Temperature Dry Reforming of Methane

Gagandeep Dhillon University of New Hampshire, Durham

Follow this and additional works at: https://scholars.unh.edu/dissertation

Recommended Citation

Dhillon, Gagandeep, "Nickel – Iron Catalysts for Low Temperature Dry Reforming of Methane" (2021). *Doctoral Dissertations*. 2564. https://scholars.unh.edu/dissertation/2564

This Dissertation is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact nicole.hentz@unh.edu.

Nickel – Iron Catalysts for Low Temperature Dry Reforming of Methane

By

Gagandeep Singh Dhillon

B.E. Chemical Engineering, M.S. University of Baroda, India, 2016

M.S. Chemical Engineering, University of New Hampshire, Durham, USA, 2018

DISSERTATION

Submitted to the University of New Hampshire in Partial Fulfillment of the Requirements for the Degree of

> Doctor of Philosophy in Chemical Engineering May, 2021

This dissertation has been examined and approved in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Chemical Engineering by:

Dissertation director: Dr. Nan Yi, Assistant Professor of Chemical Engineering

Dr. P.T. Vasudevan, Professor of Chemical Engineering

Dr. Xiaowei Teng, Professor and Chair of Chemical Engineering

Dr. Nivedita Gupta, Professor of Chemical Engineering

Dr. Gonghu Li, Professor of Chemistry

On March 24th 2021

Approval signatures are on file with the University of New Hampshire Graduate School.

Dedication

I dedicate my PhD dissertation to my respected mother.

Acknowledgements

First of all, I bow and thank to my "Celestial Lord God" for blessing with lot of opportunities and help he has given me. I would like to express my profound appreciation and gratitude to Dr. Nan Yi, who has provided me guidance and support over the past 3 years as my PhD advisor. Sincere thanks to the UNH Graduate School and the Department of Chemical Engineering for providing financial support through teaching assistantship and Summer Teaching Assistant Fellowship (STAF) during my PhD program. I would like to thank Dr. P.T. Vasudevan, Dr. Russell Carr and Dr. Nivedita Gupta for their constant mentoring and motivation throughout my grad school journey at the University of New Hampshire.

I would also like to thank my other dissertation committee members – Dr. Xiaowei Teng and Dr. Gonghu Li for their major contributions in teaching catalysis coursework. I would like to thank my colleagues Guoquiang Cao, Zhen Tian and other members from Yi's Lab for their assistance. I sincerely appreciate help from University Instrumentation Center – Mr. John Wildermann for his help on XPS analysis. I would like to sincerely appreciate Darcy Fournier for her constant help and support in operating and troubleshooting instruments.

Lastly, I would again like to acknowledge my respected parents and sister for always showering their blessings and constant mental support to me. Once again, thanks to everyone.

DEDICATIONiii
ACKNOWLEDGEMENTSiv
TABLE OF CONTENTSv
LIST OF FIGURESxi
LIST OF TABLESxv
ABSTRACTxvii
CHAPTER 1 – Introduction1
1.1 Sources of Methane1
1.2 Conversion of Methane: Process Analysis2
1.3 Dry Reforming of Methane (DRM)8
1.3.1 Catalyst development
1.3.1.1 Precious metals based catalysts
1.3.1.2 Non-Precious metal based catalysts11
I) Nickel based catalysts11
II) Cobalt-based catalysts12
III) Precious metals modified Ni- and Co-based catalysts
IV) Transition metals modified Ni-based catalysts17
1.3.2 Catalyst support effect
1.3.3 Mechanistic and Kinetic studies26
1.3.3.1 Activation of CH ₄ and CO ₂ 26

TABLE OF CONTENTS

1.3.3.2 DRM mechanism and rate expression modelling	27
1.3.4 Catalyst Deactivation	\$2
1.3.4.1 Carbon deposition	2
1.3.4.2 Sintering	37
1.3.4.3 Sulfur Poisoning	38
1.4 Rationales and Objectives	39
1.5 References	10
CHAPTER 2 – Experimental	52
2.1 Catalyst synthesis	2
2.1.1 Ni-Fe/TiO ₂ synthesis by incipient wetness impregnation	52
2.1.2 Ni-Fe/TiO ₂ synthesis by hydrotalcite-type precursors	53
2.1.3 Synthesis of mixed oxide TiO ₂ -CeO ₂ support and Ni-Fe/TiO ₂ -CeO ₂ catalyst	53
2.2 Catalyst characterization	54
2.2.1 Temperature programmed reactions	54
2.2.2 CO pulse chemisorption	55
2.2.3 X-ray photoelectron spectroscopy	55
2.2.4 Thermogravimetric Analysis-Differential Thermogravimetry (TGA-DTG)	56
2.2.5 Raman spectroscopy	56
2.2.6 In-situ DRIFTS analysis	56

2.2.7 BET surface area analysis57
2.3 Catalytic activity performance
CHAPTER 3 – Bimetallic Ni-Fe/TiO2 catalysts synthesized by wet-impregnation procedure for
low temperature dry reforming of methane
3.1 Introduction
3.2. Results and discussion
3.2.1 Hydrogen–Temperature Programmed Reduction (H ₂ -TPR)60
3.2.2 Pulse CO-Chemisorption
3.2.3 Methane – Temperature Programmed Surface Reaction / Differential Thermogravimetry
(CH ₄ -TPSR/DTG)64
3.2.4 Carbon dioxide – Temperature programmed surface reaction/Hydrogen – Temperature
programmed reduction (CO ₂ -TPSR/H ₂ -TPR)66
3.2.5 X-ray Photoelectron Spectroscopy (XPS) of reduced catalysts
3.2.6 Catalytic performance in dry reforming of methane and CH ₄ – decomposition71
3.2.7 Characterizations of used catalysts75
3.2.7.1 X-ray Photoelectron Spectroscopy (XPS)75
3.2.7.2 Thermogravimetric Analysis (TGA)/Differential Thermogravimetry (DTG)79
3.2.7.3 Raman spectroscopy of used catalysts after DRM83
3.3 In-situ DRIFTS analysis over Ni/TiO ₂ and Ni ₃ Fe ₁ /TiO ₂ catalysts

3.4 References
CHAPTER 4 – Bimetallic Ni-Fe/TiO ₂ catalysts derived from hydrotalcite type precursors for low
temperature dry reforming of methane93
4.1 Introduction
4.2 Results and discussion95
4.2.1 Hydrogen–Temperature Programmed Reduction (H ₂ -TPR)95
4.2.2 Pulse CO-Chemisorption
4.2.3 Methane – Temperature Programmed Surface Reaction / Differential Thermogravimetry
(CH ₄ -TPSR/DTG)
4.2.4 Carbon dioxide - Temperature programmed surface reaction/Hydrogen - Temperature
programmed reduction (CO ₂ -TPSR/H ₂ -TPR)102
4.2.5 X-ray Photoelectron Spectroscopy (XPS) of reduced catalysts105
4.2.6 Catalytic performance in dry reforming of methane and CH ₄ – decomposition108
4.2.7 Characterizations of spent catalysts112
4.2.7.1 Thermogravimetric analysis - Differential thermogravimetry of used catalysts after
DRM and steady-state CH ₄ -decompsoition (TGA-DTG)112
4.2.7.2 X-ray Photoelectron Spectroscopy (XPS)117
4.2.7.3 Raman spectroscopy of used catalysts after DRM120
4.3 In-situ DRIFTS analysis over Ni/TiO ₂ and Ni ₃ Fe ₁ /TiO ₂ catalysts

4.4 References
CHAPTER 5 – Coke resistant Ni-Fe catalyst over reducible TiO ₂ -CeO ₂ support for low
temperature dry reforming of methane133
5.1 Introduction
5.2 Results and Discussion
5.2.1 Catalytic Activity performance in DRM and CH ₄ decomposition134
5.2.2 Hydrogen–temperature programmed reduction (H ₂ -TPR)138
5.2.3 CO-Chemisorption
5.2.4 Methane - Temperature programmed surface reaction/Differential thermogravimetry
(CH ₄ -TPSR/DTG)140
5.2.5 Carbon dioxide - Temperature programmed surface reaction/Hydrogen - Temperature
programmed reduction (CO ₂ -TPSR/H ₂ -TPR)141
5.2.6 X-ray photoelectron spectroscopy (XPS)143
5.2.7 Raman Spectroscopy of TiO ₂ -CeO ₂ support and Ni-Fe/TiO ₂ -CeO ₂ catalyst148
5.2.8 Thermogravimetric analysis - Differential thermogravimetry (TGA-DTG)149
5.3 References
CHAPTER 6 – Conclusions and Future Work154
6.1 Conclusions154
6.1.1 Ni-Fe/TiO ₂ catalysts synthesized by wet impregnation route154

6.1.2 Conclusions of Ni-Fe/TiO ₂ catalysts synthesized by hydrotalcite route156
6.1.3 Conclusions of Ni-Fe/TiO ₂ -CeO ₂ catalyst synthesized by hydrotalcite route158
6.2 Future Work159
Appendix 1

LIST OF FIGURES

Fig. 1.1. US total natural gas proved reserves, production, and imports from 1985 – 2018.....1 Fig. 1.2. Overview of CH₄ reforming technologies in downstream chemicals production......4 Fig. 1.3. Thermodynamic equilibrium plot for DRM at 1:1 CO₂/CH₄ inlet feed ratio between 300°C-1000°C under the consideration of carbon formation, produced in ASPEN Plus V11......6 Fig. 1.4. Change in coke formation at 1:1 CO₂/CH₄ inlet feed ratio between 1–25 atm pressure...6 Fig. 1.5. Dealloying and Realloying mechanism during DRM over Ni–Fe/MgAl₂O₄ catalyst....17 Fig. 1.7. Schematic representation of Ni–Fe alloy formation on Ni/MgFe_xAl_{2-x}O₄ upon Fe Fig. 1.8. Schematic representation of atomic structure of Ni/MgO and Ni-Fe/MgO catalysts....20 Fig.1.9. Catalyst deactivation mechanisms: A) Carbon deposition, B) Metal Sintering, C) Sulfur Fig. 3.1. H₂-TPR profiles of Ni/TiO₂, Ni–Fe/TiO₂ and Fe/TiO₂ catalysts synthesized by wet-Fig. 3.2. CH₄-TPSR profiles (a) and DTG profiles (b) of Ni/TiO₂, Ni-Fe/TiO₂ and Fe/TiO₂ Fig. 3.3. H₂-TPR profiles of Ni/TiO₂, Ni-Fe/TiO₂ and Fe/TiO₂ catalysts synthesized by wet-

Fig. 3.4. (a) Ni 2p_{3/2} XPS spectra and (b) Fe 2p XPS spectra of reduced catalysts synthesized by Fig. 3.5. Catalytic activity results of DRM tests over Ni/TiO₂ and Ni-Fe/TiO₂ catalysts synthesized by wet-impregnation route: (a) CH_4 consumption, (b) CO_2 consumption, (c) H_2/CO ratio......74 Fig. 3.6. Catalytic activity in steady-state CH₄-decompsoition over Ni/TiO₂ and Ni-Fe/TiO₂ catalysts synthesized by wet-impregnation route, a) CH₄ conversion, and b) CO formation rate..75 Fig. 3.7 (a) Ni 2p_{3/2}, (b) Fe 2p (c) O 1s and (d) C 1s XPS spectra of used catalysts synthesized by Fig. 3.8. Thermogravimetric analysis (TGA) and Differential Thermogravimetry (DTG) of used catalysts: (a,b) Ni/TiO₂, (c,d) Ni–Fe/TiO₂......81 Fig. 3.9. DTG analysis of spent Ni/TiO₂ and Ni-Fe/TiO₂ catalysts synthesized by wet-impregnation route after CH₄ decomposition tests......82 Fig. 3.10. Raman spectra of used Ni/TiO₂ and Ni-Fe/TiO₂ catalysts synthesized by wet-Fig. 3.11. In-situ DRIFTS spectra over Ni/TiO₂ catalyst synthesized by wet-impregnation route Fig. 3.12. In-situ DRIFTS spectra over Ni₃Fe₁/TiO₂ catalyst synthesized by wet-impregnation route under alternate pulse at 550°C......88 Fig.4.1. H₂-TPR profiles of Ni/TiO₂, Ni-Fe/TiO₂ and Fe/TiO₂ catalysts synthesized by hydrotalcite

Fig. 4.2a. CH ₄ -TPSR profiles of Ni/TiO ₂ , Ni-Fe/TiO ₂ and Fe/TiO ₂ catalysts synthesized by
hydrotalcite route
Fig. 4.2b. DTG profiles of Ni/TiO ₂ , Ni-Fe/TiO ₂ and Fe/TiO ₂ catalysts synthesized by hydrotalcite
route after CH ₄ -TPSR tests102
Fig. 4.3. H ₂ -TPR profiles of Ni/TiO ₂ , Ni-Fe/TiO ₂ and Fe/TiO ₂ catalysts synthesized by
hydrotalcite route after CO ₂ -IPSR test104
Fig. 4.4 XPS spectra of reduced catalysts synthesized by hydrotalcite route107
Fig. 4.5. Catalytic activity in DRM as function of reaction time over Ni/TiO ₂ and Ni-Fe/TiO ₂
catalysts synthesized by hydrotalcite route, a) CH ₄ consumption, b) CO ₂ consumption c) H ₂ /CO
ratio111
Fig. 4.6. Catalytic activity in steady-state CH4-decompsoition over Ni/TiO2 and Ni-Fe/TiO2
catalysts synthesized by hydrotalcite route, a) CH ₄ conversion, and b) CO formation rate112
Fig. 4.7. DTG profiles of used catalysts synthesized by hydrotalcite route after DRM tests, a)
Ni/TiO ₂ and b) Ni-Fe/TiO ₂ 115
Fig. 4.8. DTG profiles of used catalysts synthesized by hydrotalcite route after steady-state CH ₄ -
decomposition test116
Fig. 4.9. XPS spectra of spent catalysts synthesized by hydrotalcite route119
Fig. 4.10. Raman spectra of used catalysts synthesized by hydrotalcite route after DRM tests121

Fig. 4.11. In-situ DRIFTS spectra over Ni/TiO2 catalyst synthesized by hydrotalcite route under
alternate pulse at 550°C124
Fig. 4.12. In-situ DRIFTS spectra over Ni_3Fe_1/TiO_2 catalyst synthesized by hydrotalcite route
under alternate pulse at 550°C
Fig. 5.1. CH ₄ , CO ₂ consumption and H ₂ /CO ratio as function of reaction time over Ni ₃ Fe ₁ /TiO ₂ -
CeO ₂ catalyst in DRM136
$Fig. \ 5.2. \ Catalytic \ activity \ in \ CH_4 \ decomposition \ over \ Ni_3Fe_1/TiO_2-CeO_2 \ catalyst137$
Fig. 5.3. H ₂ -TPR profile of TiO ₂ -CeO ₂ support and Ni ₃ Fe ₁ /TiO ₂ -CeO ₂ catalyst139
Fig. 5.4 CIL TDSD/DTC over reduced Ni Fe /TiO. CoO. establist (a) CIL TDSD (b) DTC of
Fig. 5.4. CH4-TPSR/DTG over reduced $N_1_3Fe_1/TO_2$ -CeO ₂ catalyst, (a) CH4-TPSR (b) DTG of
used catalyst after CH ₄ -TPSR141
Fig. 5.5. H ₂ -TPR profile over Ni ₃ Fe ₁ /TiO ₂ -CeO ₂ catalyst after CO ₂ -TPSR test143
Fig. 5.6. Ni $2p_{3/2}$ spectra of Ni ₃ Fe ₁ /TiO ₂ -CeO ₂ catalyst, (a) reduced and (b) spent144
Fig. 5.7. Fe 2p spectra of Ni_3Fe_1/TiO_2 -CeO ₂ catalyst, (a) reduced and (b) spent145
Fig. 5.8. Ce 3d spectra of Ni_3Fe_1/TiO_2 -CeO ₂ catalyst, (a) reduced and (b) spent145
Fig. 5.9. O 1s spectra of Ni ₃ Fe ₁ /TiO ₂ -CeO ₂ spent catalyst146
Fig. 5.10. Raman spectra of TiO ₂ -CeO ₂ support, calcined, reduced and spent Ni ₃ Fe ₁ /TiO ₂ -CeO ₂
catalyst149
Fig. 5.11. Differential Thermogravimetry (DTG) of used Ni ₃ Fe ₁ /TiO ₂ -CeO ₂ catalysts after, a)
DRM, b) CH ₄ -Decomposition

LIST OF TABLES

Table 1.1 Reaction, stoichiometry, H ₂ :CO ratio and enthalpy ΔH_{298K} for methane reforming
processes
Table 1.2 Activation energies for DRM over Ni based catalysts 27
Table 1.3 Overview of coke deposition as a function of reaction temperature and CH ₄ conversion
over Ni catalysts
Table 3.1 Analysis of H ₂ -TPR profiles of Ni/TiO ₂ , Ni–Fe/TiO ₂ and Fe/TiO ₂ catalysts synthesized
by wet-impregnation route
Table 3.2 CO uptake values over Ni/TiO ₂ , Ni-Fe/TiO ₂ and Fe/TiO ₂ catalysts synthesized by wet-
impregnation route
Table 3.3 H ₂ consumption during H ₂ -TPR after CO ₂ -TPSR tests over Ni/TiO ₂ , Ni-Fe/TiO ₂ and
Fe/TiO ₂ catalysts synthesized by wet-impregnation route67
Table 3.4 Atomic concentration (%) of surface species in reduced catalysts synthesized by wet-
impregnation route
Table 3.5 Atomic concentration (%) of surface species in Ni/TiO ₂ and Ni-Fe/TiO ₂ spent catalysts
synthesized by wet-impregnation route77
Table 3.6 Analysis of TGA/DTG data of used catalysts after DRM
Table 4.1 Analysis of H ₂ -TPR profiles of Ni/TiO ₂ , Ni–Fe/TiO ₂ and Fe/TiO ₂ catalysts synthesized
by hydrotalcite route

Table 4.2 CO uptake values over Ni/TiO2, Ni-Fe/TiO2 and Fe/TiO2 catalysts synthesized by
hydrotalcite route
Table 4.3 H ₂ consumption during H ₂ -TPR after CO ₂ -TPSR tests over Ni/TiO ₂ , Ni-Fe/TiO ₂ and
Fe/TiO ₂ catalysts synthesized by hydrotalcite route105
Table 4.4 Atomic concentration (%) of surface species in reduced catalysts synthesized by
hydrotalcite route
Table 4.5 Analysis of TGA data of used Ni/TiO ₂ and Ni-Fe/TiO ₂ catalysts after DRM115
Table 4.6 Analysis of TGA data of used Ni/TiO2 and Ni-Fe/TiO2 catalysts synthesized by
hydrotalcite route after steady-state CH ₄ decomposition tests116
Table 4.7 Atomic concentration (%) of surface species in spent catalysts synthesized by
hydrotalcite route
Table 5.1 Comparison of amount of CO adsorbed on reduced Ni_3Fe_1/TiO_2 -CeO ₂ and Ni_3Fe_1/TiO_2
catalyst140
Table 5.2 Surface atomic concentration (%) of different species in reduced and spent Ni_3Fe_1/TiO_2 -
CeO ₂ catalyst

ABSTRACT

Dry reforming of methane (DRM) offers benefit of consuming two important greenhouse gases $(CH_4 \text{ and } CO_2)$ in a single reaction to produce syngas. Ni-based catalysts have been studied for DRM. However, monometallic Ni catalysts deactivate mainly because of coking. We were motivated to include earth-abundant promoter metals to suppress coke formation and studied a series of bimetallic nickel-iron catalysts supported over TiO₂ and TiO₂-CeO₂ at 550°C and atmospheric pressure. This dissertation mainly focuses on various approaches to synthesize Ni-Fe catalysts and examines the effect of oxide support modification over optimum Ni-Fe/TiO₂ catalyst. In this context, Ni-Fe catalysts supported over TiO_2 were prepared by mainly two approaches – incipient wetness impregnation and co-precipitation methods. The total metal loading of Ni+Fe was maintained at 10 wt% while different ratios of Ni/Fe were investigated. We further explored the effect of oxide support modification by substituting 20 wt% TiO₂ with CeO₂ over a Ni-Fe/TiO₂ catalyst showing high activity and simultaneous minimum coke formation. Bimetallic Ni-Fe catalysts were characterized by various techniques including Temperature Programmed Reactions (TPRs), X-ray Photoelectron Spectroscopy (XPS), Thermogravimetry Analysis-Differential Thermogravimetry (TGA-DTG), Raman Spectroscopy and In-situ DRIFTS analysis. Conclusively, we found that addition of Fe is beneficial to inhibit coke deposition owing to its redox properties during low temperature DRM, while addition of CeO₂ adds to coke inhibition property of Ni-Fe/TiO₂ catalysts. However, Ni/Fe ratio of 3:1 is essential for better activity performance and simultaneous resistance to coke formation.

Chapter 1

Introduction

1.1 Sources of Methane

Fossil fuels contribute to majority of the energy needs across the globe [1] because fossil fuels could be utilized directly or indirectly for energy generation and chemicals production. Fossil fuels would continue to satisfy energy demands for next 3–4 decades [2]. Meanwhile depletion of fossil fuels urges the need to investigate alternative to it. Natural gas, as one major component of fossil fuels, could be utilized to synthesize fossil fuel derivatives and chemicals through variety of conversion processes [3,4]. As shown in Fig. 1.1, the US Energy Information Administration (EIA) has disclosed an approximate 850 trillion cubic feet of proven natural gas reserves while 504 trillion cubic feet of natural gas has been estimated to be recoverable stock in the United States [5].

Fig. 1.1. US total natural gas proved reserves, production, and imports from 1985 – 2018, based on [5].

Biogas also contains CH₄ and CO₂ in approximately 3:2 molar ratio and could also be utilized as an important feedstock for natural gas [6]. Biogas is generally produced by anaerobic digestion of organic material. For instance, 266 million tons of solid waste in the United States was landfilled which decomposed to produce approximately 67 % of biogas [7]. Natural gas derived from petroleum reserves and biogas generated from anaerobic digestion constitutes methane as main component (60%–90%). Because methane is also recognized as one potent greenhouse gas [8], conversion of methane as an important C₁ feedstock to produce energy and synthesize chemicals is desirable, while simultaneously contributing to mitigate global warming effect.

1.2 Conversion of Methane: Process Analysis

Methane conversion to chemicals, including methanol, ammonia, dimethyl ether, usually goes through one indirect approach, which methane being transformed into synthesis gases first [9,10]. This is because direct conversion of CH₄ to aforementioned valuable chemicals is limited by low net-yields of products. Due to high C–H bond dissociation energy (~435 kJ/mol), direct conversion of CH₄ becomes impractical. [11]. Syngas – which mainly comprise of CO and H₂ in varying ratio (H₂:CO = 1 - 3) is produced by reforming of CH₄ with an oxidizing agent such as H₂O, O₂ or CO₂. The H₂:CO ratio mainly depends on the oxidizing agent employed.

Few technologies are currently available for methane transformation. They are: steam reforming of methane (SRM) [12–13], partial oxidation of methane (POM) [14–15], dry reforming of methane (DRM) [16–19], combined reforming of methane (CRM) [20–21], autothermal reforming of methane (ATR) [22] and tri-reforming of methane (TRM) [23]. Table 1.1 lists typical reforming reactions, stoichiometry, H₂:CO ratio of syngas and reaction enthalpy [24].

Reaction	Stoichiometry	H ₂ :CO ratio	ΔH_{298K} (kJ/mol)	
SRM	$CH_4 + H_2O \rightarrow CO + 3H_2$	3	206.8	
РОМ	$CH_4 + \frac{1}{2}O_2 \rightarrow CO + 2H_2$	2	-35.6	
DRM	$CH_4 + CO_2 \rightarrow 2CO + 2H_2$	1	247.3	
CRM	$3CH_4 + 2H_2O + CO_2 \rightarrow 4CO + 8H_2$	2	660.9	
ATR	$7CH_4 + 3O_2 + H_2O \to 7CO + 15H_2$	2.2	-6.8	
TRM	$20CH_4 + H_2O + 9O_2 + CO_2 \rightarrow 21CO + 41H_2$	1.9	12.9	

Table 1.1 Reaction, stoichiometry, H₂:CO ratio and enthalpy Δ H_{298K} for methane reforming processes.

Steam reforming of methane (SRM) is widely used in industry to produce hydrogen-rich syngas which is typically employed to synthesize ammonia. Partial oxidation of methane (POM) produces syngas with H₂:CO ratio as 2:1 which is considered ideal from methanol synthesis viewpoint. However, partial oxidation of methane is practically undesirable due to safety considerations [25]. Dry reforming of methane (DRM) has been shown to be ideal among methane reforming technologies. Because DRM consumes two important greenhouse gases in single reaction while simultaneously producing equimolar mixture of H₂ and CO. H₂:CO ratio of ~ 1 is desirable for production of long-chain hydrocarbons and oxy-alcohols by Fischer-Tropsch (F–T) synthesis over Fe-based catalysts [26]. Apart from SRM, POM and DRM, other methane reforming technologies such as CRM, ATR and TRM could also be employed according to the

requirements of H₂:CO ratio in syngas. Fig. 1.2 shows brief outline of methane reforming technologies to various downstream chemicals production. From economic point of view, dry reforming of methane (DRM) is accepted as ideal technology for methane reforming. This is attributed to less energy consumption (~20%) compared to various methane reforming techniques [10].

Fig. 1.2. Overview of CH₄ reforming technologies in downstream chemicals production.

Dry reforming of methane is highly endothermic reaction with $\Delta H_{298K} = 247.3$ kJ/mol [24]. Thus, high reaction temperature such as 900°C is required to obtain high syngas yields. The standard Gibbs free energy calculation for DRM process is evaluated from equation 1. Equation 1 shows that minimum temperature required for spontaneous DRM process would be more than 643°C [24].

$CH_4 + CO_2 \leftrightarrow 2CO + 2H_2,$	$\Delta G^0 = 61770 - 67.32 \ T \ kJ/mol$	(1)
$CO_2 + H_2 \leftrightarrow CO + H_2$,	$\Delta G^{0} = -8545 + 7.48 T kJ/mol$	(2)
$CH_4 \rightarrow C + 2H_2$,	$\Delta G^0 = 2190 - 26.45 T kJ/mol$	(3)
$2CO \rightarrow C + CO_2,$	$\Delta G^{0} = -39810 + 40.87 T kJ/mol$	(4)

Side reactions during the dry reforming of methane affects the yield to syngas. The prominent side reactions include reverse water-gas shift (RWGS), methane decomposition (MD) and CO disproportionation. Reverse water gas shift reaction consumes H₂ formed by CH₄ dissociation and

reacts with CO₂ to form CO and H₂O shown in equation 2. Thus, RWGS lowers H₂/CO ratio and is the dominant reaction in the temperature 350° C– 750° C. However, above 750° C, the formation of H₂O due to RWGS becomes minimal and H₂/CO ratio approaches unity. Methane decomposition (MD) and CO disproportionation as side-reactions forms active/inactive carbon species leading to catalyst deactivation. The thermodynamic Gibbs free energy for methane decomposition (MD, Equation 3) and CO disproportionation (Equation 4) reaction depends on the reaction temperature.

Fig. 1.3 shows thermodynamics of DRM reaction under the consideration of methane decomposition and CO disproportionation. Coke formation is generally inevitable in the temperature range between 300°C–700°C and high pressures (> 1 atm). When the temperature is above 700°C, CO₂ starts to dissociate effectively into CO and O^{*} (surface adsorbed oxygen species). O^{*} derived from CO₂ dissociation could oxidize coke on catalyst surface thereby enhancing CO yield. Fig. 1.4 shows that with increase in pressure, coke formation is favored. Typically, CH₄ decomposition is suppressed while CO disproportionation dominates at pressure > 1 atm [24]. In order to address the carbon deposition issue during DRM, various approaches could be employed. For example, the ratio of CH₄:CO₂ in the feed could be varied [27]. Typically, equimolar mixture of CH₄ and CO₂ is fed above 1000°C for reforming which produces H₂ and CO in 1:1 ratio. However, carbon deposition could be reduced by using CH₄:CO₂ ratio below one. Thus, CO₂ conversion is higher than CH₄, while H₂/CO ratio is usually below unity. Thus, alternative strategies are necessary to obtain H₂/CO above unity while simultaneously oxidizing coke from catalyst surface.

Fig. 1.3. Thermodynamic equilibrium plot for DRM at $1:1 \text{ CO}_2/\text{CH}_4$ inlet feed ratio between $300^{\circ}\text{C}-1000^{\circ}\text{C}$ under the consideration of carbon formation, produced in ASPEN Plus V11.

Fig. 1.4. Change in coke formation at 1:1 CO_2/CH_4 inlet feed ratio between 1–25 atm pressure, reproduced from [24].

To meet this requirement, oxidizing agents such as H_2O and/or O_2 could be fed along with CO_2 and CH_4 into reformer which might produce syngas with H_2/CO above unity [28]. Thereby combined steam and dry reforming of methane could be one potential option. Combined steam and dry reforming of methane (CRM) offers flexibility in H₂/CO ratio by varying CH₄/H₂O/CO₂ ratio in feed and could also stabilize catalyst by oxidizing coke from catalyst surface [28–30]. Secondly, CRM utilizes nonhazardous feed that could be considerate from safety aspects. However, autothermal reforming (ATR) combines partial oxidation of methane (POM) and steam reforming of methane (SRM) in a single reaction to form syngas with $H_2/CO \sim 2.2$. ATR is often carried out in industry in which 2:1 molar ratio of CH₄/O₂ is heated and fed in steam reformer tubes. Nonetheless, ATR has its drawbacks due to safety concerns attributed to O₂ in feed with CH₄ [9]. Moreover, for ATR, a plant separating O₂ from air also need to be built which adds to manufacturing cost of reforming unit. It is not one cost-effective approach in terms of commercialization of ATR. Tri-reforming of methane (TRM) [31–32] combines DRM along-with SRM and POM in a single reaction as shown in Table 1.1. TRM offers one great advantage of combination of exothermicity from POM and endothermicity from DRM and SRM. With ΔH_{298K} = 12.9 kJ/mol, TRM seems to be thermo-neutral process which produces H_2/CO ratio of ~ 1.9. Thus, tuning the feed ratio might be helpful in achieving desirable H_2/CO ratios and coke deposits mitigation.

In summary, DRM could be one potential choice due to following reasons. 1) DRM could be conducted with natural-gas or biogas resulting in no separation of feed mixture. 2) DRM utilizes two important greenhouse gases in a single reaction to form syngas. 3) DRM excludes the use of O_2 with CH₄ in the feed which might prove fatal from safety considerations. 4) By changing the ratio between CH₄ and CO₂, H₂/CO ratio could be manipulated thereby making DRM to be ideal among reforming processes. 5) DRM could emerge as better alternative to CRM due to high endothermicity of CRM (Δ H_{298K,CRM} = 660.9 kJ/mol vs Δ H_{298K,DRM} = 247.3 kJ/mol).

1.3 Dry Reforming of Methane (DRM)

Dry reforming of methane yields equimolar ratio of CO and H₂. The syngas, mixture of carbon monoxide and hydrogen, is one important platform chemical to produce hydrocarbons and alcohols with suitable catalysts and optimized operation conditions [33]. Catalyst deactivation is the biggest challenge for the development of robust catalysts for DRM reaction. To increase CH₄ and CO₂ conversion and syngas yield, high temperature (>850°C) is necessary. But metal supported oxides catalysts are prone to sintering when temperature is above 850°C. The sintering could be related to the irreversible reaction between active metals and support, which leads to the formation of inactive spinels [34]. While, sintering may also occur due to loss of active metals on catalyst surface. Specifically, when T_{Huttig} (0.3T_{melting}) and T_{Tammann} (0.5T_{melting}) are reached, metal atoms from the defect and bulk would exhibit mobility [35]. This behavior may cause loss of active site from catalyst surface. However, strong interaction between metal and support might prevent sintering due to metal atom mobility. Nevertheless, the primary reason for catalyst deactivation is suggested to be unavoidable coke formation – which is, however, thermodynamically not favored at high temperature. Coking usually occurs through side-reactions such as CH₄ decomposition and CO disproportionation reaction which are thermodynamically favored below 700°C [34]. Thus, development of stable and active DRM catalysts is desirable.

1.3.1 Catalyst development

1.3.1.1 Precious metals based catalysts

Precious metals such as Ru, Pt, Ir, Pd and Rh [36-38] and non-precious metals such as Ni and Co [39,40], have been studied for dry reforming of methane. Precious metals show higher activity

and coke resistance due to their unique properties [24]: i) exposure of d-subshell electron; ii) highly dispersed nanoparticles which enhance dissociative adsorption of H_2/O_2 .

Among Ru supported catalysts, Mg₃(Al)O is one better support among the choices of MgO, γ -Al₂O₃, MgAl₂O₄ and Mg₃(Al)O. 2wt% Ru/Mg₃(Al)O catalysts exhibited superior catalytic activity and stability over 30 h TOS at 750°C [41]. TEM analysis of spent catalysts confirmed sintering occurred over Ru/MgO, Ru/ γ -Al₂O₃ and Ru/MgAl₂O₄. Highly dispersed Ru nanoparticles over Mg₃(Al)O support prevented sintering during DRM. Enhanced stability performance of Ru/Mg3AlO was attributed to high Ru dispersion. The increased dispersion is related to surface defects observed over non-crystalline Mg₃(Al)O. Upon calcination and reduction, highly dispersed Ru nanoparticles were partially embedded inside the support matrix [40]. Combined *in-situ* XRD and XAFS analysis [42] showed that Ru nanoclusters of size < 1 nm partially formed as oxidized Ru species in close contact with ceria. Ru nanoclusters over ceria, Ru^{$\delta+}$ -CeO_{2-x} is thermally stable.</sup>

High oxygen mobility originated from metal-support interactions facilitated DRM stability up to 25 h TOS. Activity and stability deteriorated when Ru nanoparticles size increased to 4 nm. Damyanova et. al [43] studied Pt/ZrO₂ catalyst at 550°C for DRM. They showed that highly dispersed Pt⁰ species were responsible for pronounced CH₄ conversion. However, introduction of 1-6 wt% CeO₂ resulted in decreased catalytic activity. The presence of atomically dispersed Ce was attributed to inhibit the interaction between Pt and Zr on metal-support interface thereby decreasing the activity. Besides carbon formation, Pt/Al₂O₃ sintered during DRM reaction due to low metal dispersion. But addition of promoters such as Pr, Zr and Nb in Pt/CeO₂-Al₂O₃ catalyst showed improved activity and carbon resistance compared to Pt/Al₂O₃ [44]. Particularly, high oxygen storage/release capacity of Pt/CePr-Al₂O₃ facilitated carbon removal from Pt⁰ surface.

Improved reducibility and metal dispersion over Pt/CePr-Al₂O₃ contributed to stability during DRM.

Ir catalysts supported on Ce_{0.9}Pr_{0.1}O₂, which were prepared by deposition-precipitation (DP) method showed highest catalytic activity in DRM reaction at 750°C [45]. Catalysts prepared by co-precipitation (CP) and sequential-precipitation (SP) exhibited much lower activity. TEM analysis demonstrated that Ir metal was fully or partially embedded in the matrix of Ce_{0.9}Pr_{0.1}O₂-CP and Ce_{0.9}Pr_{0.1}O₂-SP support. High density of Ir nanoparticles over Ce_{0.9}Pr_{0.1}O₂-DP support explained its maximum activity. Characterization of spent catalysts after 200 h TOS revealed sintering of Ir nanoparticles while no coke deposition was observed. However, introduction of 10 wt% Mg in Ir/Al₂O₃ catalyst showed improved sintering resistance and coke resistance in DRM for 59 h TOS [46]. XRD analysis of Mg modified Al₂O₃ support revealed formation of magnesium aluminate spinel. The high sintering resistance of Ir/Mg-Al₂O₃ catalyst was attributed to metal support interaction.

Rh/γ-Al₂O₃ prepared by atomic-layer deposition (ALD) and incipient wetness impregnation (IWI) demonstrated coke resistant at 800°C [47]. However, EDX-TEM analysis of spent catalysts revealed metal-sintering which caused catalyst deactivation. Alternatively, Rh/γ-Al₂O₃ prepared by wet impregnation method showed coke deposition during DRM at 750°C [48]. Modifying Al₂O₃ support with 20 wt% Ce_{0.5}Zr_{0.5}O_{2-δ} decreased coke deposition as compared to Rh/Al₂O₃. Conclusively, Rh/Ce_{0.5}Zr_{0.5}O_{2-δ} demonstrated least coke formation. Surface oxygen vacancies in Ce_{0.5}Zr_{0.5}O_{2-δ} support may activate CO₂ by dissociative adsorption forming CO and O^{*}. This O^{*} species could promote gasification of coke on the support and Rh sites. Catalytic activity followed the order: Rh/Al₂O₃ > Rh/Al₂O₃-Ce_{0.5}Zr_{0.5}O_{2-δ} > Rh/Ce_{0.5}Zr_{0.5}O_{2-δ}. HRTEM analysis of used

catalysts showed no significant changes in Rh particle size. The results also suggested sintering resistance of Rh during DRM.

Singha et al. [49] investigated Pd/CeO₂ for DRM reaction. Highly dispersed Pd nanoparticles activated CH₄ at temperature as low as 350°C. XRD and TEM analysis of spent catalysts after 12 h TOS at 800°C showed sintering of Pd nanoparticles while no coke deposition was observed. Water produced due to RWGS reaction caused hydroxylation of Pd nanoparticles and was evidenced by presence of Pd(OH)₄. Pd@SiO₂ core-shell nanocatalysts demonstrated resistance to coking and sintering during DRM at 750°C [50]. It was suggested that SiO₂ shell of Pd@SiO₂ catalyst would divide Pd nanoparticles into small ensembles of Pd which inhibited coke formation. Upon calcination, mesopores of diameter ~ 7.5 nm were formed in the shell which inhibited agglomeration of Pd and growth of filamentous carbon.

1.3.1. 2 Non-Precious metal based catalysts

I) Nickel based catalysts

Precious metals might not be potential choice for industrial application of DRM reaction due to i) catalyst deactivation caused by active metal sintering; ii) high cost in comparison to active non-precious metals such as Ni and Co.

Bradford and Vannice demonstrated that turnover frequency of active metals in DRM reaction followed the order: Ru > Rh > Ni, Ir > Pt > Pd [51]. The different activity was attributed to difference in metal-support interaction. Additionally, participation of O or OH species from the support in metal-support interfacial region might also influence the catalytic activity. However, considering the cost-effectiveness of the active metal catalysts for DRM, Ni or Co might prove better option compared to precious metals. Secondly, recovering of active precious metals including Pt and Ir would add to the cost of reforming process. Therefore, Ni and Co based catalysts have been investigated [52-54].

Monometallic Ni and Co based catalysts are prone to catalyst deactivation because of carbon formation and metal sintering. Ni/Al₂O₃ catalysts prepared by incipient wetness impregnation and solution combustion synthesis (SCS) methods showed 39.4% and 20% coke deposition during 50 h TOS. Strong metal-support interaction induced in Ni/Al₂O₃ (SCS) catalyst might attribute towards decreased coking [55]. Carbon deposition could be suppressed from 1.95 to 0.13 μ mol_C/g_{catalyst} [56] while unreduced and calcined Ni/Al₂O₃ catalyst was coated with ALD alumina. Interaction of alumina overcoat with Ni sites enhanced strong metal support interactions. Reduction of NiAl₂O₄ spinel to Ni⁰ during DRM reaction was responsible for increase in catalytic activity with 20 h TOS.

Morphology of support would also influence the catalytic activity, stability and coke deposition [57]. Maximum coke deposition (23 wt%) was observed over Ni/Al₂O₃ nanoparticles. While, Ni/Al₂O₃ catalyst with nanofiber type morphology exhibited maximum stability and least coke deposition. Al₂O₃ support with nanofiber type morphology may possess basic sites to promote CO₂ chemisorption. Doping 25% TiO₂ with Al₂O₃, improved catalytic activity and stability in DRM. [58]. TiO₂ facilitated redox properties and balanced metal support interactions. Introduction of TiO₂ altered type of deposited coke from graphitic to amorphous, suppressing catalyst deactivation.

II) Cobalt-based catalysts

Co-based monometallic catalysts have been also investigated in DRM reaction. Guo and coworkers showed that 10 wt% Co supported on MgO and Al₂O₃ deactivated during DRM reaction due to active metal sintering [59]. Further, employing Mg(Al)O hydrotalcite-type material as support improved the activity and stability in terms of coking and sintering resistance. They showed that formation of CoO-MgO solid solution from hydrotalcite type compounds would increase the account of medium-strength basic sites which were suggested to be crucial for CO₂ activation. Co/AlO_x catalyst prepared by co-precipitation approach was inactive in DRM due to formation of CoAl₂O₄ spinel [60]. However, introduction of MgO in Co/AlO_x composite facilitated formation of CoO-MgO solid solution which increased the degree of CoAl₂O₄ spinel inversion. Further, addition of MgO enhanced the reducibility and basicity of Co/AlO_x. DRM activity at 750°C over Co/MgAlO_x showed stable performance for 15 h TOS with no obvious signs of coke deposition.

Besides coking, oxidation of active metal species also caused catalyst deactivation [40,61]. For example, Co/ZrO₂ deactivated during DRM reaction by oxidation of Co⁰ to CoO_x [62]. Due to strong basicity of ZrO₂, enhanced CO₂ dissociation was facilitated. However, owing to high oxophilicity of Co, surface oxygen species (O^{*}) derived from CO₂ dissociation oxidized Co⁰ to inactive CoO_x. Basic character of ZrO₂ support was inhibited by addition of 1 wt% Al to ZrO₂ support [62]. Consequently, Co/AlZrO₂ showed stable catalytic performance in DRM at 850°C. Strong interaction of Co species with Al in metal-support interfacial region inhibited Co⁰ oxidation. Similarly, deactivation was ascribed to oxidation of Co [61] over Co-TiO₂ catalysts. Unlike Co/AlZrO₂ catalyst [62], strong metal support interaction between Co and TiO₂ lead formation of inactive CoTiO₃ phase during DRM.

III) Precious metals modified Ni- and Co-based catalysts

Monometallic catalysts might not prove economical from industrial application of DRM due to following reasons: i) Active precious metals such as Pt, Ru, Rh and Ir might prove expensive from economic point of view. ii) Inexpensive Ni and Co catalyst show deactivation due to coke formation and/or metal oxidation. One potential option could be promoting Ni and Co based catalysts with trace amount of precious metals such as Pt, Ru, Rh and Pd [63-66]. Addition of precious metals to Ni catalysts might improve catalytic performance and coke resistance due to increased reducibility, enhancement in number of active sites, surface modification and reconstruction [67].

Ni-Pt catalysts prepared by atomic layer deposition (ALD) method showed increased reducibility upon 1 wt% Pt addition to 4.7 wt% Ni. The catalytic activity was increased by 2 folds. While, formation of Pt defects increased carbon diffusion barrier on Ni terrace sites, thereby resisting coke formation [68]. Similarly, adding 3 wt% Pt to 9 wt% Ni showed enhancement in DRM activity due to surface modification of Ni catalyst [69]. Further, carbon formation was inhibited by addition of Pt which facilitated oxidation of CH^{*} species and hindered carbon diffusion. Plasma pretreatment during preparation of 8 wt% Ni + 0.1 wt% Pt supported on Mg(Al)O facilitated higher surface concentration of Ni compared to monometallic Ni/Mg(Al)O [70]. Addition of 0.1 wt% Pt would increase Ni dispersion and thereby enhance catalyst reducibility. Moreover, coke deposition was mitigated upon Pt addition which was attributed to reduction in particle size and modification of Ni ensembles.

Ru promoted Ni catalysts have been investigated [71]. Reactivity of carbonaceous intermediates would increase upon doping 0.6 wt% Ru to 2 wt% Ni. Increased reactivity of carbon intermediates decreased coking. Addition of Ru would also increase Ni dispersion which would enhance catalytic activity and stability [71,72]. Bobin et al. [73] suggested that formation of Ni–Ru clusters could enhance CO_2 dissociation. Increased rate constant for coke gasification suggested enhanced formation of O^{*} species formed by CO_2 dissociation.

Rivas and co-workers [74] investigated LaNi_{0.95}Rh_{0.05}O₃ perovskites in DRM reaction. Addition of Rh would enhance reducibility and dispersion of Ni. *In-situ* XRD and TEM analysis showed drastic changes in the crystalline network of perovskite-type precursor upon Rh addition. The formation of highly dispersed Ni⁰-Rh⁰ particles enhanced the activity compared to monometallic Ni catalyst. Bimetallic Ni–Rh supported over boron nitride (BN) was studied by Wu et al [75]. Inertness of support and weak metal-support interaction allowed metal clusters to migrate freely and form Ni–Rh clusters during reduction. The close proximity of Rh with Ni would decrease carbon formation while simultaneously increase the activity compared to monometallic Ni/BN catalyst.

Ma and co-workers [76] investigated mono and bimetallic Ni–Pd catalysts. Addition of 0.5 wt% Pd to 6 wt% Ni would enhance the reducibility of NiO and facilitate the formation of Ni–Pd nanoalloy. Introduction of Pd maintained catalyst stability up to 100 h TOS. The role of Pd was suggested to inhibit filamentous coke formation. Damyanova et al. [77] studied Ni-Pd/MCM-41 catalysts in DRM reaction and showed that Ni:Pd ratio of 4:1 would be optimum to achieve high metallic surface area, metal dispersion and reducibility of Ni. Formation of Pd⁰ during reduction facilitated enhanced reduction of NiO by H₂ spill-over phenomenon.

Monometallic Co based catalyst are prone to deactivation due to oxidation of Co⁰ by CO₂ [40]. To address this issue, Takanabe et al. [78] synthesized Pt and Ru promoted Co/TiO₂ catalysts. The role of Pt and Ru was attributed to maintain metallic state of Co⁰. For Co/ α -Al₂O₃, addition of trace amount of Ru (0.1 wt%) in 5 wt% Co/ α -Al₂O₃ restricted oxidation of Co⁰ [79]. The addition of Ru also inhibited coke deposition. The initial activity over Co/ α -Al₂O₃ was higher than Ru-Co/ α -Al₂O₃. However, Co⁰ oxidation and coke deposition caused deactivation of Co/ α -Al₂O₃ in

100 h long run. But Ru-Co/ α -Al₂O₃ demonstrated higher and stable activity after 100 h DRM tests.

The catalytic performance of bimetallic Ru-Co@SiO₂ pore shell catalysts depended strongly on catalyst synthesis approach [80]. Specifically, Ru-Co@SiO₂ prepared by hydrothermal method showed even distribution of Ru on catalyst surface. The synergism between Ru-Co prevented Co oxidation and catalyst deactivation. Ru-Co@SiO₂ prepared by impregnation route caused uneven distribution of Ru on catalyst surface which decreased DRM activity and enhanced coke deposition. The SiO₂ shell structure suppressed sintering of Ru-Co.

Besides Ru, promotional effect of Pt in Co-based catalysts is also studied. Chen et al. [81] investigated trace amount of Pt (0.05 – 0.5 wt%) addition to 10 wt%Co/MgO-Al₂O₃. Strong metal support interaction (SMSI) effect was induced in Co-0.2 Pt catalyst. Addition of Pt promoted the formation of CoAl₂O₄ spinel which showed increased reducibility. Ultimately, enhanced activity and decreased coke deposition was observed over Co-0.2 Pt/MgO-Al₂O₃. Synergistic effect between bimetallic Pt-Co/CeO₂ catalysts increased the DRM activity in comparison to monometallic Pt/CeO₂ and Co/CeO₂ catalysts [82]. CeO₂ facilitated enhanced CO₂ activation forming surface oxygen species O^{*} and supplied O^{*} on Pt/CeO₂ surface. While presence of Co promoted the formation of O^{*}. Collectively, O^{*} species were shown to enhance methane activation by CH₄^{*} + O^{*} \rightarrow CH₃^{*} + OH^{*} reaction. However, Pt-Co/CeO₂ catalysts displayed high coke formation compared to monometallic Co/CeO₂ and Pt/CeO₂ catalysts.

Overall, the role of Ru and Pt addition in Co-based catalysts has been attributed to hydrogen/oxygen spill-over phenomenon [40,61,78]. Owing to high reducibility of Ru and Pt compared to Co, it is suggested that addition of Ru and Pt would assist hydrogen dissociation on catalyst surface. This would ultimately prevent oxidation of Co during DRM.

IV) Transition metals modified Ni-based catalysts

Besides promoting Ni catalysts with precious metals, addition of transition metals such as Fe, Co or Cu might also prove beneficial to improve activity and stability of Ni catalysts. Introduction of Fe in monometallic Ni catalysts [83] improved the activity and stability of Ni/MgAl₂O₄ hydrotalcites through Fe^{2+}/Fe^{0} redox cycle. Under DRM conditions, Fe⁰ in Ni-Fe alloy would be partially oxidized to FeO upon CO₂ exposure as shown in Fig. 1.5. FeO located on surface of Ni-Fe nanoparticles would remain in close proximity to Ni⁰. FeO formed upon CO₂ exposure would react with deposited carbon to form CO and Fe⁰. Thus, introduction of Fe would facilitate better activity, stability and coke resistance compared to monometallic Ni/MgAl₂O₄ catalyst.

Fig. 1.5. Dealloying and Realloying mechanism during DRM over Ni–Fe/MgAl₂O₄ catalyst, reproduced from [83].

Ni-Fe catalysts supported on Mg(Al)O periclase for DRM prepared by colloidal synthesis approach [84] was further studied. Specifically, influence of reduction temperature on catalytic activity was studied. Increasing reduction temperature from 650°C to 850°C would change the surface population sites from Ni⁰/FeO_(at 650°C) to Ni–Fe _{alloy}/FeO_(at 850°C) during reduction. While under DRM conditions, Fe⁰ oxidizes to FeO and tends to migrate into the support periclase to some extent. Catalytic performance in DRM for 30 h TOS showed high activity over Ni-Fe catalysts reduced at 650°C than catalysts reduced at 850°C. Low activity over Ni–Fe _{alloy}/FeO_(at 850°C) was

attributed to presence of significant amount of surface Fe^0 sites [84]. FeO formed upon CO₂ exposure during DRM was shown to oxidize coke to CO.

Theofanidis et al. investigated Fe-Ni/MgAl₂O₄ catalysts in the molar ratio of Fe/Ni between 0-1.5 [85]. Optimum activity and stability were facilitated by Fe/Ni ratio of 0.7. Further increase in Fe concentration deteriorated the activity. Using time resolved *in-situ* XRD during H₂-TPR, the formation of Ni-Fe alloy upon reduction at 700°C was confirmed. Ni-Fe alloy would remain stable up to 627°C under CO₂-TPO condition. Upon DRM exposure, the Ni-Fe alloy would decompose to form Ni and FeO_x as shown in Fig. 1.6. Alternative CH₄ and CO₂ pulse experiments suggested that DRM over Ni-Fe/MgAl₂O₄ would proceed through Mars–van Krevelen mechanism. Metallic Ni would dissociate methane to H₂ and coke. While, coke formed on Ni sites is oxidized to CO from lattice oxygen present in FeO_x. Deactivation of Ni/MgAl₂O₄ was attributed to high rate of coke deposition than coke gasification. Compared to Ni/MgAl₂O₄, bimetallic Fe-Ni/MgAl₂O₄ showed better stability and coke resistance [85].

Fig. 1.6. Ni-Fe alloy formation during reduction and dealloying upon CO₂ exposure, reproduced from [85].

Same group investigated Ni catalysts supported on MgFe_xAl_{2-x}O₄ for DRM in which Al was partially replaced by Fe in the octahedral spinel of lattice support [86]. During reduction, approximately 50% of Fe from the support would migrate onto the surface by hydrogen spill-over phenomenon. Migration of Fe onto the surface formed Ni–Fe alloy during reduction as shown in
Fig.1.7. Conclusively, Ni–Fe/MgFe_xAl_{2-x}O₄ showed stability and no coke formation up to 65 h TOS. Li and co-workers studied bimetallic Fe-Ni catalysts supported on mesoporous alumina in DRM reaction [87]. A molar ratio of 0.7 Fe/Ni was shown to be optimum which promoted the initial activity. The active phase for DRM was suggested to be FeNi₃ alloy. Characterization of spent catalysts showed that bimetallic Ni–Fe nanoparticles were resistant to coking and sintering. Confinement of Ni-Fe nanoparticles onto porous structure of Al₂O₃ contributed towards coking and sintering resistance. STEM-EDX and XPS analysis showed that FeNi₃ alloy nanoparticles would partially dealloy during reforming reaction. Dealloying of FeNi₃ alloy was suggested for catalyst deactivation during 24 h TOS reaction.

Fig. 1.7. Schematic representation of Ni–Fe alloy formation on Ni/MgFe_xAl_{2-x}O₄ upon Fe migration from support during reduction, reproduced from [86].

Ni-Fe perovskites were investigated for DRM reaction [88,89]. Partial substitution of Ni by Fe in LaNiO₃ perovskites would significantly enhance the structure stability and coke resistance in DRM. LaNiO₃ decomposed to Ni⁰ metal and La₂O₃ support during DRM which was prone to coke deposition. Contrarily, LaNi_{0.5}Fe_{0.5}O₃ phase was stable and coke resistance during DRM. The role of Fe in LaNiO₃ perovskites was attributed to enhance Ni dispersion and metal-support interaction [88]. Contradictorily, Ni-Fe catalysts supported on La₂O₃ obtained by reduction of LaNi_{0.8}Fe_{0.2}O₃ – type perovskite did not show activity in DRM reaction [18]. The perovskite structure collapsed after reduction and Ni-Fe nanoparticles embedded in to the La₂O₃ matrix. *In-situ* XRD and EDX

elemental mapping revealed dealloying of Ni-Fe nanoparticles during DRM. Upon CO_2 exposure, Fe oxidized to FeO_x and formed LaFeO₃. LaFeO₃ was shown to encapsulate active Ni particles, ultimately deactivating the catalyst. Therefore, for Ni-Fe perovskite type of catalysts, structural stability could play significant role in DRM activity.

Alloying Fe with Ni significantly enhanced the stability of Ni-Fe/MgO catalysts in DRM reaction [90]. Addition of Fe in pristine Ni/MgO catalyst would facilitate formation of small Ni ensembles. The role of Fe was attributed to division of large Ni ensembles by catalytically inactive Fe atoms as shown in Fig. 1.8. Small ensembles of Ni atoms favored DRM over CH₄ decomposition. Secondly, addition of Fe increased the surface coverage of O^{*} species which was ascribed to oxophilicity of Fe. Collectively, introduction of Fe changed the type of deposited coke from inactive refractory carbon to soft carbonaceous species. The active – soft carbonaceous species were oxidized under CO₂ atmosphere during DRM, thereby enhancing catalyst stability and coke resistance.

Fig. 1.8. Schematic representation of atomic structure of Ni/MgO and Ni-Fe/MgO catalysts, reproduced from [90].

Co as a promoter to Ni based catalysts has been also studied extensively in DRM [91-93]. The ratio between Ni/Co plays the important role for DRM. Ni/Co ratio of 1:9 over TiO₂ support was

suggested to be optimal for DRM by Nagaoka and co-workers [78]. While, Ni/Co ratio of 4:1 over MgO-Al₂O₃ support [94] and 7:3 over Al₂O₃-La₂O₃ [94] provided maximum catalytic activity and least coke deposition. Optimum ratio between Ni and Co may exist and could depend on the support employed. Usually, a small amount of Co is sufficient to achieve optimum activity and stability in DRM process. Fan et al. [19] synthesized bimetallic Ni-Co/MgO catalysts by hydrothermal process. A Ni_{7.425}Co_{0.075}Mg_{92.5}O catalyst showed stability up to 1000 h TOS with only 1.79 wt% coke deposition after DRM tests. Enhanced stability of bimetallic Ni-Co catalysts was attributed to gasification of coke intermediates due to high oxophilicity of Co. Ni-Co-Mg-Al-O catalysts prepared by co-precipitation method showed 250 h TOS stability in CH₄ conversion [96]. TGA and DTA characterization of spent catalysts showed almost no coke deposition after 250 h TOS stability tests. Strong metal-support interaction, high metal dispersion and surface area was suggested for pronounced activity and stability of Ni-Co-Mg-Al-O.

Addition of Cu into Ni-based catalysts might improve coking resistance and stability during DRM. Song et al. [97] investigated bimetallic Ni-Cu alloy catalysts supported on Mg(Al)O. Tuning the ratio between Cu/Ni could have either promoting or suppressing effect on catalytic activity. A catalyst with Cu/Ni molar ratio of 0.25–5 was suggested to be optimum for DRM. Ni-Cu/MgAlO catalyst with Cu/Ni ratio of 0.25–5 significantly decreased coke formation up to 1/136 times compared to Ni/Mg(Al)O. Activation energy measurements and CH₄-TPSR experiments showed increase in CH₄ dissociation barrier upon Cu addition. While, CO₂-TPSR characterization experiment demonstrated enhanced dissociation of CO₂ to CO and O^{*} upon Cu addition. Lee and co-workers presented that addition of 1 wt% Cu into Ni/Al₂O₃ was sufficient enough for coke-resistance and catalyst stability [98]. While, Cu content upto 5 wt% was detrimental due to high coke deposition. Similarly, for SiO₂ supported Ni-Cu catalysts, a Cu/Ni ratio between 0.12-0.2

was shown to be optimum for DRM reaction [99]. Thus, discrepancies in the optimum Cu/Ni ratio or Co/Ni ratio for Cu and Co promoted Ni- based catalysts might be attributed to differences in metal-support interactions, metal particle size, or distribution of active components.

1.3.2 Catalyst support effect

Catalyst deactivation in DRM is mainly attributed to coke formation and active metal sintering. Formation of coke would mask the active sites while sintering of active metal could decrease the metal surface area. The choices of support may affect coke formation and metal sintering thereby influencing catalytic performance.

DRM reaction is shown to proceed via mono-functional or bi-functional pathway over supported catalysts [34]. CH₄ activates on metallic sites while CO₂ may activate on metallic sites or support [100]. DRM reaction follows mono-functional pathway where both – CH₄ and CO₂ are activated on metallic sites over inert supports such as SiO₂ and boron nitride (BN) [75,101]. Over acidic supports including Al₂O₃, DRM occurs via bi-functional mechanism in which CH₄ is activated on metal sites. While CO₂ activates on support by the reaction with surface hydroxyl groups [57,67,102]. For basic support such as La₂O₃, CO₂ is activated by formation of La₂O₂CO₃ while CH₄ dissociates on active metal. La-oxycarbonate reacts with CH_x species formed by CH₄ decomposition to produce CO and H₂ [33,103,104]. Reducible supports including CeO₂, TiO₂, have been also studied in DRM reaction. During reduction process, metallic sites of the catalyst could dissociate H₂ on the surface [40,105-107]. Dissociation of H₂ on catalyst surface might reduce the support by hydrogen spill-over phenomenon forming oxygen defects. Oxygen defects were demonstrated as active site for CO₂ activation.

Zhang et al. [108] showed that Ni/SiO₂ catalyst synthesized through impregnation method would deactivate in DRM reaction due to coke formation. Deactivation was attributed to poor dispersion of Ni nanoparticles and weak metal-support interaction. They demonstrated that strong interaction between Ni and SiO₂ may exist when ultra-small Ni nanoparticles of ~ 3.2 nm size were prepared. Strong metal-support interaction (SMSI) effect induced by high dispersion of Ni nanoparticles over SiO₂ resulted in stable DRM reaction up to 30 h TOS at 700°C with no coke deposition and metal-sintering. Similarly, core-shell Ni@SiO₂ catalyst were synthesized and calcined at 500°C, 600°C and 700°C resulting in Ni nanoparticles with sizes ~ 1.4 nm, 1.9 nm and 2.6 nm respectively [109]. Ni@SiO₂ calcined at 600°C had medium metal-support interaction (MMSI), which showed maximum and stable DRM activity up to 40 h TOS. Those results showed that particle size depends on metal-support interaction.

Besides controlling particle size and metal-support interaction, the interfacial structure between metal and support could enhance DRM activity [110]. Herein, Ni/CeO₂-SiO₂ catalyst was synthesized by plasma decomposition method. Interfacial structure between metal and support would contain reactive oxygen species in close proximity with Ni nanoparticles. Such reactive oxygen species assisted in coke removal during DRM and contributed to enhanced DRM performance. Ni catalyst over inert supports such as hexagonal – boron nitride (h-BN) demonstrated coke formation due to weak metal-support interaction (WMSI) during DRM [111]. Introduction of interfacial vacancy defects on h-BNNS support (hexagonal boron nitride nanosheets) would facilitate strong metal-support interaction (SMSI). Herein, Ni was shown to be homogenously embedded on the surface of h-BNNS. This phenomenon of surface engineering of h-BNNS support would enrich active Ni sites thereby providing sintering resistance during DRM reaction. Recently, layered double hydroxide derived (Ni,Mg)Al₂O₄ sheets were incorporated with

h-BN to promote confinement effect and strong metal-support interaction [112]. It was shown that interface confinement effect between h-BN and (Ni,Mg)Al₂O₄ could resist Ni nanoparticles from agglomeration and sintering. While formation of B–OH species during DRM could facilitate oxidation of carbonaceous species. Collectively, h-BN/(Ni,Mg)Al₂O₄ demonstrated excellent activity and stability for 100 h TOS during DRM at 750°C.

Ni-based catalysts over acidic supports such as Al₂O₃ are widely investigated for DRM reaction. Li et al. [113] investigated Ni catalysts over Al₂O₃ and modified Al₂O₃ supports in DRM. They showed that Ni/Al₂O₃ deactivated during 50 h DRM test due to coke formation. However, monolayer coverage of Ni/Al₂O₃ by La₂O₃ demonstrated stable activity and resistance to coking. Catalytic activity, however, decreased due to reduction in Ni surface area by La₂O₃ monolayer coverage. Modification of Al₂O₃ support by La₂O₂CO₃ increased metal-support interaction, Ni surface area and reducibility. Ni/Al₂O₃-La₂O₂CO₃ presented enhanced activity and stable performance for 50 h TOS compared to Ni/Al₂O₃. Ni catalyst over porous Al₂O₃ support prepared by atomic layer deposition (ALD) method induced strong metal-supported interaction (SMSI) effect [114]. NiAl₂O₄ spinel was formed during ALD deposition of Ni over porous Al₂O₃. Reduction of NiAl₂O₄ spinel in CO and H₂ atmosphere would form highly dispersed Ni nanoparticles which showed stable catalytic performance.

Promoting Al₂O₃ with 6 wt% CeO₂ increased Ni dispersion and support-interaction [115]. Close contact between Ni and Ce was suggested to facilitate high electron density and accessibility of active sites which improved catalytic activity and stability compared to Ni/Al₂O₃ catalyst. Among basic supports such as La₂O₃ and MgO, La₂O₃ has been extensively studied for DRM reaction [100]. Upon CO₂ exposure, La₂O₃ forms La₂O₂CO₃ which is supposed to react with coke precursors forming CO and H₂ [33,103,104,113]. In a comprehensive study of Ni/La₂O₃ catalysts, Li et al. [33] showed that type of support would play important role in coke removal and catalytic activity. Uneven Ni dispersion and low surface area of Ni were observed over Ni/La₂O₃. Consequently, La₂O₂CO₃ formed during DRM could not react with carbon intermediates. To improve Ni dispersion and surface area, La₂O₂CO₃ was chosen as support, because La₂O₂CO₃ would induce strong metal-support interaction (SMSI). Upon reduction of Ni/La₂O₂CO₃, highly dispersed Ni nanoparticles would enhance catalytic activity and coke-resistance.

Strong metal-support interaction (SMSI) effect also prevails in reducible supports such as CeO₂ and TiO₂. SMSI can alter metal electronic properties via charge transfer between metal and support [116]. For Ni/CeO₂ catalysts, metal support interactions were tuned to obtain coke resistance. Specifically, reduction of Ni/CeO₂ above 600°C caused decoration/encapsulation of Ni surface by a thin layer of cerium species due to SMSI. Ultimately, adsorption and activation of CH₄ and CO₂ was inhibited. However, due to high oxygen mobility of ceria, coke was oxidized at the metal-support interface which contributed to enhanced carbon resistance [116]. Employing Zr in the lattice of CeO₂ served several purposes to improve catalytic activity in DRM [117]. Addition of 20 wt% Zr enhanced reducibility of Ni/CeO₂ and prevented sintering due to SMSI effect. Moreover, Zr restricted migration of Ni in to CeO₂ restricting Ni_xCe_{1-x}O_{2-y} solid solution formation and thereby maintained Ni⁰ over Ni/CeZrO₂ catalyst.

For TiO₂ supported Ni catalysts, stable activity performance and coke-resistance was attributed to decoration of large Ni ensembles by partially reduced TiO_x species [107]. Specifically, upon reduction at 700°C, partially reduced TiO_x species would migrate over exposed Ni surface. Migration of TiO_x over Ni surface might decrease free energy of system and induces strong metalsupport interaction (SMSI) effect [40,107].

1.3.3 Mechanistic and Kinetic studies

1.3.3.1 Activation of CH₄ and CO₂

Ni based catalysts have been extensively investigated for dry reforming of methane. The activation sites for CH₄ and CO₂ depend strongly on the choices of catalysts. For example, activation of CH₄ proceeds through direct dissociation of C–H bond over metallic Ni over Ni/SiO₂ and Ni/Al₂O₃ catalysts [34,100]. While, activation of CH₄ occurred via oxidative dehydrogenation of C–H bond over Ni pyrochlore and Ni perovskite catalysts [118,119]. Using labelled isotopic experiments, Kumar et al. [118] demonstrated that O^{*} species derived from CO₂ dissociation initiated the breakage of C-H bond. XPS analysis of O 1s spectra identified presence of lattice oxygen species which would facilitate activation of CH₄ over La_{0.8}Sr_{0.2}Ni_{0.8}M_{0.2}O₃ (M = Bi, Cu Co, Fe or Cr) perovskites [119].

Meanwhile, CO₂ activation proceeds through one of the following routes: 1) dissociation on active Ni⁰ site to form CO^{*} and O^{*} species over SiO₂ supported catalysts [108], 2) H^{*} assisted activation in metal–support interface followed by dissociation of formate (HCOO^{*}) species [110,120], 3) activation on oxygen vacancies over reducible supports including CeO₂ and ZrO₂ [116,121] and 4) reaction with basic supports, such as La₂O₃, to form La₂O₂CO₃ species [113,122]. Briefly, the activation of CH₄ and CO₂ over Ni catalysts can be represented by following equations.

(A) CH₄ activation:

- (i) $CH_4^* \rightarrow C^* + 2H_2$ (5)
- (ii) $CH_4^* + 0^* \to CH_3^* + H^*$ (6)

(B) CO₂ activation:

(i)
$$CO_2^* \to CO^* + O^*$$
 (7)

(ii)
$$CO_2^* + H^* \to CO^* + OH^*$$
 (8)

(iii)
$$CO_2^* + O_{\nu-1} \to CO^* + O_{\nu}$$
 (9)

(iv)
$$CO_2^* + La_2O_3 \to La_2O_2CO_3$$
 (10)

The activation energy for CH_4 and CO_2 range between 29–117 kJ/mol and 33–92 kJ/mol over Ni catalysts respectively [51]. Table 1.2 lists some of activation energies for CH_4 and CO_2 over Ni catalysts. Discrepancies in activation energy of CH_4 and CO_2 over various catalysts could be attributed to active metal dispersion, particle size and metal-support interaction [34].

Catalyst	Reaction Temperature	E _a (kJ/mol)		Deferreres
	(°C)	CH ₄	CO ₂	Kelefence
Ni/Al ₂ O ₃	550–650	31.1	40.5	[122]
Ni-CeO ₂ /MgAlO	450–550	78.7	59.6	[123]
$Ce_{0.7}La_{0.2}Ni_{0.1}O_{2-\delta}$	600–750	70.5	71	[124]
Ni/TiO ₂	400–550	108.9	87.9	[125]
Ni/CeO ₂	400–500	49.8	50.8	[116]

Table 1.2. Activation energies for DRM over Ni based catalysts

1.3.3.2 DRM mechanism and rate expression modelling

Reaction mechanism in DRM is mainly based on Langmuir–Hinshelwood–Hougen–Watson (LHHW) or Eley–Rideal (ER) models [127]. LHHW model formalism is based upon following 3 steps: a) adsorption of reactants, b) surface reaction, c) desorption of products. Generally, it is

assumed that one intermediate elementary step is slow and rate determining While other reaction steps are quasi-equilibrated. However, incorporating catalyst deactivation rate into reaction rate equation would modify LHHW model and could be shown by following equation.

$$r = k(T) \int_{t_0}^t r_d \, dt \, [CH_4]^a [CO_2]^b$$

Where, r is reaction rate, r_d is deactivation rate, k(T) is rate constant as a function of reaction temperature, and $[CH_4]^a [CO_2]^b$ is pressure of reactants.

In ER model, one reactant is adsorbed on active site whereas other reactant remains in gas phase. The reaction between associatively adsorbed species and gas phase molecule is considered as rate determining step (RDS) [127].

Generally, the reaction mechanism over Ni based catalysts in DRM is based on LHHW model and involves following elementary reactions. 1) CH₄ is adsorbed and activated on Ni⁰ sites. Carbon or hydrogen-containing carbon species (CH_x) are produced. 2) CO₂ is dissociated to CO^{*} and O^{*}. O^{*} species react with H^{*} to form OH^{*}. 3) CH_xO species form at metal-support interface by reaction between CH_x and OH^{*}. 4) CH_xO decomposes to CO and H₂.

Reaction conditions and nature of catalyst might attribute to inconsistency in determining reaction rate model [127]. In most of the mechanistic and kinetic studies over Ni catalysts, CH₄ dissociation has been suggested as slow and rate determining step (RDS) [123,124,128]. Besides CH₄ dissociation, decomposition of CH_xO was also shown to be RDS [126]. For Ni catalysts supported over La₂O₃, Verykios et al. [103,104] used SSITKA technique and reported that methane decomposition on Ni sites and surface reaction between carbon and La₂O₂CO₃ as RDS. DRM mechanism and rate determining step (RDS) based on LHHW model are discussed below. Case 1: *CH₄ decomposition as RDS:* Han et al. [128] applied *in-situ* DRIFTS analysis to probe reaction mechanism over Ni-Mg/Hydrochar catalyst between 700°C–850°C. The increase in CH₄ and CO₂ conversion led to the increase of OH^{*}. They proposed that activation of CO₂ would occur via formation of H^{*} from CH₄ decomposition, and OH^{*} species formed by dissociation of intermediate formate (HCOO^{*}) oxidized coke. When CH₄ dissociation was suggested as rate determining step (RDS), the following steps were proposed, shown in equations (11–17).

I: Activation and dissociation of CH_4 on Ni sites to form C^* and H_2 .

$$CH_4 + * \stackrel{K_1}{\leftrightarrow} CH_4^* \tag{11}$$

$$CH_4^* + 4 * \stackrel{k_2}{\leftrightarrow} C^* + 4H^* \tag{12}$$

II: Adsorption and thereby dissociation of CO_2 by H^* species formed from CH_4 decomposition.

$$CO_2 + * \stackrel{K_3}{\leftrightarrow} CO_2^*$$
 (13)

$$CO_2^* + H^* \stackrel{K_4}{\leftrightarrow} CO^* + OH^*$$
 (14)

III: Oxidation of C^* by OH^* species formed by reaction between CO_2^* and H^* .

$$C^* + OH^* \stackrel{K_5}{\leftrightarrow} CO^* + H^* \tag{15}$$

IV: Desorption of CO^* and H^* to CO(g) and $H_2(g)$.

$$2H^* \stackrel{K_6}{\leftrightarrow} H_2 + 2 * \tag{16}$$

$$C0^* \stackrel{K_7}{\leftrightarrow} C0 + *$$
 (17)

Therefore, the rate expression was derived as

$$r_{CH_4} = K_1 k_2 [CH_4] \left(\frac{[C_{MT}]}{M}\right)^5$$
(18)

Where,
$$M = 1 + K_1[CH_4] + K_3[CO_2] + \frac{[CO]}{K_7} + \left(\frac{[H_2]}{K_6}\right)^{0.5} + \frac{[CO]^2}{K_3K_4K_5K_7^2[CO_2]} + \frac{K_3K_4K_5K_7[CO_2][H_2]^{0.5}}{[CO][K_6]^{0.5}}$$

Case 2. CH_xO decomposition as RDS: Previous studies [123,124,128] showed that CH₄ dissociation controls reaction kinetics during DRM. However, Bradford and Vannice proposed that CH₄ adsorption and dissociation step is rather reversible over Ni/TiO₂ and Ni/MgO [126]. Carbon formed from CH₄ decomposition has higher reactivity than CH_x species. H₂ addition in the feed increased CH₄ concentration which suggested that CH₄ dissociation could be reversible. Reaction between CH_x and OH^{*} species is considered as the free-radical reaction, thus no activation barrier would occur for formation of CH_xO in gas phase. Contrarily, decomposition of CH_xO in the gas phase revealed activation barrier about 71–339 kJ/mol. Thus, steps shown in equation (20–24,26) are considered as quasi-equilibrated while steps in equation (19) and (25) would account for kinetic rate expression [126].

$$CH_4 + * \stackrel{K_1}{\leftrightarrow} CH_x^* + \left(\frac{4-x}{2}\right)H_2$$
 (19)

$$2 \left[\mathcal{C}\mathcal{O}_2 + \ast \stackrel{K_2}{\Leftrightarrow} \mathcal{C}\mathcal{O}_2^* \right] \tag{20}$$

$$H_2 + 2 * \stackrel{K_3}{\Leftrightarrow} 2H^* \tag{21}$$

$$2 \left[CO_2^* + H^* \stackrel{K_4}{\Leftrightarrow} CO^* + OH^* \right]$$
(22)

$$OH^* + H^* \stackrel{K_5}{\Leftrightarrow} H_2 O + 2 *$$
(23)

$$CH_x^* + OH^* \stackrel{K_6}{\Leftrightarrow} CH_x^* O + H^*$$
 (24)

$$CH_x^* O \xrightarrow{k_7} CO^* + \left(\frac{x}{2}\right) H_2$$
 (25)

$$3 \left[\mathcal{C} \mathcal{O}^* \stackrel{K_8}{\Leftrightarrow} \mathcal{C} \mathcal{O} + * \right]$$
 (26)

$$r_{CH_4} = \frac{\frac{K_1 P_{CH_4} P_{CO_2}}{\left(\frac{K_8}{k_7 K_2 K_4 K_6}\right) P_{CO} P_{H_2}} (27)$$

Case 3. CH_4 decomposition and C gasification by CO_2 adsorbed on catalyst as RDS: La₂O₂CO₃ species are formed upon CO₂ adsorption because the strong interaction between CO₂ and basic La₂O₃. For Ni/La₂O₃ catalysts, Verykios et al. [103,104] showed that oxycarbonate species participate in the gasification of coke. On the basis of SSITKA technique, coke gasification by oxycarbonate was suggested as the RDS. Additionally, small quantities of reversibly adsorbed CH₄ were also detected. It indicated that CH₄ dissociation could be considered as slow and kinetically relevant step. Conclusively, CH₄ dissociation and carbon gasification were suggested to be RDS in DRM over Ni/La₂O₃. The sequence of reaction mechanism and rate equation is shown in steps (28–31) and 32 respectively.

$$CH_4 + * \stackrel{K_1}{\leftrightarrow} CH_4^*$$
 (28)

$$CH_4^* \xrightarrow{k_2} C^* + 2H_2 \tag{29}$$

$$CO_2 + La_2O_3 \stackrel{K_3}{\leftrightarrow} La_2O_2CO_3 \tag{30}$$

$$La_2O_2CO_3 + C^* \xrightarrow{k_4} 2CO + La_2O_3 + *$$
 (31)

$$r_{CH_4} = \frac{K_1 k_2 K_3 k_4 P_{CH_4} P_{CO_2}}{K_1 k_2 K_3 P_{CH_4} P_{CO_2} + K_1 k_2 P_{CH_4} + K_3 k_4 P_{CO_2}}$$
(32)

Case 4. E-R Model.

Few studies showed that reaction mechanism over Ni catalyst follow ER model. kinetic study in DRM over Ni/Al₂O₃ catalyst showed that CH₄ activates and dissociates on active Ni sites according to equation (33). The rate expression shown below was derived considering that reaction between CH_x species and gas phase CO₂ is RDS [127].

$$CH_4 + * \stackrel{K_{CH_4}}{\longleftrightarrow} CH_x^* + \left(\frac{4-x}{2}\right)H_2$$
 (33)

$$CH_{\chi}^{*} + CO_{2} \xrightarrow{\kappa_{1}} 2CO + H_{2} + *$$
(34)

$$r_{CH_4} = \frac{k_1 K_{CH_4} \left(P_{CH_4} P_{CO_2} - \frac{P_{CO}^2 P_{H_2}^2}{k_1} \right)}{1 + K_{CH_4} P_{CH_4}}$$

1.3.4 Catalyst Deactivation

Catalyst deactivation refers to loss of catalytic activity with time on stream during reaction run. Often, catalyst deactivation during DRM is associated with carbon deposition, active metal sintering and/or sulfur poisoning [34,129]. Fig. 1.9 shows catalyst deactivation mechanisms.

1.3.4.1 Carbon deposition

Carbon deposition has been suggested as primary reason for catalyst deactivation in DRM [129]. Coke formation mainly occurs through CH₄ decomposition and/or CO disproportionation reaction. Thermodynamically, CH₄ decomposition contributes to carbon deposition under low reaction temperature (< 650°C). While, CO disproportionation is favored under high operating

pressure (> 1atm) [24,34,100]. Operating temperature above 750°C is suggested to avoid the coke formation.

Fig.1.9. Catalyst deactivation mechanisms: A) Carbon deposition, B) Metal Sintering, C) Sulfur poisoning, reproduced from [129].

Fig.1.10. Schematic of carbon filament formation, reproduced from [130].

The growth of carbon filaments has been recognized as a three step deposition-diffusionprecipitation process [16,130]. As shown in Fig.1.10, upon dissociation of hydrocarbon on Ni surface, hydrogen is released and carbon dissolves in Ni forming a uniform layer. With increase in rate of hydrocarbon decomposition, carbon formed diffuses through Ni particle to the support side and precipitates at metal-support interface. When rate of carbon formation exceeds rate of diffusion and precipitation, formation of carbon filaments begins and gradually occupies the active Ni sites [130]. The type of carbon formed during DRM could differ in morphology, reaction temperature, type of metal/promoter and support [34]. The carbon formed as a result of CH_4 decomposition and CO disproportionation could be amorphous, encapsulating and/or graphitic [16,97]. Catalyst stability depends strongly on the oxidation of such carbon species. For example, oxidation of amorphous carbon occurs below 500°C. It is thus suggested that amorphous carbonaceous does not contribute towards catalyst deactivation [58,131]. When rate of amorphous carbon formation increases than its gasification, gradual carbon builds up and transforms to graphite. Graphite type of carbon are polynuclear aromatic compounds that show resistance to gasification with either oxygen or hydrogen [130]. It has been demonstrated that graphitic carbon gasifies above 600°C and thus, may contribute in catalyst deactivation [131].

Carbon deposition during DRM could be inhibited or controlled through several approaches demonstrated in the literature. One of them could be controlling size and dispersion of Ni nanoparticles [132]. Specifically, coke formation is more severe over large Ni ensembles [107]. Singha et al. [132] demonstrated that addition of 4.3wt% MgO to 4.8wt% Ni/ZnO catalyst increased dispersion of Ni nanoparticles from 7.3% to 19.6%. Amount of carbon deposited over 4.8Ni–4.3MgO/ZnO was about 0.2 wt% only after 100 h DRM test at 800°C. While, 4.8Ni/ZnO showed 13 wt% coke deposits.

Besides controlling size and dispersion of Ni nanoparticles, addition of transition metals to Ni including Fe, Co, Cu or Mn could also prove beneficial to control coke formation. For example, Fan et al. [18] showed that role of Co in Ni-Co alloy catalysts was to promote gasification of carbon species during DRM. Specifically, owing to high oxophilicity of Co, enhanced dissociative adsorption of CO_2 to CO and O^{*} was facilitated.

Promotional effect of Fe addition to Ni catalysts in coke suppression has been discussed in literatures [83-86]. The role of Fe was attributed to its redox properties in Ni-Fe/MgAl₂O₄ catalysts. Fe⁰ formed by reduction was oxidized to FeO_x during DRM. Coke formed from CH₄ cracking was then oxidized by lattice oxygen from FeO_x. For MgO supported Ni-Fe alloy catalysts, it was shown that addition of Fe caused formation of small Ni ensembles [90]. Consequently, DRM was favored and CH₄ decomposition was inhibited over small Ni ensembles in Ni-Fe/MgO. Moreover, addition of Fe also altered the type of carbon deposits from refractory to soft–carbons which could be easily gasified by CO₂ during DRM [90].

Alloying 25–45 % Cu with Ni also suppressed coke formation effectively [97]. The role of Cu was suggested to occupy edge and kink sites of Ni⁰ which are active sites for CH₄ decomposition. Secondly, addition of Cu enhanced the formation of O^* species through CO₂ dissociation. O^* species derived from CO₂ assisted in coke gasification. Strong metal–support interaction induced by MnO addition to Ni-Co perovskites provided stability by inhibiting growth of Ni crystals [133].

Tuning the concentration of surface oxygen species of reducible supports including CeO₂, TiO₂, ZrO₂ could decrease coke deposits in DRM [17,134,135]. Substituting 20 atom-% CeO₂ with Ti⁴⁺ and Pr³⁺ dopants in the support could effectively suppress coke formation in Ni/CeO₂ catalysts [135,136]. Introducing Ti⁴⁺ and Pr³⁺ as dopants in CeO₂ support increased concentration of surface oxygen species. O^{*} species from the support actively participated in coke removal forming oxygen

vacant site. Simultaneously, CO_2 activation was also enhanced on vacant oxygen sites forming CO and O^{*}. Increasing basicity of support could be also beneficial in coke inhibition. Specifically, addition of alkaline earth metal oxides including MgO, CaO or SrO may enhance adsorption of mildly acidic CO₂ [137-139]. Increasing CO₂ adsorption facilitates CO₂ dissociation to CO and O^{*}. While O^{*} species could assist oxidation of carbon thereby preventing catalyst deactivation.

Table 1.3. Overview of coke deposition as a function of reaction temperature and CH₄ conversion over Ni catalysts

Catalyst	CH_4	Coke	Reaction	Ref
	Conversion	deposition	Temperature	
	(%)	(wt%)	(°C)	
17wt%Ni-5wt%Zr/MgAlO	32	40.7	550	[140]
5wt%Ni/MCM-41	75	4.4	700	[141]
2.5wt%Ni+2.5wt%Co/Al ₂ O ₃ -	67.3	5	700	[142]
ZrO_2				
3.6wt%Ni@SiO ₂	87	0.7	750	[143]
12wt%Ni/MgAlO	87	4	750	[144]
4.8wt%Ni-4.3wt%MgO/ZnO	98.8	0.2	800	[132]
4.5wt%Ni/Zr-CeO ₂	42	13.6	800	[145]
5wt% Ni/CeO ₂ -SiO ₂	97	9.9	800	[146]

Table 1.3 shows carbon deposition over supported Ni catalysts in DRM between 550°C–800°C temperature. As coke deposition mainly occur from CH₄ decomposition, activity in terms of CH₄ conversion has been reported in Table 1.3. Thermodynamically, coke formation is favored at low temperature (< 650°C). While, effective dissociation of CO₂ to CO and O^{*} above 650°C may contribute towards enhanced coke resistance in DRM. For 17wt%Ni-5wt%Zr/MgAlO catalyst, 40.7 wt% coke deposits were estimated [140]. Increasing reaction temperature would decrease coke deposition. For example, monometallic Ni/MCM-41 [141] is better catalyst compared to bimetallic Ni-Co/Al₂O₃-ZrO₂ [142] in terms of coke resistance and activity at 700°C. Similarly, at 750°C, 3.6 wt%Ni@SiO₂ [143] showed lower coke deposits than 12 wt%Ni/MgAlO [144] for

same CH₄ conversion. 4.8wt%Ni – 4.3wt% MgO/ZnO [132] catalyst was superior in catalytic activity and coke resistance at 800°C. The differences in carbon deposition could be attributed to Ni loading, particle size and dispersion. Thus, a balance between carbon formation and carbon gasification is essential for stable DRM operation.

1.3.4.2 Sintering

Sintering refers to loss of active metal surface area by growth of metal nanoparticles during catalysis [147]. Generally, the growth of nanoparticles is associated with two mechanism: a) particle migration and coalescence (PMC), b) Ostwald ripening (OR). Particle migration involves mobility of metal particles in Brownian-like motion. Subsequently, nanoparticles come in close proximity with each other leading to coalescence and particle size growth. Ostwald ripening refers to interparticle migration of mobile molecular species to support surface. Herein, the particle growth is driven by differences in surface free energies of adatoms on catalyst surface. It is suggested that sintering mechanism might change during catalysis depending upon size of nanoparticles. Specifically, when metal particles are very small in the early stages of catalysis, sintering proceeds through PMC. When metal nanoparticles become effectively large and immobile, Ostwald ripening dominates [147]. Schematic of catalyst deactivation due to sintering is shown in Fig.1.9 (B).

One effective approach to control and/or inhibit sintering is to increase metal-support interaction. Zhang et al. [108] synthesized Ni/SiO₂ catalysts by one-pot hydrothermal approach. This synthesis approach facilitated formation of highly dispersed ultra-small Ni nanoparticles (3.2 nm). H₂–TPR analysis demonstrated that strong metal-support interaction (SMSI) existed between Ni and SiO₂. SMSI effect inhibited sintering and growth of Ni nanoparticles for 30 h TOS DRM [108]. Recently, it was shown that surface engineering of defect induced boron nitride were exceptional support for anti-sintering of Ni nanoparticles [111,118,148]. TEM and H₂–TPR analysis showed that Ni dispersion was improved in presence of defect sites of boron nitride. While, SMSI effect would inhibit sintering of Ni nanoparticles.

1.3.4.3 Sulfur Poisoning

Besides coking and sintering, catalyst deactivation might also be attributed to sulfur poisoning. It has been reported that for reforming reactions, H₂S is commonly recognized as catalyst poison [129]. Typically, H₂S chemisorbs on metal surface according to equation (35), thereby deactivating the catalyst by formation of metal–S bond. Conceptual model of catalyst deactivation by sulfur poisoning is shown in Fig. 1.9 (C). Catalyst poisoning has been shown to occur by following 3 steps: a) dissociative adsorption of H₂S on active metal site, resulting in blockage of one-three to one-fourth topside metal atoms by sulfur atoms, b) Electronic modification of active metal atoms, thereby disabling the tendency of active metal atoms to adsorb and/or dissociate reactants, c) reconstruction of catalyst surface causing alterations in catalytic properties [129].

$$H_2S + Metal \rightarrow Metal - S + H_2$$
 (35)

Resistance of Ni based reforming catalysts against sulfur poisoning could be improved by addition of Rh. Theofanidis et al. [149] showed that addition of Rh in Ni/MgAl₂O₄ catalysts in the molar ratio of Ni:Rh as ~ 40:1 should be sufficient enough to inhibit catalyst poisoning. Specifically, addition of Rh formed Ni-Rh alloy which refrained the dissociation of H₂S to SH^{*} and H^{*} species during reforming. Compared to Ni/MgAl₂O₄ catalysts, Ni-Rh alloy increased the activation barrier of H₂S dissociation, thereby preventing catalyst deactivation from sulfur poisoning.

1.4 Rationales and Objectives

Owing to increasing greenhouse gases emissions and the urge to potentially utilize natural gas resources, it is necessary to convert CH₄ into valuable feedstock for synthesis of chemicals and fuels. Utilization of natural gas resources including CH4 would also serve as an alternative to depleting oil resources. The rationale for this project is to address conversion of CH₄ using a soft oxidant such as CO₂. Employment of CO₂ along with CH₄ (DRM) would require extremely high temperatures (>800°C) to achieve equilibrium conversions. However, DRM could also be operated at low temperatures < 600°C to make process economical. In this context, membrane reactors or reactors operated by solar energy could be employed for low temperature DRM. Thus, this dissertation focuses on low temperature dry reforming of methane. Nevertheless, thermodynamically coke formation becomes more prominent below 600°C. Therefore, a reaction temperature of 550°C is chosen for studying low temperature DRM. The objective of the present research is to eliminate coke formation at low temperature DRM using inexpensive Ni-based catalysts. Addition of abundant metals to Ni catalysts such as Fe eliminates the choice of precious metals as promoters. Thus, bimetallic Ni-Fe catalysts are synthesized to study DRM. This study focuses on different synthesis approaches for preparation of bimetallic Ni-Fe catalysts supported over TiO₂. Secondly, modification of catalyst support using a redox CeO₂ is elucidated for low temperature DRM. Physical and chemical properties of catalysts are investigated in detail by applying various catalyst characterization techniques. Analysis of coke formation in spent Ni-Fe catalysts after DRM is presented. Finally, the role of Fe in coke removal and syngas formation mechanism is unraveled.

1.5 References

- [1] M. Maestri, D. G. Vlachos, A. Beretta, G. Groppi, E. Tronconi, AIChE J. 55 (2009) 993–1008.
- [2] A. Naidja, C. R. Krishna, T. Butcher and D. Mahajan, Prog. Energ. Combust. 29 (2003) 155– 191.
- [3] M.V. Iyer, L.P. Norcio, E.L. Kugler, D.B. Dadyburjor, Ind. Eng. Chem. Res. 42 (2003) 2712-2721.
- [4] Z. Boukha, C. Jiménez-González, B. de Rivas, J.R. González-Velasco, J.I. Gutiérrez-Ortiz, R.
 López Fonseca, Appl. Catal. B 158–159 (2014) 190-201.
- [5] https://www.eia.gov/naturalgas/crudeoilreserves/
- [6] U. Izquierdo, V. L. Barrio, J. Requies, J. F. Cambra, M. B. Guemez, P. L. Arias, Int. J. Hydrogen Energy 38 (2013) 7623–7631.
- [7] https://www.eia.gov/energyexplained/biomass/landfill-gas-and-biogas.php
- [8] https://www.ch4global.com/
- [9] N. Kumar, M. Shojaee, J.J. Spivey, Curr. Opin. Chem. Eng. 9 (2015) 8-15.
- [10] J.R.H. Ross, Catal. Today 100 (2005) 151-158.
- [11] A. Caballero, P.J. Perez, Chem. Soc. Rev. 42 (2013) 8809-8820.
- [12] S.D. Angeli, L. Turchetti, G. Monteleone, A.A. Lemonidou, Appl. Catal. B 181 (2016) 34-46.
- [13] E.T. Kho, J. Scott, R. Amal, Chem. Eng. Sci. 140 (2016) 161-170.

- [14] M.D. Salazar-Villalpando, D.A. Berry, T.H. Gardner, Int. J. Hydrogen Energy 33 (2008)2695-2703.
- [15] A. Scarabello, D. Dalle Nogare, P. Canu, R. Lanza, Appl. Catal. B 174–175 (2015) 308-322.
- [16] D. Li, S. Xu, K. Song, C. Chen, Y. Zhan, L. Jiang, Appl. Catal. A 552 (2018) 21–29.
- [17] M. Zhang, J. Zhang, Y. Wu, J. Pan, Q. Zhang, Y. Tan, Y. Han, Appl. Catal. B 244 (2019) 427–437.
- [18] A. Tsoukalou, Q. Imtiaz, S.M. Kim, P.M. Abdala, S. Yoon, C.R. Müller, J. Catal. 343 (2016) 208–214.
- [19] X. Fan, Z. Liu, Y.A. Zhu, G. Tong, J. Zhang, C. Engelbrekt, J. Ulstrup, K. Zhu, X. Zhou, J. Catal. 330 (2015) 106–119.
- [20] Y. Xia, N. Lu, J. Li, N. Jiang, K. Shang, Y. Wu, J. CO₂ Util. 37 (2020) 248-259.
- [21] J.R. Rostrup-Nielsen, J. Sehested, J.K. Nørskov, Adv. Catal. 47 (2002) 65-139.
- [22] Y. Yan, Z. Zhang, L. Zhang, X. Wang, K. Liu, Z. Yang, Int. J. Hydrogen Energy 40 (2015) 1886-1893.
- [23] A. V. P. Lino, C. B. Rodella, E. M. Assaf, J. M. Assaf, Int. J. Hydrogen Energy 45 (2020) 8418-8432.
- [24] S. Arora, R. Prasad, RSC Adv. 6 (2016) 108668-108688.
- [25] M.S. Fan, A.Z. Abdullah, S. Bhatia, ChemCatChem 1 (2009) 192-208.
- [26] Y. Xu, D. Liu, X. Liu, Appl. Catal. A 552 (2018) 168-183.
- [27] M.K. Nikoo, N. A. S. Amin, Fuel Process. Technol. 92 (2011) 678-691.

- [28] A. C. D. Freitas, R. Guirardello, J. CO₂ Util. 7 (2014) 30-38.
- [29] G. A. Olah, A. Goeppert, M. Czaun, G.K.S. Prakash, J. Am. Chem. Soc. 135 (2013) 648-650
- [30] G. A. Olah, A. Goeppert, M. Czaun, T. Mathew, R.B. May, G.K.S. Prakash, J. Am. Chem. Soc. 137 (2015) 8720-8729.
- [31] J. Yoo, Y. Bang, S. J. Han, S. Park, J. H. Song, I. K. Song, J. Mol. Catal. A 410 (2015) 74-80.
- [32] C. Song, W. Pan, Catal. Today 98 (2004) 463-484.
- [33] X. Li, D. Li, H. Tian L. Zeng, Z. J. Zhao, J. Gong, Appl. Catal. B 202 (2017) 683-694.
- [34] D. Pakhare, J. J. Spivey, Chem. Soc. Rev. 7 (2014) 7813-7837.
- [35] J.A. Moulijn, A.E. Diepen, F. Kapteijn, Appl. Catal. A 212 (2001) 3-16.
- [36] H. Liu, D. Wierzbicki, R. Debek, M. Motak, T. Grzybek, P. D. Costa, M. E. Gálvez, Fuel 182 (2016) 8–16.
- [37] H. S. Whang, M. S. Choi, J. Lim, C. Kim, I. Heo, T. S. Chang, H. Lee, Catal. Today 293–294 (2017) 122–128.
- [38] S. A. Singh, G. Madras, Appl. Catal. A 518 (2016) 102–114.
- [39] C. C. Chonga, S. N. Bukharia, Y. W. Chenga, H. D. Setiabudi, A. A. Jalil, C. Phalakornkule, Appl. Catal. A 584 (2019) 117174
- [40] K. Takanabe, K. Nagaoka, K. Nariai, K. Aika, J. Catal. 230 (2005) 75-85.
- [41] D. Li, R. Li, M. Lu, X. Lin, Y. Zhan, L. Jiang, Appl. Catal. B 200 (2017) 566-577.

- [42] Z. Liu, F. Zhang, N. Rui, X. Li, L. Lin, L. E. Betancourt, D. Su, W. Xu, J. Cen, K. Attenkofer,
 H. Idriss, J. A. Rodriguez, S. D. Senanayake, ACS Catal. 9 (2019) 3349-3359.
- [43] S. Damyanova, B. Pawelec, K. Arishtirova, M. V. M. Huerta, J. L. G. Fierro, Appl. Catal. B89 (2009) 149-159.
- [44] R. O. Fonseca, R. C. Rabelo-Neto, R. C. C. Simoes, L. V. Mattos, F. B. Noronha, Int. J.Hydrogen Energy 45 (2020) 5182-5191.
- [45] F. Wang, L. Xu, J. Zhang, Y. Zhao, H. Li, H. X. Li, K. Wu, G. Q. Xu, W. Chen, Appl. Catal.B 180 (2016) 511-520.
- [46] S. C.P. Maina, A. D. Ballarini, J. I. Vilella, S. R. Miguel, Catal. Today 344 (2020) 129-142.

[47] Y. Li, J. Jiang, C. Zhu, L. Li, Q. Li, Y. Ding, W. Yang, Materials 11 (2018) 172.

- [48] I. V. Yentekakis, G. Goula, M. Hatzisymeon, I. B. Argyropoulou, G. Botzolaki, K. Kousi, D.I. Kondarides, M. J. Taylor, C. M. A. Parlett, A. Osatiashtiani, G. Kyriakou, J. P. Holgado, R. M.Lambert, Appl. Catal. B 243 (2019) 490-501.
- [49] R. K. Singha, A. Yadav, A. Shukla, M. Kumar, R. Bal, Catal. Commun. 92 (2017) 19-22.
- [50] L. Yue, J. Li, C. Chen, X. Fu, Y. Gong, X. Xia, J. Hou, C. Xiao, X. Chen, L. Zhao, G. Ran,H. Wang, Fuel 218 (2018) 335-341.
- [51] M. C. J. Bradford, M. A. Vannice, Catal. Rev. 41 (1999) 1-42.
- [52] J. H. Kim, D. J. Suh, T. J. Park, K. L. Kim, Appl. Catal. A 197 (2000) 191–200.

[53] R. Debek, M. E. Galvez, F. Launay, M. Motak, T. Grzybek, P. D. Costa, Int. J. Hydrogen Energy 41 (2016) 11616-11623.

- [54] H. Wang, X. Dong, T. Zhao, H. Yu, M. Li, Appl. Catal. B 245 (2019) 302–313.
- [55] S. Ali, M. M. Khader, M. J. Almarri, A. G. Abdelmoneim, Catal. Today 343 (2020) 36-47.
- [56] P. Littlewood, S. Liu, E. Weitz, T. J. Marks, P. C. Stair, Catal. Today 343 (2020) 18-25.
- [57] D. Shen, M. Huo, L. Li, S. Lyu, J. Wang, X. Wang, Y. Zhang, J. Li, Catal. Sci. Technol. 10(2020) 510–516.
- [58] M. Shah, A. Bordoloi, A. K. Nayak, P. Mondal, Fuel Process. Technol. 192 (2019) 21-35.
- [59] Y. Guo, J. Lu, Q. Liu, X. Bai, L. Gao, W. Tu, Z. Wang, Catal. Commun. 116 (2018) 81-84.
- [60] W. O. Alabi, K. O. Sulaiman, H. Wang, Chem. Eng. J. 390 (2020) 124486.
- [61] K. Nagaoka, K. Takanabe, K. Aika, Appl. Catal. A 255 (2003) 13-21.
- [62] J. Park, S. Yeo, I. Heo, T. Chang, Appl. Catal. A 562 (2018) 120-131.
- [63] F. Menegazzo, M. Signoretto, F. Pinna, P. Canton, N. Pernicone, Appl. Catal. A 439 (2012)80–87.
- [64] I. Luisetto, C. Sarno, D. Felicis, F. Basoli, C. Battocchio, S. Tuti, S. Licoccia, E. D. Bartolomeo, Fuel Process. Technol. 158 (2017) 130–140.
- [65] H. Cheng, S. Feng, W. Tao, X. Lu, W. Yao, G. Li, Z. Zhou, Int. J. Hydrogen Energy 39 (2014)12604-12612.
- [66] Z. Hou, P. Chen, H. Fang, X. Zheng, T. Yashima, Int. J. Hydrogen Energy 31 (2006) 555-561.
- [67] Z. Bian, S. Das, M. H. Wai, P. Hongmanorom, S. Kawi, ChemPhysChem 18 (2017) 3117 –
 3134.

- [68] T. D. Gould, M. M. Montemore, A. M. Lubers, L. D. Ellis, A. W. Weimer, J. L. Falconer, J.W. Medlin, Appl. Catal. A 492 (2015) 107-116.
- [69] L. Li, L. Zhou, S. O. Chikh, D. H. Anjum, M. B. Kanoun, J. Scaranto, M. N. Hedhili, S.
- Khalid, P. V. Laveille, L. D'Souza, A. Clo, J. M. Basset, ChemCatChem 7 (2015) 819-829.
- [70] X. Yu, F. Zhang, N. Wang, S. Hao, W. Chu, Catal. Lett. 144 (2014) 293–300.
- [71] C. Crisafulli, S. Scirè, S. Minicò, L. Solarino, Appl. Catal. A 225 (2002) 1–9.
- [72] C. Crisafulli, S. Scire, R. Maggiore, S. Minico, S. Galvagno, Catal. Lett. 59 (1999) 21-26.
- [73] A. S. Bobin, V. A. Sadykov, V. A. Rogov, N. V. Mezentseva, G. M. Alikina, E. M. Sadovskaya, T. S. Glazneva, N. N. Sazonova, M. Yu Smirnova, S. A. Veniaminov, C. Mirodatos, V. Galvita, G. B. Marin, Top. Catal. 56 (2013) 958-968.
- [74] M. E. Rivas, J. L. G. Fierro, M. R. Goldwasser, E. Pietri, M. J. P. Zurita, A. G. Constant, G. Leclercq, Appl. Catal. A 344 (2008) 10–19.
- [75] J. C. S. Wu, H. C. Chou, Chem. Eng. J. 148 (2009) 539–545.
- [76] Q. Ma, J. Sun, X. Gao, J. Zhang, T. Zhao, Y. Yoneyama, N. Tsubaki, Catal. Sci. Technol. 6(2016) 6542–6550.
- [77] S. Damyanova, B. Pawelec, K. Arishtirova, J. L. G. Fierro, C. Sener, T. Dogu, Appl. Catal.B. 92 (2009) 250–261.
- [78] K. Nagaoka, K. Takanabe, K. Aika, Appl. Catal. A 268 (2004) 151-158.
- [79] J. Park· T. Chang, Cat. Lett. 149 (2019) 3148-3159.

- [80] Y. Pang, Y. Dou, A. Zhong, W. Jiang, L. Gu, X. Feng, W. Ji, C. Au, Appl. Catal. A 555 (2018) 27-35.
- [81] L. Chen, Q. Huang, Y. Wang, H. Xiao, W. Liu, D. Zhang, T. Yang, Int. J. Hydrogen Energy 44 (2019) 19878-19889.
- [82] Z. Xie, B. Yan, S. Kattel, J. H. Lee, S. Yao, Q. Wu, N. Rui, E. Gomez, Z. Liu, W. Xu, L. Zhang, J. G. Chen, Appl. Catal. B 236 (2018) 280-293.
- [83] S.M. Kim, P.M. Abdala, T. Margossian, D. Hosseini, L. Foppa, A. Armutlulu, W. Van Beek,A. Comas-Vives, C. Copéret, C. Müller, J. Am. Chem. Soc. 139 (2017) 1937–1949.
- [84] T. Margossian, K. Larmier, S.M. Kim, F. Krumeich, C. Müller, C. Copéret, ACS Catal. 7 (2017) 6942–6948.
- [85] S.A. Theofanidis, V. V. Galvita, H. Poelman, G.B. Marin, ACS Catal. 5 (2015) 3028–3039.
- [86] S. A. Theofanidis, V. V. Galvita, H. Poelman, N. V. R. A. Dharanipragada, A. Longo, M.
- Meledina, G. V. Tendeloo, C. Detavernier, G. B. Marin, ACS Catal. 8 (2018) 5983-5995.
- [87] B. Li, Y. Luo, B. Li, X. Yuan, X. Wang, Fuel Process. Technol. 193 (2019) 348-360.
- [88] X. Song, X. Dong, S. Yin, M. Wang, M. Li, H. Wang, Appl. Catal. A 526 (2016) 132-138.
- [89] S. M. Lima, J. M. Assaf, Catal. Lett. 108 (2006) 63-70.
- [90] T. Zhang, Z. Liu, Y. Zhu, Z. Liu, Z. Sui, K. Zhu, X. Zhou, Appl. Catal. B 264 (2020) 118497.
- [91] H. Ay, D. Uner, Appl. Catal. B 179 (2015) 128–138.
- [92] X. Gao, Z. Tan, K. Hidajat, S. Kawi, Catal. Today 281 (2017) 250-258.
- [93] Z. Bian, S. Kawi, J. CO₂ Util. 18 (2017) 345–352.

- [94] H. Long, Y. Xu, X. Zhang, S. Hu, S. Shang, Y. Yin, X. Dai, J. Energy Chem. 22 (2013) 733– 739.
- [95] J. Xu, W. Zhou, Z. Li, J. Wang, J. Ma, Int. J. Hydrogen Energy 34 (2009) 6646–6654.
- [96] J. Zhang, H. Wang, A. K. Dalai, J. Catal. 249 (2007) 300–310.
- [97] K. Song, M. Lu, S. Xu, C. Chen, Y. Zhan, D. Li, C. Au, L. Jiang, K. Tomishige, Appl. Catal.B 239 (2018) 324–333.
- [98] J. H. Lee, E. G. Lee, O. S. Joo, K. D. Jung, Appl. Catal. A 269 (2004) 1-6.
- [99] H. W. Chen, C. Y. Wang, C. H. Yu, L. T. Seng, P. H. Liao, Catal. Today 97 (2004) 173-180.
- [100] H.O. Seo, Catalysts 8 (2018) 110.
- [101] S. Das, J. Ashok, Z. Bian, N. Dewangan, M. H. Wai, Y. Du, A. Borgna, K. Hidajat, S. Kawi, Appl. Catal. B 230 (2018) 220-236.
- [102] C. Liang, L. Zhang, Y. Zheng, S. Zhang, Q. Liu, G. Gao, D. Dong, Y. Wang, L. Xue, X.Hu, Fuel 262 (2020) 116521.
- [103] V. A. Tsipouriari, X. E. Verykios, Catal. Today 64 (2001) 83-90.
- [104] V. A. Tsipouriari, X. E. Verykios, J. Catal. 187 (1999) 85-94.
- [105] T. V Sagar, D. Padmakar, N. Lingaiah, P.S. Sai Prasad, Catal. Lett. 149 (2019) 2597–2606.
- [106] M. Yu, Y.A. Zhu, Y. Lu, G. Tong, K. Zhu, X. Zhou, Appl. Catal. B 165 (2015) 43–56.
- [107] Q. G. Yan, W. Z. Weng, H. L. Wan, H. Toghiani, R. K. Toghiani, C. U. Pittman, Appl.Catal. A 239 (2003) 43–58.

[108] Q. Zhang, T. Tang, J. Wang, M. Sun, H. Wang, H. Sun, P. Ning, Catal. Commun. 131(2019) 105782.

[109] L. Zhang, F. Wang, J. Zhu, B. Han, W. Fan, L. Zhao, W. Cai, Z. Li, L. Xu, H. Yu, W. Shi, Fuel 256 (2019) 115954.

[110] X. Yan, T. Hu, P. Liu, S. Li, B. Zhao, Q. Zhang, W. Jiao, S. Chen, P. Wang, J. Lu, L. Fan,X. Deng, Y. X. Pan, Appl. Catal. B 246 (2019) 231-241.

[111] Y. Cao, P. Maitarada, M. Gao, T. Taketsugu, H. Li, T. Yan, L. Shi, D. Zhang, Appl. Catal.B 238 (2018) 51-60.

[112] K. Bu, S. Kuboon, J. Deng, H. Li, T. Yan, G. Chen, L. Shi, D. Zhang, Appl. Catal. B 252(2019) 86-97.

[113] K. Li, C. Pei, X. Li, S. Chen, X. Zhang, R. Liu, J. Gong, Appl. Catal. B 264 (2020)118448.

[114] Z. Shang, S. Li, L. Li, G. Liu, X. Liang, Appl. Catal. B 201 (2017) 302-309.

[115] S. Damyanova, B. Pawelec, R. Palcheva, Y. Karakirova, M. C. C. Sanchez, G. Tyuliev, E.Gaigneaux, J. L. G. Fierro, Appl. Catal. B 225 (2018) 240-253.

[116] M. Li, A. C. Veen, Appl. Catal. B 237 (2018) 641-648.

[117] F. Zhang, Z. Liu, X. Chen, N. Rui, L. E. Betancourt, L. Lin, W. Xu, C. Sun, A. M. M. Abeykoon, J. A. Rodriguez, J. Terzan, K. Lorber, P. Djinović, S. D. Senanayake, ACS Catal. 10 (2020) 3274-3284.

[118] N. Kumar, S. Kanitkar, Z. Wang, D. Haynes, D. Shekhawat, J. J. Spivey, Int. J. Hydrogen Energy 44 (2019) 4167-4176. [119] K. Sutthiumporn, T. Maneerung, Y. Kathiraser, S. Kawi, Int. J. Hydrogen Energy 37(2012) 11195-11207.

[120] Z. Xie, Q. Liao, M. Liu, Z. Yang, L. Zhang, Energy Convers. Manage. 153 (2017) 526-537.

[121] M. Zhang, J. Zhang, Z. Zhou, S. Chen, T. Zhang, F. Song, Q. Zhang, N. Tsubaki, Y. Tan,Y. Han, Appl. Catal. B 264 (2020) 118522.

[122] K. Li, X. Chang, C. Pei, X. Li, S. Chen, X. Zhang, S. Assabumrungrat, Z. J. Zhao, L. Zeng,J. Gong, Appl. Catal. B 259 (2019) 118092.

[123] Y. Cui, H. Zhang, H. Xu, W. Li, Appl. Catal. A 318 (2007) 79-88.

[124] J. Niu, S. E. Liland, J. Yang, K. R. Rout, J. Ran, D. Chen, Chem. Eng. J. 377 (2019)119763.

[125] L. Pino, C. Italiano, M. Laganà, A. Vita, V. Recupero, Catal. Sci. Technol. 10 (2020)2652-2662.

[126] M. C. J. Bradford, M. A. Vannice, Appl. Catal. A 142 (1996) 97-122.

[127] Y. Kathiraser, U. Oemar, E. T. Saw, Z. Li, S. Kawi, Chem. Eng. J. 278 (2015) 62-78.

[128] J. Han, Y. Liang, L. Qin, Y. Wang, H. Wang, F. Yu, B. Zhao, Catal. Lett. 150 (2020)1479-1488.

[129] M. D. Argyle, C. H. Bartholomew, Catalysts 5 (2015) 145-269.

[130] A. M. Amin, E. Croiset, W. Epling, Int. J. Hydrogen Energy 36 (2011) 2904-2935.

[131] M. Shah, S. Das, A. K. Nayak, P. Mondal, A. Bordoloi, Appl. Catal. A 556 (2018) 137-154.

[132] R. K. Singha, A. Yadav, A. Agrawal, A. Shukla, S. Adak, T. Sasaki, R. Bal, Appl. Catal. B191 (2016) 165-178.

[133] W. Y. Kim, J. S. Jang, E. C. Ra, K. Y. Kim, E. H. Kim, J. S. Lee, Appl. Catal A 575(2019) 198-203.

[134] S. S. Kim, S. M. Lee, J. M. Won, H. J. Yang, S. C. Hong, Chem. Eng. J. 280 (2015) 433-440.

[135] C. M. Damaskinos, M. A. Vasiliades, A. M. Efstathiou, Appl. Catal. A 579 (2019) 116-129.

[136] M. A. Vasiliades, M. M. Makri, P. Djinovic´, B. Erjavec, A. Pintar, A. M. Efstathiou, Appl. Catal. B 197 (2016) 168-183.

[137] S. J. H. Rad, M. Haghighi, A. A. Eslami, F. Rahmani, N. Rahemi, Int. J. Hydrogen Energy 41 (2016) 5335-5350.

[138] S. Sengupta, G. Deo, J. CO₂ Util. 10 (2015) 67-77.

[139] B. Ghods, F. Meshkani, M. Rezaei, Int. J. Hydrogen Energy 41 (2016) 22913-22921.

[140] R. Debek, M. Motak, M.E. Galvez, T. Grzybek, P. D. Costa, Appl. Catal. B 223 (2018) 36-46.

[141] P. Frontera, A. Macario, A. Aloise, P. L. Antonucci, G. Giordano, J. B. Nagy, Catal.Today, 218–219 (2013) 18-29.

- [142] A. S. A. Fatesh, J. K. A. Dahrieh, H. Atia, U. Armbruster, A. A. Ibrahim, W. U. Khan, A.E. Abasaeed, A. H. Fakeeha, Int. J. Hydrogen Energy 44 (2019) 21546-21558.
- [143] F. Wang, B. Han, L. Zhang, L. Xu, H. Yu, W. Shi, Appl. Catal. B 235 (2018) 26-35.
- [144] X. Lin, R. Li, M. Lu, C. Chen, D. Li, Y. Zhan, L. Jiang, Fuel 162 (2015) 271-280.
- [145] I. Luisetto, S. Tuti, C. Romano, M. Boaro, E. D. Bartolomeo, J. K. Kesavan, S. S. Kumar,K. Selvakumar, J. CO₂ Util. 30 (2019) 63-78.
- [146] Sudarno, S. M. Razali, N. A. Mijan, S. Sivasangar, Y.H. T. Yap, Int. J. Hydrogen Energy 44 (2019) 20738-20750.
- [147] T. W. Hansen, A. T. Delariva, S. R. Challa, A. K. Datye, Acc. Chem. Res. 46 (2013) 1720-1730.
- [148] K. Bu, J. Deng, X. Zhang, S. Kuboon, T. Yan, H. Li, L. Shi, D. Zhang, Appl. Catal. B 267(2020) 118692.
- [149] S. A. Theofanidis, J. A. Z. Pieterse, H. Poelman, A. Longo, M. K. Sabbe, M. Virginie, C.Detavernier, G. B. Marin, V. V. Galvita, Appl. Catal. B 267 (2020) 118691.

Chapter 2

Experimental

This chapter focuses on the details of synthesis, characterization and activity performance of Ni-Fe catalysts employed for DRM in the project. Section 2.1.1 describes about synthesis of mono and bimetallic Ni-Fe catalysts supported over TiO₂ by incipient wetness impregnation route. Literature studies on the effect of catalyst preparation on activity performance has showed enhanced metal and support interactions while employing advanced catalytic preparation approach. Section 2.1.2 describes synthesis of mono and bimetallic Ni-Fe/TiO₂ catalysts by hydrotalcite route. Utilization of CeO₂ as support has shown to induce SMSI effect. Thus, 20 wt% TiO₂ is replaced by CeO₂ in support material. Preparation of TiO₂-CeO₂ mixed oxide support is entailed in section 2.1.3. TiO₂-CeO₂ synthesis is followed by co-impregnation of hydrotalcite derived Ni-Fe catalyst onto mixed oxide support. Section 2.2 discusses characterization of Ni-Fe catalysts by temperature programmed reactions (TPRes), pulse CO-chemisorption, X-ray photoelectron spectroscopy (XPS), Thermogravimetric analysis-differential thermogravimetry (TGA-DTG), Raman spectroscopy and *in-situ* diffuse reflectance infrared fourier transform spectroscopy (DRIFTS) analysis. While catalytic activity performance in DRM is described in 2.3.

2.1 Catalyst synthesis

2.1.1 Ni-Fe/TiO₂ synthesis by incipient wetness impregnation

In one typical preparation, required amounts of $Ni(NO_3)_2 \cdot 6H_2O$ and/or $Fe(NO_3)_3 \cdot 9H_2O$ were dissolved separately in 10 mL D.I. water. Two aqueous solutions were simultaneously added to

P25-TiO₂ support. The mixture was stirred at 35°C for 24 h. After impregnation, the slurry was dried at 95°C to evaporate water. Dried samples were kept in vacuum oven at 95°C overnight. Asprepared catalysts were calcined in air at 450°C for 4 h. The total metal loading was designed as 10 wt%. Samples were labeled as Ni/TiO₂, Ni₃Fe₁/TiO₂, Ni₁Fe₁/TiO₂, Ni₁Fe₃/TiO₂ and Fe/TiO₂.

2.1.2 Ni-Fe/TiO₂ synthesis by hydrotalcite-type precursors

Bimetallic Ni-Fe catalysts derived from hydrotalcite-type precursors were synthesized by coprecipitation method. Typically, required amounts of Ni(NO₃)₂·6H₂O and Fe(NO₃)₃·9H₂O aqueous solutions were added dropwise in 0.2 M Na₂CO₃ solution under vigorous stirring at room temperature at a constant pH of 10 ± 0.5 . The mixture solution was vigorously stirred for additional 30 minutes at room temperature. The precipitates were collected by centrifugation and washed with D.I. water until the pH of precipitates become ~ 7. As-synthesized Ni-Fe hydrotalcites were wet-impregnated on P25-TiO₂ support and stirred for 24 h at room temperature. Ni-Fe hydrotalcites/TiO₂ were collected by centrifugation and dried under vacuum at 95°C for 48 h. Ni-Fe oxides/TiO₂ were obtained by calcining Ni-Fe hydrotalcites/TiO₂ in air at 450°C for 4 h at 5°C/min ramp rate. A similar co-precipitation procedure was followed for preparation of monometallic Ni/TiO₂ and Fe/TiO₂ catalysts. The designed total metal loading of Ni or (Ni+Fe) was 10 wt%. Samples were labelled as Ni/TiO₂, Ni₃Fe₁/TiO₂, Ni₁Fe₁/TiO₂, Ni₁Fe₃/TiO₂ and Fe/TiO₂.

2.1.3 Synthesis of mixed oxide TiO₂-CeO₂ support and Ni-Fe/TiO₂-CeO₂ catalyst

TiO₂-CeO₂ support (80wt%TiO₂ and 20 wt% CeO₂) was synthesized by impregnation of Ce(NO₃)₃·6H₂O with P25-TiO₂. Typically, 1.6 g of TiO₂ was dissolved in Ce(NO₃)₃·6H₂O solution and the mixture was stirred at room temperature for 4 h. The homogeneous mixture was

then dried at 120°C. As-prepared TiO₂-Ce(NO₃)₃· $6H_2O$ was calcined in air for 4 h at 450°C to form mixed oxide TiO₂-CeO₂ support. Ni-Fe/TiO₂-CeO₂ catalyst was prepared by a method described in section 2.1.2.

2.2 Catalyst characterization

2.2.1 Temperature programmed reactions

Hydrogen–Temperature programmed reduction (H₂-TPR) was conducted in Micromeritics Autochem II 2920. Typically, 50 mg of calcined catalyst was pretreated with helium at 150°C to remove any adsorbed moisture. Subsequently, the catalyst was cooled down to room temperature with pure helium. H₂-TPR was performed using 10%H₂/Ar (30 mL/min) from room temperature to 700°C at 5°C/min ramp rate.

Methane – Temperature programmed surface reaction/Differential Thermogravimetry (CH₄-TPSR/DTG) experiments were performed in Micromeritics AutoChem II 2920 and Mettler Toledo Thermal Analyzer (TGA/DSC 1) respectively. For CH₄-TPSR, approximately 50 mg of calcined catalyst was reduced with 10%H₂/Ar (30 mL/min) at 550°C for 1 h at 10°C/min ramp rate. Upon reduction, the catalyst surface was purged with helium to remove weakly adsorbed H₂ and cooled to ambient temperature. Subsequently, 10%CH₄/He (30 mL/min) was introduced while the temperature rising from ambient temperature to 600°C at 10°C/min ramp rate. Then pure helium was introduced to cool the catalysts. The carbon species formed during CH₄–TPSR were characterized by differential thermogravimetry (DTG). Spent catalyst after CH₄-TPSR test was subjected to 40 mL/min air to oxidize carbon species from room temperature to 800°C at 5°C/min ramp rate.
Carbon dioxide–Temperature programmed surface reaction/Hydrogen–Temperature programmed reduction (CO₂-TPSR/H₂-TPR) experiments were performed in Micromeritics AutoChem II 2920. Same pretreatment procedure like CH₄–TPSR was employed. 10%CO₂/He (30 mL/min) was introduced while the temperature raising from ambient temperature to 700°C at 10°C/min ramp rate. Then pure helium was introduced to cool the catalysts. The oxygen species formed during CO₂ dissociation were characterized by performing H₂-TPR using 10%H₂-Ar (30 mL/min) from ambient temperature to 700°C at 10°C/min ramp rate.

2.2.2 CO pulse chemisorption

Carbon monoxide chemisorption was conducted in Micromeritics Autochem II 2920. Typically, 50 mg of calcined catalyst was reduced at 450° C/550°C for 1 h at 10°C/min ramp rate using 10%H₂/Ar (30 mL/min). After reduction, the catalyst bed was cooled down to room temperature using pure helium. Subsequently, multiple pulses of 10%CO/He were injected at room temperature to saturate metallic sites.

2.2.3 X-ray photoelectron spectroscopy

X-ray photoelectron spectroscopy (XPS) was carried out on a Thermo Scientific K-Alpha system. Spectrophotometer was equipped with an Al source and a 180° double focusing hemispherical analyzer. Additionally, a 128–channel detector was equipped at a pass energy of 50 eV for the analyses of the core level signals of Fe 2p, Ni 2p, O 1s, Ce 3d and Ti 2p. XPS spectra data were calibrated using C 1s peak (284.8 eV).

2.2.4 Thermogravimetric Analysis-Differential Thermogravimetry (TGA-DTG)

Thermogravimetric analysis (TGA)/Differential thermogravimetry (DTG) of the used catalysts was performed on Mettler Toledo Thermal Analyzer (TGA/DSC 1). Typically, used catalyst was oxidized in air while temperature was increased from 25°C to 800°C at ramping rate of 5°C/min.

2.2.5 Raman spectroscopy

Raman spectra was carried out with a NT-MDT Raman spectrometer using a diode laser beam. An excitation wavelength of 532 nm was used. The Raman spectra were collected by co-adding five scans of 10 s and the laser power of 22 ± 2 mW under ambient conditions.

2.2.6 In-situ DRIFTS analysis

In-situ Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS) experiment was performed in ThermoFisher Nicolet IS50 FTIR spectrometer using Harrick Scientific diffuse reflection accessory equipped with mercury-cadmium-telluride (MCT) detector. Prior to the test, the catalyst was reduced *ex-situ* at 450°C/550°C for 1 h. Following reduction, the catalyst was transferred into DRIFTS cell and purged under helium for 1 h at 550°C. Thereafter, the background of DRIFTS was obtained under He until the collected background spectra remained stable. Following background scan, a pulse of 10%CH₄/He (20 cc/min) was introduced in the reactor cell for 5 min. The IR spectra was collected every 1 min. 10%CO₂/He pulse of equal volume was introduced for 5 min followed by another pulse of 10% CH₄/He.

2.2.7 BET surface area analysis

The specific surface area of reduced catalysts was determined by N_2 physisorption in Micromeritics ASAP 2020 porosity analyzer at -196°C. Prior to physisorption, approximately 0.15 g of sample was degassed under He at 350°C for 6 h. The specific surface area of catalysts was evaluated based on Brunauer-Emmett-Teller (BET) method.

2.3 Catalytic activity performance

The dry reforming of methane tests were carried out in a fixed-bed reactor at 550°C and atmospheric pressure. 0.1 - 0.2 g of calcined catalyst was reduced with 30% H₂/He at 450°C/550°C for 1 h. Subsequently, pure helium was introduced to the reactor. The mixture of 10% CH₄/He and 10% CO₂/He was introduced simultaneously into the reactor with flow rate as 30 mL/min. A similar procedure was employed for evaluating catalytic performance in CH₄ decomposition reaction. The outlet gases concentrations were analyzed by online SRI GC (8610C) equipped with one TCD and one FID. Consumption of CH₄ and/or CO₂ was calculated using the following equations:

$$CH_4 \ consumption = \left(\frac{F_{CH_4 \ in} - F_{CH_4 \ out}}{metal \ surface \ area}\right)$$

$$CO_2 \ consumption = \left(\frac{F_{CO_{2}in} - F_{CO_{2}out}}{metal \ surface \ area}\right)$$

$$H_2/CO$$
 Ratio = $\frac{H_2 \ produced \ (\mu mol \ \cdot h^{-1})}{CO \ produced \ (\mu mol \ \cdot h^{-1})}$

Carbon Balance (%) =
$$\left(\frac{F_{CH_{4}out} + F_{CO_{2}out} + F_{CO_{out}}}{F_{CH_{4}in} + F_{CO_{2}in}}\right) * 100$$

Chapter 3

Bimetallic Ni-Fe/TiO₂ catalysts synthesized by wet-impregnation procedure for low temperature dry reforming of methane

3.1 Introduction

Greenhouse gases emission, particularly CO₂, CH₄, NO_x, has elevated the surface temperature of earth in the past few decades [1,2]. In order to mitigate anthropogenic greenhouse gases levels, catalysis could be one of the possible approaches [3]. One of the plausible ways to utilize methane as an important C₁ feedstock could be its transformation to useful chemicals. For instance, steam reforming of methane is widely used in industry to produce hydrogen with the aid of Ni based catalysts [4]. Analogous to steam reforming, the dry reforming unites CH₄ and CO₂ in a single reaction and produces synthesis gas, the mixture of carbon monoxide and hydrogen. Dry reforming of methane (DRM, reaction 1) is inevitable to high reaction temperature because of high endothermicity and is accompanied by reverse water-gas shift reaction (reaction 2) [5].

 $CH_4 + CO_2 \rightarrow 2CO + 2H_2$ $\Delta H = 247 \, kJ/mol$ (1)

$$CO_2 + H_2 \rightarrow CO + H_2O \qquad \Delta H = 41.2 \ kJ/mol \qquad (2)$$

$$CH_4 \rightarrow C + 2H_2$$
 $\Delta H = 75 \, kJ/mol$ (3)

$$2CO \rightarrow C + CO_2 \qquad \qquad \Delta H = -172.5 \ kJ/mol \qquad (4)$$

The major challenge for the industrial development of DRM is catalyst deactivation. Methane decomposition (reaction 3) and CO disproportionation (reaction 4) causes coke deposition, which is suggested as primary reason for catalyst deactivation. The active catalysts for DRM include

precious metals such as Ru, Rh, Pt and Pd. Precious metals are reported to be coke resistant [6]. However, their high cost and low abundance hinder their practical applications. Non-precious metals, particularly Ni-based catalysts have been studied [5]. Ni based catalysts show initial activity comparable to precious metals but are prone to deactivation due to coking [5]. Thus, it is essential to develop Ni-based catalysts for DRM that show activity comparable to precious metals but are coke resistant. Various strategies could be employed to enhance the performance of Nibased catalysts. Choice of supports could be one potential option. For example, complete formation of NiO–MgO solid solution and high Ni dispersion was suggested for enhanced activity and coke resistance over Ni/MgO catalysts [7]. Formation of La₂O₂CO₃ during DRM over Ni/La₂O₃ was responsible for coke removal [8]. Metal-support interactions could also play important role in preventing coke formation. Metallic Ni formed by reduction of NiAl₂O₄ spinel in CO and H₂ atmosphere was shown to be highly active and stable catalyst for DRM [9]. Highly dispersed Ni catalysts supported over MgAl₂O₄ were also demonstrated to be coke resistant. This was attributed to the interaction of Ni with $MgAl_2O_4$ spinel and high resistance to sintering [10]. On the other hand, reducible supports including CeO₂ could also be promising, because its surface oxygen species could oxidize coke to CO [11]. However, formation of CeO_{2-x} after reduction was not helpful in alleviating carbon deposits. Large ensembles of Ni⁰ formed upon reduction were responsible for coking [12]. TiO₂ support has also been studied for dry reforming of methane [13]. It was inferred that Ni interacts strongly with TiO_x species formed upon reduction at 700°C. Migration of TiO_x over the exposed Ni particles might reduce the formation of large Ni⁰ ensembles. This phenomenon would ultimately decrease the surface free-energy and could enhance the coke resistance [14]. Similarly, interface between active metal and TiO_x (Me–O_v–Ti³⁺) was suggested to be favorable for activity and coke removal [15]. Besides oxide supports, introduction of first

row transition metals as promoters could be also beneficial. For example, Fe, Co or Cu were suggested to suppress coke deposition over Ni catalysts [16]. Oxophilic nature of cobalt in Ni–Co catalysts was shown to remove coke [17]. Ni–Fe catalysts also emerged to be coke resistant. Herein, FeO_x formed upon CO₂ exposure dealloyed from Ni–Fe alloy. FeO_x was then responsible for oxidizing coke to CO [18–20]. In conclusion, choice of support along with promoting metal/metal oxide might stabilize Ni catalysts by inhibiting coke formation during dry reforming reaction.

Among transition metals, Fe could be promising choice as a promoter because of its abundance and low cost in comparison to Co and Cu. We hypothesize that tuning Ni with Fe over a reducible oxide support such as TiO_2 could be a potential option to inhibit coke deposition. To the best of our knowledge, bimetallic Ni–Fe/TiO₂ catalysts have not been investigated for dry reforming of methane. In this study, we explore the effect of Fe addition in Ni/TiO₂ on catalytic performance and coke formation.

3.2. Results and discussion

3.2.1 Hydrogen–Temperature Programmed Reduction (H₂-TPR)

Hydrogen–temperature programmed reduction (H₂-TPR) was employed to study the reducibility of Ni/TiO₂, Fe/TiO₂ and Ni–Fe/TiO₂ catalysts. We conducted peak deconvolution analysis to gain insights of reduction process. Fig.3.1 shows H₂-TPR profiles of monometallic and bimetallic catalysts. For Ni/TiO₂, peak 1 (323°C) and peak 2 (368°C) is attributed to bulk NiO species which do not interact with the support [14]. Reduction of species corresponding to peak 1 and/or 2 forms large Ni⁰ particles which show tendency for carbon deposition [14,21]. Peak 3 (409°C) is assigned to the reduction of strongly interacting NiO–TiO₂ species [14]. The reduction

of NiO in Ni/TiO₂ is represented as NiO + H₂ \rightarrow Ni⁰ + H₂O. Table 3.1 shows that estimated total H₂ consumption over Ni/TiO₂ is 2.25 mmol H₂/g_{catalyst}. For Fe/TiO₂, Reduction of Fe₂O₃ occurred through three steps, Fe₂O₃ \rightarrow Fe₃O₄ \rightarrow FeO \rightarrow Fe⁰ [22-24]. Peak 1 (262°C) is attributed to the reduction of Fe₂O₃ \rightarrow Fe₃O₄. While peak centered at 319°C is assigned to the reduction of Fe₃O₄ \rightarrow FeO. Further reduction of FeO to Fe⁰ occurred around 660°C. The overall estimated total H₂ consumption by Fe/TiO₂ is 3.01 mmol H₂/g_{catalyst}. Reduction of Fe₂O₃ is represented as Fe₂O₃ + 3H₂ \rightarrow 2Fe⁰ + 3H₂O.

H₂-TPR profiles of bimetallic Ni-Fe/TiO₂ catalysts are distinctly different from their monometallic counterparts. Ni₃Fe₁/TiO₂ and Ni₁Fe₁/TiO₂ showed similar reduction profiles and could be fitted with 4 distinct Gaussian peaks. Peak 1 (around 212°C) is contributed to the reduction of bulk NiO [14]. Peak 2 (around 256°C) is related to the reduction of Fe₂O₃ to Fe₃O₄ [23]. Peak 3 (around 289°C) results from reduction of Fe₃O₄ to FeO [23]. Peak 4 centered around 335°C demonstrates reduction of NiO species to Ni⁰ which strongly interacts with TiO₂ support [14]. Details of peak analysis and hydrogen consumption are summarized in Table 3.1. H₂ consumption corresponding to peak 1 in Ni₃Fe₁/TiO₂ and Ni₁Fe₁/TiO₂ catalysts decreased in comparison to Ni/TiO₂. It may be explained as introduction of Fe in Ni/TiO₂ inhibited the formation of bulk NiO. Contrarily, H₂ consumption related to the reduction of strongly interacting NiO-TiO₂ species to Ni⁰ increased from 1.37 mmol H₂/g_{catalyst} over Ni/TiO₂ to 1.45 mmol H₂/g_{catalyst} over Ni₃Fe₁/TiO₂. It suggested that 2.5 wt% addition of Fe might have increased the strong interactions of NiO with TiO₂ support and hence the reducibility of NiO. However, H₂ consumption corresponding to peak 2 increased from 0.32 mmol H₂/g_{catalyst} over Ni₃Fe₁/TiO₂ to 1.03 mmol H₂/g_{catalyst} over Ni₁Fe₁/TiO₂. Those results indicated that peak 2 in Ni–Fe/TiO₂ catalysts is related to the reduction of Fe_2O_3 . Additionally, comparing the H₂-TPR profiles of Ni-Fe/TiO₂

catalysts with monometallic Fe/TiO₂, it could be observed that reduction of Fe₂O₃ \rightarrow Fe₃O₄ would correspond to peak 2. Furthermore, H₂ consumption corresponding to peak 3 drops approximately 10 times with increase in Fe loading from 2.5 wt% to 5 wt%. It suggested that reduction of Fe₃O₄ to FeO is inhibited in Ni₁Fe₁/TiO₂. The behavior is explained by decreased amount of Ni⁰ in Ni₁Fe₁/TiO₂ which facilitates hydrogen spill-over during reduction. H₂ consumption corresponding to reduction of NiO–TiO₂ species to Ni⁰ dropped from 1.45 mmol H₂/g_{catalyst} over Ni₃Fe₁/TiO₂ to 1.26 mmol H₂/g_{catalyst} over Ni₁Fe₁/TiO₂. It suggested that substitution of Fe in Ni/TiO₂ up to 2.5 wt% could be beneficial to enhance the reducibility of NiO and further substitution might not be helpful. It should be noted that reduction of NiO and Fe₂O₃ in Ni-Fe/TiO₂ catalysts occurred differently, suggesting non-interacting behavior within metal oxides on support.

Ni₁Fe₃/TiO₂ demonstrated reduction profile similar to Fe/TiO₂. A shoulder peak at 217°C is assigned to weak interactions between NiO and TiO₂ support. Peak 2 (267°C) represents reduction of Fe₂O₃ to Fe₃O₄. Peak 3 (304°C) is related to the reduction of NiO to Ni⁰. Further, peak 4 and 5 located at 388°C and 526°C is attributed to step reduction of Fe₃O₄ \rightarrow FeO \rightarrow Fe⁰ respectively. H₂ consumption for reduction of NiO–TiO₂ to Ni⁰ over Ni₁Fe₃/TiO₂ dropped to 0.32 mmol H₂/g_{catalyst} compared to that of Ni/TiO₂ catalyst. These results imply that 7.5 wt% substitution of Ni by Fe did not enhance the reducibility of NiO. Similar TPR profile of bimetallic Ni–Fe/TiO₂ catalysts has been reported in the literature [25]. However, reduction temperature related to NiO and Fe₂O₃ in Ni/TiO₂, Fe/TiO₂ and Ni–Fe/TiO₂ catalysts differed from our results. This behavior could be attributed to difference in catalyst preparation and calcination procedure.

Fig. 3.1. H₂-TPR profiles of Ni/TiO₂, Ni–Fe/TiO₂ and Fe/TiO₂ catalysts synthesized by wetimpregnation route.

Table 3.1. Analysis of H₂-TPR profiles of Ni/TiO₂, Ni–Fe/TiO₂ and Fe/TiO₂ catalysts synthesized

by wet-impregnation route.

Catalyst	Peak 1	Peak 2	Peak 3	Peak 4	Peak 5	Total (mmol/g _{catalyst})
Ni/TiO ₂	323 (0.4)	368 (0.48)	409 (1.37)	_	_	2.25
Ni ₃ Fe ₁ /TiO ₂	212 (0.18)	256 (0.32)	289 (0.37)	335 (1.45)	_	2.32
Ni ₁ Fe ₁ /TiO ₂	203 (0.14)	259 (1.03)	274 (0.037)	305 (1.26)	_	2.47
Ni ₁ Fe ₃ /TiO ₂	217 (0.18)	267 (1.11)	304 (0.32)	388 (0.61)	526(0.43)	2.65
Fe/TiO ₂	262 (0.85)	405 (0.42)	615 (0.54)	690 (1.2)	_	3.01

3.2.2 Pulse CO-Chemisorption

Table 3.2 shows CO uptake values over reduced catalysts. Typically, CO uptake values are correlated with number of metallic sites on catalyst surface with the assumption that each CO molecule chemisorbs one metallic site. For monometallic Ni/TiO₂ catalyst, the CO uptake is 18.2 μ mol/g. While monometallic Fe/TiO₂ did not show chemisorbed CO suggesting metallic sites were absent in Fe/TiO₂. The chemisorption values indicated Ni/TiO₂ contains essentially higher metallic sites than Fe/TiO₂. Consequently, addition of Fe inhibited formation of metallic sites and results are reflected by decreased CO uptake values. The CO uptake values decreased from 9.7 to 3.5 μ mol/g in Ni₃Fe₁/TiO₂ and Ni₁Fe₃/TiO₂ catalyst respectively.

Table 3.2. CO uptake values over Ni/TiO₂, Ni-Fe/TiO₂ and Fe/TiO₂ catalysts synthesized by wetimpregnation route.

	CO Adsorbed
Catalyst	(µmol/g)
Ni/TiO ₂	10.8
Ni ₃ Fe ₁ /TiO ₂	9.7
Ni ₁ Fe ₁ /TiO ₂	4.7
Ni ₁ Fe ₃ /TiO ₂	3.5
Fe/TiO ₂	0

3.2.3 Methane–Temperature Programmed Surface Reaction/Differential Thermogravimetry (CH₄-TPSR/DTG)

CH₄-TPSR was performed to screen the activity of CH₄ over mono and bimetallic catalysts. As shown in Fig.3.2a, CH₄ was activated around 400°C and simultaneously peaked up to 540°C in Ni/TiO₂. Addition of Fe shifted CH₄ activation temperature to 450°C and peaked up to 590°C. While monometallic Fe/TiO₂ did not show activity towards CH₄ and agrees with the literature reports [19,20]. The results suggested that addition of Fe to Ni/TiO₂ inhibited dissociation of CH₄. Such behavior may prove beneficial to avoid coke deposition during DRM. The type of carbon formed during CH₄-TPSR tests was elucidated by TGA-DTG experiment and is shown in Fig.3.2b. Ni/TiO₂ showed carbon oxidation peak around 540°C. However, this peak was shifted to lower temperature at 500°C in Ni-Fe/TiO₂ catalysts. The results indicated that addition of Fe is helpful to promote oxidation of carbon. Coke formation on Ni catalysts is shown to be deposition-diffusion-precipitation mechanism [26]. Herein, coke deposited on Ni sites diffuses from metal to support interface to the other side of catalyst surface. Owing to the inactivity of Fe atoms towards carbon, addition of Fe will ultimately inhibit the diffusion and precipitation of coke precursors in the vicinity of Ni atoms. This argument is further supported by H₂-TPR analysis which showed non-interacting nature of Ni-Fe species on the surface.

Fig. 3.2. CH₄-TPSR profiles (a) and DTG profiles (b) of Ni/TiO₂, Ni-Fe/TiO₂ and Fe/TiO₂ catalysts synthesized by wet-impregnation route

3.2.4 Carbon dioxide – Temperature programmed surface reaction/Hydrogen – Temperature programmed reduction (CO₂-TPSR/H₂-TPR)

Activation and thereby dissociation CO_2 to CO^* and O^* is beneficial during DRM. The O^* species reacts with CH_x species derived from CH_4 decomposition to produce CO and H_2 . Moreover, CO_2 -TPSR/H₂-TPR could also provide understanding on the nature of active centers on catalyst surface to dissociate CO_2 to CO^* and O^* [27]. Thus, CO_2 -TPSR/H₂-TPR is performed over reduced catalysts to gain insights on CO_2 dissociation. CO_2 -TPSR/H₂-TPR over reduced catalysts could be described according to following equations.

$$\operatorname{CO}_2 \to \operatorname{CO}^* + \operatorname{O}^*$$
 (5)

$$O^* + H_2 \rightarrow H_2O \qquad (6)$$

Dissociation of CO₂ on active metal or interface between active-metal and support forms CO^{*} and surface adsorbed oxygen species O^{*}. Formed O^{*} species are then characterized by H₂-TPR. The H₂ consumed in the TPR is directly correlated to O^{*} species formed during CO₂ dissociation according to equation 5 and 6. Fig. 3.3 shows H₂-TPR profiles of reduced Ni/TiO₂, Ni-Fe/TiO₂ and Fe/TiO₂ catalysts after performing CO₂-TPSR tests. Ni/TiO₂ catalyst showed three distinct H₂ consumption peaks. Reduction of O^{*} formed during CO₂-TPSR begins nearly at 85°C and peaks up to 540°C. Both peaks are attributed to active Ni⁰ centers in Ni/TiO₂ catalyst. For Fe/TiO₂ catalyst, there is no low temperature peak unlike Ni/TiO₂ catalyst. Interestingly, the H₂-TPR profile of Fe/TiO₂ after CO₂-TPSR showed a strong H₂ consumption peak above 700°C. This result indicated strong ability of Fe/TiO₂ to effectively dissociate CO₂ to CO^{*} and O^{*}. Accordingly, the O^{*} reduction peaks of Ni-Fe/TiO₂ catalysts after CO₂-TPSR shifted to higher temperature than Ni/TiO₂ catalyst. Ni₃Fe₁/TiO₂ showed a small peak at 95°C, a broad peak around 560°C and a shoulder peak at 610°C. For all the Ni-Fe/TiO₂ catalysts, peaks located below 600°C are assigned to Ni⁰ centers. Whereas, peak appearing above 600°C is related to Fe⁰ sites. Comparison between O^{*} reduction peak temperatures of Ni/TiO₂ and Ni-Fe/TiO₂ catalysts suggested that introduction of Fe enhanced the adsorption of O^{*} species formed from CO₂ dissociation. In other words, addition of Fe would promote gasification of coke formed from CH₄ decomposition during DRM. Similar CO₂-TPSR/H₂-TPR profile of Ni/Mg(Al)O and Ni-Cu/Mg(Al)O catalyst has been reported [28]. To gain further information on O^{*} formation, H₂ consumption during H₂-TPR after CO₂-TPSR was calculated. As shown in Table 3.3, the amount of H₂ consumed increased upon Fe addition. This result suggested that introduction of Fe would promote CO₂ dissociation to CO^{*} and O^{*} at least under current experimental conditions.

Table 3.3. H₂ consumption during H₂-TPR after CO₂-TPSR tests over Ni/TiO₂, Ni-Fe/TiO₂ and Fe/TiO₂ catalysts synthesized by wet-impregnation route.

Catalyst	H ₂ Consumption (mmol $g_{(Ni+Fe)}^{-1}$)				
Ni/TiO ₂	8.3				
Ni ₃ Fe ₁ /TiO ₂	26.9				
Ni ₁ Fe ₁ /TiO ₂	32.0				
Ni ₁ Fe ₃ /TiO ₂	-				
Fe/TiO ₂	-				

Fig. 3.3. H₂-TPR profiles of Ni/TiO₂, Ni-Fe/TiO₂ and Fe/TiO₂ catalysts synthesized by wetimpregnation route after CO₂-TPSR test.

3.2.5 X-ray Photoelectron Spectroscopy (XPS) of reduced catalysts

X-ray photoelectron spectroscopy (XPS) is applied to understand oxidation state and concentration of surface species. Ni $2p_{3/2}$ spectra of reduced catalysts are shown in Fig. 3.4a. For all reduced catalysts, peak appearing at 852.7 eV is assigned to Ni⁰ while peak around 855.5 eV is attributed to Ni²⁺ present as NiO. Presence of Ni²⁺ peaks suggested incomplete reduction of NiO in Ni/TiO₂ and Ni–Fe/TiO₂ catalysts at 450°C. Generally, Ni²⁺ peak is located around 854.4 eV in Ni-based catalysts. However, a shift of +1.4 eV in NiO indicated decreased electron density of Ni²⁺. Specifically, electron transfer from Ni²⁺ at metal-support interface would result due to interaction between NiO and TiO₂ [29,30]. The observation agrees with H₂-TPR analysis of

Ni/TiO₂ which demonstrated metal-support interactions between NiO and TiO₂. XPS spectra of Fe 2p_{3/2} in reduced Ni-Fe/TiO₂ catalysts is shown in Fig. 3.4b. For Ni₃Fe₁/TiO₂, peak occurring at 709.7 eV is assigned to Fe²⁺ [28,31]. While Ni₁Fe₁/TiO₂ and Ni₁Fe₃/TiO₂ catalysts revealed presence of Fe³⁺ at 711.2 eV along-with Fe²⁺. Deconvolution of Ti $2p_{3/2}$ spectra showed Ti³⁺ peak at 457.4 eV in the reduced catalysts. Existence of Ti³⁺ species affirms formation of oxygen vacancies in TiO_2 supported catalysts. Previous reports have demonstrated formation of TiO_x species by hydrogen spill-over process during reduction of Ni/TiO₂ catalysts [14]. The composition of surface species in the reduced catalysts was evaluated and is shown in Table 3.4. It is observed that Ni⁰ concentration dropped significantly from 1.17% to 0.16% Ni/TiO₂ and Ni-Fe/TiO₂ catalysts. Drop in Ni⁰ concentration directly influenced catalytic activity performance in DRM. For Ni₃Fe₁/TiO₂, surface composition of Fe²⁺ was about 4.58%. While, Fe²⁺ concentration decreased significantly in Ni₁Fe₁/TiO₂ and Ni₁Fe₃/TiO₂. This behavior could be explained by the ability of metallic Ni species to promote H₂ dissociation [32]. Hydrogen spillover would enhance the reduction of iron oxide [32]. Therefore, increasing the Fe loading from 2.5 wt% to 7.5 wt% (i.e. $Ni_3Fe_1/TiO_2 \rightarrow Ni_1Fe_3/TiO_2$) decreased the number of active metallic Ni species which would inhibit the reduction of iron oxides. XPS results of Ni and Fe are consistent with H₂-TPR showing that reducibility of iron oxide decreased with decrease in Ni loading. While there is considerable interaction between NiO and TiO₂ support. Further, the surface Ni/Fe ratio in the reduced Ni- Fe/TiO_2 catalysts were 1.36, 0.43 and 0.28 which were lower than their bulk counterparts. The observation suggested partial encapsulation of Ni by Fe species during reduction process. Surface O/Ti ratio for all the reduced catalysts was below 2 evidencing the formation of TiO_x upon reduction.

Fig.3.4. (a) Ni $2p_{3/2}$ XPS spectra and (b) Fe 2p XPS spectra of reduced catalysts synthesized by wet-impregnation route.

Table 3.4. Atomic concentration (%) of surface species in reduced catalysts synthesized by wetimpregnation route.

Catalyst	Ni ⁰	Ni ²⁺	Fe ²⁺	Fe ³⁺	Ni/Fe	O/Ti
Ni/TiO ₂	1.15	9.22	-	-	-	1.34
Ni ₃ Fe ₁ /TiO ₂	1.02	6.22	5.60	-	1.29	1.37
Ni_1Fe_1/TiO_2	0.29	2.29	2.17	3.96	0.42	1.41
Ni ₁ Fe ₃ /TiO ₂	0.20	1.64	2.01	4.59	0.28	1.54

3.2.6 Catalytic performance in dry reforming of methane and CH₄ – decomposition

Fig. 3.5a and 3.5b shows consumption rates of CH₄ and CO₂ as a function of reaction time respectively. For Ni/TiO₂, the CH₄ and CO₂ conversion after 1 h TOS is 62 µmol/m²_{Ni+Fe} h and 71 μ mol/m²_{Ni+Fe} h respectively. Higher consumption of CO₂ compared to CH₄ is attributed to RWGS reaction prevalent under given reaction conditions. CH₄ consumption increases monotonically while CO₂ consumption drops with TOS. After 6 h of reaction, the CH₄ consumption increased to 69 μ mol/m²_{Ni+Fe} h whereas CO₂ consumption decreased to 66 μ mol/m²_{Ni+Fe} h. The increase in CH₄ consumption with TOS is attributed to occurrence of CH₄ decomposition which is considered as inevitable side reaction on Ni-based catalysts [33,34]. On the other hand, drop in CO₂ consumption is related to CO disproportionation that produces CO₂, and is thermodynamically favored below 700°C [6]. As shown in Fig. 3.6c, the H₂/CO ratio over Ni/TiO₂ after 1 h TOS was 0.83 and increased to 0.94 after 6 h. The carbon decreased from 89% to 84% during TOS. Thus, catalytic performance on Ni/TiO₂ suggested that initial activity is essentially controlled by DRM while CH₄ decomposition dominates after 2 h TOS. Similar behavior has been observed over Ni based catalysts which showed dominance towards CH₄ decomposition with TOS at 550°C [33,34]. In comparison to Ni/TiO₂, bimetallic Ni–Fe/TiO₂ catalysts showed lower CH₄ and CO₂ consumption. This indicated passivating effect of Fe on catalytic performance. The CH₄ and CO₂ consumption over Ni₃Fe₁/TiO₂ after 1 h TOS was 67 µmol/m²_{Ni+Fe} h and 70 µmol/m²_{Ni+Fe} h respectively. Unlikely the Ni/TiO₂ catalyst, the CH₄ conversion dropped to 51 μ mol/m²_{Ni+Fe} h. It seems that 2.5 wt% substitution of Ni by Fe might have increased the activation barrier for CH₄ decomposition [18]. This behavior could be beneficial for reducing carbon deposition. The H_2/CO ratio observed over Ni₃Fe₁/TiO₂ after 1 h TOS was 0.77 and remains almost similar during the reaction. Decrease in H₂/CO ratio over Ni₃Fe₁/TiO₂ than Ni/TiO₂ suggests suppression of CH₄ decomposition as side reaction. However, this decrease could also be related to presence of iron oxide which could accelerate reverse water-gas shift reaction in Ni_3Fe_1/TiO_2 catalyst [35]. The carbon balance over Ni_3Fe_1/TiO_2 after 1 h TOS was 90.9% and increased to 91.8% after 6 h of reaction. These results indicated that 2.5 wt% substitution of Ni by Fe might have promoted carbon removal from catalyst surface during the course of reaction.

5 wt% substitution of Ni by Fe dropped the CH₄ and CO₂ consumption drastically. After 1 h TOS, the CH₄ consumption over Ni₁Fe₁/TiO₂ was 27 μ mol/m²_{Ni+Fe} h and decreased to 13 μ mol/m²_{Ni+Fe} h after 6 h. Similarly, CO₂ consumption dropped from 25 μ mol/m²_{Ni+Fe} h to 14 µmol/m²_{Ni+Fe} h. The catalytic performance results of Ni₁Fe₁/TiO₂ with TOS suggested loss of active Ni⁰ sites during the course of reaction. The H₂/CO ratio revealed interesting behavior during the course of reaction. After 1 h, the ratio was 0.67 and dropped to 0.43 after 6 h, which is lower than thermodynamic equilibrium value of 0.86 under the consideration of DRM and RWGS reactions. Such behavior indicated dominance of reverse water-gas shift reaction over dry reforming [12,18,36]. Decrease in H_2 /CO ratio compared to Ni₃Fe₁/TiO₂ could also be attributed to increase in Fe loading (2.5 wt% \rightarrow 5 wt%) that shows selectivity towards CO formation [32]. Meanwhile, the carbon balance increases from 92.7% to 96.0% and could be related to removal of coke by iron oxide sites. When it comes to Ni₁Fe₃/TiO₂ catalyst, similar trend as Ni₁Fe₁/TiO₂ in CH₄/CO₂ conversion, H₂/CO ratio and carbon balance was observed. The CH₄/CO₂ consumption and H₂/CO ratio further dropped. However, the carbon balance further increased from 94.5% to 97.8%. Activity performance over Ni₁Fe₃/TiO₂ with TOS suggested reduction in accessible Ni⁰ sites during reaction and that presence of FeO_x sites might have shifted the reaction equilibrium from dry reforming to reverse water-gas shift. Thus, tuning the ratio between Ni and Fe could be helpful for DRM by controlling the side reactions. Kim et al. [18] demonstrated highest CH₄

consumption over Ni/MgAl₂O₄ catalyst after 1 TOS, which decreased significantly after 10 h TOS. Deactivation of Ni/MgAl₂O₄ was attributed to coke formation. However, bimetallic Ni– Fe/MgAl₂O₄ catalysts showed stable CH₄ consumption during DRM and decreased coking. Compared to our results, a similar trend in H₂/CO ratio was also reported. For monometallic Ni/MgAl₂O₄ catalyst, the H₂/CO ratio exceeded the thermodynamic equilibrium value. While Ni– Fe/MgAl₂O₄ showed decrease in H₂/CO ratio compared to Ni/MgAl₂O₄. Such behavior was attributed to side reactions such as CH₄ decomposition or CO disproportionation reaction.

The catalytic activity in CH₄ decomposition is shown in Fig.3.6a-b. Similar to DRM, Ni/TiO₂ showed maximum CH₄ conversion while addition of Fe decreased CH₄ decomposition activity. The results agree with CH₄-TPSR shown in section 3.3. However, formation of CO was also observed besides H₂ during CH₄ decomposition. As the reactant feed contains only CH₄, formation of CO suggested oxidation of coke precursors by the lattice oxygen from FeO_x and TiO₂ support. Further, it should be noticed that amount of CO formed increases with Fe content, indicating that lattice oxygen from FeO_x would play dominant role to oxidize coke species.

Fig. 3.5. Catalytic activity results of DRM tests over Ni/TiO₂ and Ni–Fe/TiO₂ catalysts synthesized by wet-impregnation route: (a) CH₄ consumption, (b) CO₂ consumption, (c) H₂/CO ratio. Reaction Conditions: 10%CH₄+10%CO₂ balanced with helium, Temperature: 550°C.

Fig. 3.6. Catalytic activity in steady-state CH_4 -decompsoition over Ni/TiO₂ and Ni-Fe/TiO₂ catalysts synthesized by wet-impregnation route, a) CH_4 conversion, and b) CO formation rate (mmol CO g_{catalyst} min⁻¹)

3.2.7 Characterizations of used catalysts

3.2.7.1 X-ray Photoelectron Spectroscopy (XPS)

XPS spectra of used catalysts is shown in Fig. 3.7a-d. For all the Ni/TiO₂ and Ni-Fe/TiO₂ catalysts, Ni⁰ was observed at 852.7 eV. However, in case of Ni/TiO₂, Ni²⁺ peak appeared at 856.5 eV which exhibited a chemical shift of +1 eV to higher BE values in comparison to reduced Ni/TiO₂. The behavior suggested enhanced interaction of Ni species with the support during DRM reaction [27]. It is postulated that lattice oxygen from the reducible supports including TiO₂ and CeO₂ is consumed at metal-support interface during DRM owing to high mobility of oxygen atoms [37]. Thus, lattice oxygen from TiO₂ support would oxidize coke precursors at metal-support

interface to enhance coke removal during reforming reaction. Such process leads to significant interaction between metal and support species thereby shifting the B.E. to high values compared to their reduced counterparts. For Ni₃Fe₁/TiO₂, the Ni²⁺ peak appeared at 856 eV which is 0.5 eV higher than reduced catalysts. It indicated that interaction between Ni species and support were lowered in Ni₃Fe₁/TiO₂ than Ni/TiO₂ in used catalysts. Nevertheless, participation of lattice oxygen from TiO₂ support is also indicated. For, Ni₁Fe₁/TiO₂ and Ni₁Fe₃/TiO₂, Ni²⁺ peak remained at 855.5 eV which implied that there was no significant interaction between Ni species and support during DRM. In other words, lattice oxygen of TiO₂ support in Ni₁Fe₁/TiO₂ and Ni₁Fe₃/TiO₂ did not play significant role in coke removal. However, we attribute carbon gasification over Ni_1Fe_1/TiO_2 and Ni_1Fe_3/TiO_2 by lattice oxygen from FeO_x species only. The Fe 2p spectra of all used Ni-Fe/TiO₂ catalysts demonstrated mixture of Fe²⁺ and Fe³⁺. Our results showed that Fe²⁺ was oxidized to Fe³⁺ which is attributed to oxophilicity of Fe. Previous studies on Ni-Fe catalysts for DRM also demonstrated oxidation of Fe to FeO_x upon CO_2 exposure [18,19]. Further, O 1s spectra of used catalysts were analyzed to gain insights of different types of oxygen species over used catalysts. It was observed that O 1s spectra of all the Ni/TiO₂ and Ni-Fe/TiO₂ showed 3 peaks upon deconvolution. Peak occurring at 529.7 eV was assigned to O²⁻ in metal oxide [38]. While peaks appearing at 531.5 eV and 533.5 eV are assigned to different types of surface adsorbed oxygen species (SAOS) [38,39]. Presence of SAOS would play important role during DRM and is further demonstrated by reaction mechanism studies using *in-situ* DRIFTS analysis shown in section 3.1. C 1s XPS spectra of Ni/TiO₂ and Ni-Fe/TiO₂ showed a major peak around 284.8 eV which originates due to the adventitious carbon or C-C graphitic type of carbon species. This peak is usually employed for calibration of XPS spectra. Another peak appearing between 286-286.2 eV is assigned to C–O species. Peak between 288.1–288.6 eV is attributed to CO_3^{2-} interacting with the support [40,41]. The C 1s spectra of used Ni/TiO₂ catalyst shows an additional peak at ~ 290.9 eV binding energy. Such feature has been attributed to graphite or graphitic type carbon species due to $\pi \rightarrow \pi^*$ transitions [41]. However, C 1s peak due to $\pi \rightarrow \pi^*$ transition was not observed in Ni-Fe/TiO₂ catalysts. The results suggested coke resistant nature of Ni-Fe/TiO₂ catalysts, specifically under applied reaction conditions. The molar composition of surface species after DRM was calculated and is shown in Table 3.5. Notably, Ni⁰ concentration in Ni/TiO₂ increased which implied evolution of surface Ni⁰ species during reaction. It may be explained that hydrogen produced by CH₄ dissociation during DRM reduced Ni²⁺ to Ni⁰. The results of molar composition are also supported by increased CH₄ conversion during DRM over Ni/TiO₂. For Ni-Fe/TiO₂ catalysts, molar composition of Ni⁰ decreased in comparison to their reduced counterparts. This resulted in decreased Ni/Fe ratio in used catalysts. While, Fe²⁺ was oxidized to mixture of Fe²⁺ and Fe³⁺ in Ni-Fe/TiO₂.

Table 3.5. Atomic concentration (%) of surface species in Ni/TiO₂ and Ni-Fe/TiO₂ spent catalysts synthesized by wet-impregnation route.

Catalyst	Ni ⁰	Ni ²⁺	Fe ²⁺	Fe ³⁺	Ni/Fe	O/Ti
Ni/TiO ₂	1.91	8.65	-	-	-	0.97
Ni ₃ Fe ₁ /TiO ₂	0.68	3.69	2.46	4.76	0.60	1.34
Ni_1Fe_1/TiO_2	0.21	1.90	1.27	4.06	0.39	1.60
Ni1Fe3/TiO2	0.11	1.13	1.65	3.80	0.23	1.63

Fig. 3.7 (a) Ni $2p_{3/2}$, (b) Fe 2p (c) O 1s and (d) C 1s XPS spectra of used catalysts synthesized by wet-impregnation route.

3.2.7.2 Thermogravimetric Analysis (TGA)/Differential Thermogravimetry (DTG)

Catalyst deactivation in dry reforming reaction is usually associated with coke deposition, active-metal sintering and/or agglomeration of metal particles [42]. We applied thermogravimetric analysis to study coke deposition. Analysis of weight percentages of used catalysts is shown in Table 3.6. Fig. 3.8a shows TGA profile of used Ni/TiO₂ catalyst and could be divided into three phases. Phase I (25°C-250°C) depicts the weight loss region which could be due to desorption of physiosorbed moisture. Phase II (250°C-450°C) highlights weight gain that is attributed to the oxidation of metallic species [12,43]. Phase III (450°C-650°C) shows weight loss that is associated with combustion of deposited coke. High temperatures above 450°C for oxidation of carbonaceous species might be required because oxygen atoms cannot be activated by carbon-encapsulated Ni particles [44]. TGA curve of used catalyst revealed 23.4 wt% coke deposition on Ni/TiO₂. CH₄ decomposition and/or CO disproportionation reactions are two main reactions to explain coking formation [45]. To understand the type of deposited coke, 1st derivative of TGA curve was employed. DTG profile of Ni/TiO₂ in Fig. 3.8b showed an asymmetric peak between 475°C-650°C which suggest4 that more than one type of coke may form. The peak centered at 525°C could be due to oxidation of hydrogen containing C species (CH_x) and/or amorphous carbon. Such species do not contribute towards catalyst deactivation. Second peak located around 620°C could be due to oxidation of graphitic carbon which could not be easily gasified as amorphous or CH_x type carbon and thereby contributes in catalyst deactivation [45]. Fig. 3.8c shows TGA curves of bimetallic Ni–Fe/TiO₂ catalysts after dry reforming tests. The weight loss in phase I and weight gain in phase II agrees with the findings of Ni/TiO₂. Our results showed that phase III of Ni₃Fe₁/TiO₂ demonstrated only 0.1 wt% coke deposition while Ni₁Fe₁/TiO₂ and Ni₁Fe₃/TiO₂ did not reveal any carbon accumulation. Our observation suggested that Fe might be helpful to

decrease the coke formation. 1st derivative of TGA profile of bimetallic Ni–Fe/TiO₂ catalysts was evaluated, shown in Fig. 3.8d. Phase I and phase II shows similar features as of Ni/TiO₂. However, absence of peak/s corresponding to phase III in Ni–Fe/TiO₂ catalysts suggest that introduction of Fe strongly inhibits carbon deposition. DFT calculations on Ni₂Fe overlayer of Ni (111) has revealed that the energy barrier for dissociation of CH fragments to carbon and hydrogen increases upon Fe introduction [46]. It suggested that introduction of Fe might have refrained the dissociation of CH fragments to carbon. This phenomenon would ultimately inhibit the carbon deposition on catalyst surface. Furthermore, if there were any carbon deposited as a result of CO disproportionation (reaction 4), then those carbonaceous species would have been oxidized by FeO_x according to Mars-Van Krevelan mechanism. The coke accumulated in the neighborhood of Ni–Fe species could be oxidized by lattice oxygen from FeO_x [18]. The loss of oxygen atom could be then compensated by reactive oxygen species O^{*} which might be formed by CO₂ dissociation.

TGA-DTG analysis of spent catalysts after CH₄ decomposition test was performed and results are shown in Fig.3.9. We observed that monometallic Ni/TiO₂ catalyst exhibited two types of carbon deposits viz. amorphous and graphitic. While introduction of Fe altered carbon deposition from graphitic to amorphous. Literature studies on TGA analysis of spent Ni catalyst showed that amorphous carbon species did not contributed towards catalyst deactivation. Whereas graphitic coke would cover the active Ni⁰ sites during DRM thereby deactivating the catalyst. Thus, alteration of carbon deposits from graphitic to amorphous upon Fe addition would be beneficial to enhance coke resistance in Ni-Fe/TiO₂ catalysts.

$$FeO_x + C^* \rightarrow CO + FeO_{x-1}$$
 (7)

$$FeO_{x-1} + O^* \to FeO_x$$
 (8)

Fig. 3.8. Thermogravimetric analysis (TGA) and Differential Thermogravimetry (DTG) of used catalysts: (a,b) Ni/TiO₂, (c,d) Ni–Fe/TiO₂.

Fig. 3.9. DTG analysis of spent Ni/TiO₂ and Ni-Fe/TiO₂ catalysts synthesized by wetimpregnation route after CH₄ decomposition tests.

	Phase I	Phase II	Phase III
Catalyst	Weight loss	Weight gain	Weight loss
	25°C-250°C	250°C -450°C	450°C -650°C
Ni/TiO ₂	4.5 %	0.4%	23.4%
Ni_3Fe_1/TiO_2	1.1%	1.7%	0.1%
Ni ₁ Fe ₁ /TiO ₂	0.7%	1.2%	N.D.
Ni ₁ Fe ₃ /TiO ₂	0.9%	0.8%	N.D.

Table 3.6. Analysis of TGA/DTG data of used catalysts after DRM.

3.2.7.3 Raman spectroscopy of used catalysts after DRM

Raman Spectroscopy of used catalysts was performed to estimate graphitic degree of coke on used catalysts. Typically, Raman spectra of used catalysts after dry reforming tests show D and G band of carbon around 1345 cm⁻¹ and 1570 cm⁻¹ respectively. The D-band is characteristic of amorphous carbon or hydrogen – containing carbon species (CH_x) whereas G-band refers to ordered $sp^2 C = C$ bond in graphite [18,47]. The ratio between D-band intensity and G-band intensity (I_D/I_G) represents degree of crystallinity of deposited coke on catalyst surface. Moreover, degree of crystallinity of coke is associated with its oxidation temperature [18]. Relatively high degree of crystallinity between monometallic Ni and bimetallic Ni-Fe catalysts would suggest high temperature is required to oxidize carbon during dry reforming [18]. Fig. 3.10 shows Raman spectra of used catalysts after DRM test. Only Ni/TiO₂ catalyst demonstrated presence of amorphous and graphitic carbon. The calculated I_D/I_G ratio was 1.00 over Ni/TiO₂ which indicated that amorphous and graphitic carbon species are equally present on catalyst surface. While all the Ni-Fe/TiO₂ catalysts did not show Raman bands corresponding to deposited coke. The result indicated introduction of Fe is beneficial to inhibit coke deposition and agrees with TGA-DTG results explained in section 3.2.7.2.

Fig. 3.10. Raman spectra of used Ni/TiO₂ and Ni-Fe/TiO₂ catalysts synthesized by wetimpregnation route after DRM.

3.3. In-situ DRIFTS analysis over Ni/TiO2 and Ni3Fe1/TiO2 catalysts

In order to understand reaction mechanism and its intermediates, *in-situ* DRIFTS analysis was performed over *ex-situ* reduced Ni/TiO₂ and Ni₃Fe₁/TiO₂ catalysts. The catalysts were first pretreated with helium at 550°C for 1 h. A pulse of CH₄/He was then introduced into the reaction cell and transient spectra was recorded. Fig.3.11 shows IR spectra during the first pulse of CH₄/He over Ni/TiO₂ catalyst. Peaks appearing at 1304 cm⁻¹ and 3015 cm⁻¹ are attributed to gas phase CH₄ [1]. The transient spectra recorded after t = 1 min showed peak at 2363 cm⁻¹ attributed to gas phase CO₂ [37]. Formation of gas phase CO₂ suggested that lattice oxygen of TiO₂ oxidizes coke precursors originated from CH₄ decomposition. Similar behavior has been previously observed in the literature [37]. While transient spectra from t = 2 min to t = 5 min showed peaks corresponding to formyl species (CHO^{*}) at 1717 cm⁻¹ and formate species (HCOO^{*}) at 1352 cm⁻¹ [37,48]. Those

peaks indicated oxidation of CH species by lattice oxygen of TiO₂ support. During CO₂/He pulse, peaks related to carbonate species (COO^{*}) at 1540 cm⁻¹ and hydroxyl species (OH^{*}) at 3735 cm⁻¹ [37,49] were observed. Carbonate type intermediate species are suggested to be formed by activation of CO₂ on catalyst surface. However, presence of formyl and hydroxyl species indicated that H^{*} species formed by CH₄ dissociation facilitated transformation of carbonate species. A 2nd pulse of CH₄/He was followed by CO₂/He pulse. The population of formate species decreased gradually with time which decomposed to hydroxyl species and adsorbed CO located at 1900 cm⁻¹ [50] and hydroxyl species. Based on the above discussion, following reaction mechanism is suggested over Ni/TiO₂ catalyst.

 $\begin{array}{l} CH_{4g} + * \stackrel{Ni^{0}}{\longleftrightarrow} CH^{*}/C^{*} + 3H^{*} \\ C^{*} + O_{x} \leftrightarrow CO_{2} \\ CH^{*} + O_{x} \leftrightarrow HCOO^{*}/CHO^{*} \\ CO_{2g} \stackrel{Ni^{0}}{\longleftrightarrow} COO^{*} \\ COO^{*} + 2H^{*} \leftrightarrow CHO^{*} + OH^{*} \\ HCOO^{*} \leftrightarrow CHO^{*} + O^{*} \\ HCOO^{*} \rightarrow CO^{*} + H^{*} \\ OH^{*} + H^{*} \leftrightarrow H_{2}O_{g} \\ CO^{*} \leftrightarrow CO_{g} \\ H^{*} + H^{*} \leftrightarrow H_{2g} \end{array}$

Fig. 3.11. *In-situ* DRIFTS spectra over Ni/TiO₂ catalyst synthesized by wet-impregnation route under alternate pulse at 550°C. (a) 1^{st} CH₄/He pulse, (b) CO₂/He pulse, (c) subsequent CH₄/He pulse.

The *in-situ* DRIFTS spectra over Ni₃Fe₁/TiO₂ catalyst is shown in Fig. 3.12. During 1st pulse of CH₄/He, peaks related to gas phase CO₂ and formate species (HCOO^{*}) were observed at 2363 cm⁻¹ and 1352 cm⁻¹ respectively. Those peaks are attributed to oxidation of coke precursors by lattice oxygen from TiO₂ support. The hydroxyl species dominated transiently from t = 2 min to t = 4 min. We attribute the formation of hydroxyl species to reaction between H^{*} and lattice oxygen of FeO_x. Consequently, a dominant peak related to formyl species (CHO^{*}) was observed at t = 5 min with simultaneous disappearance of previously formed hydroxyl species (OH^{*}). This resulted by the reaction between coke precursors with hydroxyl species and is shown in the following equations. CH₄/He pulse was followed by CO₂/He pulse. We observed formyl and carbonate species located at 1717 cm⁻¹ and 1540 cm⁻¹ respectively which are suggested to be formed by the reaction between carbonates and H^{*}. 2nd pulse of CH₄/He showed transformation of formate to formyl species. Based upon the above discussion, following reaction mechanism is suggested.

$$\begin{array}{l} CH_{4g}+*\stackrel{Ni^{0}}{\longleftrightarrow}CH^{*}/C^{*}+3H^{*}\\ C^{*}+O_{x}\leftrightarrow CO_{2}\\ CH^{*}+O_{x}\leftrightarrow HCOO^{*}\\ H^{*}\stackrel{FeO_{x}}{\longleftrightarrow}OH^{*}\\ OH^{*}+C^{*}\leftrightarrow CHO^{*}\\ HCOO^{*}\leftrightarrow CHO^{*}+O^{*}\\ CHO^{*}\rightarrow CO^{*}+H^{*}\\ CO^{*}\leftrightarrow CO_{g}\\ H^{*}+H^{*}\leftrightarrow H_{2g}\end{array}$$

Fig. 3.12. *In-situ* DRIFTS spectra over Ni_3Fe_1/TiO_2 catalyst synthesized by wet-impregnation route under alternate pulse at 550°C. (a) 1st CH₄/He pulse, (b) CO₂/He pulse, (c) subsequent CH₄/He pulse.

3.4 References

- [1] S.M. Kim, P.M. Abdala, M. Broda, D. Hosseini, C. Copéret, C. Müller, ACS Catal. 8 (2018) 2815–2823.
- R.A. Alvarez, D. Zavala-Araiza, D.R. Lyon, D.T. Allen, Z.R. Barkley, A.R. Brandt, K.J. Davis, S.C. Herndon, D.J. Jacob, A. Karion, E.A. Kort, B.K. Lamb, T. Lauvaux, J.D. Maasakkers, A.J. Marchese, M. Omara, S.W. Pacala, J. Peischl, A.L. Robinson, P.B. Shepson, C. Sweeney, A. Townsend-Small, S.C. Wofsy, S.P. Hamburg, Science 361 (2018) 186–188.
- [3] M.S. Fan, A.Z. Abdullah, S. Bhatia, ChemSusChem 4 (2011) 1643–1653.
- [4] D.L. Trimm, Catal. Today 49 (1999) 3–10.
- [5] H.O. Seo, Catalysts 8 (2018) 110.
- [6] D. Pakhare, J. Spivey, Chem. Soc. Rev. 43 (2014) 7813–7837.
- [7] M. Jafarbegloo, A. Tarlani, A.W. Mesbah, J. Muzart, S. Sahebdelfar, Catal. Lett. 146 (2016)
 238–248.
- [8] X. Li, D. Li, H. Tian, L. Zeng, Z.J. Zhao, J. Gong, Appl. Catal. B 202 (2017) 683–694.
- [9] Z. Shang, S. Li, L. Li, G. Liu, X. Liang, Appl. Catal. B 201 (2017) 302–309.
- [10] J. Guo, H. Lou, H. Zhao, D. Chai, X. Zheng, Appl. Catal. A 273 (2004) 75–82.
- [11] T. V Sagar, D. Padmakar, N. Lingaiah, P.S. Sai Prasad, Catal. Lett. 149 (2019) 2597–2606.
- [12] M. Yu, Y.A. Zhu, Y. Lu, G. Tong, K. Zhu, X. Zhou, Appl. Catal. B 165 (2015) 43–56.
- [13] K. Takanabe, K. Nagaoka, K. Nariai, K.I. Aika, J. Catal. 232 (2005) 268–275.

- [14] Q.G. Yan, W.Z. Weng, H.L. Wan, H. Toghiani, R.K. Toghiani, C.U. Pittman, Appl. Catal. A 239 (2003) 43–58.
- [15] S.S. Kim, S.M. Lee, J.M. Won, H.J. Yang, S.C. Hong, Chem. Eng. J. 280 (2015) 433–440.
- [16] Z. Bian, S. Das, M.H. Wai, P. Hongmanorom, S. Kawi, ChemPhysChem 18 (2017) 3117– 3134.
- [17] J. Zhang, H. Wang, A.K. Dalai, J. Catal. 249 (2007) 300–310.
- [18] S.M. Kim, P.M. Abdala, T. Margossian, D. Hosseini, L. Foppa, A. Armutlulu, W. Van Beek, A. Comas-Vives, C. Copéret, C. Müller, J. Am. Chem. Soc. 139 (2017) 1937–1949.
- [19] S.A. Theofanidis, V. V. Galvita, H. Poelman, G.B. Marin, ACS Catal. 5 (2015) 3028–3039.
- [20] T. Margossian, K. Larmier, S.M. Kim, F. Krumeich, C. Müller, C. Copéret, ACS Catal. 7 (2017) 6942–6948.
- [21] J. Van De Loosdrecht, A.M. Van Der Kraan, A.J. Van Dillen, J.W. Geus, J. Catal. 170 (1997) 217–226.
- [22] K. Ray, S. Sengupta, G. Deo, Fuel Process. Technol. 156 (2017) 195–203.
- [23] M. Chamoumi, N. Abatzoglou, Can. J. Chem. Eng. 94 (2016) 1801–1808.
- [24] J. Ashok, S. Kawi, Appl. Catal. A 490 (2015) 24–35.
- [25] D. Pandey, G. Deo, J. Ind. Eng. Chem. 33 (2016) 99–107.
- [26] A. M. Amin, E. Croiset, W. Epling, Int. J. Hydrogen Energy 36 (2011) 2904-2935.
- [27] J. Ashok, S. Kawi, ACS Catal. 4 (2014) 289-301.
[28] K. Song, M. Lu, S. Xu, C. Chen, Y. Zhan, D. Li, C. Au, L. Jiang, K. Tomishige, Appl.
Catal. B 239 (2018) 324 – 333.

[29] M. Zhang, J. Zhang, Z. Zhou, S. Chen, T. Zhang, F. Song, Q. Zhang, N. Tsubaki, Y. Tan, Y. Han, Appl. Catal. B 264 (2020) 118522.

[30] S. Damyanova, I. Shtereva, B. Pawelec, L. Mihaylov, J.L.G. Fierro, Appl. Catal. B 278 (2020)119335.

[31] M. Muhler, R. Schlögl, G. Ertl, J. Catal. 138 (1992) 413-444.

- [32] L.R. Winter, E. Gomez, B. Yan, S. Yao, J.G. Chen, Appl. Catal. B 224 (2018) 442–450.
- [33] R. Dębek, M. Motak, D. Duraczyska, F. Launay, M.E. Galvez, T. Grzybek, P. Da Costa, Catal. Sci. Technol. 6 (2016) 6705–6715.
- [34] R. Dębek, M. Motak, M.E. Galvez, T. Grzybek, P. Da Costa, Appl. Catal. B 223 (2018) 36–46.
- [35] S. Sengupta, A. Jha, P. Shende, R. Maskara, A.K. Das, J. Environ. Chem. Eng. 7 (2019) 102911.
- [36] M.C.J. Bradford, M.A. Vannice, Catal. Rev. 41 (1999) 1–42.
- [37] S. Das, J. Ashok, Z. Bian, N. Dewangan, M.H. Wai, Y. Du, A. Borgna, K. Hidajat, S. Kawi, Appl. Catal. B 230 (2018) 220-236.
- [38] K. Sutthiumporn, T. Maneerung, Y. Kathiraser, S. Kawi, Int. J. Hydrogen Energy 37 (2012) 11195-11207.
- [39] X. Song, X. Dong, S. Yin, M. Wang, M. Li, H. Wang, Appl. Catal. A 526 (2016) 132-138.

- [40] M. Yu, K. Zhu, Z. Liu, H. Xiao, W. Deng, X. Zhou, Appl. Catal. B 148–149 (2014) 177–190.
- [41] S.A. Theofanidis, R. Batchu, V. V Galvita, H. Poelman, G.B. Marin, Appl. Catal. B 185 (2016) 42–55.
- [42] X. Li, B. Yan, S. Yao, S. Kattel, J.G. Chen, T. Wang, Appl. Catal. B 231 (2018) 213–223.
- [43] R.K. Singha, A. Yadav, A. Agrawal, A. Shukla, S. Adak, T. Sasaki, R. Bal, Appl. Catal. B 191 (2016) 165–178.
- [44] H. Wu, G. Pantaleo, V. La Parola, A.M. Venezia, X. Collard, C. Aprile, L.F. Liotta, Appl. Catal. B 156–157 (2014) 350–361.
- [45] M. Shah, S. Das, A.K. Nayak, P. Mondal, A. Bordoloi, Appl. Catal. A 556 (2018) 137–154.
- [46] L.L. Xu, H. Wen, X. Jin, Q.M. Bing, J.Y. Liu, Appl. Surf. Sci. 443 (2018) 515–524.
- [47] K. Cao, M. Gong, J. Yang, J. Cai, S. Chu, Z. Chen, B. Shan, R. Chen, J. Catal. 373 (2019) 351–360.
- [48] K. Bu, J. Deng, X. Zhang, S. Kuboon, T. Yan, H. Li, L. Shi, D. Zhang, Appl. Catal. B 267 (2020) 118692.
- [49] A.L.A. Marinho, F.S. Toniolo, F.B. Noronha, F. Epron, D. Duprez, N. Bion, Appl. Catal. B 281 (2021) 119459.
- [50] Y. Wang, L. Yao, Y. Wang, S. Wang, Q. Zhao, D. Mao, C. Hu, ACS Catal. 8 (2018) 6495-6506.

Chapter 4

Bimetallic Ni-Fe/TiO₂ catalysts derived from hydrotalcite type precursors for low temperature dry reforming of methane

4.1 Introduction

Dry (CO₂) reforming of methane (DRM), $CH_4 + CO_2 \rightarrow 2CO + 2H_2$, converts two major greenhouse gases in one single reaction to produce synthesis gas -a mixture of H₂ and CO [1-3]. DRM offers H₂/CO ratio close to unity at high temperature (>800°C) and atmospheric pressure. Nearly equimolar mixture of H₂ and CO could be utilized in downstream processes such as F-T synthesis [4,5]. Precious metals including Pt, Ru, Rh, Pd and Ir [6-10] based catalysts have been extensively studied for dry reforming of methane. But the practical application is hurdled by the high cost related to precious metals. Meanwhile Ni based catalysts show comparable activity to precious metals in DRM [11]. Ni based catalysts are economically preferred over precious metals but are prone to deactivation caused by metal oxidation [12], metal sintering [13,14] and coke deposition [15,16]. Coke deposition has been considered as primary reason for catalyst deactivation [17]. Both methane decomposition, $CH_4 \rightarrow C + 2H_2$, and CO disproportionation, $2CO \rightarrow C + CO_2$, contribute to the formation of carbon.

Ni based bimetallic catalysts have been studied to reduce coke formation. The addition of transition metals such as Fe, Co or Cu to Ni based catalysts have been proved as one cost-effect approach to decrease the deactivation [18-20]. Bimetallic catalysts improve Ni dispersion and reducibility compared to monometallic catalysts [21]. Highly dispersed and small–sized Ni

particles have been shown to preferentially favor DRM over methane decomposition and CO disproportionation [22,23].

Fe is favored as potential promoter in Ni catalysts because of its abundance. Kim et al. [24,25] studied Ni-Fe/MgAl₂O₄ catalysts for DRM. They reported FeO formation upon CO₂ exposure during DRM. FeO facilitated oxidation of coke to CO. Theofanidis et. al [26] also investigated Ni- $Fe/MgAl_2O_4$ catalysts and suggested that lattice oxygen from FeO_x oxidized coke to CO. The origin of FeO_x resulted from in-situ reduction of Ni-Fe alloy during the reaction. Further, Theofanidis et. al [27] deduced that location of Fe in Ni catalysts played one important role in coke resistance. Specifically, incorporation of Fe into the support lattice of Ni/MgFe_xAl_{2-x}O₄ proved better than Fe deposited onto the support as Ni-Fe/MgAl₂O₄. Hydrogen spillover during reduction facilitated partial migration of Fe from MgFe_xAl_{2-x}O₄ spinel to form surface Ni-Fe alloy. Ni-Fe alloy together with MgFe_xAl_{2-x}O₄ showed no coke deposition under atmospheric DRM conditions. On the other hand, alloying Fe with Ni catalyst over ordered mesoporous Al₂O₃ support did not improve coke resistance [28]. The structure of catalysts is also important [29,30]. Ni–Fe perovskite catalysts were studied for DRM reaction [31,32]. Partial substitution of Ni by Fe in the LaNiO₃ perovskite resulted in enhancement of structure stability and coke resistance. LaNi_{0.5}Fe_{0.5}O₃ perovskite showed smaller particle size and better dispersion than LaNiO₃. However, catalytic activity was decreased in LaNi_{0.5}Fe_{0.5}O₃ [32]. Contrarily, La₂O₃ supported Ni-Fe catalysts obtained by the reduction of LaNi_{0.8}Fe_{0.2}O₃ – type perovskite did not show activity [33]. Ni and Fe dealloyed during reaction and Fe oxidized to FeO_x . FeO_x was converted to LaFeO₃ perovskite - which encapsulated active Ni particles. The role of Fe in Ni-Fe/MgO catalyst was proposed to facilitate formation of small Ni ensembles and promote coke gasification [34].

It should be noted that DRM studies entailed above were performed at high temperatures ($\geq 650^{\circ}$ C). Thermodynamically, coke formation dominates at low temperature (< 600°C) during DRM [35]. Thus, inexpensive Ni–Fe catalysts which are active and coke resistant at low temperature are also desirable. Hydrotalcites (HTLs) ($[M^{2+}_{1-x}M^{3+}_{x}(OH)_{2}]^{x+}(A^{n-}_{x/n}) \cdot mH_{2}O$) are built by periodic stacking of two-dimensional brucite like sheets consisting of divalent and trivalent metal ions [36,37]. Mixed metal oxides (MMOs) formed upon calcination of HTLs are suggested as suitable precursors for synthesis of homogeneous Ni–Fe nanoparticles [38].

In this study, we study the role of Fe in the bimetallic Ni–Fe/TiO₂ catalysts synthesized from HTLs precursors in low temperature DRM (550°C). Reducibility and accessible metallic sites of Ni and Ni–Fe catalysts were investigated by H₂–TPR and CO-chemisorption respectively. Effect of Fe addition on transient activity of CH₄ and CO₂ was studied by CH₄–TPSR/DTG and CO₂–TPSR/H₂–TPR respectively. XPS analysis was used to determine oxidation state and concentration of surface species in reduced and spent catalysts. TGA–DTG, Raman spectroscopy and XPS were employed to characterize spent catalysts. Reaction mechanism and its intermediates were studied using *in-situ* DRIFTS analysis.

4.2. Results and Discussion

4.2.1 Hydrogen – Temperature programmed reduction (H₂-TPR)

Hydrogen–temperature programmed reduction (H₂-TPR) was employed to study the reducibility of supported Ni, Fe and Ni-Fe catalysts and metal-support interaction. We conducted peak deconvolution analysis to gain insights of reduction process. Fig.4.1 shows H₂-TPR profiles of Ni/TiO₂, Fe/TiO₂ and Ni-Fe/TiO₂ catalysts. For monometallic Ni/TiO₂, peaks occurring at 216°C and 243°C are assigned to the reduction of bulk NiO which does not interact with TiO₂

support. While peak located at 320°C is identified to the reduction of well dispersed NiO species having significant interaction with the support (NiO-TiO₂) to Ni⁰ [39]. Yan et. al reported the reduction of strongly interacting NiO species with TiO₂ support occurred at 390°C. The Ni/TiO₂ catalysts in the study by Yan et. al [39] were synthesized by impregnation method. Comparison between our H₂-TPR results and those from Yan et. al [39] suggested better reducibility of Ni/TiO₂ catalysts synthesized by hydrotalcite route than impregnation approach. The argument of better reducibility of Ni/TiO₂ is attributed to low reduction temperature of NiO species. The H_2 consumption related to reduction of bulk NiO in Ni/TiO₂ is higher than NiO-TiO₂ interacting species. It suggested that bulk NiO dominates in Ni/TiO₂ catalyst. For Ni/ZrO₂ catalysts, it was mentioned that low temperature reduction peaks (< 400°C) were assigned to bulk NiO. While, strongly interacting NiO species reduced at high temperature (> 500°C) [40,41]. The difference in reduction temperature between Ni/TiO₂ reported here and Ni/ZrO₂ catalysts [40,41] is related to different metal-support interaction. H₂-TPR profile of Fe/TiO₂ catalyst showed 3 distinct reduction peaks. Peak occurring at 270°C is attributed to reduction of $Fe_2O_3 \rightarrow Fe_3O_4$. While peaks located at 365°C and 560°C are attributed to reduction of $Fe_3O_4 \rightarrow FeO \rightarrow Fe^0$ respectively. The three step reduction profile of Fe/TiO₂ catalyst is supported by with literature reports [42,43]. It should be noted that Fe/TiO₂ did not show presence of interacting Fe₂O₃ species with TiO₂ support, unlikely Ni/TiO₂. The argument is supported by Gao et. al [44] who also showed absence of interacting Fe₂O₃ species with TiO₂ support.

H₂-TPR profiles of bimetallic Ni–Fe/TiO₂ catalysts are distinctly different from their monometallic counterparts. For all Ni-Fe/TiO₂ catalysts, peak 1 located at 216°C is assigned to reduction of non-interacting bulk NiO species. Whereas, peak 2 located around 265°C is assigned to reduction of strongly interacting NiO-TiO₂ species in Ni₃Fe₁/TiO₂, Ni₁Fe₁/TiO₂ and

Ni₁Fe₃/TiO₂ catalysts. H₂ consumption corresponding to reduction of bulk NiO species decreased in Ni-Fe/TiO₂ catalysts compared to Ni/TiO₂ catalysts. The results imply introduction of Fe inhibited formation of bulk NiO species. Secondly, H₂ consumption corresponding to reduction of strongly interacting NiO-TiO₂ species increased from 0.63 mmol H₂/g_{catalyst} to 1.6 mmol H₂/g_{catalyst} in Ni/TiO₂ and Ni₃Fe₁/TiO₂ respectively. It indicated reduction of Fe₂O₃ \rightarrow Fe₃O₄ \rightarrow FeO also occurred simultaneously with NiO-TiO₂ reduction around 265°C. In other words, peak located around 265°C also suggested bimetallic Ni – Fe interaction. The peak at 310°C is assigned to reduction of FeO \rightarrow Fe⁰ in Ni₃Fe₁/TiO₂ and Ni₁Fe₁/TiO₂. Furthermore, increasing Fe loading from 2.5 wt% to 5 wt% decreased H₂ consumption attributed to peak 2. The results indicated that reduction of $Fe_2O_3 \rightarrow Fe_3O_4 \rightarrow FeO$ is inhibited in Ni₁Fe₁/TiO₂. We attribute this behavior to decrease in amount of Ni⁰ formed in peak 2. Ni⁰ has been shown to promote H₂ spill over on catalyst surface [39]. Accordingly, unreduced FeO at 265°C will be reduced at 310°C. The explanation holds for increase in H₂ consumption in peak 3 in Ni₁Fe₁/TiO₂ compared to Ni₃Fe₁/TiO₂. In Ni₁Fe₃/TiO₂ catalyst, amount of Ni⁰ is further decreased. Therefore, reduction of iron oxide is inhibited. A new peak occurred at 365°C is assigned to reduction of FeO \rightarrow Fe⁰. Therefore, reduction of $Fe_2O_3 \rightarrow Fe_3O_4$ occurred at 265°C and $Fe_3O_4 \rightarrow FeO$ occurred at 310°C in Ni₁Fe₃/TiO₂. In other words, reduction of Fe₂O₃ in Ni₁Fe₃/TiO₂ resembled a three step reduction process alike monometallic Fe/TiO₂. Similar TPR profile of bimetallic Ni–Fe/TiO₂ catalysts has been reported in the literature [45]. However, reduction temperature related to NiO and Fe_2O_3 in Ni/TiO₂, Fe/TiO₂ and Ni-Fe/TiO₂ catalysts differ from our results. This behavior is attributed to difference in catalyst preparation and calcination procedure which altered metal-support interactions.

Fig.4.1. H₂-TPR profiles of Ni/TiO₂, Ni-Fe/TiO₂ and Fe/TiO₂ catalysts synthesized by hydrotalcite route.

Table 4.1. Analysis of H₂-TPR profiles of Ni/TiO₂, Ni–Fe/TiO₂ and Fe/TiO₂ catalysts synthesized by hydrotalcite route.

Catalyst	Peak Ten				
	Peak 1	Peak 2	Peak 3	Peak 4	Total H ₂ consumption
Ni/TiO ₂	216 (0.46)	243 (0.46)	320 (0.63)	-	1.55
Ni ₃ Fe ₁ /TiO ₂	216 (0.14)	265 (1.6)	310 (0.09)	-	1.83
Ni_1Fe_1/TiO_2	216 (0.14)	265 (1.22)	310 (0.54)	-	1.9
Ni ₁ Fe ₃ /TiO ₂	216 (0.14)	265 (0.37)	310 (0.88)	365 (0.63)	2.02
Fe/TiO ₂	270 (0.38)	365 (1.53)	560 (0.73)	-	2.64

4.2.2 Pulse CO-Chemisorption

Table 4.2 shows CO uptake values over reduced catalysts. Typically, CO uptake values are correlated with number of metallic sites on catalyst surface with the assumption that each CO molecule chemisorbs one metallic site. For monometallic Ni/TiO₂ catalyst, the CO uptake is 10.2 μ mol/g. However, monometallic Fe/TiO₂ showed only 1.1 μ mol/g of chemisorbed CO. The chemisorption values indicated Ni/TiO₂ contains essentially higher metallic sites than Fe/TiO₂. Consequently, addition of Fe inhibited formation of metallic sites and results are reflected by decreased CO uptake values. The CO uptake values decreased from 9.0 to 4.9 μ mol/g in Ni₃Fe₁/TiO₂ and Ni₁Fe₃/TiO₂.

Table 4.2. CO uptake values over Ni/TiO₂, Ni-Fe/TiO₂ and Fe/TiO₂ catalysts synthesized by hydrotalcite route.

	CO Adsorbed
Catalyst	(µmol/g)
Ni/TiO ₂	10.2
Ni ₃ Fe ₁ /TiO ₂	9.0
Ni ₁ Fe ₁ /TiO ₂	5.3
Ni ₁ Fe ₃ /TiO ₂	4.9
Fe/TiO ₂	1.1

4.2.3 Methane – Temperature programmed surface reaction/Differential thermogravimetry (CH₄-TPSR/DTG)

CH₄-TPSR/DTG could provide understanding on CH₄ activity towards catalyst surface and type of carbon species formed during CH₄ decomposition. Fig. 4.2a shows CH₄-TPSR profile over Ni/TiO₂ and Ni-Fe/TiO₂ and Fe/TiO₂ catalysts. For Ni/TiO₂, it is observed that CH₄ activates at

temperature as low as 350°C and its transient activity increases up to 495°C. However, monometallic Fe/TiO₂ did not show transient activity towards CH₄. The results indicated Fe/TiO₂ is inactive towards CH_4 and agrees with literature [26,27]. While bimetallic Ni-Fe/TiO₂ catalysts showed similar CH₄-TPSR profiles in comparison to Ni/TiO₂. CH₄ dissociation initiated around 350°C and peaked around 495°C. It is interesting to note that CH₄ dissociation over Ni-Fe/TiO₂ catalysts is much lower than monometallic Ni/TiO₂ albeit similar activation and peak temperatures. Accordingly, comparison of TCD signal intensity in CH₄-TPSR profiles suggest that introduction of Fe inhibits CH₄ dissociation activity. This behavior could be beneficial during DRM to avoid coke deposition resulting from CH₄ cracking. Similar CH₄-TPSR profiles as discussed in this study have been shown over Ni/Mg(Al)O, Co/Mg(Al)O and Ni-Cu/Mg(Al)O catalysts [46,47]. It was demonstrated that CH₄ decomposition could be initiated around 350°C over Ni/Mg(Al)O and increased up to 534°C [47]. Whereas, CH₄ decomposition over Co/Mg(Al)O initiated around 400°C and peaked up to 572°C [47]. However, for Ni-Cu/Mg(Al)O catalyst, the CH₄ decomposition initiated around 412°C and increased up to 624°C [46]. The differences in our results compared to the reported data could emanate from differences in metal-support interaction, reducibility and/or metal dispersion.

DTG was performed in order to gain insights on type and reactivity of carbon formed during CH₄-TPSR tests. As shown in Fig. 4.2b, Ni/TiO₂ and Ni-Fe/TiO₂ catalysts showed DTG peak at 530°C suggesting formation of amorphous type of carbon during CH₄-TPSR [48]. Based upon similar DTG peak temperatures of Ni/TiO₂ and Ni-Fe/TiO₂ catalysts, it is inferred that introduction of Fe does not influence the type of carbon formed during CH₄ dissociation. Considering the DTG intensity of used catalysts after CH₄-TPSR tests, the amount of carbon species formed are greatly decreased in presence of Fe. The behavior is ascribed to inactivity of Fe towards CH₄ in Ni-Fe

catalysts which lowers CH₄ dissociation. On the other hand, addition of Cu in Ni/MgAlO catalyst did not affect the amount of carbon formed during CH₄-TPSR [46].

Fig. 4.2a. CH₄-TPSR profiles of Ni/TiO₂, Ni-Fe/TiO₂ and Fe/TiO₂ catalysts synthesized by hydrotalcite route.

Fig. 4.2b. DTG profiles of Ni/TiO₂, Ni-Fe/TiO₂ and Fe/TiO₂ catalysts synthesized by hydrotalcite route after CH₄-TPSR tests.

4.2.4 Carbon dioxide – Temperature programmed surface reaction/Hydrogen – Temperature programmed reduction (CO₂-TPSR/H₂-TPR)

Activation and thereby dissociation CO_2 to CO^* and O^* is beneficial during DRM. The O^* species reacts with CH_x species derived from CH_4 decomposition to produce CO and H_2 . Moreover, CO_2 -TPSR/H₂-TPR could also provide understanding on the nature of active centers on catalyst surface to dissociate CO_2 to CO^* and O^* [49]. Thus, CO_2 -TPSR/H₂-TPR is performed over reduced catalysts to gain insights on CO_2 dissociation. CO_2 -TPSR/H₂-TPR over reduced catalysts could be described according to following equations.

$$\mathrm{CO}_2 \to \mathrm{CO}^* + \mathrm{O}^* \qquad (1)$$

$$O^* + H_2 \rightarrow H_2O \qquad (2)$$

Dissociation of CO₂ on active metal or interface between active-metal and support forms CO^{*} and surface adsorbed oxygen species O^* . Formed O^* species are then characterized by H₂-TPR. The H₂ consumed in the TPR is directly correlated to O^{*} species formed during CO₂ dissociation according to equation 1 and 2. Fig. 4.3 shows H₂-TPR profiles of reduced Ni/TiO₂, Ni-Fe/TiO₂ and Fe/TiO₂ catalysts after performing CO₂-TPSR tests. Ni/TiO₂ catalyst showed three distinct H₂ consumption peaks. Reduction of O^{*} formed during CO₂-TPSR begins nearly at 90°C and peaks up to 495°C, together with a small shoulder appearing at 355°C. All three peaks are attributed to active Ni⁰ centers in Ni/TiO₂ catalyst. For Fe/TiO₂ catalyst, there is no low temperature peak unlike Ni/TiO₂ catalyst. Interestingly, the H₂-TPR profile of Fe/TiO₂ after CO₂-TPSR showed a strong H₂ consumption peak above 700°C. This result indicated strong ability of Fe/TiO₂ to effectively dissociate CO₂ to CO^{*} and O^{*}. Accordingly, the O^{*} reduction peaks of Ni-Fe/TiO₂ catalysts after CO₂-TPSR shifted to higher temperature than Ni/TiO₂ catalyst. Ni₃Fe₁/TiO₂ showed a small peak at 115°C, a broad peak around 545°C and a shoulder peak at 435°C. For all the Ni-Fe/TiO₂ catalysts, peaks located below 600°C are assigned to Ni⁰ centers. Whereas, peak appearing above 600°C is related to Fe⁰ sites. Comparison between O^{*} reduction peak temperatures of Ni/TiO₂ and Ni-Fe/TiO₂ catalysts suggested that introduction of Fe enhanced the adsorption of O^{*} species formed from CO₂ dissociation. In other words, addition of Fe would promote gasification of coke formed from CH₄ decomposition during DRM. Similar CO₂-TPSR/H₂-TPR profile of Ni/Mg(Al)O and Ni-Cu/Mg(Al)O catalyst has been reported [46]. However, it was demonstrated that introduction of Cu in Ni/Mg(Al)O catalyst would shift O^{*} reduction peak to lower temperature

than monometallic Ni/Mg(Al)O. Compared to our results, shifting of O^* desorption to low temperature could be related to difference in addition of promoting metal or metal-support interactions. To gain further information on O^* formation, H₂ consumption during H₂-TPR after CO₂-TPSR was calculated. As shown in Table 4.3, the amount of H₂ consumed increased upon Fe addition. This result suggested that introduction of Fe would promote CO₂ dissociation to CO^{*} and O^{*} at least under current experimental conditions.

Fig. 4.3. H₂-TPR profiles of Ni/TiO₂, Ni-Fe/TiO₂ and Fe/TiO₂ catalysts synthesized by hydrotalcite route after CO₂-TPSR test.

Catalyst	H ₂ Consumption (mmol $g_{(catalyst)}^{-1}$)
Ni/TiO ₂	0.97
Ni ₃ Fe ₁ /TiO ₂	1.65
Ni ₁ Fe ₁ /TiO ₂	2.76
Ni ₁ Fe ₃ /TiO ₂	3.05
Fe/TiO ₂	-

Table 4.3. H₂ consumption during H₂-TPR after CO₂-TPSR tests over Ni/TiO₂, Ni-Fe/TiO₂ and Fe/TiO₂ catalysts synthesized by hydrotalcite route

4.2.5 XPS analysis of reduced catalysts

XPS analysis was performed to study the surface species in the reduced Ni/TiO₂ and Ni. Fe/TiO₂ catalysts. Peak deconvolution of Ni $2p_{3/2}$ XPS spectra is shown in Fig. 4.4a. For Ni/TiO₂ catalyst, the peak located at 852.7 eV is assigned to $2p_{3/2}$ orbital-split of Ni⁰ [28]. The peak observed at 855.6 eV is attributed to Ni²⁺ $2p_{3/2}$ present as NiO while its satellite peak appears at 861.4 eV [50]. Generally, Ni²⁺ peak is located around 854.4 eV in Ni-based catalysts. However, a shift of +1.2 eV in NiO indicated decreased electron density of Ni²⁺. Specifically, electron transfer from Ni²⁺ at metal-support interface would result due to interaction between NiO and TiO₂ [50,51]. The observation agrees with H₂-TPR analysis of Ni/TiO₂ which demonstrated metal-support interface solution to Ni⁰ in Ni/TiO₂. The peak is assigned to Ni⁰ in Ni/TiO₂. The peak is assigned to the presence of Ni-Fe alloy in Ni-Fe/TiO₂ catalysts. Alternatively, addition of Fe in Ni/TiO₂ significantly enhanced Ni–Fe interactions. Similar Ni-Fe interactions are also affirmed by H₂-TPR analysis presented in Fig.4.1. Besides Ni⁰, Ni²⁺ $2p_{3/2}$ peak in Ni₃Fe₁/TiO₂ is located at 856.1 eV which is +0.5 eV higher than Ni²⁺ in Ni/TiO₂. This shift to higher binding energy value indicate

that addition of Fe also enhanced metal-support interaction. However, moving from the profile of Ni_3Fe_1/TiO_2 to Ni_1Fe_1/TiO_2 , binding energy of $Ni^{2+} 2p_{3/2}$ is lowered. The results suggested weaker metal-support interaction upon further addition of Fe. Thus, optimum amount of Fe is essential to enhance bimetallic and metal-support interactions. Fig.4.4b shows peak deconvolution of Fe 2p XPS spectra of reduced Ni-Fe/TiO₂ catalysts. For all the Ni-Fe catalysts, three distinct Fe $2p_{3/2}$ peaks are observed due to multiple oxidation state of Fe. Peak located at 707.6 eV is assigned to Fe⁰. Usually, Fe⁰ peak is located at 706.8 eV in Fe-based catalysts [49]. However, Fe⁰ in the present study exhibits a chemical shift of +0.8 eV. The phenomenon affirms the formation of Ni-Fe alloy in Ni-Fe/TiO₂. Fe²⁺ and Fe³⁺ appear at 709.6 eV and 711.2 eV respectively [52,53]. It should be noted that Fe²⁺ and Fe³⁺ peaks appear at same binding energies in all the reduced Ni-Fe/TiO₂ catalysts. The behavior affirms non-interacting nature of iron oxide with TiO₂ support [44] and agrees with H₂-TPR analysis. Deconvolution of Ti $2p_{3/2}$ spectra showed Ti³⁺ peak at 457.4 eV in the reduced catalysts. Existence of Ti³⁺ species suggested formation of oxygen vacancies in TiO₂ supported catalysts. Previous reports have demonstrated formation of TiO_x species by hydrogen spill-over process during reduction of Ni/TiO₂ catalysts [39]. The molar concentration of surface species in the reduced catalysts is presented in Table 4.4. It is evident that surface Ni/Fe ratio in the reduced catalyst are 1.0, 0.32 and 0.21 which is significantly lower than their bulk counterparts. While O/Ti ratio of all the reduced catalysts is lower than 2, indicating formation of oxygen vacancies during reduction.

Fig. 4.4 XPS spectra of reduced catalysts synthesized by hydrotalcite route. a) Ni 2p_{3/2} b) Fe 2p

Table 4.4. Atomic concentration (%) of surface species in reduced catalysts synthesized by hydrotalcite route.

Catalysts	Ni ⁰	Ni ²⁺	Fe ⁰	Fe ²⁺	Fe ³⁺	Ni/Fe	O/Ti
Ni/TiO ₂	0.61	2.27	-	-	-	-	1.00
Ni ₃ Fe ₁ /TiO ₂	0.57	3.29	0.48	1.25	2.05	1.00	0.74
Ni ₁ Fe ₁ /TiO ₂	0.32	2.21	0.21	1.76	3.55	0.46	1.07
Ni ₁ Fe ₃ /TiO ₂	0.29	1.07	0.19	1.84	4.49	0.21	1.12

4.2.6 Catalytic activity in DRM and CH4-decomposition

Dry reforming of methane was investigated at 550°C for 6 h. Fig. 4.5 shows CH₄/CO₂ consumption and H₂/CO ratio as a function of reaction time. For Ni/TiO₂ catalysts, CH₄ consumption after 1 h TOS was 80 μ mol/m²_{Ni+Fe} h and increased to 89 μ mol/m²_{Ni+Fe} h after 6 h TOS. However, CO₂ consumption dropped from 78 μ mol/m²_{Ni+Fe} h to 67 μ mol/m²_{Ni+Fe} h within 6 h of reaction time. The H₂/CO ratio increased from 0.89 to 0.94 during the course of reaction. Carbon balance over Ni/TiO₂ dropped from 86% to 83% within TOS. The increase of CH₄ consumption, H₂/CO ratio and decrease in carbon balance with TOS suggested occurrence of CH₄ decomposition as side-reaction. Similar behavior in catalytic performance of Ni-based catalysts supported on Mg(Al)O derived from hydrotalcite-type precursors has been demonstrated [46,54,55]. Decrease in CO₂ consumption could be related to CO disproportionation reaction. Side reactions including CH₄ decomposition and CO disproportionation cause coke deposition. Coking ultimately covers Ni⁰ sites in the long run DRM, thereby deactivating the catalyst. Introduction of Fe in Ni/TiO₂ catalysts showed comparatively less catalytic activity than monometallic Ni/TiO₂. The CH₄ consumption over Ni₃Fe₁/TiO₂ dropped from 82 μ mol/m²_{Ni+Fe} h to 72 μ mol/m²_{Ni+Fe} h from 1 h to 6 h TOS respectively. While CO₂ consumption decreased from 95 μ mol/m²_{Ni+Fe} h to 83 μ mol/m²_{Ni+Fe} h with TOS. Nonetheless, H₂/CO ratio was ~ 0.8 and carbon balance was ~ 92%, both of which remained almost similar during the course of reaction. Decrease in H_2/CO ratio in Ni₃Fe₁/TiO₂ compared to Ni/TiO₂ suggests introduction of Fe inhibited CH₄ dissociation. Secondly, accelerated reverse water-gas shift reaction in presence of iron oxide may lead to decrease in H₂/CO ratio [56]. Iron oxide has been demonstrated to be catalytically active for RWGS reaction [56]. Carbon balance over Ni₃Fe₁/TiO₂ catalyst remains ~ 92%, which is higher than Ni/TiO₂ catalyst. Our results suggest that introduction of Fe aided carbon removal along-with

inhibiting CH₄ dissociation during DRM. Further increase in Fe loading decreased the catalytic activity drastically. CH₄ consumption dropped from 16 μ mol/m²_{Ni+Fe} h to 10 μ mol/m²_{Ni+Fe} h while CO₂ consumption decreased from 21 μ mol/m²_{Ni+Fe} h to 9 μ mol/m²_{Ni+Fe} h with TOS over Ni₁Fe₁/TiO₂ catalyst. The drop in CH₄/CO₂ consumption with TOS is attributed to decrease in the surface concentration of Ni⁰ atoms. H₂/CO ratio decreased from 0.4 to 0.26 from 1 h to 6 h TOS. However, carbon balance increased from 97% to 98%. Increase in carbon balance is related to oxidation of coke during reaction. In case of Ni₁Fe₃/TiO₂ catalyst, the CH₄/CO₂ consumption remained nearly same. Similar behavior in H₂/CO ratio and carbon balance as Ni₁Fe₁/TiO₂ was observed. Overall, ratio between Ni and Fe in the bimetallic catalysts would essentially control the extent of side reactions. An optimum ratio would exist that might favor DRM predominantly.

TPSR experiments indicated Ni is active towards CH₄ while Fe promotes CO₂ reduction. Ideally, this should enhance CO₂ conversion with increase in Fe loading. However, CO₂ conversion decreased in Ni₁Fe₁/TiO₂ and Ni₁Fe₃/TiO₂ catalysts. The explanation is as follows: Upon CO₂ exposure, Fe present in Ni-Fe catalysts is readily oxidized to FeO_x according to following equation 3. For further reaction of CO₂ with Fe, FeO_x must undergo reduction according to equation 4 or 5. However, for Ni₁Fe₁/TiO₂ and Ni₁Fe₃/TiO₂ catalysts, the amount of coke and H₂ produced from CH₄ decomposition is much lower than Ni₃Fe₁/TiO₂. Therefore, due to abundance of lattice oxygen in Fe, CO₂ could not further react with FeO_x. In Ni₃Fe₁/TiO₂, upon CO₂ exposure, Fe is readly oxidized to FeO_x. Then, H₂ and coke produced from CH₄ decomposition will react with FeO_x according to equation 4 and 5 respectively. Reaction of FeO_x by coke or H₂ will reduce FeO_x to Fe. Thus, Fe sites are again available for CO₂ activation.

$Fe + xCO_2 \rightarrow FeO_x + xCO$	(3)
$FeO_x + H_2 \rightarrow Fe + H_2O$	(4)
$FeO_x + C \rightarrow FeO_{x-1} + CO$	(5)

Steady-state CH₄ decomposition reaction was evaluated at 550°C. The activity results are shown in Fig. 4.6. Ni/TiO₂ showed maximum CH₄ conversion of 47% while Ni-Fe/TiO₂ demonstrated lower CH₄ conversion. The behavior is in alignment with CH₄-TPSR results which implied inactivity of Fe towards CH₄. It is interesting to note that besides H₂ formation, CO formation also takes place during steady-state CH₄ decomposition. CO generation is attributed to oxidation of carbon formed during CH₄ dissociation by the lattice oxygen of FeO_x. Albeit, maximum CO formation was evidenced by Ni₁Fe₃/TiO₂ which showed minimal CH₄ conversion. Nonetheless, CO formation over monometallic Ni/TiO₂ suggested participation of lattice oxygen from TiO₂ support in coke oxidation. Thus, lattice oxygen of TiO₂ support and FeO_x would promote coke gasification during DRM.

Fig. 4.5. Catalytic activity in DRM as function of reaction time over Ni/TiO₂ and Ni-Fe/TiO₂ catalysts synthesized by hydrotalcite route, a) CH₄ conversion, b) CO₂ conversion c) H₂/CO ratio.

Fig. 4.6. Catalytic activity in steady-state CH₄-decompsoition over Ni/TiO₂ and Ni-Fe/TiO₂ catalysts, a) CH₄ conversion, and b) CO formation rate (mmol CO g_{catalyst} min⁻¹)

4.2.7 Characterization of spent catalysts

4.2.7.1 Thermogravimetric analysis-Differential thermogravimetry of spent catalysts after DRM and steady-state CH4-decompsoition (TGA-DTG)

TGA-DTG was employed to study the amount and type of carbon deposited during dry reforming reaction. It has been shown in the literature that CH₄ decomposition is major source of carbon deposition while CO disproportionation contributes to only a minor extent [57]. Generally, dissociation of CH₄ leads to formation of two type of coke such as C_{α} (amorphous) and C_{β} (graphite) [48]. The oxidation temperature of deposited coke might be directly associated with its reactivity [24]. Therefore, C_{α} – which oxidizes below 600°C [48] has been suggested to be more

reactive than C_{β} . C_{α} could be oxidized by oxygen derived from CO₂ dissociation or lattice oxygen from reducible supports such as TiO₂ [57]. However, if excess amount of C_{α} is present on catalyst surface, then it nucleates to C_{β} type of coke. C_{β} might eventually encapsulate the active nickel sites by its buildup thereby leading to catalyst deactivation [58]. Thus, a proper balance between coke formation and its gasification is essential for coke-resistance property of catalysts. Table 4.5 highlights weight loss during TGA test over Ni/TiO₂ and Ni-Fe/TiO₂ catalysts after DRM tests. Monometallic Ni/TiO₂ shows weight loss about 31.3 wt% which is equivalent to 51.9 mg_{coke} h⁻¹ g_{catalyst}⁻¹. Analysis of 1st derivative of TGA curve is shown in Fig. 4.7. Asymmetric DTG curve of Ni/TiO2 indicated different carbon species formation. Firstly, the peak centered at 550°C is attributed to amorphous type of coke [48] and its rate of formation is evaluated to be 24.9 mg_{coke} h^{-1} g_{catalyst}⁻¹. Secondly, the peak centered around 615°C is assigned to graphitic type of carbon. The rate of formation of graphitic type of coke is estimated to be 27 mg_{coke} h⁻¹ g_{catalyst}⁻¹. Interestingly, introduction of Fe significantly inhibited coke deposition. For Ni₃Fe₁/TiO₂, the amount of coke formation was 0.48 wt% equivalent to 2.5 mg_{coke} h⁻¹ g_{catalyst}⁻¹ after 6 h DRM. It should be noted that total amount of coke deposition is suppressed by approximately 21 times with addition of 2.5 wt% Fe. The behavior suggested effectiveness of Fe in coke inhibition during DRM. Analyzing DTG curve of Ni₃Fe₁/TiO₂ shows presence of both – amorphous and graphitic carbon which indicates that presence of Fe does not alter the type of coke deposit over Ni-Fe/TiO₂. Further increment in the amount of Fe did not show coke formation. From previous CH4-TPSR results, it was suggested that introduction of Fe restricted CH₄ decomposition activity. While, CO₂-TPSR/H₂-TPR experiments showed that introduction of Fe promoted formation of reactive O^{*} species derived from CO₂. It is envisaged that coke deposited by CH₄ decomposition is oxidized by reactive O* species in the vicinity of active Ni⁰ sites. Therefore, coke inhibition property of NiFe/TiO₂ catalysts is ascribed to dual functionality of Fe: a) Inhibit CH₄ decomposition b) promote formation of active O^* species derived from CO₂. Thus, tuning the amount of Fe is essential for coke inhibition property over Ni-Fe/TiO₂ catalysts.

TGA-DTG test was employed to estimate the amount and type of deposited coke on Ni/TiO₂ and Ni-Fe/TiO₂ after CH₄ decomposition test. As shown in table 4.6, the amount of coke decreased upon introduction of Fe which agrees with CH₄-TPSR results, highlighting ineffectiveness of Fe towards CH₄ dissociation. DTG curve of spent catalysts after CH₄ decomposition test is shown in Fig. 4.8. The oxidation temperature of carbon is gradually lowered by 30°C suggesting easier removal of carbon upon addition of Fe. The growth of carbon filaments over Ni-based catalysts has been recognized as a three step deposition–diffusion–precipitation process [47,58]. Upon dissociation of hydrocarbon on Ni surface, hydrogen is released and carbon dissolves in Ni forming a uniform layer. With increase in rate of hydrocarbon decomposition, carbon formed diffuses through Ni particle to the support side and precipitates at metal-support interface. When rate of hydrocarbon dissociation exceeds rate of diffusion and precipitation, formation of carbon filaments begins and gradually occupies the active Ni sites [58]. Herein, it is envisaged that rate of CH₄ dissociation is lowered upon Fe addition. While, presence of Fe also prevented diffusion and precipitation of coke thereby lowering its oxidation temperature.

Fig. 4.7. DTG profiles of used catalysts synthesized by hydrotalcite route after DRM tests, a) Ni/TiO₂ and b) Ni-Fe/TiO₂.

Table 4.5. Analysis of TGA data of used Ni/TiO₂ and Ni-Fe/TiO₂ catalysts after DRM.

	Amount of coke		
Catalyst	deposited (wt%)		
Ni/TiO ₂	31.3		
Ni ₃ Fe ₁ /TiO ₂	0.48		

Fig. 4.8. DTG profiles of used catalysts synthesized by hydrotalcite route after steady-state CH₄decomposition test.

Table 4.6. Analysis of TGA data of used Ni/TiO₂ and Ni-Fe/TiO₂ catalysts synthesized by hydrotalcite route after steady-state CH₄ decomposition tests.

	Amount of coke		
Catalyst	deposited (wt%)		
Ni/TiO ₂	40		
Ni ₃ Fe ₁ /TiO ₂	27.2		
Ni ₁ Fe ₁ /TiO ₂	13.6		
Ni ₁ Fe ₃ /TiO ₂	5.3		

4.2.7.2 X-ray Photoelectron Spectroscopy (XPS)

XPS analysis of spent catalysts was performed to estimate oxidation state and concentration of surface species. Ni $2p_{3/2}$ spectra of spent catalysts is shown in Fig. 4.9a. For Ni/TiO₂, Ni⁰ peak is located at 852.7 eV. While Ni²⁺ peak is located at 856.5 eV and exhibits a chemical shift of +0.7 eV compared to its reduced counterpart. This binding energy shift is attributed to enhanced metalsupport interaction during reforming reaction. Due to high oxygen mobility in reducible supports such as TiO₂, the oxygen species diffuse from the bulk towards metal-support interface to oxidize coke [59]. Next, Ni⁰ peak in all Ni-Fe/TiO₂ spent catalyst is located at 852.7 eV. It is interesting to note that binding energy of Ni⁰ in all the spent Ni-Fe/TiO₂ catalysts is shifted to lower value compared to their reduced counterparts. The phenomenon is related to dealloying of Ni-Fe alloy during reforming reaction. In other words, interaction between Ni and Fe were essentially lowered during the course of reaction. This dealloying of Ni-Fe alloy during DRM is consistent with previous reports [24,26]. Secondly, Ni²⁺ $2p_{3/2}$ of spent Ni-Fe/TiO₂ appeared at 855.5 eV which is lower than their reduced ones. The phenomenon is attributed to lowered metal-support interaction with the support during DRM. Fe 2p spectra of spent catalysts is shown in Fig. 4.9b. For all the spent Ni-Fe/TiO₂ catalysts, Fe⁰ is located at 706.8 eV which is -0.8 eV lower than reduced catalysts. The results suggested lowered Ni-Fe interaction and thus, dealloying of Ni-Fe alloy during DRM. Fe²⁺ and Fe³⁺ appeared at 709.6 eV and 711.2 eV respectively. Further, O 1s spectra of spent catalysts were analyzed to gain insights on surface adsorbed oxygen species (SAOS). It was observed that O 1s spectra of Ni/TiO₂ and Ni-Fe/TiO₂ catalysts showed 3 distinct peaks upon deconvolution in Fig. 4.9c. Peak occurring at 529.7 eV was assigned to O²⁻ lattice oxygen in metal oxide [50]. It is noteworthy that lattice oxygen peak in Ni/TiO₂ was shifted by +1 eV to 530.7 eV after reforming reaction. The shift is attributed to involvement of lattice oxygen during DRM.

Specifically, oxygen from the TiO₂ support migrated from bulk to metal-support interface to oxidize carbon. Migration of lattice oxygen enhanced metal-support interaction. Peaks located at 531.5 eV and 533.1 eV are assigned to C=O (carbonates) and O–H (hydroxyl) type surface adsorbed oxygen species (SAOS) respectively [50,51]. These SAOS participated in coke removal during DRM and are further discussed in *in-situ* DRIFTS analysis. Next, C 1s XPS spectra of spent catalysts is shown in Fig. 4.9d. The major peak located at 284.8 eV originates due to the adventitious carbon or C–C graphitic type of carbon species. This peak is usually employed for calibration of XPS spectra. Peak around 288.2 eV in Ni-Fe/TiO₂ catalyst is attributed to CO₃²⁻ interacting with the support [51]. The C 1s spectra of used Ni/TiO₂ catalyst shows an additional peak at ~ 290.9 eV binding energy. Such feature has been attributed to graphite or graphitic type carbon species due to $\pi \rightarrow \pi^*$ transitions [60]. Contrarily, C 1s peak due to $\pi \rightarrow \pi^*$ transition was not observed in Ni-Fe/TiO₂ catalysts.

The molar composition of surface species after DRM tests is shown in Table 4.7. For Ni/TiO₂ catalyst, the surface concentration of Ni⁰ increased from 0.7% to 0.78% during reforming. Increased Ni⁰ concentration is related to evolution of bulk Ni species towards the surface during reforming which ultimately enhanced CH₄ conversion. However, O/Ti ratio decreased from 1.0 to 0.94. The decrease in O/Ti ratio is attributed to the consumption of lattice oxygen from TiO₂ support to oxidize carbon formed during DRM. For Ni₃Fe₁/TiO₂ catalyst, the surface Ni⁰ concentration during DRM and affirms with previous literature [24,26]. However, Fe⁰ concentration decreased to 0.42% suggesting its oxidation during reaction owing to its high oxophilicity [24,26]. Accordingly, molar composition of Fe²⁺ and Fe³⁺ increased compared to the reduced Ni₃Fe₁/TiO₂ catalyst. Similarly, O/Ti ratio increased suggesting oxygen rich surface

during DRM in Ni_3Fe_1/TiO_2 catalyst. While, Ni_1Fe_1/TiO_2 and Ni_1Fe_3/TiO_2 also showed Fe^0 oxidation to Fe^{2+} and Fe^{3+} during DRM.

Fig. 4.9. XPS spectra of spent catalysts synthesized by hydrotalcite route. a) Ni 2p_{3/2} b) Fe 2p c) O 1s d) C 1s.

Table 4.7. Atomic concentration (%) of surface species in spent catalysts synthesized by hydrotalcite route.

Catalysts	Ni ⁰	Ni ²⁺	Fe ⁰	Fe ²⁺	Fe ³⁺	Ni/Fe	O/Ti
Ni/TiO ₂	0.78	6.7	-	-	-	-	0.94
Ni ₃ Fe ₁ /TiO ₂	0.55	3.14	0.42	1.83	3.10	0.69	0.85
Ni ₁ Fe ₁ /TiO ₂	0.29	2.04	0.14	2.53	4.12	0.34	1.14
Ni ₁ Fe ₃ /TiO ₂	0.24	1.57	0.12	3.18	3.65	0.25	1.21

4.2.7.3 Raman spectroscopy of used catalysts after DRM

Raman Spectroscopy of used catalysts was performed to estimate graphitic degree of coke on used catalysts. Typically, Raman spectra of used catalysts after dry reforming tests show D and G band of carbon around 1345 cm⁻¹ and 1570 cm⁻¹ respectively. The D-band is characteristic of amorphous carbon or hydrogen – containing carbon species (CH_x) whereas G-band refers to ordered sp² C = C bond in graphite [24,61]. The ratio between D-band intensity and G-band intensity (I_D/I_G) represents degree of crystallinity of deposited coke on catalyst surface. Moreover, degree of crystallinity of coke is associated with its oxidation temperature [24]. Relatively high degree of crystallinity between monometallic Ni and bimetallic Ni-Fe catalysts would suggest high temperature is required to oxidize carbon during dry reforming [24]. Fig. 4.10 shows Raman spectra of used catalysts after DRM test. Ni/TiO₂ and Ni₃Fe₁/TiO₂ catalyst demonstrated presence of amorphous and graphitic carbon. The calculated I_D/I_G ratio was 1.00 over both Ni/TiO₂ and Ni₃Fe₁/TiO₂ catalysts. However, the intensity of D and G bands was drastically decreased in Ni₃Fe₁/TiO₂ compared to Ni/TiO₂. While Ni₁Fe₁/TiO₂ and Ni₁Fe₃/TiO₂ did not show Raman bands corresponding to deposited coke. The result indicated introduction of Fe is beneficial to inhibit coke deposition. Nevertheless, similar I_D/I_G ratio over Ni/TiO₂ and Ni₃Fe₁/TiO₂ suggested Fe does not influence degree of crystallinity of coke during DRM. In other words, introduction of Fe does not alter the type of deposited carbon over TiO₂ supported Ni-Fe catalysts. For Ni-Fe/MgAl₂O₄ catalysts, Fe was beneficial to decrease the crystallinity of coke [24]. While Fe was shown to change the type of coke from refractory carbon to soft-amorphous type carbon in DRM [34].

Fig. 4.10. Raman spectra of used catalysts synthesized by hydrotalcite route after DRM tests.

4.3. In-situ DRIFTS analysis over Ni/TiO2 and Ni3Fe1/TiO2 catalysts

In order to understand reaction mechanism and its intermediates, *in-situ* DRIFTS analysis was performed over *ex-situ* reduced Ni/TiO₂ and Ni₃Fe₁/TiO₂ catalysts. The catalysts were first

pretreated with helium at 550°C for 1 h. A pulse of CH₄/He was then introduced into the reaction cell and transient spectra was recorded. Fig. 4.11a shows IR spectra during the first pulse of CH₄/He over Ni/TiO₂ catalyst. Peaks appearing at 1304 cm⁻¹ and 3015 cm⁻¹ are attributed to gas phase CH₄ [59]. The transient spectra recorded after t =1 min and t = 2 min of 1st CH₄/He pulse show dominant peaks at 2363 cm⁻¹ and 1540 cm⁻¹ corresponding to gas phase CO₂ and carbonates (COO^{*}) respectively [62]. Peak located at 3735 cm⁻¹ corresponds to hydroxyl species (OH^{*}). Since CH₄ is only present in the feed during pulse, evolution of gas phase CO₂ and carbonate species suggested that lattice oxygen of TiO₂ oxidized carbon produced from CH₄ decomposition. Similar observations have been made over Ni/TiO₂ and Ni/CeO₂ catalysts [39,59]. However, after t = 2 min of CH₄/He pulse, carbonate species diminished slowly and a peak at 1352 cm⁻¹ gradually develops which is attributed to formate (HCOO^{*}) species [59]. The results indicated that carbonate species react with H^{*} from CH₄ decomposition to produce formate species.

CH₄/He pulse is followed by CO₂/He pulse and transient spectra is recorded as shown in Fig. 4.11b. Gas phase CO₂ peaks appear as doublet at 2340 cm⁻¹ and 2363 cm⁻¹. While weak carbonate peaks are observed at 1540 cm⁻¹ during CO₂/He pulse. Absence of gas phase CO peaks during CO₂/He pulse suggest that CO₂ does not dissociate on Ni⁰ sites unlike CH₄ over Ni/TiO₂ catalyst. During 2nd pulse of CH₄/He shown in Fig. 4.11c, a major peak appeared at 1717 cm⁻¹ which is assigned to formyl species (CHO^{*}) [63]. Gradually from t = 1 min to t = 5 min, the population of carbonate species decreased and that of formyl species increased. It is anticipated that formyl species are derived from reaction between carbonates and H^{*} species and decomposition of formate species. Based on the above discussion, following reaction mechanistic steps could be derived for Ni/TiO₂ catalyst.

$$\begin{array}{l} CH_{4g} + * \stackrel{Ni^{0}}{\longleftrightarrow} CH^{*}/C^{*} + 3H^{*} \\ CH^{*} + O_{x} \leftrightarrow COO^{*} + OH^{*} \\ C^{*} + O_{x} \leftrightarrow CO_{2} \\ COO^{*} + H^{*} \leftrightarrow HCOO^{*} \\ HCOO^{*} \leftrightarrow CHO^{*} + O^{*} \\ COO^{*} + H^{*} \leftrightarrow CHO^{*} + O^{*} \\ O^{*} + H^{*} \leftrightarrow OH^{*} \\ CHO^{*} \rightarrow CO^{*} + H^{*} \\ OH^{*} + H^{*} \leftrightarrow H_{2}O_{g} \\ CO^{*} \leftrightarrow CO_{g} \\ H^{*} + H^{*} \leftrightarrow H_{2}g \end{array}$$

 CH_4 dissociates on Ni⁰ to form CH^*/C^* and H^{*} species. Subsequently, CH^*/C^* is oxidized by lattice oxygen of TiO₂ support to produce COO^{*}, OH^{*} and CO₂. H^{*} species derived from CH_4 dissociation react with COO^{*} to produce HCOO^{*} or CHO^{*} species. Ultimately, decomposition of CHO^{*} will produce CO^{*} and H^{*}.

Fig. 4.11. *In-situ* DRIFTS spectra over Ni/TiO₂ catalyst synthesized by hydrotalcite route under alternate pulse at 550°C. (a) 1st CH₄/He pulse, (b) CO₂/He pulse, (c) subsequent CH₄/He pulse.

The *in-situ* DRIFTS spectra over Ni₃Fe₁/TiO₂ catalyst is shown in Fig. 4.12. During 1st pulse of CH₄/He, peaks associated with gas phase CO₂, formyl species and formate species are observed at 2363 cm⁻¹, 1717 cm⁻¹ and 1352 cm⁻¹ respectively after t = 1 min [59,63]. The behavior suggested that lattice oxygen from TiO₂ oxidized carbon formed by CH₄ dissociation. However, after t =2 min of CH₄/He pulse, formate species gradually decrease. On the other hand, intensity of formyl species, carbonate species and hydroxyl species (3735 cm⁻¹) gets stronger with time. Unlike Ni/TiO₂, Ni₃Fe₁/TiO₂ shows formation of formyl and carbonate species during 1st CH₄/He pulse. The results indicated that lattice oxygen from Fe also play important role along with TiO₂ support to oxidize carbonaceous species formed by CH₄ dissociation [26].

CH₄/He pulse is followed by CO₂/He pulse and IR spectra is recorded with time. It is observed that carbonate peaks in Ni₃Fe₁/TiO₂ during CO₂/He pulse are stronger than Ni/TiO₂ catalyst. Interestingly, weak peaks corresponding to bridged CO and multicentered CO appeared at 1910 cm⁻¹ and 1800 cm⁻¹ respectively [59,64]. While any such CO peaks are absent in Ni/TiO₂ catalyst. Hence it is inferred that addition of Fe facilitated CO₂ reduction [26]. Simultaneously, formation of hydroxyl species is also observed. Hydroxyl species are suggested as a result of reaction between carbonate and H^{*} species present on catalyst surface. During 2nd CH₄/He pulse, intensity of formates and carbonates gradually decrease to produce formyl and hydroxyl species. In contrast to Ni/TiO₂, 2nd pulse of CH₄/He over Ni₃Fe₁/TiO₂ showed peaks corresponding to bridged and multicentered CO at 1910 cm⁻¹ and 1800 cm⁻¹ respectively. Formation of adsorbed CO during 2nd CH₄/He pulse over Ni₃Fe₁/TiO₂ is attributed to oxidation of CH^{*}/C^{*} by carbonate species. Following reaction mechanistic steps could be derived for Ni₃Fe₁/TiO₂ catalyst.

$$CH_{4_g} + * \stackrel{Ni^0}{\longleftrightarrow} CH^* / C^* + 3H^*$$

$$CH^{*} + O_{x} \leftrightarrow CO_{2} + OH^{*}$$

$$CH^{*} \stackrel{FeO_{x}}{\longleftrightarrow} CHO^{*}$$

$$C^{*} \stackrel{FeO_{x}}{\longleftrightarrow} COO^{*}$$

$$COO^{*} + H^{*} \leftrightarrow HCOO^{*}$$

$$CO_{2g} \stackrel{Fe^{0}}{\longleftrightarrow} COO^{*}$$

$$COO^{*} + C^{*}/CH^{*} \leftrightarrow CHO^{*} + CO^{*}$$

$$COO^{*} + H^{*} \leftrightarrow CO^{*} + OH^{*}$$

$$HCOO^{*} \leftrightarrow CHO^{*} + O^{*}$$

$$CHO^{*} \rightarrow CO^{*} + H^{*}$$

$$OH^{*} + H^{*} \leftrightarrow H_{2}O_{g}$$

$$CO^{*} \leftrightarrow CO_{g}$$

$$H^{*} + H^{*} \leftrightarrow H_{2g}$$

aa . au*

au* . .

CH₄ is readily dissociated over Ni⁰ to produce CH^{*} and H^{*}. Carbonaceous species including CH^{*} and C^{*} are oxidized by lattice oxygen of FeO_x and TiO₂ support to produce CHO^{*}/COO^{*} and CO₂ respectively. H^{*} species react with COO^{*} to produce HCOO^{*} which decomposes to CHO^{*} and O^{*}. Addition of Fe will facilitate COO^{*} formation during CO₂ pulse. COO^{*} reacts with CH^{*}/C^{*} and H^{*} during 2nd CH₄/He pulse to produce CO^{*}, CHO^{*} and OH^{*} species. Thus, introduction of Fe alters the reaction mechanism in which carbonate species play important role to oxidize coke precursors to CO. Therefore, Fe is beneficial for coke removal in which lattice oxygen of both – FeO_x and TiO₂ support play important role in Ni-Fe/TiO₂ catalysts.

Fig. 4.12. *In-situ* DRIFTS spectra over Ni_3Fe_1/TiO_2 catalyst synthesized by hydrotalcite route under alternate pulse at 550°C. (a) 1st CH₄/He pulse, (b) CO₂/He pulse, (c) subsequent CH₄/He pulse.

4.4 References

- [1] L. A. Arkatova, N. G. Kasatsky, Y. M. Maximov, O. V. Pakhnutov, A. N. Shmakov, Catal. Today 299 (2018) 303-316.
- [2] S. Sengupta, K. Ray, G. Deo, Int. J. Hydrogen Energy 39 (2014) 11462-11472.
- [3] J. Kim, D. J. Suh, T. Park, K. Kim, Appl. Catal. A 197 (2000) 191-200.
- [4] D. Pakhare, C. Shaw, D. Haynes, D. Shekhawat, J. Spivey, J. CO₂ Util. 1 (2013) 37–42.
- [5] C. Tanios, S. Bsaibes, C. Gennequin, M. Labaki, F. Cazier, S. Billet, H. L. Tidahy, B. Nsouli,A. Aboukais, E. Abi-Aad, Int. J. Hydrogen Energy 42 (2017) 12818-12828.
- [6] S. Damyanova, B. Pawelec, K. Arishtirova, M. V. M. Huerta, J. L. G. Fierro, Appl. Catal. B 89 (2009) 149-159.
- [7] Z. Liu, F. Zhang, N. Rui, X. Li, L. Lin, L. E. Betancourt, D. Su, W. Xu, J. Cen, K. Attenkofer,
 H. Idriss, J. A. Rodriguez, S. D. Senanayake, ACS Catal. 9 (2019) 3349-3359.
- [8] I. V. Yentekakis, G. Goula, M. Hatzisymeon, I. B. Argyropoulou, G. Botzolaki, K. Kousi, D.I. Kondarides, M. J. Taylor, C. M. A. Parlett, A. Osatiashtiani, G. Kyriakou, J. P. Holgado, R. M.Lambert, Appl. Catal. B 243 (2019) 490-501.
- [9] L. Yue, J. Li, C. Chen, X. Fu, Y. Gong, X. Xia, J. Hou, C. Xiao, X. Chen, L. Zhao, G. Ran, H. Wang, Fuel 218 (2018) 335-341.
- [10] S. C. P. Maina, A. D. Ballarini, J. I. Vilella, S. R. Miguel, Catal. Today 344 (2020) 129-142.
- [11] M. C. J. Bradford, M. A. Vannice, Catal. Rev. 41 (1999) 1-42.
- [12] S. Das, M. Sengupta, J. Patel, A. Bordoloi, Appl. Catal. A 545 (2017) 113-126.

[13] V. G. de la Cruz-Flores, A. Martinez-Hernandez, M. A. Gracia-Pinilla, Appl. Catal. A 594(2020) 117455.

- [14] P. Littlewood, E. Weitz, T. J. Marks, P. C. Stair, Ind. Eng. Chem. Res. 58 (2019) 2481-2491.
- [15] C. Wang, N. Sun, N. Zhao, W. Wei, Y. Sun, C. Sun, H. Liu, C. E. Snape, Fuel 143 (2015)527-535.
- [16] Z. Wang, X. M. Cao, J. Zhu, P. Hu, J. Catal. 311 (2014) 469-480.

[17] H. Ay, D. Uner, Appl. Catal. B 179 (2015) 128-138.

- [18] K. Jabbour, A. Saad, L. Inaty, A. Davidson, P. Massiani, N. E. Hassan, Int. J. Hydrogen Energy 44 (2019) 14889-14907.
- [19] Z. Wu, B. Yang, S. Miao, W. Liu, J. Xie, S. Lee, M. J. Pellin, D. Xiao, D. Su, D. Ma, ACS Catal. 9 (2019) 2693-2700.
- [20] T. V. Sagar, D. Padmakar, N. Lingaiah, P. S. S. Prasad, Catal. Lett. 149 (2019) 2597-2606.
- [21] Z. Bian, S. Das, M. H. Wai, P. Hongmanorom, S. Kawi, ChemPhysChem 18 (2017) 3117– 3134.
- [22] Q. Zhang, T. Tang, J. Wang, M. Sun, H. Wang, H. Sun, P. Ning, Catal. Commun. 131 (2019)105782.
- [23] J. W. Han, J. S. Park, M. S. Choi, H. Lee, Appl. Catal. B 203 (2017) 625-632.
- [24] S.M. Kim, P.M. Abdala, T. Margossian, D. Hosseini, L. Foppa, A. Armutlulu, W. Van Beek,A. Comas-Vives, C. Copéret, C. Müller, J. Am. Chem. Soc. 139 (2017) 1937–1949.

- [25] T. Margossian, K. Larmier, S.M. Kim, F. Krumeich, C. Müller, C. Copéret, ACS Catal. 7(2017) 6942–6948.
- [26] S.A. Theofanidis, V. V. Galvita, H. Poelman, G.B. Marin, ACS Catal. 5 (2015) 3028–3039.
- [27] S. A. Theofanidis, V. V. Galvita, H. Poelman, N. V. R. A. Dharanipragada, A. Longo, M.
- Meledina, G. V. Tendeloo, C. Detavernier, G. B. Marin, ACS Catal. 8 (2018) 5983-5995.
- [28] B. Li, Y. Luo, B. Li, X. Yuan, X. Wang, Fuel Process. Technol. 193 (2019) 348-360.
- [29] N. Bonmassar, M. F. Bekheet, L. Schlicker, A. Gili, A. Gurlo, A. Doran, Y. Gao, M. Heggen,
- J. Bernardi, B. Klötzer, Simon Penner, ACS Catal. 10 (2020) 1102-1112.
- [30] M. Wang, T. Zhao, X. Dong, M. Li, H. Wang, Appl. Catal. B 224 (2018) 214-221.
- [31] S. M. Lima, J. M. Assaf, Catal. Lett. 108 (2006) 63-70.
- [32] X. Song, X. Dong, S. Yin, M. Wang, M. Li, H. Wang, Appl. Catal. A 526 (2016) 132-138.
- [33] A. Tsoukalou, Q. Imtiaz, S. M. Kim, P. M. Abdala, S. Yoon, C. R. Müller, J. Catal. 343 (2016)208–214.
- [34] T. Zhang, Z. Liu, Y. Zhu, Z. Liu, Z. Sui, K. Zhu, X. Zhou, Appl. Catal. B 264 (2020) 118497.
- [35] M.K. Nikoo, N. A. S. Amin, Fuel Process. Technol. 92 (2011) 678-691.
- [36] J. Feng, Y. He, Y. Liu, Y. Du, D. Li, Chem. Soc. Rev. 44 (2015) 5291-5319.
- [37] P. Li, F. Yu, N. Altaf, M. Zhu, J. Li, B. Dai, Materials 11 (2018) 221.
- [38] K. Tomishige, D. Li, M. Tamura, Y. Nakagawa, Catal. Sci. Technol. 7 (2017) 3952-3979.
- [39] Q.G. Yan, W.Z. Weng, H.L. Wan, H. Toghiani, R.K. Toghiani, C.U. Pittman, Appl. Catal. A 239 (2003) 43–58.

[40] A. Peters, F. Nouroozi, D. Richter, M. Lutecki, Roger Glaser, ChemCatChem 3 (2011) 598-606.

[41] S. Li, M. Li, C. Zhang, S. Wang, X. Ma, J. Gong, Int. J. Hydrogen Energy 37 (2012) 2940-2949.

[42] K. Ray, S. Sengupta, G. Deo, Fuel Process. Technol. 156 (2017) 195–203.

[43] J. Ashok, S. Kawi, Appl. Catal. A 490 (2015) 24-35.

[44] X. Gao, J Shen, Y. Hsia, Y. Chen, J. Chem. Soc. Faraday Trans. 89 (1993) 1079-1084.

[45] D. Pandey, G. Deo, J. Ind. Eng. Chem. 33 (2016) 99–107.

[46] K. Song, M. Lu, S. Xu, C. Chen, Y. Zhan, D. Li, C. Au, L. Jiang, K. Tomishige, Appl.

Catal. B 239 (2018) 324 - 333.

[47] D. Li, S. Xu, K. Song, C. Chen, Y. Zhan, L. Jiang, Appl. Catal. A 552 (2018) 21–29.

[48] M. Shah, S. Das, A.K. Nayak, P. Mondal, A. Bordoloi, Appl. Catal. A 556 (2018) 137–154.

[49] J. Ashok, S. Kawi, ACS Catal. 4 (2014) 289-301.

[50] M. Zhang, J. Zhang, Z. Zhou, S. Chen, T. Zhang, F. Song, Q. Zhang, N. Tsubaki, Y. Tan, Y. Han, Appl. Catal. B 264 (2020) 118522.

[51] S. Damyanova, I. Shtereva, B. Pawelec, L. Mihaylov, J.L.G. Fierro, Appl. Catal. B 278 (2020)119335.

[52] T. Yamashita, P. Hayes, Appl. Surf. Sci. 254 (2008) 2441–2449.

[53] M. Muhler, R. Schlögl, G. Ertl, J. Catal. 138 (1992) 413-444.

[54] R. Dębek, M. Motak, D. Duraczyska, F. Launay, M.E. Galvez, T. Grzybek, P. Da Costa, Catal. Sci. Technol. 6 (2016) 6705–6715.

[55] R. Dębek, M. Motak, M.E. Galvez, T. Grzybek, P. Da Costa, Appl. Catal. B 223 (2018) 36–46.

131

[56] S. Sengupta, A. Jha, P. Shende, R. Maskara, A.K. Das, J. Environ. Chem. Eng. 7 (2019)102911.

[57] C. M. Damaskinos, M. A. Vasiliades, A. M. Efsthathiou, Appl. Catal. A 579 (2019) 116-129.

[58] A. M. Amin, E. Croiset, W. Epling, Int. J. Hydrogen Energy 36 (2011) 2904-2935.

[59] S. Das, J. Ashok, Z. Bian, N. Dewangan, M.H. Wai, Y. Du, A. Borgna, K. Hidajat, S. Kawi, Appl. Catal. B 230 (2018) 220-236.

[60] S.A. Theofanidis, R. Batchu, V.V. Galvita, H. Poelman, G.B. Marin, Appl. Catal. B 185 (2016) 42-55.

[61] K. Cao, M. Gong, J. Yang, J. Cai, S. Chu, Z. Chen, B. Shan, R. Chen, J. Catal. 373 (2019) 351–360.

[62] A.L.A. Marinho, F.S. Toniolo, F.B. Noronha, F. Epron, D. Duprez, N. Bion, Appl. Catal. B 281 (2021) 119459.

[63] K. Bu, J. Deng, X. Zhang, S. Kuboon, T. Yan, H. Li, L. Shi, D. Zhang, Appl. Catal. B 267(2020) 118692.

[64] Y. Wang, L. Yao, Y. Wang, S. Wang, Q. Zhao, D. Mao, C. Hu, ACS Catal. 8 (2018) 6495-6506.

Chapter 5

Coke resistant Ni-Fe catalyst over reducible TiO₂-CeO₂ support for low temperature dry reforming of methane

5.1 Introduction

Dry reforming of methane (DRM) $CH_4 + CO_2 \rightarrow 2CO + 2H_2$, offers conversion of two anthropogenic green-house gases in a single reaction [1,2]. Syngas produced with nearly equimolar mixtures of CO and H₂ is a versatile feedstock for F-T synthesis [3,4]. Precious metal catalysts including Pt, Rh, Ru and Pd are widely investigated for DRM [5]. However, owing to high cost and low availability, precious metals are undesirable from economic point of view. Alternatively, inexpensive Ni based catalysts show comparable activity to precious metals [6]. Nonetheless, Ni catalysts are deactivated during DRM due to coke formation which is caused by side reactions such as methane decomposition, $CH_4 \rightarrow C + 2H_2$, and CO disproportionation, $2CO \rightarrow C + CO_2$. [5,6] To mitigate coke formation during DRM, various strategies have been studied in the literature. These include – addition of a promoter metal such as Co, Fe or Cu [7]. Among aforementioned promoter metals, Fe is chosen due to its low cost and wide availability. Bimetallic Ni-Fe catalysts have been demonstrated to reduce coke formation owing to the redox properties of Fe [8-11]. Fe⁰ was shown to oxidize to FeO_x during DRM under CO₂ exposure [8,9]. While coke formed during reforming was gasified to CO by FeO_x.

Besides promoting Ni with Fe, choice of support could also play vital role in coke removal during DRM. Recently, it was shown that reducible supports including CeO₂, TiO₂ and mixed oxide TiO₂-CeO₂ could be beneficial to oxidize coke precursors [12-14]. Ni/TiO₂ showed stable

activity performance and coke resistance in DRM. TiO_x species formed during reduction at 700°C facilitated decoration of large Ni⁰ ensembles. The phenomenon was attributed to reduction in surface free energy thereby inducing strong metal-support interaction (SMSI) effect [12]. Similarly, SMSI effect altered metal electronic properties via charge transfer between metal and support in Ni/CeO₂. When reduced above 600°C, Ni⁰ atoms were partially encapsulated by CeO_{2-x} species and thereby enhanced coke gasification at metal-support interface [13]. A mixture of TiO₂-CeO₂ as support for Ni catalysts were recently investigated in DRM [15,16]. It was shown that active and labile oxygen from the mixed oxide support oxidized coke to CO and significantly increased coke resistance. Secondly, oxygen vacancies created during reduction also served as active site for CO₂ activation [16]. Thus, reducible mixed oxide support TiO₂-CeO₂ could be one potential support for Ni catalysts in DRM.

Based on our previous results, it is demonstrated that Ni₃Fe₁/TiO₂ catalyst synthesized by hydrotalcite precursors showed optimum activity performance. However, complete elimination of coke was not achieved. This study is motivated to obtain enhanced coke resistance in Ni-Fe catalysts for low temperature DRM. Thus, reducible TiO₂-CeO₂ support is employed to enhance the coke resistance of Ni-Fe catalyst.

5.2 Results and Discussion

5.2.1 Catalytic Activity performance in DRM and CH4 decomposition

Catalytic activity results over Ni_3Fe_1/TiO_2 -CeO₂ are shown in Fig. 5.1. We compare activity results of Ni_3Fe_1/TiO_2 -CeO₂ with Ni_3Fe_1/TiO_2 catalyst as discussed in chapter 4. Introduction of 20 wt% CeO₂ in the support dropped catalytic activity in DRM. The CH₄ consumption decreased to 25 µmol/m²_{Ni+Fe} h while CO₂ consumption declined to 35 µmol/m²_{Ni+Fe} h after 6 h TOS when

compared with Ni₃Fe₁/TiO₂ catalyst. It is well known that catalytic activity in DRM is controlled by presence of Ni⁰ species. So, decrease in CH₄ and CO₂ conversion is attributed to the loss of active Ni⁰ sites during reforming and is explained as follows: Strong metal support interaction (SMSI) effect upon reduction of Ni-CeO₂ based catalysts is well documented in the literature [13,17]. SMSI effect would ultimately encapsulate active Ni⁰ sites [13]. Secondly, SMSI effect would lead high oxygen mobility in the presence of redox CeO₂ support [18]. Specifically, the oxygen from the bulk CeO₂ is readily diffused towards metal-support interface to oxidize coke formed during DRM [18]. In the meantime, strong interaction of Ni species with CeO₂ support could possibly form Ni-O-Ce solid solution thereby attenuating the active Ni⁰ sites. Formation of Ni-O-Ce solid solution in the spent catalysts is further evidenced by Raman spectroscopy discussed below. However, SMSI effect and oxygen mobility also imparts high coke resistance to the catalyst. The H_2/CO ratio achieved over CeO₂ modified catalyst also dropped compared to Ni₃Fe₁/TiO₂. H₂/CO ratio dropped to 0.55 from 0.81 in Ni₃Fe₁/TiO₂-CeO₂ and Ni₃Fe₁/TiO₂ respectively. The decrease in H₂/CO ratio is attributed to presence of CeO₂ which is suggested to be active catalyst support for RWGS reaction over Ni catalysts [18]. During reduction, surface capping oxygen associated with CeO₂ is easily transformed to Ce³⁺ [19]. This process generates oxygen vacancies which further acts as active sites for CO₂ activation [19,20]. Thus, presence of CeO_2 would accelerate RWGS as side reaction thereby decreasing H₂/CO ratio. Catalytic activity in CH₄ decomposition is presented in Fig. 5.2a. CH₄ decomposition commenced after 15 min of TOS, while dropping during the course of reaction. The induction period observed here is also reported over some Ni-based catalysts with low basicity in the literature [20]. However, drop in CH₄ conversion after 15 min is attributed to loss of Ni⁰ sites. The behavior is suggested to the formation of Ni-O-Ce solid solution and follows above mentioned explanation. It should be noted

that Ni_3Fe_1/TiO_2 -CeO₂ showed CO formation during CH₄ decomposition. The results suggested oxidation of coke by lattice oxygen from reducible support and FeO_x species.

Fig. 5.1. CH₄, CO₂ consumption (%) and H₂/CO ratio as function of reaction time over Ni_3Fe_1/TiO_2 -CeO₂ catalyst in DRM.

Fig. 5.2. Catalytic activity over Ni_3Fe_1/TiO_2 -CeO₂ catalyst in CH₄ Decomposition. a) % CH₄ conversion b) H₂ formation (mmol min⁻¹ g_{catalyst}⁻¹) c) CO formation (mmol min⁻¹ g_{catalyst}⁻¹).

5.2.2 Hydrogen–temperature programmed reduction (H₂-TPR)

Hydrogen-temperature programmed reduction (H2-TPR) was employed to study the reducibility of mixed oxide TiO₂-CeO₂ support, Ni₃Fe₁/TiO₂-CeO₂ catalyst and metal-support interaction. Fig. 5.3 shows H₂-TPR profile of TiO₂-CeO₂ support and Ni₃Fe₁/TiO₂-CeO₂ catalyst. The TPR profile of TiO₂-CeO₂ support showed three peaks located at 120°C, 287°C and 490°C. Peaks located at 120°C and 287°C are attributed to the reduction of surface oxygen species adsorbed on oxygen vacancies of mixed oxide support [21]. It is reported that ionic radius of Ti⁴⁺ ions (0.065 nm) is smaller than Ce⁴⁺ (0.097 nm) ions. Thus, introduction of CeO₂ in TiO₂ would cause changes in lattice parameter of TiO₂, thereby forming oxygen vacancies [22]. Adsorption of oxygen species on those vacancies would lead its reduction at 120°C and 287°C [21]. Secondly, the peak observed at 490°C is attributed to the reduction of easily reducible surface capping oxygen in CeO₂, which is followed by the formation of Ce^{3+} ions [19,23]. Considering H₂-TPR profile of bimetallic Ni₃Fe₁/TiO₂-CeO₂ catalyst, three reduction peaks are observed. Peak located at 217°C is attributed to the reduction of bulk or non-interacting NiO species. While peak located at 270°C is assigned to the reduction of strongly interacting NiO-TiO₂ species with the support. As such, only 3 peaks are observed for the reduction of Ni_3Fe_1/TiO_2 -CeO₂ catalyst, it is envisaged that reduction of Fe₂O₃ would also have occurred simultaneously with the reduction of NiO. This behavior suggested that $Fe_2O_3 \rightarrow Fe_3O_4 \rightarrow FeO$ step reduction also occurred simultaneously with NiO-TiO₂ at 270°C. In other words, peak located around 270°C also suggested bimetallic Ni – Fe interaction. The peak at 330°C is assigned to reduction of FeO \rightarrow Fe⁰. It should be noted that reduction temperatures of peak 2 and 3 in Ni₃Fe₁/TiO₂-CeO₂ were shifted to higher values compared to Ni₃Fe₁/TiO₂ in chapter 4. The phenomenon is explained by strong metal-support interaction (SMSI) effect upon addition of CeO2. Meanwhile, addition of CeO2 also enhanced

overall H₂ consumption to 1.95 mmolH₂/ $g_{catalyst}$ in comparison to 1.83 mmolH₂/ $g_{catalyst}$ observed over Ni₃Fe₁/TiO₂. Such findings suggested introduction of CeO₂ also promoted reducibility of Ni-Fe catalyst besides inducing SMSI effect.

Fig. 5.3. H₂-TPR profile of TiO₂-CeO₂ support and Ni₃Fe₁/TiO₂-CeO₂ catalyst.

5.2.3 CO-Chemisorption

CO chemisorption was performed to estimate number of metallic sites over reduced catalyst. Typically, CO uptake values are correlated with number of metallic sites on catalyst surface with the assumption that each CO molecule chemisorbs one metallic site. CO-chemisorption analysis showed 16 μ mol/g_{catalyst} of CO adsorbed on Ni₃Fe₁/TiO₂-CeO₂ which is approximately 2 times higher than Ni₃Fe₁/TiO₂. The results suggested addition of CeO₂ in TiO₂ support would promote formation of metallic Ni^0 on surface which is attributed to enhanced reducibility as evidenced by H₂-TPR analysis.

Table 5.1. Comparison of amount of CO adsorbed on reduced $Ni_3Fe_1/TiO_2\mbox{-}CeO_2$ and

Ni₃Fe₁/TiO₂ catalyst

	CO Adsorbed
Catalyst	$(\mu mol/g_{catalyst})$
Ni ₃ Fe ₁ /TiO ₂ -CeO ₂	16.0
Ni ₃ Fe ₁ /TiO ₂	9.0

5.2.4 Methane – Temperature programmed surface reaction/Differential thermogravimetry (CH₄-TPSR/DTG)

Transient activity of CH₄ over CeO₂ modified Ni-Fe catalyst was studied by methane – temperature programmed surface reaction (CH₄-TPSR). Fig. 5.4a shows CH₄-TPSR profile over reduced Ni₃Fe₁/TiO₂-CeO₂ catalyst. It is observed that transient activity of CH₄ begins nearly around 350°C and reaches maximum at 495°C. Comparing with Ni₃Fe₁/TiO₂ catalyst, addition of CeO₂ did not influenced surface reaction of CH₄. The behavior is suggested to similar bimetallic Ni-Fe interactions observed over TiO₂ and TiO₂-CeO₂ supported catalysts by H₂-TPR analysis. In other words, surface reaction of CH₄ with Ni-Fe/TiO₂-CeO₂ catalyst is independent of support modification. CH₄-TPSR profile of Ni/MgAlO catalyst showed peak temperature of 534°C [24]. The differences in peak temperature in CH₄-TPSR profile between our results and those reported in literature could be explained by different metal-support interactions. The type of carbon species formed during surface reaction were investigated by differential thermogravimetry (DTG). Fig. 5.4b shows a dominant peak at 530°C attributed to oxidation of amorphous or CH_x type of carbon [25]. Comparing DTG curve of CeO₂ modified Ni-Fe catalyst with Ni₃Fe₁/TiO₂, it is inferred that introduction of CeO₂ would not influence the type of carbon species formed during CH₄ dissociation.

Fig. 5.4. CH_4 -TPSR/DTG over reduced Ni₃Fe₁/TiO₂-CeO₂ catalyst, (a) CH_4 -TPSR (b) DTG of used catalyst after CH_4 -TPSR.

5.2.5 Carbon dioxide – Temperature programmed surface reaction/Hydrogen –

Temperature programmed reduction (CO₂-TPSR/H₂-TPR)

Influence of CeO₂ addition to Ni₃Fe₁/TiO₂ catalyst on CO₂ transient activity was further studied by CO₂-TPSR experiment. CO₂-TPSR/H₂-TPR over reduced catalysts could be described according to following equations.

$$\text{CO}_2 \rightarrow \text{CO}^* + \text{O}^*$$
 (1)

$$O^* + H_2 \rightarrow H_2O \qquad (2)$$

Dissociation of CO₂ on active metal or interface between active-metal and support forms CO^{*} and surface adsorbed oxygen species O^{*}. Formed O^{*} species are then characterized by H₂-TPR. The H₂ consumed in the TPR is directly correlated to O^{*} species formed during CO₂ dissociation according to equation 1 and 2. Thus, H₂-TPR profile after performing CO₂-TPSR test is shown in Fig.5. Peaks observed below 600°C are assigned to active Ni⁰ centers while peak located at 618°C is attributed to active Fe⁰ centers in Ni-Fe catalyst [26]. However, this peak located at 618°C was not observed over Ni₃Fe₁/TiO₂ catalyst. The results suggested incorporation of CeO₂ would influence population of surface metallic species which would ultimately affect the catalytic activity. The H₂ consumption during H₂-TPR after CO₂-TPSR over CeO₂ modified Ni-Fe catalyst was calculated to be 1.44 mmolH₂/g_{catalyst} which is slightly lower than Ni₃Fe₁/TiO₂. Such findings could be related to increased concentration of surface Ni⁰ species in Ni₃Fe₁/TiO₂-CeO₂ as shown by CO-chemisorption and XPS analysis. Surface Ni⁰ species have been shown to resist CO₂ dissociation [24].

Fig. 5.5. H₂-TPR profile over Ni₃Fe₁/TiO₂-CeO₂ catalyst after CO₂-TPSR test.

5.2.6 X-ray photoelectron spectroscopy (XPS)

XPS analysis was conducted to get insights on metal oxidation state and surface concentration. For CeO₂ modified Ni₃Fe₁/TiO₂-CeO₂ catalyst, Ni $2p_{3/2}$ spectrum presented in Fig. 5.6a showed peaks corresponding to Ni⁰ and Ni²⁺ after reduction. The presence of Ni²⁺ suggested incomplete reduction which is related to SMSI effect between Ni and TiO₂-CeO₂ support. Generally, metallic Ni species show B.E. of 852.7 eV [18]. It is interesting to note that deconvolution of Ni $2p_{3/2}$ spectra showed two peaks corresponding to Ni⁰, indicating differences in electron densities on metallic Ni species after reduction. Ni⁰ peak with B.E. of 851.9 eV labelled as Ni⁰ (I) is attributed to Ni species rich in electron density. Similar observations for Ni⁰ are shown in the literature for Ce modified Ni catalysts [19]. Secondly, a peak observed at 853.1 eV exhibiting a chemical shift of +0.4 eV compared to standard Ni⁰ B.E. suggested electron deficient Ni⁰ on surface. In other words, those Ni species interacted with Fe to form Ni-Fe alloy. Similar observations on Ni-Fe alloy formation over Ni₃Fe₁/TiO₂ are presented in chapter 4. Ni⁰ at 853.1 eV are labelled as Ni⁰ (II). The B.E. of Ni²⁺ was observed at 855.1 eV, exhibiting a chemical shift of +1.1 eV compared to bulk or non-interacting NiO [27,28]. Such a chemical shift suggested interaction of Ni²⁺ with the support. Ni²⁺ B.E. values are in alignment with previous results of Ni 2p_{3/2} spectra of reduced Ni₃Fe₁/TiO₂ catalyst. Considering Fe 2p spectra in Fig. 5.7a, three distinct Fe 2p_{3/2} peaks are observed due to multiple oxidation state of Fe after reduction at 550°C. Peak located at 707.5 eV is attributed to Fe⁰ which exhibits a chemical shift of +0.7 eV compared to monometallic Fe-based catalysts [26]. This observation again affirms formation of Ni-Fe alloy. Next, Fe²⁺ and Fe³⁺ are observed at 709.6 eV and 711.2 eV respectively [26]. Ce 3d spectra were deconvoluted into ten peaks due to Ce 3d_{5/2} and Ce 3d_{3/2} orbital split shown in Fig. 5.8. Ce 3d_{5/2} and Ce 3d_{3/2} peaks are labelled as V and U respectively. For Ce 3d_{5/2}, peak located at 880.5 eV is attributed to Ce³⁺ while peak corresponding to 882.4 eV is assigned to Ce⁴⁺ [18,19]. Presence of Ce³⁺ in CeO₂ supported catalysts is associated with formation of oxygen vacancies as discussed in section 2.2.

Fig. 5.6. Ni 2p_{3/2} spectra of Ni₃Fe₁/TiO₂-CeO₂ catalyst, (a) reduced and (b) spent.

Fig. 5.7. Fe 2p spectra of Ni₃Fe₁/TiO₂-CeO₂ catalyst, (a) reduced and (b) spent.

Fig. 5.8. Ce 3d spectra of Ni₃Fe₁/TiO₂-CeO₂ catalyst, (a) reduced and (b) spent.

Fig. 5.9. O 1s spectra of Ni₃Fe₁/TiO₂-CeO₂ spent catalyst.

Table 5.2. Surface atomic concentration (%) of different species in reduced and spent Ni₃Fe₁/TiO₂-CeO₂ catalyst

Ni ₃ Fe ₁ /TiO ₂ -	Ν	li ⁰	Ni ²⁺	Fe ⁰	Fe ²⁺	Fe ³⁺	$Ce^{3+}/Ce^{3+}+Ce^{4+}$
CeO ₂	(I)	(II)					
Reduced	1.8	0.82	6.61	0.79	0.9	4.86	0.52
Spent	-	0.53	7.28	0.19	1.31	2.9	0.54

XPS analysis of spent Ni₃Fe₁/TiO₂-CeO₂ catalyst was performed to study changes in metal oxidation state, metal-support interaction, and surface concentration after DRM. Deconvolution of Ni $2p_{3/2}$ spectra showed existence of only one type of Ni⁰ species at 852.6 eV compared to Ni $2p_{3/2}$ in the reduced catalyst. This behavior suggested changes in electron density of Ni⁰ atoms during reforming reaction. While B.E. of Fe⁰ $2p_{3/2}$ in spent catalyst was observed at 706.9 eV and exhibited a chemical shift of -0.6 eV compared to its reduced counterparts as presented in Fig. 5.7b. The results affirm dealloying of Ni-Fe alloy during DRM reaction and is consistent with XPS

analysis of Ni-Fe/TiO₂ catalysts presented in chapter 4. It is interesting to note that $Ce^{3+} 3d_{5/2}$ in spent catalyst was observed at 881.2 eV, exhibiting a chemical shift of +0.7 eV compared to its reduced counterpart. While $Ce^{4+} 3d_{5/2}$ in the spent catalyst was located at 882.8 eV showing a chemical shift of +0.4 eV. The behavior indicated significant interaction of surface metallic species with the mixed oxide support during DRM. Information on surface adsorbed oxygen species (SAOS) in spent catalysts was obtained by O 1s spectra and is shown in Fig. 5.9. It was revealed that besides lattice oxide O²⁻ peak at 529.7 eV, peaks appeared at 531.2 eV and 533.0 eV. Such peaks are attributed to existence of carbonate and hydroxyl type SAOS in spent catalysts respectively which are also suggested to participate in coke gasification during DRM [27].

The surface concentration of atomic species in reduced and spent catalysts is presented in Table 5.2. As mentioned above, Ni⁰ corresponding to 851.9 eV consists 1.8 % while Ni⁰ in the form of Ni-Fe alloy located at 853.1 eV comprises 0.82 % surface concentration. Further, Ni⁰ concentration in spent catalyst dropped to 0.53%. It is envisaged that Ni⁰ (I) in close interaction with CeO₂ might have formed Ni-O-Ce solid solution during DRM thereby decreasing Ni⁰ concentration. Formation of Ni-O-Ce solid solution is further evidenced by Raman analysis of spent catalysts discussed in section 2.6. While concentration of Fe⁰ decreased in the spent catalysts compared to their reduced counterparts. Such findings indicated oxidation of Fe⁰ to Fe²⁺/Fe³⁺ during DRM and agrees with previous reports [8,9]. The relative concentration of Ce³⁺ in the reduced catalyst is evaluated as Ce³⁺/(Ce³⁺+Ce⁴⁺) due to overlapping of Ce 3d spectra with Ni 2p spectra. It is observed that relative concentration of Ce³⁺ increases from 0.52 to 0.54 after DRM. The phenomenon is related to the consumption of labile oxygen in coke gasification from reducible TiO₂-CeO₂ support during DRM.

5.2.7 Raman Spectroscopy of TiO₂-CeO₂ support and Ni-Fe/TiO₂-CeO₂ catalyst

Raman spectroscopy of mixed oxide support TiO2-CeO2 and Ni3Fe1/TiO2-CeO2 catalysts is shown in Fig. 5.10. For all the samples, the Raman absorption bands at 396, 513 and 634 cm⁻¹ are attributed to E_g , $A_{1g} + B_{1g}$ and B_{1g} vibration mode in TiO₂ [29]. While absorption band at 461 cm⁻ ¹ is assigned to F_{2g} symmetrical vibration mode in CeO₂ [30]. The F_{2g} absorption band corresponds to oxygen atoms surrounding Ce^{4+} ions in the symmetric mode [31]. Nonetheless, peak corresponding to oxygen vacancies in CeO₂ modified samples at 600 cm⁻¹ could be observed which coincides with B1g vibration mode of TiO2 [21]. For calcined Ni3Fe1/TiO2-CeO2 catalyst, it is observed that peak related to F_{2g} vibrational mode of Ce-O in CeO₂ becomes broader and exhibits a red shift to lower wavenumber at 458 cm⁻¹. Such behavior indicated formation of Ni-O-Ce solid solution [30-32]. However, this F_{2g} peak back shifted to 461 cm⁻¹ in the reduced Ni₃Fe₁/TiO₂-CeO₂. The results suggested rearrangement of oxygen atoms surrounding Ce⁴⁺ ions and thereby dissociation of Ni-O-Ce solid solution upon reduction. Nevertheless, the F2g peak became broader and was shifted to 458 cm⁻¹ in the spent catalyst. This phenomenon indicated that strong interaction of Ni species with mixed oxide support formed Ni-O-Ce solid solution, thereby decreasing the population of Ni species on catalyst surface. Overall, introduction of CeO2 in Ni₃Fe₁/TiO2 declined the activity due to formation of Ni-O-Ce solid solution.

Fig. 5.10. Raman spectra of TiO₂-CeO₂ support, calcined, reduced and spent Ni₃Fe₁/TiO₂-CeO₂ catalyst.

5.2.8 Thermogravimetric analysis-Differential thermogravimetry (DTG)

Thermogravimetric analysis/Differential thermogravimetry (TGA-DTG) of spent catalysts after DRM was performed to gain insights on amount and type of coke deposition. Surprisingly, Ni₃Fe₁/TiO₂-CeO₂ catalyst did not reveal coke deposition during DRM. The results suggested promotional effect of CeO₂ addition to resist carbon formation. It has been reported that during DRM over Ni/TiO₂-CeO₂ catalysts, active and labile oxygen from the reducible support participates in gasification of coke to CO [16]. Secondly, lattice oxygen from FeO_x species also enhanced carbon oxidation during DRM [8,9]. Thus, coke resistance of Ni-Fe/TiO₂-CeO₂ is suggested to dual oxygen resources to promote carbon oxidation. TGA experiment over spent Ni₃Fe₁/TiO₂-CeO₂ catalyst after CH₄ decomposition showed only 9.8 wt% coke deposits compared to 27.2 wt% observed over Ni₃Fe₁/TiO₂. Similar explanation holds for carbon gasification in the presence of reducible TiO_2 -CeO₂ supports. DTG analysis of spent Ni_3Fe_1/TiO_2 -CeO₂ demonstrated amorphous type of carbon deposition during CH₄ decomposition which is shown to be to be inactive for catalyst deactivation [33]. Thus, addition of CeO₂ is beneficial to resist coke deposition.

Fig. 5.11. Differential Thermogravimetry (DTG) of used Ni₃Fe₁/TiO₂-CeO₂ catalysts after, a)
DRM, b) CH₄ – Decomposition

5.3 References

[1] X. Song, X. Dong, S. Yin, M. Wang, M. Li, H. Wang, Appl. Catal. A 526 (2016) 132-138.

[2] K. Cao, M. Gong, J. Yang, J. Cai, S. Chu, Z. Chen, B. Shan, R. Chen, J. Catal. 373 (2019)351-360.

[3] Y. Xu, D. Liu, X. Liu, Appl. Catal. A 552 (2018) 168-183.

- [4] E. Baktash, P. Littlewood, R. Schomacker, A. Thomas, P.C. Stair, Appl. Catal. B 179 (2015)122-127.
- [5] D. Pakhare, J. J. Spivey, Chem. Soc. Rev. 7 (2014) 7813-7837.
- [6] H.O. Seo, Catalysts 8 (2018) 110.
- [7] Z. Bian, S. Das, M. H. Wai, P. Hongmanorom, S. Kawi, ChemPhysChem 18 (2017) 3117 3134.
- [8] S.M. Kim, P.M. Abdala, T. Margossian, D. Hosseini, L. Foppa, A. Armutlulu, W. Van Beek,
- A. Comas-Vives, C. Copéret, C. Müller, J. Am. Chem. Soc. 139 (2017) 1937–1949.
- [9] S.A. Theofanidis, V. V. Galvita, H. Poelman, G.B. Marin, ACS Catal. 5 (2015) 3028–3039.
- [10] T. Margossian, K. Larmier, S.M. Kim, F. Krumeich, C. Müller, C. Copéret, ACS Catal. 7(2017) 6942–6948.
- [11] B. Li, Y. Luo, B. Li, X. Yuan, X. Wang, Fuel Process. Technol. 193 (2019) 348-360.
- [12] Q. G. Yan, W. Z. Weng, H. L. Wan, H. Toghiani, R. K. Toghiani, C. U. Pittman, Appl. Catal. A 239 (2003) 43–58.
- [13] M. Li, A. C. Veen, Appl. Catal. B 237 (2018) 641-648.
- [14] K. Takanabe, K. Nagaoka, K. Nariai, K. Aika, J. Catal. 230 (2005) 75-85.
- [15] S.S. Kim, S.M. Lee, J.M. Won, H.J. Yang, S.C. Hong, Chem. Eng. J. 280 (2015) 433-440.
- [16] C.M. Damaskinos, M.A. Vasiliades, A.M. Efstathiou, Appl. Catal. A 579 (2019) 116-129.
- [17] H. Ay, D. Uner, Appl. Catal. B 179 (2015) 128–138.

[18] S. Das, J. Ashok, Z. Bian, N. Dewangan, M. H. Wai, Y. Du, A. Borgna, K. Hidajat, S. Kawi, Appl. Catal. B 230 (2018) 220-236.

[19] S. Damyanova, B. Pawelec, R. Palcheva, Y. Karakirova, M.C.C Sanchez, G. Tyuliev, E. Gaigneaux, J.L.G. Fierro, Appl. Catal. B 225 (2018) 340-353.

[20] A.L.A. Marinho, F.S. Toniolo, F.B. Noronha, F. Epron, D. Duprez, N. Bion, Appl. Catal. B 281 (2021) 119459.

[21] C. Tang, J. Li, X. Yao, J. Sun, Y. Cao, L. Zhang, F. Gao, Y. Deng, L. Dong, Appl. Catal. A 494 (2015) 77-86.

[22] L. Tan, T. Li, J. Zhou, H. Chen, F. Jiang, Colloids Surf. A 558 (2018) 211-218.

[23] S.P. Padi, L. Shelly, E. P. Komarala, D. Schweke, S. Hayun, B.A. Rosen, Catal. Commun.138 (2020) 105951.

[24] K. Song, M. Lu, S. Xu, C. Chen, Y. Zhan, D. Li, C. Au, L. Jiang, K. Tomishige, Appl. Catal.B 239 (2018) 324–333.

[25] M. Shah, S. Das, A.K. Nayak, P. Mondal, A. Bordoloi, Appl. Catal. A 556 (2018) 137–154.

[26] J. Ashok, S. Kawi, ACS Catal. 4 (2014) 289-301.

[27] M. Zhang, J. Zhang, Z. Zhou, S. Chen, T. Zhang, F. Song, Q. Zhang, N. Tsubaki, Y. Tan, Y. Han, Appl. Catal. B 264 (2020) 118522.

[28] S. Damyanova, I. Shtereva, B. Pawelec, L. Mihaylov, J.L.G. Fierro, Appl. Catal. B 278 (2020)119335.

[29] X. Zhang, Z. Pei, X. Ning, H. Lu, H. Huang, RSC Adv. 5 (2015) 79192-79199.

[30] P. Zhao, F. Qin, Z. Huang, C. Sun, W. Shen, H. Xu, Chem. Eng. J. 349 (2018) 72-81.

- [31] T. V Sagar, D. Padmakar, N. Lingaiah, P.S. Sai Prasad, Catal. Lett. 149 (2019) 2597–2606.
- [32] K. Tang, W. Liu, J. Li, J. Guo, J. Zhang, S. Wang, S. Nu, Y. Yang, ACS Appl. Mater. Interfaces 7 (2015) 26839-26849.
- [33] A. M. Amin, E. Croiset, W. Epling, Int. J. Hydrogen Energy 36 (2011) 2904-2935.

Chapter 6

Conclusions and Future Work

6.1 Conclusions

In this study, inexpensive Ni-based catalysts were explored for low temperature dry reforming of methane. Usually, monometallic Ni catalysts are prone to deactivation by coke formation during DRM. Thus, Fe is employed as a promoter to Ni catalysts while avoiding the addition of precious metals. The study emphasizes preparation of bimetallic Ni-Fe catalysts over a reducible TiO₂ support by different synthesis approaches. 1st project of the research focused on preparation of Ni-Fe/TiO₂ catalysts by conventional wet impregnation route. Different ratios of Ni/Fe are studied and applied in low temperature DRM, while total nominal metal loading maintained to 10 wt%. 2nd project aimed in achieving better catalytic activity performance in DRM, by employing coprecipitation method for preparation of Ni-Fe/TiO₂ catalysts. The results of 1st and 2nd project showed Ni₃Fe₁/TiO₂ synthesized by co-precipitation method is optimum catalyst. In order to achieve enhanced coke resistance, 20 wt% of TiO₂ was replaced by the addition of reducible CeO₂ in support matrix. The 3rd project discussed the application of Ni-Fe catalyst prepared by co-precipitation procedure supported over a mixed oxide TiO₂-CeO₂. Following paragraphs discuss detailed conclusions from Ni-Fe catalysts.

6.1.1 Ni-Fe/TiO₂ catalysts synthesized by wet impregnation route

Ni–Fe/TiO₂ catalysts synthesized by incipient wetness impregnation method for low temperature DRM lead to the following conclusions: 1) Ni/TiO₂ showed maximum catalytic activity. The increasing of CH₄ consumption during time-on-stream over Ni/TiO₂ was attributed

to CH₄ decomposition as side reaction. Introduction of Fe inhibited catalytic activity. Increasing the amount of Fe from 2.5 wt% to 7.5 wt% dropped H₂/CO ratio and simultaneously increased the carbon balance. Catalytic activity performance results in CH₄ decomposition were in accordance with DRM. Ni/TiO₂ revealed maximum activity while activity dropped significantly over Ni₁Fe₃/TiO₂. However, CO formation during CH₄ decomposition suggested ability of lattice oxygen from TiO₂ or FeO_x to oxidize coke precursors. 2) H₂-TPR suggested increased reducibility of NiO up to 2.5 wt% substitution by Fe. While, addition of Fe did not reveal interaction between Ni and Fe on the surface. CH₄–TPSR results showed that CH₄ activated around 400°C and that introduction of Fe in Ni/TiO₂ inhibited CH₄ activity. While, DTG results after CH₄-TPSR suggested addition of Fe altered the type of carbon deposited from graphitic to amorphous. CO₂-TPSR/H₂-TPR results showed that addition of Fe promoted activity of CO₂. XPS analysis of reduced catalysts showed metal-support interactions. However, interaction between Ni and Fe were not revealed by XPS analysis, which agreed with H_2 -TPR experiments. Besides, metal and support interactions, oxidation state of surface species in the reduced catalysts showed presence of Ni⁰/Ni²⁺ and mixture of Fe²⁺/Fe³⁺. Metallic Fe was not revealed in Ni-Fe/TiO₂ catalysts. The O/Ti ratio was lower than 2, suggested presence of oxygen vacancies in reduced catalysts. COchemisorption results showed number of metallic sites decreased significantly upon Fe addition. 3) TGA analysis of used catalysts showed 23.4 wt% coke deposits on Ni/TiO₂ which dropped drastically to 0.1 wt% over Ni₃Fe₁/TiO₂. No carbon deposition was observed over Ni₁Fe₁/TiO₂ and Ni₁Fe₃/TiO₂ catalysts. While XPS analysis of spent catalysts suggested participation of lattice oxygen from TiO₂ support in coke gasification over monometallic Ni/TiO₂. However, lattice oxygen of Fe played dominant role in coke removal over Ni-Fe/TiO₂ catalysts. Raman spectroscopy showed presence of graphitic and amorphous carbon after DRM over Ni/TiO₂. On

the other hand, Ni-Fe/TiO₂ spent catalysts did not reveal carbon formation. 4) *In-situ* DRIFTS analysis over Ni/TiO₂ showed involvement of lattice oxygen from TiO₂ support in coke gasification. However, addition of Fe altered the reaction mechanism in which surface hydroxyl species played dominant role to oxidize coke precursors. 5) The optimal catalyst was suggested to be Ni₃Fe₁/TiO₂ that exhibited activity comparable to Ni/TiO₂ and showed only 0.1 wt% coke deposits.

6.1.2 Ni-Fe/TiO₂ catalysts synthesized by hydrotalcite route

Ni-Fe/TiO₂ catalysts synthesized by co-precipitation method studied for low temperature DRM lead to the following conclusions: 1) Ni/TiO₂ showed maximum catalytic activity towards CH_4 while addition of Fe declined activity performance. While, addition of 2.5 wt% Fe to Ni/TiO₂ increased CO₂ activity. The H₂/CO ratio in Ni/TiO₂ increased with time-on-stream which suggested occurrence of CH₄ decomposition as side reaction besides DRM. However, Ni₃Fe₁/TiO₂ exhibited consistent H₂/CO ratio of 0.8 during DRM, indicating inhibition of CH₄ decomposition as side reaction during DRM. Catalytic activity performance results in CH₄ decomposition were in accordance with DRM. Ni/TiO₂ revealed maximum activity while activity dropped significantly over Ni₁Fe₃/TiO₂. However, CO formation during CH₄ decomposition suggested ability of lattice oxygen from TiO₂ or FeO_x to oxidize coke precursors. 2) H₂-TPR experiments showed presence of bulk NiO and strongly interacting NiO-TiO₂ species in monometallic Ni/TiO₂. Addition of Fe significantly improved bimetallic Ni-Fe and metal-support interactions. Similarly, reducibility of NiO was promoted in Ni-Fe catalysts. CH₄-TPSR results showed CH₄ activated around 350°C. Owing to inactivity of Fe towards CH₄, transient activity was lowered in Ni-Fe/TiO₂ catalysts. DTG results performed after CH₄-TPSR showed presence of amorphous carbon only over monometallic and bimetallic Ni-Fe/TiO2 catalysts. CO2-TPSR/H2-TPR experiments indicated that

addition of Fe promoted CO2 activity. XPS analysis of reduced catalysts showed formation of Ni-Fe alloy and metal-support interactions. Those results were consistent with H₂-TPR analysis. Besides, oxidation state of surface species in reduced catalysts revealed presence of Ni⁰/Ni²⁺ and $Fe^{0}/F^{2+}/Fe^{3+}$. The O/Ti ratio was below 2, indicated presence of oxygen vacancies in the reduced catalysts. CO-chemisorption results revealed reduction in the number of metallic sites upon addition of Fe. 3) TGA/DTG analysis of spent catalysts after DRM showed 31.0 wt% coke deposits over Ni/TiO₂. While addition of only 2.5 wt% Fe (Ni₃Fe₁/TiO₂) significantly dropped coke formation to 0.48 wt%. Ni₁Fe₁/TiO₂ and Ni₁Fe₃/TiO₂ did not reveal coke deposits. Raman spectroscopy of spent catalysts revealed presence of amorphous and graphitic carbon over Ni/TiO₂ and Ni₃Fe₁/TiO₂ after DRM. Raman spectroscopy results concluded that addition of Fe did not alter the type of carbon formed during DRM. XPS analysis of spent catalysts revealed participation of lattice oxygen from TiO_2 support in coke gasification over Ni/TiO₂. However, lattice oxygen from FeO_x species were suggested for coke removal in Ni-Fe/TiO₂ catalysts. Secondly, Ni-Fe alloy was dealloyed and Fe⁰ was oxidized to Fe^{2+}/Fe^{3+} in the spent catalysts. 4) *In-situ* DRIFTS analysis concluded that coke precursors were oxidized by lattice oxygen of support in Ni/TiO₂. Addition of Fe favored the formation of carbonate species as intermediates which were shown to react with coke precursors. 5) Ni₃Fe₁/TiO₂ was suggested to be optimal catalyst which showed comparable activity to monometallic Ni/TiO₂ and decreased coke deposits to 0.48 wt% only.

When comparing the results of catalysts synthesized by co-precipitation method with catalysts synthesized by impregnation route, it was concluded that catalysts prepared by co-precipitation method showed better metal reducibility, metal-support, and bimetallic interactions. Overall influence of catalyst preparation approach was reflected by higher catalytic activity in catalysts synthesized by co-precipitation method. Besides, the role of Fe was attributed to oxidize coke precursors during DRM thereby achieving enhanced coke resistance. In the view of achieving complete removal of coke deposition, CeO₂ was employed along with TiO₂ in the support matrix due to its oxygen storage capacity. Therefore, we explored the effect of CeO₂ addition over Ni_3Fe_1/TiO_2 catalyst synthesized by co-precipitation method.

6.1.3 Ni-Fe/TiO₂-CeO₂ catalyst synthesized by hydrotalcite route

Ni₃Fe₁/TiO₂-CeO₂ catalyst lead to following conclusions: 1) The catalytic activity decreased of Ni₃Fe₁/TiO₂-CeO₂ decreased compared to Ni₃Fe₁/TiO₂ catalysts prepared by co-precipitation route. The cause of decreased catalytic activity was suggested to the attenuation of Ni⁰ sites due to SMSI effect. This phenomenon ultimately led to the formation of Ni-O-Ce solid solution during DRM. While Ni⁰ was also shown to oxidize under DRM conditions thereby contributing to activity loss. Activity performance in CH₄ decomposition showed CO formation which suggested lattice oxygen from FeO_x and mixed oxide support played important role to oxidize coke precursors. 2) H₂-TPR experiments showed SMSI effect and enhanced reducibility upon modification of TiO₂ with CeO₂ in Ni₃Fe₁/TiO₂-CeO₂. CO-chemisorption experiment showed increase in number of metallic sites over Ni₃Fe₁/TiO₂-CeO₂ compared to Ni₃Fe₁/TiO₂. The results concluded promotional effect of CeO₂ to enhance metal reducibility. The results of CH₄-TPSR and CO₂-TPSR over Ni₃Fe₁/TiO₂-CeO₂ catalyst were similar to Ni₃Fe₁/TiO₂ which suggested that surface reaction of CH₄ and CO₂ with catalyst is independent of support modification. XPS analysis of reduced Ni₃Fe₁/TiO₂-CeO₂ catalyst showed formation of Ni-Fe alloy and metal-support interactions. While presence of Ce³⁺ besides Ti³⁺ species confirmed enhancement in the formation of oxygen vacancies. 3) TGA-DTG analysis of spent catalyst after DRM showed no coke deposition over Ni₃Fe₁/TiO₂-CeO₂. The results concluded that addition of CeO₂ promotes coke inhibition. Lattice oxygen from FeO_x and mixed oxide support are suggested as oxygen resources

for coke gasification. XPS analysis of spent Ni_3Fe_1/TiO_2 -CeO₂ catalyst showed dealloying of Ni-Fe alloy and participation of CeO₂ in DRM. While Ni^0 was oxidized to N^{i2+} . Raman spectroscopy of spent catalyst showed formation of Ni-O-Ce solid solution. The results concluded attenuation of Ni⁰ sites during DRM due to SMSI effect.

Thus, Ni_3Fe_1/TiO_2 catalyst prepared by co-precipitation method was proven to be optimum catalyst in this project which showed pronounced catalytic activity and minimal coke formation.

6.2 Future Work

The future work for dry reforming of methane should be focused on investigating the optimal Ni_3Fe_1/TiO_2 co-precipitation catalyst. Thermodynamically, equilibrium conversion of CH₄/CO₂ and high yield of syngas are achieved at 850°C. Therefore, DRM should be tested at 850°C to study Ni_3Fe_1/TiO_2 co-precipitation catalyst.

Besides, the reduction temperature employed to activate the catalyst should be elevated which would mainly serve two purposes: 1) Reduction of unreduced NiO and FeO_x species thereby generating active metallic sites for reforming. 2) Formation of Ni⁰ upon reduction would favor hydrogen spill-over phenomenon which would promote the reduction of TiO₂ support. This process would generate more oxygen vacancies and ultimately enhance coke resistance of catalyst.

Addition of Co to Ni_3Fe_1/TiO_2 is suggested in which different ratios between Co and Ni_3 -Fe₁ could be tuned to obtain optimal DRM performance. Addition of Co would serve two purposes: 1) provide active Co⁰ sites for DRM besides Ni^0 2) Oxidation of carbon precursors would be significantly enhanced owing to oxophilicity of Co, thereby enhancing coke resistance of catalyst.

Appendix 1

Catalyst	BET area (m ² /g)	Metal surface area (m ² /g)	Pore size (nm)	Pore volume (cc/g)
Ni/TiO ₂	57.71	5.12	27.00	0.39
Ni ₃ Fe ₁ /TiO ₂	51.50	4.58	24.26	0.31
Ni ₁ Fe ₁ /TiO ₂	52.10	4.62	26.77	0.35
Ni ₁ Fe ₃ /TiO ₂	50.83	4.51	26.74	0.34

Physical properties of reduced catalysts synthesized by wet impregnation

Physical properties of reduced catalysts synthesized by co-precipitation

Catalyst	BET Area (m ² /g)	Metal surface area (m^2/g)	Pore size (nm)	Pore volume (cc/g)
Ni/TiO ₂	59.04	4.74	33.84	0.49
Ni ₃ Fe ₁ /TiO ₂	44.24	3.95	34.49	0.38
Ni ₁ Fe ₁ /TiO ₂	41.96	3.72	30.08	0.31
Ni ₁ Fe ₃ /TiO ₂	48.28	4.28	35.29	0.42
Ni ₃ Fe ₁ /TiO ₂ -CeO ₂	55.22	4.89	22.09	0.31