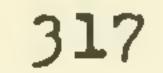
#### University of New Hampshire

#### University of New Hampshire Scholars' Repository

| NEIGC Trips | New England Intercollegiate Geological<br>Excursion Collection |
|-------------|----------------------------------------------------------------|
| NEIGC Trips |                                                                |

1-1-1972

#### Ice Margins and Water Levels in Northwestern Vermon


Wagner, Philip

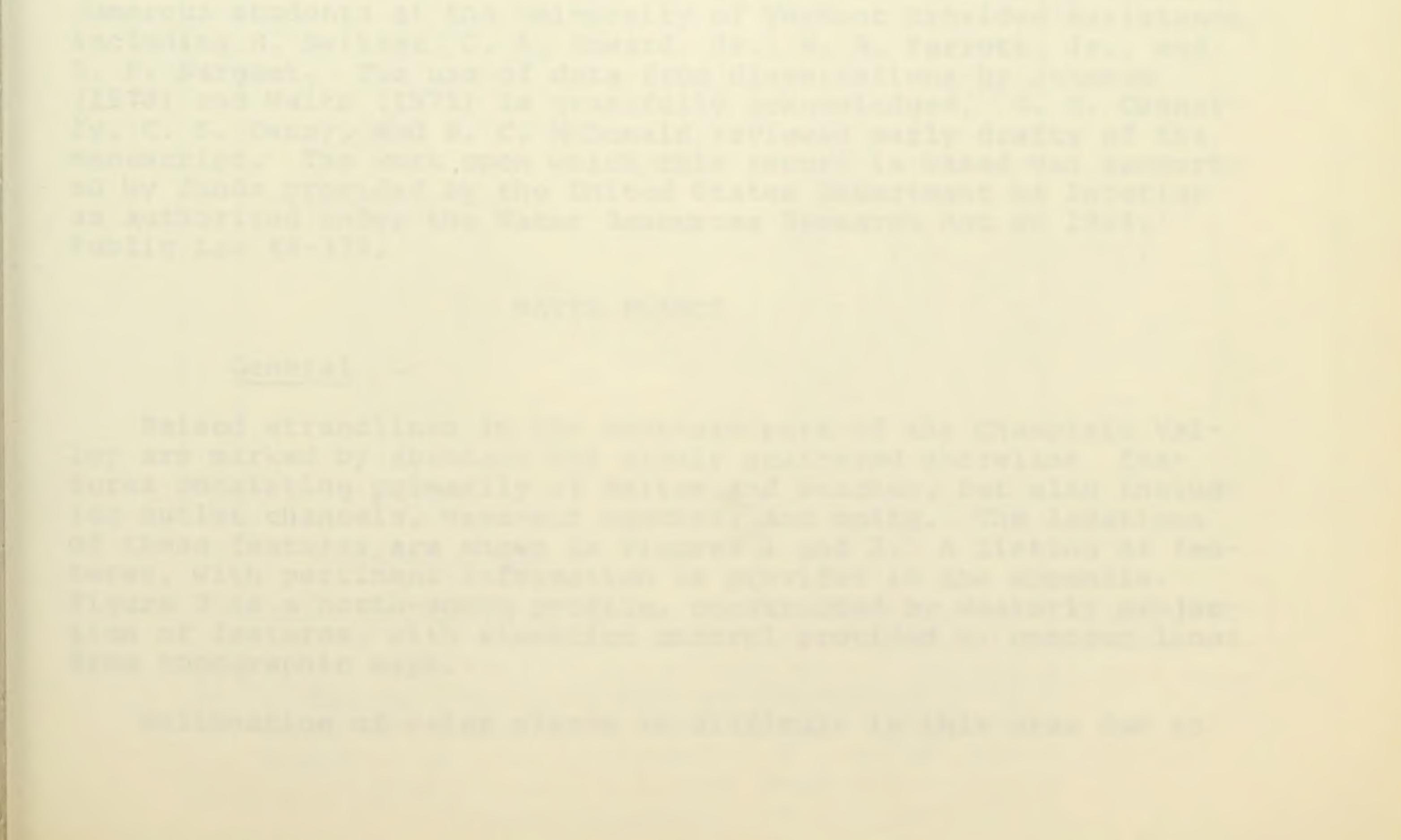
Follow this and additional works at: https://scholars.unh.edu/neigc\_trips

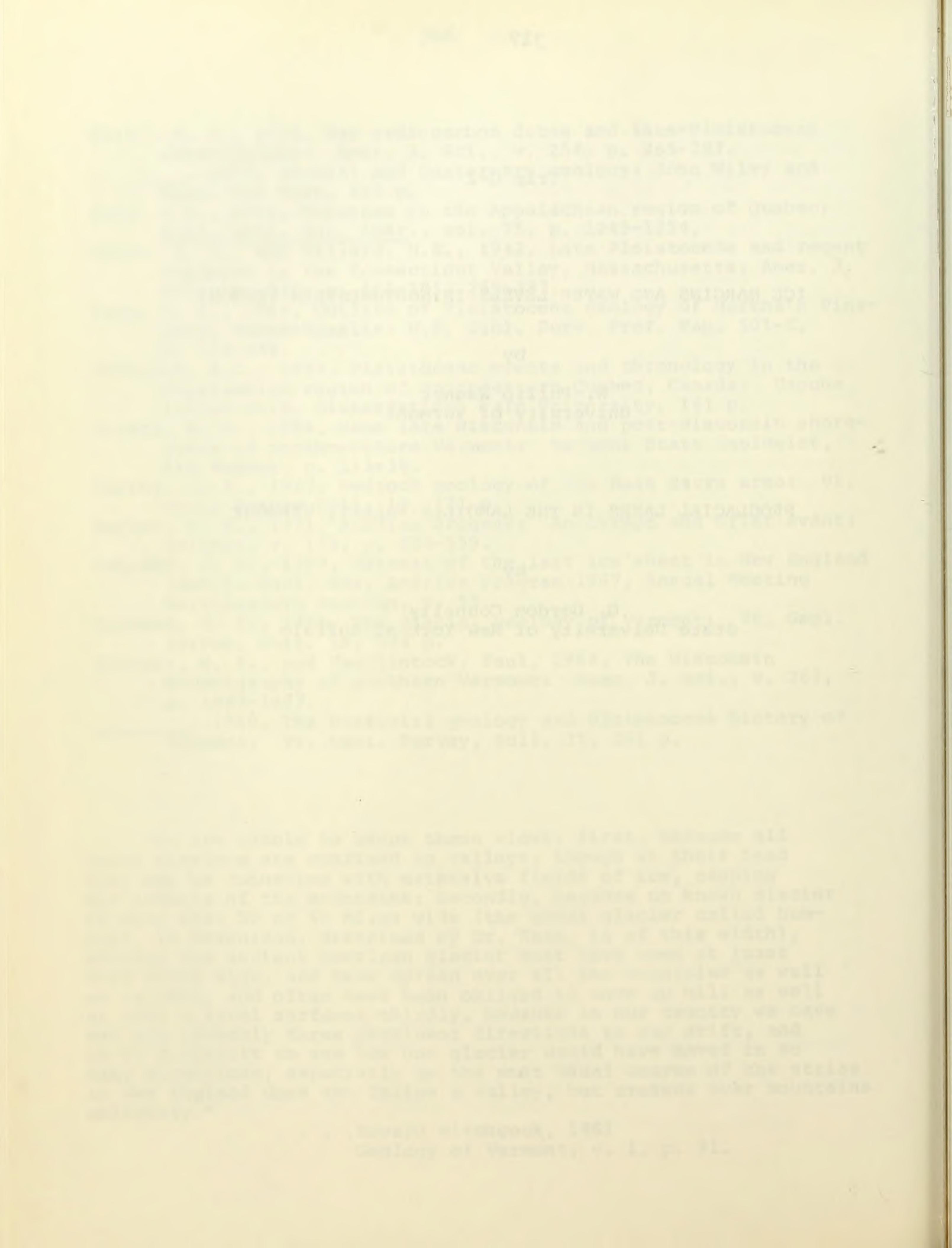
#### **Recommended Citation**

Wagner, Philip, "Ice Margins and Water Levels in Northwestern Vermon" (1972). *NEIGC Trips*. 176. https://scholars.unh.edu/neigc\_trips/176

This Text is brought to you for free and open access by the New England Intercollegiate Geological Excursion Collection at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in NEIGC Trips by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact nicole.hentz@unh.edu.




#### ICE MARGINS AND WATER LEVELS IN, NORTHWESTERN VERMONT


W. Philip Wagner University of Vermont

#### PROGLACIAL LAKES IN THE LAMOILLE VALLEY, VERMONT

by

G. Gordon Connally State University of New York at Buffalo





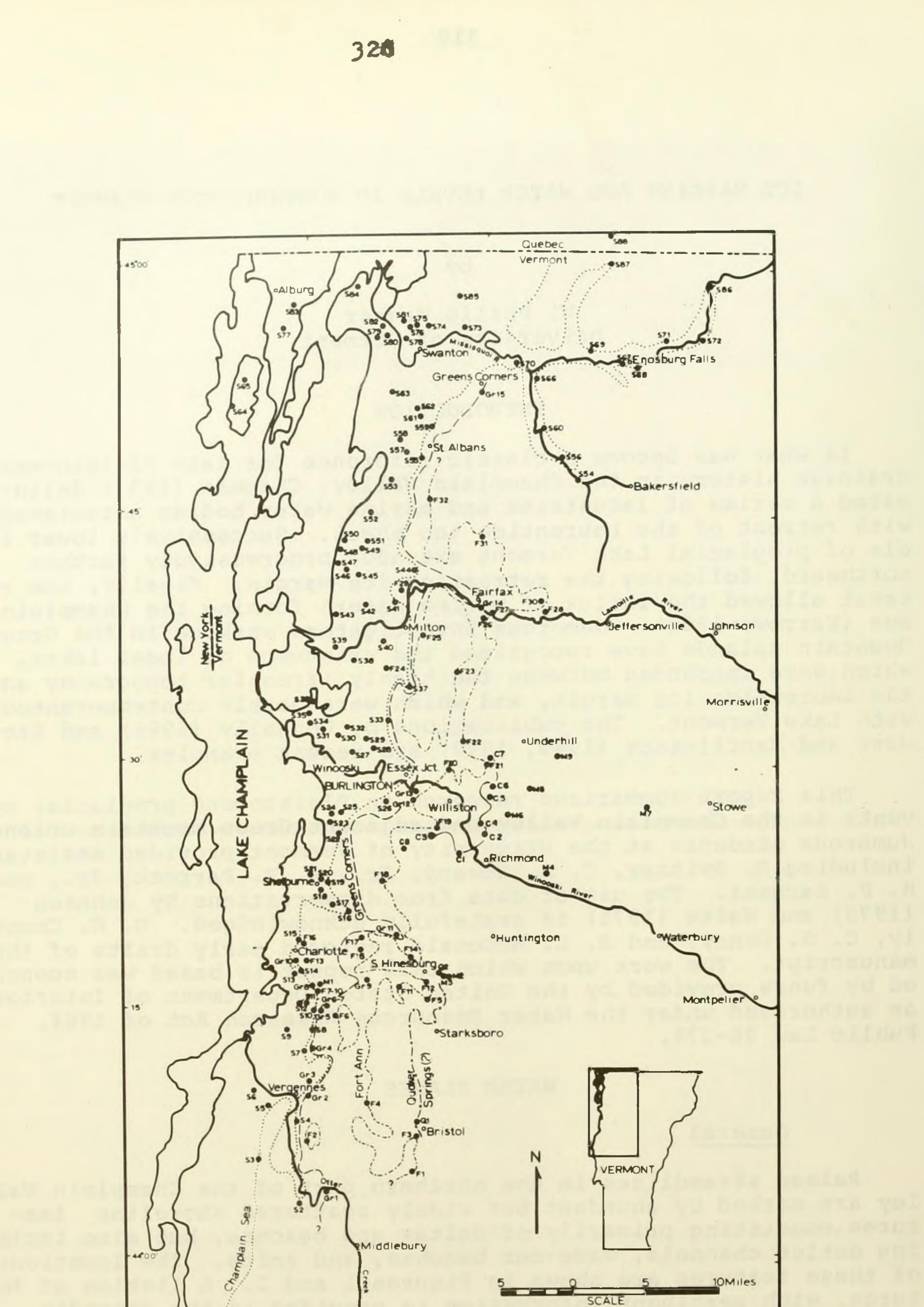
#### ICE MARGINS AND WATER LEVELS IN NORTHWESTERN VERMONT

by

W. Philip Wagner University of Vermont

INTRODUCTION

In what has become a classic reference for late Pleistocene drainage history in the Champlain Valley, Chapman (1937) delineated a series of lacustrine and marine water bodies associated with retreat of the Laurentide ice sheet. Successively lower levels of proglacial Lake Vermont extended progressively further northward, following the retreating ice margin. Finally, ice retreat allowed the influx of marine waters forming the Champlain Sea (Karrow, 1961). Numerous investigators working in the Green Mountain uplands have recognized the existence of local lakes, which were impounded between the highly irregular topography and the Laurentide ice margin, and which were partly contemporaneous with Lake Vermont. The publications by Connally (1966) and Stewart and MacClintock (1969, 1970) are recent examples.


This report summarizes research on Pleistocene proglacial events in the Champlain Valley and adjacent Green Mountain uplands. Numerous students at the University of Vermont provided assistance, including R. Switzer, C. A. Howard, Jr., W. R. Parrott, Jr., and B. P. Sargent. The use of data from dissertations by Johnson (1970) and Waite (1971) is gratefully acknowledged. G. G. Connally, C. S. Denny, and B. C. McDonald reviewed early drafts of the manuscript. The work upon which this report is based was supported by funds provided by the United States Department of Interior as authorized under the Water Resources Research Act of 1964, Public Law 88-379.

#### WATER PLANES

## General

Raised strandlines in the northern part of the Champlain Valley are marked by abundant but widely scattered shoreline features consisting primarily of deltas and beaches, but also including outlet channels, wave-cut benches, and spits. The locations of these features are shown in Figures 1 and 2. A listing of features, with pertinent information is provided in the appendix. Figure 3 is a north-south profile, constructed by westerly projection of features, with elevation control provided by contour lines from topographic maps.

# Delineation of water planes is difficult in this area due to



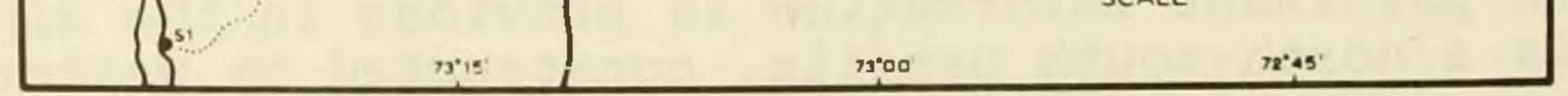
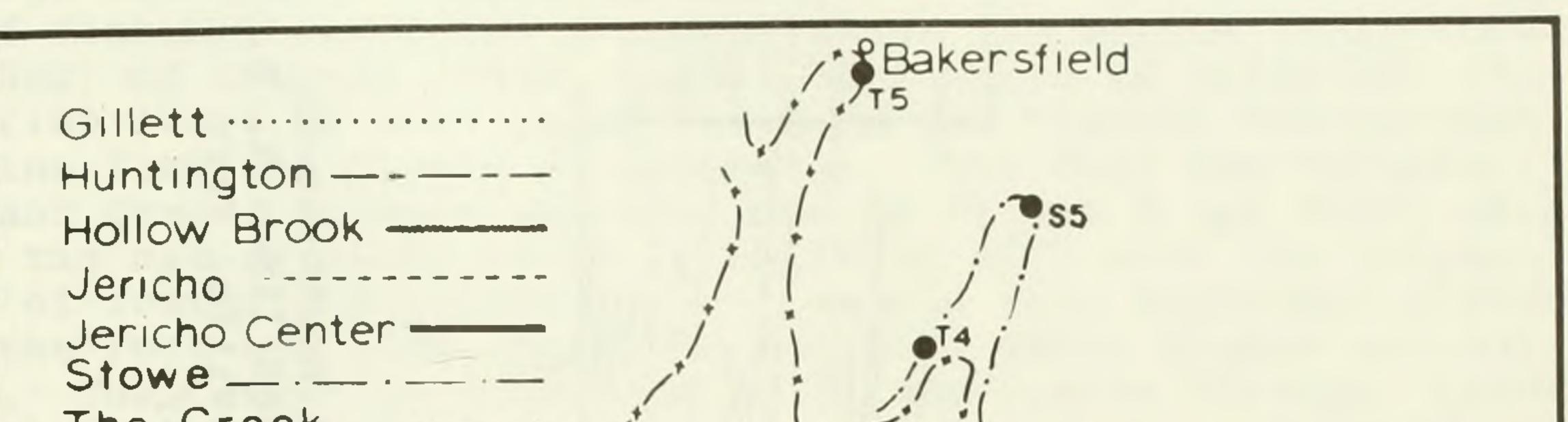




Figure 1: Shoreline feature locations and strandlines of regional water bodies in Champlain Valley: S = Champlain Sea; Gr = Greens Corners; F = Fort Ann; C = Coveville(?); Q = Quaker Springs(?); M = Miscellaneous.



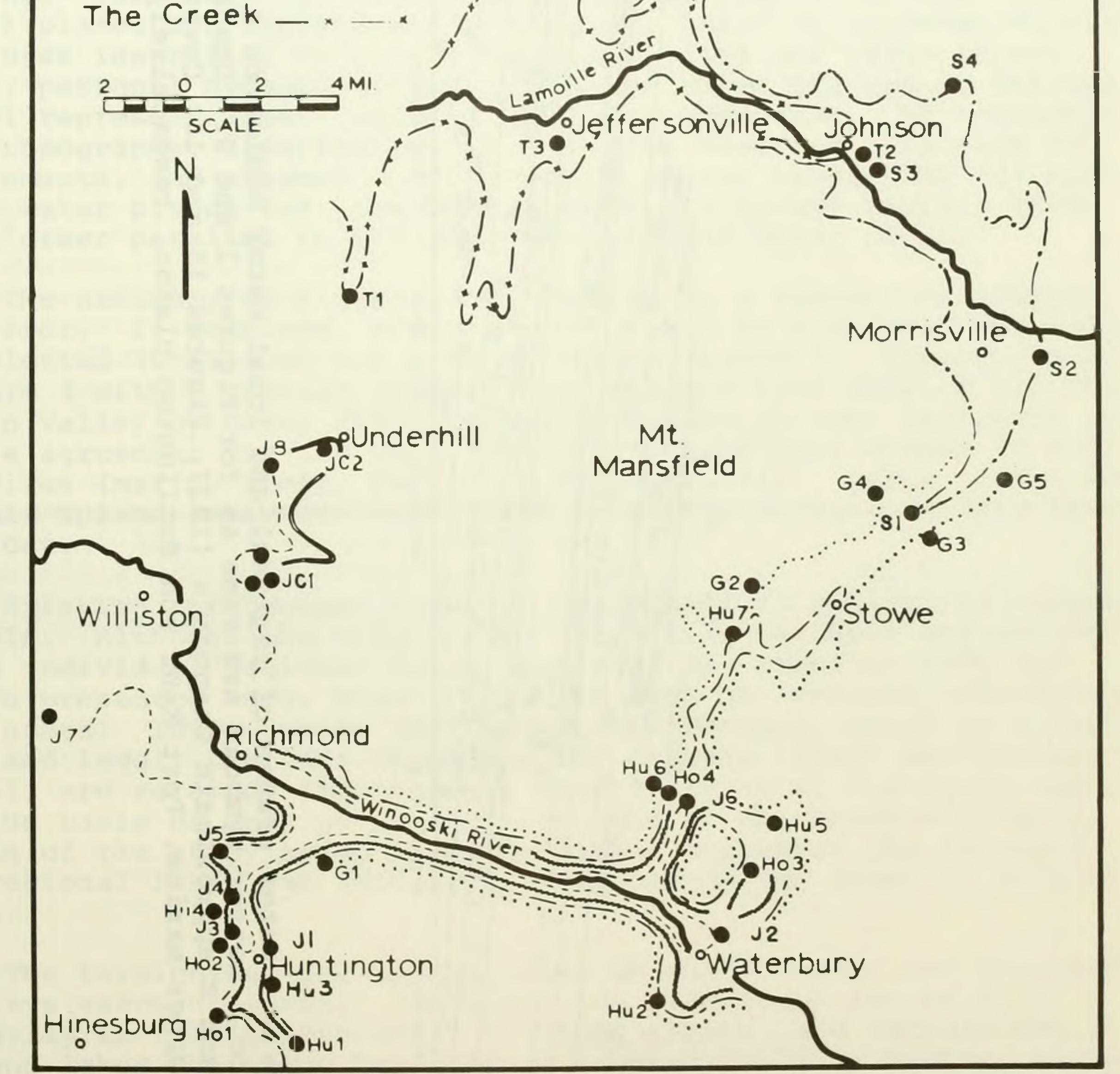
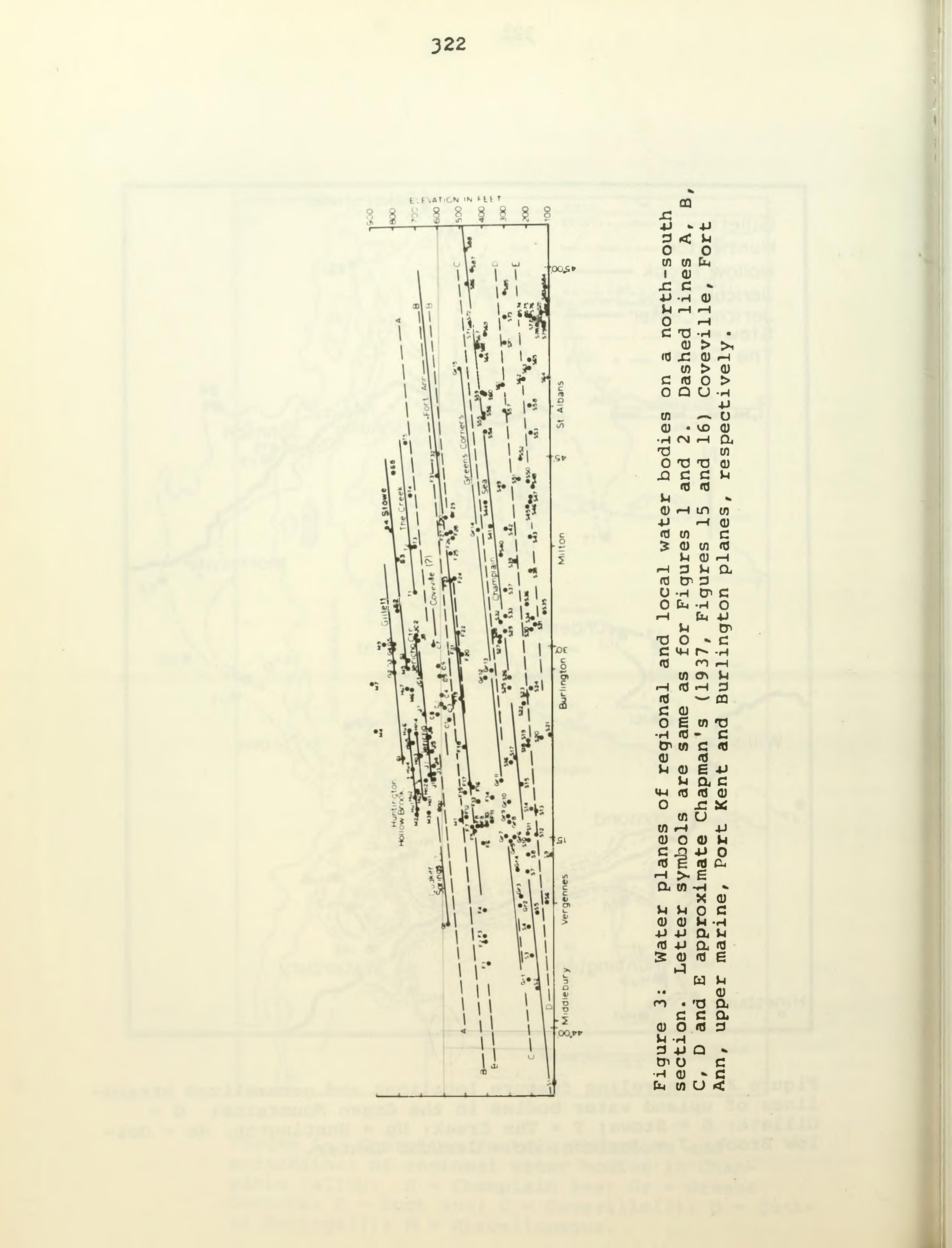




Figure 2: Shoreline feature locations and generalized strandlines of upland water bodies in the Green Mountains: G = Gillett; S = Stowe; T = The Creek; Hu = Huntington; Ho = Hollow Brook; J = Jericho; Jc = Jericho Center.



the large scatter of shoreline features. The most obvious alignment of features on Figure 3 approximates the marine limit (Champlain Sea) of Chapman (1937, Figure 16), which is different from the marine limit of this paper based on the highest occurrences of marine fossils (Figure 3; Appendix). The Fort Ann (Chapman, 1937) and Greens Corners water planes on Figure 3 are drawn parallel to the marine limit so as to coincide with both the largest number of features possible as well as the more prominent features. Above the Fort Ann level distinct regional water planes are not apparent. The Coveville (Chapman, 1937) and Quaker Springs (Stewart, 1961) planes are tentatively recognized, based on correlation with features identified by others (Connally, 1968 and 1970; Denny, 1970, personal communication). Features above the Quaker Springs level represent local lakes in the Green Mountains. By considering topography, distribution of shoreline features, drainage requirements, and assumed configurations of the Laurentide ice margin, water planes for local lakes above the Quaker Springs level were drawn parallel to the regional, lowland water planes.

The accuracy of Figure 3 is affected by a variety of sources of error. If combined, errors could result in some features being misplotted 40-50 feet too high or low on Figure 3. Comparison of Figure 3 with a similar profile from the New York side of the Champlain Valley by Denny (1970, personal communication) indicates very close agreement for the major regional strandlines common to both profiles (marine limit; Fort Ann; Coveville[?]). Water planes for local, upland lakes are considered tentative in view of data limitations.

Existing terminology has been considered in naming the various levels. Although the original or prevailing concepts associated with individual regional water planes differ somewhat from the views presented here, these differences do not warrant introducing new names. Thus, except for Lake Greens Corners, which is a newly defined level, the lake names used by Chapman (1937) and Stewart (1961) are retained for regional lake features in the study area. On the basis of work at the southern end of the Champlain basin, south of the study area, Connally (1968) suggested the renaming of regional lakes but this problem is beyond the scope of this report.

The terminology for upland lakes in the Winooski and Lamoille Valleys seems hopelessly confused (see literature review by G. G. Connally in this guidebook). For this reason, and because the upland lakes presented here differ substantially in number, extent, elevations, and drainage historv from previous reports, new names are used in most cases. Where possible, geographic features near outlet channels associated with newly defined lakes are utilized for the new names. The only exception is Lake Jericho, which was previously named by Connally (1966).

# Upland Lakes

Westward recession of the Laurentide ice margin uncovered successively lower outlets, resulting in progressive lowering of lake levels. Lakes Gillett, Huntington, Hollow Brook, Jericho Center, and Jericho developed in that order in the present Winooski drainage basin, and in the present Lamoille basin were Lakes Gillett, Stowe, and The Creek (Figure 2). Lake Gillett is the only lake that extended across the divide between the two present basins. The Lake The Creek outlet channel (T1, Figure 3) extends southward to a delta complex representing Lakes Jericho and Jericho Center (JC2 and J8, Figure 3) indicating general time-equivalence of these lakes. Similarly, the Lake Jericho outlet channel (J1, Figure 3) extends to the Coveville(?) level (C8, Figure 5) in the Champlain Valley, making it possible to relate the upland and regional lake histories.

324

In addition to the relationship between upland lakes and the Laurentide ice margin, Mountain glacial features can be correlated with the upland lakes, as was previously described (Wagner, 1970). In terms of the lake names used here, Mountain glacier ice margin positions in Ritterbush Valley and North Branch Lamoille River Valley may be contemporaneous with Lake Stowe.

# Regional Lakes

The earliest regional lake in the Champlain Valley is represented by the Quaker Springs (?) plane on Figures 1 and 3. The northern extent of this lake probably terminated against the Laurentide ice margin south of Burlington. Slightly older and more southerly ice margin positions in late Quaker Springs (?) time can be inferred by drainage relations. The delta at Bristol (Q1, Figure 1) extends to an outwash surface heading in ice marginal glacial deposits south of Starksboro. The delta near South Hinesburg (Q2, Figure 1) indicates that the Laurentide ice sheet at that time blocked and diverted drainage in the Winooski River Valley through Hollow Brook Valley.

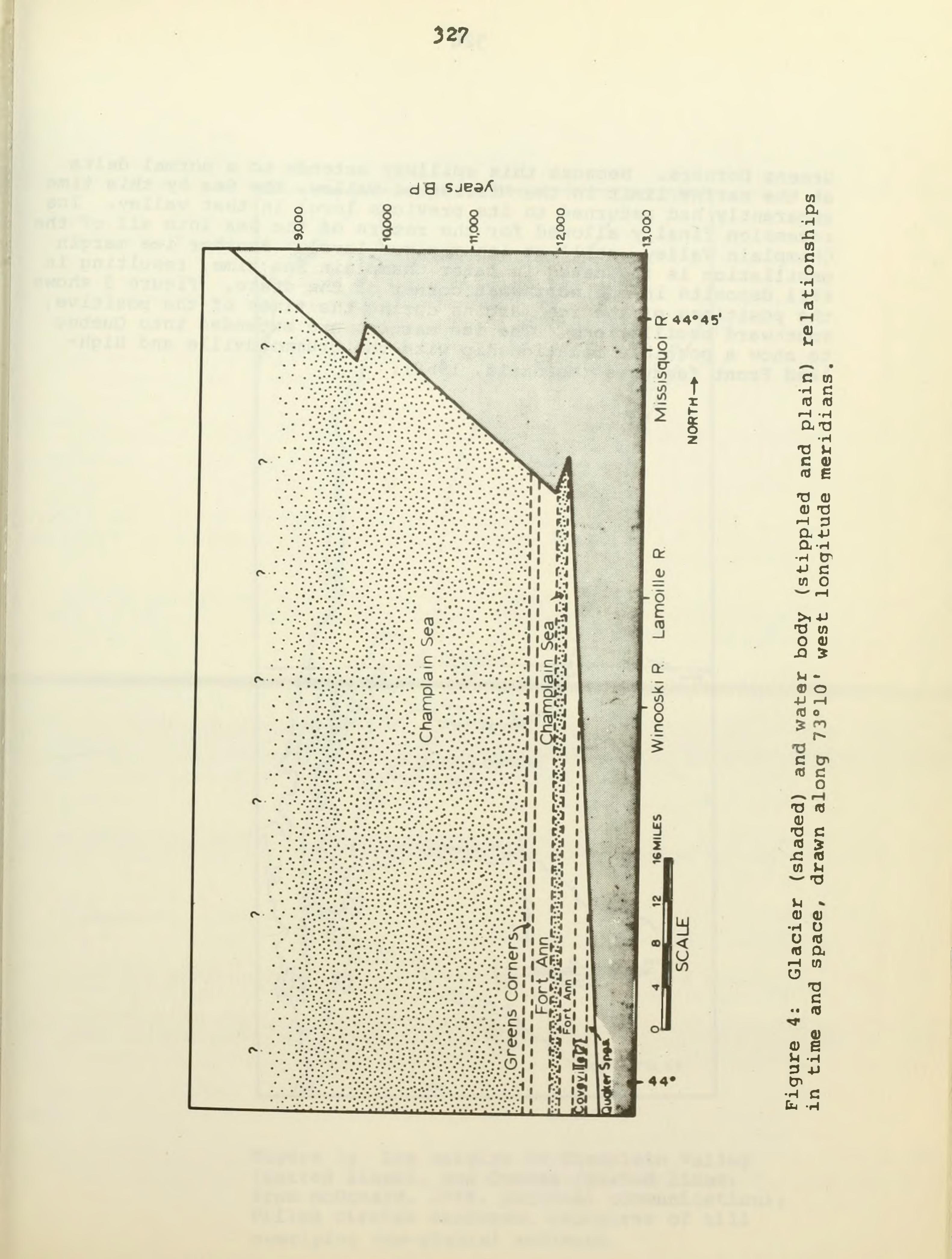
The Coveville (?) water plane (Figure 3) formed immediately after the Quaker Springs level (Stewart, 1961). Chapman's (1937, Figure 16) Coveville plane is shown on Figure 3. The Coveville (?) plane drawn here on Figure 3 is based primarily on features in the Winooski Valley. Although the plane is below Chapman's, it does agree with features identified as Coveville by Connally (1966, 1970) in Vermont and by Denny (1969, personal communication) in New York. The previously described Lake Jericho drainage relations indicate that the Laurentide ice margin blocked the Winooski Valley in Coveville (?) time. Subsequent ice retreat, still in Coveville (?) time, is required for development of Coveville (?) features in the Winooski Valley (Figure 3). Coveville (?) waters may have extended northward to the Lamoille Valley (Connally, 1966), and possibly into Quebec (Parrott and Stone, this guidebook).

The Fort Ann level, first described by Chapman (1937), is the highest regional water-body widely marked by numerous shoreline features on Figure 3. Chapman's (1937, Figures 15 and 16) Fort Ann planes in Vermont and New York, although not coincident, bracket the plane drawn here (Figure 3). The northern extent of the Fort Ann plane is uncertain. According to Chapman (1937, p. 112-113), and Parrott and Stone (this guidebook), the ice margin retreated north of the International Border in late Fort Ann time. McDonald (1968, p. 672-673) tentatively correlated strandline features in the Sherbrooke area of southeastern Quebec with the Fort Ann level. However, if the 230-foot elevation difference between the marine limit and Fort Ann strandlines in the Champlain Valley is compared with data in Quebec, then it appears that McDonald's features are about 25 feet too low to be an extension of the Fort Ann strandline from the Champlain Valley. As discussed below, it may be that Fort Ann time ended when Laurentide ice margin retreat exposed a low divide near Greens Corners, Vermont.

To the south, Fort Ann features, extend beyond the study area (Calkin, 1965; Connally, 1970). Like Chapman's profile, the Fort Ann plane on Figure 3 projects southward to the vicinity of the present Hudson - Champlain divide near Fort Edward, some eight miles south of and at least ten feet higher than Chapman's spillway at Fort Ann, New York.

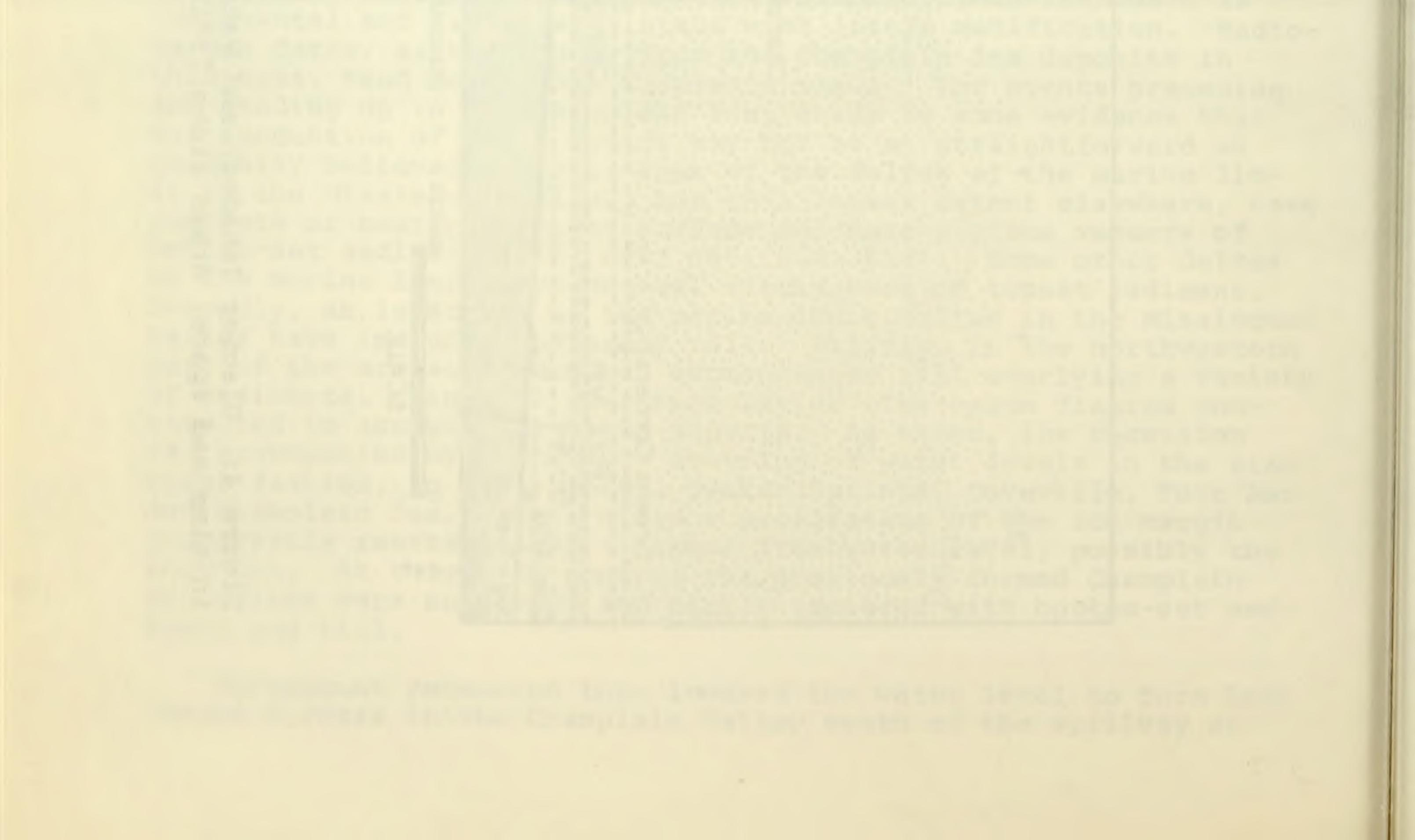
Below the Fort Ann but above the upper Champlain Sea planes are shoreline features which can be represented by a previously unrecognized water plane (Figure 3). Southward extrapolation of this plane intersects the Champlain Valley floor below the divide, indicating drainage of the lake was northward. To the north the plane extends to a spillway near Greens Corners (Figures 1 and 3). The name "Lake New York" was previously applied (Wagner, 1969) for northward draining lake water immediately below the Fort Ann level and above the Champlain Sea limit, although no specific plane was recognized. Because no evidence for this plane has as yet been found in New York (Denny, 1970, personal communication), the name Greens Corners is applied rather than retain the name Lake New York.

Evidence for a late Pleistocene marine invasion of the St. Lawrence lowland has long been recognized and is generally referred to as the "Champlain Sea" (Karrow, 1961). In the Champlain Valley fossils (chiefly mollusks) and in northern parts "sensitive clay" indicate the presence of saline waters. Chapman (1937, Figure 16) delineated a strandline marking the marine limit, which, as shown on Figure 3, differs somewhat from the fossil-based Champlain Sea maximum of this paper. The only evidence, albeit inconclusive, to support the marine limit based on fossils is the parallelism of this and other water planes, plus close agreement with the marine limit in New York (Denny, 1970, personal communication). A shell date for locality S88(Appendix) basically agrees with the 12,000 year age suggested by McDonald (1968) for the marine maximum.


Below the marine limit Chapman recognized several marine water planes. Although the data on Figure 3 are inconclusive, there are alignments of features approximately coinciding with Chapman's (1937, Figure 16) Port Kent and Burlington levels. In the Winooski Valley deltas are clustered at both the marine limit and at a somewhat lower level (Figure 3) with a pronounced scarp intervening, supporting the Port Kent level (Johnson, 1970). The Port Kent as a level is also supported by shell dates of about 11,300 yrs. B.P. from localities S14 and S24, although there is a discrepancy between shell and wood dates at locality S24 (Appendix). Similarly, age dates from two marine shell localities (nos. S48 and S65) may document the Burlington level as a time line. In Quebec, Mc-Donald (1968, p. 673) found marine shore features were best developed at 115-140 feet below the upper limit, which approximately coincides with Chapman's Port Kent level. However, in northern New York, on the west side of the Champlain Valley, Denny (1969, personal communication) has mapped numerous Champlain Sea features with no apparent stillstand below the marine limit. Recent work with sediments submerged in modern Lake Champlain indicates the end of the Champlain Sea may have occurred about 10,200 years ago (Chase, 1972).

## SPECULATIONS

The early work of Chapman established a framework for the late Pleistocene history in northwestern Vermont. This framework is fundamental and likely will stand with little modification. Radio-


carbon dates, although only from the Champlain Sea deposits in this area, tend to support Chapman's views. For events preceding and leading up to the Champlain Sea, there is some evidence that the succession of water bodies may not be as straightforward as generally believed. First, some of the deltas at the marine limit in the Missisquoi Valley, and to a lesser extent elsewhere, have complete or nearly complete surface and near-surface veneers of bottom-set sediment (S16; S26; S66; S68; S88). Some other deltas at the marine limit have unusual thicknesses of topset sediment. Secondly, at least two of the marine limit deltas in the Missisquoi Valley have included bodies of till. Thirdly, in the northwestern part of the area are numerous exposures of till overlying a variety of sediments. Figure 4 is a speculative time-space diagram constructed to account for these aspects. As shown, ice recession was accompanied by successive lowering of water levels in the classical fashion, in other words, Quaker Springs, Coveville, Fort Ann, and Champlain Sea. Next, a minor oscillation of the ice margin temporarily reestablished a higher freshwater level, possibly the Fort Ann. At this time some of the previously formed Champlain Sea deltas were submerged and partly veneered with bottom-set sediment and till.

Subsequent recession then lowered the water level to form Lake Greens Corners in the Champlain Valley south of the spillway at



Greens Corners. Because this spillway extends to a normal delta at the marine limit in the Missisquoi Valley, the Sea by this time apparently had returned to its previous level in that valley. Ice recession finally allowed for the return of the Sea into all of the Champlain Valley, still at its maximum level. Another ice margin oscillation is indicated in later Champlain Sea time, resulting in till deposits in the northwest corner of the state. Figure 5 shows the positions of the ice margins during the times of the positive, southward oscillations. The ice margins are extended into Quebec to show a possible relationship with the Drummondville and High-

land Front features (McDonald, 1968).



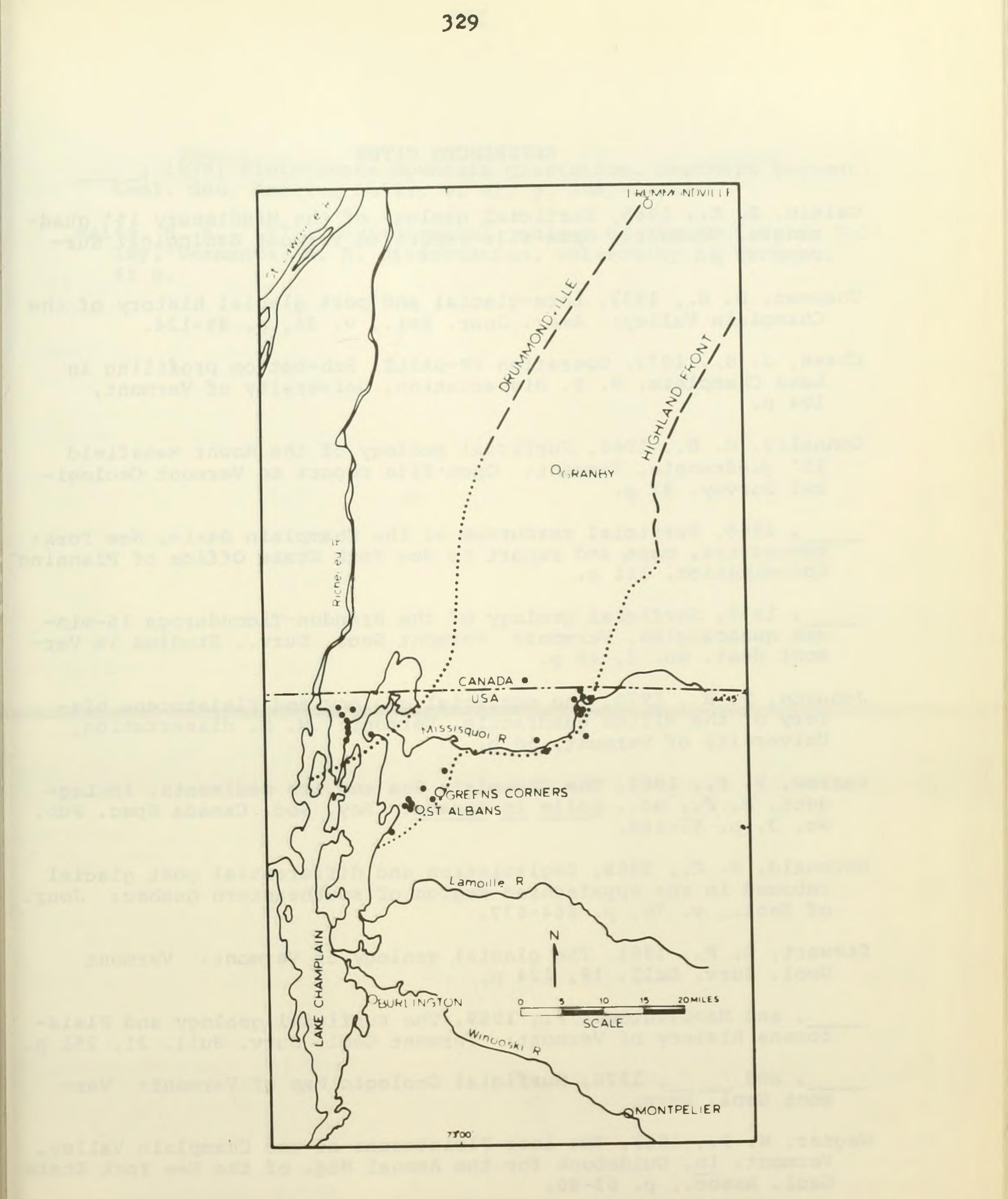



Figure 5; Ice margins in Champlain Valley (dotted lines), and Quebec (dashed lines; from McDonald, 1969, personal communication); Filled circles represent exposures of till overlying non-glacial sediment.

#### REFERENCES CITED

Calkin, P. E., 1965, Surficial geology of the Middlebury 15' quadrangle, Vermont: Open-file report to Vermont Geological Survey, 23 p.

Chapman, D. H., 1937, Late-glacial and post glacial history of the Champlain Valley: Amer. Jour. Sci., v. 34, p. 89-124.

Chase, J. S., 1972, Operation UP-SAILS: Sub-bottom profiling in Lake Champlain. M. S. dissertation, University of Vermont, 104 p.

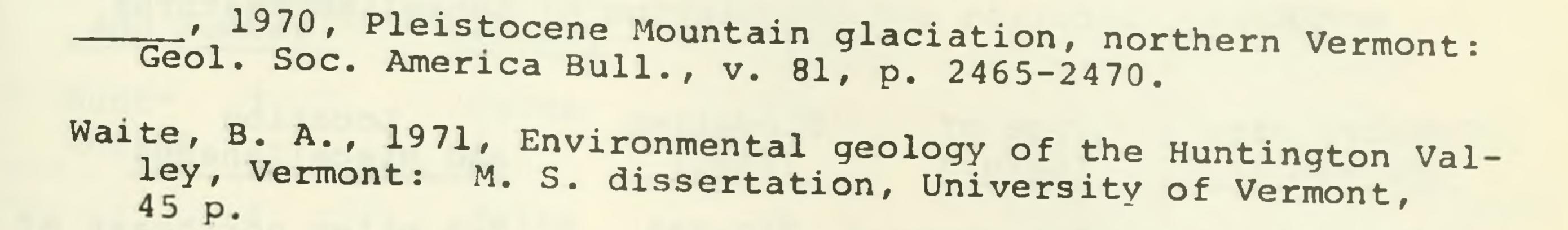
Connally, G. G., 1966, Surficial geology of the Mount Mansfield 15' quadrangle, Vermont: Open-file report to Vermont Geological Survey, 37 p.

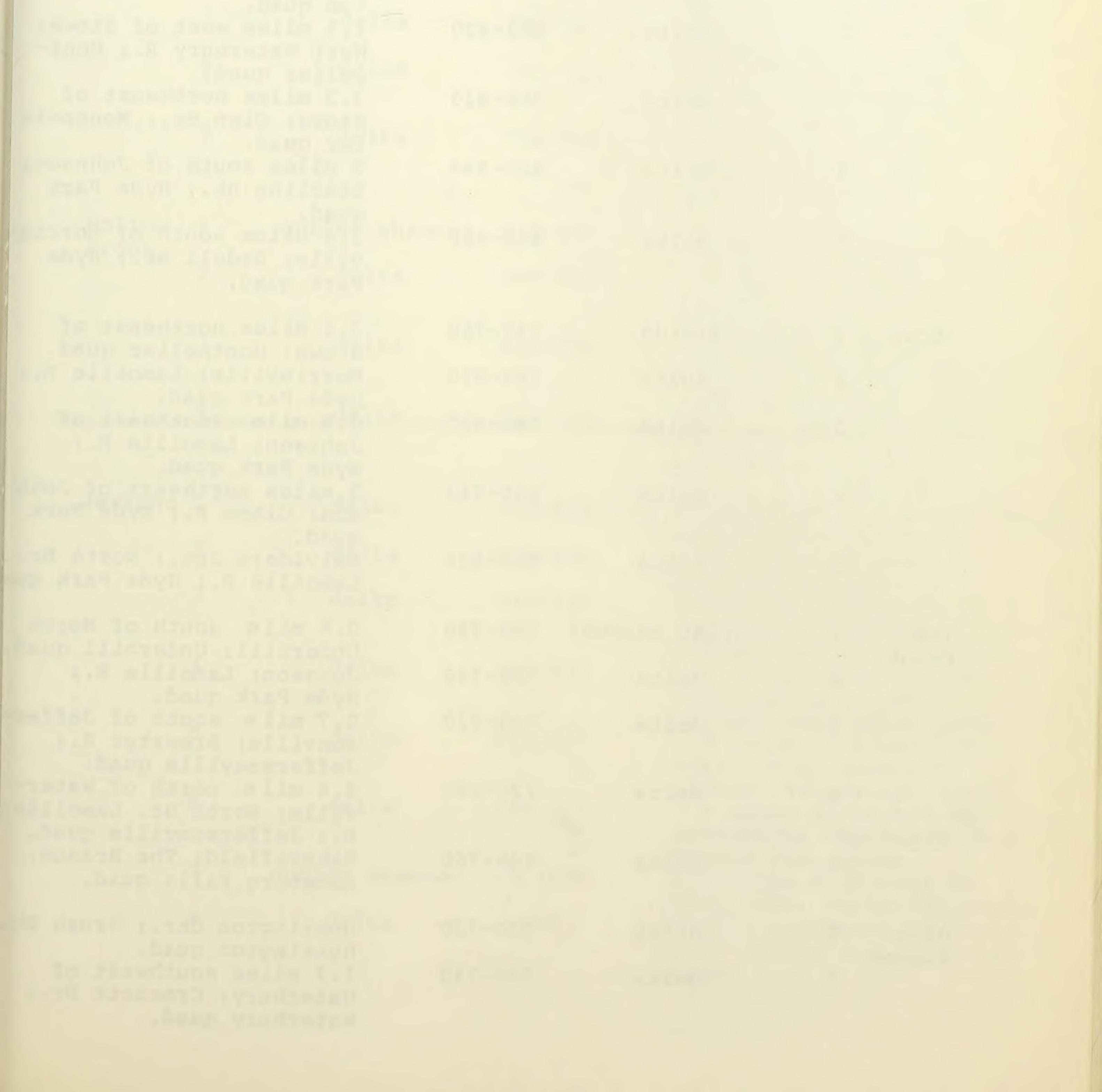
, 1968, Surficial resources of the Champlain Basin, New York: manuscript, maps, and report to New York State Office of Planning Coordination, 111 p.

, 1970, Surficial geology of the Brandon-Ticonderoga 15-minute quadrangles, Vermont: Vermont Geol. Surv., Studies in Vermont Geol. No. 2, 45 p.

Johnson, P. H., 1970, The surficial geology and Pleistocene history of the Milton quadrangle, Vermont: M. S. dissertation, University of Vermont, 60 p.

Karrow, P. F., 1961, The Champlain Sea and its sediments, in Leggett, R. F., ed., Soils in Canada: Roy. Soc. Canada Spec. Pub. No. 3, p. 97-180.


McDonald, B. C., 1968, Deglaciation and differential post glacial rebound in the Appalachian region of southeastern Quebec: Jour. of Geol., v. 76, p. 664-677.


Stewart, D. P., 1961, The glacial geology of Vermont: Vermont Geol. Surv. Bull. 19, 124 p.

, and MacClintock, P., 1969, The surficial geology and Pleistocene history of Vermont: Vermont Geol. Surv. Bull. 31, 251 p.

, and , 1970, Surficial Geologic Map of Vermont: Vermont Geol. Surv.

# Wagner, W. P., 1969, The late Pleistocene of the Champlain Valley, Vermont: in, Guidebook for the Annual Mtg. of the New York State Geol. Assoc., p. 65-80.





.

# APPENDIX: Location and Description of Shoreline Features

| Feature<br>and Nu |   | Type of<br>Feature | Elevation<br>(feet) | Location<br>and Miscellaneous                                                      |
|-------------------|---|--------------------|---------------------|------------------------------------------------------------------------------------|
| Gillett           | 1 | outlet channel     | 760-780             | 7.5 miles northeast of<br>Gillett Pond; Hunting-                                   |
|                   | 2 | delta              | 800-820             | ton quad.<br>1.5 miles west of Stowe;<br>West Waterbury R.; Mont-                  |
|                   | 3 | delta              | 800-820             | <pre>pelier quad. 3.3 miles northeast of Stowe; Glen Bk.; Montpel- ier quad.</pre> |
|                   | 4 | delta              | 820-840             | 9 miles south of Johnson;<br>Sterling Bk.; Hyde Park<br>quad.                      |
|                   | 5 | delta              | 800-820             | 3.4 miles south of Morris<br>ville; Bedell Bk.; Hyde<br>Park quad.                 |
| Stowe             | 1 | divide             | 740-760             | 3.1 miles northeast of<br>Stowe; Montpelier quad.                                  |
|                   | 2 | delta              | 780-800             | Morrisville; Lamoille R.;<br>Hyde Park quad.                                       |
|                   | 3 | delta              | 780-800             | 0.8 mile southeast of<br>Johnson; Lamoille R.;<br>Hyde Park quad.                  |
|                   | 4 | delta              | 800-840             | 3 miles northeast of John<br>son; Gihon R.; Hyde Park<br>guad.                     |
|                   | 5 | delta              | 800-820             | Belvidere Jct.; North Br.<br>Lamoille R.; Hyde Park qu                             |
| The<br>Creek      | 1 | outlet channel     | 700-720             | 0.6 mile south of North<br>Underhill; Underhill quad                               |
|                   | 2 | delta              | 720-740             | Johnson; Lamoille R.;<br>Hyde Park quad.                                           |
|                   | 3 | delta              | 700-720             | 0.7 mile south of Jeffer<br>sonville; Brewster R.;<br>Jeffersonville quad.         |
|                   | 4 | delta              | 720-740             | 0.6 mile north of Water-<br>ville; North Br. Lamoille<br>R.; Jeffersonville quad.  |
|                   | 5 | delta              | 740-760             | Bakersfield; The Branch;<br>Enosburg Falls quad.                                   |
|                   |   |                    |                     |                                                                                    |

Hunt- 1 delta 700-720 Huntington Ctr.; Brush Bk.; ington 2 delta 700-740 1.7 miles southwest of

Waterbury; Crossett Br.;

Waterbury quad.

| Feature<br>and Nu |       | Type of<br>Feature | Elevation<br>(feet) | Location<br>and Miscellaneous                                                                                      |
|-------------------|-------|--------------------|---------------------|--------------------------------------------------------------------------------------------------------------------|
| Hunt-<br>ington   | 3     | delta              | 700-720             | 0.6 mile southeast of<br>Huntington; unnamed<br>stream; Huntington quad.                                           |
|                   | 4     | delta              | 740-760             | 1.3 miles northwest of<br>Huntington; unnamed<br>stream; Huntington quad.                                          |
|                   | 5     | delta              | 720-740             | Waterbury Ctr.; Thatcher<br>Bk.; Montpelier quad.                                                                  |
|                   | 6     | delta              | 720-740             | 3.8 miles northwest of<br>Waterbury; Stevenson Br.;<br>Bolton Mtn. quad.                                           |
|                   | 7     | delta              | 700-760             | 1.3 miles northwest of<br>Moscow; Miller Bk.;<br>Montpelier quad.                                                  |
| Hollow<br>Brook   | l out | tlet channel       | 660-680             | 3 miles northeast of S.<br>Hinesburg; Hinesburg quad.                                                              |
|                   | 2     | delta              | 660-680             | 4.5 miles northeast of S. Hinesburg; unnamed                                                                       |
|                   | 3     | delta              | 680-700             | <pre>stream; Hinesburg quad.<br/>1.3 miles south of Water-<br/>bury Ctr.; Thatcher Br.;<br/>Montpelier quad.</pre> |
|                   | 4     | delta              | 700-720             | 3.8 miles northwest of<br>Waterbury; Stevenson Br.;<br>Bolton Mtn. quad.                                           |

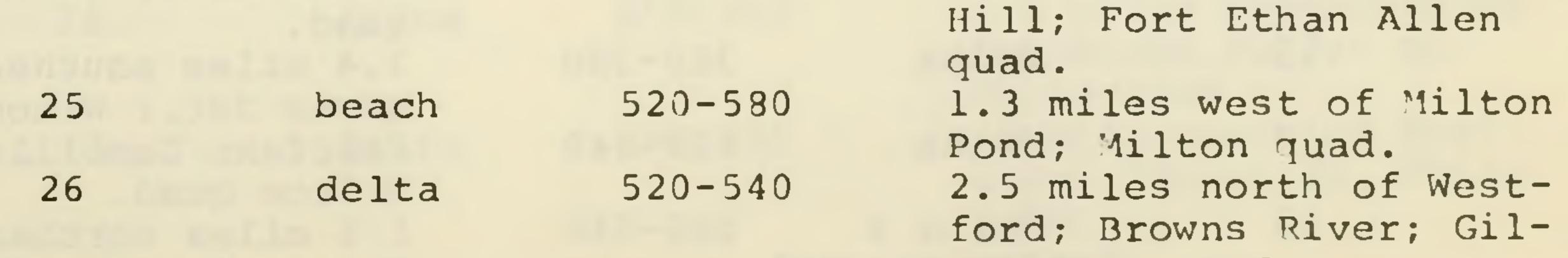
| Jericho l | delta          | 620-640 | Huntington; Huntington R.;<br>Huntington quad.                                 |
|-----------|----------------|---------|--------------------------------------------------------------------------------|
| 2         | delta          | 640-660 | Waterbury; Winooski R.;<br>Montpelier quad.                                    |
| 3         | delta          | 620-640 | <pre>1.2 miles northwest of Huntington; unnamed stream; Huntington quad.</pre> |
| 4         | delta          | 620-640 | 1.5 miles northwest of<br>Huntington; unnamed<br>stream; Huntington quad.      |
| 5         | delta          | 620-640 | 2.8 miles northwest of<br>Huntington; unnamed<br>stream; Huntington quad.      |
| 6         | delta          | 640-660 | 3.8 miles northwest of<br>Waterbury; Stevenson Bk.;<br>Bolton Mtn. quad.       |
| 7         | outlet channel | 660-680 | 1.9 miles southwest of                                                         |

delta

8

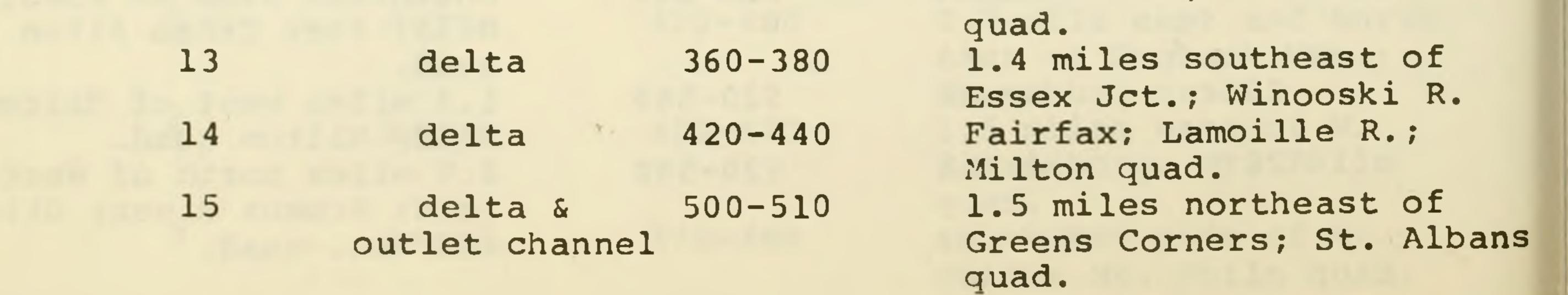
Williston; Essex Jct.quad. l mile northeast of Jericho; Browns R.; Underhill quad.

| Feature Name<br>and Number | Type of<br>Feature | Elevation<br>(feet) | Location<br>and Miscellaneous                          |
|----------------------------|--------------------|---------------------|--------------------------------------------------------|
| Jericho l<br>Center        | outlet channel     | 680-700             | Jericho Center; Richmond<br>quad.                      |
| 2                          | delta              | 706                 | Underhill; Browns R. and<br>The Creek; Underhill quad. |
| Quaker l<br>Springs        | delta              | 560-580             | Bristol; New Haven R.;<br>Bristol quad.                |
| (?) 2                      | delta              | 600-620             | 0.4 mile southeast of S.                               |


| <pre>&lt; /</pre>     |          |          |         | Hinesburg; Hollow Brook;<br>Hinesburg quad.                                            |
|-----------------------|----------|----------|---------|----------------------------------------------------------------------------------------|
| Cove-<br>ville<br>(?) | 1        | delta    | 540-580 | 1.5 miles northwest of<br>Richmond; Winooski R.;<br>Essex Jct. quad.                   |
|                       | 2        | delta    | 580-600 | 1.5 miles north of Rich-<br>mond; Mill Bk.; Richmond<br>quad.                          |
|                       | 3        | delta    | 560-600 | 0.4 mile south of Willis-<br>ton; Allen Bk.; Essex<br>Jct. quad.                       |
|                       | 4        | delta    | 580-600 | 2.6 miles northwest of<br>Richmond; Winooski R.;                                       |
|                       | 5        | delta    | 606     | Essex Jct. quad.<br>0.9 mile southwest of<br>Jericho Center; unnamed                   |
|                       | 6        | delta    | 600-620 | brk.; Richmond quad.<br>1.6 miles southeast of<br>Jericho; Lee R.; Rich-<br>mond quad. |
|                       | 7        | delta    | 620-640 | at Jericho; Browns R.;<br>Underhill quad.                                              |
|                       | 8        | delta    | 600-620 |                                                                                        |
| Fort<br>Ann           | 1        | delta(?) | 380-400 | 0.9 mile east of New Hav-<br>en Mills; unnamed stream;<br>South Mtn. quad.             |
|                       | 2        | beach    | 390-400 | 2.3 miles southeast of<br>Vergennes; west side of<br>Buck Mtn.; Monkton quad.          |
|                       | 3        | delta    | 400-420 | 0.6 mile south of Bris-<br>tol; New Haven R.; Bris-<br>tol quad.                       |
|                       | 4        | spit     | 400-410 | 4.1 miles northwest of<br>Bristol; Monkton quad.                                       |
|                       | <b>C</b> |          | 100 100 | 0 0                                                                                    |

420-480 0.8 mile east and north-5 delta east of Hogback Mtn.; Hinesburg quad. 1.5 miles east of N. 6 beach 400-420 Ferrisburg; Mt. Philo quad. southwest side of Mt. 7 beach 440-460 Philo; Mt. Philo quad.

| Feature Name<br>and Number | Type of<br>Feature | Elevation<br>(feet) | Location<br>and Miscellaneous                   |
|----------------------------|--------------------|---------------------|-------------------------------------------------|
| Fort 8<br>Ann              | beach              | 420-440             | southwest side of Mt.<br>Philo; Mt. Philo quad. |
| 9                          | beach              | 400-420             | southwest side of Mt.<br>Philo; Mt. Philo quad. |
| 10                         | beach              | 360-380             | southwest side of Mt.<br>Philo; Mt. Philo quad. |
| 11                         | delta              | 380-400             | 1.9 miles southwest of<br>S. Hinesburg; Lewis   |


335

|            |       |          | S. HINESDULY, LEWIS               |
|------------|-------|----------|-----------------------------------|
|            |       |          | Creek; Hinesburg quad.            |
| 12         | delta | 460-500  | South Hinesburg; Hollow           |
|            |       |          | Brook; Hinesburg quad.            |
| 13         | beach | 400-460  | south side of Pease Moun-         |
|            |       |          | tain; Mt. Philo quad.             |
| 14         | delta | 360-380  | 1.9 miles southeast of            |
|            |       |          | Hinesburg; LaPlatte R.;           |
|            |       |          | Hinesburg quad.                   |
| 15         | beach | 480-500  | four unnamed hillocks             |
|            |       |          | about 1.3 miles east of           |
|            |       |          | E. Charlotte; Mt. Philo           |
|            |       |          | quad.                             |
| 16         | beach | 440-460  | south side of Jones Hill;         |
|            |       |          | Mt. Philo quad.                   |
| 17         | beach | 440-500  | 0.8 mile northeast of             |
|            |       |          | East Charlotte; Mt. Philo         |
|            |       |          | quad.                             |
| 18         | bench | 480-510  | 0.2 mile north of Rts.            |
| <b>T</b> O | ~~~~~ |          | 116 and 2A, intersection          |
|            |       |          | and north along Rt. 116;          |
|            |       |          | Mt. Philo and Burlington          |
|            |       |          | quads.                            |
| 19         | delta | 500-520  | Williston; Winooski R.;           |
| 17         | ucrea | 330 320  | Essex Jct. quad.                  |
| 20         | delta | 480-520  | 1.1 miles east of Essex           |
| 20         | ucica | 400 520  | Jct.; Winooski River;             |
|            |       |          | Essex Jct. quad.                  |
| 21         | delta | 500-540  | 0.2 mile south of Jericho         |
| <u> </u>   | uerta | JUU J40  | Cemetery; Lee R.; Under-          |
|            |       |          | hill quad.                        |
| 22         | delta | 500-525  | Essex Center; Alder Brook;        |
| 62         | uerca | 100-121  | Essex Center quad.                |
| 23         | delta | 530-550  | Brookside Cemetery; Rog-          |
| 23         | uerta | 0-1-0-10 | ers Brook; Essex Center           |
|            |       |          |                                   |
| 2.4        | hoadh | 520-540  | quad.<br>southeast side of Cobble |
| 24         | beach | 520-540  | Soucheast side of couble          |



son Mtn. quad.

| Feature<br>and Nu |    | Type of<br>Feature | Elevation<br>(feet) | Location<br>and Miscellaneous                                       |
|-------------------|----|--------------------|---------------------|---------------------------------------------------------------------|
| Fort              | 27 | delta              | 540-580             | Fairfax Falls; Lamoille<br>R.; Gilson Mtn. quad.                    |
| Ann               | 28 | delta              | <b>540-560</b>      | River View School; La-<br>moille R.; Gilson Mtn.                    |
|                   | 29 | beach              | 520-560             | <pre>quad.<br/>east side of Arrowhead<br/>Mtn.; Milton quad.</pre>  |
|                   | 30 | delta              | 560-580             | Binghamville; Stones<br>Brook; Gilson Mtn. quad.                    |
|                   | 31 | delta              | 600-620             | Buck Hollow; esker-fed;<br>Milton quad.                             |
|                   | 32 | beach              | 590-610             | 0.7 mile southwest of<br>Bellevue Hill; St. Al-                     |
|                   |    |                    |                     | bans quad.                                                          |
| Greens<br>Corners |    | delta              | 200-220             | Weybridge; Otter Creek;<br>Middlebury quad.                         |
| COLINCIS          | 2  | beach              | 240-250             | 0.8 mile southeast of<br>Vergennes; Monkton quad.                   |
|                   | 3  | beach              | 230-250             | 0.8 mile northeast of<br>Vergennes; Monkton quad.                   |
|                   | 4  | beach              | 260                 | 0.8 mile northeast of<br>Ferrisburg; Monkton quad.                  |
|                   | 5  | delta              | 280-300             | 0.5 mile southwest of<br>North Ferrisburg; Lewis                    |
|                   |    |                    |                     | Creek; Mt. Philo quad.                                              |
|                   | 6  | beach              | 260-280             | 0.1 mile northwest of<br>Coleman Corner; Mt. Philo<br>quad.         |
|                   | 7  | beach              | 300-320             | 0.2 mile north of Coleman<br>Corner; Mt. Philo quad.                |
|                   | 8  | beach              | 280-300             | 0.9 mile west of Mt. Philo;<br>Mt. Philo quad.                      |
|                   | 9  | delta(?)           | 300                 | l mile south of Prindle<br>Corners; Lewis Creek; Mt.                |
|                   | 10 | beach              | 280-300             | Philo quad.<br>0.3 mile southeast of<br>Barber Hill; Willsboro      |
|                   | 11 | delta(?)           | 320-340             | quad.<br>0.4 mile northwest of<br>Hinesburg; LaPlatte R.;           |
|                   | 12 | beach              | 380-400             | Hinesburg quad.<br>1.9 miles southeast of<br>Essex Jct.; Essex Jct. |
|                   |    |                    |                     |                                                                     |



| Feature Name Type c<br>and Number Featur |     | Location<br>and Miscellaneous                                            |
|------------------------------------------|-----|--------------------------------------------------------------------------|
| Champlain                                |     |                                                                          |
| Sea 1 delta                              | 100 | 1.5 miles south of West<br>Bridport; Crown Pt.<br>quad.mollusks; 9,620 ± |
|                                          |     | 350 B.P. shell date<br>I-4695.                                           |
| 2 delta                                  | 175 | <pre>1.3 miles southwest of Weybridge; Middlebury</pre>                  |

|    |       |         | nerstadger nadaessaar              |
|----|-------|---------|------------------------------------|
|    |       |         | quad.                              |
| 3  | beach | 180-200 | 3 miles north of Addison;          |
|    |       |         | Port Henry quad.                   |
| 4  | beach | 200-210 | ≈.7 mile northwest of              |
|    |       |         | Buck Mt.; Monkton quad.            |
| 5  | delta | 160-180 | 1.6 miles west of Ver-             |
|    |       |         | gennes; Port Henry quad.           |
| 6  | delta | 120-140 | 2 miles northeast of Pan-          |
|    | ucica | TTO THO | ton; Port Henry quad.              |
| 7  | beach | 200-210 | .2 mile northeast of Fer-          |
|    | beach | 200-210 |                                    |
| 0  |       | 200 210 | risburg; Monkton quad.             |
| 8  | beach | 200-210 | 1.9 miles northeast of             |
| -  |       |         | Ferrisburg; Monkton quad.          |
| 9  | delta | 100-120 | ≈l mile east of Hawkins            |
|    |       |         | Bay; Port Henry quad.              |
| 10 | delta | 200-220 | 1.2 miles southwest of             |
|    |       |         | North Ferrisburg; Mt.              |
|    |       |         | Philo quad.                        |
| 11 | beach | 200-220 | 1.9 miles northwest of             |
|    |       |         | North Ferrisburg; Mt.              |
|    |       |         | Philo quad.                        |
| 12 | delta | 160-180 | 1.5 miles west of North            |
|    |       |         | Ferrisburg; Mt. Philo              |
|    |       |         | quad.                              |
| 13 | beach | 160-180 | 2.5 miles south of Char-           |
|    |       |         | lotte; Willsboro quad.;            |
|    |       |         | mollusks.                          |
| 14 | beach | 180-200 | 1.8 miles southeast of             |
|    |       |         | Charlotte and west of              |
|    |       |         | Thompsons Point; Wills-            |
|    |       |         | boro quad.; mollusks;              |
|    |       |         | 11,230 <sup>±</sup> 170 B.P. shell |
|    |       |         | date I-3647.                       |
| 15 | beach | 240-260 | .6 mile southwest of               |
| T  | Deach | 240-200 | Jones Hill cemetery;               |
|    |       |         | Mt. Philo quad.                    |
| 10 |       | 260 200 | 1.9 miles southeast of             |
|    |       |         |                                    |

16delta260-3001.9 miles southeast of<br/>Shelburne Falls; Mt.17delta260-280.9 mile south of Shel-<br/>burne Falls; Mt. Philo<br/>quad.

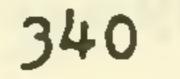
| Feature Name<br>and Number | Type of<br>Feature | Elevation<br>(feet) | Location<br>and Miscellaneous                                         |
|----------------------------|--------------------|---------------------|-----------------------------------------------------------------------|
| Champlain                  |                    |                     |                                                                       |
| Sea 18                     | delta              | 200-220             | .3 mile west of Shel-<br>burne Falls; Mt. Philo                       |
| 19                         | beach              | 200-220             | quad.<br>1.8 miles east of Shel-<br>burne; Burlington quad.;          |
| 20                         | delta              | 140-160             | <pre>mollusks3 mile northeast of Shelburne; Burlington</pre>          |
|                            |                    |                     | quad.                                                                 |
| 21                         | delta              | 100-120             | <pre>1.5 miles northwest of<br/>Shelburne; Burlington<br/>quad.</pre> |
| 22                         | beach              | 140-300             | .7 mile southeast of                                                  |
|                            |                    |                     | Twin Orchards; Burling-                                               |
|                            |                    |                     | ton quad.                                                             |
| 23                         | beach              | 200-270             | .5 mile southeast of                                                  |
|                            |                    |                     | Queen City Park; Burling-                                             |
|                            |                    |                     | ton quad.                                                             |
| 24                         | beach              | 180-200             | 1.8 miles northeast of                                                |
|                            |                    |                     | Queen City Park; Burling-                                             |
|                            |                    |                     | <pre>ton quad.; mollusks and wood; 10,950<sup>±</sup>300 B.P.</pre>   |
|                            |                    |                     | wood date W-2309; 11,420                                              |
|                            |                    |                     | ±350 shell date W-2311.                                               |
| 25                         | beach              | 280-300             | 1.5 miles southwest of                                                |
|                            |                    |                     | South Burlington; Burl-                                               |
|                            |                    |                     | ington quad.                                                          |
| 26                         | delta              | 280-300             | 2 miles southeast of                                                  |
|                            |                    |                     | South Burlington on Rte.                                              |
|                            |                    |                     | 2; Burlington quad.                                                   |
| 27                         | delta              | 320-340             | .3 mile west of Ft. Ethan                                             |
|                            |                    |                     | Allen Military Res.; Ft.<br>Ethan Allen quad.                         |
| 28                         | delta              | 320-340             | 1.1 miles northwest of Ft.                                            |
| 20                         | ucica              | J20 J40             | Ethan Allen; Ethan Allen                                              |
|                            |                    |                     | quad.                                                                 |
| 29                         | delta              | 300-320             | 1.5 miles northwest of                                                |
|                            |                    |                     | Ft. Ethan Allen; Ethan                                                |
|                            |                    |                     | Allen quad.                                                           |
| 30                         | delta              | 180-200             | .4 mile east of Shipman                                               |
|                            |                    |                     | Hill; Ft. Ethan Allen                                                 |
|                            |                    | 1.00.100            | quad.                                                                 |
| 31                         | delta              | 160-180             | .4 mile southwest of                                                  |

320-340

32

beach

# Bayside; Ft. Ethan Allen quad. 1.5 miles southwest of Colchester; Ft. Ethan Allen quad.


| Feature Name<br>and Number | Type of<br>Feature | Elevation<br>(feet) | Location<br>and Miscellaneous                                                                 |
|----------------------------|--------------------|---------------------|-----------------------------------------------------------------------------------------------|
| Champlain<br>Sea 33        | delta              | 300-320             | 1.4 miles east of Col-<br>chester; Ft. Ethan Al-                                              |
| 34                         | beach              | 170-190             | <pre>len quad.<br/>l.2 miles west of Bay-<br/>side; Ft. Ethan Allen<br/>quad; mollusks.</pre> |
| 35                         | delta              | 120-140             | 1.2 miles from tip of                                                                         |

|                 |        |         | Malletts Head; Ft. Ethan  |
|-----------------|--------|---------|---------------------------|
|                 |        |         | Allen quad.               |
| 36              | beach  | 200-220 | .8 mile from tip of Mal-  |
|                 |        |         | letts Head; Ft. Ethan     |
| The descendence |        |         | Allen quad.               |
| 37              | delta  | 300-320 | 1.4 miles north of Col-   |
|                 |        |         | chester Pond; Essex       |
|                 |        |         | Center quad.              |
| 38              | delta  | 190-200 | .8 mile northwest of      |
|                 |        |         | Chimney Corner; Ft.       |
|                 |        |         | Ethan Allen quad.         |
| 39              | beach  | 250-270 | .9 mile northwest of Wal- |
|                 |        |         | nut Ledge; Ft. Ethan Al-  |
|                 |        |         | len quad. mollusks.       |
| 40              | delta  | 320-340 | at Checkerberry Village;  |
|                 |        |         | Georgia Plains; mollusks; |
|                 |        |         | 10,520±180 B.P. shell     |
|                 |        |         | date I-4393.              |
| 41              | delta  | 360-380 | .8 mile south of Arrow-   |
|                 |        |         | head Mtn.; Milton quad.   |
| 42              | delta  | 300-320 | .7 mile south of Towns    |
|                 |        | DOM-DRE | Corner School; Georgia    |
|                 |        |         | Plains quad.              |
| 43              | beach  | 180-200 | .6 mile southwest of      |
|                 |        |         | Silvertown School; Geor-  |
|                 |        |         | gia Plains quad.          |
| 44              | delta  | 380-400 | .4 mile north of Arrow-   |
|                 |        |         | head Mountain Lake; Mil-  |
|                 |        |         | ton quad.                 |
| 45              | delta  | 200-220 | .7 mile east of Milton-   |
|                 | uct cu |         | boro; Georgia Plains      |
|                 |        |         | quad.                     |
| 46              | delta  | 180-200 | .1 mile north of Milton-  |
| 10              | acted  | 200 200 | boro; Georgia Plains      |
|                 |        |         | quad.                     |
| 47              | beach  | 170-190 | .6 mile northwest of Mil- |
|                 | Deach  | TIO TIO | tonhoro. Coordia Dlaine   |

160-200

48 beach

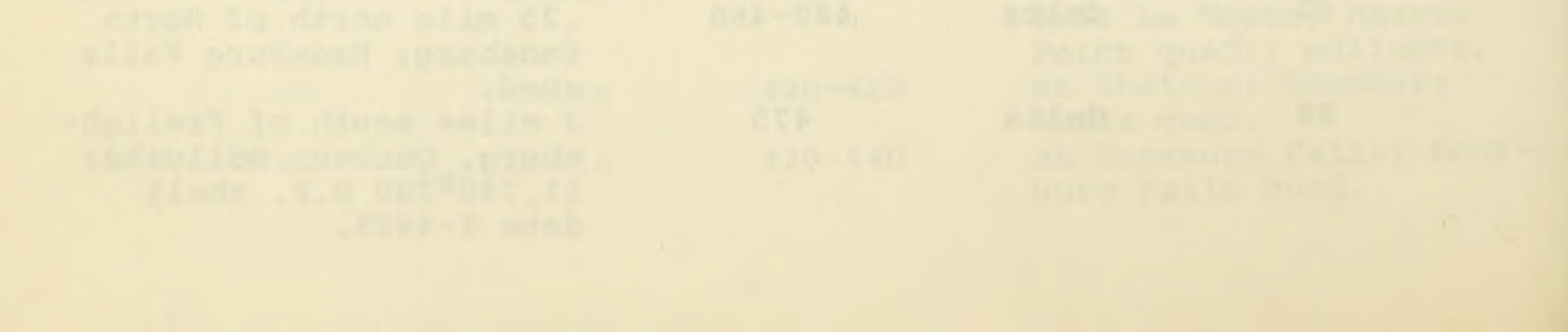
tonboro; Georgia Plains
quad.; mollusks.
1.2 miles northwest of
Miltonboro; Georgia
Plains quad.; mollusks;
10,460=180 B.P.; shell
date I-4394.



| Feature Name<br>and Number | Type of<br>Feature | Elevation<br>(feet) | Location<br>and Miscellaneous                                             |
|----------------------------|--------------------|---------------------|---------------------------------------------------------------------------|
| Champlain                  |                    |                     |                                                                           |
| Sea 49                     | beach              | 300-320             | 2.5 miles southeast of<br>Georgia Plains; Georgia                         |
| 50                         | beach              | 190-220             | Plains quad.; mollusks.<br>1.5 miles west of Geor-<br>gia Plains; Georgia |
| 51                         | delta              | 240-260             | Plains quad.; mollusks.<br>at Georgia Plains; Geor-                       |

|     |       |         | gia Plains quad.          |
|-----|-------|---------|---------------------------|
| 52  | delta | 230-240 | .6 mile southeast of      |
|     |       |         | Melville Landing; St.     |
|     |       |         | Albans Bay quad.          |
| 53  | delta | 180-200 | l mile northeast of       |
|     |       |         | Lime Rock Pt.; St. Al-    |
|     |       |         | bans Bay quad.            |
| 54  | delta | 380-400 | at East Fairfield; Enos-  |
|     |       |         | burg Falls quad.          |
| 55  | beach | 380-400 | .6 mile west of Holy      |
|     |       |         | Cross Cemetery; St. Al-   |
|     |       |         | bans quad.                |
| 56  | delta | 380-400 | 2.5 miles northwest of    |
|     |       |         | East Fairfield; Enosburg  |
|     |       | 200 200 | Falls quad.               |
| 57  | beach | 300-320 | l mile west of Holy Cross |
| 5.0 |       | 100 000 | Cemetery; St. Albans quad |
| 58  | beach | 180-200 | 2 miles northwest of St.  |

|    |          |         | Albans; St. Albans quad.   |
|----|----------|---------|----------------------------|
| 59 | beach    | 390-400 | .l mile east of WWSR rad-  |
|    |          |         | io tower; St. Albans quad. |
| 60 | delta    | 380-400 | .5 mile north of Fair-     |
|    |          |         | field Station; Enosburg    |
|    |          |         | Falls quad.                |
| 61 | beach    | 310-320 | 1.5 miles south of Fonda;  |
|    |          |         | St. Albans quad.           |
| 62 | beach    | 220-230 | .7 mile south of Fonda;    |
|    |          |         | St. Albans quad.           |
| 63 | beach    | 180-200 | at gravel pit Morin Road   |
|    |          |         | south of Swanton; East     |
|    |          |         | Alburg quad.               |
| 64 | beach(?) | 100-120 | 1.5 miles southeast of     |
|    |          |         | Town of Isle La Motte;     |
|    |          |         | Rouses Point quad.;mol-    |
|    |          |         | lusks.                     |
| 65 | beach(?) | 180-200 | .7 mile north of Town of   |


# Isle La Motte; Rouses Point quad.; mollusks. 66 delta 400-420 at Sheldon; Enosburg Falls quad. 67 delta 420-440 at Enosburg Falls; Enosburg Falls quad.

| Feature<br>and Nu |    | Type of<br>Feature | Elevation<br>(feet) | Location<br>and Miscellaneous                                 |
|-------------------|----|--------------------|---------------------|---------------------------------------------------------------|
| Champla<br>Sea    |    | delta              | 420-440             | .5 mile south of Enos-<br>burg Falls; Enosburg<br>Falls quad. |
|                   | 69 | delta              | 380-400             | at South Franklin; En-<br>osburg Falls quad.                  |
|                   | 70 | delta              | 300-320             | l mile west of Sheldon<br>Springs; Enosburg Falls             |

|     |       |         | quad.                                            |
|-----|-------|---------|--------------------------------------------------|
| 71  | delta | 440-460 | Enosburg Falls; Enosburg                         |
|     |       |         | Falls quad.                                      |
| 72  | delta | 440-460 | at East Berkshire; Jay                           |
|     |       |         | Peak quad.                                       |
| 73  | delta | 300-310 | 1.1 miles east of High-                          |
|     |       |         | gate Ctr.; Highgate                              |
|     |       |         | Čtr. quad.                                       |
| 74  | delta | 230-250 | 1.5 miles east of Swan-                          |
|     |       |         | ton; Highgate Ctr. quad.                         |
| 75  | beach | 200-210 | .9 mile east of Swanton;                         |
|     |       |         | Highgate Ctr. quad.                              |
| 76  | beach | 189     | .6 mile east of Swanton;                         |
|     |       |         | Highgate Ctr. quad.                              |
| 77  | beach | 160-180 | 1.5 miles west of Bluff                          |
|     |       |         | Point; Rouses Point quad.                        |
| 78  | delta | 150-160 | at Swanton; Highgate Ctr.                        |
|     |       |         | quad.                                            |
| 79  | beach | 120-130 | 1.3 miles west of Swanton;                       |
|     |       |         | East Alburg quad.                                |
| 80  | delta | 120-140 | .4 mile north of Swanton;                        |
|     |       |         | East Alburg quad.                                |
| 81  | beach | 140     | 1.1 miles north of Swan-                         |
|     |       |         | ton; Highgate Ctr. quad.                         |
| 82  | delta | 100-120 | 1.4 miles northwest of                           |
|     |       |         | Swanton; East Alburg quad.                       |
| 83  | delta | 100-120 | .5 mile west of Blue Rock;                       |
|     |       |         | Rouses Point quad.mollusks(?)                    |
| 84  | beach | 120-130 | 1.2 miles northeast of                           |
|     |       |         | West Swanton, East Alburg                        |
| 0.5 | , ,   | 200     | quad.; mollusks.                                 |
| 85  | beach | 300     | 1.3 miles southwest of                           |
|     |       |         | Center Pond; Highgate                            |
| 06  | 2-1-1 | ACO 400 | Ctr. quad.; mollusks.                            |
| 86  | delta | 460-480 | .9 mile southwest of<br>Richford; Jay Peak quad. |
| 87  | delta | 440-460 | .25 mile north of North                          |

87 delta 440-460 .25 mile north of North Enosburg; Enosburg Falls quad.
88 delta 475 2 miles south of Frelighsburg, Quebec; mollusks; 11,740<sup>±</sup>200 B.P. shell date I-4489.

| Feature Name  | Type of | Elevation | Location                |
|---------------|---------|-----------|-------------------------|
| and Number    | Feature | (feet)    | and Miscellaneous       |
|               |         |           |                         |
| Miscellaneous |         |           |                         |
| 1 SCELLANCOUS | a       | 500.520   | Mount Dhile, Mt. Dhile  |
| +             | spit?   | 500-520   | Mount Philo; Mt. Philo  |
|               |         |           | quad.                   |
| 2             | kame-   | 700-720   | 1.1 miles east of South |
|               | delta   |           | Hinesburg; Hinesburg    |
|               |         |           | quad.                   |
| 3             | delta   | 640-660   | .7 mile east of South   |
|               |         |           | Hinesburg; Hinesburg    |
|               |         |           |                         |
|               |         |           | quad.                   |
| 4             | kame-   | 880-900   | 1.3 miles northeast of  |
|               | delta   |           | Jonesville; Richmond    |
|               |         |           | quad.                   |
| 5             | kame-   | 740-760   | 1 mile west of Oak      |
|               | delta   |           | Hill School; Essex Jct. |
|               |         |           | quad.                   |
| 6             | le a mo | 720 740   | -                       |
| 6             | kame-   | 720-740   | 1.1 miles south of Jer- |
|               | delta   |           | icho Ctr.; Richmond     |
|               |         |           | quad.                   |
| 7             | kame-   | 900-920   | 2.3 miles east of Lake  |
|               | delta   |           | Mansfield; Bolton quad. |
|               |         |           |                         |
|               |         |           |                         |



## PROGLACIAL LAKES IN THE LAMOILLE VALLEY, VERMONT

343

by

G. Gordon Connally State University of New York at Buffalo

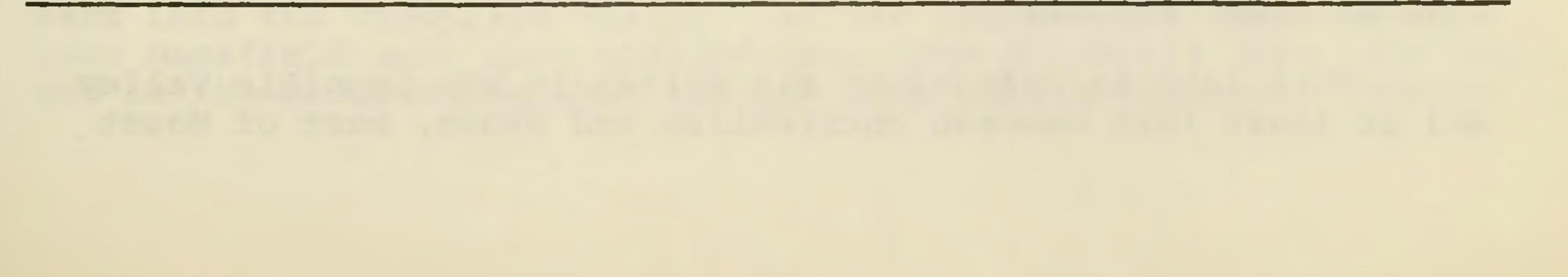

Three proglacial lakes were present in the Lamoille Valley during, and following, retreat of the late Woodfordian glacier in the Champlain Valley. This glacier deposited the Burlington drift of Stewart and MacClintock (1969). Although these lake levels have been recognized since the early part of this century, the nomenclature is still confused, as seen in Table 1. This discussion is a summary of previously published works of others, and of field work performed sporadically for the past six years. Because the names Lake Lamoille and Lake Mansfield have priority in the Lamoille Valley, they are retained in this paper.

TABLE 1.

| MERWIN, 1908    | CHAPMAN, 1937<br>1942 | STEWART, 1961  |
|-----------------|-----------------------|----------------|
| Lake Lamoille I |                       | Lake Mansfield |

| Lake Lamoille III      | Coveville Stage<br>(Lake Vermont)        | Coveville Stage<br>(Lake Vermont) |  |
|------------------------|------------------------------------------|-----------------------------------|--|
| CONNALLY, 1966<br>1968 | STEWART AND<br>MACCLINTOCK, 1969         | CONNALLY, 1971                    |  |
| Lake Lamoille          | Quaker Springs Stage ?<br>(Lake Vermont) | Lake Lamoille                     |  |
| Lake Mansfield         | Quaker Springs Stage ?<br>(Lake Vermont) | Lake Mansfield                    |  |
| Coveville Stage        | Coveville Stage                          | Lake Coveville                    |  |

### (Lake Vermont) (Lake Vermont)



Merwin (1908) recognized an upper level (above 800'), designated Lake Lamoille I, that he thought had been restricted to the Lamoille Valley. He proposed that the lowland east of Mount Mansfield, between Morrisville and Stowe, was then cut down by steadily lowering lake waters, designated Lake Lamoille II. Then, when the outlet was breached to its present level (740') the waters of Lake Lamoille II and Lake Winooski I, in the Winooski Valley to the south, joined to form Lake Mansfield. The lowest level in the Lamoille Valley (650'), presumed to have been restricted to that valley, was named Lake Lamoille III. Fairchild (1916) recognized Merwin's terminology in the Lamoille Valley except that he erroneously projected his upper marine limit (the Champlain Sea) in place of Lake Lamoille III. Chapman (1937, 1942) projected the Coveville Stage of Lake Vermont to Merwin's Lake Lamoille II features, an interpretation that has been generally recognized to the present, the only change being the redesignation as Glacial Lake Coveville by Connally and Sirkin (1970). In mapping the bedrock geology of the Mount Mansfield quadrangle Christman (1959, p. 73) clearly recognized the priority of Merwin's terms although he chose "Lake Lamoille deposits" (quotations his) as a mapping unit.

344

Stewart (1961) correctly inferred that the upper lake actually extended into the Winooski Valley and was not restricted to the Lamoille Valley as Merwin (1908, p. 132) had supposed. He also inferred that the lower lake did not - an interpretation supported here - also contrary to the concepts of Merwin (ibid, p. 136). Stewart therefore honored the conceptual priority and renamed the upper lake, Lake Mansfield, and the lower, Lake Lamoille, reversing Merwin's terms. Connally (1966, 1968), however, re-established Merwin's names, concluding that the original elevations and features were the most important precedent. Then, Stewart and MacClintock (1969) thoroughly confused matters by reapplying the names Lake Lamoille and Lake Mansfield to problematical higher levels and by apparently assigning both of Merwin's levels to the Quaker Springs Stage of Lake Vermont, even though these lakes are not at the proper elevations (Connally, 1966, 1968, and elsewhere) for the Champlain Valley lake.

Merwin's original terminology is retained and defended here for three reasons: (1) these terms were accepted for more than 50 years prior to the work of Stewart, (2) these terms were applied to specific features and elevations that have been studied and restudied for more than 60 years, and (3) it is less confusing to either extend (Lake Lamoille) or restrict (Lake Mansfield) existing terms, when they are meaningful, than to introduce new names because of original conceptual flaws.

#### GLACIAL LAKE LAMOILLE

# This lake is defined by six deltas in the Lamoille Valley and at least four between Morrisville and Stowe, east of Mount

Mansfield. Two of the deltas near Stowe were originally mapped by Wagner (1970, personal communication). The Lake Lamoille deltas (Figure 1) range from 840' in the northwest to 780' in the southeast, as determined from flat delta tops depicted on 7 1/2' topographic maps. Lake Lamoille was blocked by the ice margin in the west and drained southward via the Winooski Valley. Wagner has located the outlet for this lake at about 760' at Gillett at the west end of the Winooski Valley. Figure 2 shows a projection of Lakes Lamoille, Mansfield, and Coveville along A-A' in Figure 1.

345

#### GLACIAL LAKE MANSFIELD

This lake is defined by seven deltas and two beaches. The deltas (Figure 3) range from 760' in the north to 720' in the south. Merwin suggested that this lake coalesced with one in the Winooski Valley, however, the divide may be about 20' too high to have permitted this (Figure 2). I suggest that initial drainage was through the Stowe lowland, while the ice blocked the valley of The Creek west of Mount Mansfield. Later, the ice block was dissected in The Creek and this channel controlled falling lake levels. The The Creek channel is at 700' and no shoreline features are graded to this elevation so it must have controlled a very short-lived lake level. Since Lake Mansfield is now defined only in the Lamoille Valley, this restricts the original definition of Merwin (1908).

GLACIAL LAKE COVEVILLE

This lake is documented by nine deltas and two beaches (Figure 4) that range from 660' to 640' at Morrisville. The inclusion of these features with Lake Coveville has never been challenged but it is fraught with problems as discussed by Wagner (1969). Connally and Calkin (1972) document the retreat of an active ice margin during Lake Coveville, including the Bridport readvance that took place between Burlington and Bridport(south of Middlebury). The retreating margin of an active glacier may account for many of the problems outlined by Wagner. A projection of Lamoille Valley features onto a generalized north-south Lake Coveville projection in the Champlain Valley strongly supports coincidence of the levels (Figure 5).

TIME STRATIGRAPHY

In Figure 5 a hypothetical projection of Lake Quaker Springs

is shown. Both Lake Lamoille and Lake Mansfield had to drain southward into the Champlain Valley. If the projections are correct, Lake Mansfield must have drained into Lake Coveville (via Lake Jericho in the Winooski Valley) and not Lake Quaker Springs. Perhaps Lake Mansfield was dammed by the Bridport readvance after a period of free drainage. Differential rebound (Figure 2) between Lake Lamoille and Lake Mansfield suggests that some event separated the two lakes and that Lake Lamoille drained through a series of impondments into Lake Quaker Springs at its northern boundary near Brandon.

346

Connally and Sirkin (1972) have estimated the age of Lake Coveville as 12,800 yrs. B.P. and the Luzerne readvance, that they tentatively correlated with the Burlington drift, as 13,200 yrs. B.P. Thus, it is probable that Lakes Lamoille and Mansfield existed sometime between 13,200 and 12,800 yrs. B.P. Because two of the local mountain glaciers reported by Wagner (1970) can be directly related to Lake Lamoille; one in the Ritterbush Valley and one east of Belvidere Center, it is probable that these glaciers also existed between 13,200 and 12,800 yrs. B.P.

REFERENCES CITED

Chapman, D. H., 1937, Late glacial and post-glacial history of the Champlain Valley: Am. Jour. Sci., v. 34, p. 89-124.

\_\_\_\_\_, 1942, Late glacial and post-glacial history of the Champlain Valley, Vermont: Vermont State Geologist, 23rd report, p. 48-83.

Christman, R. A., 1959, Geology of the Mount Mansfield quadrangle, Vermont: Vermont Geol. Survey, Bull. 12, 75 p.

Connally, G. G., 1966, Surficial geology of the Mount Mansfield 15 minute quadrangle, Vermont: Vermont Geol. Survey, open-file report, 33 p.

\_\_\_\_\_, 1968, Glacial geology of the Mount Mansfield quadrangle, Vermont (abstr.): Geol. Soc. America, Spec. Paper 115, p. 256.

\_\_\_\_\_, 1971, Pleistocene mountain glaciation in northern Vermont: Discussion: Geol. Soc. America Bull., v. 82, p. 1763-1766.

\_\_\_\_, and Calkin, P. E., 1972, Woodfordian glacial history of the Champlain lowland, Burlington to Brandon, Vermont, in: N.E.I. G.C. Guidebook, 1972, Burlington.

\_\_\_\_\_, and Sirkin, L. A., 1970, Luzerne readvance near Glens Falls, New York: Geol. Soc. America Bull., v. 82, p. 989-1008.

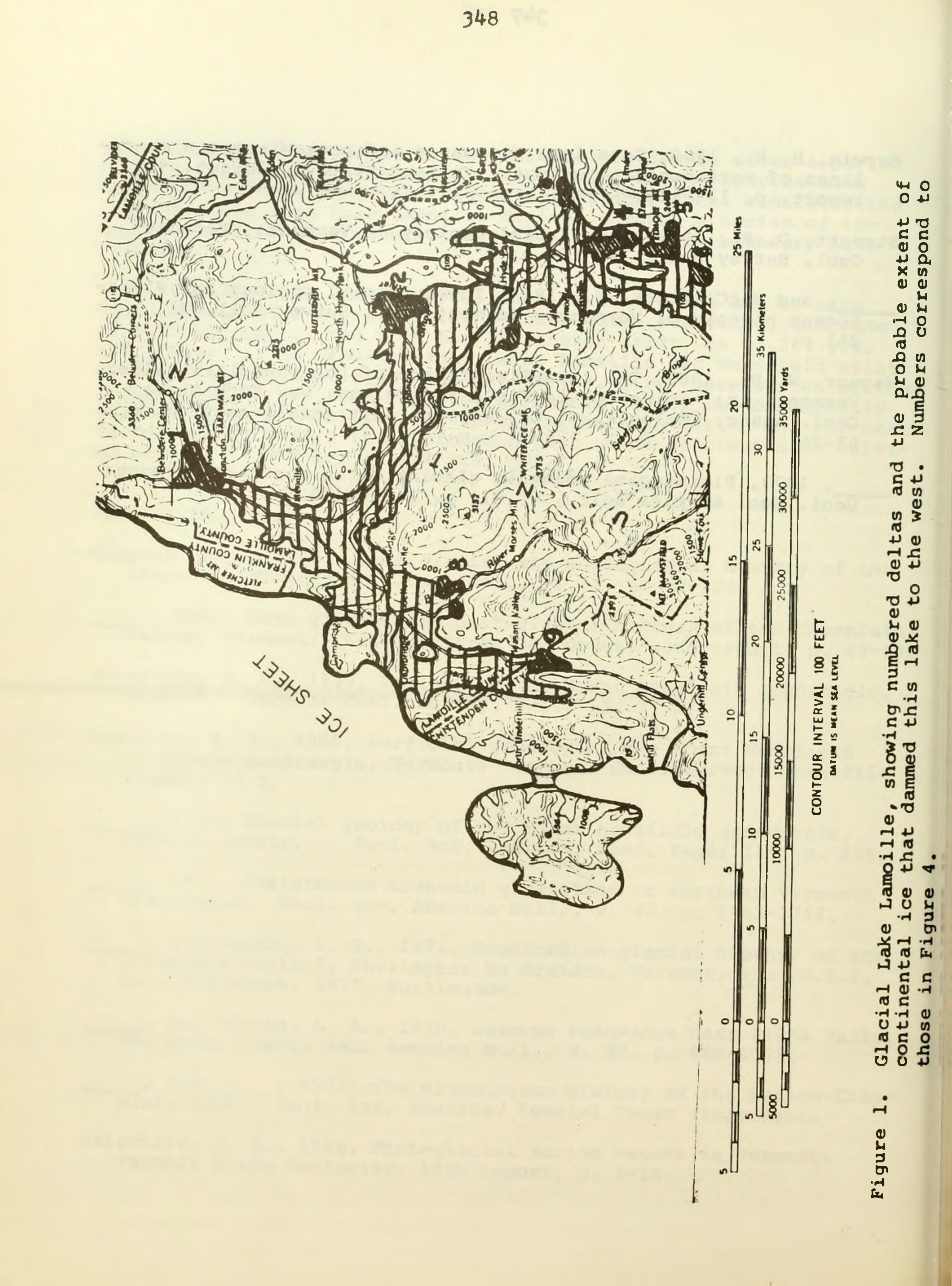
, and , 1972, The Wisconsinan history of the Hudson-Cham-

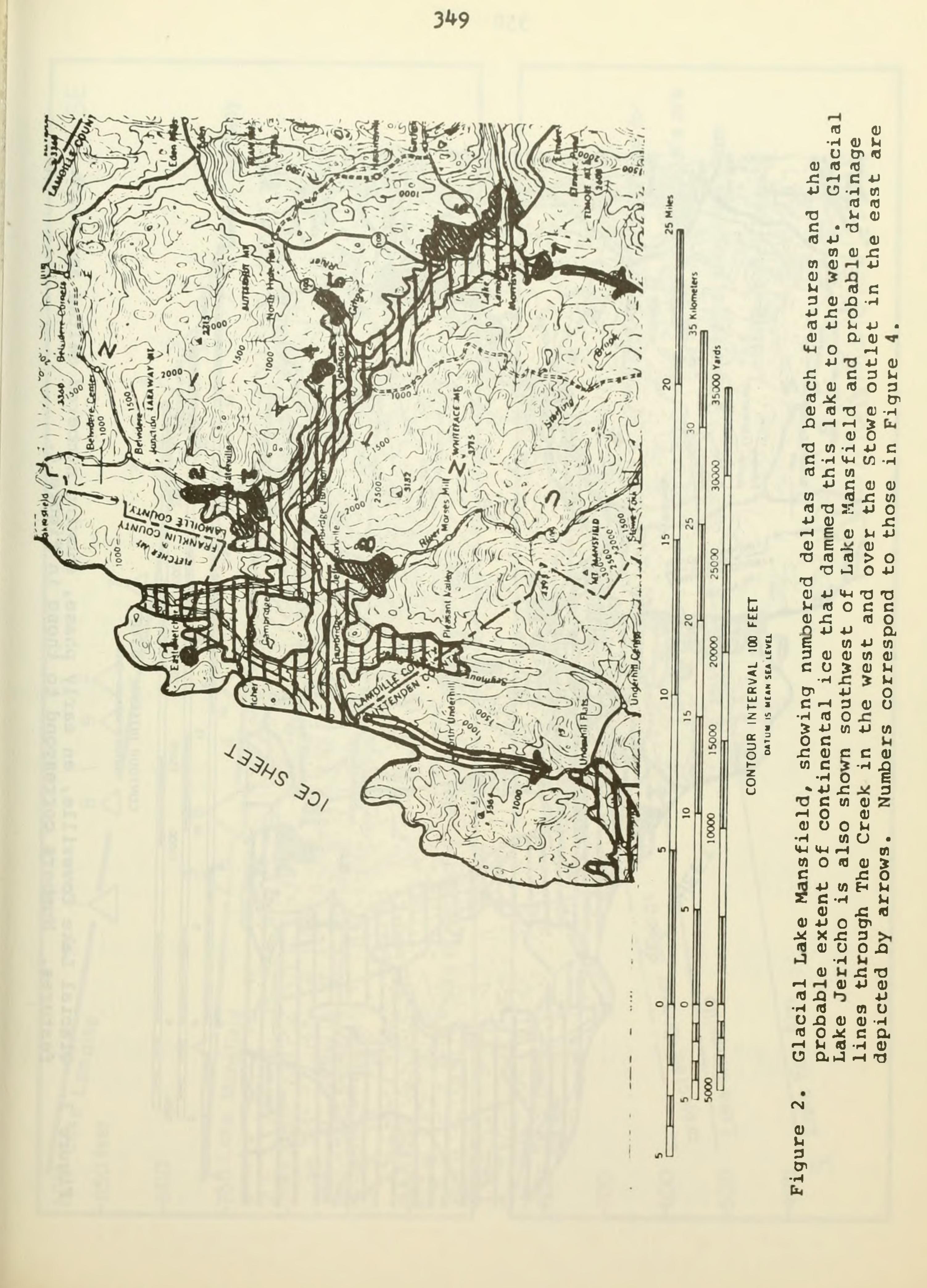
# plain lobe: Geol. Soc. America, Special Paper (in press).

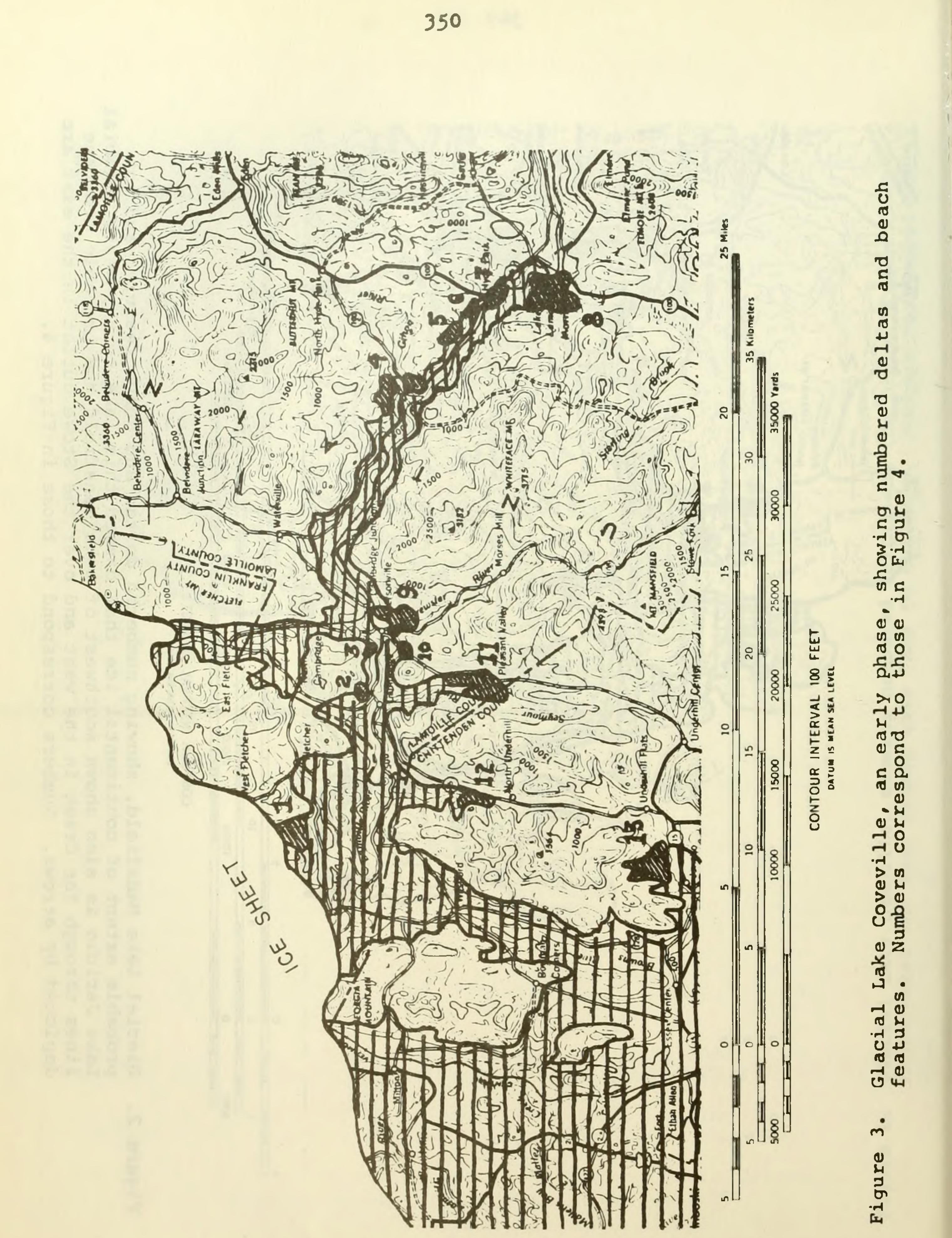
# Fairchild, H. L., 1916, Post-glacial marine waters in Vermont: Vermont State Geologist, 10th report, p. 1-14.

Merwin, H. E., 1908, Some late Wisconsin and post-Wisconsin shorelines of northwestern Vermont: Vermont State Geologist, 6th report, p. 113-138.

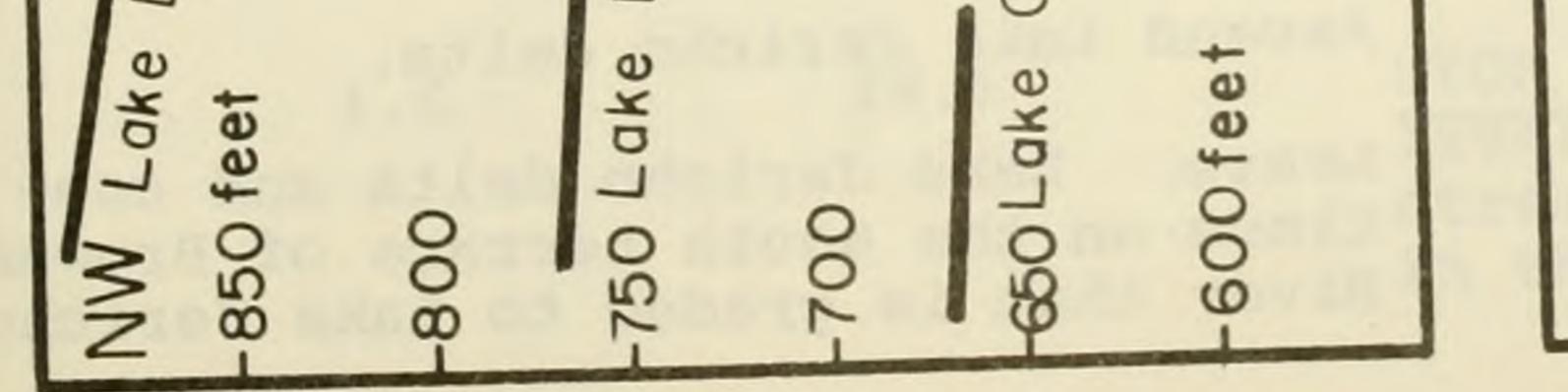
Stewart, D. P., 1961, The glacial geology of Vermont: Vermont Geol. Survey Bull. 19, 124 p.

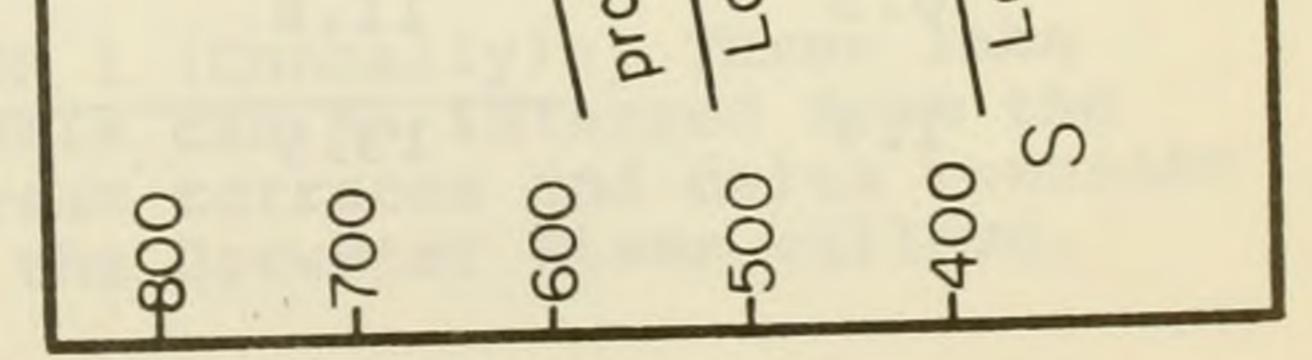

347


\_\_\_\_, and MacClintock, P., 1969, The surficial geology and Pleistocene history of Vermont: Vermont Geol. Survey Bull. 31, 251 p.


Wagner, W. P., 1969, The late Pleistocene of the Champlain Valley, Vermont, in: Guidebook to Field Excursions, New York State Geol. Assoc., Barnett, S. G., editor, 41st annual meeting, p. 65-76.

\_\_\_\_, 1970, Pleistocene mountain glaciation in northern Vermont: Geol. Soc. America Bull., v. 81, p. 2465-2470.








351 he Champlain Valley; X's are North-South projections for SE Gillett" spillway projected elevations from spillway Lamoille Valley lakes. beach delta Figure 5. Stowe spillway E Z (O)Valley Mansfield Creek' spillway 6< amoille Lamoille 5 ake PC) ake e Projected Lake Levels, IX × EE2 × ∞ < 2 Springs EN Figure 4. projected Quaker Coverille Ann Mansfield ville Lamoille Fort e Lake Lake





| 352                     |                       |                                                                                                                                |
|-------------------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------|
|                         |                       |                                                                                                                                |
|                         | CONNALLY - WA         | AGNER ROAD LOG                                                                                                                 |
| Miles between<br>Points | Cumulative<br>Mileage | Description                                                                                                                    |
| 0.0                     | 0.0                   | START Spear St. and Route 2.                                                                                                   |
| 0.3                     | 0.3                   | I-89                                                                                                                           |
| 1.2                     | 1.5                   | Crossing the Winooski River.                                                                                                   |
| 0.6                     | 2.1                   | Winooski Exit.                                                                                                                 |
| 0.6                     | 2.7                   | St. Michaels College - Champlain<br>Sea delta at the marine limit.                                                             |
| 1.2                     | 3.9                   | Fort Ethan Allen (retired) on Cham-<br>plain Sea delta.                                                                        |
| 1.0                     | 4.9                   | Essex Junction on Champlain Sea<br>delta.                                                                                      |
| 0.3                     | 5.2                   | North side of Essex Junction: note<br>gully on contact between delta and<br>till and lake sediment veneered<br>bedrock upland. |
| 2.7                     | 7.9                   | Essex Center on Lake Fort Ann del-<br>ta.                                                                                      |

| 1.7 | 9.6  | Descend from Lake Fort Ann delta<br>to Browns River terrace.                                         |
|-----|------|------------------------------------------------------------------------------------------------------|
| 0.4 | 10.0 | Cross Browns River.                                                                                  |
| 0.4 | 10.4 | Lake Fort Ann delta remnant on left<br>on till covered upland; note resi-<br>dual boulders in gully. |
| 0.4 | 10.8 | Lake Fort Ann surface at right a-<br>cross Browns River.                                             |
| 0.3 | 11.1 | Cross Browns River.                                                                                  |
| 0.2 | 11.3 | Village of Jericho on Lake Coveville<br>delta.                                                       |

0.5

1.7

11.8Ascend Lake Jericho delta.13.5LeaveLake Jericho delta and con-

tinue on the south terrace of Browns River that is graded to Lake Jericho.

|                         |                       | 353                                                                                                                                                 |
|-------------------------|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
|                         |                       |                                                                                                                                                     |
| Miles between<br>Points | Cumulative<br>Mileage | Description                                                                                                                                         |
| 0.2                     | 13.7                  | Cross Browns River and ascend<br>matching terrace on north; village<br>of Underhill. Two sequences of<br>ice contact drift on hillside on<br>right. |
| 1.5                     | 15.2                  | Cross The Creek; kame terraces on<br>both right and left valley walls.                                                                              |

| 1.7 | Ice cont<br>on left  |
|-----|----------------------|
|     | flowing<br>ing trib  |
|     | er on th             |
|     | crucial<br>tion of   |
|     | The elev             |
|     | ft.; too             |
|     | (720-740             |
|     | Lake Cov<br>Wagner h |
|     | outlet f             |
|     | Glacial              |
|     | continer             |
|     | during I             |
|     | at least             |

tact drift (kame terraces) and divide between south-The Creek and a north-flowoutary of the Lamoille Rivhe right. This divide is in the correct interpreta-Lamoille Valley lakes. vation is approximately 700 o low for Lake Mansfield 0 ft.); and too high for veville (640-660 ft.). has proposed this as an for a lake he has named Lake The Creek. Clearly stal ice blocked this col Lake Lamoille (840 ft.) and t initial Lake Mansfield, either retreated or was breachprior to the establishment of e Coveville in the Champlain ley.

|     |      | and<br>ed p<br>Lake<br>Vall  |
|-----|------|------------------------------|
| 1.8 | 18.7 | Nort<br>spil<br>cont<br>on v |
| 5.8 | 24.5 | Vill<br>very                 |
| 0.6 | 25.1 | Cros                         |
| 1.9 | 27.0 | Cros<br>Jeff<br>sout         |

North Underhill; head of proposed spillway for Lake The Creek. Ice contact drift in valley bottom and on valley walls.

Village of Cambridge; village is very close to 10 year floodplain.

Cross Lamoille River.

Cross Lamoille River; village of Jeffersonville. Follow Route 108 south.

28.6 1.6

STOP 1 (Connally): Three lake levels can be inferred from the stream terraces and delta remnants in the Brewster River valleys.

|                                            | 354                                                                                                                                                                                                                                                                                              |
|--------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Miles between Cumulative<br>Points Mileage | Description                                                                                                                                                                                                                                                                                      |
|                                            | The lowest surface, to the north,<br>has a sharp slope break at 660 ft.<br>The one on which we stand has a<br>break at 740 ft. Higher terraces<br>are graded to 840 ft. and a small<br>delta remnant may be present at<br>that elevation. The upper level<br>has been assigned to Lake Lamoille, |

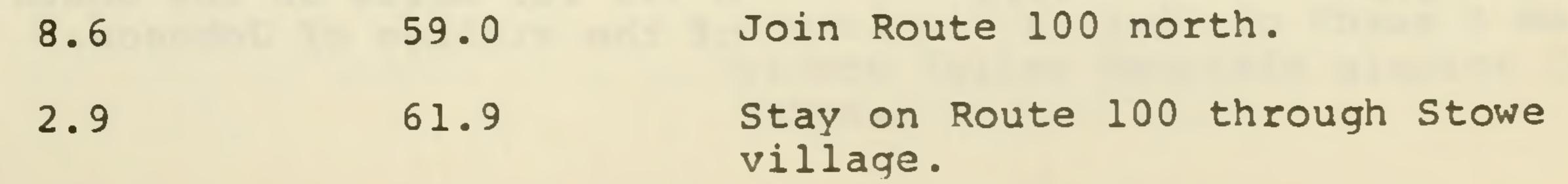
the intermediate to Lake Mansfield, and the lowest to Lake Coveville. Here we will discuss the possible relationship between these lake levels and the The Creek divide. A 20 ft. high erosional scarp in 29.4 0.8 the terraces graded to the 740 ft. delta. Village of South Cambridge; ascend 0.8 30.2 the terrace graded to the 840 ft. level. 1.9 32.1 Gravel pits that showed forset beds in 1965 and bottomset beds in 1970. This delta documents an ear-

|     |      | ly local lake at about 1100 ft.<br>dammed by the retreating continent-<br>al ice margin.                  |
|-----|------|-----------------------------------------------------------------------------------------------------------|
| 2.6 | 34.7 | Protalus rampart(?) at north en-<br>trance to Smugglers Notch; abundant<br>talus and mudslide debris.     |
| 2.9 | 37.6 | Stream exposures of ice contact<br>drift and till; collapse struc-<br>tures.                              |
| 1.0 | 38.6 | Kame deltas(?) or kame moraine(?)<br>in vicinity of Toll House Inn,<br>headwaters of the Waterbury River. |
| 3.8 | 42.4 | Holme Lodge - valley bottom floor-<br>ed with more than 100 ft. of un-<br>consolidated material.          |

# 42.6 Leave Route 108; make sharp right turn and follow signs to Trapp Family Lodge.

0.2

| Miles between (<br>Points | Cumulative<br>Mileage | Description                                                                                                        |
|---------------------------|-----------------------|--------------------------------------------------------------------------------------------------------------------|
| 0.5                       | 43.1                  | Ten Acres Lodge on 800 ft. delta<br>assigned to Glacial Lake Gillett<br>by Wagner.                                 |
| 1.6                       | 44.7                  | STOP 2 (Wagner): Trapp Family<br>Lodge. Just beyond Lodge is good<br>view of Miller Brook Valley. Pho-<br>to stop. |


| 1.7 | 46.4 | Continue on dirt road to black<br>top, make right turn immediately,<br>onto dirt surface. Cross Miller<br>Brook and take first right.                                                                              |
|-----|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.8 | 48.2 | STOP 3 (Wagner): Phase I Mountain<br>glaciation. Park cars in field<br>across from house and walk up dirt<br>road onto delta surface. Delta<br>was constructed from outwash with<br>stagnant ice margin up valley. |
|     |      | Proceed up valley to Lake Mansfield<br>Trout Club.                                                                                                                                                                 |
| 2.2 | 50.4 | STOP 4 (Wagner): Phase II Mountain<br>glaciation. Walk across dam breast                                                                                                                                           |

and follow white blazed trail to lateral moraine. Note swamp area formed between lateral moraine and hillside. Auger holes indicate 11 ft. of peat. Note also boulder in swamp with high water surface marks that show differential rotation. Slightly further down valley is end moraine. In addition to such features as previously reported, other end moraines have now been found at Noyes Pond, Pigeon Pond, Spring Lake, Lakota Lake, and Crook Brook indicating widespread Mountain glaciation in Vermont.

Lunch, and then return to cars, proceed back down valley crossing

Little River.

glaciation.



|               |            | 356                                                                                                                                                                             |  |
|---------------|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Miles between | Cumulative | Description                                                                                                                                                                     |  |
| Points        | Mileage    |                                                                                                                                                                                 |  |
| 3.2           | 65.1       | Bear right leaving Route 100.                                                                                                                                                   |  |
| 1.8           | 66.9       | The first of a series of four del-<br>tas, some slightly pitted, that<br>crest between 780 and 800 ft.<br>These have been assigned to Lake<br>Lamoille by Connally and to Lakes |  |

Gillett and Stowe by Wagner.

0.9 67.8 Road bends sharply left.

3.6 71.4 Sharp right turn ascending extensive 780 ft. delta deposited by upper Lamoille River.

1.3 72.7 Turn sharply back to left.

73.2

0.5

STOP 5 (Connally): From this vantage point the 780 ft. delta can be seen in the foreground and a partially collapsed or dissected 720 ft. delta can be seen in the distance at Hyde Park. In addition, small deltas are present from Morrisville to Johnson at 640 ft. The upper level is assigned to Lake Lamoille, the intermediate to Lake Mansfield, and the lowest to a Lake Coveville inlet. Wagner has assigned the upper level to Lake Gillett and the intermediate to Lake The Creek. We will discuss the relationship of the three levels to the Lake Gillett spillway.

Continue toward Morrisville.

1.0 74.2 Morrisville, turn right on Route 100.

0.2 74.4 Cross Lamoille River.

0.9 75.3 Take Route 15 west.

# 4.0 79.3 A 740 ft. delta on the south edge of Johnson.

| Miles between<br>Points | Cumulative<br>Mileage | Description                                                         |
|-------------------------|-----------------------|---------------------------------------------------------------------|
| 0.7                     | 80.0                  | Bear right on Route 100 in Johnson<br>and continue north.           |
| 1.8                     | 81.8                  | Another dissected 740 ft. delta<br>just east of East Johnson.       |
| 1.2                     | 83.0                  | An extensive delta that crests at 840 ft. was deposited here by the |

|       |        | A |  |
|-------|--------|---|--|
| Cibon | Dimen  |   |  |
| GINON | River. |   |  |
|       |        |   |  |

85.0 Village of North Hyde Park.

2.7 87.7 Turn left on dirt road; note broad outwash surface.

1.5 89.2 STOP 6 (Wagner): Gravel pit in Phase I Mountain glaciation, Ritterbush Valley.

Continue northward for 200 ft. and take dirt road to the left.

STOP 7 (Wagner): Ritterbush Pond; Phase II Mountain glaciation. Here we will examine the end moraines in Ritterbush Valley.

1.0 90.2

2.0

Return to dirt road near Stop 6, turn left and continue northward. View through trees to left of Rit-1.0 91.2 terbush Pond cirque. Enter Belvidere Pond cirque. 93.4 2.2 STOP 8 (Wagner): Scenic overlook 0.5 93.9 and parking lot; Phase II Mountain glaciation. This is the Belvidere Pond cirque, "tarn", and end moraine. Continue west. Junction Routes 109 and 118. Fol-95.3 1.4

### low Route 109 south.

# 2.1 97.4 Gravel pit to left in Phase I Belvidere Valley Mountain glacier features.

| 358                     |                       | 58                                                                                                                                         |
|-------------------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
|                         |                       |                                                                                                                                            |
| Miles between<br>Points | Cumulative<br>Mileage | Description                                                                                                                                |
| 1.0                     | 98.4                  | Outwash plain(?).                                                                                                                          |
| 0.5                     | 98.9                  | Village of Belvidere Center.                                                                                                               |
| 2.1                     | 101.0                 | STOP 9 (Connally): Pitted out-<br>wash is present almost certainly<br>as a result of the Belvidere Pond<br>glacier with possible additions |

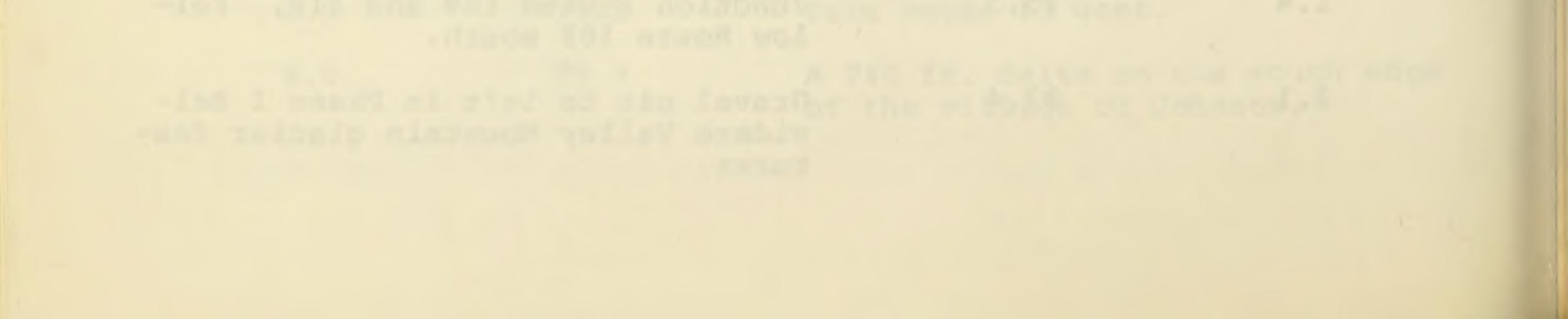
from a local glacier immediately north of the stop. Although the surface elevation is only 800 ft. here it rises to 840 ft. to the north. Thus, Connally assigns this feature to Lake Lamoille, suggesting that local Mountain glaciation can be correlated with Glacial Lake Lamoille. Kettles are not present in Lake Mansfield deposits suggesting a very shortlived episode of local glaciation.

Continue south.

104.8 Village of Waterville.

Junction with Route 108. Follow

# Route 108 south.


0.4 110.0 Junction with Route 15. Follow Route 15 west to Jeffersonville and from there to Burlington.

28.4 138.4 END OF TRIP.

109.6

3.8

4.8

