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ABSTRACT Many studies applying Brain-Computer Interfaces (BClIs) based on Motor Imagery (MI)
tasks for rehabilitation have demonstrated the important role of detecting the Event-Related Desynchro-
nization (ERD) to recognize the user’s motor intention. Nowadays, the development of MI-based BCI
approaches without or with very few calibration stages session-by-session for different days or weeks is
still an open and emergent scope. In this work, a new scheme is proposed by applying Convolutional
Neural Networks (CNN) for MI classification, using an end-to-end Shallow architecture that contains two
convolutional layers for temporal and spatial feature extraction. We hypothesize that a BCI designed for
capturing event-related desynchronization/synchronization (ERD/ERS) at the CNN input, with an adequate
network design, may enhance the MI classification with fewer calibration stages. The proposed system
using the same architecture was tested on three public datasets through multiple experiments, including
both subject-specific and non-subject-specific training. Comparable and also superior results with respect
to the state-of-the-art were obtained. On subjects whose EEG data were never used in the training process,
our scheme also achieved promising results with respect to existing non-subject-specific BCIs, which shows
greater progress in facilitating clinical applications.

INDEX TERMS Brain-computer interface, EEG, motor imagery, shallow convolutional neural networks.

I. INTRODUCTION

Electroencephalography (EEG) is a popular non-invasive
technique, widely used for recording brain information. The
raw EEG has a low signal-to-noise ratio due to its small
amplitude peak-to-peak, and includes a variety of rhythms
identified by their frequency range, location, and other
aspects related to the brain function [1], [2]. This makes
the EEG analysis extremely complex, although advantages
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of this technique, such as high temporal resolution, low
cost, effectiveness and portability have widely motivated its
application in brain-computer interfaces (BCIs). BCIs pro-
vide an alternative communication channel to patients with
severe neuromotor disabilities, by capturing, processing, and
translating the neural activity into control commands [3]-[5].
These systems have shown enormous potential to facilitate
communication [6]—[8] and restore brain functions [9]-[11].
Various types of BCIs have been developed by researchers,
using different paradigms, such as P300 [12], [13], steady-
state visual evoked potentials (SSVEP) [14], [15] and motor
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imagery (MI) [16]-[18]. Many works have been focused on
MI-based BCIs due to the effectiveness of these systems for
recovery of motor skills in post-stroke patients, as similar
brain regions are activated over the primary sensorimotor
areas when the same motor task is executed by real or imag-
ined movements [19]. For instance, some studies [20]-[22]
found that when a person executes a real or imagined uni-
lateral movement, is attenuated or enhanced the amplitude
of mu (from 8 to 12 Hz) and beta (from 13 to 30 Hz)
rhythms over the primary motor cortex on both contralat-
eral and ipsilateral hemispheres, respectively, phenomena
known as event-related desynchronization/synchronization
(ERD/ERS). The ERD phenomenon has been widely used to
build BClIs [23], [24], [20], [25], but sometimes it may not be
discernible for some subjects, producing consequently poor
performance for MI classification, as described in [26]-[29].
In contrast, other studies [30], [22] detected the ERS for
all subjects, which showed high specificity to discriminate
movements. For instance, Pfurtscheller et al. [29] reported
that ERD/ERS may be used for BCIs operated by MI, enhanc-
ing the hand MI discrimination when both ERD and ERS
patterns are induced by executing at least one or two tasks.
Furthermore, BCIs based on ERD/ERS were also proposed
in [31]-[33].

Many techniques have been proposed for MI classification
through EEG signals by applying hand-crafted feature extrac-
tion as a traditional method [34], [35] into the time domain,
frequency domain, and spatiotemporal representation. One of
the most popular and powerful methods for feature extraction
is the Common Spatial Patterns (CSP) [36], [37], which has
been extended in other approaches, such as Filter-Bank CSP
(FBCSP) [38], achieving good accuracy on the BCI Competi-
tion IV datasets 2a and 2b. Furthermore, Linear Discriminant
Analysis (LDA), Artificial Neural Networks (ANN), Sup-
port Vector Machines (SVM), and other traditional classifiers
have been commonly used to discriminate hand-crafted fea-
ture vectors. Although these traditional approaches have been
successfully applied to recognize MI, it is still a challenge
to design accurate BClIs, leaving the door open for further
improvements in this research area.

The recent success of deep learning methods has marked
the state-of-the-art in many areas, such as computer vision,
natural language processing, and speech recognition [39].
Deep learning has been benefited from the development of
graphics processing units (GPUs) and the availability of large
datasets, enabling the feature extraction and classification at a
high level in contrast to conventional techniques. Deep learn-
ing does not require previous knowledge to analyze a given
dataset, which represents a great advantage for processing
data of high variability intra and inter subjects, such as EEG
signals. For this reason, deep learning for MI-based BCIs has
also increased the interest of researchers. For instance, Con-
volutional Neural Network (CNN) has been widely used with
success for MI recognition through EEG signals [40], [41]
due to its capability of learning high-level features, includ-
ing the hierarchical structures in end-to-end data, and the
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automatic parameter optimization. As a result, some
approaches employ deep learning for MI task recog-
nition using the EEG signal as input [23]-[46], while
others transform EEG channels by applying traditional
methods for feature extraction, such as spectrograms and
scalograms [47]-[53].

Despite the growing interest in new EEG-based BCI devel-
opments, there are very few public MI datasets available
with limited amount of EEG data, and numbers of healthy
subjects and patients. As a consequence, the training process
to obtain best deep learning models from these small EEG
datasets for successful class discrimination is still a challeng-
ing task, as these methods need to adjust many parameters
(up to thousands), which may require a large training set.
Evidence [23], [44] showed that the classification accuracy
does not always improve when more convolutional layers are
added in CNN for small sets. This undesirable effect may
be associated to deeper architectures having high numbers
of adjustable weights, which present high risk of overfit-
ting. For this reason, much research applying CNN on small
MI sets has proposed as an alternative shallow CNN archi-
tectures [23], [43], [44], [49], [54]. In fact, studies using
shallow CNN improved the accuracy of MI classification
by applying techniques based on model fusion and transfer
learning [42], [43], [45], [46].

This current work proposes a neural network scheme using
CNNs, inspired by the ShallowConNet (SCN) model in [23].
Our approach aims to improve the MI classification, taking
into account that ERS occurs after ERD, this ERS generated
over 2.5 s after beginning MI tasks, as described in [26], [27].
Our system was evaluated on three public datasets: the BCI
Competition IV datasets 2a and 2b, and the BCI Compe-
tition IIT dataset I'Va, obtaining high accuracy with respect
to previous works. In particular, we tested the proposed
system for non-subject-specific MI classification, achieving
an average improvement of 18% on the database 2a with
respect to the state-of-the-art. As a highlight, we extended our
calibrated system to recognize MI tasks from new subjects of
these datasets (dataset 2a and 2b) by applying inter-subject
transfer learning strategy, obtaining comparable promising
results with respect to the state-of-the-art, and also outper-
forming others studies. Our method demonstrated a great
generalization when it was also applied on a small dataset
(dataset IVa), outperforming various studies.

Il. RELATED WORKS

The public BCI Competition IV datasets which contain EEG
signals acquired from healthy subjects when performing
motor tasks [55] have been widely used by BCI design-
ers. For instance, the BCI Competition IV dataset 2a has
been widely used to evaluate deep learning approaches,
allowing multi-class MI classification (left hand, right hand,
feet, and tongue) [56]. Schirrmeister et al. [23] explored
through EEG three CNN architectures, such as Shallow-
ConvNet (SCN), DeepConvNet, and also these two methods
combined to classify MI, obtaining accuracy (ACC) of 73.7%
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for SCN and 70.9% for DeepConvNet. Abbas and Khan [52]
used CNN after applying CSP and Fast Fourier Transform
Energy Map (FFTEM) for features extraction, achieving ACC
of 70.75%.

Sakhavi and Guan [24] used FBCSP and the EEG envelope
for feature extraction, followed by several CNN architectures,
reaching highest ACC (up to 74.46%) with the C2CN model.
In this approach, the kernel size used on the convolution lay-
ers was different for each subject, which add generalization
for new individuals difficult. In [51] a hybrid model using
CNN with Bidirectional Gated Recurrent Unit (BGRU) was
built, obtaining ACC of 76.62%. The training process of this
approach also included EEG data from the testing set, which
may limit the generalization. In [43] three CNN models,
such as multiple local spatial convolutions, global spatial
convolution, and the combination of these two CNN models
were proposed, attaining ACC of 71.8%, 74.6%, and 73.2%,
respectively. It is worth mentioning that these aforementioned
approaches have been trained and evaluated, considering only
the EEG data from the same subject, therefore these systems
are subject-specific.

Roy et al. [41] suggest two ways for training a BCI,
such as using EEG data from only one subject (subject-
specific BCI) or from several subjects (non-subject-specific).
They remark that although best performance is obtained for
a subject-specific BCI, a non-subject-specific BCI may be
generalized to new subjects for whom non-training data exist,
offering to specialists and patients a less time-consuming
system for clinical applications. In [44] a BCI based on
subject-specific training through multi-level convolutional
features and fusion using convolutional networks was pro-
posed, obtaining ACC of 74.5%. In addition, these same
authors also proposed the fusion of convolutional mod-
els [45], developing two networks based on the AlexNet
model also termed Multi-layer CNNs (MCNN), and CNN.
These subject-specific BCIs reached ACC of 75.42% and
73.77%, respectively. Moreover, they applied for both
approaches the transfer learning technique to obtain a non-
subject-specific BCI, and achieved ACC of 42.09% and
55.34%, respectively.

On the other hand, the BCI Competition IV dataset
2b composed of two MI tasks from left and right hands
have been widely used. Tabar et al. [57] proposed a
CNN architecture with stacked autoencoders (CNN-SAE)
using as input the EEG in time, frequency and space
domain. The authors conducted first a cross-validation over
all trials getting ACC of 77.4%, and after evaluated the
recognition session-by-session, obtaining ACC of 75.1%.
Dai et al. [48] combined a CNN architecture with a varia-
tional autoencoder (CNN-VAE), reaching ACC of 78.2%.
Xu et al. [58] proposed a transfer CNN framework based
on VGG-16 architecture (VGG-16 CNN), reporting ACC
of 74.5%. Li et al. [59] employed the continuous wavelet
transform (CWT) and a simplified convolutional neural net-
work (SCNN), achieving ACC of 83.2% for a subject-specific
BCI. Roy et al. [60] transformed the EEG epochs into
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the time-frequency representation by applying short-time
Fourier transform (STFT), which were applied in sequence
as images to CNN architectures with ACC of 77.46%
for an intra-subject cross-session validation, and ACC of
70.94% when cross-subject transfer learning were obtained.
Sun et al. [61] extracted dominant spectral EEG features by
applying the spectrotemporal decomposition method (SSD-
SE-CNN), achieving ACC of 79.3%. Lee et al. employed
both CWT and 1D CNN, using three mother wavelets for
evaluation, getting the best result (ACC of 83%) by applying
Morlet.

The BCI Competition III dataset IVa, composed of two
MI tasks linked to the right hand and foot has been widely
used. This dataset has a small amount of training data,
increasing the challenge for BCI reseachers. Furthermore,
the EEG recording in both training and testing sets has dif-
ferent sizes between subjects [62]. Many studies used the
training set to also validate the performance of their meth-
ods. Selim et al. [63] employed a subject-specific optimal
time interval for CSP feature extraction, and further used
hybrid bio-inspired algorithms for feature selection and to
optimize the classification, obtaining ACC of 85%. Park and
Chung [64] developed a channel optimal selection method to
extract more discriminative CSP features for a SVM clas-
sifier, achieving ACC of 88.62%. Guo et al. [65] proposed
a filter band component regularized common spatial pat-
terns (FCCSP) to extract features for a LDA classifier, getting
ACC of 82.01%. Singh et al. [66] proposed a method based
on spatially regularized symmetric positive definite (SPD)
matrices and minimum distance of Riemannian mean
(MDRM), achieving mean ACC of 86.13%. Jin et al. [67] pro-
posed a bispectrum-based channel selection (BCS) method,
obtaining ACC of 86.3%. Dai et al. [68] developed the Trans-
fer Kernel CSP to learn a domain-invariant kernel, achiev-
ing ACC of 81.14%. Huang et al. [69] employed CWT,
Tensor Discriminant Analysis (TDA) and CNN, reaching
ACC of 86.02%. Other studies were conducted on the full
dataset to test the generalization performance. For instance,
Miao et al. [70] converted the raw EEG into image repre-
sentation by computing its energy for different frequency
bands, and further used a multilayer CNN, obtaining mean
ACC of 90%. Attallah et al. [71] proposed a hybrid system to
calculate a feature set through different combinations of chan-
nels, obtaining the best performance (mean ACC of 93.46%)
for 18 channels by using SVM.

lll. MATERIALS AND METHODS

A. DATASET DESCRIPTION

Three public datasets were employed in this current study
to evaluate the performance of our proposed system, such as
the dataset 2a and dataset 2b from BCI Competition IV, and
dataset IVa from BCI competition III.

1) THE BCI COMPETITION IV DATASET 2a
This dataset is composed of several trials associated to four
motor imagery tasks corresponding to left hand, right hand,
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both feet, and tongue [55], [56]. The EEG signals were
recorded on 22 locations (Fz, FC1, FC3, FCz, FC2, FC4,
C5, C3,Cl, Cz, C2, C4, C6, CP3, CP1, CPz, CP2, CP4, P1,
Pz, P2 and POz), using sampling rate at 250 Hz, a band-pass
filter with frequency range from 0.5 and 100 Hz, and a notch
filter enabled at 50 Hz to suppress the power line noise. Each
subject completed two sessions on different days for a total
of 576 trials (144 trials per class), each session containing
288 trials. The first session was used here for training, and
the other session was employed for testing.

2) THE BCI COMPETITION IV DATASET 2b

This dataset contains two imagery tasks linked to the left hand
and the right hand [55], [72]. Three bipolar EEG channels
over C3, Cz and C4 locations were recorded with sampling
rate at 250 Hz, using a band-pass filter with frequency range
from 0.5 and 100 Hz, and a notch filter enabled at 50 Hz
to suppress the power line noise. Each subject completed a
total of five sessions, receiving online smiley feedback in
the last three sessions. In the first two sessions, each sub-
ject performed 120 trials per session, and executed another
160 trials per session in the last three sessions, completing a
total of 720 trials. The first three sessions were used here for
training, and the last two sessions for testing.

3) THE BCI COMPETITION Il DATASET IVa

This dataset contains EEG signals from five healthy sub-
jects [62], which were recorded on 118 locations with sam-
pling rate at 1000 Hz, while they performed two motor
imagery tasks (right hand and right foot). Each participant
completed a total of 280 trials to form the training and test-
ing sets. In particular, these sets have different numbers of
trials per subject in contrast to the aforementioned dataset 2a
and 2b. A total of 168, 224, 84, 56 and 28 trials compose the
training set for subjects aa, al, av, aw and ay, respectively.
The remaining trials were selected to conform the testing set.
We used the public EEG data available with downsampling at
100 Hz, which in our study were after upsampled at 250 Hz.

B. PROPOSED METHOD

1) PREPROCESSING AND DATA AUGMENTATION

The EEG signals are band-pass filtered in a frequency range
from 4 to 38 Hz [23], [43]-[46] through a Butterworth fil-
ter [73], aiming to preserve the ERD and ERS rhythms,
and also reject noise and undesirable physiological and non-
physiological artifacts. Afterwards, each filtered EEG trial
x is standardized as (x (t;) — u (#;)) /o (t;) by applying the
electrode-wise exponential moving standardization with a
decay factor of 0.999, which computes both mean w (#;) and
variance o2 (t;) values taken at sample #; [23]. The starting
values of w () and o2 (1) are calculated over periods cor-
responding to the rest state preceding each trial. In order to
rectify outliers, the EEG amplitudes of each trial are first
limited to u (#;) £ 60 (t;).
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FIGURE 2. Architecture of proposed shallow convolutional network on
dataset 2a.

Data augmentation has demonstrated considerably
enhanced performance of deep learning approaches, reducing
overfitting. Here, the trial crops strategy is adopted to increase
the training set. For instance, we consider crops of 4 s each
8 ms in the interval from -0.5 to 4 s (cue onset at 0 s) over
trials of the datasets 2a and 2b, while crops of 3 s each 8 ms
from O to 3.5 s (cue onset at 0 s) were used on trials of
the dataset IVa. The defined window sizes of 4 s (a total
of 1000 samples) and 3 s (750 samples) aim to capture the
sequence of ERD and ERS in each trial of these three datasets.
Figure 1 shows for a trial the crops extraction. A similar
methodology was done by Schirrmeister et al. [23].

2) NETWORK ARCHITECTURE
The architecture of the proposed model is based on SCN [23],
which has been employed as a first stage by various
researchers [43], [45], [46], [49], [54]. This SCN model,
copes well with the reduced size of available datasets.

The proposed architecture for dataset 2a is shown in
Figure 2. As aresult, the scheme contains 2 convolutional lay-
ers and one dense classification layer. The first convolution
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TABLE 1. Main differences between SCN and the proposed architecture.

Layer SCN [23] PROPOSED
Input 500x22x1 1000x22x1
Temporal Convolutional 40 units 40 units

25x1 45x1

Stride 2x1

Mean Pooling 75x1 45x1

Stride 15x1  Stride 8x1
Linear Classification 30x40 55x40
(Dense Layer+Softmax) to 4 class to 4 class

has as input a 1000 x 22x1 tensor and applies a temporal
convolution with a 45 x 1 filter and 40 channels so that a
478 x 22x40 tensor is obtained at the output, after perform-
ing downsampling from 250 Hz to 125 Hz, with a stride
of 2. The kernel size is adjusted by applying optimization,
covering periods of approximately 200 ms, which gives a
greater variety of transformations. It is worth noting that our
approach allows coverage of almost twice the period covered
by the first convolution proposed in [23]. The second layer
is a spatial convolution layer composed of 40 channels and
a 1 x 22 filter, as done in [23]. Together, these two layers
perform transformations according to [38], [23]. In sequence,
other stages such as a ““Square” activation function, a mean
pooling layer with a downsampling, and a logarithmic acti-
vation function are added to calculate the logarithmic power
average through 45 x 1 sliding windows with 8 x 1 stride.

All extracted features are then analyzed in the classifi-
cation layer, composed of a dense layer with the Softmax
activation function. This classification layer receives a total
of 2200 features, which may add challenges when training
the model, avoiding overfitting. To minimize this risk, batch
normalization layers are added to normalize the outputs of
previous layers with mean and variance equal to 0 and 1,
respectively [74]. Moreover, a dropout layer is added, which
randomly deactivates a percentage p of neurons for each
training iteration [75], [76]. The “MaxNorm” regularization
is also used in the convolution layers and the dense layer to
limit the magnitudes of all weights to maximum values. The
Adam optimizer [77], and Categorical Cross-Entropy as cost
function are used here. Furthermore, the “Early Stopping”
method and decay of learning rate are also used, aiming to
further prevent overfitting adjusting parameters.

Table 1 shows the main differences between SCN and
the proposed architecture. The architecture developed here is
extended to the three datasets, but modifying the input and
output layers because of the number of the EEG channels
and window size for processing are different. Then, for the
dataset 2b and the datatset IVa an input of 1000 x 3x 1 tensor
and 750x 118 x 1 tensor is used, respectively. The output layer
used for both dataset 2b and I'Va have only two outputs.

C. EVALUATION AND STATISTICAL ANALYSIS
In order to validate the efficiency of our proposed recog-
nition system, we used three public datasets, such as the

VOLUME 9, 2021

datasets 2a and 2b from BCI Competition IV, and the
dataset IVa from BCI Competition III. The results were com-
pared with the state-of-the-art. Here, four different experi-
ments were carried out, adopting subject-specific training for
the first two experiments, and non-subject-specific training
for the last two. As the dataset I'Va is not structured by ses-
sions, we only used it in Experiment #1. The other datasets 2a
and 2b are composed of sessions, so, they were used in all four
experiments.

It is worth mentioning that a balanced training set was used
here, in order to build a better class recognition model.

Experiment #1. Similarly to [38] we first adjusted
the parameters of our proposed architecture running
a 9 x 10-Kfold (9 folds and 10 repetitions) stratified
cross-validation over the training set corresponding to the
dataset 2a. Notice that 9 folds were taken instead of 10 as
in [38], to facilitate class balance. This experiment conducted
individually on each subject allowed to adjust several parame-
ters, such as the input window size of the network, the number
of channels and the filter size in the convolutional layers,
the characteristics of the Average Polling layer, and other
parameters, such as the dropout level and the limits of weights
established by MaxNorm regularization. Next, to verify the
feasibility of our approach for generalization, evaluations
and experiments were carried out employing these adjusted
parameters.

These adjusted parameters were then extended in this
current experiment for further evaluation over EEG data of
the dataset 2b and dataset IVa. A 10 x 10-Kfold (10 folds
and 10 repetitions) was only carried out on the training set
of the dataset 2b, whereas a 9 x 10-KFold (9 folds and
10 repetitions) was exclusively implemented on the training
set of the dataset IVa. Additionally, a last evaluation was
conducted on the dataset IVa, considering now the training
set and testing set, which consists of 280 trials. A Nested
KFold cross-validation procedure was implemented on all
trials, aiming to estimate an unbiased generalization perfor-
mance [78]. In this case, a 10 x 9 (10 folds cross-validation in
the outer loop, and 9 fold cross-validation in the inner loop)
was realized.

Experiment #2. We applied an intra-subject session to
session classification (subject-specific BCI), taking only the
training set of each database for training while the testing
set was used only for evaluation. Notice that this experiment
provides as output 9 pretrained networks, one per subject. The
first session from the dataset 2a composed of 288 trials per
subject was split randomly into two new sets, one for training
(240 trials representing the 5/6 part) and other for validation
(48 trials representing the 1/6 part). Afterwards, the second
session of this dataset, composed of another 288 trials, was
finally employed by the trained system to test the generaliza-
tion on new data of each subject.

A similar procedure was carried out using dataset 2b,
where the first three sessions with 400 trials were divided
randomly into two new sets, one for training (320 trials
representing the 4/5 part) and other for validation (80 trials).
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The last two sessions of this dataset (320 trials) were finally
employed by the trained system to test the generalization.

To evaluate the model’s generalization, a repeated holdout
validation on a fixed testing set is performed, using different
random seed values. The procedure is repeated 16 times to
ensure that the probability of a trial to be selected at least one
time in a validation set is approximately 0.95.

Experiment #3. The training process was performed, using
the training set of all subjects (non-subject-specific BCI).
Notice that this experiment provides as output a unique pre-
trained network from all subjects. The first session from all
subjects in dataset 2a (288 trials per subject) was used to
form the training set with a total of 2592 trials. Then, this
training set was randomly divided into new sets, one for
training (2160 trials representing the 5/6 part) and the other
for validation (432 trials representing the 1/6 part). Finally,
the second session (288 trials per subject) in this dataset
was employed to test the pretrained network and prove its
generalization on new data of each subject.

A similar procedure was conducted with dataset 2b, using
the three first sessions of all subjects to compose a training
set with a total of 3600 trials. This training set, was randomly
divided into two new sets, one for training (2880 trials) and
the other for validation (720 trials). The trained system was
finally evaluated on the last two sessions (320 trials per
subject) to test the generalization.

The process of repeated holdout validation with a fixed
testing set was performed 16 times for different random seeds
to evaluate the model’s generalization.

Experiment #4. We evaluated an inter-subject transfer
learning strategy [60]. In contrast to Experiments #2 and #3,
the accuracy for a specific subject in dataset 2a (or dataset 2b)
was obtained here by applying the pretrained model over
his/her full dataset. Notice that the pretrained model was
obtained from the remaining subjects on the dataset of this
specific subject (dataset 2a or dataset 2b), using the EEG
data of all sessions. For example, the accuracy for Subject
AO01 was analyzed using the pretrained model obtained from
all EEG data of Subject A02 to A09. Thus, the training set has
a total of 4608 trials when using dataset 2a, and 5760 trials
when using dataset 2b. A randomly selected portion of these
trials (3840 or 4608 trials representing the 5/6 or 4/5 part,
respectively), were then used to train our system, and the
remaining trials (768 or 1152 trials, respectively) were used
for validation. Finally, a repetead holdout validation (16 times
selecting different random seeds) was performed to evaluate
the model’s generalization on the full dataset of the unknown
subject with a total of 576 or 720 trials, respectively. The
mean accuracy for each subject was obtained by carrying out
the same procedure described for Subject AO1.

To obtain the statistical significance, the significance level
was set at 0.05. When the number of observations is greater
than 30, a normal distribution may be considered for sta-
tistical comparison. Here, the Z test was applied to ver-
ify if there is statistical significance between our approach
and other related studies. When the number of observations
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TABLE 2. K-fold cross-validation performance in terms of kappa value
mean and standard deviation on dataset 2a.

Subjects CSP FBCSP PROPOSED
[73] [38] (9x10)
A01 0.64 + 0.06 0.77 £ 0.07 0.86 = 0.06*
402 0.42 +£0.06 0.48 +0.06 0.56 + 0.07*
A03 0.80 +0.07 0.83+0.07 0.93 + 0.05*
A04 0.37 £0.05 0.48 +0.06 0.70 = 0.08*
A05 0.22 £0.05 0.60 +0.06 0.83 + 0.06*
A06 0.28 +£0.05 0.35+0.05 0.51+ 0.11%
A07 0.63 +0.06 0.86 +0.07 0.92 + 0.05*
A08 0.77 £0.07 0.81+0.07 0.85  0.06*
409 0.72+£0.07 0.79 +0.07 0.86 + 0.06*
Average 0.54+0.06 0.66 +0.07 0.78 + 0.02*

*, indicates significant difference with a 95 % confidence level

was less than 30, the Wilcoxon test for a sample [79] was
used.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

A. EXPERIMENT 1

Table 2 shows the results obtained on dataset 2a, with our
approach and other related works [73], [38]. The results show
that our proposed method using periods of 4 s yielded the
best performance with mean Kappa of 0.78, enhancing the
accuracy for all subjects with respect to previous studies
applying powerful tools, such as CSP [73] and FBCSP [38].
Also notice that for all subjects the performance improved
significantly by using our approach.

Table 3 shows the results obtained using dataset 2b,
and comparisons with others works, such as FBCSP [38],
CNN-VAE [48], CNN-SAE [57], CWT-CNN [80], SSD-
SE-CNN [61] and VGG-16 CNN [58]. We observed that
the proposed method outperformed some approaches, such
as FBCSP, CNN-SAE, CNN-VAE and VGG-16 CNN. The
CWT-CNN and SSD-SE-CNN methods achieved the best
performance, notably influenced by results obtained on Sub-
jects BO2 and BO03, but our system also outperformed the
CWT-CNN approach for two subjects, namely BO1 and B0OS.
With respect to SSD-SE-CNN, our system outperformed it on
four subjects, namely BO1, BO5, BO7 and B08. Also notice
that the performance on Subject BO5 was improved signif-
icantly by our approach with respect to the other methods,
as shown in Table 3.

Table 4 shows our results obtained on dataset IVa and the
comparison with other related works, such as [62], CSP\ AM-
BA-SVM [63], TKCSP [68], SR-MDRM [66], [67],
TDA+CNN [69], [64] and FCCSP [65]. Our system in
comparison to TKCS, SR-MDRM and FCCSP, which that
considered 118 channels, performed better on Subjects “aa”,
“av” and ‘“‘ay”. With respect to CSP\AM-BA-SVM, [67],
TDA-+CNN and [64], which employed channel selection,
our method improved the accuracy for Subject “av”’. The
method developed in [62] achieved mean ACC of 94.20%,
which presents superior performance in comparison to our
proposed approach (with ACC of 90.52%), however, other
recent methods shown in Table 4 did not outperform our
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TABLE 3. K-fold cross-validation performance in terms of kappa mean and standard deviation on dataset 2b.

Subjects FBCSP CNN-SAE CNN-VAE CWT-CNN VGG-16 CNN SSD-SE-CNN PROPOSED
[38] [57] [48] [80] [58] [61] (9x10)
BOI 0.55+0.02 0.52+0.10 0.52+0.08 0.71+0.03 0.47 0.57+0.03 0.73+£0.10
B0O2 0.21+0.03 0.32+0.07 0.35+£0.07 0.46 + 0.03 0.18 0.36 +0.04 0.20+0.11
B03 0.24 +0.02 0.49 +0.08 0.44 £ 0.06 0.56 + 0.04 0.30 0.37+0.04 0.17+0.12
B04 0.89 +0.003 0.91+0.02 0.91+0.01 0.91 +0.02 0.86 0.93 +£0.01 0.90 +0.06
BO5 0.69 + 0.005 0.66 = 0.06 0.65 £ 0.08 0.65 +0.04 0.63 0.63+0.04 0.78 £ 0.08*
B06 0.53+0.01 0.58 +£0.05 0.64 + 0.06 0.60 +0.03 0.42 0.71 £ 0.03 0.59+0.10
BO7 0.41+0.01 0.49 +£0.07 0.55+0.07 0.66 + 0.03 0.47 0.54 +0.04 0.65+0.11
B08 0.41+0.01 0.49+0.11 0.51+0.08 0.70 + 0.04 0.56 0.59 +0.04 0.60+0.11
B09 0.58 +0.01 0.46 +0.15 0.52+0.08 0.71 £ 0.04 0.53 0.59 +0.04 0.51+0.11
Average 0.50 +0.01 0.54 +0.08 0.56 +0.07 0.66 £ 0.03 0.49 0.59 +0.03 0.57+0.03
*, indicates significant difference with a 95 % confidence level
TABLE 4. K-fold cross-validation performance in terms of accuracy mean on dataset IVa.
Subjects Winner CSP\AM-BA-SVM TKCSP SR-MDRM TDA+CNN FCCSP PROPOSED
[62] [63] [68] [66] [67] [69] [64] [65] (9x10)

aa 96.00 86.61 68.10 79.46 82.10 88.39 98.21 72.32 94.33
al 100 100 93.88 100 95.00 98.21 89.29 98.21 97.24
av 81.00 66.84 68.47 73.46 72.10 66.33 73.47 68.87 79.90
aw 100 90.63 90.58 89.28 90.70 94.64 92.86 78.57 93.54
ay 98.00 80.95 84.65 88.49 91.80 82.54 89.29 92.06 87.58
Average 94.20 85.01 81.14 86.13 86.30 86.02 88.62 82.01 90.52

TABLE 5. Nested K-fold cross-validation performance in terms of
accuracy mean on dataset IVa.

Subjects PROPOSED
aa 88.49
al 95.12
av 74.67
aw 94.60
ay 91.69
Average 88.91

method. Our system attained similar results on Subjects “aa’,
“al” and “av” with respect to [62], but the mean ACC
decreased, mainly due to the results achieved on Subject
“ay”’, who has the least amount of training data among all
subjects.

Table 5 shows the results obtained on dataset IVa employ-
ing a Nested KFold cross-validation procedure with the whole
dataset, similar to previous studies such as [70] and [71], but
considering all EEG channels. These studies applied a KFold
cross-validation using selected channels, obtaining promising
results. The Nested KFold cross-validation used in our work
shows that our approach achieved mean accuracy of 88.91%,
confirming good generalization.

B. EXPERIMENT 2

Table 6 shows the achievements obtained by the pro-
posed system and previous methods, such as SCN [23],
FBCSP [38], GLOBAL [43], and MCNN and CCNN [45].
It is worth noting that significant improvement by applying
our approach was obtained on three subjects (A03, A04,
and AOQS5) with respect to previous methods, such as MCNN
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that also presented good performance for other subjects.
Also notice that ACC higher than 69% was obtained for
almost all subjects, except for Subjects A02 and A06 (ACC
around 52%). MCNN, which achieved the highest average
accuracy from all subjects, slightly outperformed our method,
which also reached promising results.

Figure 3 shows the confusion matrix for Subjects A02 and
AO03. The diagonal elements represent patterns correctly clas-
sified by our proposed system. Notice that for Subject A03 the
four analyzed classes were very well discriminated, achieving
the highest accuracy classifying MI tasks of left and right
hands. For Subject A02, the four class discrimination was
lower with respect to Subject A0O3. It is worth noting that
the left hand MI tasks from Subject A02 were relatively
well-identified by our system with respect to the right hand
and the tongue MI. As a result, the best performance was
obtained on this subject, decoding feet MI. This confirms
the high inter-subject variability in performing MI tasks.
Additionally, 2D representations were obtained by using
the ““T-distributed Stochastic Neighbor Embedding” (t-SNE)
method [81]. Figure 4 shows the spatial feature projection
before training (Figure 4a), as well as after training for Sub-
jects AO2 (Figure 4b), AO3 (Figure 4c), and A09 (Figure 4d.)

The class projection by applying convolutional layers seen
in Figure 4, may explain the negative impact on recognition
due to overlapped classes. In particular, good class separation
was obtained on Subject A03, which justifies the highest
accuracy using our approach. In contrast, for Subject A02 it
was hard to discriminate appropriately his/her MI tasks for
both left and right hands, as shown in Figure 4b. On the other
hand, the graph of Subject A09 shows good discrimination
for MI tasks linked to MI from left hand and tongue, and poor
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TABLE 6. Intra-subject session to session classification results (% accuracy) on dataset 2a.

Subiccts FBCSP SCN C2CM MCNN CCNN GLOBAL PROPOSED
4 [38] [23] [24] [45] [45] [43]
A0l 76.00 86.56 87.50 90.21 87.14 88.6 83.81
A02 56.28 62.29 65.28 63.40 63.10 55.9 51.97
A03 80.88 89.86 90.28 89.35 86.76 86.7 91.48*
A04 61.07 65.61 66.67 71.16 68.29 71.0 73.82*
A05 54.85 55.19 62.50 62.82 63.61 66.5 69.82*
A06 45.48 48.47 45.49 47.66 48.32 56.0 53.90
A07 82.98 86.07 89.58 90.86 87.73 88.4 91.17
A08 81.63 78.41 83.33 83.72 80.17 80.9 81.87
A09 70.45 76.05 79.51 82.32 78.83 77.1 82.39
Average 67.70 72.05 74.46 75.72 73.77 74.6 75.58
*, indicates significant difference with a 95 % confidence level
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FIGURE 3. Confusion matrix of the evaluation data for subject A02 (a) and subject A03 (b).
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embedding using the input to fully connected layer a) pre- training
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separation for the other two classes, confirming again the high
inter-subject variability.

Table 7 shows the results obtained on dataset 2b. Here,
we only compared our results with previous works that
used all training sessions, such as CNN-SAE [57], CWT-
SCNN [59] and CAgyos5[60]. Therefore, the system proposed
in [38] was excluded for this evaluation. Also notice that
the best results in [60] were not considered in Table 7
for comparison, as they were obtained in other conditions.
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TABLE 7. Intra-subject on session to session classification results
(% accuracy) on dataset 2b.

Subjects CNE}S]AE nggfw C[/gfﬁ’“ PROPOSED
BOI 78.10 74.70 68.31 75.43
B02 63.10 81.30 55.10 55.36
B03 60.60 68.30 54.61 52.09
B04 95.60 96.30 91.14 94.96
B0S 78.10 92.50 80.17 87.60
BO6 73.80 86.90 72.23 79.71
BO7 70.00 73.40 67.79 79.77*
BOS 71.30 91.60 88.65 87.87
B09 85.00 84.40 80.23 84.69
Average 75.10 83.20 73.13 77.50

*, indicates significant difference with a 95 % confidence level

For this reason, we show the results obtained in [60] by
using CAgoss- We observed that our method outperformed
the results obtained by applying CNN-SAE and CAgss,
but CWT-SCNN performed better. Notice that our method
achieved mean ACC higher than 77.50% for six subjects BO4,
BO05, B06, BO7, BO8 and B09. Also, notice that the results
improved significantly (ACC of 79.77%) for Subject BO7,
with respect to the others approaches shown in Table 7.

C. EXPERIMENT 3

A similar experiment using non-subject-specific classifica-
tion was carried out in [45] employing the dataset 2a, where
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TABLE 8. Inter-subject on session to session classification results
(% accuracy) on dataset 2a.

Subjects SCN MCNN CCNN PROPOSED
[23] [45] [45]

A01 47.06 51.91 62.07 72.29*%
A02 31.22 38.06 42.44 39.26
A03 41.02 43.34 63.12 81.59*
A04 33.19 35.81 52.09 60.90*
A05 41.57 41.50 49.96 54.03*
A06 34.71 31.11 37.16 51.58*
A07 43.09 48.09 62.54 74.70%*
A08 46.01 45.01 59.32 77.11%
A09 51.78 51.29 69.43 76.86*
Average 41.07 42.09 55.34 65.37*

*, indicates significant difference with a 95 % confidence level

TABLE 9. Inter-subject on session to session classification results
(% accuracy) on dataset 2b.

Subjects PROPOSED
B01 66.94
B02 55.66
B0O3 54.08
B04 93.78
BOS5 79.09
B06 80.81
B07 74.18
B0S 90.05
B09 83.42
Average 75.33

the results were obtained by also using the testing set for the
training process of an Autoencoder. The performance of other
approaches in [45] are shown in Table 8 together with our
achievement using the proposed system. As such a compari-
son with three methods, SCN [23], MCNN and CCNN [45]
indicates that our recognition system achieved the best per-
formance with a significant difference for almost all subjects,
except for Subject A02. Furthermore, our approach reached
higher mean ACC (65.37%) with a significant difference over
the other methods.

This experiment was also conducted on dataset 2b, and
the results are shown in Table 9. We noted that our
approach decreased its performance slightly, getting mean
ACC of 75.33%, which is comparable with respect to Exper-
iment #2 (see Table 7) and also enhanced the accuracy for
Subjects BO3, BO6 and B0O8, demonstrating good generaliza-
tion using a non-subject-specific training stage.

D. EXPERIMENT 4

The results obtained are shown in Table 10 (for dataset 2a)
and Table 11 (for dataset 2b). On both datasets, the perfor-
mance by applying inter-subject transfer learning declined in
comparison to other experiments, but the accuracy decreased
notably on dataset 2a. For this same dataset 2a, the average
accuracy of our system by applying inter-subject transfer
learning was higher with respect to SCN [23] and MCNN [45]
in Table 8, which is remarkable because these works used
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TABLE 10. Inter-subject transfer learning classification results
(% accuracy) on dataset 2a.

Subjects PROPOSED
A01 65.62
A02 31.95
A03 63.08
A04 42.73
A0S 31.57
A06 33.21
A07 41.45
A08 60.70
A09 58.38
Average 47.63

TABLE 11. Inter-subject transfer learning classification results (%
accuracy) on dataset 2b.

Subjects yr PROPOSED
BOI 68.23 71.85*
B02 55.41 55.46
B03 54.20 55.32%
B04 81.42 88.63*
BO5 65.40 68.58*
B06 71.59 74.11%
B07 68.53 69.89*
B0S 72.13 75.91*
B09 73.13 74.75%
Average 67.78 70.50%

*, indicates significant difference with a 95 % confidence level
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FIGURE 5. The mean confusion matrix over all subject on the dataset 2a
by applying inter-subject transfer learning.

data from all subjects during the training process. Moreover,
the results for Subjects AO1 and AO8 are encouraging.

Figure 5 shows the mean confusion matrix over all sub-
jects. The best MI discrimination was obtained for both left
and right hands. This finding is encouraging, as upper limb
rehabilitation of post-stroke patients is widely used, in order
to increase their independence in performing daily activi-
ties [4], [5], [82].

Our results using inter-subject transfer learning on
dataset 2b are compared with CAgyss proposed in [60].
We observed that our system reached a higher mean accuracy
of 70.50%, and also enhanced the accuracy for all subject,
with a significant difference for almost all subjects, except
for Subject BO2.
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It is worth noting that performance was consistent across
all experiments for two groups of subjects: 1) A02, A06,
B02 and B03; 2) AO1, AO3 and B04, which agrees with other
published studies. Therefore, we consider that the variation
of results (good and poor accuracy) may be more related to
the quality of the data [60].

V. CONCLUSION

A motor imagery-based BCI using a convolutional network
was developed in this work, employing SCN for multi-class
classification. Several experiments to evaluate the proposed
model were carried out using well-known international
databases from BCI Competition IV and BCI Competition III.
Our results showed improvements over existing state-of-the-
art methods. In this research we explored the performance of
our recognition system for subject-specific and non-subject-
specific classification. We also evaluated the pre-trained
model to recognize MI tasks from unknown subjects, which
may have a relevant impact on real-life scenarios in clinical
applications, as it can enable new individuals to use a BCI
without previous calibration stage.
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