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Abstract

The volume-averaged Navier-Stokes (VANS) equations are a key constituent of
numerous models used to study complex problems such as flows in porous me-
dias or containing multiple phases (e.g solid-liquid flows). These equations solve
the mesoscopic scale of the flow without taking into account explicitly each indi-
vidual solid particles, therefore greatly reducing computational cost. However,
due to a lack of analytical solutions, the models using the VANS equations are
generally validated directly against experimental data or empirical correlations.
In this work, a framework to design analytical solutions and verify codes that
solve the VANS equations by applying the method of manufactured solutions
is presented for the first time. Three test cases of increasing complexity are
designed with this method and are applied to assess the accuracy and order of
convergence of a finite volume solver used in a framework combining compu-
tational fluid dynamics (CFD) and the discrete element method (CFD-DEM).
The generic verification framework developed in this work is valid for any mesh-
based numerical method in both proprietary or open-source codes that solve
any form of the VANS equations such as those used in two-fluid, CFD-DEM,
multiphase particle-in-cell and porous media modeling.
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1. Introduction

It is well established that the Navier-Stokes equations govern the evolution of
the velocity and pressure of the incompressible flow of an isothermal Newtonian
fluid. However, this is not true for two phase flows for which a generic set of
governing equations has yet to be established despite the extensive literature on
the subject [1, 2, 3, 4, 5, 6]. The intrinsic multiscale nature of multiphase flows is
another issue that renders their modeling very challenging. For instance, in the
case of particle-laden flow, particle-particle collisions and solid-fluid interactions
taking place at the microscopic scale can affect the flow at the mesoscopic and
macroscopic scales [7]. This multiscale phenomenon complexifies the coupling
between the phases and, when relevant, turbulence modeling. The resulting
multiphase problem is hard to tackle with a single generic approach. For ex-
ample, in solid-liquid mixing, it becomes computationally intractable to resolve
fluid flow around more than a few thousand particles in a stirred tank. There-
fore, different families of models have been designed, which can resolve the scales
of interest with varying precision. These modeling scales can be referred to as
macro, meso and micro [7].

The use of averaged equations for the description of the fluid phase consists in
a meso approach that allows the investigation of multiphase flows at industrial
and lab scales, such as the concentrated particle-laden flows in fluidized bed
[8, 9] and mixing systems [10].

Various formulations of the governing averaged equations have been devel-
oped, as in [11, 5, 3]. In this paper, we focus on the case of a solid phase
dispersed in another continuous phase, within the context of our work on solid-
liquid mixing in both laminar and turbulent regimes.

For dispersed multiphase flows, the volume averaged Navier-Stokes equa-

tions (VANS) are a key constituent in more than one model. They are at the
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foundation of the well-known two-fluid model in which both the fluid and the
dispersed phases are considered to be governed by continuum fluid mechanics.
This two-fluid model has been used to study a large number of solid-fluid pro-
cesses, for instance in fluidized beds [12] and solid-liquid mixing [13]. The VANS
equations have also been used to simulate porous media flows [14]. Furthermore,
these equations are inherent to Euler-Lagrange models such as the Unresolved
CFD-DEM, which combines the discrete element method (DEM) [15, 16] for
the solid particles and the volume averaged Navier-Stokes equation for the fluid
phase [17]. This approach combining CFD and DEM is particularly promising
for the study of solid-liquid mixing due to its capacity to predict maximum
packing fraction [15] and its suitability over the entire range of granular regimes
(quasi-static to fast) [18].

However, work is still needed to understand the limitations of current CFD-
DEM models. For instance, it remains unclear how DEM parameters such
as the rolling friction and coefficient of restitution, or the different solid-fluid
interaction forces (Saffman, Magnus, etc.) affect the flow at the macroscopic
scale of the process. While this has been partly addressed by [19] for the solid-
liquid interactions in stirred-tanks and [20] for the impact of rolling friction in
fluidized beds, these reports are limited in scope as they pertain to specific flow
situations.

More particularly, the past decade has seen an increase in the number of
techniques used to solve the VANS equations for the continuous phase in CFD-
DEM based models. While a large body of work has solved the fluid phase by
classical finite volume [17, 9, 21, 22] or finite difference methods [23], alternative
approaches have been proposed, based on Smoothed Particle Dynamics (SPH)
[24] or the Lattice Boltzmann Method (LBM) [25].

CFDEM, an open source CFD-DEM framework [26], combines the finite
volume method for the continuous fluid phase with the DEM for the particles.
More precisely, this framework introduced by Kloss et al. [27] comprises the fi-
nite volume library Open VFOAM [28] with the DEM code LIGGGHTS [29, 30]
based on the molecular dynamic software LAMMPS [31]. It is highly interest-



60

65

70

75

80

85

ing due to its open source nature and the large user community surrounding
OpenVFOAM, LAMMPS and LIGGGHTS. Furthermore, the platform is fully
parallel, allowing it to handle relatively large problems.

The development of any simulation model, including those based on the
CFD-DEM paradigm, should comprise a verification and validation step in order
to assess its accuracy and performance. The definitions given by the American
Institute of Aeronautics and Astronautics (ATAA) [32] and the American Society

of Mechanical Engineers (ASME) [33] for these two concepts are :

e Verification : The process of determining that a model implementation
accurately represents the developer’s conceptual description of the model

and the solution to the model.

e Validation : The process of determining the degree to which a model is
an accurate representation of the real world from the perspective of the

intended uses of the model.

Consequently, a verification procedure should establish that a numerical
model for a set of partial differential equations with its associated boundary
conditions converges towards the desired analytical solution at the asymptotic
convergence rate prescribed by the mathematical analysis of the space and time
discretizations used in the numerical scheme. On the other hand, validation
refers to the comparison between experimental results and the solution obtained
by the model. Therefore, one should first verify that a numerical implementation
of a model is coherent before comparing it with experimental results. Failure
to do so can lead to confusion as one is then unable to distinguish if the dis-
agreement between experimental results and a model arise from fundamental
inadequacies in the model or if it is solely due to coding errors, an incorrect
discretization or the improper convergence of the underlying numerical scheme.
We refer the readers to the seminal books by Roache [34] and Oberkampft and
Roy [35] for a thorough discussion on the necessity of verification procedures in

computational science and scientific computing in general.
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Numerous validation studies have been reported for CEFD-DEM models on a
large variety of topics such as liquid fluidized beds [9], gas fluidized beds [23], ro-
tor granulators [36], pneumatic conveying [37]. However, numerical verification
work has been limited. Garg et al. [22] have carried out an extensive verifi-
cation of the DEM resolution and solid-fluid coupling of the MFIX CFD-DEM
software. Other analyzes have been carried out on mass conservation [38] and
on the algorithm used to project DEM particles onto a CFD mesh [39]. How-
ever, to our knowledge, a systematic numerical verification procedure for the
VANS equations has not been proposed yet. This is mainly due to the lack of
analytical solutions for the VANS equations. Although solutions are available
for two-fluid models through the use of analytical Riemann solvers and wave
ordering, as for example in [40], these solutions are limited to the context of
inviscid compressible flows. One can refer to the book of Toro [41] for more
details on the Riemann solution of FEuler systems of equations.

An alternative method for the verification of CFD models is the so-called
Method of Manufactured Solutions (MMS), which can design analytical solu-
tions for a set of partial differential equations [34, 35]. This method has been
used with great success for the verification of wall-bounded turbulent flow [42],
eddy-viscosity models [43] and Reynolds Averaged Navier-Stokes equations in
turbulence modeling [44].

In this work, the lack of analytical solutions to the VANS equations is reme-
died by extending the method of manufactured solutions and using it to develop
a step-by-step verification procedure for CFD codes solving these equations. Al-
though this verification is carried out in the context of a pressure implicit with
splitting of operators (PISO) solver for the VANS equations, the methodology
developed in the present work is generic and can readily be applied to any mesh-
based numerical scheme whether it is based on a finite difference, finite volume,
finite element or lattice Boltzmann formulation.

The VANS equations are first recalled in the context of solid-liquid flow
problems. The method of manufactured solutions applied to such multiphase

flows is then introduced and used to design three test cases, which then serve to
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verify the accuracy of the PISO scheme. Finally, some comments are given on
the capacity of the procedure to identify formulation errors within a CFD code
and the mass conservation properties of the PISO scheme in the context of the

VANS equations.

2. Volume Averaged Navier-Stokes Equations

There exist a number of forms for the VANS equations that have been pro-
posed in the literature for solid-liquid flows. The main differences between these
forms lie principally in the treatment of the stress tensor of the fluid and the
solid-fluid coupling, as thoroughly discussed by Zhou et al. [17] for the two-fluid
and the CFD-DEM models.

Following the notation of these authors, set I (original model B) of the VANS
equations, which is based on local averaging [5], is used in the current work. We
refer the reader to the article of Zhou et al. [17] for an in-depth description
of the origin of the model and its comparison to set II (model A) and set III
(simplified model B).

This formulation, which has shown its suitability for solid-liquid flows [17],
will be simply referred to as the VANS equations in the remainder of this paper.

The incompressible VANS equations are:

Oe

an“LV'(er) =0 (1)
9 F,
%Jrv.(pfefu@u):—Vp+V~T+p6f9— pf (2)

where €y is the void fraction, ps the density of the fluid, p the pressure, u the

velocity and g the gravity. The viscous stress tensor 7 is defined as:

T=p ((Vu) +(Vu)' - ; (V-u) 5k) (3)

where p is the dynamic viscosity and dy the identity tensor. The volumetric



140

145

150

155

particle-fluid interaction term F),y can be broken down into a sum of forces:

1 &
For =xv XZ: fog.i (4)
Fori =Fai+ fopi+ fvri+ fomi + FBi + Feami + fMag,i (5)

where n,, is the number of particles and f,r; is the sum of all fluid-solid inter-
action forces involving particle i: drag (fq;), pressure gradient (fyv,,;), viscous
stress gradient (fy.r;), virtual mass (fym;), Basset force (fp;), Saffman lift
(fsat,i) and Magnus lift (fuyag,i). In practice, this term then requires informa-
tion from the DEM part. For this reason, it is omitted in this work as we are
interested in the verification of the codes that solve the VANS equations and
not in the coupling between solid and fluid.

It is important to note that the velocity and void fraction resulting from
these equations are not seperately divergence free, which means that all terms
of the stress tensor are a priori non-zero. In particular, this may lead to the
appearance of normal stresses even if the fluid is Newtonian and the flow is

incompressible.

3. Numerical solution of the VANS equations

As previously noted in the introduction, numerous methods can be used to
solve the VANS equations. In the present work, a finite volume method based
on a PISO pressure predictor-corrector scheme [45] was implemented using the
OpenVFOAM library. The key idea is to solve the momentum and pressure
equations separately, and to use the pressure in order to ensure mass conser-
vation by correcting iteratively the predicted velocity. Although alternative
predictor-corrector schemes such as SIMPLE [46] would also be adequate, the
choice of the PISO scheme is motivated by its good performance for the simu-
lation of transient flows. One can refer to the book by Versteeg and Malasekera
[47] for a comprehensive overview of some of the pressure-corrector schemes

available in the literature. For a more generic presentation of the cell-centered
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finite volume formulations available in OpenVFOAM, the reader is referred to
the work of Weller et al. [48] and Jasak et al. [49].

In this section, a modified PISO algorithm that allows for a resolution of the
VANS equations in conservative form is presented. This scheme was originally
used in the work of Kloss et al. [27], although it was not described. It is detailed
and extended upon in the present work.

A notation close to the one used in the book by Ferziger and Perié¢ [50] is
followed as it is similar to the OpenVFOAM formalism.

The VANS equations alongside generic mass and momentum source terms

H(x,t) and G(x,t) are given by:

Oe
a—[+v(efu):H (6)
W—I—V(pﬁfu@u):—Vp—FV-T—&-G (7)

where the void fraction ey is calculated via a projection of the particle posi-
tions and radii onto the mesh. Therefore, € is constant through the whole time
step m.

The pressure predictor-corrector scheme begins with the solution of a pre-
dictor step for velocity u™ using the pressure and velocity at time step m — 1

(or the initial condition when m = 1):

Au™ + ZAjuj = u’éfl - ( 5 ) + G (8)
j

The content of A and Q.| can be deduced from (7). The indices i and j refer
to the cell centroids and to the neighboring cells, respectively. The pressure term
is given explicitely and the symbolic derivative represents the centered spatial
discretization scheme used in the present work. For an exhaustive presentation
of this classical discretization scheme along with its truncation error analysis,
we refer the reader to the book by Ferziger and Peri¢ [50]. The resulting velocity

uf“ does not respect (6), hence the need for a pressure corrector step.

First, a correction is applied to prevent velocity-pressure decoupling and
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checkboard phenomenon following the work of Rhie and Chow [51]:

m*—1 a,m*
m Qi — 2 A

u;
1
Al

(9)

This velocity and the cell-centered void fraction €y are used to calculate new
mass fluxes at the cell faces via linear interpolation:

EES EES

o = (u" €si)r- Sk (10)

where the (.)r operator denotes the face interpolation of a variable, the value
of which is known at the cell centroids, and where SF is the surface normal vector
term.

A similar interpolation is performed for the interpolation of the velocity
coefficient A and the void fraction, which are known only at the cell centroids.

The following pressure correction correction equation is then applied:

€ri m** m** €f.i
DG eSe VT =3 4 D G e G S

F

5€f,i

T

~H (11)

where again the symbolic time derivative is used to represent the discretiza-
tion scheme used for the time derivative of the void fraction. In the present
work, a second-order Crank-Nicholson scheme is used.

Finally, the velocity is corrected:

mtt me 1 5pm**
Uu; =u" 4+ 1 < 5 +G> (12)

If Neumann or Robin boundary conditions are imposed in the domain, they
are updated using the current value of the velocity and pressure.

This corrector step is generally carried out twice as in the original PISO
method. This VANS PISO scheme has very good mass conservation properties
because the equations are solved in their conservative formulation. We will come
back to this in the results section.

In this work, the second-order centered scheme was used for cell face inter-
polations and gradients calculations. A second-order Crank-Nicholson scheme

was used for time integration.



195

200

205

210

215

220

The block diagram in Figure 1 summarizes the VANS PISO scheme used in

this work.

4. Verification of the Volume Averaged Navier-Stokes equations using

the Method of Manufactured Solutions

The method of manufactured solutions (MMS) is a generic approach that
allows one to build analytical solutions to given partial differential equations
(PDE) [34, 35]. The complexity of the analytical solution can be chosen arbi-
trarily, allowing one to design a test case for which all the terms in the PDE are
of the same order of magnitude. In this section, we show how this approach can
be applied to develop analytical solutions to the VANS equations in order to
create a rigorous verification procedure for a code that solves these equations.
For a thorough presentation of MMS in a more general scientific computing
context, we refer the reader to the books by Roache [34] and Oberkampft and
Roy([35].

The MMS procedure is straightforward. First, we consider the VANS equa-
tions (Egs. (6) and (7)) in the absence of solid-fluid interactions (Fp; = 0). We
choose a velocity field u, a void fraction e€f and a pressure p, and build a vector
of manufactured variables sy = [u”, ¢ 5 p|T that satisfy the continuity equation
(6).

For cases where the void fraction is time independent, it is preferable to
chose a velocity and a void sraction that are intrinsically mass conservative,
which means H = 0, as experience has shown us that this leads to a system
that is more stable and closer to the real context of application of the VANS
equations. In all cases, sy is not a solution of the complete VANS equations
since it does not satisfy the momentum conservation (7). To do so, the following

momentum source term G is added to the latter equation:

0
G(s) :%—i-v-(pfefu@u)—&-Vp—V-T (13)

10
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i

of the particles (ey), previous iteration or initial conditions (u

m—1 m—1

€f, U and p are known from the position

m—1

and p

m—l).

m* = m***

l

Momentum predictor (Eq. 8) :
A+ 3 A = Q- () + @

i

’Beginning of PISO corrector loop ‘

l

Correct velocity to prevent pressure decoupling (Eq. 9 ):

m** u,€ef

u;
1
A

m*—1 _ Lqqm”
jAJ“’J

l

Calculate the new mass fluxes (Eq. 10):

* ok

PR = (u €si)p - Sk

i

Solve pressure equation (Eq. 11):

€fi m** m** € i
DS eSe VP =3 0RT 43 (G (G)r - S
F F F

(56)071
ot

i

’ Correct velocity according to Eq. (12) ‘

|

’ Update boundary conditions if necessary ‘

l

Another predictor-corrector

e

YES iteration?
NO

End of time iteration

Figure 1: Flow chart for the VANS PISO scheme
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where
T=pn ((Vu) +(Vu)' - % (V-u) 5k) (14)

With this definition of G, the manufactured solution is an analytical solution
of the VANS equations.

This solution can be used to assess the accuracy of the scheme described in
Figure 1 by monitoring the decrease of the Euclidean norm of the error (Jle]|,)
with respect to the mesh size (Axz). On a Cartesian, homogenous and regular

structured meshes, this error is defined for a variable £ as [35]:

1 N
leell, = NZH‘SM,Z-—EHP (15)

where N is the number of mesh cells, &y the manufactured solution and &
the numerical solution. The order of convergence obtained via simulations can
be compared with the theoretical order of convergence of the scheme used for
the solution of the VANS equations.

In the case of transient problems and if the simulations are carried out with

a constant Courant-Friedrichs-Lewy number (CFL = Ag;‘ ), it follows that:
n , ,CFL*
lleglly oc a(Az)™ + BW (Az)* (16)

where o and 8 are unknown numerical constants, and where n and k are the
theoretical orders of convergence of the space and time discretization used. If
the orders of convergence for both the space and time discretizations are equal
(n = k) as is the case in the present work where a linear space discretization is

combined with a Crank-Nicolson time integration scheme, the error reduces to:
llegll, oc v (Az)™ (17)

with v an unknown numerical constant.
If the numerical model is consistent, the order of convergence measured via
simulations should be the one predicted by theoretical analysis. Disagreement

between the measured and the prescribed orders of convergence would imply

12
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that there is a formulation error, a coding mistake or a discretization inconsis-
tency. This approach is particularly powerful in the context of pressure-corrector
schemes as inconsistencies in iterative approaches are hard to identify.

The source terms H and G can be calculated using a symbolic manipulator
and directly inserted in the code. In the present work, Mathematica 8 [52] was
used and the output was adapted to the OpenFOAM C++ syntax using regular
expressions and Python 2.7.

The manufactured solution should be sufficiently differentiable, at least twice,
to ensure that all members of the underlying discretized equations are non-zero.
Therefore, the velocity, pressure and void fraction should preferably be polyno-
mial, trigonometric or exponential functions. Furthermore, this method is most
efficient when the manufactured solution generates terms in the PDE that are of
the same order of magnitude. This prevents errors in one term of the equations
from being damped by the stronger magnitude of others terms and ensure that
all terms are significant in the calculation of the error. In the case of the VANS
equations, this can be achieved by using Re = 1. The values of the variables
should also remain consistent with the physics of the equations. For instance,
we should have €7 € ]0,1].

In the case of unresolved CFD-DEM, the void fraction €; is accounted for
by projecting the particle positions and radii onto the CFD mesh. In this case,
€; must be manufactured like w and p, although it is not a variable that is
solved for. However, even if the void fraction is known analytically on the entire
domain, its value should only be specified at the cell centroids and the boundary
surfaces in the same manner as the other state variables. Failure to do so may
lead to inconsistencies in the surface interpolation. Finally, the source term G
and its divergence V - G are present in the momentum predictor and pressure
correction equations, respectively. Although V - G is known by construction, it
is calculated explicitly within the CFD scheme in order to maintain consistency.
These are subtle details that can have an impact on the conclusions drawn from

the order of convergence analysis.

13
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5. Simulation and test case set-up

All the test cases designed involve either Dirichlet or periodic boundary
conditions. Three different tests of increasing complexity are proposed, the last
of which fully investigates all aspects of the VANS equations. The test cases are
designed in 2D for simplicity and speed, and permutation of coordinates allows
for a verification of all coordinates. The extension to 3D is straightforward.

All the simulations were carried out in transient regime using the VANS
PISO predictor-corrector scheme described in Section 3, with a CFL of 0.2 (see
Eq. (17)). Convergence to the steady-state solution was reached when the
velocity and pressure residuals were inferior to 1078. The simulations were
carried out on a large number of meshes (over 15) which involved from 400 to
250000 cells. Then, the order of convergence was calculated via a linear least
squares regression of the Euclidean norm of the error over the entire range of
meshes.

The domain of all three simulations is Q@ = [—1,1] x [-1,1]. Since the
manufactured solutions are periodic in nature, this corresponds to a full period
of the velocity and pressure fields.

The three test cases are presented next along with the corresponding graphs
of the Euclidean error between the analytical solution and the numerical solution
obtained with the VANS PISO scheme for different mesh sizes. The results are

analyzed in Section 6.

5.1. Case 1 : steady-state divergence-free flow problem

The first manufactured case is defined as:

— (sin (7x))? sin (7y) cos (ry)

uw=2| sin(rz)cos (rz) (sin (ry))* (18)
0
p = sin (7z) sin (7y) (19)
I 1. .
=5 + 750 (mx) sin (7y) (20)

14



This case requires only a momentum source term (G) in (7). This source

term is calculated using (13) and is given by the following expression :

G, =msin(ry) (cos(rz) (sin® () sin(my) (sin(rz) sin(mry) + 2) + 1))
+ msin(my) (4mp cos® (wz) cos(my)) (21)
— 1272 sin(my) p sin® (7x) cos(my))

G, =nsin(rz) cos(my) (sin® (rx) sin® (ry) (sin(7z) sin(ry) + 2) 4 1)
- %Wsin(%m?)(sin(%rx) sin(2my) sin®(7y) (sin(7z) sin(7y) +2)  (22)

+ 167pu(1 — 2 cos(2my)))

In this case, the velocity, pressure and void fraction are all steady and suf-
ficiently differentiable fields. Furthermore, the velocity field is divergence free.
x5 Therefore, the normal stresses in the viscous stress tensor are all zero.
The u and v components of u, the pressure and the void fraction are shown
in Figure 2.
The graph of the Euclidean norm of the error as a function of the mesh size

is given in Figure 3.

w0 5.2. Case 2 : steady-state non divergence-free flow problem
The second manufactured solution is defined as :

esin(ﬂ;v) sin(my)

1 ) .
u=- esm(‘rrr) sin(my) (23)
&
0
1 1 . .
p=g+gsin (mx) sin (7y) (24)
€ — 16_ sin(mz) sin(my) (25)
&

Figure 4 presents contour plots of the elements of this manufactured solution.
Contrary to case 1, the divergence of the velocity field is now non-zero, although
mass conservation (6) is still satisfied. Therefore, all the component of the full

viscous stress tensor for a compressible flow are present in the VANS equations.

15



Figure 2: Analytical solution for case 1. Top left panel : u component of velocity — Top right
panel : v component of velocity — Bottom left panel : pressure — Bottom right panel : void

fraction

16
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Figure 3:
for case 1.
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Figure 4: Analytical solution for case 2. Top left panel : u component of velocity — Top right

0

0 1

panel : v component of velocity — Bottom left panel : pressure — Bottom right panel : void

fraction

For this case, only a momentum source (G) calculated using (13) is necessary.
Due to its length, this term is not given here.
Figure 5 displays the graph of the Euclidean norm of the error as function

of the mesh size.

5.8. Case 3 : unsteady non divergence-free flow problem

This test case is the unsteady extension of case 2, for which the solution is

defined as :

18
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Figure 5:
for case 2.
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where T is the frequency of the velocity field, which is chosen here to be
equal to 2.

Figure 6 presents contour plots at time ¢ = 2s. This test case is the most
complete of the three since it is unsteady and the velocity field non-divergence
free. Note that, since the void fraction is also unsteady, mass (H) and momen-
tum (@) source terms are required in (6) and (7), respectively.

Figure 7 displays the graph of the Euclidean norm of the error as a function

of the mesh size at time ¢ = 2s.

6. Discussion

The graphs displayed in Figures 3, 5 and 7 show that the velocity and the
pressure solved by the VANS PISO scheme exhibit second-order convergence in
both time and space. Since the time integration and the space discretization
schemes for the calculation of the face fluxes and gradients are second-order
accurate, these results highlight the fact that the VANS PISO approach within
the CFDEM framework preserves this second-order accuracy. These results are
in agreement with the theoretical development of the PISO approach [45]

Furthermore, the scheme has very good properties in terms of mass conserva-
tion. Indeed, for all simulations, the maximal local mass losses within one time
iteration were observed to be of the order of 10~8, whereas total mass conserva-
tion was ensured up to 107!°. Even better mass conservation could be reached
by the reducing the residual tolerance in the iterative solver or increasing the

number of PISO loops.
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One may notice in Figures 3, 5 and 7 that a second-order convergence rate is
reached even for relatively coarse meshes for both pressure and velocity. Indeed,
for all regressions, the R? coefficient was never lower than 0.9999. However, it
is important to recall that a convergence rate is asymptotic by definition, which
means that it is not always reached for coarse meshes. One should therefore
remain careful and analyze the asymptotic rate of convergence, as the order
of convergence for very coarse meshes can be different than the one predicted
by the theoretical analysis, hinting a priori at an inconsistent scheme. This
is clearly not the case for the meshes used in Figures 3, 5 and 7, but it has
been observed for larger mesh sizes (Axz > 0.1) and for other types of boundary
conditions.

One of the advantages of the combination of the MMS with the order of
convergence analysis lies in its quantitative aspect. Indeed, one only needs
to compare the order of convergence obtained with the theoretical order of
convergence related to the space and time discretization schemes used, to ensure
that the code implementation and the overall iterative scheme are consistent
with the model equations. This is less error-prone than simple visual observation
for which local errors can be difficult to pinpoint. The method is sensitive as a
single error in a mesh cell, a term in the equations or the boundary conditions,
may be sufficient to reduce the order of convergence. During the course of
the verification carried out in this work, formulation errors in the VANS PISO
scheme implemented in the CFDEM framework were identified and corrected
using this approach. We would also like to stress the need for more than one
single test case. Indeed, test cases can be designed to investigate a specific
portion of the code or of the PDE. For example, case 2 is different from case 1
as it brings into play the full viscous stress tensor in the VANS equations. In
particular, it allowed us to identify errors in the implementation of components

of this tensor related to the occurent of a non-divergence free velocity.
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7. Conclusion

The volume averaged Navier-Stokes equations can serve to model multiphase
or porous medias flows in various applications. Indeed, they are part of numer-
ous models in which they can describe all phases, such as in two-fluid models,
or only the suspending fluid, as is the case in unresolved CFD-DEM.

The open source CFDEM platform combining LIGGGHTS and OpenVFOAM
is highly interesting because of its open source character and the large commu-
nity surrounding these two software tools. However, this platform is relatively
new and requires thorough verification. In this article, it was shown that a
PISO VANS scheme used within this coupling strategy is second-order accurate
in both time and space, by applying the Method of Manufactured Solutions to
the VANS equations. This allowed the verification of the implementation of
these model equations.

It is important to mention that the approach proposed in this work is general
and can be applied to any volume averaged formulation, be it for a two-fluid
model, flow in porous media or a Euler-Lagrange model that relies on the finite
volume, finite element or lattice Boltzmann method, as well as any other method
based on a Fulerian description of the volume averaged phases. Furthermore,
the step-by-step methodology using distinctive test cases allows one to easily
identify errors that are linked to the incorrect discretization of a specific term
of the VANS equations.

Finally, the methodology introduced here could also be extended to problems
where the VANS equations must include a turbulence model, by manufacturing
a solution that accounts for this turbulence model. In all situations, designing
verification test cases via MMS allows for a clear and quantitative verification
of a code before the corresponding model is validated by comparison with ex-

perimental data.
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