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Abstract  23 

Since woody plants like willow are used increasingly in treatment wetlands, there is a 24 

growing need to characterize their ecophysiology in these specific growing conditions. For 25 

instance, potential evapotranspiration (ET) can be greatly increased in wetlands, due to 26 

factors like high water availability as well as oasis and clothesline effects. Few studies 27 

report willow ET rates measured in full-scale constructed wetland conditions, and fewer 28 

still in a temperate North-American climate. The objective of this study was to measure and 29 

model evapotranspiration of a commonly used willow cultivar, Salix miyabeana (SX67), to 30 

provide the ET rates and crop coefficient for this species. During two growing seasons, we 31 

studied a 48 m2 horizontal subsurface flow willow wetland located in eastern Canada, 32 

irrigated with pretreated wood preservative leachate. We found a mean monthly 33 

evapotranspiration rate of 15 mm/day, for a seasonal cumulative ET value of 2785 mm and 34 

a mean crop coefficient of 4.1. Both the evapotranspiration results and leaf area index 35 

(LAI) were greater than most results reported for open field willow plantations. Maximal 36 

stomatal conductance (Ḡs) was higher than that expected for deciduous trees and even for 37 

wetland plants, and mean values correlated well with temperature, solar radiation, relative 38 

humidity and day of the year. We demonstrated that an ET model using Ḡs, LAI and water 39 

vapor pressure deficit (VPD) as parameters could predict the evapotranspiration rate of our 40 

wetland. This simplification of traditional ET models illustrates the absence of 41 

evapotranspiration limitations in wetlands. Furthermore, this study also highlights some 42 

factors that can enhance ET in treatment wetlands. Our results should both improve the 43 

design of treatment wetlands using fast growing willows, and provide a simple ET 44 

predictive model based on major evapotranspiration drivers in wetlands. 45 
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Keywords: willow crop coefficient, wetland evapotranspiration, stomatal conductance, 46 

willow leaf parameters, evapotranspiration modelling, zero-discharge wetlands 47 

 48 

1. Introduction 49 

Treatment wetlands, or vegetation filters, are now commonly used for treatment of various 50 

types of wastewater (Valipour and Ahn, 2017). "Artificial" wetlands are generally planted 51 

with herbaceous plants like Phragmites, Typha, graminoids or other aquatic and semi-52 

aquatic species (Kadlec and Wallace, 2008). More recently, woody species of the Salix 53 

genus (willows), generally studied for biomass production, are being tested and used for 54 

wastewater treatment purposes. Salix species are mostly hydrophilic and tolerate hypoxic 55 

conditions and great water fluctuations well, have a high growth rate and develop a 56 

vigorous root system (Kuzovkina et al., 2008), making them good candidates for treatment 57 

wetland purposes. Another advantage of using woody plants for water treatment is the 58 

added value of biomass production that can be used for bioenergy and biofuel processes 59 

(Duggan et al., 2005). Consequently, there is growing interest in willow for use in 60 

treatment of landfill leachate, domestic wastewater or other nitrogen rich wastewaters 61 

(Białowiec et al., 2003; Dimitriou and Aronsson, 2011; Guidi et al., 2014). Fast growing 62 

willows are also known for their great evapotranspiration (ET), which led to the 63 

development of a new specific type of treatment wetlands called “zero-discharge wetlands” 64 

(ZDWs; Dotro et al., 2017). The design of ZDWs is based mainly on the ET capacity of the 65 

plant selected. They operate without liquid effluent, immobilizing contaminants in the 66 

wetland substrate and preventing any release of residual contamination in the environment. 67 

Depending on the type of water contamination, ZDWs can function as the final step of a 68 
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treatment plant or as a secondary treatment. Such wetlands are now well implanted in 69 

Scandinavian countries, mainly in Denmark, where the concept was first developed 70 

(Gregersen and Brix, 2001; Brix and Arias, 2011), and Ireland (Curneen and Gill, 2014). 71 

Conclusive tests have also been performed in Mongolia, under very cold climatic 72 

conditions (Khurelbataar et al., 2017), and zero-discharge wetlands are currently being 73 

tested in other locations.  74 

Sound scientific knowledge of the ET rate of the species used is an essential tool to design 75 

a treatment wetland because of the direct impact it will have on the wetland hydraulics 76 

(Kadlec and Wallace, 2008) and its removal performance (Białowiec et al., 2014). It is even 77 

more important for zero-discharge wetlands, where ET is the main "treatment" process, 78 

ensuring that no liquid waste will flow out of the wetland. While many studies have been 79 

published on willow ET, very few concern willows growing in full-scale treatment wetland 80 

conditions. However, ET in artificial wetlands can differ greatly from ET measured in a 81 

plantation, and can significantly surpass potential ET (Dotro et al., 2017).  82 

The willow species most studied for ET is Salix viminalis, its hybrids and their numerous 83 

cultivars (Frédette et al. 2018). Although widely used in Europe, some long-term studies 84 

have pointed out that, in North America, cultivars of S. viminalis are more prone to diseases 85 

and insect attacks than other cultivars (Labrecque and Teodorescu, 2005; Nissim et al., 86 

2013). Instead, other cultivars from species like Salix eriocephala, S. purpurea, S. nigra 87 

and S. miyabeana are frequently used (Smart and Cameron, 2008). In eastern Canada, 88 

Nissim et al. (2013) concluded that S. miyabeana and some indigenous species were more 89 

suited for plantation than S. viminalis. Salix miyabeana has also shown the highest biomass 90 

production among cultivars (Labrecque and Teodorescu, 2005; Pitre et al., 2010), good 91 
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phytoremediation capacity and high stress tolerance (Grenier et al., 2015; Nissim et al., 92 

2014). Considering that this species and its cultivars have been proven to be well suited for 93 

some regions of North America, there is now interest in using S. miyabeana for treatment 94 

wetlands (Lévesque et al., 2017, Grebenshchykova et al., 2017), ET cover (Mirck and 95 

Volk, 2009) and zero-discharge wetlands (Frédette et al., 2017). However, we found a 96 

single study that reported ET rates for this species, based on cultivars grown on a 97 

contaminated site for leachate minimization in the north-eastern United States (Mirck and 98 

Volk, 2009). For all species of willow combined, we found four studies reporting ET rates 99 

in treatment wetland conditions, most of them conducted in Europe and none in the 100 

Americas.  There is thus a clear lack of knowledge regarding the ET capacity of 101 

economically important North American willow cultivars, like S. miyabeana, growing in 102 

treatment wetlands conditions.  103 

The first objective of our study was to measure the ET rate and provide a crop coefficient 104 

(KET) for Salix miyabeana (SX67) grown in treatment wetland conditions in a sub-boreal 105 

temperate climate. The second objective was to propose a predictive ET model, based on 106 

simple meteorological and leaf parameters, which would be coherent with the wetland 107 

growing conditions and physiology of fast growing willow species like S. miyabeana. 108 

While the first objective would serve as a practical tool for development of a better 109 

treatment wetland design and add to our knowledge of the ET of North American willow 110 

cultivars, the predictive model would enable the transfer of our results to different climatic 111 

scenarios and to other willow species that are physiologically similar but have different leaf 112 

and phenological parameters.  113 

2. Material and methods  114 
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2.1 Study site 115 

The wetland studied is located in an industrial part of the city of Laval, Québec, where 116 

mean annual precipitation and temperature are 1000 mm and 6.8 °C, respectively, elevation 117 

is 91 m and the growing season is about 170 days. This willow wetland was established in 118 

2012 and serves as a final polishing step connected to a series of other constructed wetlands 119 

treating leachate contaminated with utility wood pole preservatives (chromated copper 120 

arsenate and pentachlorophenol). The treatment system is operated only during the growing 121 

season and when there is no risk of water freezing in the system, generally from May to 122 

December. More details about the experimental treatment project are provided in Levesque 123 

et al. (2017). The willow wetland is a horizontal subsurface flow wetland 8 m wide by 6 m 124 

long (Figure 1), lined with a waterproof membrane and filled with a mix of black peat 125 

(20%) and sand (80%) with a general porosity of 50%.  126 

 127 

Figure 1. Section view of the horizontal subsurface flow wetland used to measure and model 128 

evapotranspiration of S. miyabeana in treatment wetland conditions.  129 
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Throughout this study, the average hydraulic loading rate of the willow wetland was about 130 

55 L m-2 d-1 during the operating season, and the affluent contained a low concentration of 131 

contaminants (Table 1).  132 

Table 1. Daily volume and general physical and chemical properties 

of the willow wetland influent, reported as the average value based 

on the entire growing season, in 2016 and 2017. Absence of values 

means that measured parameters were below detection limit in all 

samples.  

Parameter Unit 2016 2017 

Daily volume  m3 3.0 2.3 

Hydraulic loading rate L m-2 d-1 63 48 

pH  7.64 ± 0.06 7.73 ± 0.12 

DCO  mg/L 40 ± 1 - 

PCCD/F  pg TEQ/L 0.32 ± 0.1 1.57 ± 0.46 

Chlorinated phenols  μg/L - 1.4 ±1.4 

As μg/L 82 ± 16 160 ± 82 

Cr μg/L 11 ± 3 12 ± 6 

Cu μg/L 17 ± 7 22 ± 12 

The wetland was fertilized in 2014, and again at the beginning of 2017 with a slow-acting 133 

fertilizer in (Acer 21-7-14). The shoots were cut back at the end of the 2014 season to 134 

maintain a juvenile state and high productivity (Nyland, 2016; Abrahamson et al., 2002). A 135 

monitoring station (Campbell Scientific, various sensors) was present on site for basic 136 

meteorological data measurement (rainfall, temperature, relative humidity, solar radiation 137 

and wind speed). 138 

2.2 Plant material 139 
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The wetland was planted with 112 stools of S. miyabeana SX67 at a planting density of 2.3 140 

plants/m2. Salix miyabeana is native to Asia and the cultivar SX67 was developed at the 141 

University of Toronto, in Canada (Cameron et al., 2007). It is usually grown from dormant 142 

cuttings, and only male clones with no seed production are produced (Cameron et al., 143 

2007). Although it can reproduce vegetatively, it does not propagate laterally (e.g. stolon), 144 

so the planting density does not change over time. However, the stools produce new stems 145 

when they are cut back. They produce 6 stems on average (Tharakan et al., 2005), ranging 146 

from 2 to 12 (Fontana et al., 2016). Tharakan et al. (2016) reported a mean leaf area index 147 

of 4.9 for this cultivar at the end of a three-year rotation cycle. SX67 present stomata on 148 

both abaxial and adaxial sides of leaves (amphistomatic) at the early development stage, 149 

and adaxial stomatal density decreases as the leaves mature (Fontana et al., 2017). 150 

2.3 Physiological measurements 151 

To model transpiration of S. miyabeana, we measured two main physiological parameters, 152 

i.e. stomatal conductance and leaf area index. 153 

 2.3.1 Stomatal conductance 154 

Instant stomatal conductance (ḡs), representing the exchange rate of vapor water from leaf 155 

to the boundary layer (mmol m-2 s-1), was sampled on the abaxial side of leaves using a 156 

steady state porometer (Decagon, SC-1). In 2016, we sampled ḡs on 34 days from May 15 157 

to October 11, with measurements in the lower, middle and upper parts of the canopy, both 158 

inside and at the border of the wetland, and from 6 AM to 9 PM, for a total of 4003 159 

measurements. Data from 2016 allowed us to optimize sampling for the 2017 campaign, 160 

with measurements performed from 10 AM to 2 PM, where mean values of ḡs were 161 

observed, and only in middle and upper part of the canopy, because of the low influence of 162 
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the lower part in the general stomatal conductance (Ḡs) of the wetland. In 2017, sampling 163 

took place on 43 days from May 11 to October 27, for a total of 3579 measurements. Also, 164 

because S. miyabeana presents amphistomatic characteristics (Fontana & al., 2017), 150 165 

measurements were made on both adaxial and abaxial sides of the leaves (75 pairs of 166 

measurements, taken on four days from May to August 2017) to establish a ratio of 167 

transpiration occurring on the upper versus the lower side of the leaf.  168 

 2.3.2 Leaf area index 169 

Leaf area index (LAI), which expresses the leaf area covering a given ground area (m2 170 

leaf/m2 ground), was estimated once a month, in the middle of the month, from May to 171 

November and for both growing seasons. We calculated the LAI of the entire wetland 172 

based on extrapolation of individual willow leaf area and considering that there could be 173 

significant difference between leaf area of willows growing on the border and those 174 

growing in the center of the wetland: 175 

 = ( + )/  (Eq. 1) 176 

Where N is the number of willows growing either on the border or in the center, and their 177 

respective mean individual leaf area (IA), and Awetland is the wetland area. IA was estimated 178 

for fifteen individual willows, seven growing on the border of the wetland and eight 179 

growing in the center, as follows: 180 

 = ( + + ) (Eq. 2) 181 

Aleaf is the average single leaf area and is measured each month based on 30 to 40 randomly 182 

collected leaves and using the software, Mesurim Pro v3.4.4.0. The number of stems (S) 183 

were counted on the individuals and divided in 3 height classes (<1m, 1-3m, >3m). Finally, 184 
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the average number of leaves (Nleaf) present on stems was estimated by direct counting on 5 185 

random stems of each class. Afterwards, we examined the spatial variation of the leaf area 186 

by comparing individual area of stools on the edge and stools in the center of the wetland. 187 

Because the leaf cover seemed to exceed the actual area of the wetland, we also calculated 188 

and adjusted value of LAI based on the projected canopy area (Allen et al., 2011). 189 

2.4 Wetland evapotranspiration calculation 190 

To estimate actual ET of the willows, we used the water balance method, based on the 191 

following mathematical equation (Kadlec & Wallace, 2008):  192 

 =  (Eq. 3) 193 

Where ET is the ET rate, Qi the inflow flowrate, Qp the precipitation adjusted by a canopy 194 

interception factor (I), Qr the flowrate of runoff entering the wetland, Qd the underground 195 

drainage flowrate, Qo the effluent flowrate,  the variation of the volume of water 196 

contained in the wetland and A the wetland area. We considered an interception factor of 197 

25%, determined with an equation provided by Martin and Stephen (2005) and based on 198 

leaf area index (see section 2.2.2; = 3.01 + 1.12), meaning that only 75% of the 199 

rainfall reaches the wetland substrate, the rest being evaporated directly from the leaf and 200 

thus not considered as tree ET per se. As we will demonstrate below, rapid closure of the 201 

wetland canopy makes this high interception factor very suitable. Because of the 202 

waterproof membrane and the highly permeable soil surrounding the wetland, it is assumed 203 

that Qr and Qd are equal to zero. The water volume variation in the wetland is calculated 204 

according to the water level and a measured soil porosity of 50%: 205 

 = ∙ ∙ ( ; ) (Eq. 4) 206 
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Where ϴ represents the substrate porosity, A the wetland area and ( ; ) the water level 207 

variation for a given period. Water level was measured hourly with two probes (Levelogger 208 

Junior Edge, Solinst) placed at two points in the wetland, from May 27 to December 9 in 209 

2016 and from April 21 to November 29 in 2017. Both influent and effluent volume of the 210 

willow wetland were monitored with pulse meters (Omega, FTB8000B) throughout the 211 

operating season (the system was completely shut down in winter) which represent 214 and 212 

220 days for 2016 and 2017 respectively. Due to a malfunction of the flow meters, 2016 213 

results are overestimated and late season results for both years (October and November 214 

2016 and November 2017) are not presented. Finally, reference ET was calculated 215 

according to the modified Penman-Monteith method (Allen & al., 1998), and open water 216 

evaporation estimated by pan evaporation.   217 

2.5 Evapotranspiration modelling 218 

In a treatment wetland, there are few limitations on ET. Available energy is greater than 219 

direct solar radiation because of both "oasis" and "clothesline" effects (Dotro et al., 2017; 220 

Kadlec and Wallace, 2008) that increase ET potential (Allen et al., 1998). Oasis effect 221 

provides a vertical energy transfer in the form of sensible heat from the air surrounding the 222 

wetland because its moist condition and transpiration make it cooler than the ambient air. 223 

The clothesline effect, resulting from the tall wetland plants being surrounded by smaller 224 

vegetation, provides a horizontal energy transfer due to wind (Kirkham, 2014). Wind effect 225 

is enhanced due to the small size of the wetland and constantly disturbs the boundary layer 226 

of plant leaves (Kadlec and Wallace, 2008), meaning that water vapor excreted by the 227 

leaves is automatically replaced with fresh air and transpiration potential increases. 228 
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Frequent and high irrigation combined with a saturating water level in the wetland also 229 

ensure high water availability and prevent limitation of ET due to water stress.  230 

Based on these non-limited conditions, we hypothesized that transpiration of willows in a 231 

treatment wetland should be highly correlated to stomatal conductance (i.e. water vapor 232 

exchange rate between leaf and air; Ḡs). Ḡs is generally measured in a volume of water per 233 

surface of leaf per time unit (e.g. mmol m-2 s-1), meaning that leaf area capable of 234 

transpiring (LAIactive) is also required for ET calculation. Because of the relatively constant 235 

disturbance of the boundary layer by wind, transpiration rate should also be driven mainly 236 

by water vapor pressure deficit (VPD) in the ambient air. Otherwise, the irrigation of the 237 

wetland being below the surface, there is no open contact between water and the 238 

atmosphere. According Shuttleworth and Wallace’s energy partitioning model (1985), the 239 

high average LAI of S. miyabeana (> 4 m2; Tharakan et al., 2016) implies that most of the 240 

energy available for ET is intercepted by the willows, reducing soil evaporation potential to 241 

close to zero. Therefore, in this study, we assume that soil evaporation can be ignored and 242 

that willow transpiration can be treated as ET. Daily ET of S. miyabeana grown in a 243 

treatment wetland (mm/d) could then be estimated with the following leaf parameter based 244 

equation:   245 

 = Ḡ ∙ ∙  (Eq. 5) 246 

Active leaf area can be calculated throughout the season according to the seasonal leaf 247 

development curve and the abaxial/adaxial ratio established by measurements presented in 248 

section 2.3, and the vapor pressure deficit can be calculated with daily temperature and 249 

relative humidity data. To estimate stomatal conductance, we chose an empirical approach 250 

based on environmental parameters known to influence stomata openings (Buckley and 251 
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Mott, 2013). We wanted those parameters to be easily accessible, to allow the transpiration 252 

rate to be predicted with minimal resources. Through linear regressions, we tested the 253 

statistical relation between mean daily stomatal conductance measured on site and the 254 

following daily parameters: solar radiation, average and maximal air temperature, average 255 

and minimal relative humidity, wind speed and day of the year. Parameters presenting a 256 

significant relation with stomatal conductance (p<0.05) were combined to predict canopy 257 

general conductance as follows: 258 

 Ḡ = ∑ ḡ  (Eq. 6) 259 

Where partial stomatal conductance (ḡs) was calculated according to previously selected 260 

parameters (x) having their own relative influence (α) on the general stomatal conductance 261 

of the wetland canopy (Ḡs). Finally, crop coefficient was calculated as follows (Kadlec and 262 

Wallace, 2008): 263 

 = ⁄  (Eq. 7.) 264 

Where KSX67 is the crop, or plant, coefficient, ETSX67 is the modelled ET rate of the willow 265 

stand and ET0 the reference crop ET. 266 

2.6 Statistical analysis 267 

The relation between meteorological parameters and Ḡs was tested with either linear, 268 

quadratic and power regressions. The influence of parameters on a given variable (e.g. 269 

influence of leaf face on Ḡs variation) was tested with two-way ANOVAs analysis with a 270 

0.05 significance threshold (α = 0.05). Tukey’s post-hoc statistical test was used when 271 

necessary to better interpret the results of the analysis of variance (α = 0.05). All statistical 272 

analysis were done using R 3.5.1 software. 273 
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3. Results 274 

The summer of 2016 was hot and dry, with a mean temperature of 18.0 °C (± 6.0) and 569 275 

mm of rainfall from May to October. Mean temperature was similar in 2017 (17.9 °C 276 

± 4.8), but with less days on which maximum temperature rose above 30 °C. Also, 2017 277 

saw much higher rainfall, with 819 mm for the same period. A summary of solar radiation, 278 

rainfall and daily mean temperature for both growing seasons is shown in Figure 2.  279 

  280 

Figure 2. Summary of the meteorological conditions at the experimental site for the 2016 and 2017 281 

growing seasons. 282 

Average reference crop ET was 4.5 mm/d in 2016 and 3.2 mm/d in 2017, for a total of 808 283 

mm and 750 mm respectively, from May to November. Pan evaporation measured in 2017 284 

represented 81% of reference ET. For the willow wetland, we calculated a mean daily ET 285 
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rate of 30.9 mm/d and a seasonal total ET of 4536 mm from May 9 to September 30 in 286 

2016, and 16.6 mm/d and a seasonal total of 2906 mm from May 15 to October 31 in 2017. 287 

3.2 Physiological measurements 288 

Stomatal conductance values were generally higher and more variable in the 2016 season, 289 

with a mean value of 418 (± 124) mmol m-2 s-1 compared to 309 (± 59) mmol m-2 s-1 in 290 

2017. The adaxial/abaxial stomatal conductance ratio was relatively high (0.33 ± 0.17) and 291 

variable in the early season, decreasing to relatively constant and low values (0.14 ± 0.06) 292 

for the rest of the summer (Figure 3).  293 

 294 

Figure 3. Adaxial/abaxial stomatal conductance ratio of S. miyabeana growing in treatment wetland 295 

conditions for the 2017 summer season. Different letters represent statistically different values. 296 

Thus, overall seasonal transpiration occurring on the upper part (adaxial) of the leaf 297 

represents about 20% of the lower side (abaxial) transpiration, and actual stomatal 298 

conductance equals approximately 120% of the values measured on the abaxial side of the 299 

leaf only. In both the 2016 and 2017 seasons, leaf cover established rapidly, attaining its 300 
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highest value in July, with 10.4 and 11.4 m2 of leaves per m2 of soil respectively. The 301 

canopy extended beyond the wetland borders by about 50 cm meter on each side, for a 302 

projected canopy area of 63 m2 compared to the actual wetland area of 48 m2. Peak LAI 303 

measured using the projected canopy area was 7.9 in 2016 and 8.7 in 2017. In 2017, the 304 

global leaf area was a little higher than in 2016, attained its maximal value earlier and 305 

retained active foliage later in the season (Figure 4).  306 

  307 

Figure 4. Evolution of the leaf area index of a 48 m² wetland (solid line) planted with S. 308 

miyabeana throughout 2 successive growing seasons, and the corresponding values 309 

adjusted for a 63 m² projected canopy area (dashed line). 310 

Trees on the edge of the wetland had up to three times more leaf area than those in the 311 

center (Figure 5). 312 
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 313 

Figure 5. Leaf area, measured in the month of July, of 15 individuals of S. miyabeana growing 314 

either at the border or in the center of a 48 m2 constructed wetland. Different letters represent 315 

statistically different values. 316 

3.3 Evapotranspiration modelling 317 

We found a significant effect of temperature, solar radiation, relative humidity and day of 318 

the year on stomatal conductance (Table 2), but no effect of wind speed. 319 

Table 2. Parameters of the relations found between stomatal conductance of S. 

miyabeana and temperature (T), day of year (DOY), solar radiation (Rad) and relative 

humidity (RH). Parameter importance (α) and predictive equations used for stomatal 

conductance modelling are presented. 

Parameter Type of relation pvalue R2 α Equation 

T Power <0.001 0.21 0.48 88.4 .  

DOY Quadratic 0.002 0.13 0.30 −0.02 + 9 − 572 

Rad Quadratic 0.05 0.05 0.11 −0.005 + 2 − 177 

RH Linear 0.03 0.05 0.11 2.9 + 168 

For temperature and relative humidity, mean daily values were better predictors than 320 

maximum and minimum values respectively. Correlation between Ḡs and each factor 321 
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separately was relatively weak (r2 from 0.05 to 0.21), but together they explained half of 322 

stomatal conductance variation throughout the season (Figure 6.), which can be considered 323 

satisfying due to the many other factors driving this parameter but not measured here 324 

(Buckley and Mott, 2013).  325 

  326 

Figure 6. Results of Ḡs modelling, based on temperature, solar radiation, relative humidity and day 327 

of year, over Ḡs measured on the field under the same parameters. 328 

The model was good at predicting mean Ḡs, with a predicted mean seasonal value of 428 329 

mmol m-2 s-1 over 418 mmol m-2 s-1 measured in 2016, and 329 mmol m-2 s-1 predicted over 330 

309 mmol m-2 s-1 measured in 2017. Daily variation was captured more accurately in 2017 331 

than in 2016 (Figure 7).  332 
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  333 

Figure 7. Stomatal conductance (Ḡs) field measurements (solid line) and modelling results 334 

(dashed line) over the 2016 and 2017 growing seasons.  335 

Using the general stomatal conductance predicted with this model and the previously 336 

established leaf area parameters, we calculated the ET rate (Eq. 5) and the corresponding 337 

crop coefficient (Eq. 7; Table 3). Willow ET was higher in 2016, as was reference ET, with 338 

a mean daily rate of 17.1 mm/d compared to 12.9 mm/d in 2017 (Table 3). Calculated 339 

seasonal ET was 3170 mm in 2016 and 2400 mm in 2017. Crop coefficients were constant 340 

in both years, with an average of 4.1, and values slightly above 5 times the reference ET for 341 

the months of July, August and September (Table 3). Highest ET rates were calculated in 342 

August 2016 (44.8 mm/d on August 13) and in July 2017 (34.3 mm/d). Modelled crop 343 

coefficients are very close to those calculated with the water balance for most of the 2017 344 

season, but lower than water balance ET in 2016, probably due to the overestimation of 345 

actual ET for this season (section 2.4). 346 

Table 3. Mean daily Penman-Monteith reference evapotranspiration (ET0), estimated active leaf area index of 



Manuscript  Frédette et al. 

20 
 

the 48 m2 treatment wetland (LAI), modelled willow evapotranspiration (ETSX67) and crop coefficient (KSX67) 

presented as monthly and seasonal averages, for the 2016 and 2017 growing seasons. 

 2016 2017 

 ET0 LAIactive ETSX67 K(SX67) ET0 LAIactive ETSX67 K(SX67) 

May 5.2 ± 0.9 3.3 ± 1.3 4.3 ± 5.1 0.8 ± 0.7 4.0 ± 2.0 3.4 ± 1.9 3.9 ± 3.5 1.0 ± 0.7 

June 5.5 ± 0.9 8.2 ± 1.4 15.5 ± 10.4 2.8 ± 1.0 3.9 ± 1.9 12.1 ± 2.0 16.5 ± 8.7 4.3 ± 1.1 

July 5.4 ± 0.6 11.6 ± 0.5 26.8 ± 9.5 5.0 ± 0.9 3.8 ± 1.4 13.3 ± 0.5 19.4 ± 5.6 5.1 ± 1.1 

August 5.0 ± 0.5 10.1 ± 0.3 27.4 ± 9.8 5.5 ± 0.9 3.5 ± 1.1 10.7 ± 0.7 17.8 ± 4.3 5.1 ± 0.7 

Sept. 3.9 ± 0.6 9.5 ± 0.9 20.0 ± 5.8 5.2 ± 1.2 2.6 ± 1.1 9.1 ± 0.8 13.4 ± 4.6 5.1 ± 1.1 

October 1.8 ± 0.5 4.5 ± 1.9 8.7 ± 3.8 4.8 ± 1.3 1.4 ± 0.9 4.8 ± 1.4 6.4 ± 2.3 4.4 ± 0.8 

Average 4.5 ± 2.0 7.9 ± 3.2 17.1 ± 12.0 4.0 ± 1.9 3.2 ± 1.8 8.9 ± 3.9 12.9 ± 8.6 4.2 ± 1.6 

4. Discussion 347 

The mean monthly ET rate measured for Salix miyabeana in treatment wetland conditions 348 

ranged from 3.9 to 27.4 mm/d, with a mean seasonal cumulative ET of 2785 mm. Although 349 

ET was greater in 2016 than in 2017, crop coefficients were similar for both years, ranging 350 

from 0.8 to 5.5 with a mean value of 4.1 times the Penman-Monteith reference ET. These 351 

ET results differ from those reported in the very few studies conducted in comparable 352 

conditions (Curneen and Gill, 2014; Gregersen and Brix, 2001; Brix and Arias, 2005; 353 

Kučerová et al., 2001), although crop coefficients are similar (Table 4). On the other hand, 354 

LAI is very high compared to the only study we found for another cultivar of S. miyabeana 355 

(SX64; Mirck and Volk, 2009; Table 4), grown in open field plantation, with low water 356 

input and soil contamination.  357 
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Table 4. Evapotranspiration results obtained for fast growth willow cultivars in treatment wetland 

conditions (A) compared to results obtained for a plantation of Japanese willow (B) 

Species (cultivar) Country 
Seasonal 

ET 

Peak 

KET 

Seasonal 

KET 

Annual 

KET 

Ref. 

S. miyabeana (SX67) Canada 2785 mm 5.5 4.1 2.5 1 

S. viminalis (Bjorn, Tora, 

Jorr) 
Denmark 1113 mm - - 2.5 2 

S. viminalis Ireland 669 mm 5.1 3.0 - 3 

S. cinereal Belgium - 6.7 - - 4 

S. miyabeana (9882-34, 

9870-23, SX61, SX64) 
USA 515 mm 1.4 1.2 - 5 

Note: 1: present article; 2: Gregersen & Brix, 2001; 3: Curneen & Gill, 2014, 4: Kučerová et al., 

2001; 5: Mirck & Volk, 2009. 

Average seasonal ET rates reported for other fast growing willow cultivars grown in field 358 

plantation are also generally much lower than our results (1.4 mm/d, Linderson et al., 2007; 359 

3.0 mm/d, Lindroth et al., 1994; 2.9 mm/d, Personn, 1995; 1.0 mm/d, Mata-Gonzalez; 3.1 360 

mm/d, Budny and Benscoter, 2012). In comparison, similar rates (from 10 to 23 mm/d) 361 

were measured for young S. babylonica grown in water saturated conditions in the north-362 

eastern United States (Pauliukonis et al., 2001). Such high ET rates can be explained by 363 

both enhancing factors linked to the treatment wetland itself (i.e. oasis and clothesline 364 

effect, high water availability, important border effect) and by S. miyabeana ecophysiology 365 

(i.e. high stomatal conductance and leaf area index). 366 

In this study, a simple model based mainly on two leaf parameters was sufficient to model 367 

ET. As expected, the model ET results were lower than the water balance results in 2016 368 

(see section 2.4). However, 2017 simulation results closely resembled water balance 369 

results. The fact that our simplified ET model yielded conclusive results supports our 370 
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premise that typical ET limiting factors are greatly attenuated in small wetlands. Other 371 

studies presenting ET modelling methods for willows often include several limiting factors 372 

(Irmak et al., 2013, Iritz et al., 2001), ignore heat advection effect (Přibáň and Ondok, 373 

1986) or focus on soil hydrology (Personn, 1995, Hartwich et al., 2016; Borek et al., 2010) 374 

or complex physiological processes (Tallis et al., 2013). Although based on sound scientific 375 

assumptions, those models hardly apply in treatment wetland conditions where water level 376 

is constant, limitations are attenuated and heat advection effect is very important. The few 377 

input parameters required for the operation of the model also represent an opportunity for 378 

managers working with treatment wetlands to easily include ET estimation in their planning 379 

activities. However, to be used for other taxa, a basic knowledge of the LAI dynamic and 380 

general stomatal conductance for the species is needed, and could require additional ḡs 381 

measurement in the field to adjust the model.  382 

Regarding ET related characteristics specific to S. miyabeana, we found that mean stomatal 383 

conductance (0.4  mol m-2 s-1) was consistent with published results for other willows (0.4 384 

mol m-2 s-1, Budny and Benscoter, 2016; 0.2-0.7 mol m-2 s-1, Hall et al., 1998) or higher 385 

(0.2 mol m-2 s-1, Kučerová et al., 2001). Leaf area index values were higher than those 386 

reported in the literature for other willow cultivars, even when using the projected canopy 387 

area for the calculation (Figure 8).  388 
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  389 

Figure 8. Maximal leaf area index (LAI) reported for willow stands (different cultivars) in various 390 

studies including the present results, and the corresponding value adjusted with projected canopy 391 

area. 392 

As for stomatal conductance, it is also interesting to note that the highest mean daily value 393 

measured (661 mmol m-2 s-1) is much higher than the values proposed for deciduous trees 394 

and even plants from wet habitats (Jones, 2013). The ratio between the conductance of the 395 

upper and lower side of the leaf is consistent with the literature predicting higher adaxial 396 

activity or adaxial stomatal density in younger leaves (Fontana et al., 2017). Meteorological 397 

factors could only explain about half of the stomatal conductance values and variability. 398 

Stomatal aperture is also driven by many biochemical and environmental factors (Buckley 399 

and Mott, 2013) that were not studied here. Aging of the willows, or negative effects of 400 

contaminant accumulation in the substrate are also factors affecting  long term variability of 401 

Ḡs in a wetland that should be considered. A sampling campaign (data not shown) 402 

conducted in June of 2017 in Denmark on S. viminalis clones used for zero-discharge 403 

wetlands showed significantly greater stomatal conductance in willows recently coppiced, 404 

compared to older individuals growing in the exact same conditions, which supports the 405 

aging hypothesis. Those factors should be investigated thoroughly in the future. Leaf area 406 
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of the willow wetland attained its maximal value (complete canopy closure) with two-year-407 

old shoots, peaking in July at around 12 m2 of leaves per m2 of ground. Planting density 408 

and methodological differences could partially explain why LAI of our wetland was very 409 

high compared to findings reported in the literature. Furthermore, all results presented in 410 

Figure 8 are based on field plantation or natural river bands of much greater size than our 411 

wetland and the effect of increased leaf area at the border is negligible. Our finding 412 

comparing individual leaf area at the edges versus in the center of the wetland is also 413 

interesting because it means we could modulate ET rate directly in the wetland design. 414 

Indeed, if ET is directly related to LAI as demonstrated here, adjusting the edge or aspect 415 

ratio of the surface area of a wetland could enhance (higher ratio) or limit (lower ratio) ET 416 

per ground unit, according to management objectives. Fertilization applied at the beginning 417 

of 2017 seemed to have accelerated the establishment of the leaf cover but did not 418 

significantly increase maximal LAI. Since the fertilizer used consisted of solid granules 419 

applied directly on the soil, with degradation regulated by rainfall and temperature, it is 420 

possible that rapid closure of the canopy and high rain interception by willows prevented 421 

the fertilizer from appropriately degrading and penetrating the substrate. This hypothesis is 422 

supported by the absence of nitrogen in the wetland effluent throughout the season (result 423 

not shown). In 2016, the canopy already seemed completely closed by mid-season and it is 424 

possible that maximum leaf area index was already attained. Indeed, in 2017, stems grew 425 

higher but there was little or no leaf development at the bottom of the stems (as was 426 

observed in 2016), probably because canopy closure was achieved and all available light 427 

was intercepted in the upper part of the trees. Therefore, we conclude that maximal LAI 428 
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was achieved with two-year-old shoots, without a need for fertilization, and that coppicing 429 

should be scheduled on a two-year basis.  430 

5. Conclusions 431 

S. miyabeana ET in treatment wetland condition was very high throughout this study. We 432 

highlighted several factors related to treatment wetlands that can significantly increase 433 

potential ET. Because there are few limitations on ET in wetlands, a model exclusively 434 

based on leaf parameters successfully predicted ET values and calculated crop coefficients 435 

for the studied willow wetland. Because these results are based on a full-scale wetland, they 436 

can be used as design parameters for treatment wetlands using S. miyabeana, and the 437 

equation presented for ET calculation can be adjusted for other fast-growing willow species 438 

used in similar growing conditions. We also presented a strategy to optimize ET per ground 439 

area by changing the aspect ratio of the wetland, and consequently its leaf area index, as 440 

well as regularly coppicing the stems. In the future, other parameters possibly affecting ET 441 

in treatment wetlands such as tree aging, substrate type and contaminant toxicity could be 442 

investigated. This study is a first step towards better ecophysiological characterization of 443 

woody plants used in treatment wetlands. 444 
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