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Tables 

Table 1 

Inter-rater Reliability Measures 

 

  

Measure Reliability

Point-to-Point

CIU 86.87%

ICC

CIU 0.995

Duration 0.997

Total Utterances 0.889

MLU Utterances 0.896

MLU Words 0.857

MLU Morhemes 0.869

FREQ Types 0.996

FREQ Tokens 0.978

Words per Minute 0.975

Verbs per Utterance 0.799

Density 0.593

Noun_Verb 0.866

Open_Closed 0.425

Open_Class 0.954

Closed_Class 0.981

Retracing 0.795

Repetition 0.92

Semantic Paraphasias 0.233

Phonological Paraphasias 0.623

Mixed Paraphasia .

Omission 0.882

Abandoned Utterance 0.798

Circulocution .

Reliability
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Table 4 

Significant NBS and FDR Correlations for Network Edges and Language Measures  

 

Network Measure NBS 

FPN CIU Significant 

FPN Semantic Paraphasia ns 

FPN Abandoned Utterance ns 

FPN Density ns 

FPN Unfilled Pauses ns 

FPN % Noun ns 

FPN % Preposition ns 

FPN %Present Participle ns 

FPN Repetitions ns 

FPN Retrace Significant 

FPN TTR ns 

LN CIU ns 

LN Semantic Paraphasia ns 

LN Abandoned Utterance ns 

LN Density ns 

LN Unfilled Pauses ns 

LN % Noun ns 

LN % Preposition ns 

LN %Present Participle ns 

LN Repetitions ns 

LN Retrace ns 

LN TTR ns 
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Table 5  

Summary of Significant Language Measure Correlations 

 
Predictor NBS  

CIU Retrace 

Network 

   

FPN 
Frontal_Inf_Tri_L1 to Frontal_Sup_Orb_R2 3.02 

 

FPN 
Frontal_Inf_Tri_L1 to Precentral_L2 3.39 

 

FPN 
Temporal_Inf_R1 to Precentral_L2 3.58 3.06 

FPN 
Frontal_Inf_Tri_L1 to Frontal_Mid_L2 3.19 

 

FPN 
Precentral_R1 to Frontal_Mid_L2 3.15 

 

FPN 
Frontal_Inf_Tri_L1 to Frontal_Mid_R1 3.26 

 

FPN 
Frontal_Inf_Tri_L1 to Frontal_Mid_R2 3.1 

 

FPN 
Precentral_L2 to Angular_R1 4.05 

 

FPN 
Precentral_L2 to Parietal_Inf_L3 3.1 

 

FPN 
Precentral_L1 to Frontal_Mid_Orb_R2 3.96 

 

FPN 
Frontal_Inf_Tri_L1 to Frontal_Mid_Orb_R2 3.98 

 

FPN 
Frontal_Mid_L1 to Frontal_Sup_Medial_L2 3.31 

 

FPN 
Frontal_Mid_R2 to Frontal_Sup_Medial_L2 3.47 

 

FPN 
Parietal_Inf_L1 to Temporal_Inf_R1 

  

FPN 
Precentral_L2 to Angular_R2 

  

FPN 
Parietal_Inf_L1 to Frontal_Sup_Medial_L2 

  

FPN 
Parietal_Inf_L1 to Frontal_Sup_Orb_R2 

 
3.53 

FPN 
Parietal_Inf_L1 to Frontal_Mid_R1 

 
3.25 

FPN 
Frontal_Inf_Tri_L1 to Parietal_Inf_R1 

 
3.04 
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FPN 
Frontal_Sup_Orb_R2 to Parietal_Inf_R1 

 
3.32 

FPN 
Frontal_Inf_Tri_L1 to Parietal_Inf_L2 

 
3.03 

FPN 
Parietal_Inf_L1 to Angular_R1 

 
3.05 

FPN 
Frontal_Sup_Orb_R2 to Parietal_Inf_L3 

 
3.09 

FPN 
Angular_R1 to Parietal_Inf_L3 

 
3.01 

FPN 
Parietal_Inf_L3 to Frontal_Inf_Tri_L2 

 
3.19 
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Figures 

 

  

Figure 1. Lesion overlap lap; blue indicates few patients had lesions in that area; red/white 

indicates many patients had lesions in that area. The main brain structures with lesions in multiple 

patients include the caudate nucleus (body and tail), premotor cortex, and extending into the 
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Figure 2: LN Edges in HC (left) and PWA (right) at 1000 permutations, T=9, p<.001 
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Figure 3: FPN edges for HC (left) and PWA (right). NBS at 1000 permutations, T=9, 

p<.001. Threshold for edges shown in red is T=15. 
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Figure 4. Summary of significant between group differences. FDR at 1000 permutations, 

p = .050 

  

FPN HC > PWA Significant Edges t value

Frontal_Inf_Tri_L1 to Precentral_R1 3.17

Precentral_R1 to Precentral_L2 3.57

Frontal_Mid_R1 to Frontal_Inf_Tri_L2 3.17

LN HC > PWA Significant Edges t value

L_parsTri to RIFGhomologue 3.51
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Figure 5. FPN CIU Correlations. NBS at 1000 permutations, t(20)>3, p= .014 , Cohen’s 

d=.951 
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Figure 6 FPN Retracing correlation. NBS permutations=1000, t(20)>3, p<.19, Cohen’s 

d=.998 
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Abstract 

Aphasia is the breakdown of language comprehension and production due to an acquired brain 

injury of the left hemisphere. Investigation of the neurological underpinnings of aphasia have 

advanced from post-mortem investigation of specific regions in the 1800s to the utilization of 

brain imaging technology to understand brain networks. These approaches have helped us to 

appreciate the reorganization of the brain and its networks post stroke, particularly as it relates or 

is modified for adequate versus impaired performance. Research into neuroplastic changes can 

elucidate differences between healthy and lesioned brains. Furthermore, identification of 

adaptive (or maladaptive) neuroplastic changes can also inform diagnostics or aid in monitoring 

the neuroplastic effects of evidence-based treatment. This study utilized resting state functional 

MRI to characterize graph theory metrics of language (LN) and cognitive control networks 

(frontoparietal, FPN) in 21 persons with aphasia (PWA) and 18 healthy controls (HC). This 

study further investigated the relationship between strength of connectivity and semantic access 

and errors in PWA during a picture description task. When comparing resting state network 

connectivity of the LN in PWA vs. HC, many edges (10/14) and node degree hubs (3/3) were 

common to both groups for the LN, suggesting that an inherent network that remains relatively 

intact even post-stroke. Analyses yielded similar results for resting state FPN network 

connectivity with common edges and node degree hubs. When investigating correlations 

between network edges and language measures, correlations between FPN edges and CIU’s and 

retracing suggested the importance of right hemisphere and ‘healthy’ edge integrity.  

Keywords:  Aphasia, Graph Theory, Language, Picture Description, resting-state fMRI 
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Cognitive control and language network connectivity associated with language production in 

aphasia                                                                                                                           Cognitive 

control and language network connectivity associated with language production in aphasia 

Aphasia is a breakdown of language comprehension and production due to an acquired 

brain injury, typically a left hemisphere stroke. Understanding aphasia is complex given the 

multifactorial nature of language and the dynamic brain networks likely underlying it. This study 

aims to utilize graph theory approach to investigate the neurobiological underpinnings of aphasia 

in multiple brain networks. Though the investigation of aphasia is not a new venture, the use of 

graph theory to do so is a fairly recent undertaking of researchers.  

To approach understanding the complexity of the neurobiological underpinnings of 

aphasia, early 19th century research noted that language impairment is linked to the brain lesion 

observed post-mortem. In this way, Paul Broca and Carl Wernicke each found left hemisphere 

regions responsible for language production and comprehension, the anterior inferior frontal 

gyrus and posterior temporal area respectively (Tremblay & Dick, 2016). Lichtheim extended the 

approach to include study of connections between regions, and for example found that damage to 

the arcuate fasciculus connecting Broca’s and Wernicke’s areas also results in language 

impairment. Study of the connections between regions has truly advanced our understanding of 

the neurobiology of language by elucidating that there are many connections between regions 

and that damage to any of these can result in language deficits (Tremblay & Dick, 2016). 

Current models of language provide a framework in which multiple regions are involved 

in isolated language processes to perform language processing. For example, the dual stream 

model proposed by Hickock and Poeppel (2004), based initially on a ventral/dorsal stream model 

that exists for visual attention, proposes a ventral (“what”) or dorsal (“where”) stream for 
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processing incoming auditory stimuli. In this model, language processes are simplified, in that 

brain region-to-task specific processes are outlined. The dorsal stream begins with auditory input 

to the phonological network (bilateral mid-posterior STS). The model proposes that this 

information is then processed in the sylvian parietotemporal area (spt, sensorimotor interface; 

Hickock and Poeppel, 2004), where it is translated from sensory codes to the motor system, and 

follows a dorsal connection to an articulatory network in the posterior inferior frontal gyrus 

(IFG), premotor cortex (PM) and the anterior insula. The dorsal pathway is responsible for 

mapping sensory/phonological representations to articulatory representations. This pathway is 

critical for performance of a task such as repetition.  

The ventral stream is the “what” pathway, mapping auditory input to meaning, and is also 

the focus of this study, in particular the brain regions involved for semantics. This pathway 

begins at the decoding level at the spt, traveling in a ventral direction to the phonological 

network (superior temporal sulcus [STS] and the superior temporal gyrus (STG)). Once the 

auditory signal is processed for its spectral and temporal components and a phonological frame is 

formed in the STG, it is thought to then be linked to semantic information by further processing 

involving the posterior middle temporal gyrus (pMTG), posterior inferior temporal sulcus 

(pITS), and the combinatorial network (anterior [aMTG], anterior [aITS]). This pathway is 

essential for performing any task requiring lexical retrieval.  While both streams are involved in 

different aspects of language production, they are also heavily integrated and work in 

conjunction for language comprehension and production. The value of this model is that it 

specifies some roles that brain regions have in different aspects of language, and adds to the 

argument that different aspects of language involve different regions. However, it still may not 

adequately account for natural or connected language processing as a whole.  
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Advances in neuroimaging technology have allowed for the investigation of the 

neurobiology of language in vivo (in contrast to the anatomical studies of 

Broca/Wernicke/Lichtheim), in both healthy and acquired brain injury populations. There are a 

multitude of approaches used to study brain-behavior relationships. While some researchers 

investigate behavioral outcomes secondary to brain lesions or damage to structural connections, 

others seek this answer in healthy participants by investigating functional connectivity. Such 

approaches include static measures of brain physiology that characterize gray and white matter 

structure (magnetic resonance imaging, MRI) or the integrity of white matter connections 

between regions (e.g., using diffusion tensor imaging, DTI). These imaging approaches 

investigate brain structure and can be correlated with language measures acquired outside of the 

scanner to establish brain structure-to-language behavior associations. In addition, dynamic brain 

function acquired during task performance using functional MRI (fMRI) can be used to identify 

regions or networks activated during those specific tasks. Task-based fMRI allows for 

observation of brain activity during task performance, while the participant is actively ‘doing’ 

language. In this way, the brain regions, or networks of brain regions, are identified as they 

interact to accomplish a task. Resting state fMRI is also helpful in providing information about 

brain region/network connectivity, as regions and networks are known to interact even at rest 

(Smith et al. 2009). For example, the nodes of a central executive network are correlated at rest 

and together correspond to cognitive paradigms requiring executive functions (e.g., Smith et al., 

2009). Therefore, tasks are not always required to appreciate network connectivity. The benefit 

of utilizing resting state fMRI data in people with aphasia is that it does not rely on the 

participant’s ability to comprehend or execute a task based in language (Balaev et al., 2016). 
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Therefore, resting state data allows for comparison of network connectivity in healthy controls 

versus people with aphasia that is not biased by task performance.  

The variety of imaging techniques has led to findings regarding language and its 

neurological underpinnings, such as the specificity of brain regions for semantics, identification 

of networks activated during semantic tasks, and the connectivity of semantically-involved 

regions coherently oscillating at rest. However, it is important to note that no single imaging 

measure is the best predictor of language measures. In fact, Pustina and colleagues found that a 

stacked multimodal prediction (STAMP) from three sources (structural connectivity, lesion 

maps, and functional connectivity) best predicted performance on sentence comprehension, 

sentence repetition, picture naming, and aphasia severity scores (Pustina et al., 2017). These 

measures included graph theory metrics: node degree – the number of connections or edges to 

which a node is connected, betweenness – a measure of centrality, local efficiency – the inverse 

of path length, and local transitivity – a measure of segregation for each modality. In addition to 

graph theory metrics, other predictions for severity of aphasia included values of raw pairwise 

connectivity and lesion size. For a semantically involved task (picture naming), the strongest 

predictors of performance were local efficiency in DTI, local transitivity in DTI, and the 

betweenness and pairwise connectivity in resting state fMRI.  

Structural Imaging Findings Relating to Semantics/Language 

Structural imaging data has provided information regarding the specificity of some brain 

regions relative to certain language functions. For example, Halai and colleagues (2017) 

correlated brain lesion volumes with participant performance on language factors identified 

through principal component analysis (PCA). The semantic component (the factor including 

type:token ratio [TTR] for the ‘Cookie Theft’ description, word to picture matching, Boston 
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Naming Test performance, Cambridge 64-item naming, and a 96-synonym judgement) was 

correlated to damage of the left anterior middle temporal gyrus, anterior temporal fusiform 

cortex, and posterior inferior temporal gyrus (Halai et al., 2017). These data suggest that access 

to semantic information for tasks requiring both production and comprehension of content is 

reliant on a spatially diffuse area of the left temporal cortex. 

Similarly, Fridriksson and colleagues (2017) demonstrated degraded connections between 

grey matter regions within the left hemisphere dorsal/ventral streams in individuals with aphasia 

and found that semantic errors on the Philadelphia Naming Test correlated with extent of damage 

to the left middle temporal gyrus (MTG), as well as to the left middle occipital gyrus, left globus 

pallidus, and left angular gyrus. Semantic errors also negatively correlated with white matter 

integrity connecting the left superior occipital gyrus (SOG) and left thalamus, left MTG and left 

SOG, and left STG and left SOG. These findings demonstrate that damage to specific brain 

regions, particularly left temporal areas, or regions involved in a network with them (i.e., the 

ventral stream), correlate with poorer performance on semantically-involved tasks such as 

naming, synonym judgement, word to picture matching, and ratios such as TTR. These findings 

help to confirm that the left temporal lobe is involved in semantics. 

While the above studies have investigated the relationship between left temporal regional 

damage and language performance, further structural investigation has found correlations 

between right hemisphere integrity and stronger language performance as well. For example, 

Hope et al. (2016) found positive correlations between structural change in the brain and 

improvement in a spoken object naming task. These positive correlations were found in the right 

middle temporal gyrus, suggesting that the right hemisphere may play a role in adaptation or 

recovery in people with aphasia (PWA).  Additionally, Balaev et al.(2016) found a negative 
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correlation between gray matter volumes in the right supramarginal gyrus (SMG) and aphasia 

severity. This finding suggests a potential importance of the right hemisphere in adaptive 

neuroplasticity in PWA, as increased volumes in the right hemisphere correlated with less severe 

aphasia. These structural studies have identified regions likely involved with semantics, 

specifically, diffuse left temporal regions, and some right hemisphere regions potentially 

resultant from adaptive neuroplasticity. However, language and its subcomponents are not likely 

represented in focal areas, but rather in several connected regions representing networks. 

Task-based fMRI Studies Relating to Semantics/Language: 

fMRI studies have found networks involved in semantic language tasks/processing. For 

example, Humphreys et al. (2014) identified a semantic network by investigating task-related 

activations in semantic tasks (synonym judgement, semantic association, and category judgement 

across visual and auditory modalities) versus non-semantic tasks (number judgement, stimulus 

matching, and auditory decision). They found certain regions that were specifically active for  

processing semantic information that included the left fronto-temporo-parietal region (left 

fusiform gyrus, left middle temporal gyrus, left temporal pole, bilateral IFG, right middle orbital 

gyrus, and left precentral gyrus, left putamen, and bilateral superior parietal cortex).  

Resting State fMRI and Language: 

Resting state fMRI studies have investigated differences in functional connectivity in 

healthy controls versus people with aphasia. For example, Balaev et al. (2016) found group 

differences between PWA and HC in terms of resting state functional network connectivity 

(rsFNC) between the auditory network and the posterior Default Mode Network (DMN), and 

between the posterior DMN and right frontoparietal network. Both network associations were 

poorly correlated in people with aphasia (PWA) compared with healthy controls. Furthermore, 
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investigation of functional connectivity between right hemisphere regions involved with these 

networks found right superior frontal gyrus (SFG) connectivity in the posterior DMN in PWA 

only. These functional connectivity differences between groups were hypothesized to result from 

both left hemisphere lesions (decrease in auditory network-posterior DMN functional 

connectivity), as well as compensatory plasticity (increase in right hemisphere region 

connectivity).  

Additionally, resting state fMRI studies have found that functional connectivity amongst 

regions of the language network correlate with language performance in PWA. For example, 

Ramage et al. (2020) found correlations between left IFG-left middle frontal gyrus, and right 

posterior MTG and right IFG correlated with higher Word Finding and WAB-R Naming scores. 

These findings are in line with other studies discussed regarding the role of the MTG and IFG in 

semantics (Fridriksson et al., 2017; Halai et al., 2017; Hickock & Poeppel, 2004; Humphreys et 

al., 2014). Not only are they identified in structural imaging as being important, but their resting 

state connectivity with other regions also correlates with semantic performance in PWA. The  

involvement of the right hemisphere regions in PWA for both language-identified ROIs and in 

the posterior DMN again suggest the potential for a compensatory role of the right hemisphere 

post-stroke. 

Cognitive Control 

Baleav et. al’s (2016) findings introduce investigation into networks other than the 

language network for the study of the neurobiology of language in PWA. That is, in addition to a 

language network, there is also a potential role for cognitive control networks in language 

processing, particularly when the language task requires more cognitive effort. Several studies 

have investigated the relationship between executive function and language networks, 
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particularly for complex language tasks. For example, a multiple domain (MD) network 

(bilateral frontal, parietal, opercular and cingulate cortex) that is known to support cognitive 

tasks and is related to cognitive control, working memory, and goal directed behavior becomes 

engaged when individuals are comprehending sentences (e.g., Diachek et al., 2020). These 

authors found that the language network alone was active for passive auditory comprehension of 

sentences, but that the MD becomes engaged when additional cognitive effort is needed for 

sentence comprehension tasks (picture-sentence matching, sentence rating, or answering 

comprehension questions). Similarly, Humphreys et al. (2015) found that activity of a semantic 

network and the DMN during task performance overlapped considerably, but also varied 

depending on stimulus type, task difficulty, modality, and the semantic nature of the tasks. For 

example, bilateral angular gyrus (common to both networks) was deactivated for all tasks, but 

more strongly deactivated for non-semantic tasks. Therefore, while cognitive control networks 

are engaged for language tasks, they are not part of the core language network. Rather, cognitive 

control networks are recruited for more complex tasks. Thus, overlap between these two 

networks exist, but is modulated depending on the nature of the linguistic task. 

These collective findings suggest that there is an inseparable role of cognitive control 

systems to support cognitively effortful or complex language tasks in HC and PWA. Connected 

language or natural discourse requires more cognitive control network involvement, given their 

multiple demands. This is supported by Aylahya et al. (2020), as story retelling correlates with a 

slower speech rate (inferred as an index of increased processing demands) and increased lexical 

diversity compared to other narrative tasks that are considered less demanding. Investigation of 

the relationship between cognitive control and language networks will lead to a deeper 
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understanding of the brain’s role in language production and comprehension, as well as of how 

these networks interact or change post-stroke. 

Graph Theory 

One method for investigating neural connectivity in both language and cognitive control 

networks is graph theory. Graph theory is an approach to investigating complex neural network 

properties. Though graph theory dates back to the 18th century, its application to neural networks 

is fairly new. Network analysis describes properties of complex systems such as neural networks 

(Rubinov & Sporns, 2009). A network is defined as a mathematical representation of a complex 

system in the real world and consists of nodes (brain regions in imaging application) and edges 

(connections between two nodes). For functional imaging, connectivity pertains to the magnitude 

of temporal correlations between nodes. Some of the properties that graph theory can output 

include node degree, as described above per Pustina et al. (2017).  

Network-based statistics (NBS) is a statistic used to characterize and contrast networks 

(Zalesky 2010). NBS is a method that is used with mass univariate testing, controlling for 

family-wise error (FWE) in order to identify functional connections. In functional connectivity 

imaging, the strength of the connections between nodes is measured as a value of temporal 

correlation. NBS can identify group differences in a single edge (e.g., weaker connection in one 

group) or a disconnected subnetwork (e.g., a set of all the disconnections).  

Networks can also be characterized by the density and length of edges. Node degree is 

the number of connections or edges to which a node is connected. A node with a high degree 

indicates that it is a hub of connectivity and more integrated with the other nodes of the network, 

whereas a node with low degree is more segregated.  
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These measures provide more information about how networks within the brain interact 

with each other, and where certain ‘hubs’ or nodes with many edges are. These graph theory 

measures are used in this study to investigate differences in connectivity between PWA and HC, 

node degree measures for PWA and HC, and correlation of these two to language measures.  

The present study will utilize graph theory metrics (network-based statistics, node 

degree) to characterize rsfMRI data of the language network (LN) and the fronto-parietal 

network (FPN) in persons with aphasia (PWA) relative to healthy controls (HC). As well, 

correlations between these graph theory metrics, or combination of metrics, and semantic content 

in connected language production will help to identify which are potential predictors of language 

in PWA. The long-range goal, if specific metrics are found to predict semantic 

performance/content, is to determine the role of brain imaging in diagnostics, or the potential for 

brain imaging to be used to track progress in semantic interventions for PWA.  

Aims and Hypotheses: 

1. Characterize graph theory metrics of language networks in PWA to controls. 

a. PWA will have more dysconnections (pairs of nodes showing weaker association 

in the group) in the LN compared to healthy controls.  

i. Hypothesis a0- PWA and HC will not differ for number of dysconnections.  

b. Node degree will indicate differing hub structure in the LN by group, with right 

hemisphere nodes having higher summed node degree than left in the PWA group. 

The opposite will be true in the HC.  

i. Hypothesis b0 – no group or laterality differences in node degree for the 

LN. 
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2. LN/FPN functional connectivity strength will correlate with measures of semantic 

content produced in connected language of PWA. 

a. Stronger LN connectivity particularly in the middle temporal gyri (MTG), 

superior temporal gyri (STG) and angular gyri, will correlate with better semantic 

access. 

i. Hypothesis 20- there is no correlation between LN connectivity strength 

and semantic access during connected language. 

b. More connectivity strength in FPN will correlate with better semantic access 

during connected language. 

i. Hypothesis 20- no correlation 

c. Higher node degree in LN nodes; specifically the middle temporal gyri (MTG), 

superior temporal gyri (STG) and angular gyri, will associate with the importance 

of these nodes in connectivity for semantic access during language production. 

i. Hypothesis 20- no correlation  
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Methods 

Participants: 

21 right-handed individuals with chronic left-hemisphere stroke and aphasia (PWA) were 

included in speech-language assessments, providing audio-recorded language samples and 

resting-state functional MRI. 18 healthy, age-matched controls also underwent functional MRI. 

Inclusion criteria were: 18-75 years of age, right-handedness, native English speaker, and no 

contraindications for undergoing an MRI. Furthermore, to be eligible, participants had no history 

of uncorrected hearing, vision or other sensory impairments; cognitive impairments (assessed 

with the Mini Mental State Exam in HC and Raven’s Colored Progressive Matrices in PWA); 

premorbid speech, language or reading impairments; or substance abuse. All subjects gave 

written consent to participate in the study per the Sydney Local Health District Human Research 

Ethics Committee.   

Speech and language measures:  

PWA underwent speech and language testing to diagnose and determine severity of 

dysarthria, apraxia, and severity and type of aphasia. The battery included: Western Aphasia 

Battery-Revised, the Motor Speech Examination, Raven’s Progressive Colored Matrices, Apraxia 

Battery for Adults-increasing word length, Psycholinguistic Assessments of Language Processing 

in Aphasia (PALPA )-auditory word discrimination, and connected speech samples for a Story 

Retell Procedure (c.f., Ballard et al., 2016; New et al., 2015 for full test battery description). For 

the present study, the picture description subtest of the WAB, in which patients were instructed to 

describe the ‘Picnic Scene’ in their own words, was analyzed using CHAT/CLAN (Macwhinney, 

2010). In addition to the morpho-syntax analysis of CHAT/CLAN (e.g., type token ratio; and 



NETWORK CONNECTIVITY IN APHASIA                                                                              13 

 

 

words per minute), coding for the following variables was included (Casilio et al. 2019; Mack et 

al. 2015;Tochadse et al., 2018):  

1. Semantic paraphasia: a real word that is semantically related but not 

phonologically related to the target word   

2. Filled pause: when words are used as fillers (i.e. um, uh, hm) preceding a target word  

3. Unfilled pause: a period of silence lasting for longer than .9 seconds 

4. Circumlocutions: a description of a target word without an attempt to produce the 

name  

5. Abandoned utterance: Utterances that are left incomplete. The speaker may stop 

talking, attempt to gesture, move on with another utterance/idea, or conclude the 

utterance vaguely (e.g. shrug, “you know”) (Casilio et al. 2019) 

6. Omissions: words not used in a place that they should be (Casilio et al. 2019) 

Additionally, as in Nicholas & Brookshire (1993), transcriptions were also coded for 

correct information units (CIU’s) which are defined as a measure evaluating the communicative 

informativeness of PWA in connected language.  

CLAN Transcription 

Audio language samples were transcribed by two graduate students using CHAT 

conventions in CLAN. The two graduate students transcribed 100% of the samples 

independently in three blocks of 7 transcriptions. Raters were previously trained and established 

reliability following each of the three transcription blocks. EVAL (MacWhinney, 2010) was run 

for each transcription to output measures and scores for various morphosyntax measures. 

After each transcription block was completed, interrater reliability was analyzed using a 

two-way, random intraclass correlation coefficient (ICC) with absolute agreement. 
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Disagreements were then discussed and resolved, and consensus transcriptions were created. 

Furthermore, the transcription and coding rules were updated if necessary. For example, it was 

determined after block 2 that semantic paraphasias followed by a correction should be double 

coded as a semantic paraphasia and a subsequent retracing. Coders corrected this in the block 2 

consensus transcriptions as well as the block 1 transcriptions, and implemented this rule for the 

transcription of block 3. 

Consensus samples were then separated into C-units (main clause + its dependent 

clauses) (Miller, Andriacchi & Nockerts, 2016) . The end of an utterance/C-unit was determined 

by the following: complete structure (main clause and all its dependent clauses) coordination 

conjunctions (used to connect two main clauses): For, And, Nor, But, Or, Yet, So; or a terminal 

intonation contour (Ratner & Brundage, 2020).  

Correct Information Units 

Correct information units (CIUs) were manually counted by the same raters. Correct 

information units were counted using guidelines from Nicholas & Brookshire (1993). Research 

assistants met to review the guidelines and practice on a sample. They then individually coded 7 

training transcriptions, and met to establish reliability and consensus. Any disagreements were 

discussed, and rules or examples were updated for the next set. When the two research assistants 

could not come to agreement, then an expert third party was consulted to make a final decision. 

For example, after some discussion, the words ‘sandcastle’ and ‘flagpole’ were determined to be 

one CIU each. Following this decision, all previous transcriptions were corrected to reflect this if 

needed. Additionally, the same process was completed for the determination that in the case of an 

unintelligible noun any article preceding it or contraction attached to it was still counted as a 

CIU. Following the completion of each block, both ICC and point-to-point reliability were 
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calculated. Consensus transcripts were created after disagreements were discussed and with the 

most updated set or rules. 

It is noteworthy that though the guidelines from Nicholas & Brookshire (1993) were 

used, certain rules were re-evaluated for consistency’s sake (see appendix A). For example, root 

words were counted as CIU’s despite an inaccuracy of plural /s/ use. 

ICC interrater reliability for EVAL variables is reported in Table 1. 

Pause Analysis 

Both filled and unfilled pauses are indicative of word finding/semantic difficulties and 

were thus investigated in this study. Filled pauses were defined to be filler words such as: uh, 

um, mhm, hm, and were manually coded in CLAN. Unfilled pauses were instances of silence 

lasting longer than a predetermined duration, and were investigated by one graduate student 

using Praat software in conjunction with a script from Speech Corpus Toolkit (SpeCT) was used 

(v1.102.2). This script uses a long sound audio to run intensity analyses. The output of this script 

includes a raw number of silences and a text grid, where utterance and silence (unfilled pause) 

boundaries are indicated. The parameters for marking these unfilled pauses can be defined by the 

users. The settings for this study included all default settings with the exceptions of minimum 

duration, maximum intensity, and boundary margin. Minimum duration was changed from .39 

to .9 seconds. Maximum intensity for a silence was 65 db SPL. The boundary margin was 

decreased to .01. Thus, an unfilled pause was defined to be a minimum duration of .9 seconds 

and a maximum intensity of 65 db SPL.  

The same student reviewed each text grid to discard and counted pauses that were outside 

of the picture description (spontaneous speech before or after the task), or pauses that were 
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counted as more than one because of coughing or other miscellaneous sounds that were not 

utterances.  

Image acquisition/Preprocessing 

A Philips 3T TX MRI scanner was utilized to acquire T-1-weighted structural and resting 

state echo-planar imaging fMRI data. Blood oxygen-level dependent contrast was used in the 

acquisition of 216 resting state echo-planar images. 

Structural scans were normalized to Montreal Neurological Institute space in SPM 8 

((http://www.fil.ion.ucl.ac.uk/spm)). The “unified segmentation” algorithm was utilized. In the 

PWA, “lesion” was added to segmentation as an extra tissue class separate from 

gray/white/cerebrospinal fluid (Seghier et al., 2008). Segmentation output images were smoothed 

with an 8mm isotropic kernel full width at half maximum. Each voxel identified the probability 

of tissue belonging to a specific class. This tissue class image was utilized to calculate and 

determine lesion volumes with the automated lesion identification algorithm (ALI toolbox) in 

SPM8. The calculated lesion volumes (cm^3) were included in analyses. 

Head movement was corrected for in echo-planar images with a two-pass procedure of 

affine registration in SPM8. Mean echo-planar images for subjects were created and normalized 

spatially to the Montreal Neurological Institute (MNI) template. Images were smoothed using a 

5mm full width at half-maximum Gaussian kernel. False correlations were accounted for by 

removing variance associated with motion and physiological noise. Data was then bandpass 

filtered, frequencies between 0.01 and 0.08 Hz were preserved.  

ROI Selection.  

Two networks were investigated in this study: the language network (LN) and 

frontoparietal network (FPN). The LN nodes were defined utilizing an automated meta-analysis 
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of 871 brain imaging studies (http://neurosynth.org/decode; Yarkoni et al., 2011). These 871 

studies were those grouped into Topic 44, which included coding for keywords: semantic, word, 

words, priming, processing, repetition, language, lexical, verbal, naming, fluency, verbs, task, 

production, nouns, meaning, picture, decision, effect, verb, semantically, noun, association. The 

list of studies included in Topic 44 are reported in Appendix B. The convergence of topics in this 

group of studies on lexical-semantics indicated it as a viable language network for the purposes 

of this study. ROIs for the FPN were those proposed by Power and colleagues (Power et al. 

2011)  including the dorsolateral prefrontal cortex, inferior parietal lobule, precuneus, middle 

cingulate cortex, dorsal frontal cortex, and intraparietal sulcus. The time series for each of the 

ROIs were extracted by creating 5mm spherical binary masks around the coordinates for the LN 

and FPN networks using Response Exploration for Neuroimaging Datasets (REX; Duff, 2008) 

for each subject.  

Graph Theoretical Analyses 

The Network Based Statistic (NBS; Zalesky et al., 2010) was used to assess the main 

effect of group (HC vs. PWA) and the relationship between network connectivity and several 

language measures. This graph theory method allows for more control over family-wise error 

(FWE) while identifying connections (or edges) in a graph. Cohen’s d was used to calculate 

effect sizes for t-tests.  

From the time series extracted for each node for each participant, correlation matrices for 

each subject and network were created and then concatenated. These concatenated matrices were 

utilized to create a design matrix to be used in NBS. Comparisons between groups for the LN 

and FPN were assessed with NBS corrections for multiple comparisons and statistical threshold 

set at t > 2, and p <.05 with 1,000 permutations. If contrasts did not reach significance with NBS, 
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then the false discovery rate was utilized. NBS was also utilized to investigate the relationships 

between network functional connectivity and several language measures in the PWA group. 

In addition, node degree was also calculated for each network and group. Node degree 

can be utilized to identify “hubs”, or nodes with a multitude of connections to other nodes within 

networks. 
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Results 

Participants. Demographics for the PWA sample are reported in Table 2, and language 

measures gained are reported in Table 3.   Figure 1 displays the results from the lesion overlap 

map. In PWA, the regions of greatest overlap were: left caudate, left inferior parietal lobule, left 

precentral gyrus, left mid frontal gyrus, and left post central gyrus. The greatest number of 

patients with a lesion in the same region was 14, while smallest number of patients that had a 

lesion in the same region was 5. 

Group Differences Within the Resting State Networks 

Language Network. 

Characteristics of the LN differed by group in a few ways (Figure 2). First, while the LN 

was defined by Neurosynth included 15 nodes, the significant network identified in PWA LN had 

10 nodes and 10 edges, t(20)>9, p < .001Cohen’s d = 3.89, and in HC LN had 11 nodes and 14 

edges in the t(17)>9, p < .001 Cohen’s d =3.01. Thus, not all nodes of the LN were significantly 

connected to the rest of the network at rest in either group. It is noteworthy that all 10 LN edges 

in the PWA group were also present in the HC group. The commonality of these edges suggests 

the existence of an inherent network of nodes and edges present in both groups.  

The only statistically significant between-group difference was the stronger connectivity 

of the left pars triangularis- rIFG homologue edge in the HC relative to PWA, t =3.51, p = .05. 

No statistically significant edges are noted to be stronger in PWA compared to adults. Figure 4 

summarizes between group findings for both FPN and LN. However, while the groups did not 

differ significantly, the strength of those edges differed by group with: 4 being stronger in the HC 
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(left pars triangularis-left IPL; left MTG-right MTG; right STG-right MTG; LIPL- right IFG 

homologue) and 6 being stronger in PWA (left MTG-left PMeFrontal; left MTG-leftIPL; left 

PMeFrontal-left SFG; left MTG-left precuneus; left IPL-left precuneus; right fusi-left 

precuneus). In addition to the 10 common edges, the HC had significant connections between the 

left pars triangularis-left posterior medial frontal, left middle temporal gyrus (MTG)-left superior 

frontal gyrus (SFG), left caudate nucleus-left precuneus, and left pars triangularis - right inferior 

frontal gyrus homologue (rIFG). These edges are noted to involve mostly left-sided nodes, with 

the exception of the rIFG.  

In regard to node degree, the ‘hubs’ or nodes with the most edges relative to the network 

for healthy controls included left MTG (5), left inferior parietal lobule (4), and left precuneus (4). 

Node degree hubs in PWA included those same nodes: left MTG (4), left inferior parietal lobule 

(4), and left precuneus (3). The overlap in common node degree hubs between both groups 

suggests an innate, consistent network, with similar regions that are maximally connected within 

the network that is intact for both HC and PWA.  

Frontoparietal Network. 

Figure 3 presents the resting state edges for the FPN for PWA and HC. The FPN for 

patients had 102 edges, t(20)>9, p <.001, Cohen’s d= 1.337, and the healthy control network had 

125 edges, t(17) > 9, p < .001, Cohen’s d= 1.146. When investigating significant edges with t > 

15, HC had 20 edges and PWA had 19. Of these, with 10 edges being common to both groups. It 

is noteworthy that all 10 common edges were stronger in the PWA. No group differences existed 

with NBS, but there was stronger connectivity of the left frontal inferior gyrus-right precentral, 

right precentral – left precentral2, and right middle frontal gyrus – left inferior frontal gyrus (pars 

triangularis) in the HC relative to the PWA, t(38) > 3.17, p = .05. Between group differences 



NETWORK CONNECTIVITY IN APHASIA                                                                              21 

 

 

were also assessed with FDR correction  three edges in the FPN were statistically stronger in HC 

when compared to PWA, Cohen’s d=1.907. Of these three, one is noted to be a significant edge 

in the HC resting state FPN network (left frontal inferior gyrus-right precentral). All three edges 

in this network involved left-right node connections.  

Of the edges significant only in the healthy controls, 2 involved left-sided nodes only, and 

7 involved left-right connections. In the PWA, unique edges consisted of 3 left-sided, 3 right-

sided, and 4 left-right edges. Table C in the appendix presents FPN edges for both HC and PWA, 

in which edges common to both groups is bolded. In HC, the hubs for node degree included the 

right inferior triangularis (18), and the right angular gyrus (18). For PWA, the hubs for node 

degree included the right inferior triangularis (16), and right angular gyrus (16) as well.  

When visually inspecting only the strongest edges in each group (t > 15 as in Figure 3), it 

is evident that the posterior bilateral edges were strongest in PWA, as well as with the right-

hemisphere posterior-anterior edges, but fewer strong anterior bilateral edges are noted. The HC, 

in contrast, had a larger number of strong bilateral and anterior-posterior edges.  

Correlations with Language Measures 

NBS was initially run to investigate whether there were any significant results (t > 3 with 

p =.05). Table 4 describes where significant results were found, if any. Two language measure 

correlations (CIUs and retracing) for the FPN were significant. Table 5 summarizes the results of 

the NBS analyses run to correlate edges with language measures.  

Figure 5 presents the 12 edges of the FPN that correlate with CIU in PWA, t(20) > 3, p 

= .014, Cohen’s d = .951. In general, significant nodes appear to involve left parietal regions and 

right anterior and posterior regions. 10 edges are noted to involve left-right connections, while 

two involve left sided nodes only. In this, the left inferior triangularis is noted to be the ‘hub’ for 
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node degree with 6 connections. Thus, the integrity of this node may indicate a more intact 

network for semantics. Furthermore, five of these 10 edges were noted to be edges significant in 

HC resting state FPN networks. These edges all involved the left frontal inferior gyrus, left 

precentral gyrus, or left frontal superior medial.  

Figure 6 presents the 10 edges of the FPN that correlate with retracing in PWA, t(20) > 3, 

p<.19, Cohen’s d=.998 . Six edges are noted to involve left-right connections, while 2 edges 

involve only left sided nodes, and 1 edge involves only right-sided nodes. Furthermore, six of 

these edges are noted to be present in the HC resting state network. In this, hubs are noted to be 

found in the left frontal inferior triangularis (3), left parietal inferior-1 (3), right frontal superior 

orbitalis (3) and left parietal inferior (3).  
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Discussion 

This study analyzed rsfMRI data in HC and PWA to 1.) characterize graph theory metrics 

of language and cognitive control networks and 2.) investigate correlations between these 

networks’ functional connectivity strength and measures of semantic content produced in 

connected language of PWA. Findings included relatively common network connectivity 

between HC and PWA, particularly in the language network, indicative of relatively spared 

intrinsic connections within each network that may be resilient even post-stroke. Additionally, 

correlations between FPN edges and language measures were suggestive of the importance of 

intactness of the ‘healthy’ network connections (connections present in the healthy controls) as 

well as the right hemisphere for the informativeness of picture descriptions. As well, the FPN 

appears to play an important role in aspects of language production that may require more 

cognitive demand, for example for detecting and correcting conveyance of information (i.e., 

retracing).  

Resting State Network Connectivity 

Characterization of graph theory metrics of the language network and frontoparietal 

(cognitive control) network in PWA and HC indicated edges that were common to both groups. 

In the LN, which encompasses largely left hemisphere nodes, there were only four edges that 

were significant in the HC that were not also present the PWA. Thus, the commonality of edges 

within the language network in the PWA is suggestive that inherent or innate connections of the 

language cortex can survive, at least at rest, post-stroke. The four edges absent in the PWA group 

relative to HC were potentially present within the damaged cortex in the left hemisphere. In 

particular, the L pars triangularis-RIFG homologue edge statistically differed between groups 



NETWORK CONNECTIVITY IN APHASIA                                                                              24 

 

 

(HC>Patients), as was the case in Ramage et al. (2020) and New et al. (2015). Both of those 

studies conducted similar analyses with similar regions using this same data set. These studies 

found a negative correlation between this connection and expert severity ratings of apraxia of 

speech (AOS) (New et al., 2015). This measure does not directly relate to language measures 

investigated in the current study. However, the presence and severity of AOS can contribute to 

performance in a picture description task (i.e., motor planning difficulties may contribute to 

pausing, retracing, or repetition), and thus can provide a fuller picture of overall performance. 

Therefore, the first hypothesis: PWA will have more dysconnections (pairs of nodes showing 

weaker association in the group) in the language network compared to healthy controls, is 

supported because HC have 4 additional unique edges. However, the commonality of most edges 

is noteworthy. 

In regard to the FPN, there were again edges that were strongly present in both groups 

that may indicate preserved integrity of inherent or innate connectivity of this network. However, 

there were nine edges present in the HC that were not present in the PWA. Of those nine, seven 

were bilateral edges and two involved only left-hemisphere nodes. As with the LN, the absence 

of these edges in the PWA may be attributed to post-stroke damage, as the PWA FPN is noted to 

have fewer bilateral parietal connections (see Figure 3).  

Node Degree 

In regard to the second hypothesis: Node degree will indicate differing hub structure in 

the language network by group, with right hemisphere nodes having higher summed node degree 

than left in the PWA group. Though lesion location affected node degree in frontal regions of the 

left hemisphere, nodes and their degrees were very similar across groups. Therefore, this 

hypothesis was not supported. The nodes most involved in network connectivity were the same 
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for each group, with subtle differences in general node degree. This finding, evaluated with node 

degree, suggests that even when there is lesioned tissue in the left hemisphere, the same ‘hubs’ of 

connectivity existed in both PWA and HC. These findings regarding node degree appear to be 

slightly different than other studies that have investigated node degree in focally damaged brains. 

For example, Nomura et al. (2010) investigated the effects of focal brain damage to two 

cognitive control networks using rsfMRI data. They found that network damaged correlated with 

decreased functional connectivity for that network, yet spared the network that did not have a 

lesion. Though the present study also investigated rsfMRI data for multiple networks, lesions 

were noted to occur with nodes of both networks. However, findings from Nomura et al. (2010) 

would encourage further investigation into how these networks are interacting with each other. 

Furthermore, these investigators found that simulated lesions in the same networks from HC data 

resulted in less severe changes in functional connectivity than the actual lesioned data. These 

findings suggest that the diminishing connectivity in patients with lesions is evidence of 

diaschisis, as damage to specific areas appears to result in decreased connectivity in functionally 

connected non-lesioned areas.  These results may explain some of the subtle differences in node 

degree found between groups.  

Tao & Rapp (2021) found that fMRI of post-stroke patients differed in network properties 

relative to a healthy control group with a simulated lesion (node subtraction). Researchers 

hypothesized that neuroplasticity post-stroke was responsible for the reorganization of local hubs 

in the lesioned data that was not reflected in the simulated lesion data. Therefore, the similarities 

in LN hubs in these data despite focal damage to the left hemisphere may be due to neuroplastic 

changes that occur in the stroke recovery process.  
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Language Measure Correlations 

We also investigated whether LN and FPN functional connectivity strength associated 

with language measures of semantic content produced in PWA. Somewhat surprisingly, these 

analyses revealed that there were only correlations of language variables to FPN edges, 

specifically CIUs and retracing. There were no significant correlations with LN edges. Therefore, 

the hypothesis that stronger LN connectivity particularly in the middle temporal gyri (MTG), 

superior temporal gyri (STG) and angular gyri, will correlate with better semantic access was not 

supported. However, the hypothesis that more connectivity strength in the FPN will correlate 

with better semantic access during connected language, was supported because of its correlations 

with CIUs and retracing. 

CIU’s are indicative of intact semantic performance, along with other language processes. 

For example, in order to produce a CIU, individuals must recognize the features in the picture 

and make semantic associations amongst the elements. However, syntactic processes are also 

needed to generate the concept the participant wishes to convey, and encode that concept into a 

grammatically correct message. Therefore, production of CIUs is an involved task that requires 

several processes. While we had anticipated that intactness and connectedness of the LN would 

correlate with CIU production, it was the FPN in which edge strength associated with CIUs.  

Stronger edges connecting left parietal to right anterior and posterior nodes associated with 

production of a larger number of CIUs (see Figure 5) . The hub for these edges, or node most 

involved in the edges associating with CIUs, was the left anterior pars triangularis, Brodmann 

area 45 and a considerable portion of Broca’s area. In regard to the pars triangularis specifically, 

Foundas et al. (1996) found that leftward asymmetry of the pars triangularis on volumetric 

magnetic resonance imaging scales was suggestive of this left hemisphere node’s role in 



NETWORK CONNECTIVITY IN APHASIA                                                                              27 

 

 

language. Therefore, integrity of this area may indicate a more intact network for semantics and 

language.  

Retracing in connected language tasks suggests a certain level of self-monitoring for 

errors and self-correction. Retracing was noted in transcripts involving several different 

processes. For example, retracing (coded as [//]) was utilized after word fragments (“the boy has 

uh a &+ka [//] uh a &+flor [//] like a &+kl [//] &+ff [//] &+fos [//] floss yeah”). This type of 

retracing may be involved with motor planning or phonological representations, as the 

participant appeared to be monitoring auditorily and retracing inaccurate attempts at the target 

phonological string. Additionally, retracing has also been noted following whole words (“oh the 

neighbor’s making [//] catching a fish for dinner”). This type of retracing is indicative of 

monitoring of word choice, as the participant appears to retrace following an inaccurate verb 

selection. Therefore, retracing can involve varied language processes (phonology vs. semantics), 

but still requires self-monitoring for errors in both aspects.  

Nine edges of the FPN correlated with the frequency of retracing, six of which involved 

bilateral nodes. Hubs for the subset of edges associated with retracing included the left pars 

triangularis, left inferior parietal lobule, and right pars orbitalis. In particular the left inferior 

triangularis connectivity may suggest that the integrity of this node correlates with stronger 

language/semantic performance. The involvement of the FPN, a cognitive control network, in 

retracing suggests domain general functioning to monitor and correct language production on-

line. This is opposed to considering retracing to be involved as a core language function. These 

findings align with Diachek et al. (2020) who found increased involvement of a multiple demand 

network in language comprehension tasks that were hypothesized to require more cognitive 

control with increasing demands for attention, memory, or syntax processing. While the present 
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study did not manipulate the complexity of the stimuli as exquisitely, picture description is also 

complex and cognitively demanding (c.f., Aylahya et al., 2020). Therefore, because picture 

description requires more connected language, it may be more cognitively demanding and 

require more cognitive control for the monitoring of errors as well as the to accommodate the 

increased cognitive demand in the task when compared to less cognitively demanding tasks such 

as naming.  

The hypothesis that higher node degree in language network nodes would associate with 

the importance of these nodes in connectivity for semantic access during language production 

was not supported. Specifically, we hypothesized that the middle temporal gyri (MTG), superior 

temporal gyri (STG) and angular gyri node degrees would correlate with semantic measures, 

given their documented roles in semantic processing (Fridriksson et al., 2017; Halai et al., 2017; 

Hickock & Poeppel, 2004; Humphreys et al., 2014), but these nodes did not have higher node 

degree in either group for the language measure correlations. Rather, regions such as the left pars 

triangularis, left inferior parietal lobule, and right pars orbitalis of the FPN appear to correlate 

with measures as hubs with increased CIUs or retracing.  

Overall, both groups had relatively similar connectivity for both networks. These 

similarities also appear to impact language performance, as the integrity of existing ‘healthy’ 

edges in PWA correlates with successful language. Furthermore, important nodes in both resting 

state networks and their correlations to successful language production include the left anterior 

triangularis, which has long been established to be pertinent to language function. However, its 

presence in both the LN and FPN is noteworthy, and future directions include investigating the 

interaction between these networks themselves. Additional future directions include investigation 

of graph theory metrics such as resilience or modularity with these data to identify node 
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connectivity, as well as its connectedness with other networks, and would thus reveal more 

information regarding the interactions between different networks.  

The noted correlations between language measures and the FPN, which is primarily 

thought to be a cognitive control network, provide evidence of the increased demand of a picture 

description task that may require more domain general functioning in addition to core language 

function. 

Limitations 

Limitations for this study included the small sample size. This sample size may have 

contributed to the limitations with running NBS as opposed to FDR. Additionally, the small 

sample size paired with the heterogeneity in the sample related to lesion location may also affect 

the power of analyses run.  

Additionally, in all analyses run, lesions were not taken into account. For example, lesion 

volume was not controlled for. In future analyses, lesion masking, or excluding nodes in which 

there is a loss of gray matter in several participants may be necessary. 

Furthermore, eight of the 21 PWA were noted to have a comorbid diagnosis of AOS. At 

the connected language level, AOS could have effects on instances of pausing, repetition, and 

retracing. Therefore, future studies should control for presence of AOS.  

Conclusion: 

Language and cognitive control networks were investigated in this study. Graph theory 

metrics were characterized for both healthy controls and people with aphasia, revealing relatively 

similar patterns of connectivity in both networks, despite the left hemisphere damage in the PWA 

group. Furthermore, several edges were correlated with language measures indicative of 

successful language performance. Some of these edges were pre-established in the resting state 
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networks in HC, or both groups, while others appeared to be new and indicative of 

neuroplasticity. The correlation between FPN network edges and language measures may be 

indicative of the role of higher-level cognition in more demanding tasks such as a picture 

description, as well as the increased role in cognitive control to compensate for damage to 

language centers in the brain.  
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Appendix 

 

A. Rules Amended for CIU coding: 

Nicholas & Brookshire (1993) provided the example that if a picture showed one boy and 

one girl arriving and the utterance was “The boys and girls are arriving”, then ‘boys’ and ‘girls’ 

would not be counted because of the inaccuracy of the plural. However, this rule was amended 

so that despite an inaccuracy of plural, the root word would still be counted as a CIU.  
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Brain research 0.37 

Incongruent 

abstract stimulus-response 

bindings result in 

response interference: 

FMRI and EEG evidence 

from visual object 

classification priming. 

Horner AJ, 

Henson RN 

Journal of 

cognitive neuroscience 

0.37 

Priming words 

with pictures: neural 

correlates of semantic 

associations in a cross-

modal priming task using 

fMRI. 

Kircher T, 

Sass K, Sachs O, 

Krach S 

Human brain 

mapping 

0.367 

This is your brain 

on Scrabble: Neural 

correlates of visual word 

recognition in competitive 

Scrabble players as 

Protzner 

AB, Hargreaves IS, 

Campbell JA, 

Myers-Stewart K, 

van Hees S, 

Cortex; a journal 

devoted to the study of 

the nervous system and 

behavior 

0.367 

https://neurosynth.org/studies/24038636/
https://neurosynth.org/studies/24038636/
https://neurosynth.org/studies/24038636/
https://neurosynth.org/studies/24038636/
https://neurosynth.org/studies/24561187/
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https://neurosynth.org/studies/21447325/
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measured during task and 

resting-state.  

Goodyear BG, 

Sargious P, Pexman 

PM 

Predication drives 

verb cortical signatures.  

Hernandez 

M, Fairhall SL, 

Lenci A, Baroni M, 

Caramazza A 

Journal of 

cognitive neuroscience 

0.364 

Neuroimaging the 

short- and long-term 

effects of repeated picture 

naming in healthy older 

adults. 

MacDonald 

AD, Heath S, 

McMahon KL, 

Nickels L, Angwin 

AJ, Hees SV, 

Johnson K, 

Copland DA 

Neuropsychologia 0.363 

Segregating 

semantic and syntactic 

aspects of processing in 

the human brain: an fMRI 

investigation of different 

word types.  

Friederici 

AD, Opitz B, von 

Cramon DY 

Cerebral cortex 

(New York, N.Y. : 1991) 

0.362 

Demand on verbal 

working memory delays 

haemodynamic response 

in the inferior prefrontal 

cortex.  

Thierry G, 

Ibarrola D, 

Demonet JF, 

Cardebat D 

Human brain 

mapping 

0.362 

Taxonomic and 

thematic categories: 

Neural correlates of 

categorization in an 

auditory-to-visual priming 

task using fMRI. 

Sass K, 

Sachs O, Krach S, 

Kircher T 

Brain research 0.362 

Priming picture 

naming with a semantic 

task: an fMRI 

investigation. 

Heath S, 

McMahon K, 

Nickels L, Angwin 

A, MacDonald A, 

van Hees S, 

Johnson K, 

Copland D 

PloS one 0.361 

A supramodal 

brain substrate of word 

form processing--an fMRI 

study on homonym 

finding with auditory and 

visual input. 

Balthasar 

AJ, Huber W, Weis 

S 

Brain research 0.359 

https://neurosynth.org/studies/26026707/
https://neurosynth.org/studies/26026707/
https://neurosynth.org/studies/24564433/
https://neurosynth.org/studies/24564433/
https://neurosynth.org/studies/26071256/
https://neurosynth.org/studies/26071256/
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https://neurosynth.org/studies/10906316/
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Hippocampal 

dysfunction during free 

word association in male 

patients with 

schizophrenia.  

Kircher T, 

Whitney C, Krings 

T, Huber W, Weis S 

Schizophrenia 

research 

0.358 

Optimally efficient 

neural systems for 

processing spoken 

language.  

Zhuang J, 

Tyler LK, Randall 

B, Stamatakis EA, 

Marslen-Wilson 

WD 

Cerebral cortex 

(New York, N.Y. : 1991) 

0.358 

Distinct functional 

connectivity of the 

hippocampus during 

semantic and phonemic 

fluency. 

Glikmann-

Johnston Y, Oren 

N, Hendler T, 

Shapira-Lichter I 

Neuropsychologia 0.357 

An event-related 

fMRI investigation of 

phonological-lexical 

competition. 

Prabhakaran 

R, Blumstein SE, 

Myers EB, 

Hutchison E, 

Britton B 

Neuropsychologia 0.356 

Brain activation 

and lexical learning: the 

impact of learning phase 

and word type.  

Raboyeau 

G, Marcotte K, 

Adrover-Roig D, 

Ansaldo AI 

NeuroImage 0.356 

Processing 

concrete words: fMRI 

evidence against a 

specific right-hemisphere 

involvement. 

Fiebach CJ, 

Friederici AD 

Neuropsychologia 0.354 

Argument 

structure and 

morphological factors in 

noun and verb processing: 

an fMRI study. 

Garbin G, 

Collina S, Tabossi 

P 

PloS one 0.353 

For presentation purposes the appendix includes the first 100 of 868 studies utilized in this meta-

analysis. 
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C. FPN Resting State Connectivity 

Healthy Controls People with Aphasia 

Edge t-value Edge t-value 

Parietal_Inf_R1 to 

Parietal_Inf_R2.   
39.45 

Parietal_Inf_R1 to 

Parietal_Inf_R2.   
41.31 

Parietal_Inf_L1 to 

Parietal_Inf_L3.   
34.83 

Parietal_Inf_L1 to 

Parietal_Inf_L3.   
39.39 

Parietal_Inf_R1 to 

Angular_R2.   
29.41 Parietal_Inf_R1 to Angular_R2.   31.75 

Frontal_Inf_Tri_L1 to 

Precentral_L2.   
25.22 Parietal_Inf_R2 to Angular_R1.   26.89 

Parietal_Inf_R2 to Angular_R1.   24.72 Angular_R1 to Angular_R2.   24.85 

Parietal_Inf_L2 to Angular_R2.   22.71 
Frontal_Inf_Tri_L1 to 

Precentral_L2.   
24.84 

Angular_R1 to Angular_R2.   22.7 Parietal_Inf_R2 to Angular_R2.   24.08 

Parietal_Inf_R2 to 

Angular_R2.   
22.67 

Frontal_Mid_L3 to 

Frontal_Mid_Orb_L1.   
21.56 

Angular_R1 to Parietal_Inf_L3.   22 Parietal_Inf_L2 to Angular_R2.   21.49 

Parietal_Inf_L1 to 

Parietal_Inf_R2.   
20.19 Angular_R1 to Parietal_Inf_L3.   21.26 

Frontal_Mid_L3 to 

Frontal_Mid_Orb_L1.   
18.14 

Parietal_Inf_R2 to 

Parietal_Inf_L3.   
19.59 

Frontal_Mid_L2 to 

Frontal_Mid_L3.   
17.42 

Parietal_Inf_L1 to 

Parietal_Inf_R2.   
19.12 

Parietal_Inf_R2 to 

Parietal_Inf_L3.   
17.37 Precentral_R1 to Frontal_Mid_R3.   17.49 

Frontal_Mid_R1 to 

Parietal_Inf_R1.   
15.66 

Parietal_Inf_L2 to 

Parietal_Inf_L3.   
17.33 

Frontal_Inf_Tri_R1 to 

Frontal_Inf_Tri_L1.   
15.55 

Frontal_Mid_L2 to 

Frontal_Mid_L3.   
16.3 

Frontal_Inf_Tri_L1 to 

Precentral_R1.   
15.34 

Frontal_Mid_R1 to 

Parietal_Inf_R1.   
16.28 

Frontal_Mid_R3 to 

Frontal_Sup_Medial_L2.   
15.12 Angular_R1 to Frontal_Mid_R3.   15.38 

Frontal_Inf_Tri_L2 to 

Frontal_Sup_Medial_L2.   
15.12 

Frontal_Inf_Tri_L2 to 

Frontal_Sup_Medial_L2.   
15.34 

Frontal_Inf_Tri_R1 to 

Precentral_L2.   
15.02 Precentral_R1 to Parietal_Inf_R2.   15.29 

Precentral_R1 to 

Frontal_Mid_R3.   
14.88 

Frontal_Mid_R3 to 

Frontal_Sup_Medial_L2.   
15.01 

Precentral_R1 to 

Frontal_Inf_Tri_L2.   
14.79 

Parietal_Inf_R2 to 

Frontal_Mid_R3.   
14.78 

Frontal_Mid_L1 to 

Frontal_Mid_R2.   
14.63 

Frontal_Inf_Tri_R1 to 

Frontal_Mid_R3.   
14.63 
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Frontal_Mid_R1 to 

Frontal_Mid_Orb_R2.   
14.53 

Frontal_Mid_R1 to 

Frontal_Mid_Orb_R2.   
14.59 

Frontal_Inf_Tri_R1 to 

Frontal_Mid_R1.   
14.52 

Frontal_Mid_L1 to 

Frontal_Mid_R2.   
14.36 

Parietal_Inf_L2 to 

Parietal_Inf_L3.   
14.52 

Frontal_Inf_Tri_R1 to 

Angular_R1.   
14.35 

Precentral_L1 to 

Frontal_Sup_Medial_L2.   
14.38 Parietal_Inf_R1 to Angular_R1.   14.35 

Frontal_Inf_Tri_L1 to 

Parietal_Inf_L2.   
14.34 Parietal_Inf_L1 to Angular_R1.   13.99 

Frontal_Inf_Tri_R1 to 

Angular_R1.   
13.8 

Frontal_Sup_Orb_R2 to 

Frontal_Mid_Orb_R1.   
13.98 

Parietal_Inf_R1 to 

Parietal_Inf_L2.   
13.77 

Frontal_Inf_Tri_R1 to 

Frontal_Inf_Tri_L1.   
13.85 

Parietal_Inf_L1 to Angular_R1.   13.75 
Frontal_Inf_Tri_R1 to 

Frontal_Mid_R1.   
13.8 

Parietal_Inf_R1 to Angular_R1.   13.6 
Frontal_Inf_Tri_R1 to 

Precentral_L2.   
13.59 

Precentral_R1 to 

Frontal_Sup_Medial_L2.   
13.58 Parietal_Inf_L2 to Angular_R1.   13.58 

Precentral_R1 to 

Parietal_Inf_R2.   
13.39 

Parietal_Inf_R1 to 

Parietal_Inf_L2.   
13.52 

Parietal_Inf_L2 to Angular_R1.   13.39 
Angular_R1 to 

Frontal_Mid_Orb_R2.   
13.41 

Frontal_Inf_Tri_R1 to 

Precentral_R1.   
13.38 

Frontal_Inf_Tri_R1 to 

Parietal_Inf_R1.   
13.1 

Frontal_Mid_L2 to 

Frontal_Mid_R1.   
13.21 

Precentral_R1 to 

Frontal_Sup_Medial_L2.   
13.09 

Frontal_Inf_Tri_L1 to 

Frontal_Inf_Tri_L2.   
12.9 Parietal_Inf_L3 to Angular_R2.   12.79 

Angular_R1 to 

Frontal_Mid_R3.   
12.84 

Frontal_Inf_Tri_R1 to 

Precentral_R1.   
12.71 

Precentral_L1 to Precentral_L2.   12.82 Precentral_L1 to Parietal_Inf_L1.   12.69 

Precentral_L1 to 

Parietal_Inf_L1.   
12.78 

Parietal_Inf_R2 to 

Frontal_Mid_R2.   
12.64 

Frontal_Inf_Tri_R1 to 

Frontal_Inf_Tri_L2.   
12.68 

Precentral_L1 to 

Frontal_Sup_Medial_L2.   
12.45 

Frontal_Mid_L2 to 

Frontal_Inf_Tri_L2.   
12.57 

Frontal_Mid_R2 to 

Frontal_Mid_R3.   
12.23 

Frontal_Mid_R1 to 

Parietal_Inf_R2.   
12.52 

Frontal_Mid_R2 to 

Frontal_Sup_Medial_L2.   
12.17 

Parietal_Inf_L3 to Angular_R2.   12.5 
Frontal_Mid_L2 to 

Frontal_Mid_Orb_L1.   
12.1 

Frontal_Inf_Tri_R1 to 

Parietal_Inf_R1.   
12.38 

Frontal_Inf_Tri_R1 to 

Angular_R2.   
11.99 
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Temporal_Inf_R1 to 

Parietal_Inf_R1.   
12.18 Temporal_Inf_R1 to Angular_R2.   11.99 

Frontal_Inf_Tri_R1 to 

Frontal_Mid_R3.   
12.17 Frontal_Mid_R2 to Angular_R1.   11.96 

Frontal_Mid_L2 to 

Frontal_Mid_Orb_L1.   
11.97 

Parietal_Inf_R1 to 

Parietal_Inf_L3.   
11.96 

Precentral_R1 to Precentral_L2.   11.96 
Frontal_Inf_Tri_L1 to 

Precentral_R1.   
11.9 

Precentral_L1 to 

Frontal_Inf_Tri_L2.   
11.91 

Precentral_R1 to 

Frontal_Inf_Tri_L2.   
11.9 

Frontal_Inf_Tri_R1 to 

Frontal_Mid_Orb_L1.   
11.9 Precentral_L1 to Precentral_L2.   11.88 

Angular_R1 to 

Frontal_Mid_Orb_R2.   
11.82 

Angular_R1 to 

Frontal_Sup_Medial_L2.   
11.82 

Angular_R1 to 

Frontal_Inf_Tri_L2.   
11.82 

Temporal_Inf_R1 to 

Parietal_Inf_R1.   
11.78 

Frontal_Mid_R1 to 

Angular_R2.   
11.8 

Parietal_Inf_L2 to 

Parietal_Inf_R2.   
11.78 

Frontal_Mid_R2 to 

Frontal_Sup_Medial_L2.   
11.71 Frontal_Mid_R3 to Angular_R2.   11.71 

Precentral_L1 to 

Parietal_Inf_L3.   
11.66 

Frontal_Mid_L2 to 

Frontal_Inf_Tri_L2.   
11.59 

Frontal_Mid_R3 to 

Frontal_Inf_Tri_L2.   
11.49 

Parietal_Inf_R2 to 

Frontal_Sup_Medial_L2.   
11.54 

Frontal_Inf_Tri_L1 to 

Angular_R2.   
11.43 Precentral_R1 to Parietal_Inf_R1.   11.47 

Precentral_L1 to 

Parietal_Inf_R2.   
11.38 

Frontal_Inf_Tri_L1 to 

Frontal_Inf_Tri_L2.   
11.47 

Frontal_Inf_Tri_R1 to 

Angular_R2.   
11.37 

Parietal_Inf_R1 to 

Frontal_Mid_R3.   
11.46 

Frontal_Inf_Tri_R1 to 

Frontal_Mid_L3.   
11.34 Frontal_Mid_R1 to Angular_R2.   11.44 

Angular_R1 to 

Frontal_Sup_Medial_L2.   
11.29 

Frontal_Inf_Tri_L1 to 

Parietal_Inf_L2.   
11.33 

Parietal_Inf_R2 to 

Frontal_Mid_R3.   
11.25 

Frontal_Inf_Tri_R1 to 

Parietal_Inf_R2.   
11.29 

Parietal_Inf_L2 to 

Parietal_Inf_R2.   
11.21 

Precentral_L1 to 

Frontal_Inf_Tri_L2.   
11.14 

Precentral_L1 to 

Frontal_Mid_R2.   
11.16 

Frontal_Mid_R2 to 

Frontal_Inf_Tri_L2.   
11.14 

Frontal_Mid_R2 to 

Angular_R1.   
11.15 Precentral_R1 to Angular_R1.   11.09 

Frontal_Mid_R2 to 

Frontal_Mid_R3.   
11.13 

Parietal_Inf_R2 to 

Frontal_Mid_Orb_R2.   
11.03 

Parietal_Inf_R2 to 

Frontal_Sup_Medial_L2.   
11.09 

Frontal_Mid_L3 to 

Frontal_Sup_Medial_L2.   
11 
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Parietal_Inf_R2 to 

Frontal_Mid_R2.   
11.08 

Frontal_Mid_R1 to 

Parietal_Inf_R2.   
10.92 

Frontal_Inf_Tri_R1 to 

Parietal_Inf_L2.   
11 

Frontal_Mid_L2 to 

Frontal_Mid_R1.   
10.75 

Frontal_Mid_R1 to 

Frontal_Mid_L3.   
10.97 

Frontal_Inf_Tri_R1 to 

Frontal_Sup_Medial_L2.   
10.66 

Frontal_Mid_L3 to 

Frontal_Mid_Orb_R2.   
10.91 

Frontal_Mid_Orb_L1 to 

Frontal_Sup_Medial_L2.   
10.66 

Frontal_Mid_Orb_L1 to 

Frontal_Mid_Orb_R2.   
10.89 Precentral_L1 to Frontal_Mid_R2.   10.57 

Frontal_Mid_R1 to 

Frontal_Mid_Orb_L1.   
10.85 

Parietal_Inf_L3 to 

Frontal_Mid_R3.   
10.53 

Precentral_L1 to 

Frontal_Mid_R3.   
10.84 

Angular_R1 to 

Frontal_Inf_Tri_L2.   
10.48 

Parietal_Inf_L3 to 

Frontal_Mid_Orb_R2.   
10.83 

Frontal_Inf_Tri_R1 to 

Frontal_Mid_Orb_L1.   
10.42 

Parietal_Inf_L3 to 

Frontal_Mid_R3.   
10.82 

Parietal_Inf_L3 to 

Frontal_Mid_Orb_R2.   
10.36 

Frontal_Inf_Tri_R1 to 

Parietal_Inf_R2.   
10.8 Precentral_R1 to Angular_R2.   10.31 

Precentral_R1 to 

Parietal_Inf_R1.   
10.74 

Parietal_Inf_L3 to 

Frontal_Sup_Medial_L2.   
10.12 

Parietal_Inf_R1 to 

Parietal_Inf_L3.   
10.61 

Frontal_Inf_Tri_R1 to 

Frontal_Mid_R2.   
10.04 

Frontal_Mid_R1 to 

Frontal_Inf_Tri_L2.   
10.61 

Parietal_Inf_L1 to 

Parietal_Inf_L2.   
10.02 

Frontal_Mid_L2 to 

Frontal_Sup_Medial_L2.   
10.57 

Parietal_Inf_L3 to 

Frontal_Inf_Tri_L2.   
9.92 

Temporal_Inf_R1 to 

Parietal_Inf_R2.   
10.5 

Frontal_Mid_R3 to 

Frontal_Inf_Tri_L2.   
9.7 

Precentral_R1 to Angular_R1.   10.5 
Frontal_Inf_Tri_R1 to 

Frontal_Mid_L3.   
9.68 

Precentral_L2 to 

Parietal_Inf_L2.   
10.45 

Temporal_Inf_R1 to 

Parietal_Inf_R2.   
9.67 

Precentral_L1 to Angular_R1.   10.45 
Parietal_Inf_L1 to 

Frontal_Sup_Medial_L2.   
9.6 

Frontal_Mid_Orb_L1 to 

Frontal_Sup_Medial_L2.   
10.44 

Frontal_Mid_L2 to 

Frontal_Sup_Medial_L2.   
9.6 

Parietal_Inf_L3 to 

Frontal_Inf_Tri_L2.   
10.43 

Parietal_Inf_L1 to 

Frontal_Inf_Tri_L2.   
9.48 

Frontal_Inf_Tri_R1 to 

Frontal_Sup_Medial_L2.   
10.39 

Frontal_Mid_Orb_L1 to 

Frontal_Inf_Tri_L2.   
9.46 

Precentral_R1 to 

Parietal_Inf_L2.   
10.31 

Parietal_Inf_R1 to 

Frontal_Mid_R2.   
9.36 
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Parietal_Inf_R2 to 

Frontal_Mid_Orb_R2.   
10.27 

Frontal_Inf_Tri_R1 to 

Frontal_Mid_Orb_R2.   
9.33 

Precentral_L2 to Angular_R1.   10.25 
Frontal_Inf_Tri_L1 to 

Frontal_Mid_Orb_R2.   
9.32 

Precentral_L1 to 

Temporal_Inf_R1.   
10.23 

Frontal_Inf_Tri_R1 to 

Parietal_Inf_L2.   
9.28 

Frontal_Mid_R1 to 

Angular_R1.   
10.23 

Frontal_Mid_R3 to 

Frontal_Mid_Orb_R2.   
9.25 

Precentral_L2 to Angular_R2.   10.14 
Frontal_Inf_Tri_R1 to 

Frontal_Inf_Tri_L2.   
9.24 

Precentral_R1 to Angular_R2.   10.13 
Angular_R1 to 

Frontal_Mid_Orb_L1.   
9.2 

Frontal_Inf_Tri_L1 to 

Frontal_Mid_Orb_R2.   
10.1 Temporal_Inf_R1 to Angular_R1.   9.19 

Parietal_Inf_L3 to 

Frontal_Sup_Medial_L2.   
9.98 Precentral_L1 to Parietal_Inf_L3.   9.19 

Temporal_Inf_R1 to 

Angular_R2.   
9.97 Precentral_L1 to Frontal_Mid_L2.   9.17 

Precentral_L2 to 

Frontal_Inf_Tri_L2.   
9.96 

Parietal_Inf_L1 to 

Frontal_Mid_Orb_R1.   
9.15 

Parietal_Inf_L1 to 

Frontal_Mid_R2.   
9.95 

Parietal_Inf_R2 to 

Frontal_Inf_Tri_L2.   
9.15 

Precentral_L1 to Precentral_R1.   9.86 Frontal_Mid_R1 to Angular_R1.   9.05 

Parietal_Inf_L1 to 

Frontal_Sup_Medial_L2.   
9.85 

  

Frontal_Inf_Tri_L1 to 

Angular_R1.   
9.82 

  

Parietal_Inf_R2 to 

Frontal_Inf_Tri_L2.   
9.82 

  

Frontal_Mid_R2 to 

Parietal_Inf_L3.   
9.79 

  

Precentral_R1 to 

Frontal_Mid_R1.   
9.78 

  

Parietal_Inf_L1 to 

Frontal_Inf_Tri_L2.   
9.78 

  

Frontal_Mid_Orb_R2 to 

Frontal_Inf_Tri_L2.   
9.77 

  

Parietal_Inf_L1 to 

Parietal_Inf_R1.   
9.67 

  

Frontal_Inf_Tri_R1 to 

Frontal_Mid_L2.   
9.66 

  

Frontal_Inf_Tri_L1 to 

Frontal_Mid_Orb_L1.   
9.65 

  

Parietal_Inf_R1 to 

Frontal_Inf_Tri_L2.   
9.63 
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Precentral_L2 to 

Frontal_Mid_R3.   
9.61 

  

Precentral_R1 to 

Parietal_Inf_L3.   
9.47 

  

Frontal_Mid_L3 to 

Frontal_Sup_Medial_L2.   
9.45 

  

Angular_R1 to 

Frontal_Mid_Orb_L1.   
9.44 

  

Frontal_Inf_Tri_R1 to 

Parietal_Inf_L3.   
9.41 

  

Precentral_L2 to 

Frontal_Sup_Medial_L2.   
9.39 

  

Frontal_Inf_Tri_R1 to 

Frontal_Mid_Orb_R2.   
9.35 

  

Precentral_L2 to 

Parietal_Inf_L3.   
9.31 

  

Parietal_Inf_L1 to 

Frontal_Mid_R1.   
9.1 

  

Frontal_Mid_Orb_L1 to 

Frontal_Inf_Tri_L2.   
9.05 

  

Parietal_Inf_R1 to 

Frontal_Sup_Medial_L2.   
9.05 

  

Parietal_Inf_L3 to 

Frontal_Mid_L3.   
9.01 
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