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Abstract 
 

This research examined the effectiveness of GSI and other BMPs to control urban 

flooding for extreme precipitation events and compared the impacts of increasing impervious 

cover with the impacts of increasing rainfall intensity caused by climate change. The City of 

Dover has spent the last decade implementing best management practices in the 185-acre Berry 

Brook watershed to combat stream pollution and flooding caused by urbanization. Improvements 

to the watershed included building additional headwater wetland area, daylighting and restoring 

1,100 feet of stream, and redirecting stormwater to GSIs, thereby reducing the effective 

impervious cover from 30% to 10%. 

 Four PCSWMM models of the Berry Brook watershed were developed for the analysis: a 

pre-implementation model, a model of the pre-implementation watershed set to 15% IC, a model 

of the pre-implementation watershed set to 0% IC, and a model of the watershed after BMP 

implementation. The four models were used to examine the effects of GSI implementation, 

changing impervious cover, and climate change on urban watershed hydrology for the 2-year, 

10-year, 50-year, and 100-year extreme precipitation events.  

The effectiveness of GSI and other BMPs to control urban flooding caused by extreme 

precipitation events was tested by comparing the peak flows, time to peak flows, runoff depth, 

and total storm flow volume. A long-term rainfall-runoff simulation from 2001 to 2011 was also 

done for the watershed with and without GSI. It was found that BMP implementation caused an 

median decrease in extreme peak flow of 7%, an increase in the time to peak flow of 3 minutes, a 

decrease in the runoff depth of 29%, and a decrease in the total storm flow volume of 30%. GSI 

impact was more prevalent in short duration extreme precipitation events than in long duration 
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events. In the 10-year analysis, annual maximum flow decreased 8%. The infiltration of rainfall 

increased by 17% and the stormwater runoff decreased by 40%. This showed implementing GSI 

in an urban watershed will reduce flooding caused by extreme precipitation events but not 

eliminate it. For common storms of about no more than 1.3 inches, it was found that GSI reduced 

peak flows by a median of 68%.  

Increasing IC in the watershed was shown to have a much more dramatic effect than the 

increase in rainfall caused by climate change. Impact was still more prevalent in short duration 

extreme precipitation events than in long duration events. The difference between the BMP-

managed watershed under future climate change conditions and the traditionally managed 

watershed under current day conditions was minimal, implying BMP implementation will keep 

flooding from getting any worse as the climate shifts, but by itself, GSI will not eliminate urban 

flooding. 



  

1 

 

Chapter 1: Introduction 
 

1.1 Stormwater in Rivers and Streams 

Stormwater is water from rainfall or snowmelt that flows over land or impervious 

surfaces and does not soak into the ground. The runoff collects pollutants such as chemicals, 

nutrients, and sediment that can harm bodies of water that the stormwater will eventually enter 

(US EPA, 2020a). Stormwater is a particular challenge in urbanized areas. The introduction of 

impervious cover such as paved roads, rooftops, and sidewalks and the shift from a diverse 

natural ecosystem to agricultural and urban land use drastically shifts the hydrologic condition of 

a watershed. Urbanized land is expected to continue increasing along with the population, and 

without proper stormwater management shall result in more runoff and increased pollutant load 

entering bodies of water (Press, 2012). 

One major recipient of stormwater is rivers and streams, which carry it even further 

through the ecosystem. Urbanization affects water quantity, water quality, channel form, and 

aquatic biota in the receiving waters (Press, 2012). Across the nation, streams and rivers are 

showing impairment due to pollutants from stormwater and other sources, with pathogens, 

sediment, and nutrients being found as top stressors (US EPA, 2017). Surveys and sampling 

show that 58% of US rivers and streams have excess nutrients, that can lead to decreases in 

aquatic life (US EPA, 2020b). In New Hampshire, 4,413 miles of stream are impaired, with top 

pollutants including acidity, low oxygen, metals, degraded aquatic life, salts, algae, flow 

alterations, invasive species, degraded habitat, and ammonia (US EPA, 2020c). These pollutants 

are transported by the impaired rivers and streams into lakes and oceans, increasing pollutant 

issues in those areas.  
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National, state, and local efforts are all being executed to prevent further impairment and restore 

currently damaged waters. These efforts include regulations, conservation efforts, and the use of 

best management practices (BMPs) to address the quantity and quality of runoff. BMPs are site-

specific stormwater mitigation strategies including green stormwater infrastructure (GSI) such as 

bioretention systems and subsurface gravel wetlands, constructed wetlands, and stream 

restoration (Beach, 2003).  While traditional stream management practices involve treating the 

symptoms of impairment using strategies such as armoring stream banks and channels, BMPs 

focus on removing the cause of impairment by restoring the watershed hydrology at the 

catchment scale to its pre-development patterns (Vietz et al., 2015). Stormwater management 

using BMPs is shown to improve the quality of receiving waterbodies, conserve water resources, 

protect public health, and help mitigate flooding in developed areas (US EPA, 2020a). 

1.2 Impervious Cover 

Impervious cover (IC) is any surface in the landscape that cannot effectively infiltrate 

rainfall. It includes paved roads and driveways, parking lots, rooftops, sidewalks, and heavily 

compacted soils. Impervious cover is a standard feature of urban development and is projected to 

almost triple in area by 2030 (Vietz et al., 2015). The presence of IC has been used as an initial 

gage to the health of a watershed and the associated stream or river (Schueler et al., 2009).  
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Figure 1: Impervious Cover Model (Schueler et al., 2009) 

 

The impervious cover model (ICM) was developed in 1994 to show the relationship 

between the impervious area in a watershed and the overall stream quality (Figure 1). According 

to the ICM, watersheds with less than 10% IC in the watershed area can continue to support a 

healthy stream, watersheds with 10% IC to 25% IC tend to have impacted streams, watersheds 

with 25% IC to 60% IC cannot support a healthy stream ecosystem, and watersheds with greater 

than 60% IC have streams better defined as urban drainage channels with little to no ecosystem 

value.  

The introduction of BMPs to a watershed limits the usefulness of IC as a gage of stream 

health because the very purpose of BMPs is to remove the impacts caused by IC. Therefore, a 

new metric is necessary to continue gaging stream health using impervious surface in a 

catchment. Effective impervious cover (EIC) is the portion of total impervious cover that 
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hydraulically connects to the drainage system (Ebrahimian et al., 2018).  It can be considered as 

the area of total impervious cover in a watershed that is not managed using BMPs. Effective 

impervious cover can be calculated by multiplying percent IC by a factor determined by the total 

quantity of water diverted to a BMP (EPA, 2011). It can then be used with the ICM to assess 

expected stream health. 

1.3 Climate Change 

Human-caused climate change and it’s expected effect on precipitation could cause great 

effect on streams and rivers. It is expected that within the next 50 years, it will be warmer by 

more than 1 degree Fahrenheit and total annual precipitation will have increased by 12% to 20% 

in southern New Hampshire (Wake et al., 2014). In addition to the increased total precipitation, 

climate change is expected to cause an increase in the frequency and severity of flood-causing 

precipitation, which will lead to increases in erosion and property damage (Task, 2009).  

Incorporating climate change into long-term developmental planning is becoming a 

necessity. The current New Hampshire guidance for designing climate change resilient systems 

is to add 15% to the current design extreme precipitation values. This allows decision-makers to 

account for the increase in storm severity, but it does not account for the expected frequency of 

storms. An alternative method to increasing storm extremes is to disaggregate daily rainfall from 

downscaled climate model output into hourly precipitation using mathematical algorithms, then 

run the expected precipitation on the watershed using a model. This would allow for a multi-year 

analysis of a watershed using the expected future rainfall, therefore incorporating climate change 

into the dynamic design of systems. Rainfall disaggregation is difficult to apply in many small 

watersheds because it requires extensive hourly historic rainfall records to develop an accurate 
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disaggregation methodology. Rainfall disaggregation also assumes that storm behavior at the 

hourly level will not be affected by climate change (Westra et al., 2012). 

1.4 Green Stormwater Infrastructure 

Stormwater controls are necessary to prevent the degradation of bodies of water by 

runoff. Traditional stormwater practices (ponds and swales) are designed to manage runoff flows 

and flooding to protect property and somewhat reduce pollutant loads. Best Management 

Practices are designed to accomplish both those tasks and protect stream channels and aquatic 

habitats. Current practices seek to replicate the pre-development hydrologic patterns of an area 

using green stormwater infrastructure (GSI) and other BMPs (Press, 2012).  

Green stormwater infrastructure (GSI) is designed to capture the runoff from frequent 

storms and slowly release it. Systems are sized to store the water from more frequent 

precipitation events, often about the first inch of rain, and bypass the rest into the receiving 

system. The first inch of rain passes through the full treatment system which is designed to 

remove pollutants and allow maximum infiltration into the groundwater. Pollutants are removed 

using physical, biological, and chemical processes. Filtration and plant uptake are two key 

processes. Installing GSI reduces pollutant loading from stormwater on the receiving body of 

water (Ballestero et al., 2012). 

GSI is also considered useful for localized flood control in urban watersheds. Studies 

have shown that GSI helps control frequent rainfall events such as a one-inch storm but fails to 

effectively mitigate extreme storms (Zhu et al., 2017). 
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1.5 Modeling 

Implementing BMPs in an effective way requires good information, planning, decision-

making, and practices. The variety of BMPs available causes a need for a method of assessing 

the impact of each one in a specific watershed. Strategies such as land conservation, reducing 

impervious cover, and the installation of GSI must be studied in tandem to determine the best 

protection plan (Peterson et al., 2010). Watershed models are used to simulate hydrology and 

water quality in runoff, evaluate the impacts of urban development, and investigate the 

effectiveness of watershed restoration strategies without employing costly field tests (Yadzi et 

al., 2019).  

The EPA developed and supports two commonly used software applications for 

modeling: the Hydrologic Simulation Program-Fortran (HSPF) and the Stormwater Management 

Model (SWMM). HSPF looks holistically at a watershed to simulate watershed hydrology and 

water quality. SWMM simulates conveyance systems of stormwater at a subcatchment or 

watershed scale. Both models can simulate streamflow, but HSPF performs better in 

groundwater flow while SWMM predicts peak flow better (Yadzi et al., 2019). Furthermore, 

HSPF is designed exclusively for modeling at the watershed scale, while SWMM can model GSI 

as individual systems as well as catchment or watershed scale areas. 

1.6 Literature Review of GSI for Urban Stormwater Management 

 Modeling green stormwater infrastructure and other best management practices is useful 

in system design and community planning at a catchment and watershed scale. At a catchment 

scale, modeling allows for a particular GSI system to be tailored to meet flow and pollutant level 

requirements and to study site-specific infiltration. At a watershed scale, modeling allows wide-

spread BMP implementation to be assessed for its usefulness in flood and pollution mitigation.  
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 Watershed and regional flooding are quantified using maximum discharge (cfs) caused in 

a stream or river due to a storm event. The National Flood Insurance Program assesses flood risk 

in an area at the 10, 50, 100 and 500-year storms, which have respective annual probabilities of 

10, 2, 1, and 0.2 percent respectively (Scholz, 2011). These flood risks dictate flood insurance 

prices in geographic areas and are used by communities in long-term development planning. 

Developing land causes changes to the watershed hydrologic response to precipitation, which in 

turn changes flooding in streams and rivers. 

 Green stormwater infrastructure, as stated above, is primarily intended to remove 

pollutants in runoff from impervious surfaces and to detain and infiltrate the first inch of water to 

reduce peak discharge from the IC. Applying GSI reduces effective impervious cover by 

hydraulically disconnecting impervious surface from the main drainage system (Scholz, 2011). 

GSI results with an increase in infiltration of the precipitation (infiltration depth), a decrease in 

runoff from precipitation (runoff depth), and therefore a decrease in total flow volume in a 

stream or river caused directly by a storm event (total flow).  A study of GSI implementation at 

the urban catchment scale found that reducing EIC by at least 5% led to peak flow reduction, 

runoff volume reduction, and increases in the time to peak flow. The GSI systems in the study 

were designed to accommodate the 10-year storm, which is significantly larger than the usual 

design size of one inch of rain (Palla and Gnecco, 2015). 

Since GSI is typically designed to manage only one inch or runoff, it is not known to be 

effective at mitigating extreme flooding events such as the 100-year storm at the watershed scale. 

A study of GSI use at the Lamprey River near Newmarket, New Hampshire showed that at the 

100-year event, GSI implementation did not significantly adjust the hydrology for major 

flooding events (Scholz, 2011). Extreme precipitation events such as the 100-year storm vastly 
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exceed the 1-inch planned for in GSI design and are times at which a stream floods in even a 

completely undeveloped environment. The performance of the GSI is limited by the rainfall 

volume and is significantly less effective in even the 10-year storm event (Palla and Gnecco, 

2015). 

The flood-control capacity of GSI is limited even with full implementation. A study of 

green roof implementation in four highly urbanized watersheds of the Pacific Northwest showed 

that even a modelled implementation of 100% for green roofs, or all rooftops acting as green 

roofs, only reduced mean annual flow by 20-25% (Barnhart et al., 2021). The study did not 

consider peak flow, but the impact on extreme events would likely have been even smaller.  

Rainfall characteristics also impact the effectiveness of GSI to control flooding. A model 

of a residential area in Guangzhou, China found that changes in rainfall characteristics, such as 

intensity or duration, cause the effectiveness of GSI to manage flooding to decrease (Zhu and 

Chen, 2017). This is important when considering the impacts of climate change on a watershed. 

It is expected that climate change will cause an increase in rainfall intensity, which could in turn 

negate the usefulness of GSI in stormwater flooding control. 

1.7 Berry Brook Watershed Renewal Project 

Berry Brook is a 1.2-mile first order stream with a 185-acre drainage area located in 

Dover, NH that discharges into the Cocheco River (Figure 2). By 2005, the watershed had 55 

acres (30%) of IC measured using GIS. The IC is made up primarily of asphalt roads, driveways, 

parking lots, and rooftops. Prior to the implementation of the Berry Brook Watershed Renewal 

Project, the IC was unmanaged and discharged all water and pollutants directly into the stream 

(Ballestero et al., 2016).  
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Figure 2: Berry Brook Watershed in Dover, NH (City of Dover and the UNH Stormwater Center, 

2017) 
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 In 2006, the state of New Hampshire placed Berry Brook on the EPA 303(d) list of 

federally impaired waterways due to high levels of pollutants. The stream was declared no longer 

fit for human contact. This prompted the City of Dover to partner with the University of New 

Hampshire Stormwater Center (UNHSC) and the Cocheco River Watershed Coalition to develop 

the Berry Brook Watershed Management Plan to improve Berry Brook water quality by 

implementing Low Impact Development (LID) best management practices. The goal of the 

project was to reduce effective impervious cover (EIC) to 10% by disconnecting IC and to lower 

the pollutant levels and peak discharge within the stream by stormwater filtration and infiltration. 

Infrastructure installment and stream improvements concluded in 2017 with an EIC of 10.4% 

(Ballestero et al., 2016). Improvements to the watershed included: 

a) installation of GSI (Figure 3, Table 1) 

b) one acre of new wetland in the upper watershed 

c) a rain barrel program 

d) 3 filtering catch basins 

e) 1,100 feet of daylighted and restored stream channel 

f) 500 additional feet of restored stream channel (Ballestero et al., 2016) 
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Figure 3: GSI Systems in the Berry Brook Watershed, Dover, NH (City of Dover and the UNH 

Stormwater Center, 2017) 
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Table 1: Green Stormwater Infrastructure in Berry Brook Watershed 

Map Number System Type System Location 

1 Bioretention Glencrest Avenue 

2 Bioretention Horne Street School (1) 

3 Bioretention Horne Street School (2) 

4 Bioretention Lowell Avenue 

5 Bioretention Lower Horne Street 

6 Bioretention Roosevelt Avenue 

7 Bioretention Snow Avenue 

8 Bioretention Upper Horne Street 

9 Gravel Filter Grove Street 

10 Gravel Filter Seacoast Kettlebell 

11 Gravel Wetland Central Avenue 

12 Infiltration Basin Roosevelt Avenue 

13 Infiltration Trench Hillcrest Drive 

14 Swale Crescent Avenue 

15 Swale Page Avenue 

16 Swale Snow Avenue 

17 Tree Filter Horne Street School 

 

 The small size of the Berry Brook Watershed allows a full-scale study of the impacts 

resulting from GSI implementation and stream improvements on an urban watershed. Many 

large watersheds will not see full-scale BMP implementation in a timeframe that allows for 

continuous monitoring and a clear demonstration of the stream response. All Berry Brook 

improvements were completed within one decade of the initial proposal, with monitoring that 

began six months prior to implementation to the present (Ballestero et al., 2016). This allows for 

a close analysis of the impacts caused by the change in EIC. 
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1.8 Prior Studies 

Four studies of Berry Brook that relate directly to this research were conducted during the 

Renewal Project. All these studies were conducted by graduate students at University of New 

Hampshire: Victor Hlas, Amy Johnson, Daniel Macadam, and Ethan Ely. 

 Victor Hlas examined the hydrologic and water quality changes caused by the stream 

restoration efforts and GSI implementation in the first two years of the Renewal Project (2011-

2012). Hlas developed a stage-discharge curve of Berry Brook at Station Drive. He also collected 

water quality samples and water depth data at 15-minute intervals for August to October of 2011. 

He collected similar data following the construction of 1,100 feet of stream channel and 13 GSI 

systems. Hlas found that the watershed improvements caused a significant decrease in average, 

maximum, and minimum measured flows and a 46% decrease in median runoff flows. He also 

found that concentrations of total suspended solids (TSS), zinc (Zn), and total phosphorous (TP) 

were reduced by 59%, 50%, and 78% respectively by the improvements. Hlas built three 

PCSWMM watershed models to examine the long-term response of the watershed 

improvements. The three models were a pre-improvements model, a post-improvements (GSI 

included) model, and a model simulating the addition of GSI by considering only EIC. Over a 

20-year rainfall runoff simulation, he found a total runoff volume reduction of 18% and total 

pollutant load reductions of TSS by 28%, TN by 15%, and TP by 7%. He did not find a 

noticeable difference between pre-improvements peak flows and post-improvement peak flows 

over the long-term simulation (Hlas, 2013). 

 Daniel Macadam examined the infiltration capacity of the retrofit bioretention system at 

the Horne Street School. He monitored the system for 45 storms to determine the real treatment 

efficacy of the system, which was sized to hold 0.16 inches of rain. He found that 67% of the 
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monitored storms were completely treated by the retrofits. Most of the storms did not exceed 

1.27 inches but had more rainfall than the expected capacity of the system. Macadam used a 

Green-Ampt approach to calculate the true capacity (effective precipitation completely managed) 

of the system, which he found to be the runoff from 0.52 inches of precipitation (Macadam, 

2018). 

Ethan Ely researched the infiltration characteristics of the two subsurface gravel filters in 

the Berry Brook watershed.  Ely found that of the two monitored filters, one had a relatively low 

hydraulic conductivity of less than 0.5 inches per hour and the second had little to no infiltration 

capacity. He analyzed the two systems with three computer-based models and found that the 

unsaturated properties of soils appeared to have little effect on the total infiltration volumes 

because it took very little time to reach the saturated condition. He found that a unit-gradient 

model was the most accurate for the filters. He determined that the subsurface gravel filters could 

be more accurately sized if soil infiltration was accounted for in the design process (Ely, 2019). 

Amy Johnson monitored Berry Brook for her work in examining the water temperature 

shift caused in the stream by climate change. Her work began in 2017 and concluded in 2018, 

therefore studying the Post-improvements watershed behavior. She collected water depth data for 

Station Drive at 15-minute intervals for September 2017 to May 2018. 

1.9 Hypothesis and Objectives 

The Berry Brook Watershed Renewal Plan provides an opportunity to closely examine 

the implementation of GSI on a full-scale urban watershed. The purpose of this research is to 1) 

determine the effects of green stormwater infrastructure on flooding in urban areas and 2) 

compare the effect on flooding caused by impervious cover to the effect on flooding expected by 

climate change.   
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Project Objectives: 

1) Develop a SWMM model of the Berry Brook watershed before the implementation of 

green stormwater infrastructure (Pre). 

2) Develop a SWMM model of the Berry Brook watershed including the implemented 

green stormwater infrastructure (Post). 

3) Simulate the behavior of Berry Brook from 2001 to 2011 using local rainfall data for 

the Pre model and Post model. 

4) Develop a model representing hydrologic response of the watershed prior to human 

development (Pre0) by removing all impervious cover from the calibrated Pre model. 

5) Develop a model representing hydrologic response of the watershed at 15% 

impervious cover (Pre15) by reducing impervious cover in the calibrated Pre model 

uniformly to a total IC of 15%. 

6) Simulate the effects of the 2-yr, 10-yr, 50-yr, and 100-yr storms on Berry Brook for 

all models. 

7) Simulate the effect of climate change on rainfall intensity by increasing the 2-yr, 10-

yr, 50-yr, and 100-yr storms by 15% on the Pre model (PreClimate) and the Post model 

(PostClimate). 

8) Determine the change in stream peak flow, time to peak flow, runoff depth, and total 

flow volume during extreme precipitation events caused by the implementation of 

GSI practice in the Pre model and Post model. 
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9) Determine the change in stream peak flow, time to peak flow, runoff depth, and total 

flow volume during extreme precipitation events caused by the reduction of 

impervious cover in the Pre15 model and Pre model as compared to the values in the 

Pre0 model. 

10) Determine the change in stream peak flow, time to peak flow, runoff depth, and total 

flow volume during the extreme precipitation events storms caused by the increase in 

rainfall intensity due to climate change in the PreClimate and PostClimate scenarios as 

compared to the results in the Pre0 model. 

11) Compare the effects of changing impervious cover on the watershed response with 

the effects of increased rainfall intensity due to climate change. 

It is expected that increasing impervious cover will cause a greater increase in flooding in 

urban areas than the expected increase in rainfall intensity caused by climate change. It is also 

expected that the use of GSI will reduce flooding in urban areas due to frequent extreme 

precipitation events such as the 2-year storm by decreasing peak discharge and the total volume 

of stream discharge (flow) by increasing water travel time and infiltration. Rare extreme 

precipitation events such as the 100-year storm are not expected to be significantly affected. 
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Chapter 2: Research Methods 
 

2.1 Software 

ArcMap is a GIS proprietary software owned by Esri. The software is designed to 

analyze GIS datasets such as rasters, aerial photos, and large spatial files. ArcMap is useful for 

creating map layouts and analyzing LiDAR elevation data. ArcMap represents geographic 

information as layers on a map.  

SWMM is useful to plan, design, and analyze how well GSI improves runoff quality and 

reduces runoff quantity. It can evaluate GSI performance in individual systems and at a 

watershed scale. SWMM uses a subcatchment-based approach to calculate runoff generated and 

sent to various conveyance methods and storage areas (Jayasooriya et al., 2014). SWMM is also 

a freely available software supported by the EPA, making it ideal for municipalities planning 

watershed management. 

PCSWMM is a proprietary software owned by Computation Hydraulics International 

(CHI) that is built off the foundation of EPA SWMM. PCSWMM has storage analysis 

capabilities and Sensitivity-based Radio Tuning Calibration (SRTC) that EPA SWMM does not 

possess. To use SRTC, the user assigns each parameter in PCSWMM a measure of uncertainty 

as a percentage of the total value. The SRTC tool will run up to 8 scenarios of that uncertainty 

with all other parameters held constant: a 100% decrease in the parameter (at the given 

uncertainty level), a 75% decrease, a 50% decrease, a 25% decrease, and increases in the 

parameter at the same values. The SRTC tool will take the results from each of these changes 

and use them to run a sensitivity analysis on each parameter being calibrated. The SRTC tool 

then calculates the mean normalized sensitivity of each parameter. Once the SRTC tool is 
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activated, the user chooses how much they want to alter each parameter (there is an auto-

calibrate function per parameter as well) and can immediately see the expected effect the change 

will have on the modelled watershed response and the goodness of fit to the calibrated data. 

When the calibrated model parameters yield output hydrology more like the observed hydrology 

than the other potential combinations, the user saves the data either as a scenario or by replacing 

the original parameters. The SRTC tool allows for the easy adjustment of models to fit the 

observed data. Since PCSWMM can interact perfectly with EPA SWMM files and ArcMap files, 

it is a powerful tool for building a calibrated model that can then be used on the free EPA 

SWMM software. 

2.2 Model Development 

The Berry Brook Watershed was modeled using PCSWMM 2019 software by 

Computation Hydraulics International. Three pre-improvements models (Figure 5) and one post-

improvements model (Figure 6) were built.  The Pre model represented the watershed prior to the 

use of BMPs (about 30% unmanaged impervious cover in the watershed). The Pre0 model 

simulated the Berry Brook watershed before human intervention by running the Pre model 

conditions with no impervious cover. The Pre15 model represented the watershed managed using 

traditional stormwater practices but with only 15% impervious cover, or a less-developed 

watershed. The Post model represented the watershed at 10% EIC managed using the BMPs 

installed in the renewal project. 

In addition to the four developed models to simulate LID implementation and changes in 

impervious cover, two additional scenarios were designated to model the impacts of climate 

change. The PreClimate scenario denoted the traditionally managed watershed at 30% impervious 

cover reacting to a rainfall increase of 15%. The PostClimate scenario denoted the watershed at 
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10% EIC managed using BMPs reacting to the same rainfall increase. These scenarios were used 

in extreme precipitation event modeling. 

Figure 4 shows the model development process. The Pre watershed was developed to 

simulate the Berry Brook watershed prior to BMP implementation and calibrated using 

streamflow data collected at that time. The calibrated Pre watershed was then updated to include 

the new wetland area, GSI implementation, and restored stream channel. The GSI parameters 

were calibrated using streamflow data collected after construction. The Pre15 model was 

developed by uniformly reducing the impervious cover in each subcatchment of the Pre model 

such that the total IC in the model was 15%. The model was not recalibrated, and no existing 

stormwater infrastructure was removed. The Pre15 model was used to simulate Berry Brook at a 

lower level of human development. The Pre0 model was developed by setting impervious cover 

in each subcatchment of the model to 0. Like the Pre15 model, the parameters were not 

recalibrated and no existing stormwater infrastructure was removed. The Pre0 model was used to 

simulate Berry Brook prior to human development. Since there is no data in Berry Brook to 

assist in calibrating either the Pre15 or the Pre0 models, the models were not altered beyond 

removing impervious cover. 
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Figure 4: Developed Models for the Berry Brook Watershed 

 

Not recalibrating the Pre15 or the Pre0 models or removing the drainage infrastructure 

present in the 30% impervious model does impact the results achieved in those models. The 

models will likely see higher peak flows and faster watershed responses (time to peak flows) 

than would be seen in the truly undeveloped / less developed watershed. 

The topography of the Berry Brook watershed is shown in Figure 5. Topography was 

generated using a LiDAR DEM of the Dover area conducted in 2015. Lightly shaded areas 

indicate areas of high elevation and dark shaded areas indicate zones of low elevation. The 

imprint of Berry Brook is visible running through the watershed as a dark line on the righthand 

middle of the drainage area. Berry Brook discharges into the Cocheco River. 
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Figure 5: Berry Brook Watershed Topography. Darkening shades indicate areas of lower 

elevation. The figure was developed using a 2015 LiDAR survey from NH Granit. 
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The existing storm sewer drainage for Berry Brook is shown in Figure 6. It is of interest 

that the black line denoting the watershed boundary shows storm sewer lines that appear to cross 

into and out of the watershed. At these locations a close examination will show a cut in the storm 

sewer or a change in pipe slope which led to the boundary being placed in this location. In the 

case of the watershed boundary being insufficient, however, model results would be 

underestimated. Since the boundary was kept constant across all models, any existing bias is held 

constant through the analysis. 
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Figure 6: City of Dover Storm Sewers in Berry Brook Watershed. The image was developed 

using GIS files provided by the City of Dover. 
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Figures 7 and 8 show the developed Pre and Post models for the Berry Brook watershed. 

Both models were divided into the same 47 subcatchments. Subcatchments were delineated by 

considering the slope of the watershed (Figure 5) and the existing stormwater infrastructure 

(Figure 6). Starting at a key junction, subcatchments were traced perpendicular to the surface 

topographic contours while still following the drainage structures. In the case of watershed areas 

draining to GSI, the subcatchment area stated in the design plans for the GSI was used. If no 

construction plans were available, the GSI subcatchment was delineated like any other.  GSI 

system locations were treated as separate watersheds. Excluding the GSI systems, subcatchments 

varied in size from 0.5 to 25 acres. Junction elevations were calculated as the lowest point in a 

subcatchment. 
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Figure 7: PCSWMM Model of Pre-improvements Watershed. The dark green lines show 

subcatchment boundaries. The dotted red lines indicate to where subcatchments drained. Arrows 

indicate the direction of flow.  
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Figure 8: PCSWMM Model of Post-Improvements Watershed. The dark green lines show 

subcatchment boundaries. The dotted red lines indicate where subcatchments drained to. Arrows 

indicate the direction of flow. 

 

Subcatchments drained to conduits, outlets, storage areas, GSIs, or other subcatchments. 

Where a subcatchment drained to was determined by examination of the drainage infrastructure 

files provided by the City of Dover (Figure 7). In the Pre models, subcatchments denoting a GSI 

were treated as if they were part of the subcatchment draining into the GSI in the Post model. 
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Subcatchments with little to no impervious surface and stormwater infrastructure were noted as 

draining to the local pervious surface before discharging to the outlet. Subcatchments with 

extensive impervious surface and well-developed stormwater infrastructure were noted as 

discharging directly to the outlet to simulate the collection system present on the streets. In the 

post model, areas noted as having extensive rooftop disconnection were also modeled as draining 

to pervious areas first. 

Three water storage locations were noted for the watershed: a homeowner pond, the 

original upper watershed wetland, and the additional wetland installed for the renewal project. 

These 3 storage locations were supplemented using the Storage Creator tool in PCSWMM, 

which created storage polygons based on low places in the elevation data. Storage zones were 

limited to no less than 3 feet of depth and no less than 1000 ft2 of potential storage area. 

Aquifers to account for the groundwater were developed for each subcatchment Berry 

Brook passed through. An unfortunate limitation of SWMM and PCSWMM is that groundwater 

cannot pass from subcatchment to subcatchment, so the only groundwater discharge was directly 

into the stream from adjected subcatchments. Groundwater infiltration parameters were 

estimated using Web Soil Survey soil information (Figure 10) 

The outfall for Berry Brook was placed at the Cocheco River at Station Drive. In the Post 

model, a second outfall is shown near the Horne Street School. The second outfall simulates the 

flow of the drainage pipe from Horne Street entering a bioretention system. The water is free 

standing in the systems before again being collected at the exit of the bioretention. In the Pre 

models, this water is transported by pipe all the way to Berry Brook. 
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Junctions were placed at key stormwater collection points such as GSI locations, ends of 

roads, outlets into Berry Brook, or areas with potential water storage as determined from the 

LiDAR elevation data. Some junctions had multiple catchments draining to them. Junctions were 

positioned in places where catch-basins were located in the City of Dover files. 

Conduits were placed between junctions. Some conduits simulated closed pipes 

transporting water, while others simulated open stream channel. PCSWMM derives conduit 

slope and inlet/outlet elevations from the accompanying junctions. 

Transects were taken from Victor Hlas’s model of the Pre and Post-development 

watershed. Transects were used to depict the geometry of the natural channel. More transects 

were used in the Post model to show the stream restoration to an A1 – A2 channel. 

 GSI information was entered into the LID Control Editor in the Post model. GSIs were 

identified by street and type. Parameters not otherwise specified in construction drawings were 

left at the default values. Subcatchments were assigned to a GSI by naming it as the outlet of the 

system. Additional GSI information is provided in Section 2.3. 

The model was run as a rainfall/runoff analysis with groundwater and flow routing. It 

used dynamic wave routing at 5-minute time steps. Infiltration was represented by the Green-

Ampt equation. Manning’s equation was used for the flow and energy loss relationship. Ponding 

was permitted in a subcatchment. Daily evaporation was set to the default value of 0.05 inches 

per day. 

2.3 GSI Modeling 

LID systems installed at Berry Brook included three filtering catch basins, a rain barrel 

program, and 17 GSI systems. PCSWMM and SWMM do not at this time have a method to 
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model filtering catch basins. The rain barrel program was modeled as disconnected impervious 

cover (denoting subcatchments as draining to pervious surfaces prior to draining to the outlet). 

The 17 GSI systems were modeled using SWMM’s LID tool.   

SWMM and PCSWMM’s LID tool allows the user to enter the characteristics of a GSI 

system including surface roughness (swales), ponding height, media thickness, storage zone 

thickness, surrounding soil characteristics, the presence of an underdrain, and pollutant removal 

characteristics. For Berry Brook, each GSI system was entered as a separate LID. The LID 

systems were then linked to specific subcatchments. For Berry Brook, each GSI system was 

modeled as a separate subcatchment, so the LID controls were linked directly to them and 

marked as taking up the entire subcatchment. Water from subcatchments was then directed to the 

LID subcatchments, at which point it would enter the LID. 

LID ponding, media and storage depth were determined using design plans shown in 

Appendix D – GSI System Plans. If no system plan was available, then the ponding, media and 

storage depths were assumed to match an available plan of the same type of system. Ponding 

height in the systems varied from 3 inches (rain garden) to 24 inches (swale). Media depth varied 

from 24 inches (bioretention) to 48 inches (tree filter). The crushed stone storage depth varied 

from 24 inches (bioretention) to 48 inches (subsurface gravel filter).  

Media infiltration parameters were initially estimated to match the Type A sand soil 

parameters listed in Table 3. Seepage rate under the storage layer matched the infiltration rate of 

the local soils as shown in Figure 10. Underdrains were not included unless specifically shown in 

the system plans.  



  

30 

 

While the LID editor tool can simulate pollutant removals, that was not the focus of this 

research and no data was available to calibrate it.  

2.4 Parameter Estimation 

 Berry Brook Watershed is in Dover, NH. It consists of 185 acres, of which 55 (30%) are 

classified as impervious cover according to GIS analysis. Berry Brook is a 1.2-mile first order 

stream with an average slope of 1.5% that discharges into the Cocheco River (Hlas, 2013).  

Dover’s climate it typical of New England with an annual precipitation of 47 inches and typical 

temperatures of 18 oF to 81oF.  

A minimum of 28 parameters were estimated in the PCSWMM models: 8 subcatchment 

parameters, 3 infiltration parameters, 5 groundwater parameters, 4 conduit parameters, 1 junction 

parameter, 6 storage parameters, and 1 outlet parameter (Table 2). The initial values of 

parameters were estimated from GIS data, literature, prior study, or defaults set in the software. 

Of the 28 parameters, 11 were calibrated using the observed hydrologic data. The final parameter 

values are shown in Appendix B – Model Hydrology. 

 

Table 2: Parameters Used in PCSWMM Model 

Variable Variable Description Initial Value Calibrated 

Subcatchments       

Area Area of subcatchment GIS No 

Width Width of overland flow path GIS Yes 

Imper Percent of impervious area GIS No 

Slope Average surface slope LiDAR No 

n Imperv Manning's n for impervious area Literature Yes 

n Perv Manning's n for pervious area Literature Yes 
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Variable Variable Description Initial Value Calibrated 

Dstore Imperv 
Depth of depression storage on 

impervious area 
Default Yes 

Dstore Perv 
Depth of depression storage on 

pervious area 
Default Yes 

Infiltration: Green-Ampt       

Suction head Soil capillary suction head Literature Yes 

Conductivity 
Soil saturated hydraulic 

conductivity 
Literature Yes 

Initial Deficit Initial soil moisture deficit Literature Yes 

Groundwater Formula 𝑄𝐺𝑊 = 𝐴1(𝐻𝐺𝑊 − 𝐻)𝐵1 − 𝐴2(𝐻𝑆𝑊 − 𝐻)𝐵2 + 𝐴3(𝐻𝐺𝑊𝐻𝑆𝑊)  

Surface Elevation 
Elevation of ground surface for 

the subcatchment 
LiDAR No 

GW Flow Coeff. Value of A1 in the groundwater 

flow formula 
Default No 

GW Flow Expon. Value of B1 in the groundwater 

flow formula 
Default No 

SW Flow Expon. Value of A2 in the groundwater 

flow formula 
Default No 

SW Flow Coeff. Value of B2 in the groundwater 

flow formula 
Default No 

Conduits       

Length Conduit length GIS Yes 

Roughness Manning's roughness coefficient Literature Yes 

Geom1 
First geometric dimension of the 

conduits cross-sectional shape 
Prior Study No 

Cross-Section 
Cross-section of irregular shape 

conduits 
Prior Study No 

Junctions       

Invert Elev. Elevation of junction's invert LiDAR No 

Storages       

Invert Elev. 
Elevation of the bottom of the 

storage unit 
LiDAR No 

Depth 
Maximum depth of the storage 

unit 
LiDAR No 

Initial Depth Initial depth of the storage unit Default No 

Coefficient 
A-value in expression Area = 

A*Depth^B+C for Depth in ft 
Prior Study No 
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Variable Variable Description Initial Value Calibrated 

Constant 
C-value in expression Area = 

A*Depth^B+C for Depth in ft 
Prior Study No 

Baseline Base line value in direct inflow Hydrologic Observation Yes 

Outfalls       

Invert Elev. Elevation of outfall's invert LiDAR No 

 

 

Subcatchment width, which PCSWMM uses to calculate the time of concentration in a 

subcatchment, was estimated in ArcMap by measuring the distance from the subcatchment outlet 

to the most geographically distant point in the subcatchment. This is one potential hazard in 

modelling in SWMM. In reality, the time of concentration in a subcatchment depends on the 

most hydraulically remote point, which is not always the most geographically distant. This may 

allow the model to reach peak flow faster than the observed data. For this reason subcatchment 

width was a parameter calibrated to the observed data after the initial estimation. 

Subcatchment area and conduit length were also estimated using ArcMap. Impervious 

cover in a subcatchment was estimated using the impervious cover data for the City of Dover 

available from NH Granite (Figure 9). Other values were initially estimated using the defaults 

present in PCSWMM.  

Elevations and surface slopes were estimated using 2011 LiDAR digital elevation data 

available from NH Granit (Figure 6). The lighter shades in the figure depict higher elevations, 

and darker shades indicate lower elevations. The LiDAR image clearly shows the slope of the 

watershed into Berry Brook, and the slope of Berry Brook into the Cocheco river. The LiDAR 

digital elevation data was used to develop 5-foot contour lines in ArcMap using the Spatial 

Analyst toolkit, which were then used to delineate subcatchments. 
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Soil suction head, initial deficit, and conductivity for the Green-Ampt Equation were 

estimated as a spatially constant value by taking the area-weighted average values of all the soils 

in each subcatchment (Figure 10) as determined by soil texture class (Tables 3 and 4). The 

infiltration parameters were then calibrated using the hydrologic observations.  
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Figure 9: Impervious Surface in the Berry Brook Watershed. Impervious cover information was 

developed from 2010 survey data from NH Granit. 
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Figure 10: Soil Texture Classes in the Berry Brook Watershed. Soil map developed using Web 

Soil Survey data for the City of Dover. 
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Table 3: Soil Texture Classes in the Berry Brook Watershed 

Map Name Soil Type Soil Texture Class HSG 

BzB 

Buxtom silt loam, 3 to 8 percent 

slopes Silt Loam C/D 

DeB 

Deefield loamy fine sand, 3 to 8 

percent slopes Loamy Sand A 

EaA 

Elmwood fine sandy loam, 0 to 3 

percent slopes Sandy Loam B 

EaB 

Elmwood fine sandy loam, 3 to 8 

percent slopes Sandy Loam B 

Gv Gravel and borrow pits Sand A 

HaB 

Hinckley loamy sand, 3 to 8 percent 

slopes Loamy Sand A 

HaC 

Hinckley loamy sand, 8 to 15 percent 

slopes Loamy Sand A 

HcB 

Hollis-Charlton fine sandy loams, 3 

to 8 percent slopes Sandy Loam D 

ScB 

Scantic silt loam, 3 to 8 percent 

slopes Silt Loam C/D 

SfC 

Suffield silt loam, 8 to 15 percent 

slopes Silt Loam C 

SfE 

Suffield silt loam, 15 to 35 percent 

slopes Sandy Loam C 

SwA 

Swanto fine sandy loam, 0 to 3 

percent slopes Sandy Loam C/D 

W Water - - 

WfB 

Windsor loamy fine sand, clay 

subsoil variant, 0 to 8 percent slopes Loamy Sand A 
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Table 4: Soil Characteristics by Soil Texture Class (Rawls et al., 1983) 

Soil Texture Class K Ψ φ FC WP 

Sand 4.74 1.93 0.437 0.062 0.024 

Loamy Sand 1.18 2.4 0.437 0.105 0.047 

Sandy Loam 0.43 4.33 0.453 0.19 0.085 

Loam 0.13 3.5 0.463 0.232 0.116 

Silt Loam 0.26 6.69 0.501 0.284 0.135 

Sandy Clay Loam 0.06 8.66 0.398 0.244 0.136 

Clay Loam 0.04 8.27 0.464 0.31 0.187 

Silty Clay Loam 0.04 10.63 0.471 0.342 0.21 

Sandy Clay 0.02 9.45 0.43 0.321 0.221 

Silty Clay 0.02 11.42 0.479 0.371 0.251 

Clay 0.01 12.6 0.475 0.378 0.265 

 

K = saturated hydraulic conductivity, in/hr 

Ψ = suction hear, in. 

φ = porosity, fraction 

FC = field capacity, fraction 

WP = wilting point, fraction 

 

Conduit shape, location, and size was determined from the City of Dover documentation 

(Figure 7) and construction drawings for GSI. Conduit length was estimated using ArcMap. 

Conduit length was then calibrated at changes of no more than 25% of the length at a time for the 

stormwater system and no more than 15% at a time for Berry Brook. 

2.5 Model Calibration 

2.5.1 Calibration Data 

Prior work in the Berry Brook Watershed included the collection of continuous depth of 

flow data and the development of a stage-discharge curve at Station Drive for time periods prior 
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to and after watershed improvements. The data selected for model calibration was 6 storms in the 

pre-improvements period and 5 storms in the post-improvements period.  

The Morse Hall weather gage located on the UNH Campus was used for hourly rainfall 

and daily temperature data. The Morse Hall rain gage is located 7 miles from the Berry Brook 

Watershed and hourly rainfall and temperature records exist going back to 1948. Because of the 

distance to the rainfall gage, some storms appearing in the observed flow did not appear in the 

modeled flow. 

The calibration rainfall came from the UNH Morse Hall weather gage at 60-minute time 

steps. The stream discharge data for calibration had 15-minute timesteps. The model was set to 

deliver results at 1-minute time steps to ensure that the model time step was less than the time of 

concentration in the subcatchments. Unfortunately, having rainfall data at less frequent time 

steps means the model will dull the peaks from the rainfall. For example, a 1-inch storm that 

lasted an hour with varying rainfall intensity will be shown as 1-inch split evenly over the hour. 

This caused a slightly different response in the watershed than the same storm shown at smaller 

intervals. 

The stage-discharge curve used to determine flow during the calibration period had no 

data points for flows higher than 15 cubic feet per second (cfs). For this reason, the model was 

calibrated only to storms with peaks smaller than 15 cfs. 

All calibrated parameters were within PCSWMM’s range of acceptable values. The 

model was calibrated until the runoff, groundwater, and flow routing continuity error was less 

than 1%. 
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2.5.2 Pre-improvements Model Calibration 

 The Pre model was calibrated from Victor Hlas’s data collected in 2011 at the Station 

Drive monitoring location. The baseflow was calibrated based over the 3-month monitoring 

period (Figure 11), and the peak flows were calibrated from 6 storms of varying length and 

intensity (Table 5). Base flow was treated as a constant value, which made it such that the 

modeled baseflow sometimes exceeded the observed baseflow and sometimes fell short of the 

observed baseflow.  Key calibration parameters included conduit length, conduit roughness, 

baseline flow, subcatchment width, and Manning’s n for the impervious surfaces. The goodness-

of-fit was measured using the Integral Square Error (ISE). The model parameters were adjusted 

to minimize the ISE and maximize the ISE rating. The calibrated Pre model achieved an ISE 

rating of Good to Excellent for individual storms and an overall rating of Fair for the overall 

modelling of maximum flow (Figure 12). The baseflow was calibrated to 0.75 cfs. The calibrated 

model parameters are shown in Appendix B – Model Hydrology. 

 

Table 5: Summary of Calibration Storms for Pre-improvements Model 

 

 

   

Observed Modeled Observed Modeled Observed Modeled ISE Rating

7/13/2011 0.34 18.75 5.23 8.39 77,330 99,460 0.10 0.13 7.63 Good

7/29/11 0.23 38.33 2.97 3.07 143,400 132,300 0.18 0.17 2.33 Excellent

8/27/11 2.25 44.42 15 14.6 462,700 572,300 0.58 0.72 5.29 Very Good

9/6/2011 1.11 32.08 7.59 11.5 220,200 301,100 0.28 0.38 7.18 Good

9/23/11 0.66 31.58 7.55 8.94 179,700 220,100 0.23 0.28 4.14 Very Good

9/29/2011 0.6 33.08 15 11.4 299,700 210,700 0.38 0.27 7.54 Good

Date

Rainfall 

(in)

Duration 

(hr)

Maximum Flow (cfs) Total Flow (ft³) Runoff Depth (in) Model Fit
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Figure 11: Pre-improvements calibration run for full monitoring period 

 

It should be noted that there are storms that appear on the calibration set that do not 

appear in the calibrated model. This indicates that there was rainfall in Durham at the gage, but 

not in the Berry Brook watershed. 

The calibrated peak flows for the 6 considered storm events are shown in Figure 12 and 

13. The figures show that the model underpredicts the observed flows in some areas and 

overpredicts in others. Some of this error may be attributed to differences in precipitation 

between the Berry Brook watershed and the Morse Hall rain gage. Overall, the model is 

predicting reasonably well with an ISE of 11.9. 
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Figure 12: Pre model calibration storms evaluated for peak flow prediction 
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Figure 13: Observed and modeled peak flows in the Pre model calibration storms. Storms are 

numbered in chronological order. 

 

The calibrated total flows (cubic feet) for the 6 considered storm events are shown in 

Figure 14. The figure shows that the model again underpredicts the observed total flows in some 

areas and overpredicts in others.  
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Figure 14: Observed and modeled total flow in the Pre model calibration storms. Storms are 

numbered in chronological order. 

 

2.5.3 Post-Improvements Model Calibration 

The Post model was calibrated using individual storms from Amy Johnson’s data 

collected in 2017 and 2018. The added GSI systems, additional wetland area, and altered stream 

channel were the only parameters altered in the Post model calibration. All other parameters 

(subcatchment width, infiltration, conduit roughness, etc.) were kept the same as in the Pre 

model. This was done because the actual hydrology of the watershed was not altered between Pre 

and Post except for already mentioned changes.  

The addition of the LID controls, new wetland, and restored stream channel did not yield 

results similar to the observed flow. This was likely due to two factors. First, SWMM does not 

model side wall infiltration out of LID systems – only vertical infiltration through the bottom. 

This causes SWMM to underpredict the amount of infiltrated water. Solutions to this are to 



  

44 

 

increase the infiltration rate in the LID control by 30 to 50 percent (Macadam, 2018) or to add an 

artificial underdrain to the LID control to force extra drainage (Alegria Silveira, 2020). Second, 

the model was underestimating the amount of water disconnected from the direct drainage 

system by the rain barrel program, efforts toward disconnection, or a lack of drainage 

infrastructure in an area marked as draining directly to an outlet. This could be corrected for by 

adjusting the subcatchments with rain barrels or limited drainage infrastructure to pervious 

routing, or water flow to pervious areas before it reached the outlet.  

Three calibration scenarios were evaluated for the Post model. First, adding the LID 

controls only. Second, adding the LID controls and the pervious routing to subcatchments with 

large amounts of disconnected area. Third, adding LID controls with the infiltration rate 

increased by 50% and the additional pervious routing. The goodness-of-fit for each scenario was 

measured using the Integral Square Error (ISE). The model parameters were adjusted to 

minimize the ISE and maximize the ISE rating. It was found that the third scenario, LID controls 

with increased infiltration and pervious subcatchments best fit the observed data.  

The best model fit (LID, Increase Infiltration, Pervious Routing) is shown with the 

observed stream data in Table 6. The calibrated Post model achieved an ISE rating of Fair to 

Very Good for individual storms and an overall rating of Fair for the overall modelling of 

maximum flow (Figure 15). The calibrated model parameters are shown in Appendix B – Model 

Hydrology. 
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Table 6: Summary of Calibration Storms for Post-improvements Model 

 

 

 

 

Figure 15: Post model calibration storms evaluated for peak flow prediction 

 

The calibrated peak flows (Figure 16) and total flows (Figure 17) for the 5 considered 

storm events show the model had acceptable success. The model is predicting fairly well the 

observed values from Berry Brook with one exception: total flow in calibration storm 5. This 

Observed Modeled Observed Modeled Observed Modeled ISE Rating

9/3/2017 0.4 4.33 8 5 55,670 46,480 0.07 0.06 9.01 Good

9/6/2017 0.87 25.92 15 13 202,000 200,600 0.25 0.25 5.23 Very Good

9/15/2017 0.71 7.75 9 10 67,100 70,420 0.08 0.09 20.2 Fair

2/4/2018 0.52 20.17 3.4 2.5 36,180 45,900 0.05 0.06 7.15 Good

4/16/2018 0.66 10.67 10 11 80,130 164,600 0.10 0.21 11.8 Fair

Model Fit

Date

Rainfall 

(in)

Duration 

(hr)

Maximum Flow (cfs) Total Flow (ft³) Runoff Depth (in)
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could be due to variation in the rainfall between Berry Brook and the rain gage. In the whole, the 

model predicted reasonably well with an ISE rating of 11.8. 

 

 

Figure 16: Observed and modeled peak flow in the Post model calibration storms. Storms are 

numbered in chronological order. 
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Figure 17: Observed and modeled total flow in the Post model calibration storms. Storms are 

numbered in chronological order. 

 

2.6 Model Runs 

2.6.1 Rainfall Data 

The effectiveness of GSI at controlling floods during extreme rainfall events and the 

impact of increasing or decreasing IC on flooding were evaluated using Atlas 14 extreme 

precipitation estimates for the 2-yr, 10-yr, 50-yr, and 100-yr events (Table 7). The models were 

evaluated for a short storm (1 hour) and a long storm (24 hours) to study the efficacy of GSI to 

control short-term flooding and long-term flooding. In the 1-hour storms, precipitation varied 

from 0.98 inches to 2.28 inches. In the 24-hour storms, precipitation from 3.23 inches to 8.27 

inches, a more than 300% increase from the 1-hour storm. 
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Table 7: NOAA Atlas 14 Precipitation Data for Berry Brook Watershed 

Storm Duration 2-yr 10-yr 50-yr 100-yr 

1 hr 0.98 1.49 2.04 2.28 

24 hr 3.23 5.18 7.29 8.27 

 

The effects of climate change were simulated using the New Hampshire guidance of 

increasing the extreme precipitation estimates by 15% (Table 8). In the 1-hour storms, 

precipitation varied from 1.13 inches to 2.63 inches. In the 24-hour storms, precipitation varied 

from 3.71 inches to 9.51 inches. It should be noted that adjusting the extreme precipitation by 

15% is in effect shifting the extreme precipitation estimates to left (Figure 18). What is currently 

a 50-year storm is becoming a 28-year storm, and what is going to be a 5-year storm is right now 

a 22-year storm. While this method grasps the increase in rainfall intensity, it does not include 

any other changes in the hydrologic cycle that may result from climate change. 

 

Table 8: Extreme Precipitation Data Adjusted for Climate Change 

Storm Duration 
2-yr 10-yr 50-yr 100-yr 

1 hr 1.13 1.71 2.34 2.63 

24 hr 3.71 5.95 8.38 9.51 
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Figure 18: Effect of adjusting Atlas 14 precipitation events to account for climate change 

 

2.6.2 Extreme Precipitation Event Modeling 

The extreme precipitation events were modeled using artificial storms to turn the total 

rainfall into a distributed storm. The events were broken into the smallest intervals available to 

better determine the peak flows for each storm. 

The 1-hour storms were modeled at 5-minute rainfall intensity intervals using the Huff 

Quartile II rainfall distribution (Figure 19). This distribution was chosen for its close 

resemblance to the SCS Type II distribution recommended by the Natural Resource 

Conservation Service for use in New Hampshire. 
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Figure 19: Rainfall intervals for the 1-inch 1 hour storm 

 

The 24-hour storms were modeled at 6-minute intervals using the SCS Type II rainfall 

distribution (Figure 20). The SCS Type II distribution is recommended for use in seacoast New 

Hampshire. The very small intervals allow for the simulation of a constantly changing storm. 
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Figure 20: Rainfall intervals for the 1-inch 24 hour storm 

 

2.6.3 Long-Term Modeling 

The Pre and Post models were run using the UNH 10-year hourly rainfall record from 

10/1/1999 to 10/1/2010, or for water years 2000 to 2010. Figure 21 shows the daily rainfall for 

the long-term analysis. The full dataset consisted of hourly rainfall, which allows a finer rainfall-

runoff response. The largest storm modeled was about 5.33 inches of rain in April of 2007. 
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Figure 21: Rainfall for the long-term analysis. The full dataset consisted of hourly data. 

 

2.7 Watershed Response Analysis 

2.7.1 Time of Concentration 

Time of concentration is not a variable directly calculated by PCSWMM. For this reason, 

the time of concentration for each model was estimated using the NRCS relationship between lag 

and the time of concentration. 

𝑇𝑖𝑚𝑒 𝑜𝑓 𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 =  
𝐿𝑎𝑔 𝑇𝑖𝑚𝑒

0.6
 

where 

𝐿𝑎𝑔 𝑇𝑖𝑚𝑒 = 𝑇𝑖𝑚𝑒 𝑡𝑜 𝑃𝑒𝑎𝑘 𝐹𝑙𝑜𝑤 −  
𝑃𝑒𝑟𝑖𝑜𝑑 𝑜𝑓 𝑅𝑢𝑛𝑜𝑓𝑓 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑛𝑔 𝑅𝑎𝑖𝑛

2
 

The time of concentration was estimated by simulating a 10-minute storm of runoff-

generating constant intensity in the watershed. The simulation was run at a reporting time step of 

1 minute with a calculation time step of 30 seconds. The time of concentration was calculated 
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from the time to peak and storm duration (Table 9). Time of concentration was checked to ensure 

the models were reflecting an increased time of concentration caused by a lower hydraulic 

efficiency resulting from the addition of GSI or the reduction in IC. 

 

Table 9: Time of Concentration for Each Model 

 

 

The modeled time of concentration was 27 minutes for the Pre model, 42 minutes for the 

Pre15 model, 52 minutes for the Pre0 model, and 35 minutes for the Post model. These results 

show that a decrease in impervious cover or BMP implementation will decrease the hydraulic 

efficiency of the collection system as it is currently modeled. It also shows that adding 30% 

impervious cover to a watershed cuts the time of concentration in the watershed by about 50%.  

2.7.2 BMP Implementation 

The impact of BMPs, particularly GSI, that reduced the EIC to 10% in Berry Brook on 

urban flooding was quantified by running rainfall-response analysis on the Pre model and Post 

model for Atlas 14 extreme precipitation events shown in Table 8. The peak flows, time to peak 

flow, total flow volume, and runoff depth for each storm were recorded. The magnitude of 

change in each parameter and the percent change in peak flow, total flow, and runoff depth for 

each storm from the Pre model to the Post model was calculated. The median percent change 

was then calculated per storm event and for all model events. 

Model Pre Pre15 Pre0 Post

Duration of Excess Rainfall (min) 10 10 10 10

Time to Peak (min) 21 30 36 26

Lag (min) 16 25 31 21

Time of Concentration (min) 27 42 52 35
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To remove any bias caused by the decrease in baseflow in the model between the Pre and 

Post scenarios, baseflow for the simulation was calculated by running each model without 

rainfall for the duration of each simulation. The calculated baseflow peak discharge and total 

flow volume were then subtracted from each calculated storm value before analysis. 

Percent change was calculated as: 

% 𝐶ℎ𝑎𝑛𝑔𝑒 = 100 ∗
𝑃𝑒𝑎𝑘 𝐹𝑙𝑜𝑤 (𝑋) − 𝑃𝑒𝑎𝑘 𝐹𝑙𝑜𝑤 (𝑌)

𝑃𝑒𝑎𝑘 𝐹𝑙𝑜𝑤 (𝑋)
 

The long-term effectiveness of BMPs to reduce urban flooding was also assessed. The 

rainfall-runoff relationship was simulated from October 01, 2001 to October 1, 2011 for the Pre 

model and the Post model. No snowmelt was included. For water years 2002 to 2011, the 

minimum, average, and maximum annual flows were calculated. The percent change in the 

annual maximum flow values per water year from Pre to Post was computed. The total 

infiltration and runoff depth in Berry Brook over the 10-year period was also computed. Finally, 

a frequency duration curve (FDC) was developed from the average daily flow data for both 

models. 

2.7.3 Impervious Cover Analysis 

The impact of impervious cover on urban flooding was quantified by running rainfall-

response analysis on the Pre model, Pre15 model, and the Pre0 model for Atlas 14 extreme 

precipitation events shown in Table 7. The peak flows, time to peak flow, total flow volume, and 

runoff depth for each storm were recorded. The magnitude of change and percent change in 

values of the Pre and Pre15 models for each storm were calculated with respect to the Pre0 , or 

simulated undeveloped watershed. Baseflow was removed and percent change was calculated as 

shown in section 2.6.2.  
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2.7.4 Climate Change Analysis 

The impact of climate change on urban flooding was quantified by running rainfall-

response analysis on the Pre and Post models for the climate-adjusted extreme precipitation 

events shown in Table 8. The model responses from the Pre watershed using the rainfall for 

climate change were denoted as PreClimate while responses from the Post watershed were denoted 

as PostClimate. The peak flows, time to peak flow, total flow volume, and runoff depth for each 

storm were recorded. The percent change in recorded values for each storm moving from the 

Pre0 (undeveloped) model with the current rainfall to the PreClimate model with the projected 

rainfall were calculated. The same was calculated for the the PostClimate model data. The mean 

percent change, median percent change, and standard deviation of percent change were then 

calculated per storm event and for all model events for both scenarios. Baseflow was removed 

and percent change was calculated as shown in section 2.6.2. 
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Chapter 3: Results and Discussion 
 

3.1 BMP Implementation Compared to Traditional Stormwater Management 

The Pre and Post model rainfall-runoff responses were examined to determine the 

usefulness of best management practices, in particular GSI, for flood control in developed areas. 

It should be noted that while the majority of the BMPs installed in the Berry Brook watershed 

were GSI systems, 1,100 feet of stream channel was daylighted and restored to a Rosgen C 

channel, additional wetland was constructed, and another 500 feet of stream channel was 

daylighted and restored to a Rosgen A1 – A2 geometry. These additional improvements also 

impacted the monitored and modeled rainfall-runoff response. 

3.1.1 Extreme Precipitation Events 

The extreme precipitation events shown in Table 7 were run for the Pre model and the 

Post model at a reporting time step of 1 minute with a wet-weather calculation time step of 30 

seconds. To ensure uniformity in the results, each rainfall-runoff response simulation was run for 

96 hours from the beginning of the rainfall event. The peak flows, time to peak flow, total flow 

volume, and runoff depth for each storm were recorded. To ensure that only the storm discharge 

was directly compared from Pre to Post, the calibrated baseflow and total flow volume from 

baseflow over the 36-hour period were subtracted from the total peak discharge and total flow 

volume for each simulation for all calculations. 

The 2-year 1-hour extreme precipitation event from Atlas 14 was 0.98 inches. GSI 

systems are typically fully designed for the 1-inch storm, so this event is a good example of how 

the watershed behaves under expected conditions (Figure 22). The Pre response had a peak flow 

of 23 cfs, a time to peak flow of 48 minutes, a total flow of 179,810 cubic feet, and a total runoff 
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depth of 0.28 inches. The Post model had a peak flow of 16 cfs, a time to peak flow of 49 

minutes, a total flow of 99,720 cubic feet, and a total runoff depth of 0.14 inches. The reduction 

in peak flow and longer time to peak are expected results of GSI implementation and the overall 

watershed improvements. However, typically a Post-improvements hydrograph would show 

approximately the same total flow dispersed over a longer period of time. While some water 

would infiltrate through the GSI system, most of it would still be accounted for as storm runoff 

and baseflow. In SWMM and PCSWMM, however, water that infiltrates into the ground is 

removed from future flow calculations and effectively disappears from the hydrograph. The 

increased infiltration caused by GSI installation accounts for the water displaced in the Post 

model at a 1-inch storm. Also, infiltrating water will not show up in baseflow immediately after 

an event but will rather percolate through the watershed over time. A short-term simulation as 

modeled here will miss most of the impacts of the extreme precipitation event on baseflow. 
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Figure 22: Outflow in the Pre and Post models caused by the 2-yr 1-hr extreme precipitation 

event 

 

The introduction of BMPs to the watershed noticeably decreased the peak flows, 

increased the time to peak flow, decreased the runoff depth, and decreased the total flow volume. 

Decrease in the peak flow varied from 5% to 29% (Table 10). The time to peak flow increased 

by 1 to 8 minutes at the watershed scale (Table 10). Decrease in the runoff depth varied from 

19% to 49% (Table 11). Decrease in the total flow varied from 25% to 45% (Table 11). 
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Table 10: Watershed Response to BMP implementation: Peak Flow and Time to Peak 

 

 

Table 11: Watershed Response to BMP implementation: Runoff Depth and Flow Volume 

 

 

For all variables, the impact was more prevalent in extreme precipitation events lasting 1 

hour than in events lasting 24 hours (Figures 23 and 24). For the peak flow, runoff depth, and 

total flow, this difference in impact between the 1-hour storms and the 24-hour storms was likely 

due to two factors. First, GSI systems are statically designed to infiltrate rain and to drain over a 

24-hour period. A short storm would closely mimic static design conditions, showing the full 

effect of LID implementation. Second, 1-hour extreme precipitation events have significantly 

less rainfall than their 24-hour counterparts. The sheer volume of water in the 24-hour storms can 

overwhelm the GSI systems and bypass directly to Berry Brook. What decrease is present is due 

Pre Post Reduction % Reduction Pre Post Increase

1 hr 0.98 23 16 7 29 48 49 1.0

24 hr 3.23 34 31 3 10 723 727 4.0

1 hr 1.49 28 25 3 11 40 48 8.0

24 hr 5.18 44 42 2 5 722 724 2.0

1 hr 2.04 35 32 3 8 36 42 6.0

24 hr 7.29 55 52 3 5 721 723 2.0

1 hr 2.28 37 34 2 6 35 41 6.0

24 hr 8.27 61 57 4 6 721 723 2.0

Event Duration

Rain 

(in)

2-yr 

storms

10-yr 

storms

50-yr 

storms

100-yr 

storms

Time to Peak (min)Peak Flow (cfs)

Pre Post Reduction % Reduction Pre Post Reduction % Reduction

1 hr 0.98 0.28 0.14 0.14 49 179,810 99,720 80,090 45

24 hr 3.23 1.07 0.73 0.34 31 591,010 383,220 207,790 35

1 hr 1.49 0.44 0.27 0.17 38 243,610 158,120 85,490 35

24 hr 5.18 2.19 1.67 0.51 23 919,710 644,120 275,590 30

1 hr 2.04 0.62 0.43 0.19 31 294,410 205,220 89,190 30

24 hr 7.29 3.72 2.98 0.74 20 1,267,710 925,220 342,490 27

1 hr 2.28 0.72 0.51 0.20 28 313,810 225,320 88,490 28

24 hr 8.27 4.46 3.63 0.83 19 1,397,710 1,043,720 353,990 25

Total Flow (ft
3
)Runoff Depth (in)

Duration

Rain 

(in)Event

2-yr 

storms

100-yr 

storms

50-yr 

storms

10-yr 

storms
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to the combination of improvements in Berry Brook, which include increased wetland area and 

stream channel improvements. This also explains why the impact on peak flow decreases as the 

precipitation event becomes more extreme (more rainfall). As the events become more extreme 

and the precipitation on the watershed increases, the GSI becomes less useful for decreasing 

peak flow because an increasing percentage of the storm runoff simply bypasses the GSI storage. 

At that point, the chief reducers to the peak runoff are the additional wetland area and the stream 

channel improvements, which are shown to have less effect on peak flow than the GSI systems, 

but still demonstrate an improvement compared to the Pre system. 

 

 

Figure 23: Percent Change in Runoff Depth, Total Flow, and Peak Flow Caused by BMP 

Implementation to 10% EIC in a 30% IC Watershed 
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Figure 24: Change in Time to Peak Flow Caused by BMP Implementation to 10% EIC in a 30% 

IC Watershed 

 

For the time to peak flow, the difference in impact between the 1-hour storms and the 24-

hour storms was likely due to how the time of concentration is calculated in the dynamic wave 

equation, which is used by the SWMM model. Time of concentration is dependent on rainfall 

intensity, which varies in the extreme precipitation events based on event and duration, but is 

overall higher for the 1-hour events than for the 24-hour events even though the 24-hour events 

end up with more rain. What is important to note is that the time to peak increased for all storms, 

which demonstrates that the installation of BMPs successfully increased the travel time for the 

storm runoff to reach Berry Brook.  

It should be noted that over the long term, the percent change in the runoff depth from 

Pre to Post and the percent change in the flow volume from Pre to Post should be almost 

identical. In theory, what runs off should be the same as what flows in the stream. Once again, 



  

62 

 

the discrepancy between the impact on runoff depth and the impact on flow volume demonstrates 

the challenge SWMM faces with infiltrated water. Since infiltration does not reenter the system 

as baseflow or groundwater flow, this is essentially lost water in the flow volume. Also, what 

infiltration is accounted for in directly connected aquifers will not be immediately visible in the 

stream but will slowly appear over several days. Since the analysis was only for 36 hours, this 

water will not be seen in the analysis. Runoff depth, on the other hand, is calculated by SWMM 

as the quantity of precipitation not infiltrated, evaporated, or stored. For this reason, it is the 

more accurate determination of BMP performance in reducing the overall volume of water 

caused by these extreme precipitation events.  
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3.1.2 Long-Term Simulations 

Table 12: Minimum, Mean, and Maximum Annual Flows (cfs) for Water Years 2002-2011 

 

 

The Pre and Post watersheds were simulated from October 01, 2001 to October 1, 2011 at 

60-minute reporting time steps and 30-second wet weather calculation time steps.  The 

minimum, average, and maximum daily flows for water years 2002 to 2011 are shown in Table 

12. Unlike in the models of extreme precipitation events, the modeled baseflow was not 

subtracted from any values. This allowed consideration of how the model behaved in dry 

periods. The minimum and mean flows are governed primarily by the calibrated baseflow, which 

was 0.67 cfs for the Pre model and 0.03 cfs for the Post model. This indicates the baseflow in the 

watershed, or groundwater flow, is the most powerful value in the model for total modeled flow 

volume in Berry Brook. Again, both the Pre and Post models were dictated as having about 0.75 

cfs flowing from the wetland area as baseflow. However, the Post model infiltrates most of that 

flow and thus effectively removes it from the data. The storms had some effect on total volume, 

but days with rain were outnumbered by days without rain, which leaves only the baseflow to 

supply water to the stream. The maximum flow, however, was controlled by the storm events 

Minimum Average Maximum Minimum Average Maximum

2002 0.67 0.94 22 0.03 0.18 16

2003 0.67 1.03 23 0.03 0.26 18

2004 0.67 1.09 24 0.03 0.30 23

2005 0.67 1.06 26 0.03 0.27 24

2006 0.67 1.38 23 0.03 0.51 21

2007 0.67 1.18 25 0.03 0.37 24

2008 0.67 1.25 26 0.03 0.41 25

2009 0.67 1.05 23 0.03 0.27 20

2010 0.67 1.15 23 0.03 0.35 22

2011 0.67 0.97 18 0.03 0.21 11

Water Year

Pre Post
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over the 10-year simulation. Maximum annual flow ranged from 18 cfs to 26 cfs in the Pre 

model and from 11 cfs to 25 cfs in the Post model. This was as expected and demonstrated again 

that BMP implementation successfully combats flooding to at least a small extent. 

The percent change in flow from the Pre model to the Post model in the 10-year 

simulation indicated that while the change in baseflow controlled the change in minimum and 

average annual flows, there was a discernable change in the maximum annual flows caused by 

the watershed improvements (Table 13, Figure 25). The decrease in annual peak flow caused by 

BMP implementation ranged from 5% to 38% and had a median decrease of 8% in peak flow 

(median rainfall depth of 2.05 inches). This information means the BMPs are decreasing 

flooding in Berry Brook by 8% for the typical large annual storm. This estimate is about one 

third of the 29% decrease in peak flow expected in the 2-year 1-hour storm event, which was the 

example of a very common event. In other words, even in storms twice the size of the 1 inch 

most GSI is designed for, the model is demonstrating an improvement in watershed flood 

hydrology. The BMP implementation is working. 
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Table 13: Percent Change in Maximum Annual Flows Caused by BMP Implementation 

 

 

 

Figure 25: Maximum Annual Flow in Berry Brook in the Pre and Post Models, by Water Year 

 

Pre Post Decrease (cfs) Decrease (%)

2002 1.67 22 16 6 27

2003 1.16 23 18 6 24

2004 1.95 24 23 1 5

2005 1.58 26 24 2 8

2006 2.57 23 21 2 8

2007 5.33 25 24 1 5

2008 3.77 26 25 1 5

2009 1.52 23 20 3 13

2010 2.49 23 22 1 6

2011 2.14 18 11 7 38

 24-hour 

Rainfall (in)Water Year

Maximum Flow (cfs) Impact of BMPs
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The use of BMPs increased the infiltration and decreased surface runoff in Berry Brook 

by 17% and 40% respectively from October 2001 to October 2011 (Table 14). The total rainfall 

on the watershed was 487 inches. In the Pre model, 309 inches of rain infiltrated into the 

groundwater and 161 inches of rain ran off. BMP implementation allowed infiltration to increase 

by 53 inches and surface runoff to decrease by 65 inches. GSI infiltration from the LID controls 

shows infiltration from the systems as 25 inches. This demonstrates again that SWMM’s LID 

controls underpredict the infiltration capacity of GSI. These numbers show once again that 

BMPs and the installation of GSI are successful in decreasing surface runoff and increasing 

infiltration in a watershed. SWMM dictates that the surface runoff decrease is specifically caused 

by the increase in infiltration. Interestingly, total evaporation also decreased. This result was 

unexpected because typically the introduction of GSI to a watershed leads to increased ponding 

areas and therefore increased evaporation, not decreased. This was likely due to how evaporation 

was modeled. Evaporation was treated as a constant value for both the Pre model and the Post 

model. In the Post model, however, water that may have ponded in shallow places or flooded out 

of the conveyance system in the Pre model instead was taken to GSI systems with high 

infiltration capabilities. The decrease in evaporation is likely due to that water being infiltrated 

instead. 

 

Table 14: Infiltration and Surface Runoff in the 10-year Simulation 

 

Pre Post Change %  Change Type

Years 10 10 - - -

Total Precipitation (in) 487 487 - - -

Evaporation (in) 17 11 6 33 Decrease

Infiltration (in) 309 362 53 17 Increase

GSI Infiltration (in) 0 25 25 - Increase

Runoff (in) 161 96 65 40 Decrease
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The volume of infiltrated water provides the opportunity to get a more accurate estimate 

of modelled baseflow. As previously stated, PCSWMM and SWMM effectively remove 

infiltrated water from streamflow calculations. However, by taking the depth of infiltrated water 

and multiplying it by the total watershed area, we can get an estimate of the actual volume of 

baseflow attributed to infiltration. Dividing this number over the 10-year period allows an 

estimation of baseflow, which would therefore be 0.70 cfs for the Pre model and 0.82 cfs for the 

Post model. This shows a 0.12 cfs increase in baseflow due to GSI implementation. These are 

significantly different numbers than what is shown by PCSWMM. Again, this is because 

SWMM is showing this water as infiltrating, at which point SWMM no longer considers it in the 

stream. For the Pre model this number is very similar. This value varies very little from the 

calibrated baseflow in the Pre model, which was about 0.67 cfs. For the Post model this is a 

significantly higher value than the 0.03 cfs reported as groundwater flow for the model. 

Groundwater flow after BMP implementation should actually be higher than prior to 

implementation, which is what is seen in the baseflow calculated from infiltration. This result is 

more comparable to the expected impact of GSI installations and accounts for the missing 

volume of water from storms. 

The hourly streamflow data modeled over the 10-year period was processed to produce 

daily average streamflow. The daily averages were then used to develop a flow duration curve 

(FDC) for the Pre and Post-improvements watersheds (Figure 26). The FDC visually 

demonstrates the modeled difference in baseflow accounted for above and the change in high 

flows caused by BMP implementation. For the Pre-improvements watershed, 50% of the average 

daily flow can be considered controlled by the baseflow, 0.67 cfs. This implied that the 

remaining 50% of average flow was impacted by precipitation events. In other words, 
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stormwater was flowing in the stream 50% of the time. This is sensible in terms of the number of 

days of precipitation in New Hampshire, which is about 1 in 3 days. For the Post-improvements 

watershed, which effectively acted as if it had a baseflow of 0.03 cfs, 80% of the time the 

streamflow exceeded baseflow. This indicates that the BMP installations, while infiltrating most 

of the baseflow, still left enough storm runoff or infiltration from it to be detected for 80% of the 

monitoring time. This implies that in reality the Pre model should show higher flows this 

frequently as well, but the impact is disguised by the greater baseflow present in the model. This 

is sensible because in truth baseflow is not a constant value. It is constantly decreasing and 

increasing depending on the depth of groundwater, which in turn depends on precipitation. 

 

 

Figure 26: Full Flow Duration Curve for Berry Brook Pre and Post Models 
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 The wet-weather behavior of the modeled flow duration curve of average daily flow is 

shown in Figure 27. This includes the top 5% average daily flows from the 10-year analysis. The 

discharge in the Post model is approximately 2 to 10 cfs lower than the discharge in the Pre 

model, but is in all cases significantly greater than the baseflow of the model. This again 

demonstrates that GSI implantation is successfully reducing flow from extreme precipitation 

events, but does not eliminate it. 

 

 

Figure 27: Flow Duration Curve for Berry Brook Pre and Post Models for Wet-Weather Flows 

Only 

 

 The peak flow response of the Pre and Post models, for every storm in the 10-year period, 

is shown in Figure 28. This figure shows that on every occasion, the modeled storm response in 
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the Post watershed was less than the modeled storm response in the Pre watershed. The decrease 

in peak flow was most noticeable up to about 20 cfs in the Pre model (up to about 1.3 inches of 

precipitation). In this range, GSI installation caused a median percent decrease of 68% of peak 

flow. It should be noted that in the case of the 20 cfs modeled Pre response, this still showed a 15 

cfs response in the Post model. The flooding was not eliminated, only reduced. This is because 

the purpose of GSI is to remove pollutants from runoff, not eliminate flooding. Flooding is 

reduced by GSI as a side effect of storing water for pollutant removal, but it is not the primary 

purpose of GSI and should not be used as the sole flood prevention measure in an urbanized area. 

This is further demonstrated in the storms exceeding about 20 cfs. At this point, the Post 

watershed was producing modelled flows only slightly smaller than those modelled in the Pre 

watershed. This indicates that the rainfall necessary to generate 20 cfs in the stream is 

approximately the amount of rainfall at which GSI is no longer effective at reducing flooding, 

because at that point the systems are overwhelmed. This was modeled to be about 1.3 inches of 

rain. 
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Figure 28: Modeled Storm Flows for Pre and Post in Berry Brook for Water Years 2001-2011 

 

 Figure 28 graphically shows the diminishing impacts of GSI on peak flow reduction as 

storms become more extreme. The smallest flows (up to about 10 cfs in the Pre model) show a 

significant percent reduction in peak flow caused by GSI implementation. Flows from about 10 

cfs to about 20 cfs in the Pre model still show the positive impacts of GSI on reducing flooding, 

but the percent impact is diminishing. Finally, storms above 20 cfs in the Pre model show almost 

no reduction due to GSI implementation, which means that the storm is overwhelming the GSI 

systems. 

 It should be noted that the minimum Pre and Post flows show a significant reduction as 

well, in which the Pre flows are approximately 0.7 cfs and the Post flows are approximately 
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0.035 cfs. The drastic change in flow here is caused by how SWMM handles infiltration and not 

by the storm event that caused a local peak flow.  

3.2 Impacts of Impervious Cover Compared to the Impacts of Climate Change in Extreme 

Precipitation Events 

The purpose of these runs was to compare the impacts of impervious cover to the impacts 

of the expected increase in rainfall intensity due to climate change for extreme precipitation 

events. The rainfall values shown in Table 7 were run for the Pre model and the Pre15 model, the 

Pre0 model, and the Post model at a reporting time step of 1 minute with a wet-weather 

calculation time step of 30 seconds. The climate change-adjusted extreme precipitation events 

shown in Table 8 were run in the Pre model and the Post model to yield the PreClimate and 

PostClimate scenarios. To ensure uniformity in the results, each rainfall-runoff response simulation 

was run for 36 hours from the beginning of the rainfall event. The peak flow, time to peak flow, 

total flow volume, and runoff depth for each storm were recorded. To ensure that only the storm 

discharge was directly compared, the calibrated baseflow and total flow volume from baseflow 

over the 36-hour period were subtracted from the total peak discharge and total flow volume for 

each simulation for all calculations (Table 15). The magnitude of change from the Pre0 (pre-

development) watershed response was calculated for all other models (Table 16). The percent 

change of the peak flow, runoff depth, and total flow were then calculated (Table 17). The 

magnitude of change in time to peak and the percent change in peak flow, runoff depth, and total 

flow were then summarized using the median change from Pre0 for all 8 modeled extreme 

precipitation events (Tables 18 and 19). The median percent impact on peak flow, runoff depth, 

and total flow were graphically compared for each scenario (Figure 29). The median impact on 

time to peak was also graphically compared for each scenario (Figure 30).  
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Table 15: Watershed Responses: Modeled Extreme Precipitation Responses 

 

Pre0 Pre15 Pre Post PreClimate PostClimate

1 hr 0.98 1.13 0.33 16 23 16 24 19

24 hr 3.23 3.71 11 20 34 31 37 34

1 hr 1.49 1.71 1.0 18 28 25 31 28

24 hr 5.18 5.95 23 24 44 42 48 46

1 hr 2.04 2.34 5.5 18 35 32 37 35

24 hr 7.29 8.38 29 29 55 52 62 58

1 hr 2.28 2.63 9 19 37 34 40 37

24 hr 8.27 9.51 32 32 61 57 65 62

Pre0 Pre15 Pre Post PreClimate PostClimate

1 hr 0.98 1.13 518 61 48 49 45.0 62

24 hr 3.23 3.71 762 742 723 727 722 726

1 hr 1.49 1.71 61 47 40 48 38.0 45

24 hr 5.18 5.95 754 744 722 724 721 723

1 hr 2.04 2.34 63 48 36 42 35.0 40

24 hr 7.29 8.38 742 738 721 723 721 723

1 hr 2.28 2.63 65 51 35 41 34 39

24 hr 8.27 9.51 739 736 721 723 722 724

Pre0 Pre15 Pre Post PreClimate PostClimate

1 hr 0.98 1.13 28,410 109,610 179,810 99,720 200,710 119,420

24 hr 3.23 3.71 185,010 404,210 591,010 383,220 667,110 445,220

1 hr 1.49 1.71 61,110 163,310 243,610 158,120 266,910 177,620

24 hr 5.18 5.95 536,310 733,010 919,710 644,120 1,058,710 750,220

1 hr 2.04 2.34 104,910 213,910 294,410 205,220 318,510 230,320

24 hr 7.29 8.38 896,910 1,100,710 1,267,710 925,220 1,410,710 1,056,720

1 hr 2.28 2.63 129,110 236,810 313,810 225,320 341,710 254,020

24 hr 8.27 9.51 1,017,710 1,231,710 1,397,710 1,043,720 1,541,710 1,185,720

Pre0 Pre15 Pre Post PreClimate PostClimate

1 hr 0.98 1.13 0.00 0.14 0.28 0.14 0.33 0.18

24 hr 3.23 3.71 0.17 0.6 1.1 0.7 1.3 0.9

1 hr 1.49 1.71 0.01 0.22 0.44 0.27 0.51 0.33

24 hr 5.18 5.95 0.86 1.5 2.2 1.7 2.7 2.1

1 hr 2.04 2.34 0.03 0.32 0.62 0.43 0.74 0.54

24 hr 7.29 8.38 2.01 2.9 3.7 3.0 4.5 3.7

1 hr 2.28 2.63 0.05 0.37 0.72 0.51 0.86 0.65

24 hr 8.27 9.51 2.59 3.5 4.5 3.6 5.4 4.5

2-yr 

storms

Event Duration

Base 

Rain (in)

Climate 

Rain (in)

Modeled Values

Event Duration Rain (in)

Climate 

Rain (in)

Modeled Values

10-yr 

storms

50-yr 

storms

100-yr 

storms

2-yr 

storms

10-yr 

storms

50-yr 

storms

100-yr 

storms

2-yr 

storms

10-yr 

storms

50-yr 

storms

100-yr 

storms

Event Duration Rain (in)

Climate 

Rain (in)

Modeled Values

2-yr 

storms

10-yr 

storms

50-yr 

storms

100-yr 

storms

Event Duration Rain (in)

Climate 

Rain (in)

Modeled Values

Peak Flow (cfs)

Time to Peak (min)

Total Flow (ft
3
)

Runoff Depth (in)
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Table 16: Watershed Responses: Model Difference from Pre0 

 

Pre15 Pre Post PreClimate PostClimate

1 hr 0.98 1.13 15 22 16 24 19

24 hr 3.23 3.71 8.5 23 20 26 23

1 hr 1.49 1.71 17 27 24 30 27

24 hr 5.18 5.95 0.28 21 18 25 22

1 hr 2.04 2.34 13 29 26 32 29

24 hr 7.29 8.38 0.22 26 23 32 29

1 hr 2.28 2.63 10.2 28 26 31 29

24 hr 8.27 9.51 0.21 29 25 33 30

Pre15 Pre Post PreClimate PostClimate

1 hr 0.98 1.13 -457 -470 -469 -473 -456

24 hr 3.23 3.71 -20 -39 -35 -40 -36

1 hr 1.49 1.71 -14 -21 -13 -23 -16

24 hr 5.18 5.95 -10 -32 -30 -33 -31

1 hr 2.04 2.34 -15 -27 -21 -28 -23

24 hr 7.29 8.38 -4 -21 -19 -21 -19

1 hr 2.28 2.63 -14 -30 -24 -31 -26

24 hr 8.27 9.51 -3 -18 -16 -17 -15

Pre15 Pre Post PreClimate PostClimate

1 hr 0.98 1.13 81,200 151,400 71,310 172,300 91,010

24 hr 3.23 3.71 219,200 406,000 198,210 482,100 260,210

1 hr 1.49 1.71 102,200 182,500 97,010 205,800 116,510

24 hr 5.18 5.95 196,700 383,400 107,810 522,400 213,910

1 hr 2.04 2.34 109,000 189,500 100,310 213,600 125,410

24 hr 7.29 8.38 203,800 370,800 28,310 513,800 159,810

1 hr 2.28 2.63 107,700 184,700 96,210 212,600 124,910

24 hr 8.27 9.51 214,000 380,000 26,010 524,000 168,010

Pre15 Pre Post PreClimate PostClimate

1 hr 0.98 1.13 0.14 0.28 0.14 0.33 0.18

24 hr 3.23 3.71 0.44 0.90 0.56 1.1 0.75

1 hr 1.49 1.71 0.21 0.43 0.27 0.50 0.33

24 hr 5.18 5.95 0.66 1.3 0.82 1.9 1.3

1 hr 2.04 2.34 0.29 0.59 0.40 0.71 0.51

24 hr 7.29 8.38 0.87 1.7 1.0 2.5 1.7

1 hr 2.28 2.63 0.32 0.67 0.46 0.81 0.60

24 hr 8.27 9.51 0.95 1.9 1.0 2.8 1.9

Modeled Value Minus Pre0

Event Duration

Modeled Value Minus Pre0

Modeled Value Minus Pre0

Modeled Value Minus Pre0Climate 

Rain (in)

2-yr 

storms

10-yr 

storms

50-yr 

storms

Climate 

Rain (in)

2-yr 

storms

10-yr 

storms

50-yr 

storms

100-yr 

storms

Base Rain 

(in)

Climate 

Rain (in)

2-yr 

storms

Event Duration

Base Rain 

(in)

Climate 

Rain (in)

Peak Flow (cfs)

Time to Peak (min)

Total Flow (ft3)

Runoff Depth (in)

100-yr 

storms

10-yr 

storms

50-yr 

storms

100-yr 

storms

Event Duration

Base Rain 

(in)

2-yr 

storms

10-yr 

storms

50-yr 

storms

100-yr 

storms

Event Duration

Base Rain 

(in)
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Table 17: Watershed Responses: Percent Change from Pre0 

 

 

Tables 15, 16, and 17 show that in every model scenario, the impact on extreme event 

peak flow, time to peak flow, runoff depth, and total flow was more prevalent in more common 

extreme precipitation events than in the rare ones such as the 100-year storm just as previously 

seen in Figures 23 and 24. This demonstrates that common storms such as the 2-year event are 

Pre15 Pre Post PreClimate PostClimate

1 hr 0.98 1.13 0 0 0 0 0

24 hr 3.23 3.71 0 0 0 0 0

1 hr 1.49 1.71 0 0 0 0 0

24 hr 5.18 5.95 0.0 0.0 0.0 0.0 0

1 hr 2.04 2.34 0 0 0 0 0

24 hr 7.29 8.38 0.00 0 0 0 0

1 hr 2.28 2.63 0 0 0 0 0

24 hr 8.27 9.51 0.00 0 0 0 0

Duration

Base Rain 

(in)

Climate 

Rain (in)Percent Change From Pre0

Pre15 Pre Post PreClimate PostClimate

1 hr 0.98 1.13 0 0 0 0 0

24 hr 3.23 3.71 0 0 0 0 0

1 hr 1.49 1.71 0 0 0 0 0

24 hr 5.18 5.95 0 0 0 0 0

1 hr 2.04 2.34 0 0 0 0 0

24 hr 7.29 8.38 0 0 0 0 0

1 hr 2.28 2.63 0 0 0 0 0

24 hr 8.27 9.51 0 0 0 0 0

Pre15 Pre Post PreClimate PostClimate

1 hr 0.98 1.13 - - - - -

24 hr 3.23 3.71 0 0 0 0 0

1 hr 1.49 1.71 0 0 0 0 0

24 hr 5.18 5.95 0 0 0 0 0

1 hr 2.04 2.34 0 0 0 0 0

24 hr 7.29 8.38 0 0 0 0 0

1 hr 2.28 2.63 0 0 0 0 0

24 hr 8.27 9.51 0 0 0 0 0

2-yr 

storms

10-yr 

storms

50-yr 

storms

100-yr 

storms

Total Flow (%)

Event

2-yr 

storms

10-yr 

storms

Runoff Depth (%)

Event Duration

Base Rain 

(in)

Climate 

Rain (in)

Percent Change From Pre0

50-yr 

storms

100-yr 

storms

100-yr 

storms

Peak Flow (%)

Event Duration

Base Rain 

(in)

Climate 

Rain (in)

Percent Change From Pre0

2-yr 

storms

10-yr 

storms

50-yr 

storms
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the storms that LID implementation can impact. Extreme events such as the 100-year event cause 

extreme flooding even in a completely undeveloped watershed. 

 

Table 18: Median Change in Peak Flow, Time to Peak, Total Flow, and Runoff Depth from 

the Pre0 Model for Extreme Precipitation Events 

 

 

Table 19: Median Percent Change in Runoff Depth, Total Flow, and Peak Flow from the 

Pre0 Model for Extreme Precipitation Events 

 

  

Pre15 Pre30 Post PreClimate PostClimate

Peak Flow (cfs) 8 9.4 27 24 30 28
Time to Peak (min) 8 -14 -29 -23 -30 -25

Total Storm Flow (cf) 8 152,850 280,150 96,610 347,850 142,610
Runoff Depth (in) 8 0.38 0.78 0.51 0.97 0.67

N

Median Magnitude of Change

N Pre15 Pre30 Post PreClimate PostClimate

Peak Flow 8 97 263 234 292 267

Total Storm Flow 8 94 162 85 184 108

Runoff Depth 7 255 525 329 656 440
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Figure 29: Absolute Value of Median Percent Change in Model Runoff Depth, Total Flow, and 

Peak Flow from the Pre0 Response 

 

 

Figure 30: Median Change in Time to Peak Flow from the Pre0 Response 

 

Increasing percent impervious cover to 15% from 0% in a traditionally managed 

watershed leads to a median increase in peak flow of 97%, a median decrease in time to peak of 
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14 minutes, a median increase in total flow of 94%, and a median increase in runoff depth of 

255%. These changes are indicating the dramatic change in watershed response caused by human 

development. When impervious cover is increased to 30%, the watershed has a median response: 

peak flow increase of 263%, time to peak decrease of 29 minutes, total flow increase of 162%, 

and runoff depth increase of 525%. This serves to say than human development drastically 

impacts a watershed’s hydrology. In the Post model, with an EIC of 10%, the watershed has a 

median response: peak flow increase of 234%, time to peak decrease of 23 minutes, total flow 

increase of 85%, and runoff depth increase of 329% when compared to the Pre0 model. These 

results show that even with LID implementation, it is virtually impossible for a developed 

watershed to behave like an undeveloped watershed during extreme precipitation events. This is 

because flooding is not the design criteria for GSI, but rather a small consequential benefit. GSI 

is not meant to prevent extreme floods, and it does not. 

Interestingly, even though the GSI systems results with an EIC of 10% in the watershed, 

the model of 15% IC is actually less impacted when compared to the watershed at 0% IC. The 

Post watershed varied from the impacts of the Pre15 watershed by: 137% more increase in peak 

flow, 9 minutes less decrease in time to peak flow, 9% less increase in total flow, and 74% more 

increase in runoff depth.  This is because GSI systems are designed to store and infiltration no 

more than 1 inch of rain which extreme precipitation events far exceed. A watershed at 15% 

impervious cover has the potential to be continuously infiltrating water on all the pervious 

surface. A watershed managed by GSI, on the other hand, generates the same amount of runoff 

as the traditionally managed watershed, but stores it in each GSI system to infiltrate. When the 

system is overwhelmed, the hydrology returns to the traditionally managed behavior: everything 

runs off the impervious cover directly into the conveyance system. This demonstrates that while 
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BMPs work well to remove pollutants from water, limiting impervious cover is still a more 

effective means of flood mitigation. 

Increasing rainfall intensity by 15% in the Pre (30% IC) watershed leads to a median 

increase in peak flow of 292%, a median decrease in time to peak of 30 minutes, a median 

increase in total flow of 184%, and a median increase in runoff depth of 656%. These exceed the 

comparison of 30% IC to 0% IC by 29% more increase in peak flow, 1 minute less time to peak, 

22% more increase in total flow, and 132% more increase in runoff depth. These values are 

significantly smaller than the impact adding the impervious cover had on the watershed, 

demonstrating that impervious cover has a much more important influence on urban flooding 

than climate change in a traditionally management stormwater system. 

Increasing rainfall intensity by 15% in the Post (10% EIC) watershed leads to a median 

increase in peak flow of 267%, a median decrease in time to peak of 25 minutes, a median 

increase in total flow of 108%, and a median increase in runoff depth of 440%. These exceed the 

comparison of the Post model to 0% IC by 33% more increase in peak flow, 2 minutes less time 

to peak, 23% more increase in total flow, and 111% more increase in runoff depth. These vary 

from the comparison of the 30% IC model (Pre) to 0% IC by 4% more increase in peak flow, 4 

minutes more time to peak, 54% less increase in total flow, and 85% less increase in runoff 

depth. The comparison of the Post model to the Post model under increased rainfall showed, to 

no surprise, that climate change once again has less impact than impervious cover. Comparing 

the traditionally managed watershed at 30% impervious cover to the same watershed at 10% EIC 

through the use of BMPs under climate change, however, shows that sufficient BMP 

implementation will allow an urban watershed to continue to operate under similar flooding 

conditions under climate change that it currently faces without BMPs. This is because the very 
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purpose of GSI implementation is to treat and infiltrate the first inch of rain, and the maximum 

amount of additional rainfall due to climate change is less than one inch. Therefore, the 

remaining rainfall is not very different from the rainfall in Table 7. 

It should be noted that in truth, the percent change in the runoff depth and the percent 

change in the flow volume should be almost identical. In theory, what runs off should be the 

same as what flows in the stream. The discrepancy between the impact on runoff depth and the 

impact on flow volume demonstrates the challenge SWMM faces with infiltrated water. Since 

infiltration does not reenter the system as baseflow or groundwater flow, this is essentially lost 

water in the flow volume. Runoff depth, on the other hand, is calculated by SWMM as the 

quantity of precipitation not infiltrated, evaporated, or stored. For this reason, it is the more 

accurate determination of BMP performance in reducing the overall volume of water caused by 

precipitation events. 

Figures 29 and 30 visually demonstrate that the impact of climate change on a watershed 

is significantly less important to the hydrologic response than the impact of impervious cover 

and that the impacts of climate change can be mitigated in the system through the use of BMPs. 

The Pre15 watershed is significantly less impacted that the Pre watershed and somewhat less 

impacted than the Post watershed, which has a physical impervious cover of 30% and an 

effective impervious cover of 10%. This shows that while BMP implementation will reduce 

flooding in a developed watershed, it will not remove the impacts of impervious cover. Figure 28 

also shows that climate change will not have comparatively more drastic impact on traditionally 

managed watersheds than it will have on BMP managed watersheds. The relative impact is about 

the same.  
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Chapter 4: Conclusion 

 

4.1 Summary and Conclusions 

 The purpose of this research was to determine the effectiveness of GSI and other BMPs 

to control urban flooding at the watershed scale for extreme precipitation events and to compare 

the impacts of increasing impervious cover with the impacts of increasing rainfall caused by 

climate change. Berry Brook watershed, a 185-acre developed watershed located in Dover, NH, 

was modeled using the proprietary stormwater management software PCSWMM developed by 

Computations Hydraulics International. The City of Dover has spent the last decade 

implementing best management practices to combat stream pollution and flooding in the Berry 

Brook watershed. Improvements to the watershed included building additional headwater 

wetland area, daylighting and restoring sections of the stream, and redirecting stormwater to 

GSIs such as bioretention and subsurface gravel wetland systems. 

 Four PCSWMM models of the Berry Brook watershed were developed for the analysis: a 

pre-implementation model (Pre), a model of the pre-implementation watershed set to 15% IC 

(Pre15), a model of the pre-implementation watershed set to 0% IC (Pre0), and a model of the 

watershed after BMP implementation (Post). The four models were used to examine the effects 

of GSI implementation, changing impervious cover, and climate change on urban watershed 

hydrology. 

The effectiveness of GSI and other BMPs to control urban flooding caused by extreme 

precipitation events was tested by comparing the peak flows, time to peak flow, runoff depth, 

and total volume of storm flow in the Pre watershed simulations of the 2-year, 10-year 50-year, 

and 100-year precipitation events to those in the Post watershed. A long-term rainfall-runoff 
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simulation from 2001 to 2011 was also done for both models. The minimum, mean, and 

maximum annual flows were determined for water years 2002 to 2011 and the total infiltration 

and surface runoff in the watershed over the 10-year period were determined. A FDC was 

constructed from the average daily flow for the Pre model and the Post model. The minimum and 

mean flows in the long-term simulation were largely controlled by the baseflow in Berry Brook. 

The maximum annual flow in Berry Brook, the total infiltration in the watershed, and the total 

surface runoff in the watershed over the 10-year period were compared from the Pre model to the 

Post model.  

The implementation of GSI, additional wetland area, and restored stream channel resulted 

with a median decrease in extreme event peak flow of 7%, an increase in the time to peak flow of 

3 minutes, a decrease in the runoff depth of 29%, and a decrease in the total storm flow volume 

of 30%. GSI impact was more prominent in short duration extreme precipitation events than in 

long duration events. For the peak flow, this was likely because a short storm would more 

closely mimic GSI static design conditions, showing the full effect of LID implementation. Also, 

1-hour extreme precipitation events have significantly less rainfall than their 24-hour 

counterparts. The sheer volume of water in the 24-hour storms could overwhelm the GSI systems 

and bypass directly to the stream.  

In the 10-year analysis, annual maximum flow had a median decrease of 8% between the 

Pre and Post models. The infiltration of rainfall increased by 17% and the stormwater runoff 

decreased by 40%.  The 8% median decrease in annual maximum flow over the 10-year analysis 

corresponded well to the median decrease in peak flow for the modelled extreme precipitation 

events since the annual maxima are extreme events. All peak flows caused by precipitation over 

the 10-year analysis were compared from Pre to Post. It was found that while GSI installation 
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always caused a reduction in peak flow due to precipitation, the impact was most noticeable up 

to about 20 cfs of flow in the Pre model. When peak flow exceeded this value, GSI became much 

less effective at reducing flooding in the watershed. GSI implementation resulted with a 68% 

decrease in peak discharge for all peak flows in the 10-year analysis less than 20 cfs in the Pre 

model, or about 1.3 inches of precipitation. Above this peak flow the GSI systems were 

overwhelmed and ineffective at reducing peak flow. It should be noted that flooding was not 

eliminated, but rather reduced. 

The FDCs of the Pre and Post simulations showed a decrease in average daily flow in 

Berry Brook caused by GSI implementation, but that flood flows would still occur. This showed 

that GSI and other BMPs can be used to help mitigate common flooding in urban watersheds but 

should not be used as the only form of flood control, especially for extreme precipitation events. 

GSI may reduce the hydrologic watershed response to extreme precipitation, but flooding will 

still occur under conditions that would cause floods in undeveloped watersheds. A mix of GSI 

and other flood control practices should be used in urban watersheds in order to improve runoff 

water quality and reduce flood severity. 

It was expected that increasing impervious cover would cause a greater increase in 

flooding in urban areas than the expected increase in rainfall caused by climate change. This was 

tested by first quantifying the impact of impervious cover on the peak flow, time to peak flow, 

runoff depth, and total flow volume and second quantifying the impact of higher intensity 

rainfall caused by climate change on the same parameters in a developed watershed with and 

without GSI implementation. 

The impact of impervious cover on the watershed was tested using the Pre, Pre15, and 

Pre0 models. The Pre0 and Pre15 models were compared to simulate the effect of adding 15% IC 



  

84 

 

to a previously undeveloped watershed. The Pre0 and Pre models were compared to examine the 

effect of adding 30% IC to a previously undeveloped watershed, or the effects of developing a 

watershed. The change in total storm flow, runoff depth, peak flow, and time to peak flow due to 

the 2-year, 10-year, 50-year, and 100-year extreme precipitation events was calculated for each 

comparison.  

Increasing IC in the watershed was shown to have a much more dramatic effect than the 

increase in rainfall caused by climate change. The initial introduction of even 15% impervious 

cover to an undeveloped watershed let to median increase in peak flow of 97%, a median 

decrease in time to peak of 14 minutes, a median increase in total flow of 94%, and a median 

increase in runoff depth of 255%. For comparison, increasing rainfall by 15% in the Pre (30% 

IC) watershed increased peak flow 29%, 1 minute less time to peak, total flow 22%, and runoff 

depth 132% more than that of simply increasing impervious cover from 0% to 30%. In a BMP 

managed watershed, increasing rainfall by 15% increase peak flow 33%, 2 minutes less time to 

peak, total flow 23%, and runoff depth 111% more than simply adding at a BMP-managed 

watershed to an undeveloped watershed. Impact was still more prevalent in short duration 

extreme precipitation events than in long duration events. The difference between the GSI-

managed watershed under future climate change conditions and the traditionally managed 

watershed under current day conditions was minimal, implying BMP implementation will keep 

flooding from getting any worse as the climate shifts. 

The impacts of IC were much greater than the impacts of the expected increase in rainfall 

due to climate change. This showed that managing impervious cover in a watershed has a greater 

impact on urban flooding than the expected changes in precipitation caused by climate change. 

This showed that using GSI and other BMPs to reduce EIC to 10%, the maximum IC for a 
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healthy stream according to the ICM, will not only reduce flooding from extreme precipitation 

events and increase infiltration from precipitation but also reduce the impacts of climate change-

altered rainfall on the watershed. 

 In summary, implementing GSI and other BMPs in an urban watershed will reduce 

flooding caused by the more common, smaller extreme precipitation events (less than 1.3 

inches), but not eliminate it for extreme events. Other stormwater control measures are still 

necessary to prevent property damage and health hazards caused by urban flooding particularly 

during rare events such as the 100-year storm. While climate change will cause an increase in 

urban flooding, that increase is best addressed by reducing effective impervious cover through 

GSI and reduction in impervious cover. 

4.2 Future Projects at Berry Brook 

 The findings of this project can be used by future projects in Berry Brook to continue 

monitoring the changes caused by GSI implementation. Further work into pollutant analysis 

in the system is necessary to see the complete watershed response. 

 The PCSWMM software proved extremely useful for the calibration of the two 

watershed models. However, the software is limited in its ability to deal with groundwater 

discharge. Further exploration into software to account for groundwater infiltration from GSI 

resulting in stream baseflow would be helpful for grasping the complete impact of GSI 

implementation. 

4.3 Limitations 

 This study looked at the Berry Brook Watershed at the full scale. As a result, many small-

scale details, such as the exact length of conduits and the number of junctions, were not included 
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to keep the model from having too many parameters to calibrate. These small details may impact 

the overall watershed response in ways not completely represented by the calibrated model. 

 This study was unable to model the implemented rain barrel program and installation of 3 

filtering catch basins in the Berry Brook watershed. While the model was calibrated excluding 

the catch basins, this affects the accuracy of the modeled rainfall-runoff responses. 

 One challenge always present in research is the accuracy of data. The stage-discharge 

curve used to calculate the observed flow at Station Drive was limited to observations exceeding 

15 cfs. For this reason, the model was calibrated with storms of 15 cfs or lower. Most of the 

results from the storm events modeled calculated flows high above 15 cfs, which limits the 

certainty of the model. 

 The rainfall and temperature data used in the model for calibration and long-term analysis 

were collected 7 miles away from the Berry Brook watershed. Rainfall depths, intensity, and 

temperature can vary greatly over large spatial distances. This limited calibration efforts to 

storms observed both at Berry Brook and at the weather station and caused the assumption that 

the amount of rainfall recorded at the station was equal to the amount of rain falling at Berry 

Brook. 
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Appendix A – Model Calibration 
 

This section provides supplementary information to 2.5 Model Calibration. It contains 

the monitoring period rainfall used in the calibration of the Pre-improvements model and Post-

improvements model. The full datasets for the rainfall contained hourly rainfall counts. Shown 

below are the total daily rainfalls at the UNH Morse Hall gage. Total daily rainfalls were 

computed by summing the hourly rainfall for each day. Days with no rain are not shown on the 

figures. 

Also shown are the SRTC parameter sensitivity values from PCSWMM. These values 

show the most sensitive parameters for each model for each calibration event. 
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Supplementary to Section 2.5.1 

 

Figure 31: Rainfall for calibration of the Pre-improvements model. The full dataset consisted of 

hourly data. 

 

 

Figure 32: Rainfall for calibration of the post-improvements model. The full dataset consisted of 

hourly data.   
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Supplementary to Section 2.5.2 

 

Figure 33: Ranked parameter sensitivity for calibration of the full Pre monitoring period 

 

 

 

Figure 34: Pre model calibration storm 7/13/2011 
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Figure 35: Pre model calibration storm 7/29/2011 

 

 

Figure 36: Pre model calibration storm 8/27/2011 
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Figure 37: Pre model calibration storm 9/6/2011 

 

 

Figure 38: Pre model calibration storm 9/23/2011 
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Figure 39: Pre model calibration storm 9/29/2011 

 

 

Supplementary to Section 2.5.3 

 

 

 

Figure 40: Post model calibration storm 9/3/2017 
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Figure 41: Post model calibration storm 9/6/2017 

 

 

Figure 42: Post model calibration storm 9/15/2017 
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Figure 43: Post model calibration storm 2/4/2018 

 

 

Figure 44: Post model calibration storm 4/16/2018 
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Appendix B – Model Hydrology 
 

This section provides supplementary information to 2.4 Parameter Estimation and 2.5 

Model Calibration. It contains an example of the groundwater parameters used in the model, set 

at the default values for PCSWMM. The parameters were not moved from the default values. It 

also shows the final calibrated model parameters for the Pre model and the Post model. It should 

be noted that no parameters were altered from the Pre values for the Pre15 and Pre0 models.  

Only actively used parameters are listed below.  

This section also contains an example of the GSI system parameters input to the Post 

model. 
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Example of Groundwater Aquifer Parameters 

 

Figure 45: Example of Aquifer Parameter Editor in PCSWMM 

 

Groundwater parameters in a subcatchment were set to match the soil characteristics of the 

subcatchment. Subcatchment soil parameters are listed below. 
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Example of GSI System Parameters 

Seepage rates in storage areas were assumed to match the infiltration rates of the surrounding 

subcatchment. 

 

Figure 46: Example of GSI Control Editor in PCSWMM 

 

Table 20: LID Control Soil Media Infiltration Parameters 

 

 

 

K Ψ φ FC WP

Media 4.74 1.93 0.44 0.06 0.02

Media at increase Infiltration 7.11 2.90 0.66 0.09 0.04
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Soil Parameters in Each Subcatchment 

Table 21: Soil Parameters by Subcatchment for Aquifers, LID Controls, and 

Subcatchments 

 

Subcatchment Porosity WP FC Conductivity (in/hr) Suction Head (in) Initial Deficit (frac.)

44_Horne_Street 0.46 0.08 0.17 2.44 4.01 0.53

Ash_Street 0.50 0.14 0.28 0.48 6.69 0.51

Central_Avenue 0.44 0.06 0.13 1.78 2.99 0.52

Central_Gravel_Wetland 0.46 0.08 0.16 1.63 3.79 0.52

Cocheco_Outfall 0.44 0.10 0.22 0.57 5.11 0.46

Crescent_Avenue 0.44 0.05 0.11 2.18 2.40 0.53

Crescent_Swale 0.44 0.05 0.11 2.18 2.40 0.53

Dover_Water_Works_Site 0.44 0.09 0.19 1.13 4.52 0.48

Glencrest_Avenue 0.44 0.05 0.11 2.18 2.40 0.53

Glencrest_Bio 0.46 0.07 0.16 1.67 3.70 0.52

Grove_Street 0.50 0.14 0.28 0.48 6.69 0.51

Grove_Street_Gravel_Filter 0.50 0.14 0.28 0.48 6.69 0.51

Hillcrest_Avenue 0.48 0.10 0.22 2.16 5.27 0.52

Hillcrest_Inf_Trench 0.50 0.14 0.28 0.48 6.69 0.51

Horne_Street_School_Bio_1 0.50 0.14 0.28 0.48 6.69 0.51

Horne_Street_School_Bio_2 0.50 0.14 0.28 0.48 6.69 0.51

Horne_Street_School_Tree_Filter 0.50 0.13 0.28 0.48 6.69 0.51

Hough_Street 0.50 0.14 0.28 0.48 6.69 0.51

HSS Property 0.50 0.14 0.28 0.48 6.69 0.51

HSS_Bio1 0.50 0.14 0.28 0.48 6.69 0.51

HSS_Bio2 0.50 0.14 0.28 0.48 6.69 0.51

HSS_Tree_Filter 0.50 0.14 0.28 0.48 6.69 0.51

HSS_Wet_Pond 0.50 0.14 0.28 0.48 6.69 0.51

Hull_Avenue 0.49 0.12 0.26 0.74 6.03 0.51

Kettlebell_Gravel_Filter 0.50 0.14 0.28 0.48 6.69 0.51

Lowell_Avenue 0.50 0.13 0.28 0.52 6.58 0.51

Lowell_Bio 0.47 0.10 0.21 1.22 4.81 0.52

Lower_Horne_Bio 0.50 0.14 0.28 0.48 6.69 0.51

Lower_Horne_Street 0.49 0.12 0.26 0.76 6.00 0.51

Maple_Street 0.50 0.14 0.28 0.48 6.69 0.51

Page_Avenue 0.47 0.09 0.18 1.44 4.28 0.52

Page_Swale 0.50 0.14 0.28 0.48 6.69 0.51

Redden_Ext_HSS_North 0.45 0.07 0.15 1.74 3.53 0.52

Redden_Street 0.46 0.08 0.17 1.61 3.85 0.52

Redden_Wet_Pond 0.44 0.05 0.10 2.41 2.38 0.53

Roosevelt_Bio 0.46 0.08 0.17 1.54 4.05 0.52

Roosevelt_Inf_Basin 0.50 0.14 0.28 0.48 6.69 0.51

Roosevelt_Lower 0.50 0.13 0.28 0.50 6.64 0.51

Roosevelt_Upper 0.47 0.09 0.19 1.41 4.37 0.52

Seacoast_Kettlebell 0.50 0.14 0.28 0.48 6.69 0.51

Sixth_Street 0.50 0.14 0.28 0.48 6.69 0.51

Snow_Avenue 0.50 0.13 0.28 0.48 6.67 0.51

Snow_Bio 0.50 0.14 0.28 0.48 6.69 0.51

Snow_Swale 0.50 0.14 0.28 0.48 6.69 0.51

Upper_Horne_Bio 0.44 0.05 0.11 2.18 2.40 0.53

Upper_Horne_Street 0.44 0.05 0.11 2.18 2.40 0.53

Wetland_Weir_Wall 0.46 0.08 0.17 1.61 3.87 0.52
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Calibrated Parameters for the Pre-improvements Model 

All non-zero parameters are included. 

Table 22: Junctions in the Pre Model 

 

Table 23: Outfalls in the Pre Model 

 

  

Name X-Coordinate Y-Coordinate Inflows Treatment Invert Elev. (ft) Rim Elev. (ft)

BB03_Sixth 1193644.598 257349.757 NO NO 44 44

BB05_Hough 1193975.742 257755.873 NO NO 45.93 45.93

BB07_Kettlebell 1194056.92 257925.848 NO NO 52.49 52.49

BB09_Ash 1194156.493 258702.789 NO NO 59.05 59.05

BB13 1194195.44 259732.469 NO NO 75.46 75.46

BB14 1194144.322 260151.159 NO NO 82.02 82.02

BB15_Roosevelt 1194096.537 260366.235 NO NO 91.86 91.86

J02_01_Redden_Horne 1193853.251 258539.4 NO NO 63.14 63.14

J02_02_LowerHorne 1193768.404 258546.306 NO NO 64.18 72.18

J03_01_Ash 1193804.908 258749.545 NO NO 68.9 68.9

J03_02_Redden 1193771.364 258995.207 NO NO 70 78

J03_03_Redden 1193712.168 259094.853 NO NO 71 79

J06_01_HSS 1194127.251 259730.247 NO NO 95.14 95.14

J06_04_HSS 1193818.32 259702.418 NO NO 104 112

J07_01_Red_Glen_UpperHorne 1193723.968 260270.208 NO NO 113 121

J08_01_Roosevelt 1193811.849 260287.224 NO NO 106.83 114.83

J08_02_Roosevelt 1193761.349 260396.107 NO NO 113.39 121.39

J09_01_Lowell 1194343.265 260666.048 NO NO 116.43 124.43

J10_02_Crescent 1194096.825 260873.129 NO NO 122.03 130.03

J10_03_Crescent 1193827.926 261058.85 NO NO 129.8 137.8

J12_01_Central 1194117.572 261688.833 NO NO 138.09 138.09

Name X-Coordinate Y-Coordinate Inflows Treatment Invert Elev. (ft) Rim Elev. (ft) Tide Gate Type

O_Cocheco 1193456.258 256394.825 NO NO 36.09 0 NO FREE
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Table 24: Storages in the Pre Model 

 

  

Name X-Coordinate Y-Coordinate Inflows Treatment Invert Elev. (ft) Rim Elev. (ft)

Horne_Wet_Pond 1193439.551 259459.377 NO NO 99.71 101.71

Existing_Wetland 1194023.343 261483.353 YES NO 133.51 134.51

SP3 1194091.302 260415.981 NO NO 102 115

SP5 1194301.23 259055.662 NO NO 65.75 69.75

SP7 1194072.57 258403.504 NO NO 54 58

SP11 1193685.432 257412.692 NO NO 45 49

SP10 1194026.638 257806.392 NO NO 49 56

SP6 1194164.433 258738.149 NO NO 61 68

Name Depth (ft) Storage Curve CoefficientConstant (ft²) Curve Name Baseline (cfs)

Horne_Wet_Pond 2 FUNCTIONAL 1230 0 * 0

Existing_Wetland 1 FUNCTIONAL 1230 36230 * 0.75

SP3 13 TABULAR 1000 0 SP3 0

SP5 4 TABULAR 1000 0 SP5 0

SP7 4 TABULAR 1000 0 SP7 0

SP11 4 TABULAR 1000 0 SP11 0

SP10 7 TABULAR 1000 0 SP10 0

SP6 7 TABULAR 1000 0 SP6 0
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Table 25: Conduits in the Pre Model Part 1 

 

 

 

 

 

 

 

Name Inlet Node Outlet Node

C02_01_Red_Horne J02_01_Redden_Horne SP7

C02_02_Red_Horne J02_02_LowerHorne J02_01_Redden_Horne

C03_01_Ash J03_01_Ash J02_01_Redden_Horne

C03_02_Redden J03_02_Redden J03_01_Ash

C03_03_ReddenCulvert J03_03_Redden J03_02_Redden

C03_04_WetPond Horne_Wet_Pond J03_03_Redden

C06_01_LowerHorne J06_01_HSS BB13

C06_02_LowerHorneBio J06_04_HSS J06_01_HSS

C07_01_LowerHorne J07_01_Red_Glen_UpperHorne J06_04_HSS

C08_01_Roosevelt J08_01_Roosevelt BB14

C08_02_Roosevelt J08_02_Roosevelt J08_01_Roosevelt

C09_01_Lowell J09_01_Lowell SP3

C10_01_Crescent J10_02_Crescent SP3

C10_02_Crescent J10_03_Crescent J10_02_Crescent

C12_01_Central J12_01_Central Existing_Wetland

Ch04_SixthCulvert SP11 BB03_Sixth

Ch05_Sixth BB05_Hough SP11

Ch06_HoughCulvert SP10 BB05_Hough

Ch07_Hough BB07_Kettlebell SP10

Ch08_Kettlebell SP7 BB07_Kettlebell

Ch09_Ash BB09_Ash SP7

Ch11_Maple_Ash SP5 SP6

Ch14_Roosevelt_Snow BB14 BB13

Ch15_Roosevelt BB15_Roosevelt BB14

Ch16_RooseveltCulvert SP3 BB15_Roosevelt

Ch21_Headwaters Existing_Wetland SP3

Ch13_Snow BB13 sp5

Ch10_AshCulvert SP6 BB09_Ash

Ch02_Station BB03_Sixth O_Cocheco
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Table 26: Conduits in the Pre Model Part 2 

 

 

 

 

 

 

 

Name Length (ft) Roughness Flap Gate Cross-Section Geom1 (ft)

C02_01_Red_Horne 522.346 0.016 NO IRREGULAR 0

C02_02_Red_Horne 176.892 0.016 NO CIRCULAR 1

C03_01_Ash 474.483 0.016 NO IRREGULAR 0

C03_02_Redden 584.782 0.016 NO CIRCULAR 1

C03_03_ReddenCulvert 241.401 0.016 NO CIRCULAR 1

C03_04_WetPond 946.884 0.016 NO CIRCULAR 1

C06_01_LowerHorne 141.511 0.016 NO IRREGULAR 0

C06_02_LowerHorneBio 645.132 0.016 NO CIRCULAR 1

C07_01_LowerHorne 1236.153 0.016 NO CIRCULAR 1

C08_01_Roosevelt 747.102 0.016 NO IRREGULAR 0

C08_02_Roosevelt 249.726 0.016 NO CIRCULAR 1

C09_01_Lowell 769.995 0.016 NO CIRCULAR 1

C10_01_Crescent 1042.617 0.016 NO CIRCULAR 1

C10_02_Crescent 838.668 0.016 NO TRAPEZOIDAL 1

C12_01_Central 470.322 0.016 NO CIRCULAR 2

Ch04_SixthCulvert 72.12 0.017 NO CIRCULAR 5

Ch05_Sixth 478.62 0.017 NO IRREGULAR 0

Ch06_HoughCulvert 67.437 0.017 NO CIRCULAR 3

Ch07_Hough 110.523 0.017 NO IRREGULAR 0

Ch08_Kettlebell 428.979 0.017 NO IRREGULAR 0

Ch09_Ash 328.758 0.017 NO IRREGULAR 0

Ch11_Maple_Ash 291.293 0.017 NO CIRCULAR 3

Ch14_Roosevelt_Snow 425.232 0.017 NO IRREGULAR 0

Ch15_Roosevelt 215.426 0.017 NO IRREGULAR 0

Ch16_RooseveltCulvert 46.833 0.017 NO FILLED_CIRCULAR 4

Ch21_Headwaters 1122.089 0.017 NO CIRCULAR 1

Ch13_Snow 657.518 0.017 NO IRREGULAR 0

Ch10_AshCulvert 68.375 0.017 NO IRREGULAR 0

Ch02_Station 1113.657 0.017 NO IRREGULAR 0
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Table 27: Conduits in the Pre Model Part 3 

 

 

 

 

 

 

 

Name Geom2 (ft) Geom3 Geom4 Barrels

C02_01_Red_Horne 0 0 0 1

C02_02_Red_Horne 0 0 0 1

C03_01_Ash 0 0 0 1

C03_02_Redden 0 0 0 1

C03_03_ReddenCulvert 0 0 0 1

C03_04_WetPond 0 0 0 1

C06_01_LowerHorne 0 0 0 1

C06_02_LowerHorneBio 0 0 0 1

C07_01_LowerHorne 0 0 0 1

C08_01_Roosevelt 0 0 0 1

C08_02_Roosevelt 0 0 0 1

C09_01_Lowell 0 0 0 1

C10_01_Crescent 0 0 0 1

C10_02_Crescent 2 2 2 1

C12_01_Central 0 0 0 1

Ch04_SixthCulvert 0 0 0 1

Ch05_Sixth 0 0 0 1

Ch06_HoughCulvert 0 0 0 1

Ch07_Hough 0 0 0 1

Ch08_Kettlebell 0 0 0 1

Ch09_Ash 0 0 0 1

Ch11_Maple_Ash 0 0 0 1

Ch14_Roosevelt_Snow 0 0 0 1

Ch15_Roosevelt 0 0 0 1

Ch16_RooseveltCulvert 0.5 0 0 1

Ch21_Headwaters 0 0 0 1

Ch13_Snow 0 0 0 1

Ch10_AshCulvert 0 0 0 1

Ch02_Station 0 0 0 1
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Table 28: Conduits in the Pre Model Part 4 

 

 

  

Name Transect Control Rules Slope (ft/ft)

C02_01_Red_Horne Maple_X-Section NO 0.0175

C02_02_Red_Horne NO 0.00588

C03_01_Ash Maple_X-Section NO 0.01214

C03_02_Redden NO 0.00188

C03_03_ReddenCulvert NO 0.00414

C03_04_WetPond NO 0.03033

C06_01_LowerHorne Maple_X-Section NO 0.14044

C06_02_LowerHorneBio NO 0.01373

C07_01_LowerHorne NO 0.00728

C08_01_Roosevelt Maple_X-Section NO 0.03323

C08_02_Roosevelt NO 0.02628

C09_01_Lowell NO 0.01874

C10_01_Crescent NO 0.01921

C10_02_Crescent NO 0.00927

C12_01_Central NO 0.00974

Ch04_SixthCulvert NO 0.01387

Ch05_Sixth Hough_X-Section NO 0.00194

Ch06_HoughCulvert NO 0.04557

Ch07_Hough Maple_X-Section NO 0.03159

Ch08_Kettlebell Maple_X-Section NO 0.00352

Ch09_Ash Maple_X-Section NO 0.01536

Ch11_Maple_Ash NO 0.01631

Ch14_Roosevelt_Snow Maple_X-Section NO 0.01543

Ch15_Roosevelt Maple_X-Section NO 0.04572

Ch16_RooseveltCulvert NO 0.22177

Ch21_Headwaters NO 0.02809

Ch13_Snow Maple_X-Section NO 0.01477

Ch10_AshCulvert Maple_X-Section NO 0.02853

Ch02_Station Station_X-Section NO 0.0071
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Table 29: Subcatchments in the Pre Model Part 1 

 

  

Name X-Coordinate Y-Coordinate Tag Outlet Area (ac) Width (ft) Slope (% )

44_Horne_Street 1193399.984 258988.832 Lower J02_02_LowerHorne 9.771 25.77 10.5

Ash_Street 1194204.119 258898.618 Lower SP6 5.838 37.794 8.7

Central_Avenue 1194253.554 262006.058 Upper J12_01_Central 11.539 46.221 3.3

Central_Gravel_Wetland 1194117.129 261663.626 Upper J12_01_Central 0.14 4.991 0.5

Cocheco_Outfall 1193624.728 256926.99 Outfall O_Cocheco 13.046 31.007 10.2

Crescent_Avenue 1193624.186 261266.021 Upper J10_03_Crescent 2.936 14.234 6.1

Crescent_Swale 1193961.414 261078.189 Upper J10_02_Crescent 0.062 2.208 0.5

Dover_Water_Works_Site 1194302.722 260836.902 Upper SP3 7.333 44.665 8.2

Glencrest_Avenue 1193023.682 260878.371 Lower J07_01_Red_Glen_UpperHorne 6.803 26.667 6.2

Glencrest_Bio 1193332.366 260441.78 Lower J07_01_Red_Glen_UpperHorne 0.098 9.901 0.5

Grove_Street 1194746.271 259600.556 Lower Maple_Street 2.538 21.024 8.7

Grove_Street_Gravel_Filter 1194586.896 259448.469 Lower Maple_Street 0.06 6.053 0.5

Hillcrest_Avenue 1192935.929 259075.605 Lower J02_02_LowerHorne 3.881 18.978 6.8

Hillcrest_Inf_Trench 1193021.313 258778.54 Lower J02_02_LowerHorne 0.006 0.328 0.5

Horne_Street_School_Bio_1 1193663.943 259979.37 Lower J06_04_HSS 0.145 5.156 0.5

Horne_Street_School_Bio_2 1193719.567 259849.3 Lower J06_04_HSS 0.072 6.38 0.5

Horne_Street_School_Tree_Filter 1193617.073 259674.9 Lower Horne_Wet_Pond 0.331 7.363 6.3

Hough_Street 1194015.909 258240.741 Lower SP10 9.745 39.268 8.1

HSS_Bio1 1193719.669 259991.939 Lower J06_04_HSS 0.015 0.983 0.5

HSS_Bio2 1193752.526 259855.084 Lower J06_04_HSS 0.015 1.881 0.5

HSS_Property 1193699.088 259873.858 Lower J06_04_HSS 1.232 10.963 3.7

HSS_Tree_Filter 1193647.445 259613.664 Lower Horne_Wet_Pond 0.003 1.144 0.5

HSS_Wet_Pond 1193554.472 259815.668 Lower Horne_Wet_Pond 0.495 6.38 0.5

Hull_Avenue 1193233.846 258408.46 Lower J02_02_LowerHorne 15.03 45.813 8.3

Kettlebell_Gravel_Filter 1193999.871 258020.513 Lower BB07_Kettlebell 0.042 2.454 0.5

Lowell_Avenue 1194634.27 260684.018 Upper J09_01_Lowell 0.787 4.008 7.2

Lowell_Bio 1194289.776 260559.055 Upper SP3 0.062 1.801 0.5

Lower_Horne_Bio 1193977.532 259711.251 Lower J06_01_HSS 0.026 1.064 0.5

Lower_Horne_Street 1193684.104 260185.191 Lower J06_04_HSS 2.34 8.834 5

Maple_Street 1194360.433 259824.32 Lower SP5 24.651 62.745 12.8

Page_Avenue 1194673.999 261118.447 Upper Dover_Water_Works_Site 5.01 23.068 5.8

Page_Swale 1194331.716 261289.974 Upper Dover_Water_Works_Site 0.179 2.126 4.2

Redden_Ext_HSS_North 1193110.085 260355.413 Lower J06_04_HSS 13.102 28.306 5.6

Redden_Street 1193503.891 259391.713 Lower J03_03_Redden 8.76 33.54 8.8

Redden_Wet_Pond 1193128.113 259794.514 Lower Horne_Wet_Pond 3.914 10.963 7.3

Roosevelt_Bio 1194208.818 260476.136 Upper SP3 0.028 1.961 0.5

Roosevelt_Inf_Basin 1194234.743 260427.841 Upper SP3 0.045 2.29 0.5

Roosevelt_Lower 1194374.675 260449.831 Upper SP3 2.514 11.454 6.7

Roosevelt_Upper 1194219.281 260553.087 Upper SP3 4.615 19.143 8.5

Seacoast_Kettlebell 1193996.468 258170.245 Lower BB07_Kettlebell 2.067 18.899 5.8

Sixth_Street 1193882.699 257518.651 Lower SP11 8.603 48.672 6.3

Snow_Avenue 1193953.205 259404.612 Lower SP5 3.098 20.86 6.2

Snow_Bio 1194014.108 259191.406 Lower SP5 0.085 1.474 0.5

Snow_Swale 1194201.262 259191.52 Lower SP5 0.042 0.983 5

Upper_Horne_Bio 1193579.608 260474.953 Lower J07_01_Red_Glen_UpperHorne 0.167 3.603 0.5

Upper_Horne_Street 1193449.03 260986.996 Lower J07_01_Red_Glen_UpperHorne 11.394 39.019 5.4

Wetland_Weir_Wall 1193950.58 261460.087 Upper Existing_Wetland 13.087 44.421 6.6



  

109 

 

Table 30: Subcatchments in the Pre Model Part 2 

 

  

Name Imperv. (% ) N Imperv N Perv Dstore Imperv (in) Dstore Perv (in) Zero Imperv (% )

44_Horne_Street 28 0.015 0.2 0.05 0.05 100

Ash_Street 38 0.015 0.2 0.05 0.05 100

Central_Avenue 88 0.015 0.2 0.05 0.05 100

Central_Gravel_Wetland 0 0.015 0.2 0.05 0.05 100

Cocheco_Outfall 22 0.015 0.2 0.05 0.05 100

Crescent_Avenue 49 0.015 0.2 0.05 0.05 100

Crescent_Swale 0 0.015 0.2 0.05 0.05 100

Dover_Water_Works_Site 18 0.015 0.2 0.05 0.05 100

Glencrest_Avenue 37 0.015 0.2 0.05 0.05 100

Glencrest_Bio 0 0.015 0.2 0.05 0.05 100

Grove_Street 33 0.015 0.2 0.05 0.05 100

Grove_Street_Gravel_Filter 100 0.015 0.2 0.05 0.05 100

Hillcrest_Avenue 32 0.015 0.2 0.05 0.05 100

Hillcrest_Inf_Trench 0 0.015 0.2 0.05 0.05 100

Horne_Street_School_Bio_1 100 0.015 0.2 0.05 0.05 100

Horne_Street_School_Bio_2 100 0.015 0.2 0.05 0.05 100

Horne_Street_School_Tree_Filter 100 0.015 0.2 0.05 0.05 100

Hough_Street 44 0.015 0.2 0.05 0.05 100

HSS_Bio1 0 0.015 0.2 0.05 0.05 100

HSS_Bio2 0 0.015 0.2 0.05 0.05 100

HSS_Property 76 0.015 0.2 0.05 0.05 100

HSS_Tree_Filter 100 0.015 0.2 0.05 0.05 100

HSS_Wet_Pond 100 0.015 0.2 0.05 0.05 100

Hull_Avenue 30 0.015 0.2 0.05 0.05 100

Kettlebell_Gravel_Filter 100 0.015 0.2 0.05 0.05 100

Lowell_Avenue 66 0.015 0.2 0.05 0.05 100

Lowell_Bio 0 0.015 0.2 0.05 0.05 100

Lower_Horne_Bio 0 0.015 0.2 0.05 0.05 100

Lower_Horne_Street 50 0.015 0.2 0.05 0.05 100

Maple_Street 15 0.015 0.2 0.05 0.05 100

Page_Avenue 40 0.015 0.2 0.05 0.05 100

Page_Swale 0 0.015 0.2 0.05 0.05 100

Redden_Ext_HSS_North 29 0.015 0.2 0.05 0.05 100

Redden_Street 10 0.015 0.2 0.05 0.05 100

Redden_Wet_Pond 37 0.015 0.2 0.05 0.05 100

Roosevelt_Bio 0 0.015 0.2 0.05 0.05 100

Roosevelt_Inf_Basin 0 0.015 0.2 0.05 0.05 100

Roosevelt_Lower 41 0.015 0.2 0.05 0.05 100

Roosevelt_Upper 29 0.015 0.2 0.05 0.05 100

Seacoast_Kettlebell 95 0.015 0.2 0.05 0.05 100

Sixth_Street 46 0.015 0.2 0.05 0.05 100

Snow_Avenue 40 0.015 0.2 0.05 0.05 100

Snow_Bio 0 0.015 0.2 0.05 0.05 100

Snow_Swale 0 0.015 0.2 0.05 0.05 100

Upper_Horne_Bio 0 0.015 0.2 0.05 0.05 100

Upper_Horne_Street 33 0.015 0.2 0.05 0.05 100

Wetland_Weir_Wall 19 0.015 0.2 0.05 0.05 100
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Table 31: Subcatchments in the Pre Model Part 3 

 

 

 

 

Name Subarea Routing Percent Routed (% )LID ControlsGroundwater Aquifer Name

44_Horne_Street OUTLET 100 0 NO

Ash_Street OUTLET 100 0 YES Ash_StreetAQ

Central_Avenue OUTLET 100 0 NO

Central_Gravel_Wetland OUTLET 100 0 NO

Cocheco_Outfall OUTLET 100 0 YES Cocheco_OutfallAQ

Crescent_Avenue OUTLET 100 0 NO

Crescent_Swale OUTLET 100 0 NO

Dover_Water_Works_Site OUTLET 100 0 YES Dover_Water_Works_SiteAQ

Glencrest_Avenue PERVIOUS 100 0 NO

Glencrest_Bio PERVIOUS 100 0 NO

Grove_Street PERVIOUS 100 0 NO

Grove_Street_Gravel_Filter OUTLET 100 0 NO

Hillcrest_Avenue OUTLET 100 0 NO

Hillcrest_Inf_Trench OUTLET 100 0 NO

Horne_Street_School_Bio_1 OUTLET 100 0 NO

Horne_Street_School_Bio_2 OUTLET 100 0 NO

Horne_Street_School_Tree_Filter OUTLET 100 0 NO

Hough_Street OUTLET 100 0 YES Hough_StreetAQ

HSS_Bio1 OUTLET 100 0 NO

HSS_Bio2 OUTLET 100 0 NO

HSS_Property OUTLET 100 0 NO

HSS_Tree_Filter OUTLET 100 0 NO

HSS_Wet_Pond OUTLET 100 0 NO

Hull_Avenue OUTLET 100 0 NO

Kettlebell_Gravel_Filter OUTLET 100 0 NO Kettlebell_Gravel_FilterAQ

Lowell_Avenue OUTLET 100 0 NO

Lowell_Bio OUTLET 100 0 NO

Lower_Horne_Bio OUTLET 100 0 NO

Lower_Horne_Street OUTLET 100 0 NO

Maple_Street OUTLET 100 0 YES Maple_StreetAQ

Page_Avenue PERVIOUS 100 0 NO

Page_Swale OUTLET 100 0 NO

Redden_Ext_HSS_North OUTLET 100 0 NO

Redden_Street OUTLET 100 0 NO

Redden_Wet_Pond OUTLET 100 0 NO

Roosevelt_Bio OUTLET 100 0 NO

Roosevelt_Inf_Basin OUTLET 100 0 NO

Roosevelt_Lower OUTLET 100 0 YES Roosevelt_LowerAQ

Roosevelt_Upper OUTLET 100 0 YES Roosevelt_UpperAQ

Seacoast_Kettlebell OUTLET 100 0 NO

Sixth_Street OUTLET 100 0 YES Sixth_StreetAQ

Snow_Avenue OUTLET 100 0 NO

Snow_Bio OUTLET 100 0 NO

Snow_Swale OUTLET 100 0 NO

Upper_Horne_Bio OUTLET 100 0 NO

Upper_Horne_Street OUTLET 100 0 NO

Wetland_Weir_Wall PERVIOUS 100 0 YES Wetland_Weir_WallAQ
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Table 32: Subcatchments in the Pre Model Part 4 

 

  

Name Receiving Node Surface Elevation (ft) A1 Coefficient B1 Exponent A2 Coefficient B2 Exponent

44_Horne_Street 0 0 0 0 0

Ash_Street SP6 61 0.1 1 0.1 1

Central_Avenue 0 0 0 0 0

Central_Gravel_Wetland 0 0 0 0 0

Cocheco_Outfall O_Cocheco 36.09 0.1 1 0.1 1

Crescent_Avenue 0 0 0 0 0

Crescent_Swale 0 0 0 0 0

Dover_Water_Works_Site SP3 102 0.1 1 0.1 1

Glencrest_Avenue 0 0 0 0 0

Glencrest_Bio 0 0 0 0 0

Grove_Street 0 0 0 0 0

Grove_Street_Gravel_Filter 0 0 0 0 0

Hillcrest_Avenue 0 0 0 0 0

Hillcrest_Inf_Trench 0 0 0 0 0

Horne_Street_School_Bio_1 0 0 0 0 0

Horne_Street_School_Bio_2 0 0 0 0 0

Horne_Street_School_Tree_Filter 0 0 0 0 0

Hough_Street SP10 56 0.1 1 0.1 1

HSS_Bio1 0 0 0 0 0

HSS_Bio2 0 0 0 0 0

HSS_Property 0 0 0 0 0

HSS_Tree_Filter 0 0 0 0 0

HSS_Wet_Pond 0 0 0 0 0

Hull_Avenue 0 0 0 0 0

Kettlebell_Gravel_Filter BB07_Kettlebell 52.49 0.1 1 0.1 1

Lowell_Avenue 0 0 0 0 0

Lowell_Bio 0 0 0 0 0

Lower_Horne_Bio 0 0 0 0 0

Lower_Horne_Street 0 0 0 0 0

Maple_Street SP5 65.75 0.1 1 0.1 1

Page_Avenue 0 0 0 0 0

Page_Swale 0 0 0 0 0

Redden_Ext_HSS_North 0 0 0 0 0

Redden_Street 0 0 0 0 0

Redden_Wet_Pond 0 0 0 0 0

Roosevelt_Bio 0 0 0 0 0

Roosevelt_Inf_Basin 0 0 0 0 0

Roosevelt_Lower SP3 102 0.1 1 0.1 1

Roosevelt_Upper SP3 102 0.1 1 0.1 1

Seacoast_Kettlebell 0 0 0 0 0

Sixth_Street SP11 49 0.1 1 0.1 1

Snow_Avenue 0 0 0 0 0

Snow_Bio 0 0 0 0 0

Snow_Swale 0 0 0 0 0

Upper_Horne_Bio 0 0 0 0 0

Upper_Horne_Street 0 0 0 0 0

Wetland_Weir_Wall Existing_Wetland 134.51 0.1 1 0.1 1
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Calibrated Parameters for the Post-improvements Model 

Table 33: Junctions in the Post Model 

 

  

X-Coordinate Y-Coordinate Inflows Treatment Invert Elev. (ft) Rim Elev. (ft) Depth (ft)

1193644.598 257349.757 NO NO 44 49 5

1193975.742 257755.873 NO NO 45.93 45.93 0

1194056.92 257925.848 NO NO 52.49 52.49 0

1194156.493 258702.789 NO NO 59.05 59.05 0

1194317.701 259181.754 NO NO 66 66 0

1194195.44 259732.469 NO NO 75.46 75.46 0

1194144.322 260151.159 NO NO 82.02 82.02 0

1194096.537 260366.235 NO NO 91.86 91.86 0

1194114.51 260480.323 NO NO 104.99 104.99 0

1194116.704 260653.565 NO NO 121.39 121.39 0

1194159.362 261036.728 NO NO 131.23 131.23 0

1193681.732 258247.679 NO NO 60.9 68.9 8

1193009.905 258739.379 NO NO 110.11 118.11 8

1193853.251 258539.4 NO NO 63.14 63.14 0

1193768.404 258546.306 NO NO 64.18 72.18 8

1193804.908 258749.545 NO NO 68.9 68.9 0

1193771.364 258995.207 NO NO 70 78 8

1193712.168 259094.853 NO NO 71 79 8

1193641.507 259609.304 NO NO 103.55 111.55 8

1194279.16 259194.741 NO NO 67.46 75.46 8

1194562.571 259417.237 NO NO 90.43 98.43 8

1194127.251 259730.247 NO NO 95.41 95.41 0

1194015.955 259717.223 NO NO 100.61 104.61 4

1193818.32 259702.418 NO NO 104 112 8

1193782.381 259813.808 NO NO 106.83 114.83 8

1193731.263 259961.89 NO NO 110.11 118.11 8

1193723.968 260270.208 NO NO 113 121 8

1193633.461 260387.914 NO NO 113.39 121.39 8

1194204.513 260491.722 NO NO 106.83 114.83 8

1194225.702 260507.887 NO NO 110.11 118.11 8

1193998.218 261118.095 NO NO 132.51 134.51 2

1194145.047 261320.065 NO NO 131.07 133.07 2

1194084.434 261617.756 NO NO 137.08 141.08 4
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Table 34: Outfalls in the Post Model 

 

 

Table 35: Storages in the Post Model 

 

  

Name X-Coordinate Y-Coordinate Inflows Treatment

O_Cocheco 1193456.258 256394.825 NO NO

O_06_03_LowerHorneBio 1193930.763 259714.898 NO NO

Name Invert Elev. (ft) Rim Elev. (ft) Tide Gate Route To Type

O_Cocheco 36.09 0 NO FREE

O_06_03_LowerHorneBio 103.79 0 NO Lower_Horne_BioFREE

Name X-Coordinate Y-Coordinate Inflows Treatment Invert Elev. (ft) Rim Elev. (ft) Depth (ft)

Horne_Wet_Pond 1193439.551 259459.377 NO NO 99.71 101.71 2

Existing_Wetland 1194023.343 261483.353 NO NO 133.51 134.51 1

New_Wetland 1194076.158 261308.855 YES NO 128.83 131.33 2.5

SP1 1194091.302 260415.981 NO NO 93 106 13

SP2 1194301.23 259055.662 NO NO 65.75 69.75 4

SP3 1194174.228 258773.372 NO NO 59.3 66.3 7

SP4 1194072.57 258403.504 NO NO 56 60 4

SP6 1194026.638 257806.392 NO NO 49 56 7

SP7 1193685.432 257412.692 NO NO 45 49 4

Name Initial Depth (ft) Storage Curve Coefficient Constant (ft²)Curve Name Baseline (cfs)

Horne_Wet_Pond 0.5 FUNCTIONAL 1230 0 * 0

Existing_Wetland 0.5 FUNCTIONAL 1230 36230 * 0

New_Wetland 0.5 FUNCTIONAL 1230 43560 * 0.75

SP1 0.5 TABULAR 1000 0 SP1 0

SP2 0.5 TABULAR 1000 0 SP2 0

SP3 0.5 TABULAR 1000 0 SP3 0

SP4 0.5 TABULAR 1000 0 SP4 0

SP6 0.5 TABULAR 1000 0 SP6 0

SP7 0.5 TABULAR 1000 0 SP7 0
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Table 36: Conduits in the Post Model Part 1 

 

  

Name Inlet Node Outlet Node

C01_01_Hull_Red J01_01_Hull_Redden BB07_Kettlebell

C01_02_Hull J01_02_Hillcrest J01_01_Hull_Redden

C02_01_Red_Horne J02_01_Redden_Horne SP4

C02_02_Red_Horne J02_02_LowerHorne J02_01_Redden_Horne

C03_01_Ash J03_01_Ash J02_01_Redden_Horne

C03_02_Redden J03_02_Redden J03_01_Ash

C03_03_Redden J03_03_Redden J03_02_Redden

C03_04_WetPond Horne_Wet_Pond J03_03_Redden

C03_05_HSSTreeFilter J03_04_HSSTreeFilter Horne_Wet_Pond

C04_01_Snow J04_01_Snow BB12_Snow

C05_01_Grove J05_01_Grove BB12_Snow

C06_01_HSS_LowerHorne J06_01_HSS BB13

C06_02_LowerHorneBio J06_02_LowerHorneBio J06_01_HSS

C06_03_LowerHorneBio J06_04_HSS O_06_03_LowerHorneBio

C06_04_HSSBio2 J06_05_HSSBio2 J06_04_HSS

C06_05_HSSBio1 J06_06_HSSBio1 J06_05_HSSBio2

C07_01_LowerHorne J07_01_Red_Glen_UpperHorne J06_04_HSS

C07_02_UpperHorne J07_02_UpperHorne J07_01_Red_Glen_UpperHorne

C08_01_RooseveltBio J08_01_RooseveltBio SP1

C09_01_Lowell J09_01_Lowell SP1

C10_01_Crescent J10_01_Crescent New_Wetland

C11_01_Page J11_01_Page New_Wetland

C12_01_Central J12_01_Central Existing_Wetland

Ch04_SixthCulvert SP7 BB03_Sixth

Ch05_Sixth BB05_Hough SP7

Ch06_HoughCulvert SP6 BB05_Hough

Ch07_Hough BB07_Kettlebell SP6

Ch08_Kettlebell SP4 BB07_Kettlebell

Ch09_Ash_Kettlebell BB09_Ash SP4

Ch10_AshCulvert SP3 BB09_Ash

Ch11_Maple_Ash SP2 SP3

Ch13_Snow BB13 BB12_Snow

Ch14_Roosevelt_Snow BB14 BB13

Ch15_Roosevelt BB15_Roosevelt BB14

Ch16_RooseveltCulvert SP1 BB15_Roosevelt

Ch17_A2_Channel BB17_A1-A2_Channel SP1

Ch18_A1_Channel BB18_C-A_Channel BB17_A1-A2_Channel

Ch19_C_Channel BB19_Weir-C_Channel BB18_C-A_Channel

Ch20_Wetland BB19_Weir-C_Channel New_Wetland

Ch21_Wetland Existing_Wetland New_Wetland

Ch12_Snow_Maple BB12_Snow SP2

Ch02_Station BB03_Sixth O_Cocheco
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Table 37: Conduits in the Post Model Part 2 

 

 

 

Name Length (ft) Roughness Flap Gate Cross-Section

C01_01_Hull_Red 695.187 0.017 NO CIRCULAR

C01_02_Hull 1021.996 0.017 NO CIRCULAR

C02_01_Red_Horne 250.193 0.017 NO IRREGULAR

C02_02_Red_Horne 85.128 0.017 NO CIRCULAR

C03_01_Ash 226.953 0.017 NO IRREGULAR

C03_02_Redden 280.552 0.017 NO CIRCULAR

C03_03_Redden 115.903 0.017 NO CIRCULAR

C03_04_WetPond 455.239 0.017 NO CIRCULAR

C03_05_HSSTreeFilter 251.524 0.017 NO CIRCULAR

C04_01_Snow 40.671 0.017 NO TRAPEZOIDAL

C05_01_Grove 444.871 0.017 NO TRAPEZOIDAL

C06_01_HSS_LowerHorne 68.225 0.017 NO IRREGULAR

C06_02_LowerHorneBio 112.049 0.017 NO CIRCULAR

C06_03_LowerHorneBio 112.747 0.017 NO CIRCULAR

C06_04_HSSBio2 126.121 0.017 NO CIRCULAR

C06_05_HSSBio1 162.796 0.017 NO CIRCULAR

C07_01_LowerHorne 594.062 0.017 NO CIRCULAR

C07_02_UpperHorne 158.779 0.017 NO CIRCULAR

C08_01_RooseveltBio 136.211 0.017 NO CIRCULAR

C09_01_Lowell 173.144 0.017 NO CIRCULAR

C10_01_Crescent 206.068 0.017 NO TRAPEZOIDAL

C11_01_Page 69.795 0.017 NO TRAPEZOIDAL

C12_01_Central 147.692 0.017 NO CIRCULAR

Ch04_SixthCulvert 77.071 0.017 NO CIRCULAR

Ch05_Sixth 510.621 0.017 NO IRREGULAR

Ch06_HoughCulvert 71.979 0.017 NO CIRCULAR

Ch07_Hough 117.64 0.017 NO IRREGULAR

Ch08_Kettlebell 453.794 0.017 NO IRREGULAR

Ch09_Ash_Kettlebell 350.958 0.017 NO IRREGULAR

Ch10_AshCulvert 72.777 0.017 NO IRREGULAR

Ch11_Maple_Ash 311.449 0.017 NO CIRCULAR

Ch13_Snow 574.667 0.017 NO IRREGULAR

Ch14_Roosevelt_Snow 454.033 0.017 NO IRREGULAR

Ch15_Roosevelt 229.75 0.017 NO IRREGULAR

Ch16_RooseveltCulvert 50.021 0.017 NO FILLED_CIRCULAR

Ch17_A2_Channel 68.431 0.017 NO IRREGULAR

Ch18_A1_Channel 195.498 0.017 NO IRREGULAR

Ch19_C_Channel 497.319 0.017 NO IRREGULAR

Ch20_Wetland 368.327 0.017 NO TRAPEZOIDAL

Ch21_Wetland 182.256 0.017 NO TRAPEZOIDAL

Ch12_Snow_Maple 129.577 0.017 NO IRREGULAR

Ch02_Station 1189.181 0.017 NO IRREGULAR
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Table 38: Conduits in the Post Model Part 3 

 

 

  

Name Geom1 (ft) Geom2 (ft) Geom3 Geom4 Barrels Transect

C01_01_Hull_Red 1 0 0 0 1

C01_02_Hull 1.25 0 0 0 1

C02_01_Red_Horne 0 0 0 0 1 Maple_X-Section

C02_02_Red_Horne 1 0 0 0 1

C03_01_Ash 0 0 0 0 1 Maple_X-Section

C03_02_Redden 1 0 0 0 1

C03_03_Redden 1 0 0 0 1

C03_04_WetPond 1 0 0 0 1

C03_05_HSSTreeFilter 2 0 0 0 1

C04_01_Snow 3 12 2 2 1

C05_01_Grove 3 12 2 2 1

C06_01_HSS_LowerHorne 0 0 0 0 1 Maple_X-Section

C06_02_LowerHorneBio 1 0 0 0 1

C06_03_LowerHorneBio 1 0 0 0 1

C06_04_HSSBio2 1 0 0 0 1

C06_05_HSSBio1 1 0 0 0 1

C07_01_LowerHorne 1 0 0 0 1

C07_02_UpperHorne 1 0 0 0 1

C08_01_RooseveltBio 1 0 0 0 1

C09_01_Lowell 1 0 0 0 1

C10_01_Crescent 2 3 3 3 1

C11_01_Page 2 3 3 3 1

C12_01_Central 3 0 0 0 1

Ch04_SixthCulvert 5 0 0 0 1

Ch05_Sixth 0 0 0 0 1 Hough_X-Section

Ch06_HoughCulvert 3 0 0 0 2

Ch07_Hough 0 0 0 0 1 Maple_X-Section

Ch08_Kettlebell 0 0 0 0 1 Maple_X-Section

Ch09_Ash_Kettlebell 0 0 0 0 1 Maple_X-Section

Ch10_AshCulvert 0 0 0 0 1 Maple_X-Section

Ch11_Maple_Ash 3 0 0 0 1

Ch13_Snow 0 0 0 0 1 Maple_X-Section

Ch14_Roosevelt_Snow 0 0 0 0 1 Maple_X-Section

Ch15_Roosevelt 0 0 0 0 1 Maple_X-Section

Ch16_RooseveltCulvert 4 0.5 0 0 1

Ch17_A2_Channel 0 0 0 0 1 BB-A1_Channel

Ch18_A1_Channel 0 0 0 0 1 BB-A1_Channel

Ch19_C_Channel 0 0 0 0 1 BB-C_Channel

Ch20_Wetland 3 100 5 5 1

Ch21_Wetland 1 100 5 5 1

Ch12_Snow_Maple 0 0 0 0 1 Maple_X-Section

Ch02_Station 0 0 0 0 1 Station_X-Section
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Table 39: Subcatchments in the Post Model Part 1 

 

  

Name X-Coordinate Y-Coordinate Outlet Area (ac) Width (ft)

44_Horne_Street 1193399.984 258988.832 J02_02_LowerHorne 9.771 25.77

Ash_Street 1194204.119 258898.618 SP3 5.838 37.794

Central_Avenue 1194253.554 262006.058 Central_Gravel_Wetland 11.539 46.221

Central_Gravel_Wetland 1194117.129 261663.626 J12_01_Central 0.14 4.991

Cocheco_Outfall 1193624.728 256926.99 O_Cocheco 13.046 31.007

Crescent_Avenue 1193624.186 261266.021 Crescent_Swale 2.936 14.234

Crescent_Swale 1193961.414 261078.189 J10_01_Crescent 0.062 2.208

Dover_Water_Works_Site 1194302.722 260836.902 SP1 7.333 44.665

Glencrest_Avenue 1193023.682 260878.371 Glencrest_Bio 6.803 26.667

Glencrest_Bio 1193332.366 260441.78 J07_01_Red_Glen_UpperHorne 0.098 9.901

Grove_Street 1194746.271 259600.556 Grove_Street_Gravel_Filter 2.538 21.024

Grove_Street_Gravel_Filter 1194586.896 259448.469 J05_01_Grove 0.06 6.053

Hillcrest_Avenue 1192935.929 259075.605 Hillcrest_Inf_Trench 3.881 18.978

Hillcrest_Inf_Trench 1193021.313 258778.54 J01_02_Hillcrest 0.006 0.328

Horne_Street_School_Bio_1 1193663.943 259979.37 HSS_Bio1 0.145 5.156

Horne_Street_School_Bio_2 1193719.567 259849.3 HSS_Bio2 0.072 6.38

Horne_Street_School_Tree_Filter 1193617.073 259674.9 HSS_Tree_Filter 0.331 7.363

Hough_Street 1194015.909 258240.741 SP6 9.745 39.268

HSS_Bio1 1193719.669 259991.939 J06_06_HSSBio1 0.015 0.983

HSS_Bio2 1193752.526 259855.084 J06_05_HSSBio2 0.015 1.881

HSS_Property 1193699.088 259873.858 J06_04_HSS 1.232 10.963

HSS_Tree_Filter 1193647.445 259613.664 Horne_Wet_Pond 0.003 1.144

HSS_Wet_Pond 1193554.472 259815.668 Horne_Wet_Pond 0.495 6.38

Hull_Avenue 1193233.846 258408.46 J01_01_Hull_Redden 15.03 45.813

Kettlebell_Gravel_Filter 1193999.871 258020.513 BB07_Kettlebell 0.042 2.454

Lowell_Avenue 1194634.27 260684.018 Lowell_Bio 0.787 4.008

Lowell_Bio 1194289.776 260559.055 SP1 0.062 1.801

Lower_Horne_Bio 1193977.532 259711.251 J06_02_LowerHorneBio 0.026 1.064

Lower_Horne_Street 1193684.104 260185.191 Lower_Horne_Bio 2.34 8.834

Maple_Street 1194360.433 259824.32 SP2 24.651 62.745

Page_Avenue 1194673.999 261118.447 Page_Swale 5.01 23.068

Page_Swale 1194331.716 261289.974 J11_01_Page 0.179 2.126

Redden_Ext_HSS_North 1193110.085 260355.413 Redden_Street 13.102 28.306

Redden_Street 1193503.891 259391.713 J03_03_Redden 8.76 33.54

Redden_Wet_Pond 1193128.113 259794.514 Horne_Wet_Pond 3.914 10.963

Roosevelt_Bio 1194208.818 260476.136 SP1 0.028 1.961

Roosevelt_Inf_Basin 1194234.743 260427.841 Roosevelt_Bio 0.045 2.29

Roosevelt_Lower 1194374.675 260449.831 Roosevelt_Inf_Basin 2.514 11.454

Roosevelt_Upper 1194219.281 260553.087 J08_01_RooseveltBio 4.615 19.143

Seacoast_Kettlebell 1193996.468 258170.245 Kettlebell_Gravel_Filter 2.067 18.899

Sixth_Street 1193882.699 257518.651 SP7 8.603 48.672

Snow_Avenue 1193953.205 259404.612 Snow_Bio 3.098 20.86

Snow_Bio 1194014.108 259191.406 Snow_Swale 0.085 1.474

Snow_Swale 1194201.262 259191.52 J04_01_Snow 0.042 0.983

Upper_Horne_Bio 1193579.608 260474.953 J07_02_UpperHorne 0.167 3.603

Upper_Horne_Street 1193449.03 260986.996 Upper_Horne_Bio 11.394 39.019

Wetland_Weir_Wall 1193950.58 261460.087 Existing_Wetland 13.087 44.421
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Table 40: Subcatchments in the Post Model Part 2 

  

Name Slope (%) Imperv. (%) N Imperv N Perv Dstore Imperv (in) Dstore Perv (in)

44_Horne_Street 10.5 28 0.015 0.2 0.05 0.05

Ash_Street 8.7 38 0.015 0.2 0.05 0.05

Central_Avenue 3.3 88 0.015 0.2 0.05 0.05

Central_Gravel_Wetland 0.5 0 0.015 0.2 0.05 0.05

Cocheco_Outfall 10.2 22 0.015 0.2 0.05 0.05

Crescent_Avenue 6.1 49 0.015 0.2 0.05 0.05

Crescent_Swale 0.5 0 0.015 0.2 0.05 0.05

Dover_Water_Works_Site 8.2 18 0.015 0.2 0.05 0.05

Glencrest_Avenue 6.2 37 0.015 0.2 0.05 0.05

Glencrest_Bio 0.5 0 0.015 0.2 0.05 0.05

Grove_Street 8.7 33 0.015 0.2 0.05 0.05

Grove_Street_Gravel_Filter 0.5 100 0.015 0.2 0.05 0.05

Hillcrest_Avenue 6.8 32 0.015 0.2 0.05 0.05

Hillcrest_Inf_Trench 0.5 0 0.015 0.2 0.05 0.05

Horne_Street_School_Bio_1 0.5 100 0.015 0.2 0.05 0.05

Horne_Street_School_Bio_2 0.5 100 0.015 0.2 0.05 0.05

Horne_Street_School_Tree_Filter 6.3 100 0.015 0.2 0.05 0.05

Hough_Street 8.1 44 0.015 0.2 0.05 0.05

HSS_Bio1 0.5 0 0.015 0.2 0.05 0.05

HSS_Bio2 0.5 0 0.015 0.2 0.05 0.05

HSS_Property 3.7 76 0.015 0.2 0.05 0.05

HSS_Tree_Filter 0.5 100 0.015 0.2 0.05 0.05

HSS_Wet_Pond 0.5 100 0.015 0.2 0.05 0.05

Hull_Avenue 8.3 30 0.015 0.2 0.05 0.05

Kettlebell_Gravel_Filter 0.5 100 0.015 0.2 0.05 0.05

Lowell_Avenue 7.2 66 0.015 0.2 0.05 0.05

Lowell_Bio 0.5 0 0.015 0.2 0.05 0.05

Lower_Horne_Bio 0.5 0 0.015 0.2 0.05 0.05

Lower_Horne_Street 5 50 0.015 0.2 0.05 0.05

Maple_Street 12.8 15 0.015 0.2 0.05 0.05

Page_Avenue 5.8 40 0.015 0.2 0.05 0.05

Page_Swale 4.2 0 0.015 0.2 0.05 0.05

Redden_Ext_HSS_North 5.6 29 0.015 0.2 0.05 0.05

Redden_Street 8.8 10 0.015 0.2 0.05 0.05

Redden_Wet_Pond 7.3 37 0.015 0.2 0.05 0.05

Roosevelt_Bio 0.5 0 0.015 0.2 0.05 0.05

Roosevelt_Inf_Basin 0.5 0 0.015 0.2 0.05 0.05

Roosevelt_Lower 6.7 41 0.015 0.2 0.05 0.05

Roosevelt_Upper 8.5 29 0.015 0.2 0.05 0.05

Seacoast_Kettlebell 5.8 95 0.015 0.2 0.05 0.05

Sixth_Street 6.3 46 0.015 0.2 0.05 0.05

Snow_Avenue 6.2 40 0.015 0.2 0.05 0.05

Snow_Bio 0.5 0 0.015 0.2 0.05 0.05

Snow_Swale 5 0 0.015 0.2 0.05 0.05

Upper_Horne_Bio 0.5 0 0.015 0.2 0.05 0.05

Upper_Horne_Street 5.4 33 0.015 0.2 0.05 0.05

Wetland_Weir_Wall 6.6 19 0.015 0.2 0.05 0.05
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Table 41: Subcatchments in the Post Model Part 3 

 

  

Name Zero Imperv (%) Subarea Routing Percent Routed (%) LID Controls LID Names

44_Horne_Street 100 PERVIOUS 100 0

Ash_Street 100 OUTLET 100 0

Central_Avenue 100 OUTLET 100 0

Central_Gravel_Wetland 100 PERVIOUS 100 1 GravelWetland

Cocheco_Outfall 100 OUTLET 100 0

Crescent_Avenue 100 OUTLET 100 0

Crescent_Swale 100 PERVIOUS 100 1 CrescentSwale

Dover_Water_Works_Site 100 PERVIOUS 100 0

Glencrest_Avenue 100 OUTLET 100 0

Glencrest_Bio 100 PERVIOUS 100 1 GlencrestBio

Grove_Street 100 OUTLET 100 0

Grove_Street_Gravel_Filter 100 PERVIOUS 100 1 GroveGravelFilter

Hillcrest_Avenue 100 OUTLET 100 0

Hillcrest_Inf_Trench 100 PERVIOUS 100 1 HillcrestInfTrench

Horne_Street_School_Bio_1 100 OUTLET 100 0

Horne_Street_School_Bio_2 100 OUTLET 100 0

Horne_Street_School_Tree_Filter 100 OUTLET 100 0

Hough_Street 100 OUTLET 100 0

HSS_Bio1 100 PERVIOUS 100 1 HSSBio1

HSS_Bio2 100 PERVIOUS 100 1 HSSBio2

HSS_Property 100 OUTLET 100 0

HSS_Tree_Filter 100 PERVIOUS 100 1 HSSTreeFilter

HSS_Wet_Pond 100 OUTLET 100 0

Hull_Avenue 100 OUTLET 100 0

Kettlebell_Gravel_Filter 100 PERVIOUS 100 1 Kettlebell

Lowell_Avenue 100 OUTLET 100 0

Lowell_Bio 100 PERVIOUS 100 1 LowellBio

Lower_Horne_Bio 100 PERVIOUS 100 1 LowerHorneBio

Lower_Horne_Street 100 OUTLET 100 0

Maple_Street 100 PERVIOUS 100 0

Page_Avenue 100 PERVIOUS 100 0

Page_Swale 100 PERVIOUS 100 1 PageSwale

Redden_Ext_HSS_North 100 PERVIOUS 100 0

Redden_Street 100 PERVIOUS 100 0

Redden_Wet_Pond 100 PERVIOUS 100 0

Roosevelt_Bio 100 PERVIOUS 100 1 RooseveltBio

Roosevelt_Inf_Basin 100 PERVIOUS 100 1 RooseveltInfBasin

Roosevelt_Lower 100 OUTLET 100 0

Roosevelt_Upper 100 OUTLET 100 0

Seacoast_Kettlebell 100 OUTLET 100 0

Sixth_Street 100 OUTLET 100 0

Snow_Avenue 100 OUTLET 100 0

Snow_Bio 100 PERVIOUS 100 1 SnowBio

Snow_Swale 100 PERVIOUS 100 1 SnowSwale

Upper_Horne_Bio 100 PERVIOUS 100 1 UpperHorneBio

Upper_Horne_Street 100 OUTLET 100 0

Wetland_Weir_Wall 100 PERVIOUS 100 0
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Table 42: Subcatchments in the Post Model Part 4 

 

 

Name Groundwater Aquifer Name Receiving Node Surface Elevation (ft)

44_Horne_Street NO 0

Ash_Street YES Ash_StreetAQ BB09_Ash 59.05

Central_Avenue NO 0

Central_Gravel_Wetland NO 0

Cocheco_Outfall YES Cocheco_OutfallAQ O_Cocheco 36.09

Crescent_Avenue NO 0

Crescent_Swale NO 0

Dover_Water_Works_Site YES Dover_Water_Works_SiteAQ SP1 106

Glencrest_Avenue NO 0

Glencrest_Bio NO 0

Grove_Street NO 0

Grove_Street_Gravel_Filter NO 0

Hillcrest_Avenue NO 0

Hillcrest_Inf_Trench NO 0

Horne_Street_School_Bio_1 NO 0

Horne_Street_School_Bio_2 NO 0

Horne_Street_School_Tree_Filter NO 0

Hough_Street YES Hough_StreetAQ SP6 56

HSS_Bio1 NO 0

HSS_Bio2 NO 0

HSS_Property NO 0

HSS_Tree_Filter NO 0

HSS_Wet_Pond NO 0

Hull_Avenue NO 0

Kettlebell_Gravel_Filter NO 0

Lowell_Avenue NO 0

Lowell_Bio NO 0

Lower_Horne_Bio NO 0

Lower_Horne_Street NO 0

Maple_Street YES Maple_StreetAQ SP2 65.75

Page_Avenue NO 0

Page_Swale NO 0

Redden_Ext_HSS_North NO 0

Redden_Street NO 0

Redden_Wet_Pond NO 0

Roosevelt_Bio NO 0

Roosevelt_Inf_Basin NO 0

Roosevelt_Lower YES Roosevelt_LowerAQ SP1 106

Roosevelt_Upper YES Roosevelt_UpperAQ J08_01_RooseveltBio 114.83

Seacoast_Kettlebell NO 0

Sixth_Street YES Sixth_StreetAQ SP7 49

Snow_Avenue NO 0

Snow_Bio NO 0

Snow_Swale NO 0

Upper_Horne_Bio NO 0

Upper_Horne_Street NO 0

Wetland_Weir_Wall YES Wetland_Weir_WallAQ Existing_Wetland 134.51
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Table 43: Subcatchments in the Post Model Part 5 

 

Name A1 Coefficient B1 Exponent A2 Coefficient B2 Exponent

44_Horne_Street 0 0 0 0

Ash_Street 0.1 1 0.1 1

Central_Avenue 0 0 0 0

Central_Gravel_Wetland 0 0 0 0

Cocheco_Outfall 0.1 1 0.1 1

Crescent_Avenue 0 0 0 0

Crescent_Swale 0 0 0 0

Dover_Water_Works_Site 0.1 1 0.1 1

Glencrest_Avenue 0 0 0 0

Glencrest_Bio 0 0 0 0

Grove_Street 0 0 0 0

Grove_Street_Gravel_Filter 0 0 0 0

Hillcrest_Avenue 0 0 0 0

Hillcrest_Inf_Trench 0 0 0 0

Horne_Street_School_Bio_1 0 0 0 0

Horne_Street_School_Bio_2 0 0 0 0

Horne_Street_School_Tree_Filter 0 0 0 0

Hough_Street 0.1 1 0.1 1

HSS_Bio1 0 0 0 0

HSS_Bio2 0 0 0 0

HSS_Property 0 0 0 0

HSS_Tree_Filter 0 0 0 0

HSS_Wet_Pond 0 0 0 0

Hull_Avenue 0 0 0 0

Kettlebell_Gravel_Filter 0 0 0.1 1

Lowell_Avenue 0 0 0 0

Lowell_Bio 0 0 0 0

Lower_Horne_Bio 0 0 0 0

Lower_Horne_Street 0 0 0 0

Maple_Street 0.1 1 0.1 1

Page_Avenue 0 0 0 0

Page_Swale 0 0 0 0

Redden_Ext_HSS_North 0 0 0 0

Redden_Street 0 0 0 0

Redden_Wet_Pond 0 0 0 0

Roosevelt_Bio 0 0 0 0

Roosevelt_Inf_Basin 0 0 0 0

Roosevelt_Lower 0.1 1 0.1 1

Roosevelt_Upper 0.1 1 0.1 1

Seacoast_Kettlebell 0 0 0 0

Sixth_Street 0.1 1 0.1 1

Snow_Avenue 0 0 0 0

Snow_Bio 0 0 0 0

Snow_Swale 0 0 0 0

Upper_Horne_Bio 0 0 0 0

Upper_Horne_Street 0 0 0 0

Wetland_Weir_Wall 0.1 1 0.1 1
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Appendix C – Model Output 
 

This information is intended to supplement Chapter 3. It contains additional information 

about the rainfall-runoff response simulations such as different graphical representations of the 

extreme precipitation events and a summary the Pre and Post baseflow over a 36-hour period. 

 

Table 44: Baseflow Over a 36-hour Period for the Pre and Post Models 

 

  

Pre Post

Maximum Flow (cfs) 0.66 0.03

Minimum Flow (cfs) 0.66 0.03

Mean Flow (cfs) 0.66 0.03

Duration (hr) 36 36

Total Flow (ft^3) 85,290 3,280
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Supplementary to Section 3.1.1 

 

Figure 47: Outflow in the Pre model for the 1-hr extreme precipitation events 
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Figure 48: Outflow in the Post model for the 1-hr extreme precipitation events 
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Figure 49: Outflow in the Pre model for the 24-hr extreme precipitation events 
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Figure 50: Outflow in the Post model for the 24-hr extreme precipitation events 
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Supplementary to Section 3.2 

 

Figure 51: Outflow in the Pre15 model for the 1-hr extreme precipitation events 
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Figure 52: Outflow in the Pre15 model for the 24-hr extreme precipitation events 
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Figure 53: Outflow in the Pre0 model for the 1-hr extreme precipitation events 
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Figure 54: Outflow in the Pre0 model for the 24-hr extreme precipitation events 
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Figure 55: Outflow in the PreClimate model for the 1-hr extreme precipitation events 
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Figure 56: Outflow in the PreClimate model for the 24-hr extreme precipitation events 
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Figure 57: Outflow in the PostClimate model for the 1-hr extreme precipitation events 
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Figure 58: Outflow in the PostClimate model for the 24-hr extreme precipitation events 
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Appendix D – GSI System Plans 
 

This section is intended to supplement Section 2.2 providing further GSI system details. 

The available construction drawings for the GSI systems installed in the Berry Brook watershed 

are listed by project. Information such as watershed area, proposed system design and size, and 

media depths are shown. If information could not be found, assumptions were based off the 

available information from other sites.
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Central Avenue Gravel Wetland  

 

Figure 59: Central Avenue Gravel Wetland site location and drainage area 
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Figure 60: Central Avenue Gravel Wetland site layout and existing conditions 
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Figure 61: Central Avenue Gravel Wetland layout dimensions 

 

 



  

 

1
3
9
 

 

Figure 62: Central Avenue Gravel Wetland long section elevation 

 



  

 

1
4
0
 

 

Figure 63: Central Avenue Gravel Wetland outlet structure 
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Glencrest Avenue Bioretention 

 

Figure 64: Glencrest Avenue Bioretention drainage area 
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Figure 65: Glencrest Avenue Bioretention grading plan 
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Figure 66: Glencrest Avenue Bioretention cross section 
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Figure 67: Glencrest Avenue Bioretention profile   
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Grove Street Gravel Filter 

 

Figure 68: Grove Street Gravel Filter site overview 
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Figure 69: Grove Street Gravel Filter system profile view 
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Hillcrest Infiltration Trench 

 

Figure 70: Hillcrest Infiltration Trench site layout 
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Figure 71: Hillcrest Infiltration Trench section view 
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Kettlebell Subsurface Gravel Filter 

 

Figure 72: Kettlebell Subsurface Gravel Filter site layout 
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Figure 73: Kettlebell Subsurface Gravel Filter system plan view 
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Figure 74: Kettlebell Subsurface Gravel Filter profile view 
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Lower Horne Street Bioretention 

 

Figure 75: Lower Horne Street Bioretention overall plan 



  

 

1
5
3
 

 

 

Figure 76: Lower Horne Street Bioretention profile view 
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Figure 77: Lower Horne Street Bioretention cross section view 
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Upper Horne Street Bioretention 

 

Figure 78: Upper Horne Street Bioretention drainage area 
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Figure 79: Upper Horne Street Bioretention layout plan 
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Figure 80: Upper Horne Street Bioretention cross section  
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Lowell Avenue Bioretention 

 

Figure 81: Lowell Avenue Bioretention drainage area  
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Figure 82: Lowell Avenue Bioretention layout plan 
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Figure 83: Lowell Avenue Bioretention cross section  
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Roosevelt Avenue Bioretention 

 

Figure 84: Roosevelt Avenue Bioretention layout plan 
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Figure 85: Roosevelt Avenue Bioretention profile view 1 
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Figure 86: Roosevelt Avenue Bioretention profile view 2 
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Figure 87: Roosevelt Avenue Bioretention infiltration systems 
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