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La combustion du gaz naturel dans un Lit fluidisé s'avère intéressante sur le plan 

industriel en matière de récupération d'énergie ou encore de valorisation é ~ ~ e r g ~ q u e  des 

déchets ayant un faible pouvoir calorifique. ïi s'agit aussi d'un excellent sujet pour la 

modelisation de réadons rapides a très exothermiques en Iit ffuidisé. L'isothermïcite 

des lits fluidisés et leur capacité à contenir les réactions exothermiques les a rendu très 

populaires pour des applications dans l'industrie pétrochimique, la chimie de synthèse et 

la génération de chaleur. De plus, la nécessité d'assurer des hauts taux de production, un 

bon contact gas-solide, des temps de résidence relativement courts ainsi que la facilité de 

manipuler les particules sdides et les catalyseurs tendent à désigner le regime turbulent 

comme le régime de choix en matière de fluidisation. Pour les raisons ci-haut 

mentionnées, la combustion du gaz naturel peut être en pratique de façon très 

avantageuse dans un lit fluidisé turbulent opérant à des températures inférieures à 1000°C 

permettant ainsi de respecter les exigences enviromementales. 

L'objectif prïncipai du présent projet de recherche était d'établir la faisabilité de la 

combustion du gaz naturel dans un lit fluidisé de particules inertes opérant dans le régime 

turbulent à des températures entre 800 a 1 0 ° C .  Pour ce faire, les objectifs spécifiques 

suivants ont été étudiés: 



1. L'evduation de la contribution des particuIes inertes aux réactiDons de 

combustion- 

2. La détemination des cinétiques des diBientes réactions impliquées. 

3. La détermination du régime de fluidisation idéai pour la combustion du gaz 

naturel- 

4. La caractérisation de l'hydrodynamique et du mélmrge des gaz des buses 

d'injection orientées vers le bas introduits dans le lit fluidisé et des gaz de 

fluidisation- 

5.  La simulation du réacteur en jumelant le mécanisme réactionnel au modèle 

hydrodynamique. 

L'évaluation de la contribution des particules inertes aux réactions de combustion a été 

réalisée en étudiant la combustion de débits à fàïble teneur en méthane (24% dans I'air) 

dans un réacteur à lit fixe chargé de particules inertes. Les données expCrimentales ainsi 

obtenues en utilisant comme parîicules inertes du sable ou des particules d'alumine ont 

démontré un faible effa catalytique à base température (<7ûû°C). Par contre, pour des 

températures intermédiaires (entre 750 et 850°C), un effa d'inhibition s'avère 

considérable. Pour des températures supériaires a 10ûû°C, les effets catalytiques et 

d'inhibition sont négligeabtes. Un mécanisme réactiomel réduit a été adopté a modifie 

afin d'expliquer les données expérimentales. Ainsi, les cinétiques (ordres de réaction, 



facteur pré-exponentiel et énergie d'activation) d'une vingtaine de réactions ont été 

identifiées. 

La détermination du régime de fluidisation idéal a été réalisée en faisant la combustion du 

gaz naturel dans les régimes turbulents et à bulle à des températures entre 800 et 1000°C. 

Avant de faire la combustion, des tests hydrodynamiques ont été réalisés à hautes 

températures afin de déterminer les vitesses de transition au régime turbulent. Les 

résultats expérimentaux démontrent la grande qualité des Lits fluidisés à maintenir 

I'isothermicité du milieu réactiomel. De plus, la puissance générée dans le régime 

turbulent est de loin supérieure à celle générée dans le régime à bulle, et ce tout en 

respectant les normes environnementales. Lors des teas de combustion, les profiles 

axiaux de CO ont été mesurés. 

Par souci pour la sécurité et en raison d'applications industrielles Limitées, l'étude de la 

combustion dans le mode non mélungé (l'oxygène et le gaz naturel sont alimentés d'une 

manière séparée) a été préféré au mode mélmgé (l'oxygène et le méthane sont d'abord 

mélangés avant leur injection dans le lit). Afin de mieux comprendre la combustion dans 

le mode non méIange, l'hydrodynamique des buses d'injection orientées vers Ie bas a été 

longuement étudiée en utilisant comme particules du sable et du FCC. Le but de cette 

partie de l'étude était de caractériser les modes d'injection, bullage a jet, au moyen de 

mesures de pression, de test de mélange a de riaaion Les résultats expérimentaux 

indiquent qu'en présence de bullage, les bulles tendent à conserver leur identité, c'est-à- 



dire que le transfert de matière entre les bulles est plut& f~b l e ,  tandis que sous des 

conditions de jet, une zone très turbulente est déveioppée autour des buses d'injection, 

favorisant ainsi le traasfert de matière a aussi l'attrition des partides. Étant donné les 

répercussions à l'échelle industrielle, les conditions de bullage ont été étudiées afin de 

caractériser la dispersion axiale et radiale des gaz injectés dans un fit fluidisé opérant à 

hautes températures. Un modèle à trois phases a été utilisé afin de diteminer les 

longueur de mélunge. Les influences de la géométrie de l'injecteur et de la taille de 

particules ont aussi été étudiées- 

L'étape ultime consistait à développer un modèle mathématique permettant de prédire la 

performance du réacteur en combinant un mécanisme réactionnel de la combustion du 

gaz naturel à un modèle hydrodynamique représentant tant le lit que l'injecteur. Le 

modèle a permis de prédire de façon appréciable les effets reliés aussi bien aux réactions 

impliquées qu'à l'hydrodynamique du lit et des régions d'injection des gaz. 



ABSTRACT 

Combustion of n a t d  gas in fiuidized bed reactors emerges as a promising technology 

for heat generation, waste-to-energy applications by low caiorific fuel upgrading and dso 

can be wnsidered as an excellent example of highly exothermic reactions. Effective 

handling of highly exothermic chem*cal reactions in these reiactors has made the fluidized 

bed technology gain a high rate of application in petroleum and petrochernical industry. 

Furthemore, the need to ensure high throughput at industrial scafe, improved gas-solid 

contact, relatively short residence time and ease of solid and catalya handling, points the 

turbulent fluidization regime as the most appropnate one. Combustion of natural gas in 

a turbulent bed reactor can be canied out at temperatures well below 1 0 0  OC and hence 

capable of meeting al1 environmental requirements such as CO and N& emission levels. 

The main objective of present study is to assess the feasibility of high temperature 

combustion of natural gas in turbulent fluidized bed reactors of inert particles. Specific 

objectives are as follows: 

0 To evaluate the combustion behaviour of inert panides and to determine the 

reaction scherne- 

To determine the appropriate hydrodyiipmic regime of fiuidization and 

combustion mode for natwal g i s  combustion. 



To characterize gas sparger hydrodynamics and mixing. 

To predict the reactor pefiormance by coupling the kinetics and the 

hydrodynamics. 

The kinetic evaluation of inert particles was achieved by studying the combustion of a 

lean mixture of mahane in a fked bed reactor of inezt particles- The experimental data 

obtained in this way shows the accelerating catalytic eEect of inert particles, Le. sand or 

dumina, is quite small. In addition, the inhibition effect is considerably higher at 

moderately high temperatures ( ~ 8 5 0  OC) and it may be neglected at high temperatures 

well above 1000 OC. A reduced readon scheme was also adapted and modified in order 

to explain the experimental data. 

The appropriate hydrodydc regime of fluidization was detemiined by promothg 

natural gas combustion in bubbling and turbulent fiuidization regimes at relatively high 

temperatures (800-1000°C). Prior to combustion tests in these hvo fluidization regimes, 

the onset of turbulent fluidization was determined experimentally at high temperatUres. 

The experimental results show that the fluidized bed reactors offer excelient thermal 

uniformity and temperature controL Furthermore, the power generated by the turbulent 

fluidization regime is much higher than thrit for bubblhg fluidized bed reactots while 

respecting al1 environmental requirements. In these combustion tests, the CO profile was 

also measured inside the bed. 



Due to safefy concems and also limited industrial applications of premixed combustion, 

the non-premixed combustion is only considered in this investigation- In order to 

understand the non-premixed combustion, the sparger hydrodynamics were extaisively 

studied using FCC and sand particles. ïhe aim of this part of the study was to 

characterize different discharge modes, bubbling and jetting conditions around the 

sparger unng a pressure measurement technique, mixing and reaction studies. For 

industrial scale reactors, the dominant discharge mode is the bubbling conditions around 

the sparger. Under these considerations, experimental midies show that the bubbles tend 

to retain their identity. Under jetting conditions, a highly turbulent area rnay be formed 

around the sparger leading to high degree of attrition. Due to the large industrial impact 

of bubbling conditions, the radial and axÏal dispersion of gas in a hot fluidized bed reactor 

of 20-cm diameter of FCC and sand particles was investigated using a gas 

chromatogrephy with CH( or CO2 as tracers. A three-phase model was used to obtain the 

mixing Iength for these experiwnts. The effea of sparger codguration and particle sue 

was also investigated. 

The ultimate step consisteci of building a mathematical mode1 in order to simulate the 

performance of the reactor by combining a reduced aatural gis combustion mechanism 

and bed-sparger hydrodynamics model. The mode1 predicts reasonabiy the experimental 

data, explainhg the reactions as well as hydrodynamic effects. 



L'élimination des polluants qui résultent de l'incinération de combustibles fossiles 

constitue un élément clé en ce qui a trait à la saine gestion des ressources a la 

préservation de l'environnement Les unités de combustion traditionnelles sont 

défavorisées en raison de leurs sévères conditions d'opération: températures élevées et 

hauts niveaux d' émissions atmosphériques. Cependant, parmi les unités de combustion, 

les lits fluidisés sont celles disposant de la plus grande eficacité énergétique. Les lits 

fluidisés comportent bon nombre d'avantages dont leur simplicité de wnstniaion, leur 

taille plus compacte, leur flexibilité à accepter des réactifs gazeux, solides ou liquide a 

leur efficacité de combustion à basse tempéraîure, minimisant ainsi les Na- thermiques. 

De plus, combinés à un combustible tel le gaz naturel, ils peuvent être mis à profit dans 

diverses applications bénéficiant ainsi d'avantages tels: préparation minimale du 

comburant, haute efficacité énergétique, opération économique a fjiibles niveaux 

d'émission- Une sélection judicieuse des solides formant le lit peut faciliter la capture in- 

situ des polluants atmosphériques générés par les réacteurs. 

De façon générale7 les lits fluidisés sont basés sur les mêmes principes. De l'air ou un 

gaz quelconque est alimente à travers un distributeur positionné a la base d'un lit de 

particules fines. Comme le gaz s'écoule vers le haut du réacteur, la fluidisation débute 

lorsque les particules sont supportées par le gaz et le lit adopte le comportement d'un 

liquide. Pour ces raisons, ces réacteurs peuvent être opérés sans d o m a  lieu à des points 



chauds. En plus de cet atout, les lits ffuidisés sont caractérisés par un bon wntact gaz- 

solide et la facilite avec laquelle on peut manipuler les solides. En raison de ces très 

importants avantages, les lits fiudisés sont grandement utilisés dans les procédés 

industriels tels: le raffinage du pétrole, le traitement de solides, le séchage, le traitement 

de surface et la combustion De plus, les lits fluidisés peuvent a m i  être considérés 

comme la meilleure technologie pour des applications au niveau résidentiel à cause des 

hauts coeEcients de transfert de chaleur qui existe entre le lit a les ichangeurs de 

chaleur. 

Selon la vitesse superficielle du gaz de fluidisation, dinirents régimes sont observés. A 

basse vitesse (-1 cmls), on a le régime à bulle, on passe au régime turbulent à vitesse 

élevée (-1 mis) et aux régimes de fluidisation rapide et de transport à vitesse très élevée 

(>4 d s ) .  La majorité des travaux académiques ont été réalisés sur des lit fluidisé à 

bulles, pour des raisons de simplicité. Ces réacteurs sont caractérisés par la présence de 

grosses bulles, un wntact gas-solide qui laisse à désirer, un haut niveau de rétro mélange 

et des faibles niveaux de production A I'invene, à l'échelle industrielie, la plupart des 

réacteurs ont été optimisés en opérant dans le régime turbulent, régime caractérisé par la 

présence de petites bulles donnant au lit plus homogénéité et un bon contact gas-solide- 

Les lits fluidisés circulants peuvent aussi être envisagés comme alternative pour la 

combustion du gaz naturel. La combustion des mélanges méthane-air est fortement 

défavorisée par la présence de partides dans ces rtacteurs, étant d o ~ é  que les surfàces 

des solides donnent lieu aux réactions de terminaison des radicaux libres- il en résulte 



une diminution de la conversion du mélange r&ctiomel en fonction du auut de 

circulation des solides pour des conditions domées. On peut donc conclure qu'un f ~ b l e  

niveau de circulation de solide comspondant au régime turbulent est nivorable afin 

d'obtenir un niveau de conversion acceptable- De plus, le coût d'investissement d'un lit 

fluidisé c i rdan t  est beaucoup plus important que celui d'un iit fluidisé turbulent. 

Le lit fluidisé turbulent semble être le réacteur de choix pour les réactions rapides et 

exothermiques. Il a comme avantages un bon transfert de chaleur, un bon contact gaz- 

solide, une excellente isothermicité, des hauts taux de productions, une simplicité de 

construction, un coût d'investissement faible a des temps de résidence f ~ b l e s  lorsque 

comparés à des unités de combustion conventiomelles. Grâce à la présence de bulles de 

petites tailles, son comportement est en première approximation pseudo-homogène, ce 

qui permet d'obtenir des conversions supérieures à celies des lits à bulles. Pour ces 

raisons, ce type de réacteur peut être mis a profit comme une méthode innovatrice pour 

fin de génération d'énergie à partir de gaz naturel seul ou en combinaison à un autre 

combustible ayant un plus faible pouvoir calorifique. Ii en résulterait une énergie plus 

propre qui répondrait aux exigences environnementales en réduisant la taiiie requise des 

incinérateurs et en diminuant les émissions atmosphériques. 

Le développement de tels lits fluidisés turbulents doit être perçu mmme une technologie 

gazière ayant un fort potentiel d'applications teiles: des bouilloires ou founiaises 

industrieIles CO-alimentées, des unités de gaiaation d'eau chaude au niveau domestique. 



La technologie devient encore plus intéressante lorsque le gaz naturel e n  utilisé en 

combinaison avec des combustibles de basse qualité afin d'en faciliter la combustion d'en 

le but d'en faire une valorisation energaique, Le. génération de vapeur ou d'électricité. 

Dans cette perspective, il devient pertinent au point de vue énergétique et 

environnemental de faire la combustion du gaz naturel dans un lit fluidisé turbulent. 

Avant tout, ii est capital de comprendre la combustion du gaz naturel dans un lit fluidisé 

turbulent. La combustion du gaz naturel dans un lit fluidisé turbulent peut être réaîisée 

dans un lit fluidisé turbulent à des temperatures bien inférieures à 1000°C facilitant ainsi 

le respect des nonnes environnementales en réduisant la génération des N& thermiques. 

L'objectif principal du présemt projet de recherche était d'établir la fôisabilité de la 

combustion du gaz naturel dans un lit fluidisé de particules inertes opérant dans le régime 

turbulent à des températures entre 800 et 1 WO°C. Pour ce füre, les objectifs spécifiques 

suivants ont été étudiés: (1) l'évaluation de la contribution des particules inertes aux 

réactions de combustion; (2) la détermination des cinitiques des réactions impliquées; (3) 

la détermination du régime de fluidisation idéal pour la combustion du gaz naturel; (4) la 

caractérisation de l'hydrodynamique et du mélmge des gaz des buses d'injestion 

orientées vers le bas introduites dans le lit fluidisé et des gaz de fluidisation; (5) la 

simulation du réacteur en jumelant le mécanisme réactionnel au modèle hydrodynamique. 

L'évaluation de la contribution des particules inertes aux rçections de combustion a été 

réalisée en étudiant la combustion de débits à faible teneur en méthane (24%) dans un 



réacteur à lit fixe chargé de particules inertes. Le réacteur consiste ai deux tubes 

concentriques de 0,6 m de long avec des diamètres de 13 mm (interne) et 7 mm (externe) 

respectivement. Les tubes sont en alumine afin de limiter les effets de surface et de 

pouvoir supporta des températures importantes. La combustion a lieu dans l'espace qui 

sépare les tubes a où les particules étudiées sont disposées. Cette configuration rend 

possible la mesure de la température à l'intérieur du tube interne. Les débits de méthane 

et d'air sont mesurés et contrôlés au moyen de débitmètres massiques a ne sont mélangés 

qu'à l'entrée du réacteur- Les échantillons gazeux sont soutirés à la sortie du réacteur a 

analysés par chromatographie gazeuse. Les données expérimentales ainsi obtenues en 

utilisant comme particules inertes du sable et des particules d'alumine ont démontré un 

faible effet catalytique à base température (<700°C). Par contre, pour des températures 

intermédiaires (entre 700 a 85O0C). un effet d'inhibition s'avère considérable- Pour des 

températures supérieures à 1000°C, les effets catalytiques et d'inhibition sont 

négligeables. Finalement, un mécanisme réactionnel réduit a été adopté et modifie afin 

d'expliquer les données expérimentales. Ainsi, les cinétiques (ordres de réaction, facteur 

pré-exponentiel et énergie d'activation) d'une vingtaine de réactions ont été identifiées- 

La détermination du régime de fluidisation ideal a été réalis& en effectuant des tests de 

combustion du gaz naturel dans les régimes turbulent a à buiie sur une uniti pilote à des 

températures entre 8 0  et 1 0 ° C .  Le riacteur utilisé a un diamètre interne de 200 mm et 

une hauteur de 2 m. Sa paroi interne est constituée d'une couche rifiactaire. Un bruleur 

d'une puissance nominale de 20 kW est monté à la base du Lit afm de faciliter le 



préchauffage du lit. Lors des tests de combustion, des perticules de sable ayant un 

diamètre moyen de 543 pm ont été utilisés. Plusieurs ouvertures ont été disposées a 

différentes positions axiales stratégiques afin de prendre les profils de pression, de 

composition des fimées de combustion, a d'injecter le gaz naturel au réacteur- Les 

mesures de compositions étaient effectuées par chromatographie gazeuse, bien que des 

analyseurs de fumées de combustion ont aussi été à contniution. Des thamocouples 

de type K mt cte disposés à différentes positions axiaies afin d'obtenir le profil de 

température. Un capteur de pression a été utilisé afin de suivre l'évolution du niveau de 

solide dans le Lit. Au cours des expériences les menues de température a de pression ont 

été sauvegardées par un système d'acquisition de données. 

Avant de faire la combustion, des tests hydrodynarniques ont été réalisés à hautes 

températures afin de déterminer l a  vitesses de transition au régime turbulent. Les 

résultats expérimentaux démontrent la grande qualité des lits fluidisés à maintenir 

l'isothermicité du milieu réactionnel. De plus, la puissance générée dans le régime 

turbulent est de loin supérieure à celle générée dans le régime à bulle, et ce tout en 

respectant les normes environnementales. Lors des tests de combustion, les profiles 

axiaux de CO ont été mesurés, 

Par soucis pour la sécurité et en raison d'applications industrielles limitées, l'étude de la 

combustion dans le mode non m é h g é  (l'oxygène et le gaz naturel sont alimentés d'une 

manière séparée) a été préférée au mode mélmgé (l'oxygène et le métbane sont d'abord 



mélangé avant leur injection dans le lit). Afin de mieux comprendre la combustion dans 

le mode non rn&mgé7 l'hydrodynamique des buses d'injection orientées vers le bas a été 

longuement étudiée en utilisant comme particules du sable et du FCC. Pour cette série 

d'expériences le montage expérimental était le même que celui décrit dans la section 

précédente. Le but de cette partie de l'étude était de caractériser les modes d'injection, 

bullage et jet, au moyen de meoum de pression, de test de réaaion. Les résultats 

expérimentaux indiquent qu'en présence de bullage, les bulles tendent à consemer leur 

identité, c'est-à-dire que le transfert de matière entre les bulles est plutôt féible, tandis 

que sous des conditions de jet, une zone très turbulente est développée autour des buses 

d'injection, favorisant ainsi le transfert de matière et aussi l'attrition des particules. Étant 

donné les répercussions à l'échelle industrielle, les conditions de bullage ont été étudiées 

afin de caractériser les dispersions axiale et radiale des gaz injectes dans un lit fluidisé de 

200 mm de diamètre interne opérant a bu te  température. Les tests impliquaient 

I'injedon de gaz tels le CO2 a le méthane. Un modèle à trois phases a été utilisé afin de 

détenniner les longueur de mélange. Les influences de la géométrie de l'injecteur et de la 

taille de particules ont aussi été étudiées- 

L'étape ultime consistait à développer un modèle maihématique permettant de prédire la 

performance du réacteur opérant dans le rtgime fluidisé turbulent a ai mode non 

mélangé. Le modèle proposé consiste en une combinaison d'un mécanisme réactionnel 

de la combustion du gaz naturel à un modèle hydrodynamique représentant tant le Lit que 

l'injecteur. Le sous-modèle hydrodynamique prend ses racines clans les expériences 



effkctuées au laboratoire et en utilisant des informations provenant de la littérature, tandis 

que le sous modèle réactïomel décrivant la combustion du gaz naturel ahsi que la 

formation des polluants atmosphériques est tiré de la Iittératun a des résultats 

expérimentaux obtenus dans le cadre de ce projet. La validité du modèle a itC démontrée 

en le codkontant aux résultats expérimentaux obtenus. Le modèle a permis de prédire de 

façon appréciable les effis reliCs aussi bien aux réactions impliquées qu'i 

I'hydrodynamique du lit et des régions d'injection des gaz  
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INTRODUCTION 

1.1 Introduction 

Safe control efficient reduction and economical destruction of pollutant emissions fiom 

the devices buming various fossil fiels are major focuses of environmental conceni and 

legislation. In response to such environmental requinments and based on increased 

availability of natural gas, different attractive and w st-effective technologies such as 

basic CO-firing and gas reburn (Amencm Gar association, 1991) have been initiated. Co- 

£king, which means combining aatural gas with fiiels ag. coal king bumt in the 

combustion chamber is regarded as an in-situ destruction method of pollutants and gives 

the system significantly more flexibility than flue gas desulphurization or switching to 

low sulfbr or high grade fiels. Gas r e b m  is also becorning an important and 

commerciall y feasible technology for reducing NOx emissions (MPkms, 2989) in 

large-scale industrial waste-to-energy plants. Since the combustion of natural gas 

produas virtually no s u b  oxide and reactive hydrocarbon or particulate, these two 

methods can be considerd as the modified combustion technique bemg applieq to 

different fossil &el buming devices to reduce the pllutant emissions. 



Aîtempts to bum natural gas in conventional devices are hïndered by the hostile 

environments of these fùrnaces, including high temperatures and high levels of flue gas 

emissions. Such high temperatures make the combustor to becorne less resistant to 

corrosion and to be defonned by temperanire-refated stresses that occur during normal 

fimace operation. However, among the fossil niel burning devices, fluidized beds are 

the most promising energy-conversion options availabie today. They also off- a varkty 

of advantages, including their simplicity of construction, their smaller sue, their 

flexibility in accepting solid, liquid or gaseous fbels and theu high combustion efficiency 

at a remarkably low temperature while minimirùig th& NOx generation In addition, 

they can be widefy used with natural gas for wide range of applications, providing some 

unique advantages aich as, minimal fuel preparation requirements, high energy 

eficiency, economical system operation and lower emission levels. Moreover, judicious 

selection of bed material can result in the in-bed capture of gaseous pollutant species 

generated in fiuidïzed bed reactors. 

Basically, dl fluidized bed reactors operate based on the same principles in which gas or 

air is fed upward througb a distributor at the bottom of the bed of finely divided particles. 

As the gas flows upward, fluidizaion occun as the particles begin to move in liquid-like 

behavior. The process leads to high heat transfa to the particles because of inaeased 

heat transfer coefficients. The reactors couid dm be operateci isothennally without 

developing hot-spots Foka a ai, 1994a; G o d e z ,  1995; Grace, 1990; Avidan, 1982) 

and are fùlly capable of meeting al1 environmental requirements. These characteristics, 



the versatility and unique features of the fluidïzed bed technique have led to its 

application in a wide range of industrial processes in petroleum refking, solids blending, 

drying, coatiag techni-ques and combustion. Furthermore, the fluidized bed can al- be 

considered as the bea technology for residential sector applications because of the high 

heat transfer rate between the bed and the heat exchanger (Molerus, 1995). The hot water 

obtained in this way can be used for heatlng or saintary purposes. 

Various fluidization regimes are observecl as the superficial gas velocity increases 

ranging nom the bubbling to fast fluidization. The fluidized bed reactors are specific to 

these fluidization regimes. Moa works in academia have been focussed on bubbling 

fluidized bed reactors. T hese reacton are described by the existence of large bubbles, a 

poor gas-solid contact, high gas back rnixing and a low throughput and therefore, they are 

not suitable for fast reactions where high conversion is expected. Most industrki 

processes operate under turbulent fluidized bed (TFB) conditions where a more 

homogeneous appuvance with small bubbles and a good gas-solid contact exists (Glace, 

1990). Circulating FIuidized Bed (CFB) reactors cm also be considered as an advanmi 

alternative method for natural gas combustion. The combustion of methane-air mixture 

is strongly inhibiteci by solid particles in uKse reactors considering the faa that at solid 

surfaces reactive radicals recombine together shortly. Consequently, at &en operathg 

conditions, the conversion decreases with solid ciculation rate (Feugier et al., 1987) and 

it uui be concluded that a very low solid circufation rate, which corresponds to TFB 



conditions, shodd be used for obtaining the high conversion. Moreover, when compared 

to TFB reactors, higher wst Y associateci with CFBC units for solid handliag. 

TFB reactors seem to be an ideal -or for f~ exotherrnic reactions at high 

temperatures. They have the advantages of the exceptionally high heat transfer, intimate 

gas and solid contact, excellent themai uniformirmity and temperature coatroi, high overail 

productivity, versatility, much lower capital coa and relatively short mean residence tirne 

as compared to the conventional combustion systerns for a given geometry- Theu overall 

homogeneous behavior makes the gas-solid contact to becorne more efficient by ftrther 

enhancing the overall conversion ( G o d e s  1995; Foka a al. 1994). Therefore, these 

reactors can provide an innovative rnethod of convening natural gas, alone or with dirty 

fuels to elecvicity with higher net efficiency in order to address the national and 

environmental concems by providing more reasonable combustor size and lower 

pollutant levels. 

The operation and process development for TFB can be considered as a promising 

technology for namral gas utilization with very large economic impact such as, industriai 

applications to co-fired boilers and fimaces, domestic applications to hot wats  

generation for heating and Maitary purposes. The technology becornes more attractive 

when firing natural gas itself or with other low qudity h l s  for energy recovery and 

wastes dispoîal purposes The low quaiity fiels which rnay be easily bumt in fluidized 

bed reactors, are the lower grade and hi@-sulfur soiid fielsy wood, pdp, paper and 



municipal solid wastes, liquid and gaseous wastes. Therefore, rnixing methane with these 

fuels makes firing of these materials in the TFB reactors becorne possible nom the 

energy and environmental perspective. However, for ail the claims made about the 

multiplicity and CO-Mng capabilities of natural gas in TFB reactors, only fewer 

applications at the induda1 level are king carrieci out largely without scientific bases. 

The aim of this study, however, is to gain a more fiindamentai understanding of this aew 

technology through a combination of experiments and modeling. 

Objectives 

The main objective of present study is to assess the feasibility of high temperature 

combustion of naturd gas in TFB reactors. Specific objectives are as follows: 

To evaluate the combustion behaviour of inert particles and to determine the 

reaction scheme. 

a To determine the appropriate hydrodynamic regime of fluidization and 

combustion mode for naaual gas combustion. 

a To characterize gas sparger hydrodynamics and mixing. 

To predict the r-r pafommce by coupling the kinetics and the 

hydrodynamics. 



1.3 Thesis Structure 

The thesis is made up of four papers. Besides these papas, which are forming the main 

body of the thesis in the fonn of ciserem chapters, there is a generai introduction, 

concIusions, recommendations and one appendix. nie content of each part is described 

below: 

Chapter I consists of a general introduction presenting the global %ope of the work 

and the related features reporteci in the literature. The objectives of the present 

studies also outlined- 

Chapter II consias of a paper submitted to Combustion & Flame entitled 

"Investigation of the Heterogeneous and Homogeneous Combustion of Methane". In 

this paper, the contribution of inert particles to the natural gas combustion was 

shidied expenmentaily in a fied reactor- A reduced reaction scheme was aiso 

adapted to expiain the experimental data. 

Chapter HI presents a publication entitIed "Naturd Gas Combustion in a Turbulent 

Fluidized Bed of Inert Particles", which will appear in Chemicd Engineering Science. 

In this paper, the combustion of natural gas was studied in a TFB reactor of inert 

particles at relatively high temperatures in both bubbling and turbulent regimes. 



In Chapter N, the publication " Gas Mwng in r Non-Premixed Turbulent HuidUed 

Bed Reactor" is presented. Thîs article is submitîed to Canadian Journal of Chemical 

Engineering. Sparger hydrodynamics and gas mixing are studied in detaü using 

different technique and a model is presented to prdict the mixing length. 

Chapta V wnsists of the publication entitIed "A Mathematical Mode1 for Naturd 

Gas Combustion in a Turbulent FIuidized Bed of hert Particles". The paper is 

submitted to Ind. Eng. Chem. Res. The model prediction of the reactor perfiormance 

is quite satisfactory. 

Conclusions and Recommendations 

Four appendices which give more detail on fixed and fluidized bed studies: 

complementary detail on h e d  bed studies, reactor operation and security manual, 

pressure fluctuation analysis and sample concentration calculations for aii individual 

phases encountered in non-premixed fluidized bed reactors. 
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Abstract 

The combustion of methane has been studied in a fixed bed reactor to detennine the 

effect of inert particles on the combustion process through heterogenews and 

homogeneous reactions. To elucidate these effézts on combustion, premixed methane-air 

mixtures are intioduced into a nxed bed of inert particles. Methane and CO2 mole 

fiactions are measured at the reactor outlet. The experimental data obtained in this way 

shows that the accelerating catalytic effect of inert particles, Le. sand or dumina, is quite 

small. In addition, it is found that the inhibition effect is considerably higher at 

moderately high temperatures (c850 OC) and it may be neglected at high temperatures 

well above 1000 OC. A plug flow reactor mode1 with a wmplete readion scheme is 

developed to explain the experimental &ta. Based on information gathered during the 

simulation with the complete reaction mechanism, a reduced mechanism is developed 

and its pHormance is tested against the complete mechanism. Both mechanisrns fail ta 

fully predict the experimental data. Therefore, an improved combined mechanism, which 

takes hto account the heterogeneous and homogeneous reactïons chemistry, is proposed 

based on r e d u d  mechanism. ï he  combined mechanism is able to predict the 

experimentai data satisfactorily for the operathg conditions used in this investigation. 

2.2 Introduction 

Large amount of energy needed for power generation and otha applications depends on 

diract or indirect combustion of naturd gas (mahîy methane) in combustion devices, 



which may lead to some serious environmental problems. To d e  these problems, the 

performance of the combustion devices should be improved in tenns of high efficiency 

and low emission fevels through understanding of elementaq steps involved in 

combustion As environmental regulations become more mingent, a better 

understanding of the mechanism and conditions, which lead to formation of undesired 

products, becomes critical for optimizatioa of wmbustor paformances. 

Among the combustion devices, fluidized bed systems have so far k e n  dweloped for 

efficient combustion of fbel-air mixture with less pollutant formations. Further 

improvements of combustion efficiency in fluidized bed reactors and reduction in 

pollutant emissions can be achieved using catalysts as bed materiais. However, for 

power generation units, nich combination increases the operating cost and the current 

accepted practice is to use inert particles as bed materials. These materials are cheap, 

readil y available and applicable to high temperature conditions. Such inert particles, 

when used in combustion devices, can considerably alter the combustion process because 

of heterogeneous inhibition reactions. Therefore, a Mer understanding of how and why 

these particles influence the m u s  &el combustion mechanism becomes very important 

in fluidized bed reactors- 

Combustion phenomena are affècted by inert particle surface through t hwia l  and kinetic 

coupling with the homogeneous combustion. The th& coupling is thought to play an 

important role in combustion [l]. The Irinetic coupling between a nirfiice and gas phase 



becurnes dominant in operations of fixed or fluidized bed reactors at moderately high 

temperahires. The coupling can be regardeci as catalytic or inhibition eff- through 

intermediate species interaction which is cornmon in both heterogeneous and 

homogeneous phases. The extent of catdytic reaaion contribution nom solid inert 

particles is still unknown- For alumina particles for example, Brougton M reported tbat 

it has no signifieant accelerating cataiytic effect. However, m e r  work is st i l i  needed in 

order to conclude correctly on catalytic effects of different inert particles on the 

combustion mechanism, 

Besides their cataiytic activities, solid particles may inhibit combustion through depleting 

fiee radicals' concentration in the homogeneous phase. This effect was thought to 

explain the increase of homogeneous combustion ignition temperature in the presence of 

inert solid particles. Herein, the inhibition ocairs when radical in tedia tes ,  which are 

crucial for ignition, may diffise or be transpoited to the particle surface and be 

terminateci there. The extent of inhibition varies with temperature and particle size 

distribution w i t b  the reactor 13, 41. Moreover, it might be expected that the inhibition 

process due to solid swfàce would strongiy affect the conversion of CO to COI- It is 

worth mentionhg that the role of particle suditce on the formation of undesireci by- 

produas such as CO or otha Unamediates is pooriy uaderstood. ïhe undesired by- 

products may diffuse fiom or ta the SUTfâce and heace would alta homogeneous 

combustion through momentun, cnergy and maos balaace [4]. The inhibition may dso 

occur because of third bodies (mixtwe of stable species), fiee radicals and bubble 



surfaces in fluidized bed reactors. Lew-s and von Elbe [SI stated that the rate of fkee 

radical termination by gas phase collision, through third bodies and fia radicals, is 

negligible as compared to temination by solid SurfacesS It shodd dm be mentioned that 

the presence of thud bodies could be easily modeled with gas phase kinetics. However, 

the contribution of heterogeneous processes in inhibition is not yet well undastood and 

more work is needed- 

This investigation is devoted to increase the understanding of the combustion behavior of 

prernixed methane-air mixtures in a 6xed bed of iwrt heat -ers in view of their use in 

the emulsion phase of turbulent fluidized bed reactors. Some qualitative conditions for 

fluidized bed reactors, i-e., catalytic effeq inhibition and temperature range of operation, 

may also be deriveû- An atternpt is also made to employ complete and redud reaction 

schernes within the reactor model. The reduced and complete mechanisms have never 

been applied to methane combustion in fluidized bed reactors. So far, Van de Vaart [6] 

applied a global reaction rate expression for the disappearance of methane in a fluidked 

bed reactor. The use of only one overail reaction has made prediction of CO, NOx and 

other intermediates impossible. 

Chernical reactions convcrting fbel to combustion products are complex depending in 

subtle ways on the conditions unda which combustion &es place. An understanding of 



the conversion process can be attained by identifjhg the elementary seps  and the 

correspondhg reaction rates. These seps coupled with the governing hydrodyBamic 

equations are needed in order to explain the combustion process in a chernical reactor in 

detail. A large amount of information is now available in the combustion literature 

regarding the srnail molecules, [7, 81 which therefore increases the ability to model the 

~mbust ioa  processes using cornputers. Herein, the most updated and complete reaction 

scheme is used in order to simulate the combustion mechanism of premixed methane-air 

mixtures in a fixed bed reactor. 

As mentioned earlier, the study is aimed at undastanding the combustion behavior of 
O 

premixed methane-air mixture in fluidized bed reactors with inert sand or durnina 

particles. Such an understanding can be achieved by obtaining kinetic data at the 

operating range of interest for these reactors. However, fluidized bed reactors are 

hydrodynamically complex for denving the kinetics data needed for combustion 

simulations. Therefore, the data mua be obtained in reactors (e-g. fixed beds) where 

hydrodynamics a n  be described confidently [9]. For purpose of this study, the emulsion 

phase of the fluidized bed reactors is approxirnated with a fixed bed so that the kinetic 

meanirements become possible. This approximation can be justified considering the fact 

that the emulsion phase is usudy assumed to k at minimum fluidization conditions, 

where the large amount of solid particles are present. The behavior of the fixed bed, 

which is operated ai s t d y  state and isothermal conditions, is simulated by couplhg a 

plug flow reactor model with a cornpiete or rduced combustion kinetic model. In this 



study, the reaction zone, which is a very thin shell of 3mm, is weIi located at the reactor 

center. With a very small amount of mixture fIowhg through the reactor, the flow is 

fully developed and the reactor remains isotherrnal. Therefore, it is re8sonabIe to mode1 

the flow in the reactor as plug fiow. Under these conditions, there is no radial gradient in 

velocity. These assumptions are so far verifid in chernid reaction engineering. In the 

following section, description of the complete m e t h e  combustion mechanism and the 

approach used to obtain a reduced mechanism is presented. 

2.3.1 The complete methane combustion muhanism 

The detailed GR1 (Gas Research Institute) mechanisrn for methane combustion, which 

consists of 279 elementary reaction steps among 49 species, is used in a wide range of 

experimental conditions encountered in the fixed bed reactor- The GR1 mechanism is a 

produa of compitational and experimenta! researches sponsored by the Gas Research 

Institute (CRI) and several US work-groups have contributeci to this mechanism. This is 

an optimized detailed chernical reaction mechanism capable of the best representation of 

methane combustion at this time. The validity of GRI approach has been demonstrateci 

for the improvernent of methane combustion mechanism. A detailed description of the 

complete GRI mechanism can be found in [IO, 111 and the G W s  811114 reports (i-e. 

[12]). Surnmary of mathematid expressions neded for dadation of r d o n  rates and 

thermodynamic propeities, which were derived fkom 114, 8, 121, are given in Tables 2.1 



and 2.2. The physico-chernical and thennodynamic properties needed for calculations 

are taken f?om the combustion literature [8, 10, 151. 

Table 2-1 Summary of expressions used in simulation 



Table 2.2 (wntinued) 

dFk - -  
dl' 

- T t  



Table 2.2 Summary ofacpression useci to celadate the thermodynamic promes 

A s e r  AHa> 
I n K p t = Ï T  - RTb 

M c  K H a  
-= ( V ' L  - vph12 
RTb k=I RTb 

2.3.2 The reduced methane combustion mecbanism 

The complete mechanism, which gaierates a great amount of chernical information, is 

not quite suitable for dl modeling efforts since it tequires high computation costs. In 

fact, not al1 the r d o n s  contribute equally to the combustion process. Some of them 

may contribute significantly, some do marginally and the rest do not contribute at dl. In 

addition, some of species rach dmost Stationary mole nattions by very rapid elementary 



steps, while for others, this change happens slowly by elementary steps that detamine 

their overall reaction rate. This is an important and unique pro- of the system and it 

will then be used for mechanism reduction. The component with s d l  net rate may 

cause severe problem in solvïng large system of Merential cquations. Due to such 

unusual behavior of large r d o n  systmis which needs high cornputhg costs, nurnber of 

rnethods has been initiateci for mechanism reduction. In recent review given by Tomlin et 

al. [16], an up-t&e picture of alI the main mathematical tools, which have been widely 

used in the combustion literahire, has been provided for the construction, investigation 

and reduction of wmplex reaction mechanisms. There are also reviews, which discuss 

some of these methods in deîails [18, 19, 20, 211. Almost al1 reduction techniques Le. 

(221 have been developed and tested for combustion modeling and theu applicability to 

combustion in chernical reactors are questioned. Apparently, there is d l1  a continuing 

need for reliable and reduced mechanism which must be capable of predicting 

experimental data over the range of operating conditions for hydrodynamically complex 

chernical reactors- 

In order to develop a reduced mechanism for îhe purpose of this investigation, the 

forward and reverse reactions which have s d l  contributions, are identified by 

examinhg their respective reaction rata. This can be achieved through nifficient rate 

information generated duriag the simulation with the complete mechnism by satii>g a 

threshold value (6). The m&od is reliable for fbding redundant reactions (Tomlin et ai. 



[16]) and non-contributing reactions can be identified by evaiuating the folIowïng 

critenon for al1 grid points ofthe calculation: 

2.3.3 Solution metbod 

The resulting ordinary differential equations (ODEs), in Table 2.1, are solved numerically 

to determine the evolution of the system for any assumed initial conditions. For a large 

number of components considerd in the model it should be mentiond that the existence 

of wide range of reaction rates in the ODEs leads to sewre dEculties in solving them by 

conventional integration methods. Therefore, a finite diflerence method is used to 

calculate emissions of CO, unbumed CH( and C a  with the complete and reduced 

mechanisms. 

The experimental study was canied out in a fixed bed reactor. A schematic of the 

experimental reactor is shown in Figure 2.1. The reac&or wmists of two concentric 0.6 m 

long tubes with 13 mm I.D. and 7 mm OD., nspectively and its wdls are made of 

dumina in order to limit wdl catdytic effects. Combustion takes place between the two 

concentric tubes in where the sand particles are placeci- This configuration allows the 



temperature inside the inner tube to be mea~u~ed. Heating is provideci by a high 

temperature fimace with a single heated zone of222 mm long. The methane and air gas 

flows were megmired with m a s  flow controllers and mixed before the reactor inlet- 

Total flow rates ranging fEom 100 and 500  mIhin premked mamire with 2 to 4 % 

methane were introduced d o  the reactor. Gas amples were drawn at the reactor outla. 

A gas chromatograph equipped with a thermal conductivity detector (TCD) was used to 

monitor the methane aad CO2 mole fiactions The CO emission level was calculated by 

Inert Particles (Rmction zone) 

Figure 2.1 Schematic of the arpaimental fixed beû reactor. 



mass balance- Sand particles, which consist of mainly silica, in various size cuts with an 

average particle size of  230, 330, 523 pm are used during the combustion tests. 

Chemical composition of the sand particles is given in Table 2.3. Some experiments 

were dso performed with the empty reactor in order to quanm the wali effects on the 

combustion reaction proces* 

Table 2.3 Chernical composÏtion of sand particles used in this mdy 

composition 

Si02 

Fe203 

A m 3  

Ca0 

Ti02 

M s o  

K t 0  

Na20 

L i 0  

Furthermore, to ampli@ the contribution made by reactor walls on combustion, the 

reactor was filled with durnina powder, with an average particle size of 362 pm, which is 

the same matenal used in the reactor construction. For ail experiments, the inner tube 

and fùmace temperatures were m e w e d  under stcady m e  conditions. Due to quite 

small amount of fuel introduced h o  the reactor and the presence of no flow within the 

inner tube, the mean value of the meastucd temperatures is taken as reactor temperature 

and us& throughout this study. It is also important to note that due to low specific heat 



of gas and small hydraulic diameter and radiation effccts, the gas rapidly reaches to  the 

r a d o n  zone temperature 11 6 1. 

2.5 Numerical Performance of Reduced Mecbanism 

A reduced reaction mechanism was developed baseâ on the complete GR1 mechanism 

fiom the detailed inspection of  the rate information for C-H-O reactioas- These 

information are gathered during the simulation with the complete mechanism with the 

objective of obtaining the srnallest set of reactions capable of reproducing closely the 

main combustion characteristics predicted by the complete mechanism. This was done 

by removing the leu significant reactions and identifying t h o r  components that are 

contributing the most to the overall combustion process. Upon excluding non- 

contributing species fiom the complete mechanism, the stifFness of the numerical system 

is also greatly reduced which then l a d s  to a nibstamial reduction in computation time. 

nie procedure, as appliad for the reduced mechanism construction, removes Cz path 60m 

the combustion chemistxy. It is well recognized that the CI path, which is a sequence of 

less well-understd seps, becornes important for sufficiently fuel nch mumires Il ,  151. 

The mechanism reduction with W . 0 2  has already been used in combustion literature for 

mechanisrn reduction (231 that generated a set of 22 species, 104 reactions. 1t is 

important to note that the reduction technique is sensitive to the threshold value. 

Applying a uniform thrcshold value for different test conditions may either r d t  in 

redundant reactions being Ieft in the scheme or an oversimplified reaction scheme. 



Therefore, depending on test conditions, a suitable threshold value shouid be used for 

mechanism reduction. The present reduaion has been perfiormed using H . 0 0 5  for 

combustion of methane in an isothermal plug flow reactor. The following test conditions 

are used: initial methane mole fkaction=2%, atmospherïc pressure and for a wide range of 

reactor temperatures (600 to 900°C)- This procedure generated a set of 17 species, 37 

reactions, which is shown in Table 2.4. This is the reduced mechanism used throughout 

this investigation for cornparison purposer. However, two threshold values have also 

been examined which generated a set of 15 species and 21 reactions and a set of 23 

species and 55 reactions with W.05 and 6=0.0005, respectively. The computational 

time needed to petform the simulation using the three sets of reduced mechanism jua 

described was dmost the same- In addition, there are not much difference in the number 

of species kept and it was then decided to use the reduced mechanism generated with 

S=0.005 for this midy. The developed reduced mechanism is comparai with GR1 using a 

series of conversion data calculated in a plug flow reactor for CO, C& and COt. The 

results are show in Figure 2.2, where a reasonable agreement is obtained between 

reduced and Nl1 mechanism prediaions. 



Table 2.4 The nbiced mechanism oomiding of 37 eiemenrary seps 

ni e i x l o J  i Reactions Considered ~mm. 

x 1  O" 

ki (cm-mol-S) 



Table 2-4 (continueci) 



O 10 20 30 40 50 60 70 80 90 100 
Prediction by GR1 mechanism 

Figure2.2 Cornparison of the methane conversion, wrmalized CO and C a  
concentrations predicted £tom the GRl mechanisrn to the predictbn obtained 
fiom the reduccd rnechanism for sand and dumina particles 2?!, 
q=l e7, -3 and T,=2-4) 



2.6 Resuits And Discussion 

In this section, experimental combustion data obtained in the fixeci bed -or are 

discussed and wmpared with gaseous concentration profiles predicted by the complete 

and reduced mechanisms for a varïety of operating conditions. It is worth to mention that 

the experiments were repeated several tïmes to ensure the reproducibility of the data and 

identical results were obtained. Figure 2.3 shows the experimental data for the empty 

reactor and the reactor filled with  and pamcles of 523 Pm. Two approaches were taken 

to simulate the behavior of the ernpty reactor: plug flow model and lamina flarne model. 

The detail of the larninar flow model for the experimental unit is presented by Sotudeh 

[16]. Comparing the simulation rewlts of these two different approaches shows slight 

dserence. This suggests that considering a plug flow model is a very good estimation for 

this system since the gas velocity is very small. îhe figure also shows the predictions 

obtained with the GRI mechanism for 2% initiai methane mole *ion and mean 

residence time of 3 sec. The following conclusions can be derived h m  this figure: 

1) For the empty reactor, agreement cornparison between experirnental and predicted 

data is reasonable close to the infîection point, and the ciiffierence can be attributed 

to the fad that the reactor walls may contribute to combustion. No u i f o ~ t i o n  

may be found in the litaature in order to explain this disparity- 
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Figure 2.3 Cornparison of experimental methane conversion data with sand particles 
and empty reactor to the prediaions obtained fiom the GRI mechanism 
(dp=523, &H.UJ= 2??, q=le7 and 2=3) 



2) By cornparhg the m e n t a l  data rrported in the figure, three different 

temperature intervals can be identifieci: 

a) T <-750 OC: Some accelerating catalytic effkcts can be seen in this interval. 

The contribution is quite small and seems negligible. 

b) -750 OC < T c -875 OC: At this moderately high temperature range, 

conversion at the empty reactor differs fkom the fked bed reactor. It seems 

that solid and wall surfaces alter homogenews combustion by reducing fiee 

radical concentrations. Such effects may lower conversion as shown in the 

figure. Vlachos et al. (11 reported that the operating conditions and spatial 

heterogeneity (presence of solid surface) can largely affect product 

distributions. For example, removal of H atoms and CH3 radicals by 

adsorption II] can increase the ignition temperature. The inhibition effects as 

reported here are also consistent with the overall trend observecl for the 

premixed combustion in fluidized bed reactors [24,25]. 

c) T > -875: Under these conditions, cornparison betwcen thmry and expriment 

is satisfiwtory since the fia radical generation dominates the fia radical 

destruction process and inhibition becornes Iess pronound. 



3) For the fixed bed reactor, the GRI mechanism fails to provide good predictions 

for the first and second intervals and accurate prediaions could be obtained by 

wupling homogeneous and heterogeneous kinetics. For third temperature 

interval, excellent agreement is seen between experiments and mode1 predictions, 

where the complete conversion is achieved. 

In figure 2.4, experiments were also reported for dumina and diffierent sand particles. 

The base of cornparison is the contact t h e  index. Alumina was tested as bed material for 

ampleing the reactor wall effects. Ahmina basically behaved like sand particles 

meaning that the reactor walls may also contribute to combustion. For ail particles 

reported in this figure, the GR1 mechanism fails to provide good agreement at the second 

interval. This figure also shows that above a certain aitical temperature, homogeneous 

combustion takes place Le. T > 875 OC- Hesketh and Davidson 1261 showed that above a 

certain critical temperature, the emulsion phase exhibits homogeneous combustion 

behaviour in a fluidized bed reactor- This critical temperature is dinixcult to be 

detennined because of the wmplexïty associateci with the hydrodynamics of fiuidized 

bed reactors. The results fiom the present investigation give a good indication of this 

behaviour. 
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Figure 2.4 Cornparison of ewmentai  mcthae conversion data with different sand and 
alumina particles to the predictions obtaid from the GR1 mechanism 
g r C ~ v  Ph, q=?=le7, ~3 and ~&-4) 



In Figure 2.5, a cornparison baween CO mole fiaction calculateci by mass balance and 

predictions obtained fiom the complete mechanism is presented. The CO mole fiaction is 

low comparexi to mode1 prdction for T<875 OC. This is a very interesting finding since 

it shows that at this temperature range, combustion over oand particles may lead to less 

CO emission (slmost half) as compared with homogeneous combustion This effect can 

be attributed to the low concentration of OH radicals, which is wnsidered as the main 

oxidant species of CO. The OH radicais are substamially reduced by recombination 

reactions at the particle surface. In the combustion of hydrocarbons, consumption of CO 

is very s m d  compared to its formation at lower temperatures. Therefore, this effect leads 

to a maximum in CO emission level. A gas analyzer was also used to verify this 

maximum of CO emission by direct measurement. However, it was not possible to 

obtain exact values of CO emissions fkom the andyzer, since the amount of flue gas 

needed for gas analyzer is higher than the total outlet flow f?om the reactor. Therefore, 

the use of gas analyzer altas the fixed bed hydrodynamics. The results obtained ftom the 

gas analyzer coafimed the existence of a maximum. 
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Figure 2.5 



Figure 2.6 shows a cornparison of experimental conversion between data for différent 

sand particles and the prediction obtained by the reduced mechanism for q=4e6. This 

figure does not show large diffaence regarding the panicle site e f f '  at second 

temperature intend By compring experimental data repoited in figure 2.4 with those 

here, it is seen that the second temperature interval becomes narrower. 

Figure 2.7 shows the eEect of the contact time index and the mean residence time. ïhese 

values are smaller for fluidued bed reactors. By approximating the emulsion phase of a 

turbulent fluidized bed reactor with a fixed bed reactor for the purpose of this study, one 

may conclude that the emulsion phase becomes the subject of inhibition and higher 

temperature is needed to obtain high methane conversion in this phase- This figure may 

aiso suggeas that the mahane conversion in the emulsion phase of turbulent fiuidized 

bed reactors may require high temperatures even above 1 0 0  OC. This may be justified 

by considering a very short residence time in these reactors and M e r  mass tramfer 

resistance between bubble and emulsion phases. This means thac in the emulsion phase 

of fluidized beds of inert particles at temperatures beiow -1000 OC the combined 

homogeneous and heterogeneous reaction rate is smaila than in the case of sokly 

homogeneous gas phase rerictions. This is consistent with the information found in 

fluidization literatwes whae it has b a n  reportcd that homogeneous reaction in the 

emulsion phase starts weU above 1100 O C .  
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Figure 2.6 Cornparison of experimenial methane conversion data with different sand 
particies to the prrdictions obtained f b m  the reduced mechanism 
2%, q=4e6 and ~ 1 . 2 )  
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Figure 2.7 Cornparison of expimental methane conversion data with saad particles 
to the predidons obtained h m  the reduced mechanism for different 
contact t h e  index and mean residence tirne values (dp423, &* 2?%, 
@e7,6.7e6,46 and c6,2, 1 .Z, nspectively). 



Figure 2.8 gives a cornparison between expimental conversion data with sand particles 

(d,,=330 pm) and predictions obtained with the reduced mechanism for 2% and 4% inaiaf 

methane mole M o n .  The base of cornpaison is the mean residence the. This figure 

shows that the experimental and predicted conversion is independent of initial methane 

mole fraction, meaning that the overaii mahaw combustion reaction is first order with 

respect to methane concentration. For lean mixtures, this is an accepted assumption for 

combustion studies, where homogeneous reactions are encountered and inert partic!es are 

absent. 

Figures 2.3 to 2.8 clearly show that the GR1 and reduced mechanisms fail to predict the 

experimental data accurately at the second temperature interval. The failure is attributed 

to the fact that the reaction mechanisms are constructecl based on homogeneous 

elementary reaction rates. These rates are widely available in the litenihire due to their 

applications in traditional gas combustion devices and no heterogeneous elememary 

reactions are inchided in these mechPnisms. To fully predict the experimental data, one 

should include the heterogeneous elementary reaction kinetics in the modeIing- 

Therefore, a combined reactioa mechanisrn needs to be wnstruded based on kinetic 

information of both homogeneous and heterogeneous d o n s .  Unfortunateiy, no 

heterogmeous kinetic information is available in the open l i t m e  for test conditions 

used for the present study. 
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Figure 2.8 Cornparison of expaimental methane conversion to the prediaion 
obtained fiom the d u c e d  mcchanism (Sand partider, dpc330, XcHfl2 
and 4% and ~ 3 )  



For the purpose of this study, we decided to choose a certain nurnber of reaaions in the 

reduced mechanism and to modiq their reaction rates for presenting the heterogeneous 

effects in the simulation. It is believed that wall quenchiag r d t s  in a reduction of free 

radicals near the wall and surface [1,S]. OH, O. H and CH3 consumption retards 

homogeneous ignition CI]. The inhibition of homogenous combustion of CH4 in the 

presence of catalyst is caused by consumption of the intemediate species, which 

probably H atoms and CH3 radicals k ing  the moa important [I l .  It seems that in the 

presence of inert particles, the most important radicals probably are OH radical and H 

atom. Numerical optimization based on reduced mechanism with chosen experimental 

targets shows that OH radicals play a major mle in the inhibition process for the 

conditions used in this study. This suggests that the production rate of OH radicals should 

be modified in order to constmct a modified combustion mechanism, Therefore, the 

reaction no- 1, 2, 6, 12, 14, 16, 26, 27, 29 and 34 were chosen and theu reaction rates 

have been modified in the reduced mechanism. For each reaction considered, the 

frequency factor and the activation energy should be m d f i e à .  That means the 

estimation of20 independent variables for r d o n  rate data. Such estimation is a tedious 

and awkward ta& and an effective strategy might be used. Since the activation energies 

for the set of reactions considered in the modification have mostly the same order of 

magnitude, though it has been decided to modifjr the rcaction rates with a global 



correction factor. This fkctor is defined as the ratio of the heterogeneous reaction rate to 

the homogeneous reaction rate: 

The optimal values for A and AE are: ( ~ = 4 . 3 2 7 ~ 9 x  10' and M= 2 17.2)- At temperatures 

-900°C, the value for f is equal to 1, which means that the reduced homogenous 

mechanism is capable of predicting the expenmental data and no heterogeneous 

chemistry is needed for simulation. The activation energy is of the order of magnitude 

found in the combustion literature 125, 261. The modified activation energies for the 

modified mechanism are presented in Table 2.4. The results obtained based on this 

improved mechanism are presented in figures 2.9 and 2.10. 
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Figure 2.9 Comparïson of eicpaimemal methme conversion data with different sand 
particles to the predictions obtained fkom the rahiced and combined 
mechanism Ph, q=le7 and ~ 3 )  
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Figure 2.10 Cornparison of CO mole hction with sand particles to the prediaions 
obtained h m  the reduced and combined mechanism (dm23, X & e  
24, v l e 7  and ~ 3 ) .  



In figure 2.9, a comparison betweea the e-entai data and predictions obtained from 

reduced and combined mechanisms is presented. The base of cornparison is the contact 

time index As shown in the figure, the combined mechanism is a well-improved version 

of the reduced mechanism and its agreement with the experimental data is excellent. 

This justifies the choice of reactions to present the heterogeneous chemistry in the 

combined reaction scheme. This also means that the OH radicals have a low 

concentration due to inhibition process as wmpared with purely homogeneous reactions. 

Figure 2.10 shows a comparison of CO mole fraction calculateci by mass balance and the 

predictions obtained by the reduced and wmbined mechanism. Again, this figure shows 

that the reduced reaction scheme is largely improved by introducing the modified 

reaction rates for haerogeneous chemistry. The camparison between the combined 

mechanism prediction and the experimental data is quite satisfactory. 

2.7 Conclusions 

A series of measurements has been completed for methane combustion in a fixed bed 

reactor with dEerent innt partides and under various openting conditions. A plug flow 

reactor mode1 wupled with complete ami rduced mechanisms is used to simulate the 

performance of this reactor. The main conclusions of this study as derïved 6om the 

experimental obrervations and thoomical considerations can be summarized as follows: 



a The experimental results show that at taoperatures below - 750°C, sand particles 

may act as catalysts ta hcrease conversion but their contribution is quite small. 

III fluidùed bed reactors of sand particles for the temperature range of interest 

between 800 to 1000 OC, such contribution seems negligible. 

a At moderately high temperatures (- 750-850 OC), the free radical concentrations 

are lowered by their termination on solid surface and therefore, inhibition 

becomes important. This behaviour becomes critical if one decides to openite the 

combustion devices in this temperature range. Therefore, combined 

heterogeneous and heterogeneous kînetics are needed to fblly understand the 

combustion process in these devices. 

0 At high temperatures above - 875 to 900 OC, the rate of fiee radical formation 

becomes dominant as compand to the fiee radical destruction on solid d a c e s  or 

reactor walls. Under these conditions, the inhibition process plays a las 

important role and may then be negiected. This is a wmmon practice for the 

combustion devices operathg at hi@ temperatures well above I W O  OC. 

a ïhe resdts of this midy may siggest that in the emdsion phase of fluidizeâ beds 

of inert particles at temperatures below -1000 OC the combined homogeneous and 

heterogenawu r d o n  rates are less significmt for mahane combustion. 



a A reduced methane wmbustïon mecbanism comprising of 37 reversible reactions 

and 19 species is developed and compared with the prediction provided by the 

comple?e GR1 mechanism. It is concluded that the reduced mechanism is 

suficiently accurate, despite its small sizes for predicting the behaviour of 

homogeneous reactions. 

A combined heterogeneous and homogeneous mechanism is designed to describe 

methane combustion in presence of sand particles. The combined mechanism 

predicts the metliane conversion very accurately and predias the CO emissions 

trend correctly. 
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In chapter II, combustion of methane was tesied in a k e d  bed reactor over inert particles. 

The a h  was to evaluate the behavior of particies used in combustion studies. It bas been 

shown that the combustion takes place of the order of 800 OC and under these conditions, 

the accelerating catalytic effects were not important. The general experimental findings 

helped us decide on the conditions needed for combustion studies, which is the subjea of 

this chapter. Herein, combustion of natural gas was studied in a pilot plant fluidized of 

inert particles under bubbling and turbulent fluidized bed conditions. The experimental 

results showed that the turbulent fluidized bed reactor is an excellent reactor of choice to 

promote the oxidation and combustion processes. 

' ïhis section is not included in the original manuscript. It only serves as a transition 

between papers for the thesis. 



3.2 Abstract 

The combustion of natural gas has been studied in a pilot plant fluidized bed of inert 

particles at relatively high temperatures (800-1000°C). Experiments were -ed out in 

both bubbling and turbdent regimes. Combustion cm be ~ m p k t e d  in the flammability 

range with a suitable injection system to bring two gases h o  an intense contact nifficient 

to permit complete in-bed combustion The experhental resuits show that the fluidized 

bed reactors offer excellent t h e d  uniformity and temperature control. This study also 

provides comprehensive data on gaseous fuel combustion and CO oxidation profile in a 

pilot plant fluidized bed of inert particles. Such data is required to develop a realistic 

mode1 for combustion process in fluidized bed reactors. 

3.3 Introduction 

Safe control efficient reduction and economical destruction of pollutant ernissioas nom 

the devices burning fossil fiels are a major foais of environmental concem and 

legislation in various industrial nations. In response to such -gent regdations and 

based on increased availability of natunl gas (NG), different attractive and cost-effective 

technologies including basic CO-firing, gas reburn have ban iaitiated (American Gao 

association, 1991). The success of these devices depends strongly on their operaing 

temperature, which is critical for thermal N a  ernissions. Thermal NOx are generated in 

conventional devices whece the aune tempenrnire is usually above 1200°C. Therefore, 



the new generation devias should operate at temperatures well Wow 1200 OC. At 

temperatures below 8OO0C, no thermal NOx is formed and the combustion of gaseous 

fuel such as natural gas at nich temperatures can be considerd attractive. Unfortwiately, 

this is not possible in a fluidized bed of inert particles at Iow fuel concentration, which is 

essential for d i e  operation- tow-temperature catalytic combustion of gaseous fiiel bas 

been so far reported in fixed beds for srnail-scale units (e-g. Mezaki and Watsoa 1966). 

Although excellent gas-soIid contact efficiency cari be achieved in these reactors, the rise 

in bed temperature usuaiIy leads to the formation of hot spots, deactivation of the 

catalyas and even to conditions of homogeneous gas phase combustion. In addition, for 

very low gaseous fiiel concentrations in the f- auto-thermjcity of a fixed bed reactor is 

difficult to achieve because of the creeping effect. Such undesired effect causes the 

movement of the reaction fiont towards the reactor outlet. 

Fluidized bed technology can be widely used with natural gas for a wide range of 

applications e-g. CO-firing, gas re-burn and direct combustion for heating fluidized beds in 

some industrial processes. h fluidized beds, high combustion efficiency can also be 

achieved at a remarkably low temperature (-9ûû°C) as compareci to conventional devices 

(over 1200 O C ) .  The fluidked bed reactors could be operated isothermally without 

developing hot spots (Grace, 1990) and are capable of meeting al1 environmental 

requiremmts (Foka a al, 1994). Moreover, judicious selection of bed material can result 

in the in-bed elimination of gaseous pollutant species generated during combustion. 



Various hydrodynamk regimes are observed in Buidked beds. So far, gaseous &el 

combustion has been reported for the bubbling regirne mostly for prernixed combustion 

(e-g. Sadilov and Baskakov, 1973; Van der Vaut, 1992). For non-prernixed combustion, 

no study has been reported in the open Literature in which naturd gas is injecteci directly 

to the bed. The turbulent fluidùation regïme is characterized by pressure fluctuations of 

low amplitude and of high fkequencies (e-g. Kehoe and Davidson, 1971) and of small 

bubbles with high relative density Turbulent fluidized beds (Tm) have a more 

homogeneous appearance and consequently high conversions are being achieved due to 

an improved gas-solid contact These reactors also offer the advantages of exceptionally 

high heat transfer, excellent therrnal uniformity and temperature contml, high overall 

productivity and relatively short mean residence t h e  as compared to the conventional 

combustion systems for a given throughput . 

Concerning combustion of natural a s  in TFB reactors* Foka et al. (1994) investigated the 

catalytic premixed combustion of naturd gas (w-th a low inlet mixture of 4% methane) at 

moderately low temperatures (400-6ûû°C). They nirther stated that the turbulent regirne 

appears to be the moa suitable one for complete combustion of naturai gas- The success 

of the catalytic fluidized bed combustion of natural gas mongly depends on the nature of 

the catalyst used. Such a d y s t  mua k eective for combustion, resistant to aîtrition 

and have a low cos. Unfortunately, the combustion catalysts are expensive and subject 

to attrition. In addition, the combined cost of catdyst for the catalytic reactor is high. In 



order to make turbulent fiuidied bed reactors applicable for residential, indumial and 

waste-to-energy applications and to decrease this wst substantially, the catalysts should 

be replace- by hm materials. Therefore, the moderately high temperature combustion in 

fluidized bed reactors is needed in order to reduce the reactor size and to promote 

complete combustion Despite the kge  impact of using inert particles as bed materials 

on industrial combustion applications, no information is available in the literature 

conceming the combustion mode and regime of fluidization in which the combustion 

takes place in pilot or industriai fiuidized bed reactors at modmtely high temperatures (c 

1000 OC). Therefore, the outcome of this shidy may have implications for the 

combustion of volatile matters in fluidized bed mal cornbustors, since the presence of 

volatile matters is important in stabilizing the combustion process. Therefore, natual gas 

combustion process c m  provide insights into how volatiles bum inside of fluidized bed 

reactors. 

In the present work, the combustion of natural gas with air in a pilot plant turbulent 

fluidized bed reactor of sand particles bas b a n  studied extensively. Due to dety  

concerns and also limited industrial applications of a premixed combustion mode, the 

non-premixed combustion is only considerd in this investigation- The airn is to assess 

the experimental fcroibility of naturai gas combustion in a pilot turbulent fiuidized bed of 

inert particles. 



3-4-1 Appantus and bai matenrls 

The apparatus used in this study is a 200 mm I.D. and 2 m taii refiactory-lined combustor 

capable of withstanding high temperatures, as shown in Figure 3.1. The reactor is 

divided into four zones: the combustion inlet port (wind-box and a cap distributor), a 

fluidized bed zone, a fieeboard zone and an expansion zone of 600mm I.D. An extemai 

natural gas bumer with 20 kW nominal power located at the bottom of the bed provides 

the partial heat required for preheating the reactor to a desüed temperature. Sand 

particles, which consist mainly of silica with an average particle size of 543 pm and a 

bulk density of 1400 ks/m3 are used during the combustion tests. Sweral ports are 

provided dong the axial position for pressure measurements, sampling and natural gas 

injection to the reactor. Naniral gas may be supplied to the reactor either through the 

wind-box or at any elevation above the distributor by an injection probe pointing 

downward. Two injection probes of 6.33 mm in diameter were used throughout this 

study; a one-hole probe named the injection nozzle and a Ml sparger with 13 holes. 

Holes are 4.33 mm in diameter. These injestion probes were kept fÎee of p d c l e s  during 

the preheating paiod using air as a purgïng fluid. 



1. Burntr 
2. Combustion chamber 
3. Windbox 
4. Gas distributor 
S. Fluidized bcd 
6. Expansion zone 

C. Gu sampling line 
P. Pressure trriwductr 
T. Type K thermocouple 

Air 

Figure 3.1 Schematic of pilot turbulent Buidized bed reactor 



The reactor was also equipped for sampling and adysis of reaction products takm fkom 

the various ports and the reactor outlet. Sarnpling probes were placed dong the reactor 

centerline with their tips protected from particle clogging by a filter. The probes were 

connected to the gas chromatograph (HP5980A) by a tube and the samples were 

withdrawn with a variable pressure vacuum system. Type-K thennocouples were also 

placed almg the reactor centerline to monitor temperature profiles. An absolute pressure 

transducer was usai to monitor the level of particles in the reactor by continuous 

recording of pressure fluctuations every 1s. Flow rates of air and naturai gas were 

measured by orifice plates and rotameters, respectively. During the experiments, data are 

acquired by a PC acquisition system where temperatures and pressures are recorded at 

second and minute intervals, respectively. At relatively high superficial velocities, a 

significant amount of particles are entraineci. These particles are separated fiom the gas 

by a 0.2m I.D. cyclone and recirculated to the bed. An initial bed height of 2SD (about 

20 kg sand particles) was used in d l  expenments. 

The experirnental mdy began by cdd fluiduation tests to measure minimum fluidkation 

velocity and the onset of turbulent miidkation. For hot hydrodynamics and reaction 



studies, the following procedure was adopted to heat up the insulateci pilot turbulent 

fluidized bed reactor to a desired temperature: 

Using the burner located at reactor base, the r-or temperature is rai& up to 

750°C- 

Using premixed combustion, which consists of naturd gas injection to the wind- 

box, the reactor temperature is raised up to 850°C (under-bed combustion). 

Higher temperatures (850 to 1000°C) are reached using the non-premixed 

combustion mode, which consias of direct injection of NG to the reactor (over- 

bed and in-bed combustion)- 



3.4.3 Opcratiand aspects 

The followbg issues are of critical importance for successful operation of a pilot plant 

fluidized bed reactor, 

Prior to any experiment, al1 in-bed probes (including temperature, pressure, 

sampling and gas injection probes) mua be carefiilly examinecl and positioned at 

their proper locations- 

* A quite low superficial velocity based on cold conditions should be used to start- 

up the reactor. 

The solid inventory and temperature profile should be strktly eontroifed by means 

of pressure measurement and thermocouples, respectively. 

Attrition of particles in a fluidized bed reactor affects solid inventory of the 

reactor. At high sparger velocities, higbly turbulent area is created arwnd the 

sparger. This may result in generating of fine particles due to jet impingement. 

Under these conditions, the bed rnay easily becorne empty with excessive 

elutriation of resultant fine particles. 



a Probes, thermocouples and sparger in fluidied bed reactors are liable to aosion 

and deformation. They should be fiequently inspected and replaced. 

3.5 Combustion and carbon monoxide trials 

Prior to combustion tests in two fluidization regimes, the onset of turbulent fluidization, 

Uc, should be determined. This transition velocity has been extensively studied in the 

literature (e-g., Chehbouni et al. 1994) by means of pressure transducers, capacitance 

probe or by visual observations. Figure 3.2 shows the nonnalized standard deviation of 

pressure fluctuation measured at 150 mm above the distributor as a firnction of gas 

superficial velocity for sand particles of 543 Pm at 25OC and 920 OC. The figure exhibits 

a well-defined maximum, which can be interpreted as the onset ofturbulent fluidization. 

It is also important to note that at 920°C, Uc is slightly higher than that found for ambient 

temperature, which is consistent with the recent experimentai findings in Our laboratory 

(Godez, 1995, Foka et al., i 994). For the operathg conditions of interest in this study, 

the experimental and predicted values of Uc are presented in Table 3.1. 



Figure 3.2 Normalized standard deviation of pressure fluctuation at 920 OC and 25°C 
(4= 543 pm, ~ 1 5 0  mm and MOOmm) 



Table 3.1 Expenomental and predicted values of Uc 

At 920 OC, Uc is about 1% higher than at ambient temperatures. It is important to 

mention that moa measurements of U, have been done at ambient temperature. 

Determination of Uc at high temperatures is very delicate and tedious since for every 

single point, the reactor must reach its steady state conditions prior to pressure signal 

measurements Fewer data are available, such as Cai et al. (1 989) and Gonzalez (1995), 

where the temperature and pressure effects on transition to turbulent fluidization were 

investigated mostly for group A particles. These correlations, which are presented in 

Table 3.1, either overestimate or underestimate Uc for group B particles at high 

temperature as compared to Our expeMnenta1 values. 

Reference Particle 

Sand particles (dp=543 pm) 

Upon determinhg Uc7 two values were chosen on either side of this transition velocity to 

represent the bubbling and turbulent regimes and then combustion tests were carrieci out 

in two steps. in the first riep, or "cumbu~n'on W s " ,  the feasibility of non-prernixed 

combustion was investigated in bubbling and turbulent fluidization conditions. Based on 

qualitative red t s  obtained during these trials, a second seria of tests or b'~lYbOn 

uc (ds) 

25 OC 1 920 OC 

1.25 

1 .O0 

1.45 

1-74 

Experiments this study 

Predicted, Cai et al., (1989) 



monaxi& W s " ,  were conducteci by fkther fmssing on non-premixed combustion to 

measure CO profüe inside of the bed. Description of these experiments and the 

corresponding results for both types of trials are discussed in the foiiowing sections: 

3.5.1 Combustion trials 

Naturd gas was injected to the reactor in a series of experirnents at two different 

temperatures (850 and 980 OC) and at two superficial velocities (0.5 and 1.5 d s )  to 

represent the bubbling and turbulent regimes, respectively. As mentioned earlier, a 

relatively deep bed was used in al1 experiments. In nich a deep bed, naturd gas inside 

the bubbles can exchange many times with the ernulsion gas and considering the 

operating temperature and also the free radical recombination at the particle d a c e s ,  the 

combustion becomes complete by the time gases reach the b a i  surface. 

In order to deterrnine the minimum temperature required for combustion trials, conditions 

for over-beci combustion were identifid durhg the pre-heatùig paiod. Figure 3.3 shows 

the temperature profile during the p reb t ing  period, which con be divideci into thne 

periods. Diiring period I, natural gas is duectly injedeci to the wind-box, 
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Figure 3.3 Tempaahire control during the pre-heating period 



where its temperature is around 950 OC. The bed temperature is around 725 OC and the 

fieeboard temperature is around 600 OC. A slight increase is observed in the bed and 

fieeboard temperatures. During period II, naturai gas is also gradually injected diredy to 

the reactor and a slight increase in fieeboard temperature is observed. Dunng period III, 

the natural gas injected to the wind-box was imempted and more natural gas is injected 

to the reactor. At this point the fieeboard temperature becomes higher than the mean bed 

temperature and the bed serves as a heating medium for natural gas bubbles. For a bed 

temperature above 800 OC, combustion retreats to the bed only and this was considered as 

the minimal temperature for the operation of the pilot plant reactor. 

For the pilot plant reactor used in this study, bed temperature variations are best within 

*7 OC for turbulent and 112°C for bubbling conditions. Figure 3.4 shows the radial and 

axial bed temperature profiles for turbulent fluidization regime during a typical 

expenment. Because of rapid solid mixing, temperatures in the turbulent fluidized bed 

are quite uniform in the presence of a highly exothennic reaction (natural gas 

combustion). With the pilot plant reaaor of 20 cm in diameter, temperature differences 

in excess of 10°C were seldom seen. In fact, such temperature uniforrnity is of utmost 

importance in the operation of industrial fluidùed bed reactors uader turbulent 

fluidization conditions. 



Figure 3 -4 
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A typical natural gas conversion profile obtained nom the bubbling bed experiments is 

shown in Figure 3.5. For all experiments, the conversion is 1Wh at the top of the bed. 

As temperature increases, the 1000/o conversion point is reached within the bed and this 

can be attributed to the fact that the fiee radiai formation dominates the inhibition 

process. The contribution of inhibition reactioas to the overall cornbuni-on process bas 

recently been hvestigated in details (Sotudeh-Gharebaagh et ai, 1998). The combustion 

of hydrocarbons is a two step process. The first is the formation of CO and then CO gets 

converted into CO2. At lower temperatures and also in the presmce of inert particles, 

consumption of CO is very small cornparrd to its formation, reniiting in a maximum in 

CO emission level. Qualitative analyses showed that CO concentdon nses sharply afier 

the injection points and decreases as a fùnction of height. Qualitative resuits obtained in 

this study also wnfirrn the existence of a maximum. In order to convert CO to C02, bed 

temperature rnust be nifncientiy high or othenvise, most of the CO will be converted in 

the splash zone. In order to avoid this situation, bed temperature for bubbling rqime 

operation must be somewhat greater than 900 OC to have complete combustion within the 

bed. However, tbroughput of bubbling fluidized bed reactors is much lower than the 

indusaial needs as compared to turbulent fluidized bed reactors for a given geometry. 



Figure 3 -5 
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Methane conversion in the bubbling regime at various temperatures for 
non-premùred combustion with fiil1 sparger p l a d  at the reactor base 
( u 4 . 5  ds)- 



Figure 3.6 gives an example of conversion profiles obtained fiom the turbulent 

fluidization experiments. Once agah, the conversion was completed within the bed In 

this case a h ,  CO levels undergo a maximum and because of good solid rnixing, CO 

emission IeveIs measured at the reactor outlet are quite mial1 compared to those found in 

bubbling fluidized bed reactors. 



Axial position (cm) 

Figure 3.6 Methane conversion in the turbulent regime at various temperatures for non- 
premixed combustion with fiil1 sparger placed at the reactor base ( P 1 . 5  d s )  



Based on qualitative information obtained from the combustion trials, we m e r  decided 

to test the behavior of CO formation and destruction inside the reactor- To this end, a 

new set of experiments was designed to focus on this abject. In these trials. an single- 

hole sparger with injection gas velocities of 30 and 120 d s  (through the sparger) and two 

gas superficial velocities of 0.7 and 1.5 d s  were tested a .  900 OC. ïhese sparger 

velocities were chosen to represent two different sparger hydrodynamics namely. 

bubbling and jetting based on the information fiom the literature. Exining correlations 

fiom the literature were examined to estirnate the characteristic jet leogth for these 

sparger velocities and the predicted values are reportai in Table 3 -2 

Table 3.2 Predicted characteristic jet length h m  the Iiterature for the conditions of 
this study 

1 Characteristic jet length (cm) 1 u 
(W 

0-7 

0-7 

1-5 

1-5 

Uj 

(m-4 

30 

120 

30 

120 

Yates 
(1996) 

6-0 

17.3 

6-0 

17.3 

Mem- 
(1975) 

2-8 

5-1 

2.8 

5-1 

, 

(19*i, 

5 -2 

19-4 

5.2 

19-4 

Hirsan 

* A  

(1980) 

0-34 

0-86 

0.28 

0-71 

Wen 

(197 7) 

8-1 

12-0 

8-1 

12-0 

Blake 

(1990) 

2.8 

5.7 

2-8 

5-7 

Yang & 

Keainis 

(1979) 

6.4 

10.8 

6-4 

10.8 



It is important to note that these cordations were mostly developed for upward streams 

and group A powders. Therdore, their applicability to downward spargers and group B 

particles are questioned, but due to Iack of pertinent iaformation, these values can be used 

to obtain an idea about jet penetration length. Among the correlations reported in Table 

3.2, Hirsan et ai., (1980) comlation is developed for group B powders. Massimilla 

(1 985) States that the jet formation is more Iikdy with the orifice velocity used. So far, 

Grace and Lim (1987) and Roach (1993) reported the criteria for the formation of 

permanent upward jets. None of these takes into account the orifice velocity and thex 

can not be used to distinguish between jethg and bubbling for downward jets. 

Therefore, high jet penetration is referred to as jetting conditions while low penetration 

length being bubbling conditions around the sparger for this investigation. 

Upon choosing the proper velocity for sparger and also gas superficial velocities, the 

experiments were pefiormed at 900°C. This bed temperature was chosen to promote 

rapid CO destruction. The sparger is located at ~ 1 7  cm above main distributor, to avoid 

possible side effécts caused by fîuidizing gas coming 60x11 the distributor- 



In figure 3.7, CO measurements along the reactor height for four conditions are reporteci- 

For the bubbling fluidized bed regime with jetthg conditions (U=0.7 mls and Uj=120 

ds), upon injecting the natural gas through a single point and due to the high turbulent 

area created around the sparger, excellent mixing were achieved between natural gas and 

air. In this region, the amoua of is much lower than the stoichiommic value needed 

to convert the natural gas to COt and almost al1 fuel was irnmediately converted to CO, 

leading to a peak in CO concentration and under this condition, CO rich bubbles were 

formed. CO bubbles mun then corne into contact with 0 2  in order to get converteci to 

COI along the reactor Iength. A h ,  in the first stage of combustion, the fuel conversion 

to CO around the jet is much faster than the dinusion ofoxygen through the surrounding 

layer. This is due to the excellent mixing between natural gas and air at the injection 

point. The second stage of combustion is the conversion of CO to COz, dong the reactor 

height if the bed temperature is sufficiently high. This is achieved by dif iskg oxygen to 

the CO bubbles. At these temperatures, no reaction cari occur in the emulsion phase due 

to the quenching effect. Temperatures above 915 O C  are needed for methane combustion 

in the emulsion phase (Hesketh and Davidson, 1991). Below this temperature for 

methane-air mixture, combustion is negligible. 
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The situation around the sparger is quite sünilar to the lower region in a circulating 

fluidized bed reactor, where a rducing zone is fonned due to ovgen shortage. For the 

bubbling pattern (Uj=30 ds) ,  the ovedl trend rernains the same, but no turbulence is 

formed around the sparger and the CO pidr is lower. For the turbulent regime with 

jetting conditions, due to the high superficial gas velocity, the jetthg zone shifls upwards 

and CO pick concentration was moved and pick concentration was o b m e d  as a higher 

position for the bubbling conditions. The same concept of two-stage combustion also 

remains valid here, and the CO oxidation becornes complete before reaching the bed 

surface, provideci that the temperature is ouffciemly hi& ïhe complete reactioa Iength 

for CO oxidation in the turbulent fiuidization is small as compared to bubbling 

conditions. This can be attributed to the fact that in turbulent fluidized beds, the gas 

mixing is improved. For low bed temperatures, the observation of CO profile in the 

reactor leads to the conclusion that CO bums in the fieeboard. The overali trend reported 

in figure 3.7 is in close agreement with the predictions as weli as with the experimental 

and theoretical findings of turbulent non-premixcd cornbusiion of methane in air (Masri 

et al., 1988) and of mai combustion (Lufei a al., 1993). Reported wrre1atioas in t5e 

Literature also predict that CO is the dominant product at temperatures and particle size 

typicdly employed in fiuidùcd bed combustion of cod particla (Gunirajan et al, 1992). 

Under fluidized bed conditions, if temperanire is kept suficiedy hi& the subsequent 

oxidation of the CO ocws fist aiough to anvert it into C a  within bed. 



3.6 Fiue gas emissions 

Our major environmental concem for fluidized bed systems is to control NOx and CO 

emission levels. NOx formation and destruction in combustion processes result fiom a 

combination of fiel nitrogen oxidation, thermal processes, and reactor hydrodynamics. 

In this study, the fiet is fkee of nitrogen and thermal generation of NOx fiom the air 

nitrogen is the only source of NO,. For the purpose of this study, the amount of thermal 

NO, was predicted based on equilibriurn conditions (for 8% oxygen in initial mixture, 

which is the case in turbulent fluidized bed conditions) using the detailed GR1 (Gas 

Research Institute) mechanism for methane combustion. A detailed description of the 

complete GR1 mechanism can be found in the GRI's annual reports (i-e. GRI, 1985). in 

this study, NO, and carbon monoxide were recorded by a gas analyser at different 

temperatures from the reactor outlet and are reported based on 11% oxygen in the exit 

w- 

In Figure 3.8, nonnalized NDx concentration is reported for turbulent and bubbling 

conditions dong with predicted concentrations for the turbulent flow regïme. The NOx 

emissions levels for turbulent fluidized bed operation are quite high, but are dl1 at the 

sarne order of magnitude as for the bubbling regïme. This is amibuteci to the fact that the 

amount of oxygen available in the bed was almost 8% higher than that necessary to 

promote ~e~cornbustion for turbulent fluidhation conditions of this snidy. For bubblhg 
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conditions of this study, the excess oxygen in the bed is less than 1%, which 

consequently leads to lower measured and predicted N& formaton- The maximum 

predicted N& value for bubbling conditions Cf= 950 OC) does not a d  30 ppm based 

on 11% oxygen, due to oxygen shortas where 9?/0 methane is injected to the reactor to 

obtain self-sustained combustion. It is important to note that the arnount of N& 

generated for both fluidization regime is always lower than the value measured with the 

burner located at the reactor base (40 ppm based on 1 1% oxygen). For industrial reactors 

operating under turbulent fluidization regime with integrated heat exchanger inside of the 

reactor, due to low oxygen level, less N* may be rneasured as compared to those 

reported in this study. 

Figure 3.9 shows the normalized concentration of CO @pm) mearmred at the reactor 

outlet for turbulent and bubbling conditions. For temperatures less than about 850°C, 

high concentration of CO was generated since the temperature is not sufficiently high to 

complete the CO conversion within the bed. Withm the temperature range used in this 

study (800 to lûûû°C), both systems performed quite well. Turbulent fiuidized bed 

generates less CO probably due to high gas-solid interactions, while the bubbling 

fluidized bed needs to operate a b v e  900 OC for low CO emission levels. 



725 775 825 875 925 975 
Mean Bed temperature (OC) 

Figure 3.9 CO emissions at reactor exit for the bubbling and turbulent regime for 
non-premixed combustion with fiil1 sparger p l a d  at the reactor base- 



3.7 Auto-thermal combustion 

Typically, when the reactor was operated in the bubbling regime, Ph of methane was 

injected to the reactor and the conversion was 1W/o at the temperature range of interest. 

Superficial gas velocity was 0.5 d s  and a maximum temperature of 950°C was used. It 

is interesting to note that under these conditions no extemai energy input power was 

needed to operate the reactor. When the reactor was operated in the turbulent regime, 6% 

of methane was injected to the reactor and the conversion was 10Vh at the temperature 

range of interest. Superficial gas velocity was 1.5 d s  and a maximum temperature of 

980°C was use& Ln the turbulent regime due to its higher throughput, teactor power 

generation is higher than that of  bubbling regime for the same operating temperame. 

The power generated in the combustion process is caldated ushg the following 

expression: 

P = FCH* xw(n ( 3-11 

The reactor power generated in this investigation was about 42 kW for the turbulent 

regime and 21 kW for the bubbling regime. 



3.8 Conclusions 

A prornising generation of gas combustion technology bas been proposed and tested 

using a turbulent fluidùed bed reactor. ïhe  main redts of this study as derived fiom the 

experimental observations are summarized as follows: 

1. The turbulent fiuidized bed reactor proposed in this study exhibits an excellent 

i sot hermicity. 

2. Onset of turbulent fluidization was measured since the existing correlations can 

not be used to determine this velocity for the conditions of this study. 

3. For both bubbling and turbulent fluidized bed reactors, the complete natural gas 

conversion can be achieved over 800 OC. 

4. The power generated by turbulent fluidization regime is much higher than that for 

bubbling fluidized bed reactors while respecting ali envüonmental requkements. 

5.  Measured CO profile with two different sparger velocities for the two fluidization 

regimes showed that a reducing zone sirnilar to the lower region of circulating 

fluidized bed reactor was developed around the sparger. 

6. The CO concentration w i t b  the bed passes ttirough a maximum for both 

fluidization regimes and d e r  converîing na- gas to CO, the CO oxidation 



takes place dong the reactor height as soon as it cornes into intimate contact with 

oxygen- 

7. The results of this study suggest areas for b h e r  investigations of fiel injection 

into fiuidized beds, sparger hydrodynamics, optimal wmbustor design and gas- 

gas contact efficiency for flamrnable mixtures and also waste treatments. 
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In chapter III, combustion of natural gas was studied in a pilot plant fluidized of hert 

particles under bubbling and turbulent fluidîzed bed conditions. It was shown that the 

non-premixed combustion is a mode of choice to handle the flanunable mixtures. Under 

these conditions, the W n g  plays a vital role in the combustion process. Thenfore, it 

has been decided to fùrther evaluate the gas discharge modes and examine the effect of 

different variables on the mixing process. In chapter IV, gas rniUng was ïnvestigated in a 

turbulent fluidized bed -or with a sparger facing downward. 

This section is not included in the original manusaipt. It only serves as a transition 

between papas for the thesis. 



4.2 Abstract 

A series of experiments has been conducteci to study mkhg and hydrodynamamic behavkr 

of a downward facing sparger in a turbulent fluidized bed reactor. Using pressure 

rneasurernent technique, two flow discharge modes wae identified around the sparger by 

injecting a gas tracer into the bed. These are b u b b h g  and jening conditions. 

Experimental results show that, under bubbling conditions, bubbles tend to keep uieir 

identity. While, under jethg conditions, a highly turbulent hetemgeneous ara is formed 

around the injection point. Due to attrition and erosion of internai heating or coolùig 

surfaces in industrial m o r s ,  the dominant discharge mode k the bubbling pattern- 

Therefore, in this investigation, the bubbling pattern is studied by measuring the radial 

and axial dispersion of gas tracer injecteci into a hot fl~idïzed bed reactor of 20-cm 

diameter of FCC and sand particles. A three-phase mode1 i s  also proposed in order to 

predict the mixing lengh. In addition, the effe* of sparger configuration on tracer gas 

mixing was examined for FCC particles. 



4.3 Résumé 

Plusieurs séries d'expériences ont eie menées pour étudier le mélange et le cornpottement 

hydrodynamique d'injecteurs de gaz dirigés vers le bas dans un lit fluidisé turbulent. En 

utilisant les fluctuations de pression, deux modes d'écoulement de gaz ont été identifiés 

autour des injecteurs en les alimentant d'un gaz traceur : le mode "bulle" et le mode "jet". 

En alimentant les injecteurs d'un gaz traceur, ü a été démontré que dans le cas du mode 

"bulle", les bulles tendent à garder leur propre identité. Alors qu'en mode "jet", une zone 

turbulente hétérogène est formée autour des injecteurs. A cause de l'attrition et de 

l'érosion des échangeun de chaleur internes dans les lits industriels, le mode bulle est 

prédominant. Ainsi, dans la suite du papier, seul le mode "bulle" a été étudie en injectant 

un traceur gazeux et en mesurant ses concentrations radiales et axi-aies dans un Lit fiuidisé 

turbulent . Ce lit a un diamètre de 20 cm et fonctionne à des températures variant de la 

température ambiante à 9û0°C en utilisant aussi bien d a  particules de sable que du FCC. 

Un modèle à trois phases a été proposé dans le but de prédire les longueurs de mélange- 

De plus, les plusieurs configurations d'injecteurs ont été examinées en utilisant des 

particules FCC- 



4.4 Introduction 

commercial fluidized bed reactors employing spargers âicing downward to separately 

inject fuels or reactives to the bed are fiading inaeased applications in chernical, 

petrochernical and energy industries. In fact, the gas mixing coming from such spargers 

and the correspondkg solid mixing are central features of fluidized bed reactors. 

Therefore, information concernuig the fiow pattern and mixing around the sparger is very 

important in design and sde-up practice. Interaction between a gas discharged fiom the 

sparger, the bed materiais and in-bed gas becomes crucial to reactor @onnanas in the 

case of fast chernical reactions. For highly exothennic reactions, creabon of hot spot at 

the sparger region may lead to the solid agglomeration and mal-fluidization of bed 

materials. This reveals the importance of deep understanding of the flow pattern around 

the sparger- So far, several works have been reported in the literature attempting to 

describe the flow pattern, gas-solid and gas-gas contact in fluidized beds (e-g. Antimaty 

and Cakaloz, 1978) and characteristic jet penetration length (e.g. Yang a al., 1986; Yates 

et ai., 1986; Merry 1975; Wen et al., 1977 and Blake a al., 1990). For e n g  studies 

reported in the literature, a tracer gas (He, CO2, H2 or Ca) was injected fiom moaly the 

main distributor and its concentration was anaiyzeû ushg gas chromatography or mass 

spectrometry. AU these studies were conducteci at low temperatures by the upward 

injection system. Application of this information and the existing comlations to the 

downward gas sparger is questionable since these eomlations rnay lead to an unjustified 



characteristic jet penetration length considering the fact that such length for downward 

jets is rather small as compareci to upward jets. 

In industrial sale  fluidized beds, where handling a flarnmable mixture is of critical 

importance, gas discharge through downward n o d a  is commonly employed. The gas 

discharge in this way may lead to a number of patterns ranging 60x11 the paiodic 

formation of single bubbles or permanent jet depending on the properties of the gas and 

solid particles, remote gas, gas discharge devices and the operating conditions. Unds  

these conditions, the flow pattern around the discharge point plays a very criticd role in 

gas-gas or gas-solid mixing. As already mentioned, a vast body of experimental data is 

available in the literature for vertically upward gas injection into the fluidized bed 

reactors, while the information regarding the dowmuard noale is niIl lacking. Only 

reported study in the literature is that of Shen a al (1990), where they studied the 

downward sparger hydrodynamic in two-dimensional bed reactors at ambient 

temperatures. Benlrrid and Caram (1989) showed that the physical behavior of two- 

dimensional fluidized bed reactor M e r s  fkom threedimensionai fluidized beds- 

Therefore, measuremems in three-dimensional beds are required to understand the flow 

structure around the injection point. 

In this work, hydrodynamic and mïxing behavior of a downward sparger were 

experimentaiiy investigated at relatively high temperatures by injecting CH( or CO2 as 

tracer. The flexible structure of experimental set-up also permittecl measuring of radial 



and axial concentration, pressure and temperature pmfiIes. An atternpt is also made to 

develop a realistic model, in order to estimate the mixing Iength around the sparger. 

Therefore, this paper pnsents the detaiis of the experimemal work and the model. 

4.5 Experimental 

4.5.1 Apparatus 

Experimental conditions are summarized in Table 4.1 and Figure 4.1 shows the 

experimental set-up used throughout this investigation. As shown in Figure 4.1. the 

combustion produas from the bumer located at the base of the reactor were introdud 

fiom the "windbox" to the reactor to kat-up the bed of FCC or sand particla and also to 

maintain the bed temperature constant throughout the experiments. The gas leaving the 

entire reactor passes through a cyclone in which the amained panicles were recoverd. 

The tracer gas was injected into the beà at the center at 17 cm above the distributor 

through a single-hole sparger with or without nozzie pointing downward. A pressure 

transducer was used to monitor bed level during the sampling perïod. The bed 

temperature was dso rnea~u~ed radially and axially by seved thamocouples located at 

different axial positions in the bed. 



Table 4.1 Ekperimental conditions 

Column (reactor): 

Construction Materki 

Diameter (cm) 

Length (ml 
Distributor: 

Type 
Geometry 

S parger: 

dj (mm) 

(see Figure 4- 1) 

304 Stainless Steel 

20 

2 

Cap distributor 

9 X 12.6 mm diameter caps 

(see Figure 4.2) 

s 
Experiments 

Particles: 

4 (W) 

P (hm3) 
Fluidizing gas: 

u (mm 

Onset of turbulent fluidization 

u, (mis) 

Tracer gas: 

uj ( d s )  

Gas analyzer: 

* Experimentally measued values by pressure fluctuation techniques 

FCC Sand 

I 
70 

1450 

0.8 
------------------------------------------------.--------------------------------------------------------- 

0.7. 

CO2 and C)t 

36 and 56 

533 

2650 

1-5, 0.8, O S  

1S8 

CH4 

30 

HPS980A Gas Chromatograph 

TCD detector 

Molecular Sieve SA and Porapak Q mlumns 



w 
Figure 4.1 Schematic of a Pilot Plant Turbulent Fiuidited Bed 



The spargers, which were designed based on the information f?om the literature for 

commercial reactors, are shown in Figure 4.2. 

4.5.2 Tracer gas supply and sampling 

In order to obtain information on gas mixing in the bed, the tracer gas, namely methane, 

was supplied to the hot bed through a rotameter. The tracer gas temperature was 

estimated to be equal to bed temperature upon entenng the bed. Figure 4.3 shows the 

sampling network to withdraw gas samples fkom varied axial and radial positions inside 

the reactor. The gas was sampled at steady state conditions through a sampling loop. The 

gas sampling does not disturb the gas flow in the bed, because the rate was negligibly 

small, compared with total gas flow rate in the bed. The sample was then passed through 

a dryïng agent to remove the water and the dry sarnple was sent to a gas chromatograph 

for tracer gas analysis. The drying agent does not absorb Ca. Experiments were carried 

out at three different temperatures, (25, 400 and 900 O C ) .  At 25 and 400 OC, which were 

devoted to mixing studies with no chemical reaction, CH( and C a  were injected as 

tracers to the bed and their axial and radial concentrations were measneci. At 900 OC, 

methane was injected as &el and the axial and radial methane and CO concentrations 

were measured. 







In this investigation, the expenments w m  carried out for FCC and sami particles for: U= 

0.2 and 0.8 ds; Uj=25, 37 and 56 mls and T=25, 400 and 900 OC. The concentration 

profiles were measured for 10 radial and 6 axial positions. Considering typicd conditions 

for commercial reactors, where discharge velocity is kept around 30 d s  due to attrition 

considerations (e-g. Kunii and Levenspiel 1991), the jet velocities for this shidy were 

chosen in order to have dynamic similarities between commercial conditions and the 

conditions of this study. ï he  dynamic similarities mean that the operating conditions 

(Le., particle type, temperature, pressure, superficial velocity and discharge velocity) 

should be chosen so that the jet characteristic length could remain the same. The existing 

correlations in the literature can not be confidently used to obtain the characteristic length 

for downward spargers, but in lack of patinent information, this could be considered as a 

rough estimation of the jet length. The results of calculations obtained from the existing 

conelations reported in the Iiterature are given in Table 4.2. This table permits us to 

decide on appropriate operatïng conditions for mixing and reaction nudies- 

Therefore, due to large industrial impact of understanding sparger hydrodyaamics under 

bubbling conditions, the bubbling pattem was investigated in this shidy as an attaapt to 

understand the gas rnixing arouad the injection point. 





Experimental studies conducteci so far in our Iaboratory show that the bubbles tend to 

retain their identity as they are pwged on their way through the bed under bubbling flow 

paneni around the sparger. Considering this concept, for mïxing model we wnsider that 

the bed consists of three distinct phases, grid-bubble phase, sparger-bubble phase and 

emulsion phase. Upon injecting gaseuus %el hto the bed through the sparger, small 

bubbles are formed in swann of larger grid bubbles and the gas exchange immediately 

starts between different phases. It is important to note that since the gas superficial 

velocity chosen in this study is very close to the onset of the turbulent fluidization 

conditions, the use of expressions from the bubbling fïuidized bed conditions remain 

valid (Gonzalez, 1995). An idealized version of mode1 is presented in Figure 4.4. The 

differential equations representing the movement of gas tracer introduced into the bed 

through the sparger are given below: 

Matenal balance of the tracer gas in the grid bubble phase is: 

Material balance ofthe tracer gas in the sparger bubble phase is: 



E x i t  g a s  

Figure 4.4 Features ofa three-phase turbulent fluidized bed reactor model 



Matenal balance of the tracer gas in the emulsion phase is: 

The interphase mass transfer coefficients fiom the bubble phases to the emulsion phase, 

which is difEerent for sparger and gnd bubbles due to difkent bubble size and physical 

properties, are derived tiom Davidson and Harrison (1963). 

The bubble size at any height is obtained f?om Darton et al. (1977): 

By solving these equations simultaneousIy, the tracer concentration can be determineci in 

ail three phases. Based on the concentration profile, the characteristic mixing length can 

be estimated, which represents the length above the injection point, where the 

concentration in al1 phases kwmcs identical to the mean value considering the whole 

bed as a perfktly rnixed reactor. 



4.7 Results And Discussioas 

In this section, the transition velocity nom the bubbling to j e thg  conditions is 

detennined using pressure fluctuation measurements. The experimental results are also 

presented in detail for bubbling and jetting pattern around the sparger located in a 

fluidized bed of inert or FCC particles. The cornparison is made between the 

expenmental data and predicted values following a critical discussion on imporiant 

finding s ~f t his investigation. 

4.7.1 Transition velocity 

Pnor to mixing and reaction tests, the transition velocity or minimum jening velocity 

(Umj), fiom bubbling to jetting conditions around the sparger is determined at 400 and 

900°C. So far, two correlations are suggested in the literature for the formation of 

permanent jets in fluidized bed reactors (Grsce and Lim, 1987 and Roach, 1993). Grace 

and Lim (1987) suggested a very simple criterion with only the orifice and particle 

diameters. This correlation provides no information on operation, bed diameter, and jet 

angle away fiom the vertical. Roach (1993) suggested a criticai Froude number to 

distinguish between jating and bubbling in fluidized bed reactors. The correlation 

includes the effect of sparger porosity, particle density and size, fluid density and gas 

superficial velocity. Grace and Lim (1987) obsaved that increasing temperature 

destablizes the flow, where bubbles are more likely formed. Massimilla (1985) 



qualitatively stated that the jet formation is ükely achieved with coarser particles, low 

superficial velocity, high orifice velocity and high fluid density. It is well seen fiom the 

literature that the extent, integrity and wherence of jet flow in miidized bed reactors is 

still not well understood and general experimental techiques for identwng the gas jet 

flow and bubble track region are still lacking. On the other han& there is no single 

criterion in the IÏterature to determine the onset of jetthg conditions for downward 

spargers, 

In this investigation, in order to obtain the bed behavior under bubbling and jetting 

pattern around the sparger, two jet velocities (low and high) were chosen and pressure 

fluctuation (PF) techniques is used to study the flow pattern around the injection point. 

The normalized standard deviation of PF (MD) for these velocities is presented in Figure 

4.5. The pressure probes are in stainless steel with an intemal diameter of 2mm. This 

allows for rigidity and for a small dead zone volume. This choice subsequently 

eliminates signal damping and proper measurements of PF inside of the bed became 

possible (Chehbouni, 1993). As show in this figure, the NSD for jetthg conditions is 

one order of magnitude greater than that for bubbling conditions at trie sparger tip. Upon 

obtainùig the pressure profile for these velocities, pressure signals wae mewred for 

various jet velocities 3 mm below the center of the downward orince. The signals wae 

analyzed in terms of theu mean values and the r d t s  are reporteci in Figure 4.6. The 

figure exhibits a well-defined change in the slope at around 100 d s ,  which can be 

interpreted as the onset of jetthg conditions 
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Figure 4.5 NSD of pressure fluctuations as a fLnction of radial positions dong the 
mctor (Single-Me sparger, H O  cm, FCC particles, T=450 OC, U4.25 
ds, &*mm) for two Mirent jet velocities- 



Figure 4.6 Transition &om bubbiing to jethg by mean pressure signal analysis (FCC 
particies, T=440 O C ,  U4.25 ds, d,-2 mm and 1-20 cm) 



At discharge velocity 100 mis, the mean pressure signal does not change so much. This 

could mean that the bubbles formed at the injection tip are very simitar to those coming 

fiom the main distributor. Apparentiy, higher injection velocàies lead to the formation of 

heterogeneous turbulent region around the injection point. This arar is referred as the 

j d n g  zone. The experiments done with sand particles, which is presented in Figure 4.7 

shows the similar trend. In Table 4.3, experimental and predicted values for permanent 

jet formation are presented for the condition of this study. 

Table 4.3 Experimmtal and predicted values for permanent jet fornation 

As seen from this table, the correlations differ fiom the experîments. The difference cm 

be attributed to the fact that the correlations do not consider the bed operating conditions 

(temperature, superficial velocity, discharge velocity and etc.). A wmprehensive 

correlation, which is the subject of current investigation in our laboratory, is needed in 

Particle 
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dp 

(p) 
Reference 

Experiments 

Permanent jet 

543 

70 

Uj=3Om/s 

no 

Uj=150 mls 

YeS 

Yes 

YeS 

no 

no 

transition 

YeS 

Yes 

Yes 

no 

transition 

Grace and Lirn (1987) 

Roach, 1993 

Experiments 

Grace and Lim (1 987) 

Roach, 1993 



order to defke the omet of jetting pattern around the spatger- Such a correlation is 

criticai in practice if one needs to design intemals and to safely operate the fluidized bed 

reactors- 



Figure 4.7 
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Transition h m  bubblhg to jetting by mean pressure signal analysis 
(Sand particles, OC, U4.25 mis, d j ~ 2  mm aad ~ 1 7  cm). 



The pressure fluctuation data presented in figures 4.5 to 4.7 were obtained for U4.25. 

Intuition suggests that at high gas superficial velocity, the change in bed density could 

have helped in jet formation, For experiments reported in the r a t  of this paper, the 

pressure fluctuation techniqye was used to insure the flow pattern around the sparger at 

the superficial gas velocities employed. 

Upon determinhg the upper conditions for bubbling zone, the injection velocities 

reponed in Table 4.2 were chosen and then reaction and mixing tests were k i n g  carrieci 

out for spargers shown in Figure 4.2. In the following section, the results are presented 

for experiments perfiormed with FCC and sand particles followed by a critical discussion 

of major experirnental findings for bubbling conditions. 

4.7.2 Miring and ruction studies for bubbiing pattern 

For commercial reactors where gas is injected through a sparger with thousands of 

noules, the sparger is designed to operate under bubbling conditions to keep attrition 

very low so that m m 1  of the bed materials, which could be costiy bed material, 

becornes possible. It is important to note that the downw~fd jet aîtrition is sisaificantly 

higher than that of the upward jet (Werther and Xi, 1993). This is probably due to V ~ I Y  

high interparticle collisions associateci with dowmuard jets, which cause the abrasion of 

the particle surfaces. For industrial scale reactors, downward discharge velocity is 



usually kept around 30 mls,  which is quite lower than the jetting velocity- The 

experimental reaihs show that wïth bubbling pattern around the sparger, the jet collapses 

forming gas bubbles and therefore subsequent bypassing around the sparga l a d s  to poor 

mixing performances near the sparger tube. 

Figure 4.8 shows radial methane concentration profile for different &al locations around 

a flat sparger at 400°C at U4.8 mk in turbulent fluidïzation conditions. The onset of 

turbulent fluidization conditions was measured to be 0-7 rnk As shown in this figure, the 

sparger wall plays a vital role in mi0ng. High concentration of the tracer gas around the 

sparger w d  can be attributed to the fact that the bubbles as f o d  at sparger tip, turn up 

forming a train ofbubbles around the sparger wall. Under these conditions, the mixing is 

limited with the sparger wall. As mon as the bubbles reach the sparger levef, due to an 

intense gas solid mixing at turbulent fluidization regime, the tracer gas is very well 

purged to the emulsion phase. This figure also shows the existence of three distinct 

mixing regions. These are mil, panid and complete mixing zones. In the mrll mixing 

zone, the tracer gas is absent (just below the sparger). in the acceleration zone, where 

partid mixing exists, the axial and radial gas mwng is lirnited due to sparger-nozzle 

walls. In the M y  developed mixing zone, quite d o n a  mixiag pattern is developed 

(above the tracer injection level). 



Figure 4-8 
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Radiai methane concentration profile for dif'fèrent axial locations around 
the sparger (Fht sparger, 400 O C ,  U,=37 mls, Uq.8 ds, FCC particles) 



Figure 4.9 shows radial methane concentration profile for dEerent axial locations around 

a flat sparger at 400 O C  for a very diiute bed (~zû.95). In this figure, again, the tracer 

concentration is very high near the wall. Due to a veqr low bed density, solid particles 

are contnauting less to the overall miwig process. As compared with Figure 4.8, the 

&ng is very poor in this condition Even, above the injection level, the mixing is not 

improved. ïhe resuits of this figure reveal the contribution of bed materi-ais to the overall 

mixing process at différent radial positions within the reactor. 

Figure 4.10 shows the results of tracer concentration obtained during reaction at 82S°C 

with flat sparger at discharge velocity of 56 mk. This velocity is chosen in order to attain 

dynamic similarities with conditions expresseci for Figure 4.8 as explaineci earlier- As 

shown in this figure, the overail results obtained for miring studies remain valid here. 

Methane conversion is mostly achieved almost 100 mm above the injection level. It is 

important to note that for the pilot plant reactor used for reaction experiments with FCC 

particles, bed temperatures wae measured in radial and axial positions. The variations 

are best within *7 OC for axial and *5 OC for radial positions. 

In Figure 4.1 1, the predicted minng Iength, which is estimated using the three-phase 

modei, is reported. The centerline expaimental data is also show11 in this figure. It is 

important to note that for expairnemal mixing length of 150 mm above the sparger, the 

close to 95% of tracer gas in sparger bubble has been pwged. On the other hand, the 

model estimates close to 95% of the mixing length. The difference between the 



experimental and predicted mixing lengths can be attributed to the fkt that e n g  is 

irnproved in turbulent fluidization conditions, while in modellùi& hydrodynamic 

properties were obtaimd based on bubbhg fluiduation correlations. Sotudeh (1998) 

was presented a simple approach to estimate the concentration of the individual phases. 

This analysis shows that at the points very close to the sparger, the sampling probe 

mostly captures the bubbIe nom the sparger phase. At the axial positions far 60m the 

sparger, the gas is fairly dispersed in al1 phases. Seusitivity analysis shows that the mass 

transfer fkom the sparger bubble phase is of critical importance as compared with the 

mass transfer fkom the emulsion to the grid bubble phase. 

In Figure 4.12, CO2 concentration profile for flat sparger et 25°C under bubbling 

fluidized bed conditions is presented. As seen in the figure, due to greater residence tirne, 

the gas wming f?om the distributor was not transporthg the tracer gas. Still, the sparga 

wall effects are present and high CO2 concentration was measured at ~ 2 3  mm. The 

result of this figure shows how important the e E i  of superficiai gas is. In Figure 4.13, 

experimental axial profile is compated with the tbree-phase madel predictions and the 

agreement is quite reamnable. 
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Figure 4.9 Radial methane concentration profile for a vay dilute system mat spargery 
400 OCy Uj=37 xn/% E-û.95, U4.8 mh, FCC particles). 
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Figure 4.10 Radial methane concentdon profile (Reaction, flet sparger, 825 OC, 
Uj=56 ds, U4.8 m/s, FCC particles). 
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Figure 4.1 2 
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4.7.2.2 Effut  of spirgtr codigumtion 

The effect of sparger configuration on mking was tested for spargers shown in Figure 

4.2. Figure 4.14 shows the nomialized standard deviatious of concentration data- The 

experimental renilts show that at -100 mm below the sparger tip, the tracer gas was not 

present. At 200 mm above the sparger tip, the concentration was quite u d i o m  At 2 

mm below the sparger tip, for internai 45 O and bafned spargers, the gas diffusion is 

deeper as wmpared to the flat sparger- ' Ib is  means thnt with the specid configuration of 

these spargers, the gas has enough chance to be dispersed. The good performance of 

these spargers can be attributed to the fact that the momentum exerted by gas at the 

sparger tip is easily dispersed with these configurations and gas cari diffise to the bed at 

the injection point. In reactors with a larger number of noules placed in a downward 

sparger, this helps the escient use of the region located below the sparger tip. However, 

it is important to note that before using these results in any design practice, their 

contributions to attrition should be examineci carefully. At 23 mm above the sparger tip, 

the methane concentration for flat sparger is quite higher than that reporied for others. 

This is consistent with the results obtained at 2 mm below the sparger- An important 

result of this mdy for aii spargers is to confinn tbat the bubble rises vay close to the 

sparger wall. The wali acts as a resistant to mixing, s ina  t prevents the tracer gas 

contacting with bed (gas moledes or solid particles). It is important to note that this 

point is located at the middle of the downward nonle. 
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profile fbr dinixent spergers (FCC, 420 O C ,  Uj=36 d s ) .  



At 74 mm above the sparger tip, the concentration drops very rapidly. At these 

conditions, the turbulent bed hydrodynamics control the rnixing process and the sparger 

effkcts are absent. It is also show11 that due to sparger anfiguration at 74 mm. high 

concentration is san  for the flet sparger. Considering al1 resuhs for these three spargers, 

we can conclude that the miang for all spargers becornes almost complete about 100 mm 

above the sparger tip. Three maring zows, as identifid so far, are clearly show in this 

figure again. Apparentiy, the spargers have dlfferent mixing behavior at sparger tip and 

near the sparger wall. 

A series of experiments have been designed with sand particle of 5 4 3 p  for methane 

oxidation reactions in order to examine the mixing behavior of these particles. It was 

found that the CO generated with sand particles (-10 %) as reportecf in Sotudeh- 

Gharebaagh et al (1998a) is greater than that of FCC particles (-2%). This can be 

attributed to the fact that the gas-solid mixiag is very well improved with FCC particles 

of 70 pm rather tban sand parcicles of 543 pm. With Sand particles, the reactions are 

mostly homogeneous meaning that gas-solid mixing is less efficient, whde the gas-gas 

contact efficiency is well enhzuiced. In Figure 4.15, radial methane concentration profile 

is reported for different axial locations around the sparga for sand particles. This figure 

shows that with sand particles mixing is very poor, siace the high concentration of the 

tracer gas CM be seen near the wall of the sparger and also 74-mm above the sparger tip. 
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Figure 4.15 Radial methane conamüation profile for different axial locati*ons arouad 
the sprrger Wat sparger, 4ûû OC, U,=ZS mls, U4.8 mis Sand particle) 



Cornparison of results obtained for similar operatiag conditions for FCC and sand 

particles show that the fine particles have a definite contribution to the mixing process. 

Therefore, adcihg fine particles could significantly improve the mixing in reaction and 

selectivity in large industrial reactors, where one of the reaaive is injected separately to 

the bed through the sparger. 

4.8 Conclusions 

The following conclusion can be dïrectly drawn fiom the results of this investigation: 

1. The characteristic jet length estimation shows that the behavior of flow pattern 

around the downward sparger is quite different tiom the spargers facing upward 

in fluidized bed reactors- 

2. Depending on gas and solid properties, gas discharge devices and operathg 

conditions, gas injection in fluidUed bed reactors with a downward fàchg sparger 

leads to two distinct flow patterns: bubbling and jetting- 

3. The experimentai results showed that the downward gas injection under bubbling 

conditions forms three distinct regions in the fluidized bed reactors. These are 

nuil k i n g  (jus below the injection level), mjxing (in the uea adjacent to 

the nonles and sparger), complette mixing (above the secondary injection level). 

In the partial mUang zone, the axial and radial gas minng is limiteci due to 

sparger-node tubes. 



4. Under bubbling conditions at the sparger, bubbles, as formed on the sparger tip, 

turn upward, fonnuig bubble trains dong the n o d e  wall. These bubbles are then 

purged with emulsion gas phase or mdesced with air bubbles coming fiom the 

main distributor within the bed, 

5. Under bubbling conditions around the sparger, the pilot plant turbulent fluidized 

bed is quite isotherrn in both axiai and radial positions for oxidation of methane. 

6.  Under jet velocities less than 100 d s ,  there is no permanent jet formation in the 

fluidized bed reactor at high temperatures for sand and FCC particles. 

7. Sparger tubes limits gas-solid muring. In fact, bubbles fonned at the sparger tip 

have a tendency to follow the sparger wall, therefore, h i t i n g  the gas exchange 

between the bubble and emulsion phase. 

8. Intemal and baffleci spargers give more mixing as compared to the flat sparger. 

For interna1 45' sparger, diffusion at sparger tip is very high as cornparrd to other 

configurations. 

The authors are gratefbl to Mr. P. Sauriol and Mr. G. Malossi for their help with the 
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In chapter II, the combustion of methane was tested in a fked bed reactor over inert 

particles. A reduced radon mechanism was also developed and tested using the fixed 

bed kinetic data In chapter IIi, the experhental midies were reporteci for the 

combustion of natural gas in a turbulent fluidked reactor. It was shown that the mixing is 

cntical for the success of non-premixed reactors. In chapter IV, gas rnixing was 

characterized in turbulent fluidued bed conditions with sparger facing domward. AU 

the information fkom chapter II, III and N are used in last chapter in order to predict the 

behavior of turbulent fluidized bed reactors- 

This section is not included in the original manuscript. Tt ody semes as a transition 

between papas fm the thesis. 



5.2 Abstract 

A mathematical model is developed for combustion of naturai gas and air fd separately 

into a Turbulent Fluidized Bed (TFB) reactor- The proposeci model imegrates bed- 

sparger hydrodynamics and reaction sub-models necessaty to model the combustion 

phenornena. Hydrodynamic aib-mode1 is derïved fiom our expaimentd studies as well 

as using the information fiom the Merature. While, kinetic sub-mode1 is developed for 

natural gas combustion and poliutant formation using data fiom the combustion literature 

and our own experimental data. These nib-models are then wmbined together so that the 

TFB may be represented. The validity of the mode1 was demonstrateci using different 

sets of operating conditions for TFB reactor operateci in Chernical Engineering 

Department at École Polytechnique de Monaeal. 



5.3 Introduction 

Combustion of natural gas ftel in fluidized bed reactors can be considerd as an 

economical method for heating fluidircd bed reactors in some indumial processes, 

producing energy for indusaiai and residential sectors, sanitary purposes and upgrading 

low calorific fiels. Amoag the fluidized bed reactors, turbulent fluidlled bed reactors 

(TFB) exhibits several advantages over conventionai combustion. Operation of these 

reacton at industrial Ievels has confirmed many advamages that include fie1 flexibility, 

high combustion efficiency, an improved gas-solid contact efficiency, Iow capital cost, 

potential applications in CO-firing and gas-rebuni. These characteristics can assure an 

increasing number of successnil cornrnercializations of 'IFE in chernical reaction 

engineering applications, power generation applications and co-fkhg as well. Although 

these reactors are becoming mature nom these commercial applications, there are some 

significant uncertainties in predicting thek @ormance in la rge-de  systems. 

Technical knowledge about design and operation of TF33 is not widely available for pilot 

plant and industrial units and also Iittle has k e n  done in the field of mathematical 

modeling and simulations with their validation. Sotudeh et al. (1998a) shidied the 

feasibility of naturd gas combustion in fluidizcd bed reactors experhentally. They 

showed that the turbulent auid id  bed is an excellent choice of reactor, where the non- 

premixed combustion a n  easily be achieved Mer than premixed combustion. Few 

mathematical models ôave so fkr been reported for premixed combustion under bubbling 



regime (e-g Yanata et ai. 1975; van der vaart 1992; Re a al., 1998). In these midies, in- 

bed pollutants (NO,, N20 and CO) formation and reduction were not fiilly integrated to 

the overail model. In addition, the bed is operated in bubbling fluidized bed conditions. 

The modeling of TFB reactors for non-premixed and premixed modes are quite modest 

and therefore, there is a strong aeed to simulate the behavior of these remors, which are 

largely employed in indu-. 

So far, Sotudeh and Chaouki (1998) showed that depending on gas and solid properties, 

gas discharge devices and operating conditions, gas injection in fluidized bed reactors 

with a downward facing sparger leads to two distinct flow patterns; bubbling and jetting. 

In this work, two mathematical models are developed for bubblingnirbulent and jating- 

turbulent fluidized bed reactors. Bubbling and jetting are r e f e r d  to sparger 

hydrodyoarnic a d  turbulent is referred to the bed hydrodynamics. A three-phase 

fluidization model was proposed by considering the sparger hydrodynamic in the 

modeling. An attempt is also made to integrate the proper reaction scheme in the overd  

model, This enabtes one to understand the formation and destruction of unwanted 

poilutants during the combustion process and at the reactor exit. 

The apparatus used in this study is a 200 mm LD. and 2 m t d  refractory-lined 

wmbustor, as shown in Figure 5.1. An extemal naturai gas burner with 20 kW nominal 



power located at the bottom of the bed provides the partial heat required for preheating 

the reactor to a desired temperature- Sand particles, which wnsia maïnly of silica with 

an average particle sise of 543 pm and density of 2650 kg/m3 are used during the 

combustion trials. Several ports are provided dong the axial position for pressure 

measurements, sampling and naturai gas injection into the reactor. Natural gas is 

supplied to the reactor by an injection probe pohting downward. Two injection probes 

of 6.33 mm in diameter were used throughout this study; a one-hole and a thirteen-hole 

probe. Holes are 4.33 mm in diameter. The sparger scheme employed in the 

experimental -dia  is given in Figure 5.2. The reactor was also equipped for sampling 

and analysis of reaaion products taken from the various ports and at the reactor outlet. 

TypeX therrnocouples were dso placed dong the reactor centdine to monitor 

temperature profiles. An initial bed height of M D  (about 20 kg sand particles) was used 

in al1 expenmems. The detail of the experirnental work was reported elsewhere (Sotudeh 

et al. 1 W8a). The experimental data regarding the discharge modes leading to diffèrent 

flow paneni amund the sparger is given by Sotudeh a ai (199%). 
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Figure 5.1 Schematic of pilot turhient fluidized bed -or 



No- of holes=13 

Figure 5.2 Schematic diagram ofgas injector 

Table 5.1 shows the expenmental plan for the combustion of gaseous fiel in the pilot 

plant turbulent fluidized bed reactor- 

Table 5.1 Experimental plan for non-premked combustion in TFB reactors 
w 
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5.5 Reactot Mode1 

The non-premixed reaction in turbulent fluidized bed reactors is mostly employed in 

industrial scale reactors. Despite their industrial application, no experimental data and 

modeling r e d i s  are reported in the literature for small or largescale units. Therefore, it 

is not possible to obtain the experimental data nom the Iiteratwe md one should generate 

his own data for building a realistic mathematical mode! to describe the behavior of these 

reactors. In this study, mathematicai models are dweloped for bubbling-turbulent and 

jetting-turbulent fluidized bed reactors. Two mathematical models are presented here 

with following gross characteristics: 

Three phases air-bubble, natural gas bubble and emulsion phase with constant 

bubble size for bubbling-turbulent fluidized bed. 

Two step combustion process, conversion of C& to CO bubbles and then three 

phases air-bubble, CO bubbles and emulsion phase with constant bubble size for 

jetîing-turbulent fluidized bed reactor. 

Common to both mathematical models is the assumption of plug flow for ail 

phases (van der vaart, 1992). 

Additional asuimptions cornmon to the models are: 

The non-premked fluidized bed is quite isothemial. For pilot plant reactor useâ 

throughout the experiments, bed tanpentures wcre measured in radial and axial 



positions. The variations are best within I8 O C  for bubbling and jetting 

experiments. Latter, in this paper, a jet suction model in developed in order to 

ver@ the jet isothermicity in jetting-turbulent fluidizatioo conditions. 

The distribution of gases between the bubble and the emulsion phase is govemed 

by the two-phase theo y of tluidllaton 

Thebubblesarespherical. 

Bubbles in pilot plant reacton expenence continual growth due to coalescence 

throughout the reactor- Clearly, the use of an average bubble size can only be the 

fust approximation for these reactors. If these reactors were to be used to study 

the chernical reactions, this distinction would be very important. The model 

presented here takes bubble growth into accoum in the conte- of an extremely 

exothermic reaction- 

In order to model the behavior of TFB reactor, the .hetic sub-mode1 should be coupled 

with the hydrodynamic ab-model. In the following d o n ,  these sub-models are 

presented in detail. 



5.5. I Reaction submodd 

A global reaction rate expression is hadequate to describe the natural gas combustion 

process since it prevents the cornparison of the experimental CO and NO, profiles with 

the models. Natural gas combustion has been extensively studied in the literature and 

mechanistic reaction networks are d a b l e  comprised of large numbers of elementary 

reactions. Efforts have also been devoted to develop the reduced mechanism So far, 

Sotudeh et al (1998b) reporteci a modified reaction scheme by taking imo account the 

inhibition process encountered due to presence of inert particles in the bed. In this study, 

an attempt is made to employ this modified reaction scheme within the reactor models 

described below. The reduced reaction scheme used is given in Table 5.2. 



Table 5.2 Reduced reaction mechanism 



Table 5.2 (continued) 



As stated earlier, two models are presemed in this article. These are bubbling-nubuient 

and jetthg-turbulent fiuidized bed models. For both cases, a three-phase mode1 is 

proposeci considering that the bed consists of three distinct phases grid-bubbie phase, 

sparger-bubble phase and emulsion phase- The expressions needed to descriie the 

bubble properties, expanded bed height, phase distribution are presented in Table 5.3. It 

is important to note that since the gas superficial velocity chosen in thk study is very 

close to the omet of the turbulent fluidization conditions, the use of expressions nom the 

bubbling fiuidized bed conditions remain valid (Godez,  1995). 

Table 5.3 Expressions used to calculate the fluidized bed hydrodynamic properties 

db = 0.54(~ - U ~ P ( Z  +4~5.52x10-5)"* 
(Darton et al., 1977) 

g" 
(5.3) 

& 
(Davidson and Hanison, 1963) (5.5) 



@avidson and Harrison, 1%3) 

Experïmental nudies conduaed so far in our laboratory show that the bubbles tend to 

retain their identity as they are purged on their way through the bed under bubbhg flow 

pattern around the sparger- in Figure 53, the idealïzed three-phase model is shown. The 

main feame of this model is the fact that bubbles tiom the sparger and main distributor 

form separate lean phases, respeetively. Based on our -mental finding and model 

description, the proper model is built and the resulting differential equations for 

individual phases are given below: 

Material balance of the specie k in the grid bubble phase is: 

Matenal balance of the species k in the sparger bubble phase is: 



Material balance of the species k in the emulsion phase is: 

The interphase mass transfer coefficients fiom the bubble phases to the emulsion phase, 

which are different for sparger grid bubbles due to bubble sire and physical properties, 

are derived corn Davidson aad Harrison (1 963)- 

The net reaction rate for species k is obtained based on the following expression 

considering al1 chemical reactions involved in the reaction scheme. 



E x i t  g a s  

Figure5.3 Features of a three-phase bubbling-turbulent fluidued bed mode1 



Experimental studies reported by Sotudeh and Chaouki (1998) show that at quite high 

sparger velocity there is a creation of highiy turbulent area at the injection point. This 

area, so called the jetting area, is the main characteristics of the jetting-turbulent fluidized 

bed reactors. Upon injecthg the reactive gris hto  the sparger, the p is only supplieci to 

a Iirnited cross section of the bed. At the jettbg zone, the mixing is very well improved 

and therefore, the homogeneous combustion can easily be achieved. This means that all 

methane injected in this area is convertesi to CO due to oxygen shortage and the role of 

the jemng zone is to provide CO nch bubbles. These bubbles then travel upward in o rd s  

to be purged dong the reactor. Therefore, the jetting zone can be modeled with the three- 

phase mode1 as describeci in the bubbling-turbulent section, with the condition that the 

methane is completely absent and CO bubbles should be considered as the sparger bubble 

phase. Obviously, the differmtial equations remain the sarne with the corresponding 

boundary conditions. These coupled differential equations are solved corresponding to 

their respective bomdary conditions and therefore, the concentration profiles are 

predicted. In the foliowing xction, the calculateci concentration profiles which are 

compareci to the experimental targetq are presmted and discussed. 



5.5.2.2.1 Modcüng of jet suction 

Ftuidized bed gas, mainiy air, is being sucked h o  a sparger jet due to relative vacuum 

created by the jet. Upon injecting the fluid into the bed, pari of the sparger jet 

momentum is lost in presence of particles (Barghi, 1997). This deficit may be baianced 

with the mornentum addecl by entraineci gas. Assuming geometry for jet with no 

particles, axial momemum of the jet could be constant since no extemai force is involved. 

The momentum balance equation would be: 

There is no correlation in the literature for defining the jet gemetry (jet half angle or 

diameter) and the characteristic jet length for downward spargers. Directly applying the 

existing correlations developed for vertidly upward jets overestimates the jet geometry. 

But in lack of the appropnate correlations, these could give a roua  idea about the jet 

geometry. Merry (1975) proposed the following correlations in order to calculate the jet 

haif angle 0 and the characteristic jet penetration length: 



Knowîng the jet geornetry, the jet cross-sectional area (Ax) is defined and the 

correspondhg average velocity uui be dculated: 

I f  one negfects the frictions of gas and entrained solids into the jet, the axial pressure 

profile in the jet-side, which is responsible for gas entraiment into the jet, can be: 

The pressure profile in the bed-side can be estimated from: 

P, =P, +(1-&)pg(h" t x )  

For the purpose of modeling, we neglect the fictions causeci by gas and solid for radial 

locations between the jet extemal d a c e  and a point fm fkom the extemal surfiace of the 

jet in the bed, where the radial velocity is aswned to be zen>. Under this condition, the 

radial gas velocity neated by relative vacuum between jet-side and bed-side would be: 



The induced gas flow rate to the jet can be found by numerical integration of this velocity 

over extemal jet d a c e :  

5.6 Results And Discussions 

In this section, experimental combustion data obtahed in the pilot plant fluidùed bed 

reactor is compared with concentration profiles predicted b y the reduced mechanisms and 

hydrodynamic model for a variety of operating conditions. 

Figure 5.4 gives an example of methane concentration profile obtained for the 

combustion of natural gas at 98S°C under turbulent fluidization conditions. The 

combustion length, which un be defined as the length required to achieve almost 

complete combustion, cm be characterized by this figure. As seen in this figure, methane 

and 0 2  should first wme into contact before the rdon starts- This means that the 

mixïng controls the combustion pracess and that is why this should be carefiilly 

characteriteci, 

In Figure 5.5, the combustion of methane is presented for two temperatUres. The 

cornparison b e e n  the model and the expaimental data are quite satisfactory. One 

should also note that the pafomance of the t h - p h a s e  model proposed here could be 



improved by including a coalescence mode1 b e e n  unlike air and niel bubbles. Upon 

reaching those uniike bubble together, they coalesce togdher and they break-up. This 

could certainly have a certain effea on the pndiaion of the reactor perfiormance. 



Figure 5.4 
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Methane mole hction in different phases prrdicted by the three phase 
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Figure 5.5 
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Methane conversion in the turbulent regime at various tempaanms with 
1 3 holes sparga p l a d  t the reactor base (U=1.5 mls). 



In Figure 5.6, the CO p r d e  is presented inside the bed for single sparga of 4.33 mm in 

diameter. It is seen that CO level undergoes a maximum and because of good rnixing, CO 

emission levels meauirexi at the bed exit is quite small. Both modehg and experiments 

conf'iied the CO behavior inside of the bed. This also suggests that the methane 

combustion process inside the bed is a two step proces thruugh the sequence of 

elementary reactions. Initially methane converts to CO and as mon as this process 

becomes complete, the second step, which coosias of CO combustion process takes 

place. This combustion model was dso wnfirmed by Sotudeh et al. (I998b) in fked bed 

midies undertaken to evaluate the combustion behavior of inert pertikles. Cornparhg the 

experimentai data with model prediction suggests that the concentration detemined by 

the probe is very close to the CO concentration in the bubble phase. This can be 

attributed to the fact that the probes are located at the caimline of the reactor, where 

mostly the sparger bubbles have been captured by the sampling probe. Considering this 

explanation, the figure shows reasonable agreement between the experiments and 

modelling respecting al1 complexities involved in prediction of CO combustion behavior 

inside of the fluidked bed reactors. It is dso worth mentioning that the predicteà 

concentmîioa reported in the figure is related to the concentration in the bubble phase. 

However, the results are not nirprising. Since the amount of mahane injected into the 

bed is quite small, the mean value of CO Ievel inside of the bed in not sîgnificant and 

therefore, it has not been represented in the figure. 



Figure 5.6 
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Aual CO profile under bubbling-turùulent fluidized bed conditions for 
non-premixed combustion with one-hole sparger placed at ~ 1 7  cm, 
T e 0  O C  and U,=30 ds. 



In figure 5.7, by injacting a very high superficial veiocity related to the jetting conditions 

around the sparger, the combustion behavior of jetting-turbulent fluidized bed reactor is 

studied. The r d t s  are encouraging, since no methane concentdon was measund 

inside of the bed under this conditions. Thmefiore, it can be seen fiom the experïmental 

data that the combustion process ocairs in two steps. At the first step, all CI% injected 

into the bed with high jetting velocity is instantaneously converted to CO. This can be 

attributed to the fact that a h i a y  turbulent ana is formed at the injection point, where 

excellent contact can be achieved between CH* injected fkom the sparger and Oz coming 

fiom the main distributor. At the jating zone, due to less solid concentration as 

compared to the emulsion phase, hornogeneous combustion takes place. Due to oxygen 

shortage, the combustion product is mainly CO. It can al- be seen fkom the figure that 

CO oxidation bewmes complete before reaching the bed surface, if the temperature is 

nifficiently high. The completion of the reaction completeness can be related to the fact 

that in turbulent fluidized beds, rnixing is improved. In this figure7 the experimental data 

is compared with mode1 prediction for sparger bubble and m e m  value in the bed. It can 

be seen fiom the figure that the sampiing probe mostly captures the CO bubble near the 

injection point and fir fkom the injection point, the samples were taken fiom al1 phases. 

This cm be attnbuted to the location of the sunpling probe, which was in the centerline 

of the reactor. 



Figure 5.7 
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In this paper, a model was proposeci to estimate the induced gas flow caused by jet 

suction. The results show that the amount of air sucked into the jet is significantly high 

(7.75 times of the gas injected by sparger). Such high amount of au when enten into the 

jet leads to a very short mean residence tirne (in the order of 2 ms). The jet was then 

sirnulated cons ide~g  an adiabatic CSTR reactor and the temperature increase was 

predicted to be Iess than 2 OC. It cm therefore be wncluded that the jetting zone is 

isothermal. This theoretical finding is in excellent agreement with our temperature 

measurements. This is also consistent with theoretical and experimental works reported in 

the literature (Bi and Kojima, 1996), where gas phase in jetting area was isothermal. 

Considering these explanations, for jetting-turbulent fluidization condition, the 

cornparison between the experimental data and modeiiing results are satisfactory. The 

jetting-turbulent fluidized bed reactor could be a new generation of turbulent fluidized 

bed reactors suitable for hazardous waste treatments since it could be possible to -te 

non-isothermal beds if one chooses proper single step highly exothermic reaction. For 

the case of naturd gas combustion, since the methane combustion is a two-step process, 

before any energy release due to combustion the mixing should be promoted, provideci 

the residence tirne is dficient, 

In Figure 5.8, nonnalized experimental NO, concentration emissions are compered with 

the thermal model predictions and under equilibrium conditions. As seen 6om this 

figure, the thermal NOx model undaestimates the NO. levei, while the NOx predicted by 



equilibnum conditions is quite higb The dEerence between thermal mode1 predictions 

and experiments can be atü-ibuted to the srnail traces of fuel nitrogen coming fkom the 

natural gas. Simple caiculations show that the amount of fuel nitrogen may vary between 

0.05% and 0.03% for the experimental studies reporteci in this paper. 



Figure 5.8 
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Predicted and Normalized NOK concentration at the reactor exit for 
IK~-premixed combustion with niIl sparger placed at the reactor base. 



5.7 Conclusion 

In this study, models for non-premixed bubbling-turbulent and jetting-turbulent fluidized 

beds are proposecl and reamnable agreement with eXpenmental data was obtaÏned. It is 

also show that a detaiIed kinetic scheme, that takes into account the formation and 

destruction of pollutant and intermediate species, which are necessary to prdct the 

concentration profiles. The model to represent the jetting and bubbling region around the 

injection point is compatible with detailed experimental observations reportecl so fkr in 

our laboratory. The model proposed in this work may also lead to proper undastanding 

of existing mechanisrns inside of the turbulent fluidized bed reactors. 
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CONCLUSIONS 

The main objective of this study was to assess expaimentaliy the feasibility of natural 

gas combustion in a fluidized bed reactor of inert particles as an emerging technology 

capable of meeting al1 environmental requirements. A pilot plant turbulent fluidued bed 

reactor was modined to invdgate the hydrodynamic and combustion studies. The 

operating parameters were chosen based on the results of kinetic snidies performed in a 

fixed bed reactor- 

Prior to combustion studies in the fluidized bed, the combustion behavior of inert 

particles was investigated in a fked bed reactor with the objective of finding the 

appropriate operating conditions for combustion studies in a pilot plant reactor- The 

resuhs showed that the sand particles have no accelerating catalytic effect. Inhibition 

caused by sand particles was important in the temperature range of 850 to 900 OC. ïhe  

reduced reaction mechanism was dso adapted to explain the aperimental findings. 

Combustion experiments were performed in two different fluiduation regimes. The 

onset of turbulent fluidization regîme was experkentally meawed at the temperature 

range of interest. In both bubbling and turbulent fluidization regimes, a high degree of 

combustion was achieved. The turbulent fluidued bed reactor, as proposed in tbis study, 

exhibits an excellent isothermicity and the powa generated in this regime is much higher 



than that of bubbling fluidized bed reactors while respecthg ail environmental 

requirements. 

In combustion studies, it has been found that the rnixing plays a vital role in non- 

premixed fluidized bed reactors. Therefore, the tracer gas miang and sparger 

hydrodynamic were investigated in order to characterize the flow pattern amund the 

sparger. Two flow vattems around the sparger were idemineci. These are bubbling and 

jetting patterns. Under bubbling conditions, the bubbles keep their identity leading to 

low degree of attrition and therefore Inking controls the reaction process. This helps 

preventing hot spots. Under jetting conditions, the mVring was very high. But due to 

attrition level, industriai units can not be safely operated in these conditions. Due to 

importance of bubbling pattern in large-scale units, a set of miung and reaction studies 

were campleted for this pattern 

Finally, a model for a non-premixed turbulem fluidized bed was propoxd and gwd 

agreements with experimental data have been obtained. It is also shown that a detailed 

kinetic scheme, that takes into account the foxmation and destruction of pollutant and 

intermediate species is necessary to predict the concentration profiles. The model to 

represent the jethg and bubbling region around the injection point is based on our 

detaiied experimental obsavations. The mode! proposed in this work may also lead to 

proper understanding of existing mechanisms inside of the nubulent fluidized bed 

reactors- 



We have shown in this study that the naturd gas combustion in a turbulent fluidized bed 

is feasible and capable of meeting di envlronmental regulations. An attempt was aiso 

made to underline the importance of midying the natuni1 gas combustion as an 

outstanding sample of highly exothermic reactions in fluidized bed reactors- A reduced 

rnechanism was also integrated in fluidized bed reactors modeliing to explain the 

formation and reduction of unwanted poliutants. The followhg points could be 

considered valuable in M e r  undastanding of governing phenornena in turbulent 

fluidized bed reactors: 

1- The particles size distribution could have a significant eEect on conversion 

and selectivity in turbulent fluidized bed reactors. There could be a critical 

particle size to be used in fluidized bed reactors since the inhibition eEbcts 

might be dominant as compared to bubble size effm. 

2- There is no unified correlation to predict minimum jetting velocity for 

separate injection of reactive into the bai of différent particle size. 

D e t e d a t i o n  of such correlation would conSntute a valuable coattibution to 

the iiterature on ffuidized bed reactors. 



3- Understanding of natutal gas combustion in turbulent fluidized bed reactor 

couid be considered as an important step in understanding the co-firing and 

gas reburn Attempts could be made to CO-fke low calorific fiels, waste in 

fluidùed bed reactor with naturai gas CO-feeding. Th-s would help M e r  

development of new combustion devices. 
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APPENDICES 



Complementary Detail for Chapter II 

In this appendix, an energy balance for the preheating zone and a laminar flow reactor 

mode1 for the r a d o n  zone of empty annular region of the fixed bed reactor are 

presented in detail- 

Energy bdanct for the preheating zone 

Because the flow in the preheating zone is completely encloseci, an energy balance may 

be applied to determine how the mean temperature Tm (2) varies with position dong the 

concentric tube annuius (Figure 2.1). In tbis zone, fluid moves at a constant mass flow 

rate (w). Convection and radiation heat transfers mur at the outer surface, where 

constant wall temperature is asnimed. Energy balance in inner tube shows that there is 

no temperature profile developed in b e r  surface. Typically, fluid kinetics as well as 

energy transfers by conduction in the axial direction are negligible. Applying 

conservation of energy to the differential control voiume, we obtain: 



In this equation, Tm is a buik tempeniture7 z is axial position, R is outer tube diameter7 Ts 

is a surface temperature, C, is the gas specific heat aud hr is a globd heat transfer 

coeficient, 

where hT is: 

In this equation, K is thermal conductivity, Nu is the Nusek number, k is ratio of outer 

tuber diameter to inner tube diameter, a is Stefan-Boltzman constant and E is ernissivity. 

This ordinary differential equation can be solved mbject to conesponding boundary 

conditions to obtain the mean temperature variation wîth position dong the concentric 

tube annulus for the preheating zone. Typical profile obtained in this way is shown in 

Figure Al. As shown in this figure, gas rapidly reaches to the d a c e  temperature 

before entering to the reaction zone. This is justified considering low specific C, and 

flow rate of mixture flowing in a very thin concentric tube annulus, where the radiation 

eEects are also present. 



Figure A 1 

O 0.05 O. 1 0.15 0.2 

Axial position along the preheating zone (m) 

Variation of mean temperature with position along the concentnc tube 
aanulus for the preheating zone 



Laminar flow maetor mode1 for empty -or experiments 

For the anmilar region betwœn two cm-axiai circuiar cylinders of radii kR and R (Figure 

2.1) within the r d o n  zone, the radial velocity (h) distribution in radial position (r) is: 

In this equation, u, is the mean velocity. The mean fiactional conversion &) of 

matenal converted in thîs zone in any axial position is: 

Plug flow design equation (Eq. 2.13) can be used to evaluate the fiactional conversion X 

as a fùnction of radial position for a given radial velocity considering the readon scheme 

in al1 grid points. The typical nsults of such calculations are presented in Figure 2.3. 



APPENDIX II Protocole de Sécurité et d'opération du Lit Fluidisé 

Ce manuel regroupe les dispositions générales, les procédures ahsi que des données 

diverses (limite d'inflammabilité, toxicité, etc.) sur les composants principaux que l'on 

retrouve dans l'unité pilote du lit fluidisé turbulent qui est utilisé pour la combustion du 

gaz naturel à des témperatures relativement élevées (800-lûûû°C). Le but de ce 

document est de permettre aux utilisateurs de bien opérer l'unité et aussi d'être prêts à 

réagir devant toute anomalie. 

Introduction 

La combustion de gaz nature1 dans un lit fluidisé turbulent est un procédé qui requiert 

plusieurs mesures de sécurité. ïi s'agit d'un sujet complexe et multidisciplinaire qui 

demande des informations des sources variées telies chimiques, génie, midicales, et des 

expériences passées. A la lumière de ces informations, les dispositions générales et les 

procédures de sécurité, sont proposées dans le présent doaunent afin d'opérer de façon 

Secuntaire l'unité expirimentale dans Centre de Recherche de BIOPRO. Tables AII.1, 

AII.2 aussi présentent les données diverses sur la limite d'in.flammabilité et la toxicite 

pour les composants clés se retrouvant dans la combustion du gaz naturel dans un lit 

fluidisé turbulent, 



Table A f Risques inhérents à la présence de catains composés 

Remarque 1 Seuil critique 

Gaz asphyxiant I 
Inflammable, peut présenter un grand risque 
d'incendie et d'explosion- 
Très inflammable, peut représenter un risque 
d'incendie et d'explosion, grande affinité pour 
I'hémoglobine_ 
Peut représenter un danger iimitant la 
réoxigénation cellulaire en trop grande 
concentrations- 
Composé nocif en trop grandes 

TLv=: 50 ppm 

TLV: 5000 ppm 

concentrations 
Gaz asphyxiant utilisé pour ses propriétés 
anesthésiques, dommageable à des 

@ Threshold Limit Vaiue (TLV) 

" Industrial Threshold Limit Value (TnV) 

TLV: 25 ppm 

concentra6ons élevées 
Gaz ayant un fort pouvoir oxydant, peut 
entraîner la mort même à de faibles 
concentrations- 

TLV: 3 ppm 
ITLV": 5 ppm 



Table A 2 Donuées d'inflammabilité 

Ces valeurs de limites d'inflammabilité sont valides pour les gaz à TPN- 

Composé 

Dispositions générales 

Les éléments suivants doivent être respectes en tout temps au laboratoire: 

Limite d'inflammabilité 
(fiaction volumique dans l'air) 

Inférieure 1 Su~érieure 

Ne pas fùmer; 

Température d'inflammation 
spontanée (OC) 

a Porter lorsqu'à proximité du montage Les éléments de protection personnels 

suivants: lunettes de sécurité, filtres respiratoires a arrvêtements protecteurs; 

Avoir en tout temps ce "PROTOCOLE DE SÉCUMIÉ ET D'oPÉR~ITow bien 

en vue; 



Atncher la liste des personnes (eoordonndes) à aviser en cas d'anomalie. 

De façon générale, toujours aviser les personnes responsable du montage lorque 

des manipulations sont en cours où prévues. 

Étapes préliminaires 

Les étapes suivames. considérées comme étant essentieues au bon déroulement des 

expériences, doivent être effectuées avant chaque Kne d'expériences: 

0 Vérifier l'étanchéité du montage; 

a Vérifier l'état des sondes et les changer au besoin; 

a S'assurer du bon fonctionnement des détecteurs de sécurité; 

Faire une inspection générale au niveau des circuits électriques; 

a Faire une inspection générale au niveau des circuits pneumatiques activant 

l'auvent; 

a Veiller à ce que les électrovames soient opératiomelles; 

0 S'assurer du bon fonetiomernent du détecteur de flamme; 

Vérifier le niveau des bombonnes d'azote et d'hélium, 



0 Ne procéder au démarrage de l'unité &si les points 1 à 8 sont respectés, sinon 

remédier à la situation avant de poursuivre. 

Pracédure de préchauffage 

Étant domé que la plupart des expériences se dérouleront a haute température, il faut 

préchauffer le lit en respectant la démarche qui mit: 

Démarrer le programme d'acquisition de données et le configurer, si nécessaire, 

de façon à ce que les mesures de température et de pression du lit et du whdbox y 

soient présentées; 

Mettre en tension i'unité au moyen de L'interrupteur principal; 

S'assurer qu'il n'y ait pas de gaz combustibles présents dans le réacteur en 

purgeant avec de l'azote si nécessaire; 

Ouvrir i'électrovanne principale de k i r  (interrupteur "AIR" à la position ON); 

ûuvrir a ajuster au besoin le débit d'air vers le bruleur à l'aide des vannes 

manuelles en s'assurant que le lit soit fluidisé au moyen des mesures de pressions 

(ATTENTION : un débit trop élevé résultera en des problèmes d'emportement a 

d'amition importants à plus haute température). 



r Appuyer sur le bouton "RESET" de la boîte du contrôleur de façon a ce que le 

voyant lumineux rouge s'éteigne (ceci permettra de procéder a l'allumage du 

brûleur); 

a Mettre I'intemipteur "DÉMARRAGE'' à la position "ON" suivi immédiatement 

de Anterrupteur "GAZ 2" à la position "ONw pour procéder à l'allumage du 

brûleur; 

0 Vérifier qu'il y a détection de flamme a ajuster au besoin les debits d'air a de gaz 

naturel, sinon remettre les interrupteurs "DÉMARRAGE" et "GAZ 2" à la 

position "OFF" et recommencer des étapes 5 à 7; 

- Ajuster les débits de gaz naturel et d'air afin de contrôler le préchauffage du lit et 

s'assurer d'avoir une combustion cornpiete; 

Continuer de préchauffer jusqu'à l'obtention d'une température de 775 à 800°C 

dans le =BOX, puis selon la température désirée, passer aux étapes 

suivantes : 

0 Si une température de lit entre 750 et 80°C est désirée, progressivement réduire 

le gaz du brûleur et L'injecter directement dans le WINDBOX jusqu'à obtention 

de La température voulue (à ce stade, la combustion peut avoir lieu dans le 

WINDBOX, L'utiiisation du bruleur est discrétionnaire). 



O Si une tempCrature de Lit supérieure à 800°C est désirée, suivre ce qui est 

mentionné en (10.1) jusqu'à 800°C. A ce point, couper le gaz au \KINDBOX et 

l'injecter directement dans le lit. 

Arrêter i'aiimentation du gaz naturel au brûleur si ce n'est pas déjà f ~ t  : 

Mettre rimerrupteur 'YiAZ 2" en position "OFF", ceci entrainne une mur et le 

voyant du contdeur de flamme i'dlume; 

a Positionner I'intempteur -DEMAR.RAGE" à la position *OFF"; 

* Fermer la vanne manuelle du gaz naturel vers le briileur. 



Table A 3 Schéma des interrupteur 

CAS-1 1 AIR 

Démarage 

Procédure d'opération 

GAS-2 

11 existe deux modes d'opération pour la combustion du gaz naturel dans un lit fluidisé 

turbulent : le cas *PREMïXEDw a le cas "NON-PREMIXED'. Quand la température 

désirée du lit est obtenue à l'aide de la procédure de préchauffage, la combustion peut 

avoir lieu. Voici selon le cas, la procédure a suivre : 



A) CAS "PREMXXED" 

a Dans ce cas ci, la combustion peut avoir lieu dans le WINDBOX. Avant 

d'dimenter Le gaz naturei, s'assurer que k WINDBOX est à une 

température inférieure à 5000C pour éviter que la combustion s'y propage; 

Alimenter progressivement l'air a le gaz naturel au rbcteur (le gaz naturel 

est &mente au niveau du WINDBOX); 

O Ajuster la vitesse superficielle du gaz et aussi le ratio aidgaz naturel au 

niveau désiré; 

O Poursuivre l'opération suffisamment longtemps afin de dresser un portrait 

représentatif 

B) CAS "NON-PREMIXED" 

Dans ce cas ci, on alimente directement dans le Iit. Alimenter 

progressivement I'aV et le gaz naturel au réacteur (le gaz naturel est 

alimenté au niveau du lit); 

Ajuster la vitesse superficielle du gaz a aussi le ratio airigaz naturel au 

niveau désiré; 



a Poursuivre I'opiration suffisamment longtemps afin de dresser un portrait 

représentatif 

Procédure d'arrêt 

Couper i'dimentation en gaz au réacteur a au brûleuf- 

Maintenir un débit d'air suffisant pour assurer h fluidisation du Lit 

Mettre tous les imempteurs a les vannes manuelles en position "OFF" 

jusqu'aux prochaines expériences. 



Guide de dtpannage 

Ce tableau présente le guide de  dépannage pour l'opération du lit fluidisé nirbulent. Pour 

chaque anomalie, on propose une démarche de mnédiation. 

Table A 4 Guide de dépannage pour l'opération du Iit fluidisé airbuient 

Observation 
CO > 50 ppm 

Hydrocarbures > 
2 %  

Diagnostique 
Fuite dans Ie TFBC, 

T> 1 100°C 

Démarche 
I . Mettre un masque a gaz 

Fuite dans le TFBC. 

P > 5 psia 

2. R o d e r  à l'am&* de l'unité. 
3. Ouvrir les fenêtres du laboratoire, 
4- Quitter la zone- 
1, Procéder a L'arrêt de l'unité. 
2, Ouvrir les fenêtres du laboratoire, 

Mauvaise fluidisation ou 

Fumée à la sortie 

3 - Quitter la zone- 
1 - Procéder à l'amêt de l'unité. 

perte des particules, 
Obstructions des conduits. 
Conditions explosives. 

du TFBC. 
Poussière dans 
l'aire de travail, 

2- Quitter la zone- 
1, Procéder à I'arrêt de l'unité, 
2. Quitter Ia zone. 

Risque de défluidisation, 
Formation de carbone 

Erosion de la 

Selon la procédure déjà décrite 

1, Vérifier les conditions 
solide. 
Haut taux d'entrainement. 
Attrition des particules- 

2. Vérifier l'état des particules. 
1, Procéder à l'arrêt de l'unité- 

couche réfkactaire 
de la paroi interne 
du réacteur. 

.. d'operatîon- 
1. Vérifier la vitesse superficielle de 
W- 

2. Remplacer la couche réfractaire. 
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APPENDIX III Pressure Fluctuation Signai Rocessing 

In order to process the experimentd pressure fluctuation data, a sampling time interval of 

50 ms was selected for the conversion of the analog signal to the digital signal. The 

sampling interval ensureci a good quality and undistorted character of the mea~u~ed 

fiequency up to 10 Hz From the data wllected for about 120s the mean pressure drop 

over the bed and the mean deviation of the pressure fluctuation signal f?om the mean 

pressure drop were computed. The power Erequency spectrum was obtained by the fast 

Fourier transfonn of the pressure fluctuation signai. The fiquency comsponding to the 

maximum power in the spectrum was called the dominant fiequency and the other local 

maximums were called the side ficquencia. The spectral power density can be used as a 

meanire of the "quality" of the fluidization under various operating conditions. Typical 

examples of the pressure fluctuation signal fkom the bed of sand particfes and the 

corresponding power spectrum of fiequencies are shown in Figures A2 and A.3. For 

original signal reporteci in these figures, the pressure probe location was 16.7 an above 

the main disaibutor and 3mm below the sparger, where the tracer is injected separately to 

the bed- 



Figure A 2 Pressure fluctuation in the fluidized bed of sand particles (d-Om T=440 
OC, dj=2mm, U425 d s  , Uj=200 mls) 



Figure A 3 Power spectnim of the pressure fluctuation signal shown in Figure A2 



APPENDIX IV Calculation of Sample Concentration for Three-Phase 

Mode1 

It is assumed that the rate ofgas drawn through the sampling probe is constant and hence 

the composition of sampled mixture ( C , b e )  is: 

For the axial positions far from the sparger the sparger, cornparhg the sparger bubble 

phase concentration with concentration at Md bubble phase and emulsion phase, 

intuition suggests that the grid bubble phase concentration and etnulsion phare 

concentration may be considered very close together. This can be justified considering 

the fact that these concentrations are one order of magnitude smallec than that of sparger 

bubble phase. By this hypothesis, the equation (AS) is reduced to: 

Knowing the bubble size issued by sparger and also the comesponding equations as 

presented in chapter 4 and 5, one can caiculate the concentration of the sparger bubble 



phase. Know by applying the equation (A6), the concentration profile for emulsion 

phase can be estimateci by: 

This concentration is also considered for gnd bubble phase. The typical concentration 

profiles calculated in this way are shown in Figure 4.11 for flat sparger at 400 OC, 

Uj=37ds and U4.8 ds. As seen nom this Figure, at the point in the vicinity of  the 

sparger, the emulsion phase concentration should be very high. Such high value can be 

attributed to the fact that the concentration of  tracer in grid bubble phase is very low, 

since the grid bubbles are unlikely present at the vicinity of the sparger. It can also be 

concluded that at the axial positions well below 100mm, the probe mostly captures the 

bubbles from the sparger phase. 


