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Table 2. Results for pooled Grammatical + Ungrammatical ALE analyses (ALE Max= Z-score) 

ALE Group Cluster X Y Z Volume (���) ALE Max Label 

Pooled 

(Grammatical + 

Ungrammatical) 

1 -44 12 20 12352 7.36 L Inferior Frontal 

Opercularis 

 1 -34 22 -2 12352 7.26 L Insula 

 2 48 26 20 5392 5.73 R Inferior Frontal 

Triangularis 

 2 50 26 4 5392 4.69 R Inferior Frontal 

Triangularis 

 2 48 4 30 5392 3.32 R Precentral Gyrus 

 3 6 26 34 3952 5.79 R Middle Cingulate 

Gyrus 

 3 2 22 50 3952 4.99 L Supplemental 

Motor Area 

 4 36 22 -4 2584 7.29 R Insula 

 5 32 -66 38 1264 5.52 R Middle Occipital 

Gyrus 

 6 36 -50 48 1104 4.02 R Inferior Parietal 

Lobule 
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Table 3. Results from ALE analyses of Grammatical group, Ungrammatical group, and their 

conjunction (ALE Max= Z-score) 

ALE Group Cluster X Y Z Volume 

(���) 

ALE Max Label 

Grammatical 1 -46 8 14 6096 5.08 L Inferior Frontal 

Opercularis  
1 -46 28 28 6096 4.84 L Inferior Frontal 

Triangularis  
1 -46 2 30 6096 4.15 L Precentral Gyrus 

 
2 -30 22 -2 1536 6.45 L Insula 

 3 32 -72 38 976 4.47 R Middle Occipital 

Gyrus 

 4 34 24 0 888 4.63 R Insula 

 5 -42 -28 10 832 4.55 L Superior Temporal 

Gyrus 

Ungrammatical 
       

 
1 -44 12 22 7504 6.56 L Inferior Frontal 

Opercularis  
1 -38 20 0 7504 5.78 L Insula 

 
2 48 26 18 6560 6.21 R Inferior Frontal 

Triangularis  
2 48 18 42 6560 4.88 R Middle Frontal 

Gyrus   
2 46 32 -4 6560 3.33 R Inferior Frontal 

Orbitalis  
3 6 26 32 3224 5.31 R Middle Cingulate 

Gyrus  
3 0 24 52 3224 4.40 L Supplemental 

Motor Area  
4 36 22 -4 1856 7.00 R Insula 

Conjunction 
       

 
1 -44 10 18 1856 4.74 L Inferior Frontal 

Opercularis  
1 -44 26 22 1856 3.74 L Inferior Frontal 

Triangularis  
2 -34 20 -2 520 5.02 L Insula 
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Figure 1. PRISMA flowchart showing the literature search and paper selection process for the 

meta-analysis. 

Analyze method and stimuli to determine whether 

study examines implicit language learning 

Exclude 1 study (Opitz & Friederici, 2004) for lack 

of similar contrasts 

Final set= 25 studies meeting full inclusion 

criteria 

516 subjects 

Over 800 articles identified through search of 

electronic databases (PubMed, PsychInfo, 

Google Scholar), references of related articles, 

and article data from Tagarelli et al. (2019) 

228 articles left after title/abstract screening 

and removal of duplicates 

88 articles removed for not meeting brain imaging 

criteria (not fMRI, PET, or whole brain analyses) 

32 articles removed for not meeting language 

learning criteria (i.e., SRT task) 

95 studies meeting inclusion criteria from literature 

search + 55 studies from Tagarelli et al. (2019) 
Total N= 150 

Exclude 124 studies for not examining implicit 

language learning (e.g., word learning) 

13 articles removed for not meeting participant 

criteria 
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Abstract 

Implicit learning is the unconscious extraction of rules governing complex stimuli, measured 

through experiments such as artificial grammar tasks, and is directly related to natural language 

learning. While several theories address the underlying framework for implicit learning, few 

studies have shed light on a consensus neural network involved in implicit learning. The short-

term goal of this thesis is to further elucidate the brain regions involved in implicit learning of 

linguistic stimuli. The long-range goal of this research program is to understand how implicit 

learning and the brain regions associated with it relate to language learning and treatment 

outcomes in individuals with aphasia. A coordinate-based meta-analysis of 25 studies using 

implicit language learning tasks was completed. Activation likelihood estimate (ALE) results 

show significant activation in the bilateral inferior frontal gyri, bilateral insula, left supplemental 

motor area, right precentral gyrus, right middle cingulate, right middle occipital gyrus, and right 

inferior parietal lobule. The inferior frontal gyrus is discussed as a general rule-processing and 

error detection mechanism, and other regional activations are discussed related to their 

involvement in a cognitive control network. Cognitive control may be seen as an underlying 

mechanism for successful implicit learning and may be clinically relevant as a target for 

language intervention to scaffold syntax comprehension.
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Elucidating an implicit learning network in healthy adults during artificial grammar tasks 

CHAPTER I: INTRODUCTION 

Implicit learning is learning that occurs unconsciously and automatically. Implicit 

knowledge is not explicitly taught, but is stored in long-term memory and retrieved when 

appropriate, such as the rules underlying language. Implicit learning is a term first coined by 

Reber (1967) and is defined as the ability to learn the lawfulness of stimulus sequences to 

efficiently respond to stimuli without explicit knowledge of the rules or explicit strategy use. The 

ability to implicitly learn has been shown in artificial grammar or serial reaction time tasks in 

which an increase in accuracy implies that a participant has implicitly learned the underlying 

rules of the task. 

Artificial grammar tasks are composed of two parts: a learning phase and a testing phase. 

In the learning phase, participants are exposed to stimuli through multiple trials. Stimuli in the 

learning phase consist of grammatical sentences from which participants will implicitly extract 

rules about how sentences can be composed. Participants may or may not receive instructions for 

the task, but rules are never explicitly taught. Following the learning phase, participants enter the 

testing phase during which they make grammaticality judgments about grammatical and 

ungrammatical sentences in the artificial language. These sentences consist of grammatical 

examples heard in the learning phase, random sentences, and sentences that partially follow a 

rule as a foil. As established by Reber (1967), participants are able to efficiently and accurately 

judge the grammaticality of sentences created from an artificial grammar while being unaware of 

the underlying rules or of strategies they may have used. 

Serial reaction time tasks are a non-linguistic implicit learning task. In serial reaction 

time tasks, participants respond to an icon that appears in several locations on a screen. The 
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participants are required to press a button when the icon appears in a new location and reaction 

time is recorded. The task consists of random and sequenced blocks, during which the icon 

moves either following a pattern or randomly. Participants begin with a set of random trials, then 

sequenced trials, followed by another block of random trials. A reduction in reaction time during 

the sequenced block, followed by an increase in reaction time for the final random block, 

indicates that the participants implicitly learned the rules underlying the movement of the icon. 

While implicit learning is not language-specific, one type of implicit learning called 

statistical learning, involves hierarchical rule learning which relates directly to language. 

Statistical learning is the ability to track regularities, or statistical probabilities, in the 

environment and extract rules from them. Statistical learning is a necessary process for language 

learning (Saffran, 2001; Saffran, Aslin, & Newport, 1996). While the study of statistical learning 

of language has focused on infants, adults are also able to listen to unfamiliar languages or 

artificial grammars and extract regularities, allowing them to make judgements about the 

grammaticality of an utterance and perform above chance (Bahlmann et al., 2008; Batterink et 

al., 2015; Lieberman et al., 2004; Petersson et al., 2012; Petersson et al., 2004; Plante et al., 

2015; Reber, 1967; Saffran, 2001). What is unique about this type of learning, and implicit 

learning in general, is that it happens automatically and unconsciously, without specific 

instructions to learn the grammar or rules. 

The ability to implicitly learn is utilized in memory intervention for patients with amnesia 

in the form of errorless learning. In a meta-analysis by Kessels and de Haan (2003), errorless 

learning, which utilizes minimization of errors to access the implicit learning system through 

repetition of correct targets, produced a large effect size of 0.87 across 11 studies. A more recent 

study by Hart et al. (2020) also found success for errorless learning and minimized reliance on 
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explicit memory in patients with post-traumatic amnesia. However, there are no known language 

interventions that employ implicit learning strategies and only one experimental study that has 

used implicit learning treatment with individuals with aphasia. Schuchard et al. (2017) 

implemented an implicit sentence comprehension treatment utilizing errorless learning strategies 

with five adults with agrammatic aphasia. The training took place over five sessions, with each 

session lasting around 20 minutes. Schuchard et al. (2017) found no significant increases in 

passive sentence comprehension, and three participants showed decreased comprehension scores 

from baseline. However, the short duration of treatment and difficulty of the task should be noted 

as they may have prevented treatment gains. Additionally, other studies show that individuals 

with non-fluent aphasia can perform above chance on serial reaction time tasks involving non-

linguistic stimuli, and therefore learn implicitly (Schuchard &Thompson, 2014; Schuchard et al., 

2017). Moreover, Christiansen et al. (2010) found that seven individuals with agrammatic 

aphasia were able to learn an artificial grammar with 91% accuracy during a learning phase, but 

the average test performance was only 51% when ungrammatical stimuli were introduced, which 

was not significantly above chance. The ability to implicitly learn has not been examined in other 

forms of aphasia and has only been minimally tested using artificial grammar tasks to measure 

implicit learning, thus warranting more research. 

In addition to using implicit learning to promote intervention success, the automaticity 

involved in implicit learning may also assist in generalization of intervention. Generalization 

requires information to be extracted from stimuli, encoded in memory, and consolidated for 

automatic retrieval and use. As generalization is the ultimate goal of speech and language 

intervention, the focus of this study is on the automaticity underlying implicit learning, and 

specifically statistical learning. One way to better understand implicit learning is by examining 
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the neural correlates of this type of learning and the connections between regions involved in the 

implicit learning network. Currently, a meta-analysis that clarifies which brain regions are 

involved in implicit learning does not exist, although two recent meta-analyses have been 

published examining language learning in adults (Tagarelli et al., 2019) and non-linguistic 

sequence learning in adults (Janacsek et al., 2020). While Tagarelli et al. (2019) examined 

artificial grammar learning in adults, their main goal was to look at language learning in general, 

and not specifically implicit language learning. Additionally, their literature search ended in 

2015 and more implicit learning studies have been published since the end of their search. This 

thesis aims to extend the findings of Tagarelli et al. (2019) by identifying the brain regions 

involved in implicit learning in healthy adults to serve as a reference for future research. 

Model or Framework 

 One model for the interaction between implicit and explicit learning and their relation to 

language is the declarative/procedural model (Ullman, 2004). The declarative/procedural model 

states that the mental lexicon and mental grammar of language are dependent on the distinction 

between declarative (explicit) and procedural (implicit) memory. The mental lexicon refers to a 

storage of all “memorized” word-specific knowledge. This includes knowledge of all word 

meanings and sounds, but also any language unit that cannot be derived from another such as 

bound morphemes and idiomatic phrases. Conversely, the mental grammar is a computational 

system that extracts regularities from language, and analyzes language based on knowledge of 

rules and constraints. The mental grammar is used to comprehend complex forms such as 

derivational morphology and syntax. The distinction between the two types of language 

knowledge can also be thought of as explicit versus implicit knowledge of language, as the 

knowledge contained in the mental grammar is largely unconscious and automatic.  
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The mental lexicon and mental grammar are served by the declarative and procedural 

memory systems, respectively. The declarative memory system is responsible for the encoding, 

storage, and use of semantic and episodic memory for facts and events. This type of memory 

subserves rapid learning following one stimulus presentation, which binds and associates 

arbitrarily related information. Declarative memory can also be explicitly recalled. In contrast, 

the procedural memory system is responsible for learning new skills and controlling established 

skills, habits, and procedures. Within this system, the knowledge of procedures and the learning 

of this knowledge is unconscious or implicit. More generally, this system is responsible for the 

learning and processing of sequences and rule relations in context. Compared to declarative 

memory, procedural learning occurs gradually and requires several presentations of stimuli. 

Additionally, the rules are stable, inflexible, not influenced by other systems and are applied 

rapidly and automatically. These two systems complement each other and work together in the 

acquisition of knowledge. 

That is, when both declarative and procedural systems are intact, they complement each 

other. However, when one system is impaired, they interact competitively in a “see-saw” effect 

in which the impaired system leads to the enhanced function of the other system (Ullman, 2004). 

This is particularly relevant to individuals with aphasia, as the brain damage in one type of 

aphasia, Broca’s aphasia, is to the inferior frontal gyrus, a structure that Ullman argues is integral 

to procedural learning. When stating the evidence for the model, Ullman (2004) argues that 

individuals with non-fluent aphasia have symptoms which may reflect damage to the frontal 

regions involved in the procedural memory system, while individuals with fluent aphasia show 

symptoms which may reflect damage to the medial temporal lobe involved in the declarative 

memory system. Performance-related evidence is listed but no fMRI results are given in Ullman 
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(2004) to examine the connections between brain regions of procedural memory (i.e., implicit 

learning) in individuals with aphasia. 

 The declarative/procedural model describes implicit learning generally but does not 

provide a framework for how individuals perform hierarchical rule learning, such as statistical 

learning. One framework for how individuals perform statistical learning is through the use of 

transitional probabilities, rather than surface level cues of underlying rules. Prior to the 

framework of transitional probabilities, much of the study of statistical learning focused on 

discovering word segmentation through surface properties of the stimulus such as frequency of 

phonemes or presence of unique units. Similarly, artificial grammar learning tasks had focused 

on tracking surface cues such as frequency of consecutive units (words, syllables, or sounds), 

frequency of beginning or ending units, lawfulness of the first unit, presence of unique units, 

location of familiar units, repetition of units, or similarity to previously learned stimuli (Saffran, 

2001). However, because natural language is much more complex as phrases are not organized 

linearly, but hierarchically, it requires more than surface-level cues to extract regularities. 

Hierarchical organization of phrase structure refers to the organization and grouping of word 

classes into units (Saffran, 2001). For example, a sentence is made up of a noun phrase and a 

verb phrase, which can also be broken down into smaller groups and categories of words (e.g., 

determiners, nouns, verbs). 

Saffran (2001) introduced the idea that individuals utilize transitional probabilities to 

extract phrase structure, or syntax, that are organized hierarchically. These phrases are marked 

by what Saffran refers to as “dependencies,” meaning a word class requires another specific 

word class to follow it. For example, determiners such as “a” or “the” must be followed by a 

noun. However, this does not happen bidirectionally; i.e., a noun does not require a determiner. 



IMPLICIT LEARNING NETWORK  7 
 

Hence, it is not about co-occurrence, but rather the probability of occurrence. Transitional 

probability refers to the idea that given B, what is the likelihood of A? Or, given a determiner, 

what is the likelihood that a noun will follow? Saffran (2001) provides support for the use of 

transitional probabilities by showing that learners can detect phrasal units using predictive 

dependencies and perform above chance even when all surface level cues are removed such as 

intonation or stress. The statistical dependencies between the two word classes (e.g. nouns and 

verbs, or nouns and determiners) are more complex than surface level cues, as they involve 

hierarchical phrase structure, and provide a framework for the complex rules that can be 

implicitly learned from natural language. 

 Traditionally, implicit learning and statistical learning have been separate and distinct 

research domains (Christiansen, 2019; Perruchet & Pacton, 2006). However, Ullman (2004) 

provides evidence for the role of implicit learning in the learning/encoding, maintenance, and 

retrieval of language knowledge. Similarly, Christiansen (2019) coins the term “implicit 

statistical learning” and argues that the two research domains can be combined as they are both 

grounded in the basic processes of learning and memory, with an uncontroversial overlap 

through chunking. Furthermore, Batterink et al. (2015) showed that statistical learning employs 

implicit learning mechanisms through an implicit reaction time task, so statistical learning may 

be seen as a type of learning served by the procedural (implicit) memory system. Therefore, this 

thesis considers statistical learning and implicit learning synonymously.  

Neuroimaging Findings 

 The procedural and declarative memory systems proposed by Ullman (2004) support the 

mental lexicon and mental grammar language systems via their contribution to learning and 

through their connections with working memory and attention. In the model, Ullman (2004) 
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identifies several brain regions involved in declarative (explicit) memory and procedural 

(implicit) memory. Declarative memory utilizes the medial temporal lobe, especially the 

hippocampus, brain regions around the hippocampus (e.g., the dentate gyrus and subicular 

complex), the parahippocampal region, the entorhinal cortex, and the perirhinal cortex. Other 

regions involved include the ventrolateral prefrontal cortex, which is made up of the inferior 

frontal gyrus, posterior/dorsal inferior frontal cortex, and anterior/ventral inferior frontal cortex. 

These regions are involved in encoding memory and retrieving declarative knowledge. 

Additional brain regions involved in retrieval of declarative memory include the anterior frontal-

polar cortex and the cerebellum. Further support for the medial temporal lobe’s involvement in 

declarative memory has been established by several papers (Batterink et al., 2019; Gabrielli, 

1998; Poldrak et al., 2001). 

 According to Ullman (2004), procedural (implicit) memory utilizes brain regions similar 

or related to those for declarative memory. Overall, procedural memory involves a frontal/basal 

ganglia network, along with the superior temporal lobe, parietal lobe, and cerebellum. 

Functionally, the basal ganglia are involved in implicit learning in general, but are also 

implicated in other aspects of implicit learning such as probabilistic rule learning, sequence 

learning, context-dependent rule selection, working memory maintenance, and attention shifting 

(Gabrielli, 1998; Poldrak et al., 2001; Ullman, 2004). The dorsal striatum, made up of the 

caudate nucleus and putamen, is especially important for procedural memory. For example, 

Plante et al. (2015) found activation in the right caudate was present immediately preceding 

behaviorally evidenced learning during an unfamiliar grammar learning task. Several implicit 

learning artificial grammar studies have also found basal ganglia activation, especially in the 

caudate nucleus (Bahlmann et al., 2008; Forkstam et al., 2006; Lieberman et al., 2004). 



IMPLICIT LEARNING NETWORK  9 
 

Another crucial region for procedural learning is Broca’s area, which is responsible for 

hierarchical sequence learning of linguistic and non-linguistic stimuli (Forkstam et al., 2006; 

Karuza et al., 2013; Petersson et al., 2012; Ullman, 2004). This region is typically recognized for 

its involvement in speech and language production, but it may also serve a role more generally in 

learning and processing sequences. It is also recognized for its role in maintaining information in 

working memory (Rogalsky et al., 2008). Working memory supports sequence learning by 

maintaining information to allow for its consideration or manipulation, which may be essential 

for extraction and computation of underlying rules.  

Other regions involved in procedural memory and implicit learning include the superior 

parietal lobe, inferior parietal lobe, and supramarginal gyrus, likely given their involvement with 

attention (Corbetta, 2008; Ullman, 2004). Plante et al. (2015) outlines the role of attention in 

statistical learning and relates their findings of activation in brain regions such as the anterior 

cingulate cortex and regions in the temporo-parietal-occipital junction to their role in attention. 

Activation in the anterior cingulate cortex differed between groups, potentially reflecting 

increased use of attentional strategies by the group who learned more efficiently. In their study, 

weaker activation in the left parietal lobe, including the angular and supramarginal gyri, was 

associated with higher rates of correct rejection of ungrammatical utterances. Furthermore, the 

procedural memory system utilizes the cerebellar hemispheres (the dentate nucleus and the 

vermis). Functionally, the cerebellum is thought to be involved in error-based learning and error 

detection, two important aspects of grammaticality judgements in implicit learning tasks 

(Ullman, 2004).  
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Need for research 

 While the declarative/procedural model proposes and provides some evidence for the 

brain regions involved in implicit learning, there has only been one meta-analysis conducted to 

test the validity of the proposed frontal/basal ganglia network involved in implicit learning 

(Tagarelli et al., 2019). Evaluating evidence from a large sample of experiments via meta-

analysis may validate the network proposed by Ullman (2004) or provide support for additional 

regions or a different network of regions that may be involved in implicit learning. This 

knowledge would benefit future researchers by providing a priori hypotheses for studying 

individuals with an impaired ability to learn implicitly due to stroke or developmental disorders. 

Subsequent research could then assess whether damage to the implicit learning network impairs 

an individuals’ ability to respond to language intervention and/or generalization of language 

skills to differing contexts. 

Nominal Definitions 

 Learning: the domain general process of encoding information to support the retention 

and retrieval of information performed by memory. Learning is evidenced in experiments by an 

increase in accuracy (Gabrieli, 1998). 

 Dysfunction/impairment: a decrease in behavioral performance on a task compared to 

typical healthy subjects or a significant difference in brain function/connectivity associated with 

less optimal performance. 

Statistical/implicit learning: experience-driven learning that occurs by efficiently 

extracting regularities from input and using probabilities of occurrence to predict future input. 

 Statistical/implicit learning task: a task or experiment which consists of a learning phase 

and a testing phase. The learning phase has several trials to promote learning. Explicit instruction 
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or no instruction may be given, but the rules of the stimuli must not be explicitly taught prior to 

the testing phase. The learning phase involves automatic encoding of rules while the testing 

phase involves making judgements about stimuli. Accuracy, as measured by performance above 

chance, is an indication of learning in the task. 

 Rules: a governing system for stimulus arrangement both within and across units. Target 

stimuli in implicit learning paradigms are not random and follow a predetermined pattern, set of 

rules, or grammar as random stimuli are not sufficient for learning. These rules may be linear or 

hierarchical. 

Context 

A client’s ability to encode, consolidate, and retrieve information is central to their ability 

to respond to speech and language intervention. A goal of intervention is generalization of 

language gains, which may be supported by the automaticity that is central to implicit learning. 

Individuals with aphasia have particular difficulty generalizing language intervention to daily 

living and continually benefit from intervention many years following their stroke (Marcotte et 

al., 2012). The motivation for this thesis is that individuals with aphasia have difficulty learning, 

or making automatic, the implicit rules underlying language. If individuals with aphasia have 

weaker connections or damage within the implicit learning network, this could change how 

clinicians provide intervention to strengthen that network, or to bypass it by other means of 

instruction. The long-range goal is to determine if individuals with aphasia are able to learn 

language implicitly (Schuchard & Thompson, 2014; Schuchard et al., 2017) or whether the 

relatively low efficacy of interventions for aphasia may be due to clinicians not providing 

adequate intervention in terms of dosage, intensity, or time (Kleim & Jones, 2008). 
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Specific Aims and Hypotheses 

The aim of this thesis is to identify a network of brain regions most commonly involved 

in implicit and/or statistical learning in healthy adults. We hypothesize that, as proposed by 

Ullman (2004), the basal ganglia, Broca’s area, supramarginal gyrus, and superior temporal lobe 

will be involved. Alternatively, the null hypothesis is that none of these brain regions, other 

regions, or other networks of regions may be involved in implicit learning. 
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CHAPTER II: METHOD 

Literature search, screening, and paper selection 

A comprehensive literature search for peer-reviewed articles was conducted from March 

27, 2020 to February 19, 2021. PubMed, PsychInfo, Google Scholar, and references of related 

articles were systematically searched. Additionally, article data from Tagarelli et al. (2019) 

provided by Ullman (personal communication, 2020) were searched to determine inclusion 

eligibility for the current study. See the PRISMA flowchart (Figure 1) for the summarized 

process. 

Inclusion Criteria: 

• Experimental study 

• Participants include healthy adults aged 18 years and older 

• fMRI coordinates listed for whole brain analysis 

• The task is an implicit learning or statistical learning task (e.g., artificial grammar 

learning) in any modality 

• Contrasts for fMRI are implicit/statistical learning or test > baseline/rest, or a comparison 

of test stimuli 

Search terms used to find relevant articles included: “implicit learning,” “implicit 

learning AND automaticity,” “implicit learning AND plasticity,” “implicit learning AND fMRI 

NOT disorder,” “implicit learning AND statistical learning AND MRI,” “artificial grammar,” 

“artificial grammar AND fMRI,” “statistical learning AND fMRI,” “artificial grammar learning 

AND fMRI,” “implicit learning grammar AND FMRI,” and “distributional learning AND 

fMRI.” Searches yielded over 800 papers. Titles and abstracts were then screened by the first 
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author for studies involving language and including brain imaging. The title and abstract 

screening reduced the total to 228 papers. 

Secondary screening was completed by three graduate and three undergraduate students 

for the following criteria: 1) fMRI or PET studies (not DTI, ERP, or structural imaging) 2) whole 

brain analysis (not region-of-interest, resting state functional connectivity, dynamic causal 

modeling, or independent components analysis) and 3) reporting results for healthy adult 

participants.  

Of the 228 papers, 88 were excluded for not utilizing fMRI or PET imaging, or not 

conducting whole brain analyses. 13 papers were excluded due to not including or reporting 

results for healthy adults. An additional 32 papers were excluded because they administered 

serial reaction time task (SRT) experiments that did not involve language.  

A final screening was completed for the remaining 150 whole-brain fMRI or PET 

language studies (95 identified through the literature search and 55 articles from Tagarelli et al., 

2019) by the first author to determine whether the study fit inclusion criteria as a study of 

implicit or statistical language learning. Studies including language learning which referenced 

rules, grammar, regularities, statistical probability, chunk strength, dependencies, and/or 

adjacencies were included. These studies either utilized a word learning or a grammar learning 

paradigm. Studies that focused on word learning were reviewed to determine whether learning 

occurred implicitly (no translations given), and if there was an underlying rule system. Studies 

that referenced explicit grammar learning were reviewed to clarify whether rules were explicitly 

taught (and examine the nature of feedback), and if so, they were excluded. As a result, 36 word 

learning studies were excluded that either did not involve rules, or explicitly taught words. For 

the grammar learning studies, one study was excluded (Musso, 2003) and four were retained 
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(Fletcher, 1999; Skosnik, 2002; Yang, 2012; Yusa, 2011). Finally, studies that explicitly assessed 

participants’ learning of words or grammar, such as recognition and word segmentation tasks, 

were included since the learning was determined to be implicit. 

The final set of 25 fMRI articles were included in the meta-analysis. Twenty-three studies 

used artificial grammars or languages and two studies used unfamiliar, non-native languages. 

The types of artificial grammar or languages included BROCANTO (2 papers), Brocanto2 (1 

paper), finite-state grammar (10 papers using both Reber and Markovian grammars), transitional 

probabilities (5 papers), and the remainder included a mix of adjacent, non-adjacent, or pairwise 

dependencies, hierarchical rules, chunk-based rules, or phrase structure rules (7 papers). Chunk-

based rules, also known as associative chunk strength, are a learning mechanism that relies on 

the frequency of pairs of letters that appear together to make grammaticality judgements 

(Meulemans & Van der Linden, 1997). See Table 1 for a summary of papers included in the 

meta-analysis and a summary of study characteristics. 

Meta-data coding for each paper included task definition, stimulus type, stimulus 

presentation modality, response modality, amount and type of training/learning, feedback type 

and frequency, and the experimental contrasts. Stimulus presentation mode differed across 

studies (see Table 1) with 15 of the papers presenting visual stimuli and 10 presenting auditory 

only or auditory + visual stimuli during the learning phase of the experiment. Accuracy feedback 

(correct/incorrect) was provided in only 8 of the 25 studies, four of which provided feedback 

during the testing phase as well as the learning phase. However, because feedback only 

referenced correct/incorrect and was not providing information about specific rules, these eight 

papers were included. 
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Contrasts from the coded papers included directional analyses (e.g., group differences or 

contrast comparisons), increasing activation, decreasing activation, correlation with task 

performance, and conjunction analyses. Only contrasts reporting (1) increased activation during 

either a rule-based learning (grammatical) or non-rule-based (ungrammatical) task, or (2) 

experimental contrasts reporting relevant contrasts between experimental conditions (e.g., rule-

based > random) activation in healthy adults were included. Decreasing activations were 

excluded from the ALE. Additionally, contrasts correlating functional activation during learning 

with test performance were excluded due to the small number of papers (n=5), thus excluding 

(Optiz & Friederici, 2004), and leaving 25 papers.  

Included grammatical contrasts were those for which activation during a grammatical task 

(learning or test phase) was contrasted with baseline or rest; or the comparison of activation in 

grammatical > ungrammatical conditions. A subset of papers (n=12) included greater activation 

for ungrammatical items, or items that did not follow the learned rules due to violations, than for 

grammatical items and were included in a separate ALE.  

ALE analysis with NiMARE 

Coordinate-based meta-analysis (CBMA) was used to identify the brain regions most 

commonly active during statistical/implicit learning in imaging studies of normal, healthy 

participants. Following the literature search for previous neuroimaging studies reporting 

coordinates of brain regions active during tasks that address implicit learning, coordinates 

identified in the selected papers were analyzed for common patterns of brain activation via an 

algorithm called the activation likelihood estimate (ALE) (Eickhoff et al., 2012; Eickhoff et al., 

2009; Turkeltaub et al., 2012). This algorithm treats the coordinates derived from the selected 

papers as part of a probability distribution. ALE computes the activation probabilities for each 
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voxel and eliminates random clustering due to noise via a permutation test. The resulting 

histogram is used to determine p-values for the observed coordinates, which is an indicator of the 

likelihood of activation at a given voxel. These coordinates are used to generate regions of 

interest (ROIs) in subsequent analyses. The ALE was run through the Neuroimaging Meta-

Analysis Research Environment (NiMARE), a centralized standard implementation of meta-

analytic tools through Python (Salo et al., 2020). 

Two ALE groups were identified based on the contrasts included: a Grammatical ALE 

group and an Ungrammatical ALE group. In addition to ALE analyses for each separate ALE 

group, conjunction, subtraction, and pooled analyses were conducted as well. Conjunction 

analyses examine the common significant activation, or union between both ALE groups. Pooled 

analyses included all significant regional activation across both Grammatical and Ungrammatical 

contrasts. With subtraction analyses in NiMARE, differences between the grammatical and 

ungrammatical ALE groups were explored across the whole brain, rather than looking for 

differences in significant activation between the two groups. 
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CHAPTER III: RESULTS 

Results from the Grammatical and Ungrammatical ALE analyses, as well as the 

conjunction of the two ALEs, are presented in Tables 2 and 3 along with the cluster size, ALE 

maximum, and anatomical location. Table 2 shows results for the pooled analysis and Table 3 

shows results for the remaining analyses. 

Pooled results for Grammatical + Ungrammatical 

As implicit learning involves both the recognition and acceptance of rule-based stimuli 

and the correct rejection of random, non-rule following stimuli, results from both the 

Grammatical and Ungrammatical ALE groups were pooled. Pooled analyses indicated six 

clusters of activation: 1) the left inferior frontal gyrus, specifically the pars opercularis, 

extending to the left insula, 2) the right inferior frontal gyrus, specifically the pars triangularis, 

extending to the right precentral gyrus, 3) the right middle cingulate gyrus extending to the left 

supplemental motor area, 4) the right insula, 5) the right middle occipital gyrus, and 6) the right 

inferior parietal lobule. 

Grammatical ALE results 

Five clusters comprised of seven regions across both hemispheres were significantly 

active across subject groups, z-corrected FWE thresholded at p < 0.05. The clusters included: 1) 

the left inferior frontal gyrus, extending from the precentral gyrus to the pars triangularis, 2) the 

left insula, 3) the right middle occipital gyrus, 4) the right insula, and 5) the left superior 

temporal gyrus. 

Ungrammatical ALE results 

Four clusters comprised of eight regions showed significant activation across subject 

groups, z-corrected FWE thresholded at p < 0.05. The four clusters were located in both the left 



IMPLICIT LEARNING NETWORK  19 

 

and right hemispheres. The clusters included: 1) the left inferior frontal gyrus, specifically the 

pars opercularis, extending to the left insula, 2) the right middle frontal gyrus extending to the 

right inferior frontal gyrus, specifically the pars orbitalis, 3) the right middle cingulate gyrus 

extending to the left supplemental motor areas, and 4) the right insula. 

Conjunction analysis results 

The union of the Grammatical and Ungrammatical ALE groups showed three regions of 

convergence, organized in two main clusters: 1) the left inferior frontal gyrus, including the pars 

opercularis and triangularis and 2) the left insula. 

Subtraction analyses 

Subtraction analyses were also performed. However, subtraction analyses did not yield 

any significant results for p-FDR < 0.05.  
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CHAPTER IV: DISCUSSION 

In this coordinate-based meta-analysis, we examined the neural correlates of implicit 

learning in healthy adults during language learning tasks. To examine this, we conducted several 

ALE analyses of previous artificial language learning studies and pooled the results to determine 

a network of regions involved in implicit language learning. The aim of this CBMA was to 

elucidate which brain regions are involved in implicit learning as this process is central to natural 

language learning and may be applied clinically to understand more about how individuals with 

brain differences optimally respond to language intervention. As a result, we found a network of 

bilateral activation, primarily in the bilateral inferior frontal gyrus and bilateral insula, as well as 

activation in the right precentral gyrus, right middle cingulate, left supplemental motor area, right 

middle occipital gyrus, and right inferior parietal lobule. 

The pooled results of both the Grammatical and Ungrammatical ALE analyses included 

some brain regions that were hypothesized to be active, such as the left IFG, and others that were 

not, such as the bilateral insula. The pooled results, rather than the conjunction of the two ALEs, 

was chosen as the main analysis over analyzing the ALE groups separately as both the ability to 

correctly identify rule-following input and accurately reject rule violations are equally important 

in acquisition and use of implicit rule-learning which is essential to language. In the following 

sections, we will discuss the implications of the results observed. 

Subtraction results were completed to determine if there were statistically significant 

differences in activation between the Grammatical and Ungrammatical ALE groups. However, 

there were no significant results, which shows that grammatical and ungrammatical stimuli do 

not engage functionally different regions, or that there was not enough power to detect 

significant differences. Nonetheless, some differences were present, with more left-lateralized 
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activation for the Grammatical ALE as well as left superior temporal gyrus activation for the 

Grammatical ALE (as predicted by Ullman, 2004). In the Ungrammatical ALE, some differences 

included right IFG involvement, as well as activation in the middle cingulate and supplemental 

motor area. The lack of significant differences between the two ALE groups is not surprising. 

Several studies found no significant activation for contrasts examining differences between 

grammatical and ungrammatical activation (Folia & Peterrson, 2014; Hauser, 2012). 

Inferior frontal gyrus 

The inferior frontal gyrus was the most consistently active region in all analyses, 

including the Grammatical, Ungrammatical, conjunction, and pooled ALE analyses. Specifically, 

the left pars opercularis was the part of the IFG that had the strongest activation across all 25 

studies. This finding was not surprising, due to its role in processing syntax (Bookheimer, 2002; 

Friederici, 2018; Peterrson et al., 2012) and its hypothesized role in Ullman’s (2004) declarative-

procedural model. Several studies have reported that the left IFG plays a more general role in 

rule processing (Forkstam et al., 2006; Karuza et al., 2013; Peterrson et al., 2012). Following the 

results of an implicit word segmentation task involving forward and rule-violating backward 

speech, Karuza et al. (2013) posited that the left IFG functions as a mechanism that directs 

sequence learning by computing statistical regularities and forming structural representations. 

Forkstam et al. (2006) found that the left IFG (BA 45) was sensitive to grammaticality and not 

the level of associative chunk strength, showing that it plays a “specific role in processing 

structural regularities” (p. 964). On the contrary, Forkstam et al. (2006) found that the right IFG 

was more sensitive to associative chunk strength, which may reflect general error detection 

processes. Taken together, Forkstam et al. (2006) suggests that the left IFG is involved in 

processing the structural aspects of mental representations and may provide a “neural 
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infrastructure for structural integration” (p. 964). This finding supports the results of this CBMA, 

mainly that the Gramamtical ALE only found left IFG activation, whereas the Ungrammatical 

ALE, which involves more error detection, revealed bilateral IFG involvement.  

The peak coordinates found for the pars opercularis differed across ALE analyses, which 

may be important as there has been some evidence of functionally different roles within the 

frontal operculum. In a study examining native language syntax processing, Friederici et al. 

(2006) found functionally distinct portions of the pars opercularis for grammaticality and 

complexity. Specifically, they found that the inferior portion of the pars opercularis of the left 

IFG was more sensitive to complexity than grammaticality (referred to as the BA 44i, x = –49, y 

= 10, z = 4) and that the posterior portion of the left frontal operculum (2 cm posterior to 44i) 

was more active for ungrammatical sentences than for simple and complex grammatical 

sentences (referred to as pFO, x = –46, y = –7, z = 17). This finding may explain why different 

coordinates were found for the Grammatical and Ungrammatical ALE analyses. Further analyses 

could be completed to examine this further. 

Additional differentiation among the left and right inferior frontal gyrus was shown by 

Bahlmann et al. (2008). In their artificial grammar study, Bahlmann et al. (2008) found more left 

IFG activation for hierarchical rules rather than adjacent rules for both grammatical and 

ungrammatical stimuli. This peak was within the posterior portion of the pars opercularis, with 

the majority of activation within the middle of the pars opercularis. This finding contradicts the 

results of Friederici et al. (2006), that complexity is processed in the inferior portion of the left 

pars opercularis. However, when examining hierarchical compared to adjacent rules for both the 

grammatical and ungrammatical stimuli, only the grammatical stimuli showed activation in 
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Broca’s area. This finding that grammaticality engages the left IFG and not the right IFG is 

consistent with the current findings as well as those of Forkstam et al. (2006). 

Through functional connectivity analyses, Yang and Li (2012) found that the inferior 

frontal gyrus was a “hub of neural activities, exerting strong top-down influences on other 

nodes” (p. 5) with connections to both the insula and the caudate. The current CBMA has found 

significant importance for this structure as well, as the IFG was the most consistently active 

structure in all ALE analyses. Additionally, the left IFG was shown to be significantly correlated 

with implicit learning test performance in studies by Morgan-Short et al. (2015) and Finn et al. 

(2013). 

In summary, the inferior frontal gyrus is an important region for grammaticality or rule 

processing, complexity of rules (i.e. adjacent or non-adjacent), and detection of errors. This 

region is active bilaterally, and there may be functional differentiation between the two 

hemispheres for grammaticality and error detection. Furthermore, there may also be further 

differentiation within the left pars opercularis for grammaticality and complexity. 

Insula 

The left and right insula were found to be active consistently across all studies, with more 

extensive activation in the left insula. The insula has been found to be involved in language 

processing, cognitive control, and as an active region in the salience network (Corbetta et al., 

2008; de Diego-Balaguer et al., 2016; Jiang et al., 2015; Menon & Uddin, 2010; Oh et al., 2014). 

In studies of artificial grammar, the insula seems to play a role not directly related to the nature 

of the stimuli, but as an important part of maintaining attention to the task. In an artificial 

grammar study, Bahlmann (2008) found activation in the insula for all contrasts, regardless of 

rule type (hierarchical vs adjacent rules), length (short vs long sequences), and grammaticality, 



IMPLICIT LEARNING NETWORK  24 

 

which suggests that it is not specific to hierarchical rule processing and may be more indicative 

of the mental effort of the task. Yang and Li (2012) showed that the insula was important for 

explicit learning compared to implicit learning, where explicit meant that the participants were 

informed that the stimuli were governed by rules but not taught what the rules were. Therefore, 

the insula could be important for goal-directed conscious evaluation of stimuli. Moreover, Yang 

and Li (2012) found connections between the IFG and insula for implicit learning, with 

bidirectional connections between the insula and the caudate. They hypothesized that the insula 

acts as a mediator between the IFG and the caudate in the more explicit learning task where 

participants were informed about the presence of rules, which points to higher level intentional 

processing. Additionally, Deschamps et al. (2016) found greater cortical thickness in the anterior 

insula which they associated with higher sensitivity to statistical structure. They hypothesized 

that increased cortical thickness is related to better ability to focus attention and therefore results 

in better detection of statistical regularities. Given the insula’s role in the salience network and 

cognitive control, it is not surprising that artificial grammar tasks, which require tracking 

regularities across complex stimuli, engage the insula. Consistent involvement of the insula 

across all ALE analyses may highlight the role of attention and cognitive control in implicit 

language learning. Further research could be done to determine the predictive weight of language 

ability versus cognitive control in implicit learning performance. 

Other activations 

Other significant activations included the right precentral gyrus, right middle cingulate 

gyrus, left supplementary motor area, right middle occipital gyrus, and right inferior parietal 

lobule. The right middle cingulate gyrus was significantly active in the Ungrammatical and the 

pooled ALE analyses. The anterior cingulate is well known to be involved in cognitive control, 
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and a coordinate-based meta-analysis found that the cingulate is active for inhibition, flexibility, 

and working memory tasks across 193 studies (Niendam et al., 2012). While the current CBMA 

found significant activation in the middle cingulate, the activation was located very close to the 

border of the anterior cingulate gyrus. In a study examining adjacent and non-adjacent 

dependencies, Conway et al. (2020) contributed cingulate activation in the non-adjacent rule 

condition to more difficult cognitive processing due to the need to inhibit intervening items in 

order to extract the non-adjacent paired stimuli. Similar to the cingulate, the precentral gyrus has 

been found to be involved in cognitive control, and has been implicated in inhibition, flexibility, 

and working memory tasks (Niendam et al., 2012). Additional results from Niendam et al. (2012) 

implicate the right inferior parietal lobule in these tasks as well. The supplementary motor area 

(SMA) has been traditionally thought of as being involved in motor control, but it has also been 

implicated in verbal working memory, as an interface between procedural and declarative 

memory, and the pre-SMA has been found to be involved in cognitive control, especially for 

complex sequencing, task switching, and ambiguity resolution (Hertrich et al., 2016). 

Given the large number of studies (20/25) that utilized visual stimuli, it is not surprising 

that we found significant activation in the occipital lobe in the pooled ALE results. In addition to 

visual perceptual processing accounting for occipital activation, Conway et al. (2020) posited 

that the occipital cortex may be recruited for “improved processing and perceptual facilitation of 

encountered stimuli in a modality-specific manner” (p. 11). This follows from the Reber (2013) 

theory that implicit learning occurs through the distributed representation of information which is 

gradually accumulated over several repetitions. 

There were some expected activations that we did not find, such as that of the basal 

ganglia due to its hypothesized role in the frontal basal network of the declarative-procedural 
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model (Ullman, 2004). This could be due to a variety of reasons. One potential reason is that 

basal ganglia activation is not present for the duration of learning. Plante et al. (2015) found right 

caudate activation during a non-native language learning task only at the onset of measurable 

learning. Similarly, Forkstam et al. (2006) found that the caudate was originally sensitive to 

associative chunk strength on day one of their study but became sensitive to grammatical items 

and not chunk strength on day eight. Folia and Petersson (2014) also found basal ganglia 

activation, but this effect was stronger on day five than day one. These studies provide some 

evidence that the basal ganglia are important for implicit learning, but that this structure may not 

be consistently involved throughout the process. Another potential reason that we did not find 

basal ganglia activation is that ALEs do not examine deactivation contrasts.  

Potential frameworks for understanding implicit learning 

The results of this meta-analysis did not fully support the declarative-procedural model 

from Ullman (2004) as no significant activation was found in the basal ganglia. This may be due 

to the heterogeneity of studies, contrasts, or due to the limited number of studies included. The 

results indicate some regions well known to be involved in language, such as the left inferior 

frontal gyrus, but mainly show bilateral distributed activation of regions which includes regions 

involved in the cognitive control network such as the insula, cingulate, and precentral gyrus 

(Niendam et al., 2012). These results may support a cognitive control framework as a scaffold 

for rule identification, maintenance, and decision making. 

Another brain network relevant to implicit learning is the frontoparietal network. 

Attention is an important factor in any task, and the ability to attend to and track regularities 

across artificial grammar stimuli is imperative for rule identification and application. In a non-

native language learning task, Plante et al. (2015) found consistent activation in left anterior 
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cingulate cortex across all high predictability scans and concluded that this may reflect the use of 

an attentional strategy to extract word forms. Indeed, several studies have stressed the 

importance of attention and cognitive control in the ability to track regularities (Conway et al., 

2020; Ordin et al., 2020; Yang & Li, 2012). A twofold model by Corbetta (2008) details two 

interrelated networks: the dorsal and ventral frontoparietal networks. The dorsal frontoparietal 

network is involved in goal-directed attention and includes regions such as superior parietal lobe 

and middle prefrontal cortex, including the precentral sulcus. It is also involved in connecting 

relevant stimuli to responses. On the contrary, the ventral frontoparietal network engages several 

regions involved in implicit learning such as the inferior parietal cortex, middle frontal gyrus, 

inferior frontal gyrus, frontal operculum, and anterior insula (Corbetta, 2008). This network is 

involved in stimulus-driven attention for relevant stimuli. This attention network encompasses 

most of the regions found in this CBMA. Stimulus-driven attention is relevant to implicit 

learning, as this form of attention cues individuals into the relevant attributes of the signal, which 

allows for extraction of the underlying rules central to implicit learning. Similarly, de Diego-

Balaguer et al. (2016) highlights the role of temporal attention as a scaffold for language 

development.  

An alternative explanation is provided by Reber (2013), who suggests that there is not 

one single neural network for implicit learning, rather implicit learning arises through a 

distributed representation of information across the whole brain. According to this theory, 

information is accumulated over time through repetitions, and is processed throughout the cortex 

to maximize learning. While this theory does not help pinpoint which regions are most important 

for implicit learning, it may explain why among the five studies correlating test performance 

with fMRI activation during learning did not have a consensus of regions that are correlated with 
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accuracy during implicit learning tasks (Finn et al., 2013; Hauser et al., 2012; Karuza et al., 

2016; McNealy et al., 2006; Morgan-Short et al., 2015; Opitz & Friederici, 2004). 

Taking these theories together, attentional mechanisms may be used to cue individuals 

into the relevant regularities in the signal, and cognitive control may be employed to inhibit 

superfluous information in the signal and maintain/update representations to support learning.  

Significance as it relates to aphasia 

The ability to statistically learn is essential to language acquisition, and the automaticity 

involved in implicit learning is likely relevant to successful language intervention. Individuals 

with aphasia have difficulty generalizing treatment targets and would benefit from a strategy to 

make language more automatic (Marcotte et al., 2012). Implicit learning may be a skill that could 

support individuals with aphasia during language treatment through making the rules of 

language, specifically syntax, more automatic. The results of this coordinate-based meta-analysis 

suggest that the ability to implicitly learn may not be determined by language ability, but rather 

may be subserved by the cognitive control network as shown by activation in the insula, 

cingulate gyrus, precentral gyrus, SMA, and inferior parietal lobule. Cognitive control 

mechanisms may aid in maintaining and updating the incoming signal (e.g., words and sentences 

produced by a conversational partner) while also inhibiting unnecessary information. This 

network may be strengthened in individuals with aphasia through tasks targeting executive 

functions or working memory in order to boost language performance. The ability to inhibit 

unnecessary input while also maintaining relevant information and updating this representation 

across time is important for successful communication.  

Individuals with aphasia have been found to perform above chance on non-linguistic 

serial reaction time tasks (Schuchard &Thompson, 2014; Schuchard et al., 2017). However, their 
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ability to perform linguistic implicit learning tasks has not been widely tested. Christiansen et al. 

(2010) found that individuals with lesions in the left IFG were able to learn an artificial grammar 

with high accuracy, but the average test performance was only 51%, which was not significantly 

above chance. The difference between the individuals with aphasia and the healthy controls was 

in correct endorsements and not correct rejections, which Christiansen et al. (2010) determined 

to show a deficit in implicit learning rather than in language ability. If individuals with aphasia 

were trained to be more successful implicit learners, the ability to calculate the statistical 

probability of incoming information (i.e., predicted word class) may reduce processing load. A 

common intervention strategy is to reduce a speaker’s sentence length when speaking with an 

individual with aphasia. Strengthening the implicit learning network may allow for increased 

syntax comprehension, and reduced processing load due to ability to infer incoming information. 

This may aid in an individual with aphasia’s ability to comprehend longer and more complex 

utterances. 

The left inferior frontal gyrus was the brain region showing the most activation during 

implicit learning tasks, and this region is often the site of lesions in individuals with aphasia. 

However, the inferior frontal gyrus was found to be active in both hemispheres during implicit 

learning tasks, as well as activation in the insula and other regions. This bilateral activation in the 

IFG is promising since individuals with aphasia could recruit the right IFG for implicit learning 

and potentially still be successful. If these individuals were trained to rely more on domain 

general executive functions and working memory, the left IFG may be able to be bypassed. 

Individuals could potentially benefit from implicit learning training to make language processing 

more automatic and aid in syntax comprehension. More research is needed in the future to 

determine the clinically utility of training this skill. 
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Limitations 

This coordinate-based meta-analysis had several limitations. First, there were only a 

small number of studies included (25), due to the limited number of artificial grammar studies 

that used both fMRI and analyzed whole brain results. Second, this study was interested in 

language specifically, so serial non-linguistic reaction time (SRT) tasks were excluded. 

However, by excluding SRT tasks, we are unable to determine whether the brain regions 

involved in implicit language learning are similar or different from the brain regions involved in 

implicit learning of any stimuli. Moreover, we were unable to comment on whether left inferior 

frontal gyrus involvement is due to the linguistic nature of the tasks included, or if it plays a role 

as a domain general rule-processing mechanism as other studies have proposed (Forkstam et al., 

2006; Karuza et al., 2013; Petersson et al., 2012).  

Regarding the studies that were included in the CBMA, there was a lack of consistency 

among the studies in terms of which phase of the experiment the participants completed fMRI 

scanning, which contrasts were analyzed, the inclusion of a baseline task, inclusion of feedback, 

the different types of rules (i.e., hierarchical vs linear) learned, modality of the stimulus, and 

length of the experiment (number of trials, how long trials were, and across number of days). As 

seen in Table 1, four studies completed scanning during the learning phase, 16 completed 

scanning during the testing phase, and five studies scanned participants during both phases, thus 

examining the activation during the learning process and the use of learned information to make 

decisions regarding the grammaticality or rule-based nature of stimuli. Additionally, eight 

studies provided some form of feedback, such as indicating whether a response was 

correct/incorrect or having individuals hand copy grammatical strings three times if they 

produced them incorrectly. Feedback was received mostly during the learning phase, but three 
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studies gave feedback during the testing phase. While feedback generally violates the implicit 

nature of learning, these studies were included due to the limited number of studies that met 

criteria and because no information about the rules were taught, thus the underlying rules 

remained implicit. However, providing feedback to learners makes the learning process active 

rather than passive, which may aid learning (Tricomi & DePasque, 2016). As some studies 

employed hand copying grammatical strings as practice to promote rule extraction, this could 

provide an extra boost for kinesthetic learners and skew results for brain regions involved in 

individuals who are good learners. Similarly, only one study (Goranskaya et al., 2016) examined 

the effects of learners versus non-learners, which would be clinically useful to determine which 

regions good learners employ and which brain regions need to be targeted in therapy to boost 

extraction skills. Lastly, most studies included visual presentation of language stimuli, which is 

not how language is learned naturalistically. Additionally, not all studies included hierarchical 

rules, which is how natural language is organized (Saffran, 2001). Future coordinate-based meta-

analyses analyzing implicit learning may benefit by including studies that are more similar to 

each other as well as finding studies that examine learning over several days to assess early and 

more stable, consolidated learning. 

Future directions 

Results from this coordinate-based meta-analysis can be followed by several different 

analyses to further elucidate whether the regions found to be active in implicit learning comprise 

a connected network. Using the human connectome project data, resting state functional 

connectivity between the IFG, insula, and other regions of interest found in this study may be 

examined in the healthy adult data to determine whether the regions are functionally connected 

and if so, the strength of these connections. Additionally, meta-analytic connectivity maps 
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(MACM) can be calculated. Functional decoding may also be completed, analyzing the data 

provided in Neurosynth, an open-science repository of brain imaging studies, to determine what 

tasks typically activate the regions of interest found in this CBMA. 

Further research can also shed light on the clinical relevance of these findings. In the 

future, we plan to examine whether these regions of interest are connected in resting state fMRI 

scans of individuals who have sustained a stroke and have resulting aphasia. More studies 

looking at implicit learning in individuals with aphasia are also needed, specifically studies 

comparing linguistic and non-linguistic implicit learning ability in these individuals. 

Performance may then be correlated with treatment outcomes, to determine whether the ability to 

learn implicitly is an important skill for treatment and/or generalization of treatment, given the 

connection to the implicit statistical nature of natural language. 

Regarding future directions to examine implicit learning, more research on what defines a 

“successful” implicit learner is needed. Results from this study indicate a strong involvement of 

executive functioning skills and recoupment of regions involved in cognitive control. More 

research on which brain regions are active in early, middle, and late stage learning as well as 

consolidation and generalization of implicit learning would allow researchers to further 

understand which brain regions are active during specific time points in learning and which may 

be active throughout. A study by Plante et al. (2015) found that brief caudate activation signaled 

the beginning of successful behavioral performance, and more research on neural activation 

across the learning process may provide more support for basal ganglia involvement in implicit 

learning. Additionally, more studies correlating activation during learning and behavioral 

performance on implicit learning tests are needed. A third ALE group including these contrasts 

was considered, but there were only five studies including contrasts examining this connection in 



IMPLICIT LEARNING NETWORK  33 

 

learners and therefore the ALE could not be completed. Implicit learning is a growing field of 

research with many applications to clinical populations. Additional research on this ability will 

benefit how we provide treatment and optimize treatment outcomes. 
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