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ABSTRACT 

Finfish aquaculture has been on a steady rise, and to match human consumption an 

increase of open water fish farming is inevitable; however, the impacts of rearing high densities 

of fish on the surrounding ecosystem remains unclear. Transgenic fish have begun to be 

implemented in aquaculture to improve traits such as growth rate and feeding efficiency. 

However, concerns about the potential ecological impact if escaped transgenic organisms are 

diverse and widespread. Here we characterize the eDNA “plume” from an open water 

Oncorhynchus tshawystcha farm, and from a transgenic Oncorhynchus kistuch rearing facility. 

We utilize eDNA as a biomarker of sloughed Chinook salmon DNA from the farm and test for 

farm effects on bacterial community changes. We found evidence of an overall seasonal effect 

on eDNA concentration and localized distance effects relative to the farm in the fall. Our BC 

analyses showed strong seasonal effects as well as evidence of a distance (from the farm) on BC 

diversity. Despite the well-mixed characteristics of the sampled bay our findings indicate a radial 

effect of the fish farm plume on the surrounding waters. We also designed a transgene-specific 

assay to detect transgenic Coho salmon without interference from the wild-type genome and 

establish the range of detection from an effluent pipe. Our transgene-specific assay detected the 

growth hormone construct from environmental samples to 10 m from the effluent pipe, as well as 

two samples 150 m away and 1300m away from the effluent pipe, detecting extremely low traces 

of transgene DNA copies. This spatial inconsistency in transgenic eDNA detection may be due 

to sloughed organic matter accumulating, rather then breaking down into a homogenous mixture 

in marine water. This work establishes how eDNA can be used as a valuable tool for marine 

surveillance, providing data on the distribution of finfish DNA from a point source and 

identifying ecological impacts on the surrounding aquatic environment.   
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CHAPTER 1 

General Introduction 

 

Environmental DNA  

 Over the past two decades, researchers have developed the study of environmental DNA, 

or eDNA, as a molecular genetic surveillance technique, with applications in terrestrial and 

aquatic ecosystems. Environmental DNA detection techniques were first used on soil and water 

samples to study whole microbial communities and their interactions with the environment 

(Roose-Amsaleg et al., 2001; Taberlet et al., 2012). While microbial communities can be directly 

sampled in eDNA, all multi-cellular organisms leave behind a molecular genetic footprint in the 

form of sloughed organic matter, such as skin cells, fecal matter, and body fluids in their 

environment (Ficetola et al., 2008). Species-specific or community markers can be used to detect 

macro-organisms based on the sloughed genetic material they leave behind (Ficetola et al., 2008; 

Taberlet, Coissac, Hajibabaei, et al., 2012; Wilcox et al., 2013; Thomsen and Willerslev, 2015). 

Detection of vertebrates through eDNA has been used to identify rare and invasive species 

within aquatic ecosystems, without them being visually identified (Dejean et al., 2012; Thomsen 

et al., 2012; Spear et al., 2015). The combination of eDNA, PCR and high-throughput 

sequencing (HTS) can be used to assess the microbial, as well as, animal and plant diversity in 

an aquatic ecosystem (Creer et al., 2016; Deiner et al., 2017a; Taberlet et al., 2012). Utilizing 

these methods, fish can be detected with high precision and minimal environmental impact, 

compared to traditional field methods, such as net capture or electrofishing  (Jerde et al., 2011; 

Schmelzle & Kinziger, 2016; Wilcox et al., 2013). Overall, eDNA has been shown to be a 

valuable tool with a wide range of applications to investigate complex ecosystems. 
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eDNA Detection Techniques  

 Researchers can choose between single species detection by quantitative real time PCR 

(qRT-PCR), or multi-species (community) detection using PCR and HTS (meta-barcoding). 

Single species detection uses primers designed to target one or few organisms in an 

environmental sample. For example, Minamoto et al., (2017) used species-specific primer sets 

with qRT-PCR to conduct a temporal and spatial survey of Chrysaora Pacifica (Japanese sea 

nettle), in Maizuru Bay, Kyoto. They were able to match visual surveys with the distribution of 

eDNA within the bay, as well as temporal patterns of eDNA concentration correlated with the 

number of individuals observed. Meta-barcoding, on the other hand, utilizes PCR primers 

designed to amplify amplicons from an entire communty of organisms from an environmental 

sample.  Evans et al. (2016) used eDNA metabarcoding in mesocosm experiments and were able 

to detect all nine species present, as well as, correlated their abundance with sequence read 

abundance. Balasingham et al. (2018) designed group-specific primers for HTS to detect three at 

risk species, one invasive species, and 78 native species of fish in tributaries of the Great Lakes. 

They demonstrated that eDNA metabarcoding for fish communities provides better spatial 

distribution data than single PCR target methods when examining an entire ecosystem. 

Depending on experimental design and research questions, qRT-PCR and metabarcoding using 

eDNA extracted from environmental samples provides an accurate approach for detecting a 

target species or community. 

Microbial eDNA Metabarcoding  

 Environmental DNA metabarcoding has an important role in ecological research, 

specifically for quantifying  community diversity within and among environments (Taberlet et 

al., 2012). Microbial community studies based on eDNA analyses have compared bacterial 

assemblage patterns and specific functional adaptations across various ocean ecosystems around 



 

 
3 

 

the world (Rusch et al., 2007; Zinger et al., 2011). Determining the specific microbial 

assemblages that reside within niche environments can provide important information about the 

biological functions and patterns over time (Caruso, 2014). Treusch et al., 2009 identified three 

distinct bacterial communities in the northwestern Sargasso Sea during seasonal stratification: a 

surface community responding to low nutrients, a deep chlorophyll-rich community, and a 

mesopelagic community. They concluded that these specialized communities reflected the 

relative success of microbial populations in oligotrophic oceans. Analyzing such data across 

temporal replicates can provide insight into the environmental factors that may be influencing 

fluctuation and shifts in microbial community composition and function (Nogales et al., 2010; 

Giovannoni & Vergin, 2012). We know that microbial communities have vital roles in 

ecosystem biogeochemical cycles, and that their global biomass represents a huge carbon sink 

(Gilbert and Neufeld, 2014).  Thus characterizing microbial community composition and 

dynamics can provide important information on the complex microbe-microbe and microbe-

environment interactions that can affect aquatic ecosystems (Falkowski et al., 2008; Kallmeyer et 

al., 2012). 

Ecology of eDNA 

 eDNA analyses is a relatively new approach for aquatic surveillance, hence most research 

has investigated its ability to detect species, with relatively little focus on the “ecology” of eDNA 

(Barnes & Turner, 2016). The ecology of eDNA is the  of interactions between extra-organismal 

genetic material (eDNA) and the environment – these interactions influence the detection, 

quantification, and analysis of eDNA (Barnes and Turner, 2016) . Those interactions can be 

classified as origin, state, transport and fate of eDNA (Barnes & Turner, 2016). Studies have 

investigated how seasonal temperatures and the density of the source organism(s) can affect 
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degradation and abundance of eDNA (Takahara et al., 2012; De Souza et al., 2016). Deiner & 

Altermatt, 2014 studied the transport distance of invertebrate eDNA (Daphnia longispina and 

Unio tumidus) in a river system, and detected eDNA up to 9.1 km away from the source, 

indicating that invertebrate eDNA can persist over a long distance. However, factors such as 

water flow, species abundance and behavior, water temperature, and PCR inhibition can affect 

the detectability of an eDNA signal (Pilliod et al., 2014; Jane et al., 2015). With all the factors 

that can influence the characteristics of eDNA, further research is needed to assess how niche 

environments can affect eDNA ecology.  

Aquaculture 

 Since 1990, the global trend for open-water fish capture has plateaued at ~85million 

tonnes, and aquaculture production has been on a steady rise due to demand that capture fisheries 

cannot meet (Duarte et al., 2009b, FAO 2020). Global fish production (in 2016) from 

aquaculture facilities reached 171 million tonnes, 88% of which was directed towards human 

consumption (FAO 2018). With this increase of fish production comes a higher number of farms 

using open-water systems to rear these organisms (Duarte et al., 2009). Such systems have 

sustainability issues due to the sensitivity of costal and inland environments from the output of 

nutrient waste of high densities of organisms (Wang et al., 2012; Zhang, Bleeker and Liu, 2015). 

An increase in fisheries can have a variety of effects on the surrounding ecosystems, including 

farmed organisms escaping and potentially becoming invasive, eutrophication of surrounding 

waters, and disease or parasite transfer from captive to wild stocks (Diana, 2009). As aquaculture 

continues to grow, accurate and timely characterization of their influence on their surrounding 

environment is key to sustainable fish culture (Cole et al., 2009; Marra, 2005). 
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Genetically Modified Organisms  

With the growing demand for fish production, the potential for transgenic organisms to 

increase production is being actively explored, as the production benefits of transgenes can help 

to maximize aquaculture production (Wakchaure & Ganguly, 2015). Transgenics is the insertion 

of a foreign, but functional gene construct into an organism’s genome; the construct facilitates 

specific desirable biological processes (Pinkert et al., 1997). Desired effects from the insertion of 

foreign genes can include increases in disease resistance, cold tolerance, growth, and feed 

conversion ratios (Rasmussen and Morrissey, 2007). The insertion of a growth hormone 

transgene into Oncorhynchus kisutch (Coho salmon) has been shown to produce an increase of 

growth rate of up to 600%, while also reducing feed by 25% (Devlin et al., 1994). Such growth 

acceleration can be extremely valuable for aquaculture facilities to commercially produce 

organisms faster and at a higher feed efficiency. However, a primary concern with open-water 

farming of transgenic organisms is the risk of escapement, and potential breeding with native 

populations (Muir & Howard, 2002). Although transgenic fish have been shown to be 

reproductively out-competed by non-transgenic fish (Fitzpatrick et al., 2011), they are more 

active and aggressive when feeding (Wakchaure & Ganguly, 2015). If transgenic fish become 

common in aquaculture, there will be a need to closely monitor these organisms at all stages of 

production (Aerni, 2004; Muir & Howard, 2002, Devlin et al., 1994). Using eDNA as a fast and 

sensitive surveillance method to detect the transgene in the environment may facilitate the safe 

application of transgenics in aquaculture. 

Aquaculture Ecological Impacts 

With the increase of aquaculture development, there is concern for the risks associated 

with rearing high densities of organisms in open water ecosystems (Karakassis et al., 2000; 

Duarte et al., 2009a). The organic matter from faeces, skin cells and residual food has been 
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shown to influence the seafloor and benthic microorganism communities (Danovaro et al., 2003; 

Karakassis et al., 2000; Luna et al., 2013; Olsen, 2008; Taberlet et al., 2012; Vezzulli et al., 

2002; Wang et al., 2012). Although there is a knowledge gap in our understanding of the 

influence organic matter from farm output on pelagic ecosystems, studies have investigated their 

impact on benthic regions. He et al., (2019) sampled sediment from six salmon farms in British 

Columbia, Canada to measure the changes in foraminifera composition resulting from farm 

organic output. They found that foraminifera alpha diversity increased with distance from the 

farm and concluded that species diversity and composition was impacted by fish farming 

activities. With the potential for anthropogenic factors driving change in microbial communities 

around net-pen farming sites, it is important to have efficient and cost effective means of 

monitoring such changes (Caruso, 2014; Pawlowski et al., 2016; He et al., 2019). Environmental 

DNA metabarcoding of bacterial communities provides quantitative indices to accurately 

establish impacts of organic output (Pawlowski et al., 2016; He et al., 2019)  

Multi-level Analysis  

Diverse eDNA analyses have the potential to be combined to provide a comprehensive 

overview of study sites at multiple ecosystem levels. Combing vertebrate and microbial eDNA 

analyses can allow researchers to establish interactions and connections between these two levels 

of surveillance. This is especially true if vertebrate eDNA is composed of organic matter that 

directly influences bacterial communities composition (Leonard et al., 2000;  Olsen et al., 2017; 

Vezzulli et al., 2002). Examining eDNA using qRT-PCR with species-specific primers can 

provide information such as presence, relative abundance, and distribution of an organism 

(Dejean, 2011; Takahara et al., 2012; Laramie, Pilliod and Goldberg, 2015; Evans et al., 2016). 

Pairing this single species analysis with eDNA metabarcoding data on bacterial community 
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composition can help establish functional relationships between bacterial communities and the 

genetic material sloughed from high densities of organisms  (Creer et al., 2016; Deiner et al., 

2017b; Handelsman, 2005; Taberlet et al., 2012). Therefore, utilizing multiple techniques of 

eDNA analysis for a single sample can provide a diverse data set to assess complex interactions 

within an environment.  

Thesis Objective 

This thesis aims to assess the ecological impact of aquacultural practices through eDNA 

analyses. Specifically, we propose to use eDNA as a multi-level surveillance technique for 

assessing the distribution of farm effluent. Our goal was to develop sensitive eDNA extraction 

and amplification techniques, characterize three-dimensional plumes of fish farm effluent, assess 

microbial community composition, and explore transgene construct mapping within complex 

marine environments. Specifically, we address two critical issues associated with open-water 

aquaculture surveillance. 

 In chapter two we address the increase of transgenic organisms in aquaculture and the 

need to detect potential transgenic escapees in aquatic environments. We designed a nested PCR 

assay to detect the growth hormone transgene from transgenic Coho salmon, without interference 

from their wild-type counterparts. We then established the detection distance of the growth 

hormone transgene from an effluent outflow pipe, and the assay’s sensitivity for monitoring the 

use of transgenic organisms. In chapter three, we address how the plume of eDNA from a marine 

fish farm is driving change in the surrounding bacterial community. We conducted a three-

dimensional transect sampling of the bay surrounding a Chinook salmon farm to investigate the 

relationships between Chinook salmon eDNA and bacterial community diversity. These chapters 
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emphasize the range of applications eDNA can be used for aquatic surveillance as a bioindicator 

to facilitate management changes for sustainable rearing practices.  
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CHAPTER 2 

Detection of Growth Hormone Transgene Environmental DNA in Marine Waters Adjacent 

to A Transgenic Coho Salmon Rearing Facility 

 

Introduction  

 Aquaculture production has been rapidly increasing in response to the demand for, and 

limited natural supply of, seafood products (Sapkota et al., 2008). To match this demand there is 

a desire to improve aquaculture production efficiency through enhancement of, among others, 

growth, food conversion efficiency, and disease resistance. Genetic technologies have been 

explored to improve aquaculture, including production of genetically modified organisms 

(GMOs), or transgenic organisms, where foreign DNA associated with desirable traits are 

inserted into the host genome (Rasmussen & Morrissey, 2007). Growth-related transgenes are of 

great interest as candidates to enhance production efficiency due to their potential to stimulate 

appetite, growth rate and feeding efficiency (Fletcher & Davies, 1991; Rasmussen & Morrissey, 

2007; Singh et al., 2019). In fish, growth hormone (GH) genes are seasonally regulated by the 

central nervous system inducing synthesis of IFG-I and IGF-II (insulin-like growth factors), 

ultimately stimulating growth (McKay et al., 2004; Robertson et al., 2017). Growth hormone 

transgenic fish have been shown to increase their growth rate by up to 37 fold, while reducing 

feeding requirements by up to 25%, ultimately improving food conversion ratios (Devlin et al., 

1994; Raven et al., 2008; Higgs et al., 2009). The production improvements resulting from 
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transgenic technologies are of interest for commercial use due to their ability to increase 

aquaculture production efficiency; however, regulatory agencies have ecological and 

environmental concerns (Aerni, 2015; Devlin et al., 2006; 2015; Kapuscinsji et al., 2007).  

 Concerns about potential ecological impacts resulting from transgenic fish that have 

escaped confinement are diverse and wide-ranging (Devlin, Sundström & Leggatt, 2015). For 

example, it has been shown that cultured transgenic salmon have inferior reproductive ability 

relative to salmon from nature (Bessey et al., 2004; Fitzpatrick et al., 2011; Leggatt et al., 2017); 

however, it is possible that transgenic fish could hybridize with wild conspecifics and adapt over 

time, improving their ability to introgress into wild populations with potential ecological 

impacts. GH-transgenic Coho salmon (Onchorhyncus kisutch) also show more risk-taking 

behaviour compared to wild-type salmon thus increasing their competitive ability to acquire food 

(Sundstrom et al., 2004). Thus transgenic Coho salmon juveniles may proliferate in a 

environment with low predation pressure and a high abundance of food (Sundstrom et al., 2004), 

but be eliminated in environments with high predator load and low food supply. Given the 

potential for transgenic salmon to have ecological impacts, there is a need to detect escapees with 

high sensitivity and precision within aquatic environments (Naylor et al., 2005). 

 Distinguishing transgenic from wild-type coho salmon based on morphological 

characteristics is not reliable (Sundström, Lõhmus & Devlin, 2015).  Traditional capture-based 

survey methods would be ineffective to differentiate between wildtype and transgenic salmon, 

thus a molecular genetic approach over large geographic areas is required for transgene 

surveillance (Singh et al., 2019). Environmental DNA (eDNA), which is DNA extracted from 

environmental samples without direct sampling of the target species (Taberlet, Coissac, 

Hajibabaei, et al., 2012), has proven to be effective in detecting rare and early-stage invasive 
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species with great accuracy (e.g., Jerde et al., 2011; Goldberg et al., 2016). However, most 

published applications of eDNA for fish have employed mitochondrial DNA markers due to the 

high copy number and relative stability of mitochondrial DNA (Thomsen & Willerslev, 2015). 

Many factors influence the detection of eDNA, including abiotic environmental factors, target 

organism abundance and eDNA collection and extraction protocols, among others (Pilliod et al., 

2014; Eichmiller, Miller and Sorensen, 2016; Goldberg et al., 2016). Therefore, applications of 

eDNA detection to nuclear transgenic genes in aquatic environments may not be technically 

straightforward, but the ability to detect GMOs in aquatic ecosystems is an important goal. 

 Here we design and optimize nested eDNA PCR assays and estimate their sensitivity to 

detect the nuclear growth hormone construct (pOnMTGH1) in transgenic Coho salmon (Devlin 

et al., 1994). We apply this novel protocol to establish the transgene detection range from an 

outflow effluent pipe outside a research facility that rears transgenic Coho salmon. A reliable 

protocol to detect transgene constructs in aquatic environments will have important applications 

to environmental risk assessments, as well as for tracking during shipping and marketing. 

Materials and Methods  

Sample Collection  

 Sampling was conducted at the Fisheries and Oceans Canada facility in West Vancouver, 

British Columbia on November 19th, 2018. The facility has a single outflow pipe that discharges 

treated effluent from the fish rearing tanks into English Bay (Figure 1). Details on the housing 

and rearing of the transgenic Coho salmon at the West Vancouver facility are described in Alzaid 

et al., (2018). At the time of sampling, there was a total of 188 transgenic Coho salmon (average 

weight of 4.29 kg, total 807.9 kg of biomass) reared in two mesocosm tanks receiving and 

discharging 900 L of seawater per minute.  
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Open-water samples were collected in 90 mL narrow mouth bio-tile™ (48 mm) specimen 

screw top plastic containers (Thermo Scientific) starting from the outflow pipe and progressing 

in three transects (Figure 1a). From the outflow pipe, water samples were collected at 0 m, 1 m, 3 

m, 10 m, 30 m, 100 m, 300 m, and 1000 m from the outfall, as well as at the CAER dock 

(49.34033°N, -123.23259°E) and wharf (49.34012°N, -123.23303°E) outside the facility (Figure 

1a). Additionally, water was collected at four negative control sites in English Bay ranging from 

2.8 km to 6.4 km away from the facility (49.32958°N, -123.26285°E; 49.31273°N, -

123.24963°E; 49.28492°N, -123.21499°E; 49.32691°N, -123.18607°E; 49.33524°N, -

123.20764°E) (Figure 1b). Collection of water samples at each site was done at the surface and at 

0.5 m to 10 m depth (depending on available depth) as site replicates. Water samples were also 

collected from holding tanks for transgenic and non-transgenic Coho salmon as positive and 

negative controls. All samples were stored on ice then frozen at -20°C within three hours of 

collection, and later shipped, inside a cooler filled with dry ice, to the University of Windsor for 

storage at -20°C until eDNA extraction and analyses.  

Filtration and Extraction  

 

 Frozen water samples were thawed at room temperature and filtered with Cole-Parmer 

0.8 µm pore size, 47 mm nylon filters (# RK-15945-28). A single filtration control consisting of 

100 mL of ddH2O through a blank filter was included after all field sample filtrations were 

completed. After filtration, each filter was cut in half (including the lab blank) with sterilized 

scissors and forceps, and one half was manually cut into thin strips (the other half was preserved 

for future use) before being placed into 2 mL sterile tubes that contained 0.5 mL of 1.0 mm glass 

beads (Bio-Spec Cat. No. 11079110). Each tube was filled with 400 µL of digestion buffer 

(5.844g NaCl, 50mL 1M tris-HCl pH 8.0, 20mL 0.5M EDTA, 50mL 10% SDS, diluted to 1.0L 
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ddH2O) plus 200 µL of ddH2O and homogenized for 1 min at 3,000 strokes per minute three 

times using a Mini-Beadbeater-24 (Fisher Scientific LTD, Bio-Spec.). Samples were centrifuged 

for 1 min at 13 000 g, before adding 2 µL of Proteinase K (20 mg/mL) and incubated with gentle 

rocking at 60°C for 1.5 hours. After incubation, the samples were held at 95°C for 10 min to 

deactivate the Proteinase K. Samples were then centrifuged for 5 min at 13 000 g, after which 

150 µL of the supernatant was transferred to an extraction plate for robot-mediated bead 

extraction (Shahraki et al., 2019). Purified eDNA was eluted in 50 µL TE and stored at -20°C 

until further use. 

Primer Development  

 

 Two sets of nested PCR primers were designed to amplify the growth hormone transgene 

construct (pOnMTGH1) in Coho salmon (Table 1). One primer set was designed to anneal to the 

metallothionein-B promoter and the other to the growth hormone-1 coding region in the 

transgene construct (Devlin et al. 1994; 2004). This arrangement of DNA sequence does not 

occur in the wild-type coho salmon genome and thus our primers specifically amplify only the 

transgene.  The pre-amplification primer set (GH-115F & R; Table 1) was designed to amplify a 

115 bp amplicon, while the second, nested, primer set (GH-107F & R; Table 1) amplified a 107 

bp region within the initial 115 bp amplicon. Primers were designed using Primer3Plus and 

tested in the lab using DNA extracted from transgenic and non-transgenic Coho salmon fin clips 

to ensure the nested protocols were transgene-specific and to estimate sensitivity of transgene 

detection. Fin clip extracted DNA concentration was measured on a NanoVue 35 

spectrophotometer (General Electric Company) producing a concentration of 1457 ng/µL. 

Nested primer sensitivity was determined using 1:4 dilutions series for 16 dilutions (one part 

ddH2O and three parts extracted DNA), starting with the pre-amplification PCR (with 2µL of 
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template DNA) using the GH 115F & R primers followed by the nested triplicate quantitative 

real-time polymerase chain reaction (qRT-PCR) reactions (GH107F & R) using the dilution 

series of the fin clip transgenic Coho salmon DNA (details below). For all PCR assays, 

transgenic and non-transgenic Coho salmon DNA positive and negative controls (respectively) 

were used to ensure the nested primers only amplified the transgene construct. Sensitivity 

analysis was conducted for the dilution series standard curve to establish sensitivity threshold of 

the transgene construct as well as PCR efficiency. The sensitivity threshold was determined by 

the sensitivity limit of our nested PCR assay. 

Table 1: Transgenic Coho salmon nested PCR primers  

Primer Name Fragment size  Primer 
Annealing 

Temperature (°C) 

GH-107F  107 bp 

(nested) 

AAGAAGCGCGATCGAAAAG 

 

60 

GH-107R  107 bp 

(nested) 

ACACTGACTTCCCACTGAAAA 

 

60 

GH-115F 115 bp ACTAAAGAAGCGCGATCGAA 

 

55 

GH-115R 115 bp TGGTACACTGACTTCCCACTG 

 

55 

 

PCR Protocols  

 

 Our PCR assay consisted of a 20-cycle pre-amplification with primer set GH-115F & R, 

and a second (nested) qRT-PCR using the pre-amplification PCR product and primer set GH-

107F & R. The pre-amplification PCR consisted of 2.5 µL of 10x Taq reaction buffer (Bio Basic 

Canada Inc., Markham, On, Canada), 2.5 µL 20mM MgCl2, 0.5 µM of forward and reverse GH-

115F & R primers, 0.2 mM of each dNTP, 0.1 units of Taq polymerase (Bio Basic Canada Inc., 

Markham, On, Canada), 2.0 µL template DNA and ddH2O for a total 25 µL reaction volume. 
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PCR conditions were an initial denaturation of 95°C for 2 min, then 20-cycles of 1 min 95°C, 30 

s annealing at 55°C, 30 s extension at 72°C, with a single final extension at 72°C for 5 min and a 

final hold at 4°C. The second, nested, qRT-PCR consisted of 7.5 µL SYBR® green powerup 

(Thermofisher Scientific), 0.5 µM of forward and reverse GH-107F & R primers, 2.5 µL of the 

pre-amplification PCR product and ddH20 for a total of 15 µL. qRT-PCR conditions were: 50°C 

for 2 min, 95°C for 10 min, followed by 45 cycles of 95°C denaturation for 15 s and 60°C 

annealing for 1 min. This protocol was used for our nested PCR standard curve dilution series 

DNA as well as our field eDNA samples. The initial pre-amplification PCR (GH115F & R) was 

run as a single assay with 2 µL of positive (transgenic Coho salmon DNA) and negative (non-

transgenic Coho salmon DNA) controls, followed by the nested qRT-PCR run in triplicate for 

each PCR product and a second negative control, for a total of four assays per first round PCR. 

For every PCR plate we included a negative control of just PCR master mix (no template DNA). 

Therefore, the pre-amplification PCR included a negative control (as well as a positive control), 

and the nested qRT-PCR included a new negative control (as well as the initial negative control) 

run in triplicate. This was done to allow detection of contamination at each step of the nested 

PCR assay, should it occur.  

Analysis 

 We employed conservative criteria for a positive transgene detection for the nested qRT-

PCR assay.  Individual nested qRT-PCR CT values must be within the detection sensitivity range 

to be scored as a positive detection (CT=4.7 to 27.5), and two out of the three triplicates must be 

positive detections for the sample to be deemed a positive detection. We also used the 

quantitative estimate of target transgene copy number possible with qRT-PCR and our standard 

curve: transgene copy number was calculated based on the serial dilutions standard curve and 
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known stock DNA concentration. Starting DNA concentration (from fin clip extraction) was 

converted into number of transgene copies present. To calculate the number of transgenes 

constructs we used an estimated Coho genome size of 1,600,000,000 bp multiplied by 650 

Daltons (1 Dalton = 1.67 x 10-24g) to establish that in 1 ng there are 578 Coho salmon genomes 

present. The transgene construct pOnMTGH1 is present five times within a Coho salmon 

genome and is hemizygous (Devlin, Sundström & Muir, 2006; Uh, Khattra & Devlin, 2006), 

therefore we multiply by five and divide by two, resulting in 1445 transgene constructs in 1 ng of 

DNA (a single construct weighs 6.9 x 10-4). Ultimately, our stock DNA used to generate our 

dilution curve contained 840,990 transgene copies in 2 µL of DNA. 

Results and Discussion 

 Our nested qRT-PCR had a PCR efficiency of 103% (slope= -2.87) (Figure 2) and a 

detection limit range of 0.003 to 0.05 copies (Figure 2). Our assay is based on the second PCR in 

a nested design, resulting in a high PCR efficiency and low CT due to the preliminary 20-cycle 

PCR. In all PCR assays, none of our negative controls amplified at either stage of the nested 

PCR amplification, these included our filtration control, PCR blanks and the field negative sites; 

indicating no contamination due to lab or field procedures. This is remarkable due to nested PCR 

assays frequently generating type I error (false positive), and may be due to our stringent 

detection requirements which is critical to minimize bias in eDNA detection (Ficetola et al., 

2015). Furthermore, our nested PCR assay showed positive detection in the transgenic Coho 

salmon tank water and no positive detection for the non-transgenic tank water samples. 

Therefore, no wild-type Coho DNA would be identified as a positive detection with our nested 

assay.  
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With the extremely low copy number detection limit (0.003 to 0.05) our nested PCR 

assay is highly sensitive to very low concentrations of the target transgene in the environment, 

making our field sample analyses powerful, despite the low total water volume used for eDNA 

isolation (90 mL). In comparison, Lacoursière-Roussel et al., 2016, filtered 1.0 L water samples 

to detect Lake trout (Salvelinus namaycush) eDNA and estimated concentration through qPCR 

(mitochondrial COI gene markers) and standard curves (constructed from fish tissue DNA 

dilutions). Their reported eDNA concentrations varied from 2.6 to 4278.7 pg/L (2.6 x 10-3 to 4.27 

ng/µL). Another study from Lacoursière-Roussel et al (2016), tested different eDNA filter 

capture methods with Brook Charr (Salvelinus fontinalis) eDNA tanks samples, and quantified 

the concentration through qPCR (cytochrome b gene markers). They found that 1.0 L of water 

filtered through glass fiber 0.7-µm filters captured on average 81.12 ng/L (0.081 ng/µL) eDNA 

concentration, with a median of 4.67 ng/L (4.67 x 10-3 ng/µL). Our eDNA extraction method and 

qRT-PCR protocol for a nuclear transgene thus produced a comparable detection limit, despite 

the nuclear target transgene and small sample volume.  

 Only seven of our 62 field eDNA samples generated a positive detection for the growth 

hormone transgene (Table 1s). All three triplicates of these samples produced a positive signal 

with CT values ranged from 25 to 27 (0.003 to 0.025 transgene copies) and CT standard errors 

ranging from 0.032 to 0.135 (Supplementary Material Table S1). Among the seven positive field 

samples, five were within 10 m of the outflow pipe; however, we did not observe consistency 

across the depth replicates, nor was there consistency across the distances on the three directional 

transcripts (Figure 3). Two opportunistically sampled sites (30th Street and Wharf) that produced 

a positive signal were unexpected, since they are >1000m and >100m, respectively, from the 

outflow pipe. Other such sites, such as the CAER dock (~100m) and the very distant negative 
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control sites (2.8 km to 6.4 km), did not produce any amplification. Our detection profile shows a 

gradual decline in detection as distance increased from the outflow pipe with a loss of signal at 

10 m (other than the 30th Street and Wharf locations; Figure 1). The lack of spatial consistency 

among sites within 10 m of the outflow pipe (and between at depth and surface samples) may be 

the result of environmental factors such as marine current patterns, tidal flow, or upland runoff 

effects, or perhaps variation in the persistence of the target transgene construct itself. The 

observed very localized transgene signal detection is surprising, given that this facility has been 

rearing transgenic Coho salmon and discharging tank water into English Bay for three decades. 

The positive detections of the growth hormone transgene at the Wharf and 30th Street sites may 

be due to organic genetic material (e.g., feces, mucus, gametes etc.) aggregating, resulting in 

non-uninform distribution based on stochastic tidal patterns ultimately contributing to the spatial 

inconsistency of transgenic eDNA found from the effluent pipe. Ultimately, the low copy 

numbers detected is a major contributor to the lack of consistency among positive detections. 

Furthermore, the hemizygous nature of the construct within the Coho genome may also be 

influencing the spotty detection from environmental samples. 

 Of the 15 samples collected within three meters of the outflow pipe, only four produced a 

positive signal for the transgene (Figure 3), reinforcing that significant variation in transgene 

detection is observed at low concentrations in natural marine ecosystems. The small volume of 

water we filtered for eDNA extraction (90 mL) may be a contributing factor to our limited 

detection distance; however, logistics prevented the collection, proper preservation, and shipping 

of larger volumes.  Filtering a larger volume of water, such as the common one-liter sample 

volume, would increase our retention of organic material, and would thus increase our detection 

capacity by approximately ten-fold. However many factors can influence the quantity of DNA 
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retained after filtration and extraction, such as filter type extraction protocol, and PCR inhibitors 

(Eichmiller, Miller and Sorensen, 2016; Hinlo et al., 2017).  

 The use of eDNA detection methods to detect transgenic organisms may be restricted to 

rearing water at farms and rearing facilities to assess whether transgenic fish are present.  

Detection in natural aquatic environments using our nested PCR approach is inconsistent, and 

thus only positive detections are reliable, since it is likely our study had a high level of type II 

error (false negatives). However, this shortcoming may be overcome with larger filtration 

volumes, although the challenges associated with nuclear eDNA markers remain. The nested 

PCR assay described here provides a cost-effective and non-intrusive method of determining 

whether farm effluent does contain traces of the transgene. The detection distance from the 

effluent pipe of 10 m is relatively short; however, a limited spatial detection range may be 

advantageous when locating potential escapees due to the reduced interference from target 

eDNA carried from the captive fish. With open-water farms containing high densities of 

organisms, transgenic farm eDNA plumes may produce false positive detection for molecular 

assays trying to verify escapee presence. Our work also highlights the lack of long-term retention 

of the transgene construct within a natural marine ecosystem, even though transgene eDNA has 

been continuously drained into the bay for three decades. Therefore, we speculate transgenic 

eDNA does not persist in aquatic environments for extended periods, despite the long-term 

exposure from the rearing facility. Alternative applications for eDNA surveillance can include 

estimating the biomass of transgenic individuals in natural environments for ecological risk 

assessments (Li et al., 2015), as well as for testing shipments of live fish (or frozen seafood) to 

determine the presence, or absence of regulated transgenic organisms (Collins et al., 2013). 
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  The benefits of transgenic organisms to the aquaculture industry are substantial; 

however, a reliable means of surveillance is crucial for the widespread adoption of such 

technologies. We provide a sensitive transgene eDNA protocol to detect one candidate transgene 

construct in a complex aquatic environment. Our qRT-PCR assay effectively differentiates 

between transgenic and non-transgenic salmon; however, the nature of the nuclear gene target 

(transgene construct) may be contributing to our limited detection distance, especially when 

compared to traditional mitochondrial molecular markers for fin fish (Deiner et al., 2017b). 

Ultimately, this approach provides a means of detecting transgenic organisms from 

environmental samples without cross-amplification from the wild-type counterparts, perhaps 

improving the environmental security of rearing transgenic organisms. 
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Figures and Tables 

 

 

Figure 1: eDNA water sample locations within English Bay, Vancouver, British Columbia. Sample sites are 

identified with dots, and the sample design consists of transects from the DFO facility effluent pipe (“W” = west; 

“C” = center; “E” = east) plus opportunistically sampled sites (Wharf, CAER Dock) and far sites (Jericho, 

Lighthouse Park, Mid Burrand Sill, Dundarave and 30th Street). Figure 1a shows sample transect locations 0 – 
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1000m (Samples 0 – 30m are represented as one point). Figure 1b shows all additional far site locations taken within 

English Bay. 

 

 

Figure 1: Serial dilution of Transgenic Coho Salmon DNA nested PCR protocol with primer GH-107 nested within 

GH-115 after a pre-amplification of 20 cycles. X-axis represented in a log10-scale of transgene copy number; Y-axis 

represent the mean cycle threshold values from qRT-PCR.  
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Figure 3: Transgene copy number plotted against distance (m) of water samples from the effluent pipe (represented 

in a log10-scale). The three transects and depth/surface samples were combined, as well as the opportunistic 

samples, to represent the concentration of DNA by distance in a two-dimensional figure.  
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Supplementary Materials 
 

Supplementary Materials Table 1s: Sample site information and transgene eDNA detection results for each field 

sample (including transgenic tank control). Included are; GPS coordinates (latitude and longitude), depth (Surface 

and At Depth), Mean cycle threshold (CT) with standard error, Mean concentration (ng/µL), and number of 

triplicates positive. Subheadings used to separate samples but Field site, Opportunistic samples, Positive Controls, 

Negative Controls, and far sites 

Sample Latitude Longitude Depth Mean CT 
Mean Copy 

Number 
Triplicates 

Positive 

Field Sites 
      

E0m 49.3408 -123.232 Surface 27.7 ± 0.0110 0.0039 3/3 

S0m 49.3408 -123.232 Surface Undermined N/A 0/3 

W0m 49.3408 -123.232 Surface Undermined N/A 0/3 

E1m 49.3408 -123.232 Surface 26.1 ± 0.135 0.014 3/3  
49.3408 -123.232 At Depth Undermined N/A 0/3 

S1m 49.3408 -123.232 Surface Undermined N/A 0/3  
49.3408 -123.232 At Depth Undermined N/A 0/3 

W1m 49.3408 -123.232 Surface Undermined N/A 0/3  
49.3408 -123.232 At Depth 25.4 ± 0.0316 0.025 3/3 

E3m 49.3408 -123.232 Surface Undermined N/A 0/3  
49.3408 -123.232 At Depth Undermined N/A 0/3 

S3m 49.3408 -123.232 Surface Undermined N/A 0/3  
49.3408 -123.232 At Depth 26.9 ± 0.127 0.0075 3/3 

W3m 49.3408 -123.232 Surface Undermined N/A 0/3  
49.3408 -123.232 At Depth Undermined N/A 0/3 

E10m 49.34069 -123.232 Surface 27.1 ± 0.0798 0.0064 3/3  
49.34069 -123.232 At Depth Undermined N/A 0/3 

S10m 49.34072 -123.232 Surface Undermined N/A 0/3  
49.34072 -123.232 At Depth Undermined N/A 0/3 

W10m 49.34082 -123.232 Surface Undermined N/A 0/3  
49.34082 -123.232 At Depth Undermined N/A 0/3 

E30m 49.34054 -123.232 Surface Undermined N/A 0/3  
49.34054 -123.232 At Depth Undermined N/A 0/3 

S30m 49.34063 -123.231 Surface Undermined N/A 0/3 
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49.34063 -123.231 At Depth Undermined N/A 0/3 

W30m 49.34087 -123.231 Surface Undermined N/A 0/3  
49.34087 -123.231 At Depth Undermined N/A 0/3 

E100m 49.34004 -123.232 Surface Undermined N/A 0/3  
49.34004 -123.232 At Depth Undermined N/A 0/3 

S100m 49.34006 -123.23 Surface Undermined N/A 0/3  
49.34006 -123.23 At Depth Undermined N/A 0/3 

W100m 49.34067 -123.23 Surface Undermined N/A 0/3  
49.34067 -123.23 At Depth Undermined N/A 0/3 

E300m 49.33791 -123.234 Surface 43.3 1.46E-8 1/3  
49.33791 -123.234 At Depth Undermined N/A 0/3 

S300m 49.33806 -123.23 Surface Undermined N/A 0/3  
49.33806 -123.23 At Depth Undermined N/A 0/3 

W300m 49.33967 -123.228 Surface 42.6 ± 1.24 2.57E-8 3/3  
49.33967 -123.228 At Depth Undermined N/A 0/3 

E1000m 49.33266 -123.24 Surface Undermined N/A 0/3  
49.33266 -123.24 At Depth Undermined N/A 0/3 

S1000m 49.33222 -123.228 Surface Undermined N/A 0/3  
49.33222 -123.228 At Depth Undermined N/A 0/3 

W1000m 49.33576 -123.22 Surface 42.3 ± 1.01 3.27E-8 3/3  
49.33576 -123.22 At Depth Undermined N/A 0/3 

Opportunistic 
sites 

      

Wharf 49.34012 -123.233 Surface 27.2 ± 0.0274 0.0059 3/3  
49.34012 -123.233 At Depth Undermined N/A 0/3 

CAER Dock 49.34033 -123.233 Surface Undermined N/A 0/3  
49.34033 -123.233 At Depth Undermined N/A 0/3 

30th Street 49.33524 -123.208 Surface 27.4 ± 0.0854 0.0051 3/3  
49.33524 -123.208 At Depth Undermined N/A 0/3 

Positive Controls 
      

Transgenic Tank (1) - - - 25.9 ± 0.169 0.016 3/3 

Transgenic Tank (2) - - - 26.1 ± 0.281 0.014 2/3 

Transgenic Tank (3) - - - 24.5 ± 0.210 0.05 2/3 

Transgenic Fin Clip - - - 12.6 ± 0.089 722 3/3 

Negative 
Controls  

      

Non-Transgenic Tank 
(1) 

- - - Undermined N/A 0/3 

Non-Transgenic Tank 
(2) 

- - - Undermined N/A 0/3 

Non-Transgenic Tank 
(3) 

- - - Undermined N/A 0/3 
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Non-Transgenic Fin 
Clip 

- - - Undermined N/A 0/3 

Filter Control - - - Undermined N/A 0/3 

PCR 1st negative  - - - Undermined N/A 0/3 

PCR 2nd negative (1) - - - Undermined N/A 0/3 

PCR 2nd negative (2) - - - Undermined N/A 0/3 

PCR 2nd negative (3) - - - Undermined N/A 0/3 

Far sites       

Lighthouse Park 49.32958 -123.263 Surface Undermined N/A 0/3  
49.32958 -123.263 At Depth Undermined N/A 0/3 

Mid Burrard Sill 49.31273 -123.25 Surface Undermined N/A 0/3  
49.31273 -123.25 At Depth Undermined N/A 0/3 

Jericho 49.28492 -123.215 Surface Undermined N/A 0/3  
49.28492 -123.215 At Depth Undermined N/A 0/3 

Dundarave 49.32691 -123.186 Surface Undermined N/A 0/3  
49.32691 -123.186 At Depth Undermined N/A 0/3 
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CHAPTER 3 

Marine Environmental DNA plumes: Linking Salmon Farm eDNA and Bacterial 

Communities 

Introduction 
 

With the rapid increase of the human population in the 20th and 21st century, the demand 

for seafood has increased dramatically (Duarte et al., 2009b). Capture rates of wild fish could not 

match the growing demand, leading to the growth of aquaculture, specifically, rearing aquatic 

organisms in open water systems (Diana, 2009). This brings urgency to the need for 

environmentally sustainable practices to keep aquaculture within the carrying capacity of inland 

and costal bodies of water (Edwards, 2015). Modern aquaculture relies on agro-industrial 

pelleted feed, antibiotics, large areas of open water for production, and high rearing densities 

(Edwards, 2009; Sapkota et al., 2008). These factors increase the organic output from farms, and 

influence the surrounding microbial communities, potentially leading to eutrophication and 

reduced bacterial community (BC) diversity and changes in community composition (Heisler et 

al., 2008; Caruso, 2014). It is critical to maintain aquaculture rearing within ecological limits to 

minimize environmental degradation, as the environment provides vital ecosystem services for 

the health of not only the farmed fish, but also wild organisms and, ultimately, human well-being 

(Millennium Ecosystem Assessment, 2003). These considerations are important for open water 

cage-base fish production, as these systems generate organic effluent that is dispersed into the 

surrounding environment (Edwards, 2015). Therefore, quantitative monitoring of the effects of 

aquaculture systems on the surrounding ecosystem to establish guidelines suited for 

environmental protection is overdue (Cole et al., 2009). 
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Methods for aquatic ecosystem assessment are usually based on direct sampling 

approaches (e.g., visual surveys, vertebrate and invertebrate capture-based assessments, water 

quality measurements, candidate bacterial species culture) that are expensive and time 

consuming, especially in remote areas (Lacoursière-Roussel et al., 2016a).  Monitoring aquatic 

ecosystems with molecular genetic approaches is a more efficient, cost effective, and non-

destructive option (Creer et al., 2016). Environmental DNA (eDNA) is extracted from material 

filtered from water samples and used to assess species presence or community composition 

based on sloughed material, or whole microorganisms present in the water sample (Taberlet et 

al., 2012; Thomsen & Willerslev, 2015). Using specific polymerase chain reaction (PCR) 

primers to amplify and quantify template eDNA from one or more species in an environmental 

sample can be a powerful approach to environmental assessment (Deiner et al., 2017; Ficetola et 

al., 2008). Aside from determining the presence/absence of a target species, the relative 

abundance of the target DNA can be estimated using quantitative real-time PCR (qRT-PCR) 

assays (Kelly et al., 2014; Lacoursière-Roussel et al., 2016a). However, to effectively monitor 

aquatic systems and diagnose specific changes that may result from fish farming, more than just 

the presence of the farmed fish species eDNA must be considered: specifically, the bacterial 

community composition (BCC) can provide valuable ecosystem health information (Rosa et al., 

2001; Luna et al., 2013). High-throughput sequencing (HTS) of eDNA samples can be used to 

characterize the BCC and thus indirectly,  potential resulting cascade effects (Bentzon-tilia & 

Sonnenschein, 2016; Abdelfattah et al., 20z18). Combining the detection and quantification of 

farmed fish eDNA with BC characterization can provide insights into the potential scope for fish 

farm effects on the surrounding aquatic ecosystem. 
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Previous studies have used eDNA analyses to address diverse issues concerning the 

distribution of fishes and the composition of complex communities in costal and inland bodies of 

water. For example, Takahara et al., (2012) demonstrated that common carp (Cyprinus Carpio 

L.) biomass and eDNA concentration were positively correlated, and that eDNA could be used to 

estimate the species distribution in a natural environment. O’Donnell et al., (2017) found 

evidence of a decrease in fish community similarity based on eDNA with distance between 

sampling sites in a marine offshore environment. Those two studies demonstrate eDNA 

applications for single fish species and fish species communities, highlighting the diverse 

potential for eDNA-based monitoring of vertebrates in aquatic ecosystems. One such application 

is to monitor commercial aquaculture facilities using organic waste generated from fish in caged 

aquaculture systems dispersed into the surrounding water. The effluent from such facilities can 

potentially affect BCC (Olsen & Olsen, 2008). For example, Olsen et al., (2017) reported that the 

nutrient-loading from a Chilean salmon farm had a significant impact on the BCC in the 

surrounding waters; however, they did not test for spatial or temporal effects. Little is known 

about the potential interactions between salmon farm eDNA and aquatic microbial composition 

(e.g., how microbes effect the degradation of eDNA or how eDNA affect the composition of the 

BC). Using eDNA to measure potential fish farm effects on the surrounding ecosystem may 

provide a cost effective and accurate methodology for quantifying aquaculture impacts on the 

immediate environment.  

 Our study was designed to characterize the spatial and temporal patterns of fish eDNA 

and BC diversity around a commercial marine salmon farm.  The study was conducted off 

Quadra Island, British Columbia, Canada, where an organic Chinook salmon farm rears its fish 

at low densities. The farm is situated in the Discovery Passage, a narrow channel that connects 
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two larger bodies of water, where the marine water is thoroughly mixed through tidal flow. We 

hypothesize that the nature and position of the net-pens will affect the landscape of eDNA within 

the well-mixed marine system (Lin et al., 2012), and that eDNA can be used as a measure of 

farm effluent to estimate its influence on the surrounding microbial diversity. We predict that the 

distance from the net-pens will directly affect the eDNA landscape (decrease with distance), but 

that sampling depth will not have an effect due to the well-mixed characteristics of the bay. We 

also predict a seasonal effect on eDNA concentration due to changing tidal patterns and salmon 

spawning in the fall. To test these predictions, we sampled water in a three-dimensional grid-

based survey, and measured Chinook eDNA concentration and BC alpha and beta diversity over 

three days in the spring and fall. We combined nested quantitative real-time PCR (qRT-PCR) 

and HTS to quantitatively characterize the effects of the fish farm on the distribution of the 

eDNA signal (the farm “eDNA plume”) and the BC. The application of a combination of eDNA 

analyses and HTS metabarcoding of BCC to quantify the plume of a commercial salmon farm 

may help regulatory agencies to set evidence-based environmental protection protocols. 

Materials and Methods 

Study System 

 

Yellow Island Aquaculture (YIAL) is a Chinook salmon farm and hatchery that employs 

organic rearing practices and is located in the Discovery Passage between Vancouver Island and 

Quadra Island (Figure 1). This 25 km marine channel has strong currents (up to 30 km/hr), which 

provide mixing of nutrients and particulates throughout the ecosystem. The YIAL net-pen site 

receives particularly strong currents from the Seymour Narrows (Discovery Passage), providing 

exceptional tidal mixing of the marine water year-round. The YIAL Chinook salmon are reared 

at low densities (5 kg/m3) and are fed at < 2% body weight per day.  
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Sampling  

 

Marine water samples were collected by boat at ~50 sites in radiating transects around the 

YIAL net-pens (Figure 1) each day. Depending on weather conditions, the total number of 

sample sites varied from 48 to 53 per day. Each site was sampled at three depths (1 m, 5 m, and 

10 m) using one litre Van Dorne bottles. Immediately after collection, water samples were 

transferred into sterile 500 mL screw top Nalgene Bottles and kept in a cooler on ice until 

filtration. Sampling was conducted in the spring (n = 436) and fall (n = 424) of 2018 over three 

consecutive days, between 9:00 am and 12:00 pm to account for tide and current changes (June 

4th to 6th 2018, November 3rd to 5th 2018). Tide and current data for Seymour Narrows was 

collected from Fisheries and Oceans Canada (tides.gc.ca). Our sampling was conducted at the 

end of slack tide of each morning; our spring sampling was on an ebb tide while the fall 

sampling was on a flood tide. Nalgene bottles were sprayed with 10% bleach solution and rinsed 

with fresh water prior to leaving land each day before sampling. After 1.5 to 2 hours of sampling, 

samples were brought to shore and filtered through Whatman® glass microfiber filters (47 mm 

diameter; 1.2 µm pore size; Whatman, Maidstone, UK). To minimize DNA degradation, all 

samples were filtered within 4 hours of collection using a vacuum pump. Filters were cut in half 

with sterilized scissors and forceps and stored in separate 2 mL tubes filled with a high salt 

buffer (40 mL 0.5 M EDTA disodium dehydrate (18.61 g/100 mL, pH to 8.0 with NaOH), 25mL 

1 M sodium citrate (trisodium salt dehydrate 29.4 g/100 mL), 700 g ammonium sulfate 

(powdered), 935 mL ddH2O, 1 M H2SO4) and stored at -20°C. Each day after field samples were 

processed, two field control samples were prepared with distilled water filtered and processed in 

the same manner as field samples, a total of 12 controls were created across the six days of 

sampling (three days in spring and three in fall). 
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eDNA Extraction 

 

  Field samples were thawed at room temperature in the lab and centrifuged at 13000 g for 

10 min to compact the filter paper within the 2 mL tube. The high-salt buffer was removed from 

the tube and we added 1.5 mL ddH2O to rinse the salt from the filter. Samples were centrifuged 

again at 13000 g for 5 min and the water was removed. The ddH2O rinse and removal was 

repeated, after which 200 µL of 1.0-mm packed dry glass beads (BioSpec) and 400 µL of 

digestion buffer (5.844 g NaCl, 50 mL 1 M tris-HCl pH 8.0, 20 mL 0.5M EDTA, 50 mL 10% 

SDS, diluted in 1L ddH2O) was added to the sample and homogenized for 3 min at 3,000 strokes 

per minute using a Mini-Beadbeater-24 (Fisher Scientific LTD, BioSpec.). Samples were then 

centrifuged at 13000 g for 5 min and 2 µL of Proteinase K (20 mg/mL) was added to each 

sample followed by incubation overnight at 37°C with gentle mixing. Following incubation, the 

Proteinase K was deactivated at 95°C for 10 min and the tubes centrifuged at 5000 g for 5 min. 

We removed 150 µL of the supernatant for robot bead extraction to extract eDNA (Tecan 

Freedom Evo150 Liquid Handling Platform, Perkin Elmer) following the protocol described in 

Shahraki et al., (2019). We eluted the eDNA in 100 µL of TE and stored it at -20°C until further 

use.  

Chinook eDNA Analysis  

Primer Development 

 

 Two sets of primers were designed to amplify a fragment of the Oncorhynchus 

tshawystcha (Chinook salmon) cytochrome c oxidase subunit 1 (CO1), using a two-step nested 

PCR protocol. This protocol consists of an initial pre-amplification PCR with one set of primers, 

and a second (nested) PCR to amplify a region within the first PCR’s amplicon. Sequence data 
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for the Chinook salmon CO1 gene was collected from NCBI GenBank (JX960926.1) and 

primers were designed using Primer3Plus. We aligned CO1 sequences of related Oncorhynchus 

species (O. keta, O. gorbushcha, O. mykiss, O. nerka, O. kisutch) and positioned primers for O. 

tshawystcha in a region with the highest sequence divergence from the other aligned sequences 

(Figure  2). Nested primers were designed to exclude most congeners; however, they can cross 

amplify O. kisutch DNA due to the close genetic relationship with O. tshawystcha. Target 

specificity of designed primers was checked in silico using NCBI BLAST (Altschul et al., 1997) 

with the GenBank database. The initial primer set (CO1-132F & R; Table1) was designed to pre-

amplify a 132 bp amplicon, while the second nested primer set (CO1-93F & R; Table1) 

amplified a 93 bp region within the initial 132 bp amplicon. Primer sensitivity was tested in the 

laboratory using Chinook salmon fin clip extracted DNA, and Chinook salmon mesocosm water 

filtered eDNA. Nested primer sensitivity was determined using a 1:4 dilution series (16 dilution 

rounds) of known concentration fin clip extracted Chinook salmon DNA, using the nested PCR 

protocol: pre-amplification using CO-132F & R primers followed by triplicate nested qRT-PCR 

(CO1-93F & R) (details below).  

Nested eDNA Amplification  

 

Nested eDNA PCR amplification consisted of a 15-cycle pre-amplification PCR stage 

with primer set CO1-132F & R and a second, 45 cycle, qRT-PCR stage using the pre-

amplification PCR product and primer set CO1-93F & R. Our nested PCRs included all samples 

collected from the field, including blank field controls, and lab-based PCR (negative) controls. 

Every pre-amplification PCR plate included a negative control consisting of a no template DNA 

reaction; these were included as templates in the second (triplicate) qRT-PCR run. We also 

included new negative (blank) controls in the second (nested) qRT-PCR to test for contamination 
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in the second, longer cycle PCR. The pre-amplification PCR stage consisted of 2.5 µL of 10x 

Taq reaction buffer, 2.5 µL of 20 mM MgCl2, 0.5 µM of forward and reverse primer (CO1-132F 

& R), 0.2 mM of each dNTP, 0.1 unit of Taq polymerase (Bio Basic Canada Inc., Markham, On, 

Canada), 2.0 µL extracted eDNA and ddH20 for a total 25 µL reaction volume. Pre-amplification 

PCR conditions were an initial denaturation of 95°C for 2 min, then 15 cycles of 1 min 95°C, 30 

s annealing at 55°C, 30 s for 72°C extension, final extension at 72°C for 5 min and final hold at 

4°C.  

The second qRT-PCRs (CO1-93F & R) consisted of 6 µL SYBR® green PowerUp, 3.15 

µL ddH2O, 0.5 µM of forward and reverse primer CO1-93 and 2.05 µL of pre-amplification PCR 

product for a total 12.05 µL volume. 10 µL of this was then transferred to a 384 well plate for 

thermo-cycling to minimize volume variation during transfer to the reaction plates. The qRT-

PCR consisted of an initial hold stage of 50°C for 2 min, then 95°C for 10 min, followed by 45 

cycles, of 95°C denaturation for 15 s, and 60°C annealing temperature for 1 min. The initial pre-

amplification PCRs were run as single assays, followed by nested qRT-PCRs (CO1-93) run in 

triplicate for each pre-amplification PCR product. All qRT-PCR reactions were 384 well plate 

reactions on the QuantStudio 12K Flex Real-Time PCR System (Applied Biosystems).  

eDNA Concentration Calculation  

 

To determine the concentration of Chinook salmon eDNA in our samples, we created a 

standard curve (see section 2.4) using our nested PCR assay and serially diluted known-

concentration Chinook salmon DNA. The serially diluted samples were amplified in triplicate 

with the nested PCR assay (as above) to produce relative cycle threshold (CT) values for each 

dilution. We fit a log-linear curve to the Chinook salmon DNA concentration and relative CT 
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data to allow the conversion of CT values into initial template eDNA concentrations (Ellison et 

al., 2006). eDNA concentration value data were used for all analyses (i.e., we did not use raw CT 

value data for any subsequent analyses) 

Bacterial Community Analysis 

Next-Generation Sequencing Library Preparation 

 

We used 16S meta-barcoding to characterize the bacterial community at each of the 

sample sites. To optimize our use of available sample barcode sequences (n = 384) for high 

throughput sequencing (HTS) we used primer sequence variants (at the 5’ end) of the 16S V5-V6 

primers (He, Chaganti & Heath, 2018)  (Table 1). Amplification of the V5-V6 region of the 16S 

rRNA gene (~350 bp) consisted of a first round PCR with 2.5 µL of 10x Taq buffer, 3.5 µL of 

20mM MgCl2, 0.2mM of each dNTP, 0.5µM of each forward and reverse primer, 0.1 unit of Taq 

polymerase (Bio Basic Canada Inc., Markham, On, Canada), 2 µL of eDNA sample and ddH2O 

to 25 µL total volume. PCR conditions were set to an initial denaturation of 95°C for 2min, then 

40 cycles of 1 min 95°C, 30 s annealing at 55°C, 30 s for 72°C extension, final extension at 72°C 

for 5 min and final hold at 4°C. First round PCR products were cleaned to remove primer dimer 

and fragments less then 100 bp using Agencourt AMPure XP beads (Beckman Coulter Genomics 

GmbH, Mississauga, ON, Canada).  

We used a second short-cycle ligation PCR with the first round PCR amplicons as 

template to add the HTS adaptor sequences and sample barcodes for library preparation. The 

ligation 6-cycle PCR consisted of 7.5 µL ddH20, 2.5 µL of 10x Taq buffer, 3.5 µL of 20 mM 

MgCl2, 0.2mM of each dNTP, 0.5 µL Uni-B adaptor (Table 1), 0.5 µL Uni-A Barcode, 10 µL of 

cleaned PCR product, and 0.1 unit of Taq polymerase (Bio Basic Canada Inc., Markham, On, 
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Canada). The second short cycle PCR consisted of a 2 min denaturation at 95°C for 2 min, 

followed by 6 cycles of 95°C denaturation for 30 s, 55°C annealing for 30 s, 72°C elongation 

temperature for 30 s, and a final extension at 72°C for 5 min with a final hold at 4°C. Final 

barcoded PCR products were run on agarose gel to determine band intensity, and then pooled, 

based on band intensity. Finally, samples were purified using an Epoch Life Sciences, 

GenCatchTM PCR purification kit and quantified using a High Sensitivity DNA chip on an 

Agilent 2100 Bioanalyzer (Agilent Technologies, Mississauga ON, Canada) to determine DNA 

concentration. Library pools were diluted to 60pm/L before loading on to Ion Gene Studio S5 

(Thermo Fisher Scientific) 530 chip for sequencing. 

HTS Data Analysis    

 

Demultiplexing and quality filtering of raw sequence data was performed in QIIME 1.9.0 

(Caporaso et al., 2011). The 16S rRNA split library was filtered with minimum quality score = 

25, minimum/maximum length = 200/1000, no ambiguous bases, no mismatches allowed in the 

primer sequence and variable barcode length; however, primer sequences were not removed 

from the sequences (to differentiate between 16S PCR primer variants). Operational taxonomic 

units (OTUs) were defined with 97% sequence similarity using the default UCLUST algorithm 

with all sequence data from the split library. The resulting OTU table was filtered to remove 

OTUs with fewer than 10 reads as well as all taxonomically unassigned or non-bacterial OTUs.  
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Statistical analyses  

eDNA Concentration Analyses 

 

Data Transformation: We found many samples amplified at extremely low CT values, 

generally indicative of high template concentrations; however, these were determined to be due 

to false amplification resulting from the first-round PCR products dimerizing with the second 

PCR primers. To confirm this, we selected 16 random PCR samples with CT values below 20 

and characterized them on an Agilent 2100 Bioanalyzer (Agilent Technologies, Germany); all 

samples showed no evidence of the expected DNA amplicon. Instead, very small fragments were 

identified, consistent with amplification of dimers in our nested PCR assay.  Therefore, samples 

with CT values < 20 were identified as false positives and set to a template DNA concentration of 

zero for our analyses. We also set all qRT-PCR assays with “undetermined” CT values, or CT 

values > 38, to a template concentration of zero. We included all qRT-PCR triplicate data from 

each sample (codes as replicates) in our analyses, this resulted in a skewed towards zero 

distribution. To compensate for this, we transformed the data using arcsine square root (Sokal 

and Rohlf, 2012).  

Concentration contours were computed using Surfer® 16.6.484 (Golden Software, LLC) 

for each day and depth of sampling to visually represent the spatial distribution of Chinook 

eDNA concentration within the bay. The mean eDNA concentration (ng·µL-1) from the qRT-

PCR triplicates was used for each sample site. Data for each day was then plotted using a radial 

basis gridding function to generate the concentration contour maps. Each map was developed 

with the same contour concentration scale for consistency and to allow interpretation of relative 

color among figures. 
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All statistical analyses for eDNA concentration were done in R Studio (RStudio Team 

2015). We tested for the effect of five categorical independent factors: season (spring, fall), day 

(1 – 3), distance (in the net-pens (50m x 150m), close (375m x 625m), medium (500m x 875m), 

far (750m x 1250m)), polar direction (North, North West, West, South, South West, in the net-

pens), and depth (1m, 5m, 10m), with general linear models (GLM). 

We analyzed our eDNA concentration data starting with a temporal model that included 

all factors and possible two-way interactions (besides day interactions) to determine the role of 

two temporal effects: 1) replicate sampling “day” effects and 2) season effects.  

We then separated our data by season to test for spatial effects (depth, polar direction and 

distance) and their interactions on Chinook salmon eDNA distribution, as well as day effects 

(without interactions). We used Tukey pairwise comparisons to test for subfactor differences for 

all significant main effects. All GLM model outputs were generated from a Type II analysis of 

deviance (R package “car”, version 3.0-7) for GLM model objects to produce F-test statistics.   

BCC: Alpha and Beta Diversity 

 

 The alpha diversity measure Chao1 was estimated for the BC at each sampled site using 

QIIME 1.9.0 (Caporaso et al., 2011). The final filtered OTU tables were rarefied to 1200 reads, 

and Chao1 was calculated for each sample based on the rarefied data. Beta diversity estimates 

were generated in PAST 4.03. (Hammer, Harper and Ryan, 2001) where the final filtered OTU 

table (not rarefied) was input into a multivariate ordination principle component analysis (PCA) 

to generate principle components (PCs) via a correlation matrix, for each sample. Two principle 

components (PC 1 and 2) were chosen as independent variables for our analyses; PC 1 with an 

eigenvalue of 327 and explaining 22% of the variance, and PC 2 with an eigen value of 199 and 
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explaining 13% of the variance. Chao 1 and the two PCs were analyzed in the same manner as 

our eDNA analyses (see above); however, with linear models.  

Chinook eDNA and Microbial Diversity Spatial Correlation  

 

 We tested for correlations between Chinook eDNA concentration (arcsine square root 

transformed) and measures of BC diversity (Chao1, PC 1 and 2) using R Studio (RStudio Team 

2015). The averages of the triplicate estimates of the qRT-PCR eDNA concentration estimates 

were used to correlate with BC metrics from the same sample.  We performed the Pearson 

correlation analyses separately for the two sampling seasons, but across all sample days, sites, 

and depths within season combined. We also performed a Mantel test using PAST 4.03. 

(Hammer, Harper and Ryan, 2001) for matrix co2rrelations between a Bray-Curtis Similarity 

Matrix generated from our filtered OTU table, and an eDNA concentration (not transformed) 

pairwise Euclidean distance matrix with 9999 permutations. 

Results  

Primer Specificity  

 

 We aligned mitochondrial CO1 sequences of O. keta, O. gorbushcha, O. mykiss, O. 

nerka, and O. kisutch against O. tshawystcha to establish the sequence similarity of our nested 

primer for cross amplification (Figure 2).  Our Chinook salmon pre-amplification primers (CO1-

132F & R) and nested primers (CO1-93F & R) most closely matched O. kisutch CO1 sequence 

(CO1-132F = 100%, CO1-132R = 95%, CO1-93F = 100%, CO1-93R= 100%) due to their close 

genetic relationship. Other Oncorhynchus species sequence similarities to our Chinook nested 

primers ranged from 70% to 95% and can be seen in Figure 2. 
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eDNA Concentration 

 

 Our field controls included 12 blank samples, and thus our triplicate nested qRT-PCR 

assay had a total of 36 field control reactions. Of the 36 controls, 13 produced CT values ≥ 38 

and the remaining 23 produced CT values ≤ 9, all indicative of no detectable Chinook salmon 

DNA.  For the nine 384-well plate qRT-PCRs runs, we included 27 pre-amplification PCR blank 

controls, and 27 nested 2nd round qRT-PCR blank controls. Among the 27 pre-amplification PCR 

blank controls, five produced CT values ≥ 38, and the remaining 22 produced CT values ≤ 10, all 

indicative of no detectable Chinook salmon DNA. Of the 27 nested 2nd round qRT-PCR blank 

controls, all produced undetermined CT values (as these reactions had no pre-amplification, they 

did not produce primer dimer amplification CT values). All field samples with CT ≥ 38 were set 

to a template concentration of zero, consistent with the limit of detection generated in our 

standard curve (see below).  

 Our nested qRT-PCR has a PCR efficiency of 95% (slope=-3.44; Figure 3) and had a limit 

of detection of 2.31 x 10-7 ng·µL-1 and the triplicates generally had low standard error. At very low 

concentrations of eDNA (1.0 x 10-8 ng·µL-1), our assay produces high standard error among the 

triplicates (Figure 3). Therefore, we set our detection limit to be consistent with our PCR negative 

controls (CT = 38). In total, we assayed Chinook salmon eDNA samples using 2,425 qRT-PCRs 

(including triplicate assays), of those, 911 qRT-PCRs were either below the detection threshold or 

were identified as showing primer dimer amplification (see above) and were thus set to zero 

template concentrations. The 1513 positive Chinook salmon eDNA assay concentrations ranged 

from 5.18 x 10-6 ng·µL-1 to 9.5 x 10-2 ng·µL-1. The mean (± SEM) concentration of all the 2,425 

reactions (including zeros) was 2.90 x 10-4 (± 1.55 x 10-5 ng·µL-1). The mean Chinook salmon 

eDNA concentration for the spring sample (including zeros) was 2.50 x 10-4 (± 1.75 x 10-5 ng·µL-
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1). The mean concentration for fall sample (including zeros) was 3.37 x 10-4 ng·µL-1 (± 2.59 x 10-

5). To visualize the spatial distribution of eDNA within the bay, we computed contour 

concentration maps for each day and depth within both seasons (Figure 4).  

eDNA Concentration GLM models 

 

 We used a GLM model to test for temporal effects (i.e., day and season) on eDNA 

concentration; this produced significant effects for season (p = 1.9 x 10-2), day (p = 9.4 x 10-3), 

polar direction (p = 1.9 x 10-7), and multiple interactions effects (Supplementary Table S1). We 

then used separate season models to analyze for spatial effects on eDNA concentration in the 

spring and fall. Our spring model produced significant effects for day (p = 5.7 x 10-6), depth (p = 

3.9 x 10-3), polar direction (p = 0.01), and interaction effects for depth x polar direction (p = 1.0 

x 10-3), distance x polar direction (p = 0.05Table 2). We ran a Tukey post hoc analysis and found 

significant differences between depth 1m versus 5m (p = 0.01), 5m versus 10m (p=0.03), and 

northwest versus west (p=0.01; Supplementary Table S3). Our fall model produced significant 

effects for distance (p = 0.02), depth (p = 0.02) polar direction (1.2 x 10-7), and interactions 

effects for depth x polar direction (p = 4.1 x 10-3) and distance x polar direction (p = 4.4 x 10-4; 

Table 2). We ran a Tukey post hoc analysis and found highly significant differences for distance 

localized to only the net-pens (p = < 0.0001), depth between 1m and 5 m (p = 0.05), and several 

polar directions (Supplementary Table S3). 

Bacterial communities  

 

Approximately 24 million raw sequence reads were obtained from HTS of the PCR 

amplified V5 and V6 regions of the 16S rRNA gene. Once singletons, doubletons, and 

unassigned and non-bacterial sequences were removed, approximately 11.5 million reads 
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remained across 5398 OTUs. When we removed all OTUs with read numbers <0.001% of the 

total sequence read number, 10,394,800 sequences across 1498 OTUs remained.  

Alpha Diversity  

 

To calculate alpha diversity (Chao1), samples were rarefied to 1,200 sequence reads and 

65 out of 770 samples that did not reach the 1,200 read depth threshold and were dropped from 

the alpha diversity analysis. We then analyzed the Chao1 index with our initial model to test for 

temporal effects. Our model generated a significant effect for season x depth (p = 0.01; 

Supplementary Table S3). We then separated the models into spring and fall to test for spatial 

effects within each season. Our fall model produced no significant effects, and our spring model 

produced a distance effect (p = 0.05; Table 3). We then ran a Tukey post hoc analysis and only 

found a marginally significant difference between distances far and medium (p=0.09; 

Supplementary Table S5) 

Beta Diversity  

 

PC 1 analyzed with the temporal model generated a significant, effect for season (p = 2.2 

x 10-16; Supplementary Table S2). We then separated our analysis into seasonal models. Our fall 

model produced no significant effects (Table 3), and our spring model only produced significant 

effects for day (p = 1.2 x 10-4; Table 3).  

PC  2 analyzed with the temporal model produced significant effects for day (p = 2.3 x 

10-3), season (p = 2.2 x 10-16), distance (p = 0.01) and interaction effects for season x distance (p 

= 2.2 x 10-3) and season x polar direction (p = 0.01; Supplementary Table S2). We then separated 

our models into season-specific analyses. Our fall model produced significant effects for day (p 



 

 
56 

 

= 1.3 x 10-8), distance (p = 1.1 x 10-3), and depth (p = 5.2 x 10-3; Table 3). We then ran a Tukey 

post hoc test for depth and distance, and found that the differences between 1m and 10m were 

significant (p = 3.8 x 10-3), and differences between far and close distances were also significant 

(p = 7.0 x 10-4; Supplementary Table S3). Our spring model produced significant effects for day 

(p = 9.4 x 10-3), distance (p = 5.6 x 10-3), and polar direction (p = 0.04; Table 3) We then ran a 

Tukey post hoc test for distance and polar direction and the driving factor for the distance effect 

was the difference between the far and medium (p = 8.6 x 10-3) and far and net-pens distances (p 

= 0.02), and polar direction had no individual factor driving significance (Supplementary Table 

S3). 

Microbial Diversity and eDNA Spatial Correlation  

 

 We performed a correlation analysis comparing our BC metrics (Chao1, PC 1 and PC 2) 

with eDNA concentration (arcsine square root transformed) for the two sampling seasons 

independently (Figure 5). In the spring season, Chao1 produced a significant positive correlation 

with eDNA concentration; however, it explained very little of the variance (p = < 0.001, R = 0.3; 

Table 7), and neither of the principle component axes (PC 1 and 2) generated significant 

correlations. In the fall season, Chao1 (p = < 0.001, R = 0.2) and PC 1 (p = 0.02, R = 0.1) 

produced significant positive correlations with eDNA concentration but no correlation for PC 2 

(p = 0.77, R = -0.01); however, again little of the variance was explained. Our Mantel test 

comparing the Bray-Curtis similarity matrix and eDNA concentration (not transformed) 

Euclidean distance matrix produced no significant correlation in either season (spring: p = 0.8, 

fall: p = 0.9). 

Discussion 
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 As the demand for seafood continues to expand, more aquaculture facilities will rear high 

densities of fish in open water cage systems, leading to increased organic output from farm 

effluent that can drive changes in the surrounding ecosystem (Wu, 1995; Karakassis et al., 2000). 

Many factors can influence the dispersal of nutrients and the intensity of environmental 

interactions driven by farm sites, including rearing density, feeding practices, water mixing, 

proximity to other farm sites, and the nature of the microbial ecosystem (Olsen, 2008; Edwards, 

2015; Ottinger et al., 2016). Establishing how sloughed genetic material from net cage 

aquaculture systems disperses in a natural and complex environment and how it may interact 

with the surrounding BCs could help to establish effective and evidence-based regulations for 

environmental protection. Here we used Chinook salmon eDNA and bacterial community 

metabarcoding as markers to map the area of effect of a salmon farm site and to quantify how the 

plume of the farm varies spatially and temporally to gain insight on how farm effluent diffuses in 

a complex marine environment.  

 To quantitatively map the salmon farm eDNA plume, we assessed Chinook eDNA 

concentration variation and BC diversity around a commercial salmon farm in British Columbia, 

Canada.  We examined spatial and temporal factors that we predicted would be important for 

eDNA concentration and microbial diversity variation. Previous research has focused on the 

persistence of eDNA under various environmental conditions and on quantifying how far the 

eDNA signal can be detected away from the source organism(s) (e.g., Lance et al., 2017; Pilliod 

et al., 2014; Balasingham et al., 2018). Such studies are integral to understanding how abiotic 

and biotic factors influence the detectability of eDNA in complex natural ecosystems. However, 

most such studies quantify eDNA at a limited number of discrete points within a one or two-

dimensional sampling design. Depending on the specific study system, the eDNA plume from 
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the source organisms needs to be assessed in three-dimensions, to provide a complete picture of 

eDNA-ecosystem interactions. Our results show evidence of eDNA heterogeneity within the 

three-dimensional sample space, despite the well-mixed nature of the sampled marine system 

(Lin et al., 2012). The stochastic nature of the eDNA concentration signal is highlighted in our 

eDNA concentration contour maps, which show chaotic temporal and spatial variation across the 

bay, at different depths and different times.  

 Our analyses of variation in eDNA concentration across the two seasons supported our 

hypothesis that seasonal differences in farm and tidal activity would significantly affect the 

landscape of eDNA within the bay. Our significant season effect of eDNA concentration was 

expected due to the Chinook salmon sexual maturation in the fall season: the release of gametes 

can contribute substantially to eDNA signal (Erickson et al., 2016). The life history stage of the 

target eDNA species has been shown to be an important factor for eDNA output, independent of 

gamete release, more specifically, the increased activity associated with mating behaviours 

(Laramie, Pilliod and Goldberg, 2015; O’Donnell et al., 2017). Seasonal effects on eDNA 

detection and distribution have been reported in previous studies, generally showing that species 

mating seasons are linked to increased detection of eDNA (De Souza et al., 2016). Interestingly, 

we found evidence of a day effect on eDNA concentration in the spring season sampling, but not 

the fall. The random day to day effects on the eDNA plume may be associated with tidal flow 

and/or variation in farm activity. However, the lack of day effects in the fall season may be due 

to stronger tidal flow (mean currents of 8.4 km/hr and fall 21.5 km/hr, spring and fall 

respectively) from the Seymour narrows producing greater mixing in the fall. Along with 

variations in tidal flow across seasons, the ebb and flood differences during samples times may 

also be contributing to the temporal effects and spatial effects detected. The ebb tide during the 
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spring sampling and flood tide during the fall sampling may influence the distribution of 

Chinook eDNA, as well as bacterial communities in the system.  

 Our spatial analysis of seasonal eDNA concentration was designed to test our hypothesis 

that the position of the fish farm should drive distance and polar direction effects on eDNA 

distribution in the bay, but that depth should not have an effect due to localized mixing. We 

found evidence of a consistently significant polar direction effect around the net-pens across both 

seasons. The bathymetry of the bay produces a localized gyre that drives water movement within 

the bay, we theorize the gyre flow influences the Chinook salmon DNA, ultimately producing 

directional effects. Surprisingly, we found significant depth effects in both seasons; we predicted 

depth effects would be minimal due to the well-mixed characteristics of the bay (Lin et al., 

2012). One possible explanation of these depth effects may be benthic organic material, 

originating from the farm, being re-suspended by tidal flow. Mean Chinook DNA concentrations 

for sampled collected at 1 m (Fall = 3.8 x 10-4, Spring = 1.9 x 10-4), 5 m (Fall = 9.2 x 10-3, Spring 

= 3.4 x 10-4) and 10 m (Fall = 3.3 x 10-4, Spring = 2.2 x 10-4) show higher concentrations for 5 m 

samplesUnsurprisingly, we also found a significant distance effect, where eDNA decreased with 

distance from the farm; however, the effect was limited to the fall season. The fact that distance 

effects were only found in the fall may be due to the higher point source eDNA at the net-pens 

resulting from the fish reaching sexual maturity and releasing gametes. The higher eDNA output 

may contribute to the diffusion and dilution patterns in the bay, despite the tidal mixing 

generated from Seymour Narrows and the bathymetry of the bay. YIAL is a relatively low-

production salmon farm (~50 metric tonnes), hence greater distance effects on farm eDNA 

plumes may be expected for larger farms. 

 Our analysis of BC diversity (Chao 1, PC 1 and 2) generally resulted in significant 
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seasonal effects, likely due to bacterial community variation with season due to temperature, 

nutrient and light effects (Treusch et al., 2009; Giovannoni and Vergin, 2012; Kaestli et al., 

2017). Curiously, we also found significant sample day effects, which we did not expect; 

however, short term temporal effects have been reported in other aquatic bacterial community 

studies (Yannarell et al., 2003; Crump and Hobbie, 2005; Shahraki, Chaganti and Heath, 2020).  

The variation in the BCC over the three sampling days is not likely associated with changes in 

the nature of the community, but rather with highly dynamic tidal flow regimes that affect 

species composition through replacement, although diel cycles may also play a role (Shahraki, 

Chaganti and Heath, 2020). Interestingly, our spatial effects on beta diversity were exclusive to 

PC 2, which was primarily loaded by Flavobacteriales species (Supplementary Tables S6). This 

bacterial order has been reported as a dominant taxonomic group in marine ecosystems, likely 

due to high levels of organic substrates, where they play a role in degradation and decomposition 

of organic matter (Waśkiewicz and Irzykowska, 2014). We found significant distance effects 

relative to the salmon farm in both seasons for PC 2, suggesting that farm output had a direct 

effect on BC diversity. The seasonality of the farm’s influence on the BCs extended across all 

measures of BC diversity (i.e. Chao 1, PC 1 and 2), highlighting the critical nature of 

environmental effects, including changes in tidal characteristics, that vary season to season. 

Intriguingly, we found significant depth effects in the fall season, despite the high tidal flows and 

expected water column mixing in the bay. We speculate that the very high tidal flows may stir up 

benthic microbes that are influenced by farm-related organic matter that settles at the bottom of 

the bay (Kawahara et al., 2009; Turner, Uy and Everhart, 2015; He et al., 2020). 

 To assess possible functional relationships between BC diversity and eDNA, we ran 

correlation analyses between various BC diversity metrics and Chinook salmon eDNA 
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concentration.  The observed positive relationship between eDNA and Choa1 represents an 

increase in bacterial species diversity with higher levels of Chinook salmon eDNA concentration. 

Our correlation analyses of beta-diversity (PC 1 and 2) and eDNA concentration produced a 

significant correlation, but only for PC 1 within the fall season. The positive correlation between 

PC 1 and eDNA concentration indicates that differences in eDNA concentration are associated 

with increased bacterial divergence. Samples with higher PC scores indicate a higher variation of 

bacterial species from the other samples, while samples with lower PC scores are similar. This 

increase in bacterial diversity is evident in the top three bacteria driving PC 1: Oceanospirillales, 

Rhodobacterales, and Flavobacteriales, especially compared to PC 2 which is mainly driven by 

Flavobacteriales. These three orders of bacteria are known for their diverse abilities to 

metabolize organic and inorganic materials for energy. More specifically, Flavobacterium have 

been found to hydrolyze polysaccharides (Waśkiewicz and Irzykowska, 2014), and 

Rhodobacterales have been shown to produce secondary metabolites from organic and inorganic 

compounds (Pohlner et al., 2019). We suspect the positive correlation between eDNA and BC 

diversity is the result of complex bacterial community interactions stemming from farm organic 

output, which is indirectly reflected in eDNA signal strength. Curiously, the BC beta-diversity - 

eDNA correlations were limited to the fall season, despite the consistent positive correlations 

between BC alpha diversity (Chao 1) and eDNA concentration in both seasons. We hypothesize 

this is due bacterial communities adjusting to the increase of temperature from the winter, 

allowing for BC growth and diversification into the summer. Our Mantel test did not show any 

correlation between Bray-Curtis and eDNA distance matrices, perhaps due in part to the low 

statistical power of the non-parametric Mantel test relative to our parametric correlation analyses 

(Legendre, Fortin and Borcard, 2015).  
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 Type I (false positive) and type II (false negative) errors are both critical considerations 

for interpreting eDNA analyses (Darling and Mahon, 2011). Negative controls are essential to 

assess field contamination to allow critical assessment of error in later interpretation of eDNA 

generated detection data (Ficetola et al., 2015). Because our nested PCR eDNA assay is highly 

sensitive, it is prone to detecting low levels of contamination, potentially inflating false positive 

outcomes. Although such errors may be present in this study, we compensated by setting 

stringent detection thresholds and by including all zero concentration data in our analyses. 

Therefore, with these adjustments, combined with the lack of evidence for false positives based 

on our negative controls, type I errors likely do not have a large effect on our overall spatial or 

temporal outcomes. Another possible source of false detection is related to the detection of wild 

salmon species; our nested primers will cross amplify Coho salmon eDNA, and, of course, wild-

source Chinook salmon eDNA. However, there is no expectation for substantial numbers of 

either species in the sampled area and the eDNA output from the farmed Chinook salmon should 

swamp possible wild source eDNA. Nevertheless, we cannot rule out the possibility of wild 

salmon eDNA affecting our results. 

 The aquaculture industry will continue to use open water cage systems to meet the 

demand for seafood, although there is increased regulatory pressure to limit such culture 

practices (Smart, 2020). As net cage aquaculture continues, the need to accurately measure the 

extent of impact of fish farms will become more urgent. We implemented a three-dimensional 

survey to assess if the nature and position of a salmon farm would influence the surrounding 

aquatic landscape using Chinook salmon eDNA and BC meta-barcoding data. We hypothesized 

that the net-pens would affect the landscape of eDNA, despite the well-mixed system, and that 

eDNA could be used as a measure of farm effluent to establish the “farm plume”. We found both 
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significant spatial and temporal effects on Chinook salmon eDNA concentrations around the net-

pens. Our results indicate that in complex and well-mixed system, eDNA can be still used as a 

reliable biological marker for salmon farm effluent, and thus possible environmental effects. Our 

BC analyses also showed spatial effects relative to the farm on BC diversity, plus we found 

significant correlations between BC diversity and Chinook salmon eDNA concentration. Thus, a 

combination of eDNA and BC analyses can provide insight into relationships between salmon 

farms and microbial community variation. The purpose of this study was to characterize the 

eDNA “plumes” from an open-water salmon farm and while both eDNA and BC diversity 

exhibited plume-like behaviour, more work needs to be done on the potential environmental 

impacts of such plumes. Therefore, using eDNA sampling to assess BCC and target vertebrate 

species can provide quantitative evidence of the spatial and temporal scope of influence for fin 

fish farms on the surrounding environment.  
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Figures and Tables 
 

Figure 2: Area map of study site Yellow Island Aquaculture (YIAL) between Vancouver Island and Quadra Island, British 

Columbia, Canada. Inset map shows Vancouver Island indicating where the YIAL site is (arrow). Approximate locations of the 

sample sites around the salmon net-pens are represented as black dots.
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CO1-132F + CO1-93F  

keta           5’ -  gcaggagcatctgtcgacttaaccatcttctccctccatttagctggaatctc 

gorbushcha     5’ -  gcaggggcatccgtcgacttaactatcttctcccttcatttagctggaatctc 

mykiss         5’ -  gcaggagcctctgttgatttaactatcttctcccttcatttagctggaatctc 

nerka          5’ -  gcgggagcctctgttgacttaaccatcttctcccttcatttagctggaatttc 

kisutch        5’ -  gcaggagcctcagttgatctgactatcttctcccttcatttagccgggatctc 

tshawytscha    5’ -  gcaggagcctcagttgatctgacgatcttctcccttcatttagccgggatctc 

__________________________________________________________________________ 

CO1-132R + CO1-93R   

keta           5’ -  ccattatcaacataaaacccccagctatttctcagtaccaaaccccgcttttt 

gorbushcha     5’ -  ccattatcaacataaaaccaccggcaatctctcagtaccaaaccccacttttt 

mykiss         5’ -  ccattattaacataaaacctccagccatctctcagtaccaaaccccccttttc 

nerka          5’ -  ccattattaatatgaagcccccagccatctctcagtaccagaccccacttttt 

kisutch        5’ -  ccattattaacataaagcccccagctatctctcagtaccaaaccccacttttt 

tshawytscha    5’ -  ccattattaacataaaacccccggctatctctcagtaccaaaccccacttttt 

 

Figure 2: Aligned mitochondrial CO1 sequences (5’ to 3’) of O. keta, O. gorbushcha, O. mykiss, O. nerka, O. kisutch, and O. 

tshawytscha. CO1-132 F & R primers are bolded, and CO1-93 F & R primers are highlighted in yellow. Red highlighted 

nucleotide base-pairs indicate mismatched sequences to O. tshawystcha within primer regions.  
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Figure 3: Nested PCR primer protocol (CO1-93F & R nested within C01-132 after 15-cycle pre-amplification PCR) 

of 1:4 serial dilution of fin clip extracted Chinook salmon DNA. X-axis represented in a log10-scale, showing DNA 

concentration (ng/µL), Y-axis showing the mean CT values of the nested qRT-PCR
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Figure 4: Chinook eDNA concentration contour maps for Spring (A) and Fall (B) seasons at each depth sampled. Yellow Island net-pens are represented in red 

and arcsine square root transformation DNA concentration (ng·µL-1) contours are represent with the dark blue to white gradient, lighter shades indicating higher 

eDNA concentrations. The land and regions not covered by sample sites are not shown.
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Figure 5: Scatter plots of bacterial community metrics (Chao 1, PC 1 and 2) versus average Chinook eDNA concentration (arcsine square root transformed), 

separated by season (fall and spring). Solid line shows Pearson correlation relationship. 
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Table 2: Primer Table: Chinook salmon nested PCR primers, Variations of 16S V5-V6 bacterial primers (Variable 

region underlined, Uni-A Forward (underlined sequence consisting of 10-12 base pair barcode sequence) and Uni-B 

adaptor Reverse primers.  

1. Variable sequence (underlined) in V5-V6 primers used to maximize sample barcode sequences for multiplex 

sequencing. 

2. Uni-A primer with 10-12 base sequences (“XXX…”) represents variable barcode (sample identifier) sequences. 

 

Table 2: Summary output table for general linear model analysis of eDNA concentration, separated by season 

(spring and fall) to test for spatial effects. Includes main effect factors and selected interactions, sum of squares 

(Sum Sq), degrees of freedom (DF), F-value (F), and p-value (P).  

Factor/Interaction 

Spring eDNA Concentration DF F-value p-value 

Day 2 12 5.74E-06 

Distance 2 0.45 0.63 

Depth 2 5.5 3.9E-03 

Target Primer Name Forward Primer Reverse Primer 

O. tshawytscha 

(Chinook) 

CO1-93 (nested) CTC CCT TCA 

TTT AGC CGG G 

TACT GAG AGA 

TAG CCG GGG G 

O. tshawytscha 

(Chinook) 

CO1-132 GCA GGA GCC 

TCA GTT GAT CT 

TGG GGT TTG GTA 

CTG AGA GA 

V5-V6 16S rRNA  16S_V5V6_A ACC TGC CTG 

CCG ATCG1 ATT 

AGA TAC CCN 

GGT AG 

ACG CCA CCG AGC 

CGA CAG CCA TGC 

ANC ACC T 

 

V5-V6 16S rRNA 16S_V5V6_C ACC TGC CTG 

CCG CTGA1 ATT 

AGA TAC CCN 

GGT AG 

ACG CCA CCG AGC 

CGA CAG CCA TGC 

ANC ACC T 

 

V5-V6 16S rRNA 16S_V5V6_D ACC TGC CTG 

CCG TAGC1 ATT 

AGA TAC CCN 

GGT AG 

ACG CCA CCG AGC 

CGA CAG CCA TGC 

ANC ACC T 

 

 Uni-A (Forward) 

Uni-B (Reverse) 

 

CCA TCT CAT 

CCC TGC GTG 

TCT CCG ACT 

CAG XXX XXX 

XXX X2 GAT ACC 

TGC CTG CCG 

CCT CTCT ATG GGC 

AGT CGG TGA TAC 

GCC ACC GAG C 
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Polar Direction 4 3.1 0.016 

Distance x Depth 4 0.89 0.46 

Depth x Polar Direction 8 3.2 1.0E-03 

Distance x Polar Direction 8 1.8 0.058 

Fall eDNA Concentration 

Day 2 2.7 0.065 

Distance 2 3.8 0.021 

Depth 2 3.5 0.027 

Polar Direction 4 9.5 1.23E-07 

Distance x Depth 4 1.7 0.14 

Depth x Polar Direction 8 2.8 4.14E-03 

Distance x Polar Direction 8 3.5 4.47E-04 

 

Table 3: Summary output table for linear model analysis of BC metrics (Chao 1, PC 1 and PC 2), separated by 

season (spring and fall) to test for spatial effects. Includes main effect factors and selected interactions, degrees of 

freedom (DF), F-value (F), and p-value (P).  

Factor/Interactions DF Chao 1 PC 1 PC 2 

Spring  F P F P F P 

Day 2 0.37 0.68 9.2 1.2E-04 4.7 9.4E-03 

Distance 2 3.0 0.051 1.3 0.25 5.2 5.6E-03 

Depth 2 1.6 0.19 1.4 0.24 0.12 0.88 

Polar Direction 4 0.35 0.84 1.6 0.15 2.5 0.042 

Distance x Depth 4 0.18 0.94 1.7 0.14 1.2 0.27 

Depth x Polar Direction 8 0.39 0.92 0.34 0.94 0.31 0.96 

Distance x Polar Direction 8 0.84 0.56 1.2 0.2 0.73 0.65 

Fall         

Day 2 
0.84 0.43 0.48 0.61 19 

1.34E-

08 

Distance 2 0.48 0.61 1.5 0.20 6. 1.1E-03 

Depth 2 2.5 0.081 1.7 0.18 5.3 5.2E-03 

Polar Direction 4 1.74 0.13 1.2 0.27 2.1 0.070 

Distance x Depth 4 0.74 0.56 1.0 0.38 1.0 0.39 

Depth x Polar Direction 8 1.7 0.089 0.42 0.90 0.70 0.68 

Distance x Polar Direction 8 0.66 0.72 0.59 0.78 0.84 0.56 
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Supplementary Materials  
 

Supplementary Table S1: Summary output table for general linear model analysis of eDNA concentration. 

Simplified model includes all factors and interactions, without sample day effect interactions, to test for season 

effects. Includes main effect factors and interactions, degrees of freedom (DF) F-value, and p-value. 

Factor/Interaction DF F-value p-value 

Season 1 5.4 1.99E-02 

Distance 2 0.77 4.62E-01 

Depth 2 0.031 9.70E-01 

Polar Direction 4 9.2 1.93E-07 

Day 2 4.6 9.41E-03 

Season x Depth 2 8.4 2.32E-04 

Season x Distance 2 3.1 4.64E-02 

Season x Polar Direction 4 4.2 2.14E-03 

Distance x Depth 4 1.5 1.79E-01 

Depth x Polar Direction 8 1.2 2.57E-01 

Distance x Polar Direction 8 3.2 1.16E-03 
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Supplementary Table S2: Summary output tables for linear model analysis of BC metrics (Chao1, PC 1 and PC 2). 

Simplified model includes all factors and interactions to test for temporal effects. Includes main effect factors and 

interactions, F-value (F), and p-value (P). 

Factor/Interaction Chao1 PC 1 PC 2 

  F P F P F P 

Day 1.24 0.29 2.43 0.09 6.12 0.00 

Season 

2.10 0.15 104.15 < 2e-16 435.13 

< 

2.2e-

16 

Distance 2.34 0.10 2.53 0.08 4.14 0.02 

Depth 0.50 0.61 0.68 0.51 0.24 0.79 

Polar Direction 1.09 0.36 1.92 0.10 2.29 0.06 

Season x Depth 3.98 0.02 2.43 0.09 0.17 0.84 

Season x Distance 0.03 0.97 0.56 0.57 6.13 0.00 

Season x Polar Direction 1.58 0.18 0.93 0.45 2.97 0.02 

Distance x Depth 0.72 0.58 1.62 0.17 1.59 0.17 

Depth x Polar Direction 1.89 0.06 0.56 0.81 0.41 0.91 

Distance x Polar Direction 0.69 0.70 0.54 0.83 0.73 0.67 
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Supplementary Table S3: Tukey post hoc table for eDNA, Chao 1 and PC 2 analyses (separated by season). Includes subfactor 

interactions (of significant factors tested in season analyses), difference of means (Diff), and p-value (P). 

Interactions Fall eDNA Spring eDNA Fall Chao 1 Spring Chao 1 Fall PC 2 Spring PC 2 

 Diff P Diff P Diff P Diff P Diff P Diff P 

Depth 

1 m x 5 m -2.22E-03 0.05 2.46E-03 0.01 -23 0.50   -0.028 0.18   

1 m x 10 m -4.44E-04 0.88 3.17E-04 0.93 -44 0.08   -0.050 3.80E-03   

5 m x 10 m 1.78E-03 0.14 -2.14E-03 0.03 -21 0.56   -0.023 0.32   

Distance 

Netpens x Close -2.48E-02 < 0.0001     3.7 0.99 1.2E-03 1.00 -0.63 0.20 

Netpens x Fedium -2.28E-02 < 0.0001     5.2 0.99 3.5E-02 0.80 -0.46 0.44 

Netpens x Far -2.41E-02 < 0.0001     -19.2 0.88 6.8E-02 0.29 -0.87 0.02 

Close x Medium 2.02E-03 0.27     1.5 0.99 3.4E-02 0.23 0.17 0.69 

Close x Far 7.09E-04 0.91     -22.8 0.28 6.7E-02 7.48E-04 -0.24 0.39 

Medium x Far -1.31E-03 0.47     -24.3 0.096 3.3E-02 0.12 -0.41 0.01 

Polar Direction 

Netpens x N 2.58E-03 6.38E-01 2.16E-04 1.00       0.22 0.99 

NW x N -2.87E-04 1.00E+00 -1.17E-03 0.93       0.24 0.79 

S x N 5.77E-03 1.61E-03 -7.93E-04 0.99       -0.02 1.00 

SW x N 4.21E-03 1.34E-02 4.31E-04 1.00       0.24 0.76 

W x N 4.38E-03 2.06E-02 2.74E-03 0.28       0.54 0.07 

NW x Netpens -2.87E-03 4.27E-01 -1.39E-03 0.90       0.02 1.00 

S x Netpens 3.19E-03 4.35E-01 -1.01E-03 0.98       -0.23 0.98 

SW x Netpens 1.63E-03 8.99E-01 2.15E-04 1.00       0.02 1.00 

W x netpens 1.80E-03 8.82E-01 2.53E-03 0.48       0.33 0.92 

S x NW 6.05E-03 9.89E-05 3.77E-04 1.00       -0.26 0.78 

SW x NW 4.50E-03 6.75E-04 1.60E-03 0.61       -0.01 1.00 

W x NW 4.67E-03 2.02E-03 3.91E-03 0.01       0.30 0.56 



 

 
84 

 

SW x S -1.56E-03 8.58E-01 1.22E-03 0.91       0.25 0.76 

W x S -1.39E-03 9.31E-01 3.54E-03 0.10       0.56 0.08 

W x SW 1.66E-04 1.00E+00 2.31E-03 0.30       0.31 0.48 

 

Supplementary Table S4            : Principle component 

loading table with assigned taxonomic groups. Top 20 highest loading values are represented for PC 1 and PC 2 out of the 1500 OTUs 

used for beta diversity analysis.  

 

PC 1 loading Kingdom Phylum Class Order Family Genus 

0.051039 Bacteria Proteobacteria Gammaproteobacteria Oceanospirillales Halomonadaceae Candidatus Portiera 

0.052373 Bacteria Proteobacteria Gammaproteobacteria Oceanospirillales Halomonadaceae Candidatus Portiera 

0.048438 Bacteria Proteobacteria Gammaproteobacteria Oceanospirillales Halomonadaceae Candidatus Portiera 

0.052217 Bacteria Proteobacteria Alphaproteobacteria Rhodobacterales Rhodobacteraceae  

0.048651 Bacteria Proteobacteria Gammaproteobacteria Thiohalorhabdales Thiohalorhabdaceae  

0.048545 Bacteria Proteobacteria Alphaproteobacteria Rickettsiales Pelagibacteraceae  

0.050026 Bacteria Bacteroidetes Flavobacteriia Flavobacteriales Flavobacteriaceae  

0.048834 Bacteria Bacteroidetes Saprospirae Saprospirales Saprospiraceae  

0.04891 Bacteria Bacteroidetes Flavobacteriia Flavobacteriales NS9  

0.052458 Bacteria Proteobacteria Alphaproteobacteria 
  

 

0.049671 Bacteria Bacteroidetes Flavobacteriia Flavobacteriales Cryomorphaceae  

0.05088 Bacteria Bacteroidetes Flavobacteriia Flavobacteriales NS9  

0.050631 Bacteria Proteobacteria Deltaproteobacteria Desulfobacterales Nitrospinaceae Nitrospina 

0.048649 Bacteria Actinobacteria Actinobacteria Actinomycetales Microbacteriaceae  

0.049409 Bacteria Planctomycetes OM190 CL500-15 
 

 

0.048947 Bacteria Proteobacteria Alphaproteobacteria Rhodobacterales Rhodobacteraceae  

0.04922 Bacteria Verrucomicrobia [Pedosphaerae] 
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0.052698 Bacteria Proteobacteria Gammaproteobacteria Oceanospirillales 
 

 

0.052505 Bacteria Proteobacteria Alphaproteobacteria Rhodobacterales Rhodobacteraceae  

0.048294 Bacteria Proteobacteria Alphaproteobacteria Rhodospirillales Rhodospirillaceae  

PC 2 loading Kingdom Phylum Class Order Family Genus 

0.064793 Bacteria  Bacteroidetes  Flavobacteriia Flavobacteriales Flavobacteriaceae  Ulvibacter 

0.063454 Bacteria  Bacteroidetes  Flavobacteriia Flavobacteriales Cryomorphaceae  

0.062637 Bacteria  Bacteroidetes  Flavobacteriia Flavobacteriales Flavobacteriaceae  

0.063585 Bacteria  Bacteroidetes  Flavobacteriia Flavobacteriales Flavobacteriaceae   

0.066324 Bacteria  Bacteroidetes  Flavobacteriia Flavobacteriales Flavobacteriaceae  

0.063317 Bacteria  Bacteroidetes  Flavobacteriia Flavobacteriales Cryomorphaceae  

0.064107 Bacteria  Proteobacteria  Alphaproteobacteria Rhodobacterales Rhodobacteraceae Octadecabacter 

0.066194 Bacteria  Bacteroidetes  Flavobacteriia Flavobacteriales Flavobacteriaceae   

0.06314 Bacteria  Bacteroidetes  Flavobacteriia Flavobacteriales    

0.065407 Bacteria  Bacteroidetes  Flavobacteriia Flavobacteriales Flavobacteriaceae  

0.063666 Bacteria  Bacteroidetes  Flavobacteriia Flavobacteriales Cryomorphaceae  

0.066413 Bacteria  Bacteroidetes  Flavobacteriia Flavobacteriales Flavobacteriaceae  

0.065566 Bacteria  Bacteroidetes  Flavobacteriia Flavobacteriales Flavobacteriaceae  

0.064033 Bacteria  Bacteroidetes  Flavobacteriia Flavobacteriales Flavobacteriaceae  

0.062928 Bacteria  Cyanobacteria  Chloroplast Stramenopiles   

0.064573 Bacteria  Bacteroidetes  Saprospirae Saprospirales    

0.063871 Bacteria  Bacteroidetes  Flavobacteriia Flavobacteriales Cryomorphaceae Fluviicola 

0.066685 Bacteria  Proteobacteria  Alphaproteobacteria Rhodobacterales Rhodobacteraceae  

0.063096 Bacteria  Bacteroidetes  Flavobacteriia Flavobacteriales Flavobacteriaceae Flavivirga 
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CHAPTER 4 

General Conclusions 

 As the demand for seafood increases, a growing need for aquaculture facilities to increase 

production through GMO’s or higher density rearing is predicted (Sapkota et al., 2008; Diana, 

2009). As facilities adjust their rearing practices, either through adoption of GMO technology 

and/or higher rearing densities, the potential for impacts on the surrounding ecosystem increase: 

microbial communities in particular are highly sensitive to their surrounding environment 

(Bentzon-tilia & Sonnenschein, 2016; Lv et al., 2016). The effluent discharged from open-water 

farms has been shown to influence the community composition of microbes, through localized 

increases in inorganic and organic nutrients (fish by-products (wastes and mortalities) and 

pelleted feed)  released into the system (Wu, 1995; Cole et al., 2009; Wang et al., 2012). 

Although the GMOs in aquaculture have been shown to have improved food conversion ratios 

(Devlin et al., 2001; Rasmussen & Morrissey, 2007), there is concern for the potential 

environmental impacts if they were to escape captivity (Naylor et al., 2005; Devlin, et al., 2006; 

2015). Environmental DNA (eDNA), the sloughed material from multi-cellular organisms or 

whole microorganisms that are collected from a filtered water sample (Taberlet et al., 2012; 

Thomsen & Willerslev, 2015), can be a valuable approach to assess farm influences on the 

surrounding water quality, and detect fugitives that have escaped confinement. This thesis 

describes novel eDNA detection and surveillance methods with two related but distinct 

applications, highlighting the broad value of the approach. We demonstrate a variety of 

applications eDNA can be used for different environmental monitoring goals, from targeting 

single gene constructs, to assessing the interactions between salmon eDNA markers and bacterial 

community diversity.  
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 Traditional methods used to monitor aquatic ecosystems (e.g., capture based 

identification, SCUBA surveys, microbial culturing, etc.) are intrusive, time consuming and 

costly (Thomsen & Willerslev, 2015; Schmelzle & Kinziger, 2016). On the other hand, eDNA 

surveys require the collection of water samples and can provide data on the biodiversity of an 

ecosystem, across taxonomic groups, making it a valuable tool for monitoring complex and niche 

environments (Taberlet, Coissac, Hajibabaei, et al., 2012; Goldberg et al., 2016).  Moreover, 

monitoring of remote coastal and inland fish farms can be challenging due to harsh conditions 

and may require specialized equipment (e.g., water quality measurements, chemical analyses, 

bacterial culture). Therefore, the collection and filtration of water samples for eDNA extraction 

to be shipped for processing, provides an efficient and logistically straightforward methodology 

to monitor remote locations (Roussel et al., 2015). 

 Based on this thesis, our work addresses two main issues for aquaculture facilities: the 

impact of fish farm effluent on the surrounding environment and monitoring transgenic eDNA in 

aquatic systems. In chapter two, we developed highly sensitive PCR primers to detect the nuclear 

growth hormone transgene (OnMTGH1) of transgenic Coho salmon in environmental water 

samples, even in the presence of their non-transgenic counterpart. Despite this sensitive assay, 

there was no spatial consistency in detecting the transgene signal from the facility outflow pipe. 

We theorize this may be due to the nuclear GH gene having reduced persistence in aquatic 

environments compared to standard mitochondrial genes used for finfish eDNA detection. We 

also speculate that the lack of spatial consistency of the transgene may be due to detections 

resulting from accumulation of sloughed genetic material (feces, mucus) inside the outflow pipe. 

Therefore, facility effluent would not be a homogenous mixture of transgenic eDNA. For 

monitoring potential escapees, this assay provides localized detection without the concern of 
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wild-type eDNA interference. This assay can also be used to verify the presence of GMOs during 

trade of frozen or live seafood.  In chapter three, our eDNA analysis of the farm “plume” showed 

evidence of farm activity effects on the surrounding aquatic environment. We speculate Chinook 

salmon spawning in the fall, along with increased tidal mixing in the fall, produced detectable 

differences of farm discharge across seasons. Furthermore, the BC analyses also showed farm 

effluent influences on the surrounding waters. Despite the well-mixed characteristics of the 

system, our spatial and temporal analysis of BC diversity generated significant distance from the 

farm effects in the spring season. Conducting our eDNA survey in transects, across two seasons 

provided a power measure of how the farm effluent was interacting with the BC as it dispersed in 

the bay. Using these methodologies for open water cage-based salmon farming can provide 

management direction on sustainability based on specific local environmental characteristics.  

 Establishing the potential correlations between fish farm eDNA plumes and BCs can be 

used to quantify fish farm impacts on the surrounding ecosystem and prevent long term effects. 

Characterizing bacterial species and identifying correlations with sloughed eDNA can provide 

indications of an overall influence of fish farm effects from organic output and verify if changes 

in rearing practices need to be made. In our YIAL study we found three orders of bacteria: 

Oceanospirillales, Rhodobacterales, and Flavobacteriales, driving our beta diversity analysis 

with a positive correlation with Chinook salmon eDNA. Other studies examining fish farm 

practices have found positive correlations between the increase of fish biomass and organic 

matter, and microbial community abundance/diversity (Caruso et al., 2003; Mirto et al., 2012; 

Quero et al., 2020). Evidence of the microbial impacts from fin fish farming, derived from 

bioindicators such as eDNA and bacterial community assessments, can be used to predict long 

lasting impacts on the surrounding ecosystem (Verhoeven et al., 2018). Therefore, utilizing 
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bacterial metabarcoding and eDNA detections is a valuable tool to support changes in rearing 

practices to sustain stable ecosystem biodiversity.   

 The main weakness with eDNA analyses is the potential of type I (false-positive) and 

type II errors (false-negative) for species detection (Darling & Mahon, 2011). False detections 

relating to site occupancy can result in biased analyses, potentially leading to improper 

assessment of surveillance data, for example in early invasive species monitoring (Bailey et al., 

2014). However, appropriate replicated designs (sample sites and PCR assays) can help 

statistical models correct the effects of possible type I and type II errors (Ficetola et al., 2015; 

Lahoz-Monfort et al., 2016). In chapter three, to compensated for the possibility of high false 

positive detection resulting from our nested PCR assay, we set stringent detection limits and 

included all zero set values in our statistical analyses. By including all triplicate PCR assays 

(including zero set values) in our statistical analyses, the possibility for false-positive errors to 

generate bias in our outcomes was reduced. Therefore, when conducting eDNA surveys with the 

intent of management action or policy change, it is critical to assess for false detection errors 

(both positive and negative) within complex data sets (Mackenzie & Royle, 2005). Without 

properly replicated study designs, the outcome of eDNA-based assays can be misleading and 

drive improper management decisions (Roussel et al., 2015).  

Future Work 
 

 Our chapter two study provides a novel assay for the presence/absence detection of 

transgenic Coho salmon with the presence of it is wild-type counterpart. Studies have begun to 

relate quantity of eDNA detected to species abundance in aquatic environments based on 

biomass data (Lodge et al., 2012; Lacoursière-Roussel et al., 2016b). Quantifying the abundance 
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of transgenic organisms through eDNA would provide the potential for long term quantitative 

monitoring of escapees that may reproduce with native populations. Therefore, predicting the 

potential increase of transgenic organisms in the wild, through estimating the abundance of 

individuals, would provide an early indicator similar to early detection of invasive species 

(Balasingham et al., 2018). 

 Our chapter three study provides methodologies to examine fish eDNA and BC across 

temporal and spatial scales in a well-mixed marine system. Curiously both eDNA and BC 

analyses produced sample day effects within our sampling seasons, suggesting fine scale diel 

variation between each sample day. Although studies have found that day/night cycles can 

influence bacterial activity (Shahraki, et al., 2020), eDNA variation may also be influenced by 

tidal impacts or organism activity. To study the factors that effect diel dynamics, we suggest 

mesocosm experiments control for day/night cycles and separate stagnant and high-mixed 

systems. Controlling for tidal, light, and mixing within these experiments may provide insight 

into how eDNA and BCs are influenced by each other and their environment. We also would 

suggest examining the effect of salinity on these parameters, specifically investigating how 

freshwater bacteria would interact with high outputs of eDNA without the well-mixed 

characteristics from a marine system such as Seymour Narrows. Identifying the eDNA and BC 

interactions among costal and inland caged facilities can provide insight into how each system 

responds to farm eDNA plumes.  

Conclusion 
 

 The overall objective of this thesis was to assess the ecological impact of aquaculture 

facilities through eDNA analyses. We developed a transgene-specific assay to detect potential 
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escapees and established how transgenic eDNA is non-uniformly distributed from an effluent 

pipe. We assessed how Chinook salmon eDNA is distributed around a commercial salmon farm, 

and how spatial and temporal factors affected that distribution. We also assessed potential 

interactions between the salmon farm and BC diversity. Although more work needs to be done to 

establish standardized guidelines for the collection and processing of eDNA samples, there is 

more to explore for the application of eDNA for aquatic surveillance via the combination of BC 

characterization and vertebrate spatial and temporal detection. We have developed the 

groundwork for assessing not only the distribution of eDNA and detection of specific gene 

constructs but using eDNA as a biomarker for the “plume” of farm effluent. This thesis provides 

methodologies to assess the ecological influence of sloughed eDNA from aquacultural facilities 

on the surrounding BC diversity, and detect GMOs without interference from wild-type 

equivalents. Overall, we demonstrate the ability to assess the distribution of fin fish DNA in 

aquatic environments, as well as provide data-driven evidence to fish farm facilities of the 

ecological impact on their unique surrounding environment. 
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