
.A FIXED-POWT SIMD ARRAY PROCESSOR AND ITS APPLICATIONS TO

VIDE0 COMPRESSION CODiNG

Peij ian Y I!.W

D E P A R T E ~ ~ E N ~ DE GENIE ELECTRIQUE ET DE GÉNIE INFORMATIQUE

ECOLE POLYTECHNIQUE DE MONTRÉAL

 MOIRE PRÉSENTÉ EN VUE DE L'OBTENTION

DU GRADE DE MA~TNE ÈS SCIENCES APPLIQUÉES

0 Peijian YUAN, 200 1 .

National Li brary 1*1 of Canada
Bibliothèque nationale
du Canada

Acquisitions and Acquisitions et
Bibliographie Services services bibliographiques

395 WeUington Street 395. nm Wellington
OttawaON KlAON4 OttawaON K l A W
Canada &nada

The author has granted a non-
exclusive licence allowing the
Naîional Libraxy of Canada to
reproduce, loan, distn'bute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts fiom it
may be printed or othervcrise
reproduced without the author's
permission.

L'auteur a accordé une licence non
exclusive permettant à la
Bibliothèque nationale du Canada de
reproduire, prêter, distribuer ou
vendre des copies de cette thèse sous
la forme de microfiche/nlm, de
reproduction sur papier ou sur format
électronique.

L'auteur conserve la propriété du
droit d'auteur qui protège cette thèse.
Ni la thèse ni des extraits substantiels
de celle-ci ne doivent être imprimés
ou autrement reproduits sans son
autorisation.

Cette these intitulée:

A FIXED-POINT SIblD ARR4Y PROCESSOR AND ITS APPLIC.4TIONS TO

VIDE0 COMPRESSION CODIKG

presentée par: Peii ian YUAN

en \.ue de t'obtention du diplôme de: Maîtrise es Sciences Appliquées

a eté dûment accepté par jury d*esamen constitué de:

M. SAWAN Moharnad, Ph-D., président

M. BOIS GUY Ph.D.? membre et directeur de recherche

M. SAVARlA Yvon Ph.D., membre et codirecteur de recherche

M. ABOULHAMID Mostapha Ph-D., membre

iii

Dedication

To my wife, Beisong

To my son. Max

Acknowledgements

It is my great pleasure to express sincere gratitude to these who have contributed to the

successful compIstion of this Lvcrk.

1 have rt deep feeling of indebtedness to rny supervisor. Dr. Guy Bois for his constant

confidence. support. encouragement. guidance and providing me financial support. His

suggestions and criticisms were appreciated. and more irnportantly. his invaluable

frïendship \vil1 never be forgotten.

1 m also thankful to my CO-supervisor Dr. Yvon Savaria for introducing the thesis topic

to me and providing me financial support to work in the PULSE research group.

I would like to express my appreciation to my colleagues Ivan Kralijic and Claude

Villeneuve for helping me ~vith using the PULSE simulation tools.

Many thanks to al1 my friends for helping to establish a convivial environment in which

to work and for providing needed mord support during the difficult stages of this work.

Finally, 1 would like to thank my wife, Beisong Liu, to whom 1 owe much for her

unending patience, encouragement and understanding, without which I could hardIy have

completed this work. Special thanks are to my Iovely son Max Yuan, for understanding

me for not giving him full attention during his growing years.

Résumé

Ceîte thèse traite de l'utiiisation de PULSE. un processeur à instruction unique et domies

multiples (SIbID) pour le Traitement et la Compression d'Images en format MPEG-2. De

nos jours. les équipements de confikences vidéo. de téléphonie vidéo. de stockage

d'images vidtio numérique. de télévision haute-définition (HDTV) et les systèmes de

té ICvision et de multémedia numériques utilisent ce genre de fonctionnalité. Le stockage

ou la transmission de données d'image numérique impliquent des bandes passantes et des

quantités de m6moire importantes.

L'objectif principal de cette thèse est d'étudier Iss systèmes de codage de compression

d'imapc. Elle traite notamment de la conception de systèmes de haute performance et elle

Ctudie les compromis entre ia prticision et la complexité afin de réaliser des systèmes

sf'ticaces.

1) Le mémoire propose un algorithme précis et efficace pour effectuer la détection du

mouvement dans un flot d'images. La méthode de recherche complète est rapide et

précise. Elle est cependant très coûteuse. Une méthode de recherche graduelle mais

complète permet de trouver le meilleur appariement avec un effort moyen réduit pour

des images simples.

2) Une architecture adaptée à I'algorithme proposé est analysée et sa réalisation est

dicrite. Nos résultats démontrent qu'une puce PULSE permet de réaliser des

systkmes de compression d'images efficaces et flexibles. qui exploitent un haut degré

de parallélisme. Combiné avec un processeur de traitement de signal

commercialement disponible. 1s C4O de la société Texas Instruments. on peut réaliser

efficacement des systèmes de compression d'images de haute performance. Une telle

architecture hétérogène est efficace et flexible.

5) Nous proposons aussi une méthode efficace pour le calcul de la transformée cosinus

(DCT ct IDCT) avec uns puce PULSE. Cette methode exploite une table de cosinus

chargée dans les mémoires internes de PULSE pour éviter des calculs qui exigent un

grand nombre d'opérations.

Des dC\doppsments additionnels permettraient d'optimiser encore plus les aigorit!unes

proposés afin d'accélérer la compression d'image avec PULSE.

...
V l l l

Abstract

This thesis is concemed with appiying a Fixed-point SIMD A m y Processor PULSE to

Image Compression with the MPEG-2 Standard. Video compressor is widely used in

today's video conferences. videophone. digital video storage. Storage or transmission of

digital images requires large memories and transmission bandwiuth. This motivated

rcssarch on this topic.

The main objecti\.e of this tliesis is to study image compression coding systems. Several

aspects of design h r Iiigh-speed and high accuracy processing are considered. In order to

rcdize a simple and effscti~x image compression coding system. the follo~ving areas are

im-estigatcd.

1) A high-spced and high accuracy aigorithm for motion estimation is developed.

The Gradua1 Full search method (GFSM) algorithm reduces the time required to find

matches and no possible solution is neglected in the search area. AIthough the

program is slightly more complex than the Full Searching Method (FSM), it is three

times faster than FSM u-hen processing a simpie image.

2) Different system architectures for image compression coding are discussed and

designed.

The results obtained dunng the research conducted for this thesis will prove that a

PULSE chip can be used to construct flexible multi DSP systerns, to accelerate image

compression. Using PULSE chips nith a C30 DSP and a FPGA control unit, we can

construct a hardwadsof tuxe system for image compression. It will not only reduce

the cost of an image compression coding systerns. but aIso improve its flexibility.

3) A simple and effective method to calculate DCT or IDCT with cosine functions

using the PULSE chip is deveIoped.

-4 possible method to computs the cosine function uses exponential function.

Calculating cosine function is relati~pely expensive. Thus we propose using

precomputed tables stored in PULSE'S interna1 memory to accelerate cornputation of

DCT or IDCT.

Further de\-cloprnents could impro\-e the throughput of image compression on the

PULSE chip.

Table of Contents

.-. Dedication~.~............~.....~... I I I

... Acknowledgemen ts iv

... Résumé vi

.a.

.. A bstract viii

Table of Contents .. .u

.. a u res SV List of Fi,

... List of Tables xvi

.. List of Appendix svii

Chapter 1 Introduction ... i

Chapter 2 A Review of Image Cornpressing Algorithms and Their

.. Processor Architectures 5

2. I MPEG standard

Bac kground ...

...................................... A bnef overview of MPEG-2

.. Convolution

2.2 Motion estimation algorithm ...

2.2.1 FSM (hl1 search method) ...

3.2.2 CDS (conjugate direction searching) 16

2.2.3 Three-step searching ... 18

2.2.4 CSA (cross-search algorithm) 20

2.3.5 GFSM (gradua1 full search method) 21

33 2.2.6 Cornparison of the different algorithms --

2.3 Processor architecture review .. 23

2.3.1 Custom chip set for MPEG-2 coding 23

2.3.2 VLSI implementation for motion estimation 26

2.3.3 APC based image compression system 27

2.4 SIMD architecture of the PULSE chip 29

2.4.1 Introduction ... 29

2.4.2 Chip architecture .. 31

2.4.3 Processing eIement block diagram 33

... 2.4.4 Instruction set 35

2.4.5 PULSE V1 assembler .. 37

2.4.6 PULSE applications .. 38

Chapter 3 Implementing a Convolution on PULSE 40

3.1 The convolution algorithm versus PULSE architectural features 40

3.2 Structure of the convolution sohare .. 44

3.3 Summary ,... 46

xii

Chapter 4 Motion Estimation Algorithms and

Implementations .. 47

4.1 Motion estimation algorithm .. 47

4 . 1.1 General description .. 18

4.1.3 Data structure for motion estimation in PULSE 49

4.2 Gradua! fkI1 search method and full search

algorithm ~ v i t h the PULSE chip ... 52

4.2.1 Speed of GFSM and FSM algorithms in PULSE 52

4.2.2 Motion estimation program for PULSE 53

Chapter 5 DCT & IDCT Algorithms and

... Implementations 60

5-1 DCT & IDCT algorithms .. 60

5.1. I DCT ... 60

.. 5.1.2 IDCT 63

5.2 Implementation of DCT & IDCT on PULSE 64

5.2.1 Data structure of DCT on PULSE 64

5.2.2 Requirements and performance for DCT and

IDCT on PULSE ... 67

Chapter 6 Image Processing with PULSE Chips and

a C40 Processor ... 68

6.1 System architecture composed of one PULSE chip

. .
X l l l

Chapter

and a C40 ... 69

Irnprovernent of the C40PULSE system 73

7 Conclusions ... 77

Results .. 77

Future work ... 78

References .. 8 1

xiv

List of Fi, oures

Figure 1-1

Figure 1-2

Figure 1-3

Figure 1-4

Figure 1-5

Figure 1-6

Figure 1-7

Figure 1-8

Figure 1-9

Figure 1-10

Figure f - I l

Figure 1- 12

Figure 2-1

Figure 2-2

Figure 2-3

Figure 2 4

Figure 2-5

Figure 2-6

Figure 2-7

Figure 2-8

Figure 2-9.

MPEG systern layer block diagram

System layer pack and packet structure

Picture types

Essentid elements of coding system in MPEG standard

Motion compensation

Zigzag Scan

MPEG cording system data flow block diagram

PULSE chip VI logic syrnbol - subject to design review

PULSE chip version 1 architecture

.Architecture of PEs and communication chains

PULSE V 1 -3 .f 16-bit processor architecture

Pipeline structure instruction in four cycles of dock

Function partitioning in h4PEG-2 encoding

Chip sets feature of flexible pipeline architecture based on RiSC CPUs

EST256 architecture

Structure diagram for a video image compression systern

The curent and previous fiames in a search area (N=l6,n=8)

CDS method

Three steps rnethod

CSA method

Gradually searching

Figure 3-1

Figure 3-2

Figure 3-3

Figure 3-4

Figure 3-5

Figure 4- 1

Figure 4-3

Figure 4-3.

Figure 4-4.

Figure 4-5.

Figure 4-6

Figure 4-7

Figure 7-8

Figure 5- 1

Figure 5-2

Figure 6- 1

Figure 6-2.

Figure 6-3

Figure 6-4

Splitting of 1K 'c 1 K original image into four parts for processing on a

PULSE chip

Distributed data structure for pa rde l computation of a convolution

Original picture data and result picture data (boundary effect)

Instruction pipelining in a convolution

Overiapping of calculation with exportation of output results

Position & relation between blocks & search areas in frarneA & frameB

Data of blocks and data of search areas in current picture and previous

pictursmemA and memB

Data structure in PEs

FSM & GFSM program diagram and its instructions (one block)

Flou-chart of a basic match unit

Data of block search in independent memory space

Program t 1

Prograni t2

Cosine table and input data stores in PEs mernories

DCT program diagram and instructions

The C-IOPULSE system

Program flowchart for the C40PULSE system

A C40PULSE system implementation

The C40/4PULSE system

xvi

List of Tables

Table 2- 1 Cornparison of dit'fsrent algoriiluns . -. - -. . . 23

Table 6-1 Corn parison searching results with di fferent algorithrns 76

List of Appendix .. 85

. Ippendir -4 PCLSE F'l Compet it ive analjsis 85

AppendLr B PULSE I..'I technical fearures .. 89

..................... .4 ppcndix C PC'LSE C'I logic qmbol-strbject to design rerielt 91

.eippendi .r D The conidution proLqam jlolr.chart and program 92

. 4pper;Jix E Conr.olrïtiott progrnn . duta q f source image

anudataofresultimdge .. 96

..I ppertdix F Pro<qarn of .4 forion estirnution ... 101

..........-lppendi .Y G Restrlr of titoric~n êsrirnurion .. 123

. 4ppemii.r H DCT prngt-crnlfor P CiLLCE ... 125

.-l ppcndi.~ / /DCTprogrutn for- PLILSE .. 128

-4ppenJi-r J Cosine Table ... 131

-4ppendix A' DCT progratn in C- -. .. 132

.4 ppei1di.r L /DCT program in C'+ A ... 134

-4ppendi-Y .A f Cosine rable generation program in C+ + 139

p e t d i \ Data tramfer prograrns-for c4O arzd PCTLSE 130

Appertdix O PULSE i's Cornpetitors ... 147

CHAPTER 1

INTRODUCTION

A General Presentation of the Problem

This thesis presents a Hardware Software Co-design with the PULSE(Paralle1 Ultra

Large Scale Engine) chip used for image processing. It reports o r research canied as part

of the PULSE project that led to the development of the PULSE chip. Nowadays, rnoving

image coding systems have a very promising application field: Videoconferencing,

Videophone, Digital Video Storage, High-Definition Television (HDTV), Digital

Television and Multimedia Systems. In moving image coding systems, data compression

is needed for eficient management of large amounts of information. For example, a

coior image with a resolution of 1000 by 1000 pixels (picture elements) occupies 3

megabytes of storage in an uncompressed form. Data compression is especially useful for

the transmission of such high data through transmission channels. For instance, bit-rate

ranges fiom 10 Mb/s for broadcast-quality video to more than 100 Mb/s for KDTV

signais.

In order to reduce the transmission rate, using prediction techniques based on motion

estimation. This scheme increases the compression ratio to 50-200: 1. Motion Estimation

is the rnost demanding part in the coding algorithm. For example, in an image coding

system in MPEG2 standard (Figure 2-3), the compuîational power required is

approximately 1.2 GOPS; and around 50% of this effort is devoted to motion estimation.

At the decoder, motion estimation is not necessary, therefore lower computational power

is required.

Main Objective and Methodology

The main objective of this thesis is to study image compression coding systems and some

popular algorithms used for that purpose. Several aspects of design for high-speed and

high accuracy processing are considered. In order to realize a simple and effective image

compression coding system, the PULSE chip is considered as a potential platform.

The PULSE chip is a new ultra-high performance SIND (Single Instruction Multiple

Data) architecture DSP (Digital Signal Processing) for high-end video and related

applications. It has one controller and four process elements with clock of 54MHZ and 4

ports, having an VO capability as high as 2 16 Mega words/sec. Its VO ports are designed

to allow foming linearly connected chains of chips. With this syaem architecture and

using PULSE assembly language, a real time image processing system can be

implemented.

1) A high-speed and high accuracy algorithm for motion estimation is developed.

The Gradua1 Full search method (GFSM) algonthm reduces the time required to find

matches and no possible solution is neglected in the search area. AIthough the

progam is slightly more complex than the Full Searching Method (FSM), it is three

tirnes faster than FSM when processing a simple image.

A simple and effective method to calculate DCT or IDCT with cosine fûnctions

using the PULSE chip is developed.

A possible method to compute the cosine funaien uses the exponential fùnction.

Calculating cosine hnction is relatively expensive. Thus we propose using pre-

compute tables, stored in PULSE'S interna1 mernories, to accelerate computation of

DCT or IDCT.

Further developments could improve the throughput of image compression on the

PULSE chip.

3) Different system architectures for image compression coding are discussed and

designed.

The results obtained during the research conducted for this thesis will prove that a

PULSE chip can be used to construct flexible multi DSP systems, and to accelerate image

compression. Using PULSE chips with a C40 DSP and a FPGA control unit, we can

constnict a hardware/software systern for image compression. It will not only reduce the

cost of image compression coding systems, but also improve their fiexibility.

Organization of the Thesis

Chapter 3 will introduce the MPEG2 standard, the PULSE chip, and review some

previous research work. 1 will also describe sorne proposed algorithms. Chapter 3

describes the implementation of the convolution algorithms on PULSE. Chapter 4, 5 and

6 are the main parts o f this thesis. Chapter 4 and 5 include the processing of motion

estimation and DCT algorithms using the PULSE chip. A hardware and software co-

design system using a C40 chip & PULSE chips is discussed in chapter 6. Chapter 7

summarizes Our conclusions.

CHAPTER 2

A REVIEW OF IMAGE COMPRESSING ALGORITHMS AND

THEIR PROCESSOR ARCHITECTURES

2.1 MPEG Standard

In todq-'s world. videoconferencing. videophone. digital vidco storage. high-definition

telex-ision (HDTV). digital tele\ision and multimedia systems are widespread. Storage or

transmission of thssr data requires Iarge memories and high bit-rate. Thercfore. data

compression has been a subject of intensive research and dwelopmsnt for the p s t few

years.

2.1.1 Background

MPEG is a video compression technoIogy formulated b y the Mo\.ing P ictures Experts

Group. a joint cornmittee of the International Standardization Organization (ISO). The

first MPEG standard. known as MPEG-1. \vas fonnalized b>. the MPEG cornmittee in

January 1992.

MPEG- 1 compression incorporates both audio and video. For NTSC video (United States

and Japan) MPEG-1 uses the Standard Image Format (SIF) of 352x240 at 30 frames per

second. Audio is 16-bit, stereo sampled at 44KHz. MPEG data rates are variable,

although MPEG-1 was designed to provide VHS video quality. and CD-ROM audio

quality at a combined dzta rate of 1.2 megabits per second.

By resolution and data rate. MPEG-1 is targeted primarily at the computer and games

markets. By contrast. MPEG-2. adopted in the spring of 1994. is a broadcast standard

speci-ing 720x480 pisels resolution. playback at 60 tlelds per second and data rates

ranging from two to 10 megabits per second. MPEG-2 is the core compression

technology for DVD. the liigh-density CD-ROM standard that many feir will replace

VHS tapes as the standard for consumer video.

MPEG-3 was dropped. and MPEG-3 is a v e q low-bit-rate codec targeting

~.ideoconferencing. Intemet. and other low-bandwidth applications.

2.1.2 A Brief O\.en-iew of MPEG-2

I) b'hat is MPEG-2

MPEG-2 is an audio/vidso compression/decompression standard. The audioivideo inputs

are cornpressed by an encoder. and decompressed by a decoder for playback.

The MPEG-2 standard is actually composed of three standards fomulated by the Moving

Pichires Experts Group, a working group of the International Organization for

Standardization (ISO). ISO standard 13 8 1 8- 1 covers the MPEG-2 system Stream, ISO

standard 1 38 1 8-2 addresses MPEG-2 video, and ISO standard 13 8 1 8-3 describes MPEG-

2 audio. Work on MPEG-2 startsd back in 1988. and al1 three standards were finally

approved in November 1 994.

MPEG-2 \.ide0 resolution can range from 720~480 to 1280x720, with the latter targeting

high-de finition tekvision (HDTV) applications (cable 1 5.1). The most cornmon

resolution is 720x480, roughly the resolution of a full-screen NTSC (Nationai Television

Standards Cornmittee) image This contrasts with MPEG-1's masimum resolution of

352x240. or quartsr-scrern TV. Whils MPEG-1 is limitsd to 30 frarnes per second.

MPEG-2 c m opcrate at 60 fieIds, the scan rats of NTSC television. enhancing suitability

for broadcast applications like HDTV. cable television. and broadcast satellite.

2) Video Compression Tschnology

Since h4PEG-2 includes both audio and t-ideo. al1 MPEG-2 codecs must address both

formats. The block diagrarn of an MPEG-2 encoder system is shown in Figure2-1.

Source corn prrssor / h.Iodulator j b

V idco Video
Source corn pressor ,

Ancillary data
t

)I

Figurez-1 The block diagram of MPEG-2 encoder system

This thesis is mainly focused on the implementation of the video cornpressor. MPEG

video is specifically used in compression of video sequences which are simpIy a series of

pictures taken at closely spaced intervals in time. Except for the special case of a scene

change. these pictures tend to be quite similar from one to the next. htuitively. a

compression system ought to be able to take advantage of this similarity.

The compression techniques (compression models) with MPEG take advantage of this

similarity or predictability frorn one picture to the next in a sequence. Compression

techniques that use information frorn other pictures in the séquence are usually cailed

interframe techniques.

When a scene change occurs. interfrarne compression does not work and the compression

mode! should be changed. In this case the compression mode1 should be structured to

take advantage of the similarity of a given region of a picture to imrnediately adjacent

area in the sarnr picture. Compression techniques that only use information from a single

picture are usually callsd intraframe techniques. Thsse t\vo compression techniques.

interfrarne and intraframe. are at the heart of the MPEG video compression aigorithm.

Each video sequence is divided into one or more groups of pictures. and each group of

pictures is composed of one or more pictures of three different types. 1. P. and B, as

illustrated in Figure 2-2. I-pictures (intra-coded pictures) are coded independently,

entirely without reference to other pictures. P and B-pictures are compressed by coding

the differences between the picture and reference I or P-pictures, thereby exploiting the

similarities from one picture to the next.

P-pictures (prediciive-coded pictures) obtain predictions from ternpordy preceding 1 or

P-pictures in the sequence. whereas B-pictures (bi-directionaliy predictive-coded

pictures) obtain predictions fiom the nearest preceding and / or upcoming 1 or P-pictures

in the sequence. Different regions o f B-pictures may use different predictions, and may

predict from preceding pictures. upcoming pictures. both. or neither. Similady. P-pictures

rnay also predict from preceding pictures or use no prediction. If no prediction is used,

that region cf the picture is coded by intrafiarne techniques.

In a closed group of pictures. P and B-pictures are predicted only from other pictures in

that group of pictures: in an open group of pictures. the prediction rnay be from pictures

outside of the group of pictures [MPG97].

MPEG display order
b

Fonvard prediction of B-kames
-> Backward predict ion of B-Eames - Foward prediction of P-fiames

Figure 2-2 Picture types

3) Video Encoder

Figure 2-3 is a diagram showing the essential elements of a video coding system for

MPEG -2 Standard. Temporal redundancy is reduced using the folIowing process.

DI !Terence Picturc

B u ffer DCT
(N e w picturc) - +

I

1 Prrdicted picturc

Buffer fullness

+ Ï-l Quantizer 1

I I , picturc mcmor!
C

motion estimation (o ld picture)
1 encoded cocfficicnts
I I

+ Entrop? 1 P E S packets
C'ontrol data cncoder B il tti-r b

L 1

Figure 2-3 Essential elements of vide0 coding system in MPEG -2 standard

In the motion estimation section. an input vidso frame. called a new picture. is compared

~v i th a previouslj. transmitted picture held in the picture memory. Pixel blocks (an area of

16-piscl n ide and 16-pixel high) of the previous picture are exarnined to determine if a

close match can be found in the iiew picture. First. the new picture buffer is divided into

8x8 pissI blocks. each 8x8 pisel block is ssarched in the old picture area of 16x1 6 pixels.

The match algorithm of motion estimation is: [Eq.2.1]

Where M is the distortion value. A[i.j] and B[i,j] are the new and odd images' pixel

values respectively. If the value of M is less than a threshola value. then the vector

coordinate of this block is cdled a close match. When a close match is found, a motion

vector is produced describing the direction and distance the pixel block moved. A

predicted picture is generated by the combination of al1 the close matches as shown in

Figurez-4. Finally. thé new picture is compared with the predicied picture to produce a

di fference picture [hIPG97].

The blocks o f a new picture are searched The blocks of old picture predict the
in on old picture new picture

Figure 2 3 hdotion compensation

The process of reducing spatial redundancy begin with a DCT (Discrete Cosine

Transform) on the difference picture o f an 8x8 pixel block. The firs: value in the DCT

matrix (top lefi corner) represents the DC value of the 64 pixels of the 8s8 block. The

other 63 values in the matrix represent the AC values of the DCT with higher horizontal

and vertical frequencies as one moves to the bottom right corner of the rnatrix. If there is

little detail in the picture. these higher frequency values become very small. The DCT

values are presented to a quantizer which. in an irreversible manner, c m "round-off' the

values. Quantization noise anses because coefficients are rounded-offs. I t is important

that the round off be done in a manner that maintains the highest possible picture quality.

When quantizing the coefficients, the perceptual importance of the various coefficients

c m be exploited by allocating the bits to the perceptually more important areas. The

quantizer coarseness is adaptive. and is coarsest (fewest bits) when the quantization

crrors are espected to be least noticeable. The DCT coefficients are transmitted in a

zigzag order as sho~vn in Figure 2-5. After rounding. the higher frequency coefficients

often have a zero-\Aue (See Chapter 5 The Algorithm of DCT and IDCT). This leads to

frequent occurrence of several zero-value coefficients in sequence.

Figure 2-5 Zigzag Scan

The quantizer output is presented to an entropy encoder, which increases the coding

efficiency. by assigning shorter codes to more frequently occumng code words. The

entropy encoder bit strearn is placed in a buffer at a variable input rate. but taken from the

buffer at a constant output rate. This is done to match the capacity o f the transmission

channel and to protect the decoder buffer from overfiow or underfiow. If the encoder

buffer is almost fùll. the quantizer is signaled to decrease the precision of coefficients to

reduce the instantaneous bit rate. I f the encoder buffer is almost empty. the quantizer is

allowed to increase the precision of coefficients. The output of the buffer is packetized as

a Stream of PES packets. [DIG94]

In order to use the motion compensated picture for next prediction, the encoder requires

the reconstruction of the picture contained in the transmitted bitstrem. The quantizer

output is presented to the inverse quantizer, then to the inverse DCT. IDCT output adds

the predicted picture. and then place the result in the picture rnemory [MPG97].

The data flow coding system in MPEG standard is shown in Figure 2-6.

I n p u t n e w p i c t u r e w

Figure 2-6

I m o t i o n e s t i m a t i o n I

m o t i o n c o m p e n s a t e d p r e d i c t o
I

e w p i c t u r e - p r e d i c t e d p i c t u r e
l D C T t

1

I I D C T I

m o t i o n v e c t o r s
(o u t p u t)

p i c t u r e m e m o r y
(o l d p i c t u r e)

e n c o d e d c o e f f i c i e n t s

.

-

I n e w p i c t u r e t o o l d p i c t u r e m e m o r y

A

--

-

-

Data tlow of coding system in MPEG standard

2.1.3 Convolution

Most motion pictures need some pre-processing filter. This pre-processing enhances as

perceived by human visual sense. Convolution is one of the popular a1gonth.m~ used. It

will be discussed in chapter 3.

2.2 Motion Estimation Algorithm

Several algorithms for motion estimation have been proposed. A number of popular

methods, as well as the one proposed in this thesis, are presented below.

2.2-1 FSM (full search method)

The search of a block frame A (current picture) starts at the upper-left corner of the area

of frarne B(previous picture). If the value of M in equation [Eq2.1] is less than the

threshold value (zero means exact match). stop searching and output motion vector.

Othenvise search from Ieft to right and from top to bottom through frarne B. The search

is stopped when the right bottom corner is reached or when M is smaller than a threshold

value. This search sequence is illustrated in figure 2-7. [MPG97]

(nxn) block
in the current
fiame A

search area in
the previous frame B

(nxn)block under the search in the
area of previous fiame B, shiîled by i j

Figure 2-7 The current and previous fiames in a search area (N=16,n=8)

2-2.2 CDS (conjugate direction searching)

The search progresses in the direction of the smaller distortion, until a minimum

distortion is found (sel figure 2-8)[MPG97]. Descriptions of the algorithms refer to

points to express the shift between the reference positions in the hvo compared images.

The algonthm is listed below:

M is the value in equation [Eq2.1]: threshold is a value selected by the designer according

the allo~ved error: the left, right, up and down mean the direction of next compared center

point from the current center point.

[A]horizontal: compare center point;

if (M<threshold) then stop search and output vector:

slse compare lefi and right point;

if((right(3)<left(O)and(~ght>threshold)en let right be the new center point;

elsit'((right(3)>left(O)and(lefi>threshold))en let lefi be the new center point:

endif:

endif:

repcat [.4]horizontaI until boundary or minimum point is found in horizontal direction:

[Blverticai: compare center point (4)(produced by [A]horizontal):

if (M<t!xeshoId) then stop search and output vector:

eIse compare up and down point;

if((up(7)<do~vn(6)md(up(7)>threshold))then let up(7) be the new center point:

clsif((up(7)>do~\n(6)and(do\m(6)>threshold))then let down be the new center
p p p p p p p p p p p p p - - - - - - - - - - - - - - -

point;

repeat [B]vsrtical until boundary o r minimum point is found in vertical direction;

end:

Figure 2-8 CDS method

2.2.3 Three-step searching

The three-step searching method looks for motion displacements. As it progresses

through the steps. the search range is decreased. As shown in figure 2-9[MPG97]. The

algorithm is listed below:

The definition of M and threshold are the sarne as with the CDS method.

step(1): compare center point:

i f(M<threshold)then stop search and output vector;

else compare four (a) point;

if ((minimum M(a)<threshold)then stop search and output vector;

else compare tw M(aa)points(in minimum (a) direction);

if (minimum M(aa)<threshold)then stop search and output vector;

else new center point = the position of minimum M((a) or (aa));

endi f:

endif:

repeat step(1) three times:(minimum M(aa) be the center for b search),(minirnurn M(b) be

the center for c search).

end:

From figure 2-9. the ria point (minimum (M(a) or M(aa))) is as the new center point in

step(2) searching. Using a similar method. the b point (minimum (M(b) or M(bb))) is

used as the new center point in step(3) searching.

Figure 2-9 Three steps method

2.2.3 CSA (Cross-Search -4lgorithm)

This algorithm differs from other search methods in the final step. In reference to figure

2-10. the final searching can be either the (X) or (+) directions. This is dirtermined by

minimum point. If i t is in lefi up comer or right down corner. the nest searching point

wi l l choose (X) points. If it is in right up corner or lefi down corner. the next searching

point will choose (+) points [CR090].

-7 -6 -5 -4 -3-3 -1 O 1 2 3 4 5 6 7

Figure 2- 10 CSA meîhod

2.2-5 GFSM(Gradua1 Full Search Method)

The gradual full search algorithm is a new method proposed here. It begiiis at the center

point and gradually increases the searching range around this point. The method is

illustrated in figure 2-1 1. This method \vas developed for two reasons.

We analysed the fast algorithms and we found similar problems with most o f them. The

search direction is usually guided toward the minimum value of M (equation 1) by

comparing 4 points nt each step. Thus many points inside the search region are skipped.

In some cases. moving by one pixel may give very different results. The search direction

is controlled by the minimum M. \vhich may lead to incorrect dccisions. Fast algorithm

are faster than FSM. but the? may give incorrect resuits.

-41~0. ~ v h e n successive frames d o not change much. the last motion sector is a short

distance from the center.

The gradual full search method typically takes a short time to find the best match. and

yet no point is ignored in the search area. Although the algorithm is slightly complex than

FSM. it is much faster for most applications.

Figure 2- 1 1. Gndual Fu11 Search Method (GFSM)

2.2.6 Cornparison of the different algorithms

Table 2-1 shows the maximum number of search points with the different algonthms.

The fast algorithms (CDS. CSA and 3STEPS) are faster than FSM and GFSM. When w

is large. this is more obvious. However. the fast algorithms sometimes produce incorrect

W=(size of search area - size of block)/2

Table 2- 1 Cornparison of different algorithms

Algori thm

FSM

CDS

CSA

3 step

Gradua1 ly

2.3 Processor Architecture Review

Maximum number
of search points

(2w+ 1)?

3+2w

5+4 Iog w
7

25

(2 w+ 1)'

w

In order to implement a MPEG coding system. a powerful calculation engine is required.

A huge number of calculations are required to perform motion estimation. DCT. etc.

Therefore. some special purpose chips are ofien used to implement these functions. Three

different MPEG-2 video encoders are discussed below.

2.3.1 Custom chip set for MPEG-2 coding

The paper "Two-chip MPEG-2 Video EncodingW[TW096], describes a system composed

of two chips that implements a MPEG-2 video encoder. The key features of these chips

set are:

! 6

IO89

35

21

1 089

4

81

I I

13

25

8 1

The Enc-M chip mainly executes motion estimation and compensation steps.

8

289

19

17

--

389

The Enc-C chip is the main coding and control chip. It esecutes not only coding

operations like discrete cosine transformation (DCT). inverse discrete cosine

transformation (IDCT). quantization (Q). inverse quantization (IQ). and

variablslen-eth coding (VLC). but also header generation, rate control. and output

buffer contro1. It has an external output buffer (FIFO-structured desired fiom a 2-

Mbit DRAM) to meet the requirements of the MPEG-2 algorithm.

R e o r d t g
Field bu ffer

(4 Mbit
w

And actikin; :
detection ,

Motion
estirnaor

(16 Mbit SDRAM or
nvo 3 Mbit SDRAMs)

2: 1:-,
(2 Mbit

1
- Data path

Figure 3- 12 Function partitioning in MPEG-2 encoding

Figure 2-12 shows the partitioning of the MPEG-2 encoder. It uses two encoder chips

(Enc-M and Enc-c). as well as three peripheral rnemories, a reordering field buffer. a

h e memory. and an output buffer.

Since MPEG-2 is a cornplex algorithm that requires a flexible and efficient control

structure. the pipeline architecture based on RISC CPUs (Figure 2-13) is used. Both the

Enc-M and Enc-C have thsir own RISC CPU. For flexible pipeline operation. each

îùnctiunal unit has a CPU VO device controllrd by the CPU via the VO port. Somc units

communicate with neighbouring units in a request-ûcknowledge manner.

-
Video
input

_I

Host CPU

Enc-C interface
Host interface

RlSC CPU
RISC CPU

With
Multiply/

divide

Mot ion
Estimation

in ter face
FI FO

compensation +
-+ DCT

OCTiQ
' DRAM

interface
+

VLC -
Figure 2- 13

CPUs

Chip set feature of flexible pipeline architecture based on RISC

The encoder chip set can easily be used to develop a compact encoder system. The

encoding algorithm is the MPEG-2 simple profile at main Ievel with a variable h e size

from 61 to 720 pixels (column) and 61 to 576 pixels (row). The chip set thus supports the

conventional sizes of 720x480. 720x576 and 640x380 pixels required for NTSC, PAL

and VGA standards. Using a 4 2 2 video input format. the maximum b e rate is 30

frames per second for a 720x480 f i m e size. That means the system processes up to

40.500 macroclocks(16 by 16 pixel) every second for a maximum output of 1 5 Mbits per

second.

2.3.2 VLSI irnplementation for Motion Estimation

The papsr "VLSI Architecture for Motion Estimation using the Block-Matching

A1gcrrithm'-[VLS96] introducss the EST256 chip used for motion estimation. The

rtrcliitccture. EST256. ivhich consists of 256 processing elements. deals w<th a search

areri(32s32 piscl) for block(l6'i l6pisel) and perfoms I 1 GOPS at 33MHz clock

(subtrriction. absoluts \.alus determination. accumulation and companson). Considenng a

7 2 0 ~ 5 7 6 pixel image. the processing rate for motion estimation is 39 frames per second.

The numbsr of PEs n-orking concurrsntly is 256. and each single processor cornputes the

cost function for one of the 256 possible locations of the reference block within the

ssarch area. The rina? outputs the motion vector corresponding to each reference block.

256 cycles rifier the Iast pisel of the block has been entered into the array. Figure 2-14

shous the structure of the 256 processors array. To reduce the required bandwidth,

EST256 has three %bit input ports. After initial latency, the comparator block inputs one

error computation in each cycle and compares it +th the previous minimum, storing the

lowest. The boundary block disables the comparator when its input value is not valid, this

condition arises for some locations o f the blocks located on the top, bottom, lefi and right

boundaries of the image. The architecture provides the minimum error value, the

coordinates of the motion vector for this position and the error value for the (0,O) motion

vector (no movement).

Error(MV)

Figure 2- 14 EST256 architecture

- 1 1

Search , g U P P ~ ~
Lower 1 I

2.3.3 A PC based image compression system

M V
16, Y Error(O.0) I l - .

Re ference
/ - 0 . 0

'8 PE# 1 PE82 PEg3
+

The paper "A High-performance System for Real-time Video Image Compression

Applications"[HIG95] introduces a PC based image compression system. As shown in

Figure 2-15. the system consists of a PC-486, a motion estimation processor (MEP), a

DCTADCT processor (DCTADCTP), an image grabber, and a canera. MeanwhiIe, both

the MEP and DCTADCTP act as backend processors for PC-486 through its Vesa local-

bus interface. The PC-486 handles al1 the computations except motion estimation, DCT,

and Inverse DCT. Currently, by operating at 12.5MHz, the MEP takes around 1 OOus to

Error
corn parator

PE#256

- - *

,
A A

Control
1 1

cornpute the motion vector with tracking range 32x32 for each 16x16 block, and. the

DCTADCT takes around lOus to cornpute the two dimensional DCT or inverse DCT for

each 8x8 block. Also. overlapping data loading and processing c m achieve the optimal

performance. Therefore. for ench 256x256 image frame. the system presented ~vould take

around 25.6ms and lOms for computing motion vectors and two dimensional DCT or

inverse DCT individually.

Application
Program

Image
Compression

Control
Program

Vesa

a Local Bus

.

a
C

Quantization.
Dequant izat ion,
Run-Lm_& Coding
Variable-Lm-& Coding

Estimation
Processor

Image
Grabber

Figure 2-1 5 Stmcture Diagram for a Video image compression System

Conclusions

As described above, in order to irnplement real time image processing, special processor

or Functional units are needed. As a general purpose DSP, single PULSE chip rnay not be

very powerful. However, it is easy to connect multiple PULSE chips to implement real

time image processing. An array of PULSE chips c m implement motion estimation.

DCT. etc. Each chip also implements a control unit. and these chips can easily be

interfaced with other processors. So- PULSE chips give us the ability to build different

systems to implsment various dgorithms and applications.

2.4 SIMD Architecture of PULSE Chip

2.4.1 Introduction

PULSE V1 is a 16 bit. fised point SIMD m a y processor designed to operate cit 53 MHz-

It contains (on a single chip) one controlltrr and four PEs (Processicg E l c ~ ~ n t s) . The

custom designed architecture and instruction set of the PULSE processor allow efficient

impkmentation of al1 linear (muItiply add accumulate etc.). nonlinear (mnimum.

minimum. medium. r d order. etc.) and hybrid operations. thus pro\-iding a cornplete

solution for an' tïsed point DSP related applications.

PULSE V1 employs heavy parallsl operations to handle data 110. inter-processor

communications. address generations. and computations. One pgalle1 i n s ~ c t i o n could~
p p p p p p p p p p p p p p p - - - - - - - - - - - - -

sirnultaneously provide multiple computations (such as multiply add accumulate. and 3-

point rank order). multiple address generations and memory access. multiple data transfer

within the PE and between the neighbor PEs. Al1 these operations can be done at the rate

of one per cycle however. PULSE data-path is a 4-stage pipeline. One PULSE instruction

could perform more than IO conventionai operations. Effectively, the PULSE V1 chip

c m provide more than 2 Billion FUSC like operations per second for 1inea.r processing.

tlsually conditional sxecution on SIMD machines c m become highly inefficient, since

each PE might get diffsrent conditions. but the controller c m only supply a Single

Instruction based on a single condition. The usual way to sotve this multi-condition

problem is to turn somr PEs off. thus \vasting computation power. The imovative design

of the PULSE VI processor partly removes these conditional executions by supporting a

rich set of nonlinear instructions. For example. each PE cari implement a 3 point rank

order (maximum. medium, and minimum) in a single cycle of PULSE V1. The

implementation of this operation (r d order of 4 LPectors. 3 data each) could require more

than 60 opsrations on conventional processors such as TI TMS320C40. In that specified

case. the PULSE processor provideç more than 4 Billion equivalent RISC like operations

per second for nonlinear processing.

To handle red-time image and \.ide0 processing. PULSE V I provides up to 864

Mb!tesisec. of bandxidth for data I/O and 332 Mbytss/sec. for inter-processor

communications. An imovative communication mechanism provides efficient use of the

bandw-idth and allows flexible algcrithrn mapping. Furthemore. the PULSE processor

provides a rich set of parallel and vector instructions. which can be used to improve the

application performance while reducing the program size.

PULSE VI provides easy system integration for different classes o f applications. It c m

be used as a stand-alone processor to replace some ASIC chips; it can be used as a co-

processor or accelerator to other processors of cornputer systems; it c m have extemai

programs and data memory for large kemel applications. The cascade o f multiple PULSE

chips is relatively straightfonvard. and it c m be done without any additional glue-logic.

-4 wide variety of architectures and related system applications c m be obtained wîth

suitably cascaded PULSE chips.

2-42 Chip Architecture

The PULSE chip version 1 is a PE array. nith four data communication ports (two of

them are compatible n-ith CAO). two address ports. global constant memory and intemal

program memorq.. The chip architecture is shonn in Figure 2-1 6. The PE array is the core

of the PULSE chip. Its architecture and communication chains are shown in Figure 2-1 7.

riddress port 1

modulo counter

Global constants ci C O N T R O L L E R pcm interna1 prograrn
hlemory 2 5 6 x 1 6 memory 2 5 h x 16 I

north t
[From scan

To al1 blocks

and status
reg isters 47T-'

1 (cpu in terface

P U L S E V I I 1
-

I
1

C10 COXf port C-IO C o h l port
Interface 8: fifo in ter face & fifo

R -
Port I 1 x 'iI

[port 3 1 1 port -I 1
I I I

I

Figure 2-1 6 PULSE Chip Version 1 Architecture

North Channel
Port 1 r - -

b b s -
Port3

I6bit - 16bit

South Channel

Figure 2- 1 7 .\rchitecture of PEs and Communication Chains

2.4.3 Proccssing element block diagram

Each of the four PULSE processing elements contains the following elements:

2 register files of 33. 16-bit words

- 1 read port. I w-rite port gives optimal storage density/access

* 2 mernories of 256, 16-bit words

- Single port 1 read/wite with direct link to communication charnels

- Addressing is direct, register indirect or via two modulo counters per memory

for read and write addresses

- Memories are designed to store data with a longer lifetime than those stored in

the register files

O 1 signsd multiplier-adder of 16s I6+32 bits tiith 32-bit signed result

- This is to implsmsnt MADD (multiply add)

- Direct connection of nsighbor processors data sources into addend input of the

multiplier-adder allows accumulation c h a h between processors to be built

O 1 accumulator of 32 bits

- Intcrnal rssolutiun is 33-bit signed u-ith overflow detection

- Programmable saturation and clipping functions to 32-bit signed or 31-bit

unsigned ranges

- Separate accumulator aIlows implementation of reduction algorithrns it is

possible to perfom MADD-4CC - multipIy-add-accumulate - 1 full barre1 shifier of 32 bits in. 32 bits out

- Supports full rangs of shift logical and arithmetic shifi operations - 1 multi-function 3-operand arithrnetic-logic unit

- Allows single c>.cle rank, mas. med. min, chip and cor functions on three

operands

- Usual arithmetic and logic functions available

The functional units o f each processing element are designed to operate in parallel so that

a typical PULSE instruction will simultaneously perform a computation, data load and

data communication operations. Also, the instruction set is designed to be as orthogonal

as possible so that any operation c m be performed on any piece of data, regardless of

where it resides. Figure 2- 1 8 presents PULSE V 1 -3 -f 1 6-bit processor architecture.

[accumulatorf 1 register 1 [register 1 1 rnemory.4 1

I . source selection rnarrix : : I

1 destination selecrion marris 1

source I
1 I v I l

buses
i

1 1 v . 1 1 1 1 * + + + + + + + *

destination v I I
v I

buses v

r

Figure 2-1 8 PULSE V 1.3.f 16-bit procsssor architecture

2.4.4 Instruction Set

PULSE cmploys highly parallel operations to handle data W0. interprocessor

communications. address generations. and computations. Sorne parallel instmc~ions c m

sirnultaneously perform multiple computations. multiple address generations and rnemory

access. multiple data transfer \vithin the PE and between the neighbor PEs. Al1 its

operations c m be executed at the rate of one per cycle.

+ + t t t
I 1

multiplier
adder

PULSE instructions, due to a 4-stage pipeline. generally require four clock cycles, except

"stc", "fwd" and "io" instructions (one cycle). The pipeline operation is illustrated in

barre1
shi A e r

ALiJ

figure 2-1 9. At the first cycle. PULSE reads data fiom memory. register. or port. The

second and third cycles esecute the operation. The fourth cycle write the results back to

mernories. registers. or ports.

w rite

Instruction2 1 read \v rit4

Instruc (ion3 1 read write 1

Instruction4 read

Figure 2-1 9 Pipeline Structure Instruction in Four CycIes of- Clock

The PULSE instruction set is designed for both linear and non-linear digital signal

processing. with an ernphasis on imagdvideo processing. It provides a rich set of

instructions. including conventional instructions and estended non-conventional

instructions.

The instruction set is organized into the following functional groups:

PEs instruction set

MiscelIaneous

Data movement

Conventional arithmetic

Special arithrntltic

Conventional Iogical

Shiftlrotate

Transfer of control

Shi% registsr communication

Controller instxucrion set

ParaIlel instruction set

Vsctor instruction set

Each of rhsss groups is listed in the PULSE Technical Report Composite Document.

[PUL96]

2.4.5 PCJLSE V1 Assembler

The assembler translates assembly-laquage source files into object tiies. These files are

in common object file fomiat (COFF). Source files c m contain the following assembly

language elements:

Assembler directives

Assembly language instructions

The assembler does the following:

Process the source statements in a text file to produce an object file.

Produce a source listing (if requested) and provide the user with control over this

listing

Define and reference global syrnbols and append a cross-reference listing to the

source listing (if requested)

Each time the user uses the assembler. it processes one source program. The source

p r o g m is composed of one o r more fiies (The standard input is also a file.)

If no file namc is provided. the assembler attempts to read one input file from the

standard input. w-hich is normally the terminal.

2.4.6 PULSE Applications

As mentioned earlier. the PULSE proccssor supports both Iinear and non-linear

operations. and allows flexible algorithin mapping. These features make the PULSE

processor ideal for a \-en. wide range of applications. Some of them are listed below for

reference:

Filtering

Trans forrns

Imagelvideolgraphics procsssing

Image analysis and Machine Vision

Neural networks

Speech Processing

Communications

Instrumentation

A brief cornparison between PULSE V1 and other competitive devices from adaptive

solutions, Analog devices. Texas hstruments. and Oxford Computerç is provided in

appendix A. As can be seen from appendix A. PULSE vl offsrs significant advantages in

various aspects over the competitive devices. such as strong support for inter-processor

communication. and strong support for linear. non-linear and hybrid processing.

The PULSE V I technical features and the PULSE logic symbol are shown in appendix B

and appendix C.

CHAPTER 3

IMPLEMENTING A CONVOLUTION ON PULSE

3.1 The Convolution Algorithm Venus PULSE Architectural Features

The convolution algorithrn plays an important role in image processing. For instance. it is

used for noise reduction. edge sharpening and skeletonization. The generic convolution is

3daptt.d to perhnn these various functions by appropriately selecting the weights of its

kcrnel. In general. odd size ksrnels are used.

For esample. the 3 by 3 generic convolution a l g o r i t h is defined by equation [Eq.3.1].

Rr. j = C C Pr + i. + j Si. j

in this equation, is the convoluted pixel, value PV is the input image pi'ceI vaiue, and

SIJ is the convolution kemel weight. Equation 3.1 indicates that the 3 by 3 convolution

P'm.n (m by n pixel image) of each pixel Px.y requires knowledge of the values of its 8

immediate neighbors. On the image boundary, a different algorithrn is applied depending

on the application.

The following discussion of a convoIution applied to a 3 x 3 sarnple window on a 1K by

1 K image will refer to ri 2D FIR filter for brevity. These parameters are widely used for

preprocessing of images.

1) Each PE in a PULSE chip lias two 256 words memory units. For processing 1 K by 1K

images, they must be partitioned. One possibility is to split the images in vertical bands.

Thus we could calcuiate the 1024 lines of part one, then calculate part two, three and

four. as shown in Figure 3-1.

Figure 3- 1 Splitting of 1 K s i K original image into four parts for processing

on a PULSE chip

3) The processing of the convolution algorithm with a PULSE chip can be executed in

parallcl. because each chip has 4 PEs. The first data line (256 points) of part one is stored

in "memA". the second line is stored in "memB". Data is brought into 4PEs in parailel

through the "North Chamel"(Figure 2- 1 7). At the first instruction cycle, the data point

1.1 of the original image is stored in PEO, the unspecified data 'x' is stored in PEI, PE2

and PE3 individually. At the second instruction cycle, the point data 1.2 of the original

image and the data point 1.1 are respectively stored in PEO and PE 1, while an unspecified

data 'x' is stored in PE2 and PE3. This progresses until the pipeline is full and each

processor receives a pixel rit each cycle. The resuiting distributed data structure is shown

in figure 3-2. Respective positions in the rectangle correspond to data stored at the same

address o f respecti\-e processor mernories. The processing loop called "Ioopa" shown in

figure 3-5. thus cornputes 1 pisels of the output image in parallel.

O r i g i a a I I K i IK F.cruIt
O D A T A R D 4 T 4

I I l 1 a l ? O 1.7 l t I 1u:4 l

2 . 1 : : : ! : 4 : 2 h :.- : a : 1h1:a

:: : ? : a : ' 2 , , : 7 : * : 1 " :a di Tl ;"
R J L a t 1 . 4 r q d a 4 . 7 a s 4 . 9

l
1

- . - - - . - -- - - . - - - . - - - -- - -. A------.

P C ' L S E C I i I P

I P E I

Figure 3-2 Distributed data stmcture for parallel computation o f a convolution

3) Only t ~ v o lines of data can bc stored in rnernory, because each PE has only two 256

words memory units. The data in "memii" is first used while a third line o f data is stored

in "inemA". When the processing of first data line is finished, the third line has replaced

it in memory. The data in "memB" is then used and replaced by a fourth line of data.

Thus. '-memil'' always holds data of odd numbered lines, and "memB" stores even

nurnbered lines. Processing alternates from one to the other.

Line 1-3

Line 2-4

3 -5

MemA
MernB
MemA
MernB
Me mA
MernB

Odd

Even

4) Con\.olution calculation results stored in csternai memop-. Considering the erosion of

image boundaries induced by the algorithm. the output image starts from the second line

at the second point (2.2). Thersfore. a result picture comprises 1022 b>. 1022 pixels and

edge points --B*' as shoun in Figure 3-2. The edge points "B" of result image can be filled

u-ith the cdgr points of the original image at the same position. In this case. the edge

points are not the result of a convolution. In order to overcome boundary effects between

parts (see Figure 3-1). the edge parts are calcuiated by processing 257 columns. Vertical

bands expansion is illustrated in figure 3-3. For part 1. columns 1 to 258 (original image)

are processed and columns 2 to 257 (result image) are produced. Part II. colurnns 257 to

514 (original image) are produced and coIurnns 258 to 513 (result image) are produced.

Part III, operates on pixels 512 to 770 (original image). and part IV operates on pixels

768 to 1074+2 (original image). Thus, only the edge of the 1 K by 1 K output picture

rshibits boundary effects. There are no boundary effects between part I and part II. part II

and part III, and part III and part IV.

O r i n t n a l
d a r a

1 ' ' P E O 2 5 9 " P E O

R c s u l t 4- B B B B B
d a t a t m a g c

2 5 7 ' '

d a t a B P a r t 1

-8" p a r t d a r a in P E s

3 " P E 1
2'" P E I

" P E 3 [1

B B

2 5 8 "

P a r t I l

(I . I O 1 1) P E 2

O r i g ~ n a l 1 . 1 0 1 1 > . I o 2 1 1 . 1 0 2 1 2 . 1 1 1 . 2 1

R c s u l i d a i s B B

~ 5 8 " P F l

- J I , I

d a t a
P a r t I V

d a t a

P r r t 1

U
n c x t l r n r

Figure 3-3

1 . 2 5 9

2 5 7 " P E 2

P a r t I I

I !

Original picture data and result picture data (boundary effect)

1 . 2

3.2 Structure of the Convolution Software

1 . 2 5 8

2 5 6 t h P E 3 r
1 . 3

For a 3 x 3 convolution. nine multiplies are needed. The minimum theoretical processing

tirne is 9 multiply instructions and 1 loop control instruction. However each instruction

takes 4 cycles. Aiso, five additional instructions must be inserted with the 9 multiply

instructions (three "fivd[lnsrl[io", one "madd" and one "ld"). Figure 3-4 shows the detail

of a loop that cornputes a convolution.

1 . 4 1.5 1 . 6 1 . 2 5 5 1 . 2 5 6 1 . 2 5 1

More precisely. it shows that the result of the first mdtiply is available after the fifih

cycle. Two kvait cycles are needed before the second multiply. Then, the "fivdllnsrl!io7'

and "madd" instructions are inserted to avoid waiting time due to processing latency.

Using the sarne pnnciple. two *-fivdllnsrllio.' and one "Id" instructions are inserted arnong

the remaining instructions. thus. five additional instructions are inserted to fil1 up various

waiting cycle. \vhich reduces the loop esecution time.

qde

Figure 3-4 Instructi~n pipelining in a convolution

To process the basic 3 by 3 convolution. the output is first computed and then the result is

sent out as shou-n in figure 3-5. The process of sending out the previously computed

output line is overlapped with the calculation of the next to avoid wasting time.

A
+dial calculation

A

data input Ioopa

results output

tkure 3-5 OverIappi ng of calculation \\-ith exportation of output resu lts

An ideal processor with one multiplier requires at least 10 cycles to compute a 3 by 3

convolution. PULSE takes 15 instructions due to pipeline Iatencies and data

dependencies. A PULSE chip cornputes 4 results at the same time. This corresponds to an

average of 3.75 instructions (75ns) per 3x3 convolution. The program flow chart and

listing are provided in appendix A. A sample image and the computed results are Iisted in

appendix B.

CHAPTER 4

MOTION ESTIMATION ALGORITKMS AND

IMPLEMENTATIONS

The principle of Motion Estimation is to per fom a search that mavirnize the correlation

or minimize error behveen a block in the new (current) picture and a corresponding area

in the oId (prekrious) picture. The search process tries to find the coordinate values of a

block of already transmittcd pixel values in the new picture and transmit thsm. Thus. if

the search succeeds. the block in the new picture is not trmsmitted-

Motion estimation is a key component of an image processing system such as the

MPEGI standard. because it consumes most of the processing time. For this system. the

data rate of 76Sx480x30~8bps can be reduced 100 times by motion estimation.

Obviousb. choosing ri suitable processor and a good aIgorith.cn for motion estimation is

key in an image processing system that supports the MPEGî standard.

4.1 Motion Estimation Algorithm

The motion estimation algorithm that was implemented is given in section 4.1.1. Section

4.1.2 describes the data structure used in PULSE to implement it.

4.1.1 General Description

The mean Square Error (MSE) (Eq.4.1) and Mean Absolute Distortion (MAD) (Eq.4.2)

are popular criterions used to msasure the fit behveen data blocks. MAD is the simplest.

The method for choosiiig the corresponding area in the reference (old) picture is based on

the estimation of the moving speed in the content of an image. If this speed is slow. a

small a r a in the reference picture is chosen for searching, otherwise, it is necessary to

ciioose rt larger rireri. The larger the area in the reference picture is. the longer is the

ssarch tirne. Gsnerall!~. if 8x8 or 16x1 6 data block in the new picture is chosen, then,

16s 16 or 32x32 search area in the reference picture is chosen. Considering the boundary,

riccording to Figure 4-1 and equation (Eq.4.2). there are nine cases of interest, where for

each case. the block size is not changed (8x8), but the size of the corresponding area is

changed (1 2 pixels x 1 2 lines, 16 pixels x 12 lines, 12 pixels x 16 lines and 1 6 pixels x 16

lines etc.). Thus. nine diffèrent programs have been created.

Column 2 - 7
Column 1
k-+

- \ block in current picture (8x8)
\ cor responding a r i a in previous picture (1 2x1 2)

Figure 4- 1 Position &: relation between blocks & search areas

in current picture and previous picture

4.1.2 Data Structure for Motion Estimation in PULSE

The blocks of data frorn the new picture search area and from the old pichue are

respectively loaded into memory A and memory B of each PE in PULSE. Each tirne 128

pixels are loaded. Figure 4-2 illustrates these data structures.

M e m A . B

8 x 8 Block in M e m A
of current picture

1 6 s area in h lemB
of p r e v i o u s p ic ture

Figure 3-2 Data of blocks and data of search areas in memA and memB

The data is distributrd in 4 PEs as shonn in Figure 4-3. The results for positions 68. 69,

70 and 71 are calculated in paraIlel n-ith 4PEs in one processing phase. The nest step

computcs elrments 72 to 75. There is no ne\v input data in memA and memB before

finishing the block search in the correspond area.

Furthemore. Figure 4-3 illustrates the proposrd mrihod IO per fom a Gradua1 Full Search

Method (GFSM). There are t u - O nddress counters pointing rnrmory A and B holding

respectively a block of new picture and a corresponding area of an old picture. For each

cornparison. 4 pixel pointers are adjusted to point to the next 4 pixels. When the first

search over 64 pixels is completed. the counter indesing memory A is retumed to the fust

pixel unit of the new picture block and the counter indexing rnemory B is set to the next

start pointer of correspond area in the old picture according the gradua1 search algorithm.

No matter whether a match is found or not. after 8 1 cornparisons with these data sets. the

new data of nest block and nest corresponding area are loaded in MemA and MemB. The

nest block searching thsn starts. The gradua1 search algorithm is somewhat more

comples than FSM with respecr to the order in which pointers are adjusted. but it is 3

times fastsr on average.

Figure 4-3. Data structure in PEs

4.2 Gradual Full Search Method and Full Search Algorithm with the PULSE Chip

In section 3.2.1. the speed of the GFSM and FSM dgorithms (see chapter 2.2) are

characterized. Moreover. the basic match program is presented in section 4-22.

4.2-1 Speed of GFSM and FSM Algorithms in PULSE

The kI.AD algorithm needs 192 operations (61 subtractions + 64 absoIute value

cornputations + 64 accumulate instructions). If this \vas spread ideally on 4 processors. a

minimum of 48 instructions n-ould be required.

In order to complete 8 1 btock cornparisons over one region- 3888 instructions (38 x 8 1)

are needed. There are 5760 (768 s 480 / 64) blocks in one frame. In a real time system.

pictures must be processed at the rate of 30 per second. A total of (5760 x 30 = 172800)

blocks search must be done e\.ep- second.

Assuming 54 MHz PULSE chips. (18 x 81 x 172800 / 54E6 = 12.4) 12.4 chips wouId be

required. Howe~rer. in practice. more resources are needed due to the overhead associated

with data input. loop control, address counter setting and instructions that cannot be

paral Ielized.

Figure 3-3 shows the prograrn flow chart and its instructions with GFSM or FSM

algorithms, for one block match. For a single search, it uses 768 input + 355 cal. = 1123

cycles or 17.7 cycles / pixel. For a full search, time is 768 input +28009 calculations =

28777 cycles or 449.6 cycles / pixels. Considering that: 1) one PULSE chip c m run

54,000.000 instnictions/second, 2) one 768x480 pixels image has 96x60=5760(8~8)

blocks to be processsd out. 3) 30 frame picnues/ second are used. then 28777instnictions

x 30 s 5760 / 53E6 = 92 PULSE chips are needed for GFSM.

input 128 1'1 6bits data
to mr.m.4. B

I input 128 I l bbits data
to mem.4. B 1
-

"O-'=' position I t x x t o r l

I * I -
basic match unit 3361

*

instructions
FS h.1 GFSM

minimum

mavirnurn position - "1-'

nrst block a
Figure 43. FSM 6C GFSM program diagram and its instructions (one b1ock)

4.2.2 Motion Estimation Program for PULSE

Figure 4-5 shows the instructions executed to perfonn one basic match program for the

full search method (FSM) or the gradua1 f i l 1 search method (GFSM). (corresponds to

PULSE assembly language)

l o o p 8

l o o p 3

ra16- addra
rbI 6- addrb

Figure 3-5. Flowchart of a basic match unit

Ioop 2

As showm in figure 3-2. address pointer for memA and memB is 256. If the address

pointer is over 255. it \vil1 retum to O. For the second block search. some data remains

fiom the first block search. thus the start address in the new picture is 193 and the start

address of area in the old picture is 128. In other words. each block search only needs to

rensw 138 pixels. In order to implement this behavior. mechanism to adjust address

pointers are needed. In the basic match prograrn. 72 instructions are required for this

task. For one block search, 5832 instructions are needed, out of which a f i f i are used to

check and adjust address pointers. Tbese instructions are identified in basic match

prograrn (Figures 4-7 and 4-8).

/ 'addra - * a d d r b , ra2I *
[/ raz+ ra2 1 + 1 rb2 + ra+ra3]

I

For each block search. Figure 4-6, if 256 memory locations are resenred. starting at

address zero, then some instructions can be saved. In order to implement this idea for

each block search. 256 pixels (one search area) must be transferred from extemal

memory- -4s shoun in Figure 3-6. some instructions are added to adjust the start address

of the pointer that accesses the estemal memory. 80 PULSE chips would be required to

support real time processing of this algorithm.

p j c t u r e s -. -. - . . - -. . -- - . . -. -. . .-- - .- -. , . - . . -

n 8 x 8 B l o c k in M e m A
o f c u r r e n t picture

16x area in M e m B
o f p r e v i o u s p i c t u r e

J

Figure 4-6 Data of block search in independent memory space

In figure 3-7. the basic match program called 'tl ', contains some 'nop' instructions due to

PULSE' s pipeline architecture. h order to reduce the nurnber of hop' instruction, some

instructions c m be shifted without changing the result. In Figure 4-8, the program 3.2' is

an improved version exploiting this idea- It removes loop2 to Save loop set instruction

cycles. The marked instructions are moved into other places occupied by 'nop' in ' t l ' .

With tfiis improved version 21 3OOinstnictions x 172800/54E6 = 68 PULSE chips are

nesded.

~ccumülarc € 4 pixeis

C -:
r - nrc

àdd râle, 4 , râ16; + 4

àdd rb16, 4 , r~16; + 4

dDr loow2

add ra16, 8, ral6;

Ici
-

ré:, s p o r t

ret

' * The "2nd r o l 6 , c c f f h , r a 1 6 " ï r i s t r üc t i on keeps C h e v a l u e of r â 1 6 less

t h a n 256 , when increase 4 .

aad ra16, 4 , r a l 6 ;

a n d ra16, O O f f h , r s l 6 ; mode1 256

Figure 3-7 Prograrn t l

a b c r b 2 , r c 2 ;

$ 3 ncc

cca r L f , r z 3 , r a 3

SUS *adcira, 'oddrb, rbf ; r a 2

3 nop

abs rb2 , rb2;

ld r33, s p o r t

p u s h 3

â c d r c 3 , sFor:, ra3

?-;y * - -

Figure 3-8 Progrm t2

Sample programs and corresponding results are provided in appendis A. The simulation

uses Mentor Graphic QHSIh4 tool. The source file includes tn-O 64x64 pisel images. The

8x8 block FSM and Gradua1 Full Ssarch Method (GFSM) are implernented with 16.u 16

rnatching area. The running time. matched pixels coordinate values in new picture and

the coordinate values of corresponding area in old picture for first block searching are

also provided in appendis A.

CHAPTER 5

DCT & IDCT ALGORITHMS AND IMPLEMENTATIONS

5.1 DCT & IDCT Algorithms

In this section. a data cornprcssion algorithm. the Discrete Cosine transforrn (DCT)

[Fa4S87] and its inverse algorithm. the Inverse Discrete Cosine Transfomi (IDCT)

[IEE90] are described. These algorithms are u-idely used in image compression

programs. The- implsmcnt ri transform from the timc domain to the frequency domain.

5.1.1 DCT

DCT is an essential pan of the MPEG data comprcssion. There are two good reasons for

using DCT in data compression. First. DCT coefficients have bcen shown to be relatively

uncorrelated. and this makss i t possible to construct relativsly simple aigorithms for

compressing the coefficient \dues . Second. the DCT is a process for (approximately)

decomposing the data into undsrlying spatial frequencies. This is very important in terms

of compression, as it allows the precision of the DCT coefficients to be reduced in a

manner consistent ivith the properties of the human 1-isual system. [MPG97]

For data compression tvith the MPEG standard, two-dimensionai array (2-D) of samples

are considered. Arrays of eight points by eight points (8x8) are usually considered.

Suppose that a 2-D array of sample. f(x.y), is to be transformed into a 2-D DCT. The

equation is as below (Eq.5.1):

For esarnplr. the input value of matrix f(s.y) is:

120 IO8 90 75 69 73 83 89

127115 97 81 75 79 88 95

13412210589 83 87 96 103

137135 10792 86 90 99 106

131 119 10186 80 83 93 100

117105 87 73 65 69 78 85

100 88 70 55 49 53 62 69

89 77 59 53 48 42 51 58

Also. suppose 'O' means black and '255' rneans white. The corresponding 8x8 bar

diagram is represented below.

Then. the DCT transform calculatrd with equation (Eq.5.l). produces the folloning

result:

70090 1 0 0 0 0 0 0 0

It is remarkable that almost a11 values are equal to zero. the non-zero values are

concentrated at the upper left corner of the matrix. These non-zero values are transferred

to the receiver in zigzag scan order (see Chapter 2, Figure 2-5), which is 700 90 90 -89 O

100 O O O . . . O. The zero values are not transferred. They are replaced by an 'end-of -

block' sjmbol.

5.1.2 IDCT

IDCT is a inverse algorithm of DCT. It is used to regenerate the data back to the time

domain from frequency domain representation. The IDCT algorithm is expressed in

equation (Eq. 5.2)).

(E q -5 -2)

In equation (Eq.j.2). the F(u.\.) of DCT result with (Eq.5.I) \vil1 be transformed again.

the resuit of matrk f (S.) ') is as below:

Comparing the original matrix f (x. y) and the inverse transfer matrix f (s. y), there are

few smdl differences betwesn them. It caused by the calculation accuracy. In other word.

it is limited by the word length of the processor. This error is generated by two times

transfer cdculation (DCT and IDCT). It means that the emor is produced at remote

decoder device. In order to limit error accumulation in the decoder, the IDCT can be used

in encoding systsm to generate an 'old picture' (See Chapter 2. Figure 2-3) .

5-2 Implementation of DCT 8r IDCT on PULSE

This section deals with the storage of a cosine table and ro the timr required to compute

it.

5.2-1 Data Structure of DCT on PULSE

Parallel processing can be used to compute DCT and IDCT. With PULSE chips, a cosine

table is insertsd in mernA. The use of this cosine table c m Save a lot of calculation time.

For example. the value of (cos[(2s+ l)un/lG]) c m be found in the cosine table according

the position of (x. u). For a 8x8 DCT or IDCT, a 64 elements cosine table c m be

generated with a C M program executed on a host and then loaded to PEs mernories.

Here, a benefit of using a C H program on a host rather than the 16bit PULSE chip is that

values are more exact. The cosine table size is related to the window size (8x8 pixel or

l6x 16 pixel). So. this method is very effective for processing fixed window sizes.

Figure 5-1 shows the cosine table and elements stored in PEs mernories continuously.

The data structure is the same in each PE. In order to calculate in parallel. the beginning

positions for 'u' in 4 PEs are 0. 8. 16 and 24 individually (Sre Figure 5-1 in shadow).

Matriv of cosine table
-

x l u l d u 2 x7u7
x i u 9 s2u10 s7u15

...... x lu17 d u 1 8 x7u23
x l ti25 .Cu26 x7u3 1

...... xIu33 d u 3 4 x7u39
x 1 u4 1 .Cu42 ~71.147

...... s l u 4 9 d u 5 0 x 7 S 5
s l u 5 7 d u 5 8 x7u63

The shadowed elements are a corresponds to
the stxting points of calculations in the 4 PEs.

24
25

PEO

Ea
x I u l

xous
X I u9
.**.

..-.

....
sOuI6
s l u 1 7

x o u î 4
x l u 2 5

x 11.133

PEI

xouo
x 1 ul

!BE!!
x l u 9

xOu16
xlu17

xOu34
xlu25

iOu32
c l u3;
I

~ 7 ~ 6 3 -

PE2

xouo
s l u l

xOu8
x l u9

x l u 1 7

xOu2.l
x lu25

sou32
u 1 u33

f
u7u63

sou0
x l u i

xOu8
xIu9

KOU 1 6
xlu17

x lu25

sou32
x l u j 3

I
~ 7 ~ 6 3

Figure 5-1 cosine table and input data stored in PEs mernories

Figure 5-2 shows the program flowchart and the associated instruction count. From inside

to outside. there are four loops (loopx, loopy, loopu and loopv). The calculation 'f(x,

y)*cos[(2x+l)*u*3.14/16]*cos[(2y+l)*v*3.14/16]' requires only two instructions 'mult'

and 'macc' in loopx. Using cosine table and setting address pointer appropriately makes

66

the complex calculation very simple and parallel. The key idea is that the address pointer

points to different units in each PE. It is shown in Figure 5-2 (dark shaded block).

1 Input cosine table, constant & data(8x8) 1

Iocp

la

1 Constant from memory -> register *

344 instructions,

~CC*CV*CU- CC
output acc (4 results)
set f(s.y) Io start point
1 ->CU, u+32-> u

750 instructions
1

Figure 5-2. DCT Program Diagram and Instructions

6032 instructions

Appendix H and 1. provide an implementation of DCT and IDCT assembly programs for

the PULSE machine, as well as the content of the cosine table, and compared C*

programs of DCT and IDCT.

5.2.2 Requirements and performance for DCT and IDCT on PULSE

The flowchart of a DCT progrm is presented in Figure 5-2. For each DCT in an 8x8

block. 6033 instructions are needed. To support real time DCT 6032 instructions x

172800 / S E 6 = 19 PULSE chips are needed. Since the IDCT has the sarne complexity,

the DCT and IDCT for the MPEG codec requires 38 chips, which is half the nwnber of

chips required for motion estimation (68 chips). Obviously, motion estimation, DCT and

IDCT represent the ~vhole complesity of a MPEG codec.

CHAPTER 6

IMAGE PROCESSING WITH PULSE CHIPS AND A C40

PROCESSOR

A PULSE chip is a parallcl SIMD processor. It is not very high efficient when esecuting

code with conditionals. For esample. when an "if' instruction is encountered. the

operation is modulatsd by four conditionals on 4 PEs. It is generally very difficult to

predict which condition from each PE influences the result. In order to get a certain

condition from a PE. suppose the jump condition fiom PEO. which is set active "O'., the

PE3. PE2 and PEI are set inactive "1'. with instruction (Idcr I 1 lob. acm), then PE3, PE2

and PEI are set active(1dcr 0000b. acm) afier a jump instruction. The following program

illustrates this method:

ifeq ra3. 0. O

$3 nop

bpa jumpl

jumpl : nop

Obviously. these "set" and 'Ijump" instructions decrease performance. because some

processors are l e f i idle. In order to improve performance efficiency o f PULSE, a

codesign solution based on processor/coprocessor mode1 [PRiNC], composed of PULSE

chips (calculation engins as hardware) and a TMS320C40 processor from Texas

Instruments [TEX901 (for management and processing of segmental code). has been

sspenmented.

6.1 System Architecture Composed of one PULSE Chip and a C4O

The TMS3ZOClO is a 32 bit. floating-point processor. Its Central Processing Unit (CPU)

is configured for high-speed interna1 parallelism for the highest sustained performance. It

contains a 40/32-bit Roating-pointhtegrr unit that supports multiply. divide. square-root

and arïthmetic logic operations. The C10 has six on-chip communication pons (20M-

byte/s bidirectional interface and separate 8-word-deep input/output FIFO for processor

to processor communication with no extemal hardware and simple communication

sohvare).

As shown in Figure 6-1, the image processing C40PULSE system is composed of seven

main functional blocks : a TMS320C40 (C40) as coprocessor. a PULSE chip as

processor. a glue logic unit realized with FPGA technology, three memones and one

oscillator (OSC). The C40 is a common DSP processor that can compensate the weakness

o f the PULSE chip. The C40 has three main functions. (1) transfers data from global

memory to local memory; (2) output al1 calculation results from PULSE and itself to

global memory: (3) nin accumulation and -'if' insrtuctions. PULSE gets data from local

memory to nin parallel code with no or very little 'if instructions. The 32 bits DRAM is

used as a buffer to store input data. as well as partial and final results. The 66 bits DRAM

is a program memory or data memory. n i e glue logic unit (FPGA) makes the system

easicr to modify.

Figure 6-1 The C$O/PULSE system

The interrnediate result of motion estimation (before accumulate) are sent to local

memory. The accumulation and "If' instructions are processed by the C40. Figure 6-2

shows a flowchart for a program split for the proposed heterogeneous architecture. It

suggests that the PULSE chip runs "sub'ànd "abs" instruction and the C40 coprocessor

runs "accumulate" and "if' instructions. Here. the major problem is the synchronization

between the C40 and the PULSE chip, more precisely data communication. In order to

transfer data promptly. a flag is set in local mernory afier the 'abs' finished. The C40

checks the flag unit and then start -'accumulate" while flag is not zero. An intermpt is

generated from PULSE to C3O when PULSE output results to Iocal memory. Of course,

the C-lO's procrssing time must Se less than PULSE'S processing time in each search

penod. In this case. C30 crin process intempts.

ckiay one step(one basic mitch) Ï

Figure 6-2. Prograrn flowchart for the C40PULSE system

I r i O , r a 3 ;

I d r b 6 , r b l

~ u s n 8 ;

loop3 :

p u s h 2 ;

l o o ~ Z :

2 nop

Id r s 1 6 , à d d r a

I d r ~ 1 6 , àcdrb

$ 2 nop

s u b ' â cd rz , 'zddxb, ra2

83 nop

âbs r a z , ra2;

3 n o p

Id raz, s p o r t

2 n o p

From the PULSE chip implementation (Figue 4-7). Figure 6-3 presents a passible

C40/PWLSE system irnplementation. More precisely. bolded instructions represent

instructions executed on the c4O processor. There were about 50% instructions in this

Part.

t l : e c c u r n u l ? t s r r a 3

â c c u m ü l a t e 6 4 p i x e l s

a c c a i u l a t e 1 lin? !I pix2lsj

add ra16, 4 , ra16; + 4

add rb16, 4 , rb16; +if

dbr l e o p 2

àdd r a 1 6 , 9 , ra16 ; 16-3xS=E

cdd rb16, 8 , r b l 6 ; 16-4:<2=9

dDr lcop3

sub ral6, 125 , r a l 6 ; -126 back to s t a r t point

s ~ b rb16 , 128, r b l 6 ; -128 back t o s t a r t point

r e c

i r e 6 - A C30/PULSE system implementation

The PULSE data input time is not incIuded in the program of figure 6-3. Considering

GFSM or FSM algorithm. experimentation shows that the C40PULSE system is about

0.3 times faster than the use of only one PULSE chip.

Data transfer programs for C30 and PULSE are listed in appendix N. The C program and

PULSE assembly program listed in Appendix N were simultaneously run in Mentor

Grriphics simulator (QuickHDL) [PUL96] [TEX90].

6.2 Improvement of the CJO/PULSE system

In order to increase performance, four PULSE chips are used in this system. This

improved system is named C40/4PULSE system and it is presented in Figure 6-4. The

four PULSE chips are comected directly into a c h a h It is easier to transmit data from

PEs of lefi PULSE chip to PEs of right PULSE chip on this chain. A common instruction

controls al1 PEs on the four PULSE chips.

Due to the increase of PE chain size. the Ioop limits are decreased and the time to inout

date is also incrcased. So. the speed increase is not linear. This system runs 3.5 times

fàster than using only one PULSE chip and 2.2 times faster than the C40/PULSE system-

(Global

Table 6.1 compares the procrssing time of various motion detection algorithms for three

architectures: one PULSE chip. the C1O/PULSE system (one C40 and one PULSE chip)

and thé C1O/IPULSE system (one C10 and four PULSE chips). The cornparison is

assumes on image size of 760x480 pixels, The search block is 8x8 pixels and the search

area is 16s 16 pisels.

According to the different algorithms. the number of search steps varies fiom 11 to 81

(see table 6-1). In the C4O/PULSE system. the processors are working in parallel and the

C30 processing time is always less thm PULSE processing tirne. The maximum time is

obtained for the one PULSE chip system. So. the Block Match Time (BMT) with only

one PULSE chip is 335 instruction c~c l e s . N'hile it 78 instruction cycles are required for

the C-IO/-iPULSE s).stem.

The FShl algorithm is slow but accurate. This cspIains its popularity. GFSM is a bit

&ter than FSM bascd on tabIe 6.1. Although GFSM is more cornples. in practice. the

change bsttveen an old picture and new- picture is often limited at rate of 30 frarnes per

second. Thus. \vith GFSM. the number of search steps is generally much lower than the

maximum value (8 1 in this case).

Table 6-1 Cornparison searching results n-ith diffsrsnt algorithrns

GFSM

FSM

CDS

3 sttr,

CS.4

*B!Wl = Basic Match Unit S = Sccond inst. = insrruction

hlaximum
S d s e p

81

8 1

1 1

3

13

one P L U E chip

355 inst. / BbW
449 inst. / pisel
3.1s i 6ame

355 inst. ! BblU
450 inst. ! pixel
3.075 i tîarne

355 ina. i BMü
66.5 inst. / piscl
453mS : fkne

355 inst. / Bh.n!
144 imt. / pixel
9 8 2 6 / h n w

355 inst. ; BMLI
75 inst. / pixel
51 lms ,. km

the CJOtPULSE syst~m
(one C4O md one
PULSE chip

256 im / Bblü
3 2 3 inst. / pisel
2 .2s / fiame

256 insr. i Bhfll
360 irtst. / pisel
2.4s 1 h m e

256 inst. i BhW
42.8 im. / piscl
292mS / h m c

256 insr. :' Bhfü
97 inst. :' pixel
6 6 3 6 1 f m

256 inst. .' BhlLi
5 0 i-1. p i d
; 4 h S ,' f m

the C40/4PULSE systrin
(one C30 and four
PULSE chips)

78 inst. i BMU
98 inst. / pisel
6 6 0 m S / ~

78 inst. / BblU
1 09 inst. / pixel
7 U m S / f i a ~ ~

78 inst. / BMU
l4.2 inst, t' pisel
97mS / h m

78 inst. / BhfU
32.3 inst. / pisel
22lmS/fnmc

78 insr. i BiLW
16.8 inst. / pixel
I I - a m S i ~

CHAPTER 7

Conclusions

This thesis highlights and explains the key features of how a fixed-point SIMD array

processor. PULSE. c m be used to implement MPEG-2 standard codec that performs

\.ide0 compression. In particular. this research showed effective methods of partitioning

algorithms to exploit the parallttlism of the PULSE processors.

The main components of an MPEG-2 codec. the motion estimation that computes motion

\-sctors. was designed and simulated. Its pef i rmance \vas evaluated and the algorithms

w-ere optirnized for the PULSE architecture. It was found ihat low compIesity motion

estimation algorithms are fastcr but ofien inaccurate (See 2.2). The GFSM algorithm is a

better msthod than the other algorithms- because it is accurate but nevertheless

significantl>. faster than the FSM. FinalIy. ws here shown that 68 chips are required to

achieve the motion estimation under the MPEG standard.

Another time consurning operation of the MPEG-2 standard used to reduce the spatial

redundancy is the Discrete Cosine Transform @CT) and its inverse (IDCT). An

implementation of the DCT exploiting the parallelism of the PULSE chip and requiring

19 chips has been presented. An important point to underline in the implementation is the

use of a predefined cosine table to perfonn the DCT. The use of this cosine table, first

cornputed on a kvorkstation and aftenvards loaded on the PE mernories. reduces the

processing time. and also increases the accurricy of calculation (due to the precision

offered bu a laquage like C++ on a ~vorkstation, compared to the 16 bit PULSE

processor).

Finally. we have shonn that the convolution program is a good application for the

PULSE chip applied to image processing. In particular. techniques that reduce the

ninning time of loops and increases the efficiency of performance have been presented

(Chapter 3). We should that only 3.75 instructions are required on average to process

each pisel tvith one PULSE chip.

7-2 Future work

Some issues are w-orth considering for fürùier research. These issues are as follows:

Parallel Architecture: it \vas proved that the =chitechue of the PULSE chain affects the

performance of MPEG-2 codec. Using a PULSE chah of excessive Iength is not

effective. This could lead to propose a new architecture for the PULSE chain. The array

could be divided into several macro blocks, where short PULSE chains process a macro

block. In ordrr to suppon these parallel PULSE chains. multiple local memories or multi-

port memories ncreded. The data transfer from global memory to local memones are

expected to become a bottleneck. For this reason. several C30s could be used. One of

them for DMA control and others could be used to process data. In this systzm, a PULSE

chain could have different lengths for processing different algorithms. For example.

eight parallel PULSE chains. sach comprising four PULSE chips. could support motion

estimation. and other chains with only two PULSE chips could support DCT and IDCT.

Management: For each macro block. its processing time could be different. For instance.

if al1 PULSE chains have only one control unit. then the system must wait the slowest

one done to continus processing. By contrast. if each chain has its own control unit, each

chain can process at its onm pace. For irnplementing this kind of architecture. multiple

program memclries are required to supply multiple instruction strearns.

Program: In the view of appendis F "Program of motion estimation" and appendix H

"DCT progam of PULSE". it is knoun that motion estimation and DCT prograrns are

not as efficient as the convolution program. due to some waiting instructions in the

program (see 5.2.1 and Appendix H). Generally speaking. these wait cycles appear after

set address instructions and calculation instructions. For the first situation, adjusted input

data sequence may reduce address change, thus fewer address setting instructions are

required. For the second situation. input instructions should be inserted as much possible

as in the waiting times.

Furthermore. as shomn in figure 2-3. the MPEG-2 codec includes DCT and IDCT

algorithms. For an 8 by 8 DCT. only 63 PE memory units are used to store cosine table

and 64 PE memory units are used to store data. The other 128 PE memory units can be

used to store DCT result. This DCT result can be used as the input of IDCT. Using this

idea will reduce data input time for IDCT.

Others: Using FPGA technology for logic control c m rnake PULSE chips easier to

connect uith PCI or other standard interfaces for practicd applications.

References

Peter A. Ruetz, Po Tong. "A 160-MpixeVs IDCT Processor for HDTV"

IEEE Micro 1992

Roger Woods. David Trainor, Jean-Paul Heron. Queen's University of

Belfast -'Applying an XC6200 to Real-Time Image Processing" IEEE

Design & Test of Cornputers. January-March 1998

Obed Duardo. Scott C. Knauer. John N. Mailhot. Kalyan Mondai, Tornmy

C. Poon. "Architecture and Implementation of Ics for a DSC-HDTV

Video Dscoder System" IEEE Micro 1992

M. Ghanbari. "The Cross-Search Algorithm for Motion Estimation" IEEE

Transactions on Communication, Vol. 38, No. 7. July 1990

Robert Hopkins. ATSC Washington. DC "Digital Terrestrial HDTV for

North America: The Grand Alliance HDTV System" IEEE Transactions

on Consumer Electronics, Vol. 40. No. 3? August 1994

Jaswnt R. Jain. Anil K. Jain "Displacement Measurement and Its

Application in Interfiame Image Coding" IEEE Transactions on

Communications, Vol. Corn-29, No. 12, December 198 1

Liang-Gse Chen. Wai-Ting Chen, Yeu-Shen Jehng, and Tzi-Dar Chiueh

".4n Efficient Paralle1 Motion Estimation Algorithm for Digital Image

Processing" IEEE Transactions on Circuits and Systems for Video

Techology. Vol. 1, No. 4, December 199 1

Hsieh S. Hou, "A Fast Recursive AIgonthm For Computing the Discrete

Cosine Transform" IEEE Transactions on Acoustics. Speech. And signal

Processing. Vol. Assp-35, No. 10, October 1987

Gilles Privat. Eric Petajan. "Guest Editors' Introduction Processing

Hardware for Real-Time Video Coding" IEEE Micro. October 1992

Mitsuo Ikeda. Tsuneo Okubo. Tetsuya Abe. Yoshinori Ito. Yutaka Tashiro

and Ryota Kasai "A Hardware/Software Concurrent Design for a Red-

Time SP@ML MPEGZ Video-Encoder Chip Set" 1006-1 4OW6 1996

IEEE

Paul Kalapathy. " H a r d w e - S v Interactions on Mpact" IEEE Micro

Marcl-d-Apnl 1997

Laurent Letellier. Didier Juvin. "Hi& Performance Graphics on a SIMD

Linsar Processor Array" 0-7803- 1 253-6/93 1993 IEEE

Chen-Mis Wu. Dah-Jyh Pemg. Wen-Tsung Cheng and Jian-Shing Ho,

D e p m m r n t of Eiectronic Engineering National Taiwan Institute of

Technology Taipei. Taiwan. R.O.C. "A Hi&-performance System for

Real-Time Video Image Compression Applications" IEEE Transactions

on Consumer Electronics. Vol. 3 1. No. 1. Feruary 1995

"IEEE Standard Specifications for the Implementations of 8x8 inverse

Discrete Cosine Transform" Sponsor CAS Standards Cornmittee of the

IEEE Circuits and Systems Society, Approved December 6, 1990, IEEE

Standards Board

15. [NT951 Edward R. Dorgherty. Phillip A. Loplante "Entroduction to Real Time

Image"

16. [MED93] Woobin Lee and Yongmin Kim. University of Washington. Robert J.

Gove and Christopher J. Read. Texas Instruments. "Media Station 5000:

Iniegrating Vidso and Audio" IEEE Multimedia Surnmer 1994

Joan L. Mitchell. William B. Pennebaker, Chad E. fcrgg, and Didier J.

LcGall. -'MPEG Video Compression Standard" International Thornsonp

Publishing. 1997

Borko furht. Florida Atlantic University. -'Multimedia systems: An

Oven.ie\v.- IEEE MultiMedia 1993. pp.47-59.

Ran Srinivasan and K. R. Rao, "Predictive Coding Based on Efficient

Motion Estimation" IEEE Transactions on Communications. Vol. Com-

33. No. S. august 1985

J. Staunstrup NJ'. Wolf. "Hardware/Software Co - design: Principles and

Practice" Kluu-er Acadarnic Publishers. Chaptsr 3

Doug Bailey- Natthew Cressa. etc.. "Programmable Vision

Processor/Controller for Flexible Implementation of Current and Future

Image Compression Standards" IEEE Micro. October 1992

PULSE Development tearn. "PULSE Technical Report Composite

Decument" École Polytechnique de Montréal. 1996

Alexander Bugeja and Woodward Yang "A Reconfigurable VLSI

Coprocessing System for the Block Matching A I g o r i ~ " IEEE

Transactions on Very Large Scale Inte_gation (VLSI) Systems. Vol. 5. No.

3. September 1997

23. [ROL94] Bryan Ackland, "The Role of VLSI in Multimedia" IEEE Journal of

Solid-State Circuits. Vol. 29. No. 1 April 1994

25. [TEL821 Tatsuo Ishiçuro and Kazumoto Iinuma. '-Television Bandwidth

Compression Transmission by Motion-Compensated Interfrarne Coding"

IEEE Communications Magazine. Movember 1982

26. [TEX901 Texas Instruments- 'œMTS320C30 user's book"

27. [TW096] Toshio Kondo. Kanihi to Suguri. etc.. ..Tn-o-Chi p MPEG-2 Video

Encoder" IEEE Micro Apnl 1995

28. [VID97] William Chien. --Vide0 for Everyone" January 1997 BYTE

29. [VLS96] Cesar Sanz. Matias J. Ganido. Juan M. Meneses "VLSI Architecture for

Motion Estimation using the Block-Matching ~ lgo r i thm" IEEE

Appendix

PULSE VI Competirive analjxis

CNAPS SHARC PULSE V I Oxford

-4236

SIMD Architecture Single-

processor

MIMD SIMD

CIocR

Frequency

20-25 MHz

Number of

Processor on

the chip

64 PNs.

Without

Controller

Single

floating

point

Processor

One

floating-

point

Processor

One

Controller 3

fixed-point

processors

No inter-PE

cornmunicati

on

One

Controller 4

fised-point

processors

Inter-PE

Comrnunicat

Cross Bar

memory

access

S trong.

Multichanne

1 332

hf b ytes/s

Very strong

3-input. 3-

output ALU,

Mult-add-

ion support

Very weak

Multiply-acc

Strong

Two adders

one

multiplier

Weak

Multiply-acc

rnultiply-add

Parallel

Operations

in the PE

-

Strong

3-input

ALU

Multiply-acc

acc

add-acc

Non-linear

processing

Application

Mapping

Scalability

Estsrnal

Memory and

Y 0 Interface

Very

restricted

Weak

Only mm.

min and clip

o f two data

Scalable

4 buses. 63-

bit datapath

to SRAM

10 DMA

C hannels,

160

Weak

V e v

flexibIe.

But very

hard t O

program

No

Single 64-bit

Bus shared

by al1 the

processors

for data and

prog-

No

Very

restricted

Scalable

400

Mbytes/s 32-

bit sync.

Memory

2 40

Mbyteds

86

nled-add

Very strong

M a x Min.

Med

Rank-order

Index

ranking

Core

function

chip

Flexible and

easy to

program

Scalable

Two buses

$32 Mb/s

jync.

lliemory

t 108 Mb/s

iata ports

On-c hip

memory

Micro-

Instruction

Instruction-

set

Software

Tools

3kbytes on

each Pn

64-bit total

33-bit

control

32-bit PN

Very limited

Assembler

C compiler

Debugger

2Mbits or

3Mbits

38-bit

Rich,

estended for

non-1 inear

processing

Assembler

C compiler

Simulator

Debugger

Evaluation

board

SOKbytes

64-bit for

paralle1

proc.

32-bit

master

Rich.

estended for

logic

processing

Assembler

C compiler

Simulator

Debugger

Evaluation

board

DMA ports

1 kbytes Ins.

1 kbytes data

Very limited

Software

development

kit

2kbytes Ins.

2Skbytes

data

Very rich

extended for

both linear

and non-

linear proc.

Assembler

C compiler

Simulator

Debugger

Evaluation

board

Application

l ibraries

Packaging 300-pin PN

240-pin

CSC

PG-4

Availability 1 Yes

240-~in

PQFP

High

305-pin

ceramic

PGA

Yes

High

208-pin

PQFP

Low

240-pin

PQFP

Low

Appendir B PULSE Vl technicalfeatures

The following list is a summary of the features of PULSE VI:

4 processing elements (PEs) per chip

53 MHz operation (worst case)

2 1 6 klega MXCCs per second (1 6x 1 6 MACC)

2 16 Mega ;-operad ALU ops per second

21 6 Mega ;?-bit shi Wrotate per second

+stage esccution pipeline

ES2 ECPD07 0.6 um process

Sis modulo counters for easy modulo addressing

2 1 6-bi t shi fi-register chains for inter-processor communications and data I/O

32-bit accumuIate chain for direct data link between neighbor PEs

Instruction set includss vector and parallel instructions

Specializcd 3 operand aithmetic-logic unit

Single cycle r d . clip. cor. max, med and min operations on 3 course operuids

Accumuiator has 33-bit interna] range

Programmable overtlow saturation for both signed and unsigned values

Signed saturates to +2 -1 and -2

Unsigned saturates to O and +2 -1

Four 16-bit reconfigurable data ports 432Mbis of data I/0

S ynchronous, asynchronous pseudo-synchronous

Up to 108 Mbytes/second per port

2 ports may be configured as C40 type CQM ports

256 word intemal program rnemor).

64 bit extemal program data bus

May be used as 432 Mb/s data port

256 word interna1 constants memory

Used for coefficient storage for filter algonthms etc.

Two 24 bit tlexible address ports

- Programmable modulo counters amilable for address generation

Standard CPLr interface for configuration and status

- Configuration can also be perforrned by program

PULSE chips are cascadabls to form larger arrays of processors

- Synchronous (/O ports allow direct connection between chips to form large

Iinear arrays of processors

- Two dimensional arrays are possible sincc there are 4 I/O ports

Appendir C PULSE VI logic symbol-subject tu design review

address-2-ac t ive

ad&- l -active

rst n

CU:

halt

intr

inanc hio

tdo

tdi

tclk

trstn

unode

Appert div D The con volution program flo wchart and program

loopy I *
1 input first 2 line's 256 points to PE's memA and memB 1

i oops

* 1 input tirst 7 points o f third line (odd lines) to mrmA in ~ E s l
14 resuit was calculate and put it in each PE 's acc 1
push 63 to loop counter (256-4)/4=63

1 0 0 ~ 3 1
- - - -

input next 4 point to memA in each P t and calculate convolutioi
the result is in each PE's acc. put it to rO then Ioad it to sport and
output to esternal memory

-

l-

output the final result o f 4 points. adjust the
mca. rncb, rncc and mcd to nest line

J

input t i n t 7 points o f third line (r v c n lines) to mcmB in PES]
14 result was calculate and put it in each PE's acc I
1 push 63 to loop counter (256-4)/3=63 1

input nest 4 point to memB in each PE and calculate convolution
the result is in each PE's acc. put it to rO then load it to sport and
output to esternal memory

1 J
F

T

output the final result o f 4 points, adjust the pointer o f
mca, mcb, rncc and mcd to nest line

1 adjust the extemal memory counter to the start o f next 256 colurnnl

.tex t
ldeamc O. 0. mc-min. mc-min
ldeamc 1048576. 10.18576, mc-mm. mc-max :(1024* 1024)
ldeamc 1. 1. mc-stride, mc-stride
ldeamc 0, 1025. mc-starr, mc-start ;start fiom second line and second point(I024+ 1)
ldiarnc 3. 0, 255. mcar :read f?om 4* point
ldiarnc O. 0. 255, mcaw
ldiamc 3. 0. 255. mcbr iread kom 4~ point
ldiamc O. 0. 255. mcbw

loopy:

loopm:

loopn:

;THIRD L M E

push 4
push 257

hvd nport. *mcaw(l) II nsr II io *mccro/o ;start input 256 point of first line
dbr loopm
ldeamc 766. 1. mc-stride. mc-stride :(+ 1023-256-2)
fivd nport, *rncaw(I) II nsr II io *rnccr?'o :end input 256+2 point of first line
ldeamc 1, 1. mc-stride. rnc-stride

push 257
hvd nport. *rncbw(l) II nsr II io *mccf?/o :start input 256 point o f second line
dbr loopn
ldeamc 766, 1. mc-stride, mc-stride ;(+ 1024-256-2)
hvd nport. *mcbw(l) II nsr II io *mccro/o :end input 2 3 3 2 point o f second line
ldearnc 1. 1. mc-stride. mc-stride

push 5 1 1

(mcan~=O. mcbnv=O. mccr=O at 3rd line. mcdw= 1 at znd Iine)

:((1024-2)E)
;(next line)

fr3 fivd nport, *mcaw(l) [I nsr I I io *mccro/o ;(input 1-3p and point to 4th)
mult *mcar(l), ra l 1, acc
hvd nport, *mcaw(l) II nsr 11 io *mccro/o
mult *mcar(l), ra12, acci-
hvd nport. *mcaw(l) II nsr II io *mcd/o
mult *mcar(-2), ra 13, acc+
mult *mcbr(1), ra 14, acc+
hvd nport, *mcaw(2) 11 nsr II io *mccr?/o
mult *mcbr(l), ra15, acc+ j] nsr II io *mccr%
rnuk *mcbr(2), ra 1 6, acc+
mult *mcar(1), ra 17, acc+
mult *mcar(1), ra 18, acc+

mult *mcar(2). ra 1 9. acc+
input 7 point. The result o f fmt 4 point is at acc

loopa:
push 63 ;(2564)/3=63
mult *mcar(l). ral 1. acc
fivd nport. *mcaw(1) 11 nsr II io *mccr?/o
madd ra 1. 0. acc, rû
mult *mcar(1). ra 12, acc+
f\vd nport. *mcaw(l) nsr II io *mccf?'o
mult *mcar(-2). ra 13. acc+
Id rbO. sport
rnult *mcbr(1). ral4. acc+
fivd npon. *rncaw(2) 11 nsr II io *mccr?/a
mult *mcbr(l). n15 , acc+ Il nsr 11 io *mccr?/o
mult *mcbr(2). raI6, acc+ 1 1 ssr II io *mcdwO'o
mult *mcar(I). n17. acc+ II ssr /I io *mcdw?'o
mult *mcrir(l). ra18. acc+ jl ssr 11 io *mcdw?/o
mult *mcar(2). n 19. acc- f l ssr 11 io *mcdwO'o
dbr loopa

53 nop
rnrtdd ra 1. 0. acc, rO
$3 nop
Id rbO. sport
%j nop
P3 ssr II io *mcd\v?0
lderimc 766. 766. mc-stride. mc-stride ;! ! ! (1023-(256+3))
ssr Ij io *mcdwo&. *mccP6

ldsamc 1. 1. mc-stride. mc-stride
:(mccr=new Iine 1 * point, mcdw=new line 2nd point)

ldiarnc O, 0. 255. mcaw
ldiamc 3.0. 255, mcbr
ldiamc 3.0. 255. mcar
ldiamc O. 0. 255. mcbw :(mcaw. m c b \ ~ O . mcar. rncbr=3 rhe 4h point)

-*********
- * * * * **************************************

#3 fivd nport. *mcbw(l) 11 nsr li io *mccr?/o ;(input 1-3p and point to 4th)
mult *mcbr(l). ral 1 , acc
fivd npon, *mcbw(l) nsr II io *mccP?
mult *mcbr(1). raI2, acc+
fivd nport. *mcbw(1) II nsr 11 io *mccr?h
mult *mcbr(-2), ra13, acc+
muh *mcar(l), ra14, acc+
fwd nport. *mcbw(2) 11 nsr 11 io *rnccro/o
mult *rncar(l), ra15, acc+ II nsr II io *mccr?/o
mult *mcar(2), ra16, acc+
mult *mcbr(i). ra17. acc+
mult *mcbr(l), ra18, acc+
mult *mcbr(2), n19 , acc+

;aiready input 7 point. The result o f fus1 4 point is at acc

push 63 :(2564)N=63
loopb: mult *mcbr(1). ra 1 1. acc

fivd nport, *mcbw(l) 11 nsr II io *mccP9
madd ra l ,0. acc. rO
mult *mcbr(l), n 12. acc+
fwd nport, *mcbw(l) II nsr I I io *mccr?'o
mult *mcbr(-2). ra 13. acc+
Id rbO, sport
mult *rncar(1). ra 14. acc+
fivd nport, *mcbw(2) II nsr II io *mccr?'o
mult *mcar(1), n 15. acc+ II nsr I I io *mccr?b
mult *mcar(Z). ra 16. acc+ II ssr / / io *mcdw08
mult *mcbr(l), ra 17, acc+ I I ssr II io *rncd\t?L
mult *mcbr(l). ra18. acc+ I l ssr II io *mcdw0'o
mult *mcbr(2). n 1 9. acc+ II ssr II io *mcdw04
dbr loopb

2 nop
madd ra 1 . 0. acc. 13
$3 nop
Id rbO. sport
43 nop
g3 ssr 11 io *mcdwo6
ldeamc 766. 766. mc-stride. mc-stride ;! !! (1024-(256+3))
ssr II io *mcdwQ6, *mcc&

ldeamc 1. 1. mc-srride. mc-stride
;(rnccr=new line 1" point, mcdw~new line 2nd point)

ldiamc O. 0.255, mcaw
ldiamc 3. 0. 255. rncbr
ldiamc 3.0. 255. rncar
ldiamc O. 0. 255, mcbw :(rncaw. mcbw=O. rncar, mcbr=3 the I~ point)

-********************************
dbr loops :(cuc in line)

ldeamc 256.2304. mc-&de. mc-stride;(- 1 O X * 1024+256,- 1022* 1024t256)
io *mccr?6, *rncdw?'o
Idearnc 1. 1. mc-stride. mc-stride

dbr loopy
end

Appendîx E Convolution program (3x3 window with 32x32 pke l image), data of

source image and data of result image

p i x e l image) puQ7- l ,

.test
ldeamc O. 0, mc-min. mc-min
ldeamc 1023. 1023. mc-mau. mc-mm $32 * E)
ldeamc 1. 1, mc-stride. mc-stride
ldeamc 0. ;2. mc-start, rnc-start :start from second line and second point(3 1 +
ldiarnc 3.0. 255. mcar :read from . I~ point
Idiarnc 0.0. 255. mcaw
Idiarnc 3.0. 255. mcbr :read frorn qLh point
ldiamc O, 0. 255. rncbw

loopm:

loopn:

loops:
. * * * * * * * * *

loopa:

push 52
hvd nport, *mcaw(1) i l nsr I I io *rncct?/o ;start input 32 points of first line
dbr loopm
push 32
fivd nport *mcbw(l) [I nsr I I io *rnccr?'o :start input 32 points of second line
dbr loopn

(mcam-O. r n c b n ~ 0 . mccr=O at 3rd line. mcdw= l at znd Iine)
push 15 :(32-2)i2= 15 ((1024-2)/2)

:(nest fine)

$3 hvd nport. *mcaw(l) II nsr / I io *mccro/o :(input 1-3p and point to 4th)
mult *rncar(1). ral 1. acc
fivd nport, *mcaw(l) (1 nsr I I io *mccf!/o
mult *mcar(1). 1312, acc+
fivd nport, *rncaw(I) 11 nsr [I io *mccr9"
mult *mm(-2). ra 13, acc+
rnult *mcbr(l), ral4. acc+
fivd nport, *mcaw(2) I I nsr I I io *mccP/o
mult *mcbr(l), ra15, acc+ (1 nsr 11 io *mccf!/a
mult *mcbr(t), ral6, acc+
mult *mcar(1), ral7, acc+
mult *mcar(l), ra18, acc+
mult *mcar(2), ra19, acc+

:already input 7 point. The result of fhst 4 point is at acc
nopllio *mcdw?? ;pro-set first result poin-
p i h 7 ;(32-4)!4-7 (256-4)/4=63
mult *mcar(I), ra11. acc

fivd npon, *mcaw(l) II nsr II io *mccr?/o
madd n 1.0. acc, rû
mult *mcar(1). raI 2. a c c i
fivd nport. *mcaw(l) I I nsr II io *rnccro/o
mult *mcar(-2), ra 13, acc+
Id rbO, sport
mult *mcbr(1), ra 13. acc+
iîvd nport. *mcaw(2) II nsr II io *rnccr?/o
mult *mcbr(1). raI5. acc+ II nsr II io *mccr?/o
mult *mcbr(2 j. ra 16. acc+ [I ssr II io *mcdw%
mult *mcar(1). ra 17. acc+ II ssr [I io *mcdw?G
mult *mcar(1). ra 18. acc+ (1 ssr [I io *mcdw%
mutt *rncar(2), n 19, acc+ If ssr io *mcdw?6
dbr toopa

a3 fi\.d nport. *mcbw(l) il nsr II io *mccr?/o :(input 1-3p and point to 4th)
rnult *rncbr(1). ra 1 1 . acc
fivd nport. *mcbw(1) II nsr / I io *rnccr?'o
rnult *rncbr(l j. ra12. acc+
îivd npon. *mcbw(1) II nsr I j io *rnccf%
mult *rncbr(-3). ra 13. acc-
mult *mcrtr(1). ra 14. acc+
fivd nport. *mcbw(2) [I nsr II io *mccf%
mult *mcar(l). ra15. acc+ I(nsr I I io *mccf%
mult *mc3r(2). ra 16. acc+
mult *mcbr(l), ra 17. acc+
rnult *mcbr(1). ra 18, acc-
mult *mcbr(2). ra19. acc+

;altead? input 7 point. The result of first 4 point is at acc
noptiio *mcd\vO/o
push 7 :(323)/4=7

loopb: mult *mcbr(l). ra 1 1, acc
fivd npon. *mcbw(l) II nsr /I io *mccr96
madd n 1. O? acc, rû
mult *mcbr(1). n 12. acc+
fivd nport, *mcbw(l) 11 nsr (1 io *mccr?/o
rnutt *mcbr(-2). ra 13. acc+
Id rbO. sport
mult *mcar(l). ra 14. acc+
fivd nport, *mcbw(2) II nsr f l io *mccr?h
mult *mcar(l), ra15. acc+ I I nsr 11 io *mccr?h
rnult *mcar(2), ra16. acc+ II ssr I[io *mcdwo/o
mult *mcbr(l), ra17, acc+ II ssr II io *mcdw?/o
mult *nicbr(l). ra18. acc+ II ssr II io *mcdw?h
mult *mcbr(2), ra19. acc+ II ssr II io *mcd@/o
dbr loopb

.********************************
dbr loopx ;(cyc in line)
end
.end

2) Data of source image (32 x 32 pixel)
2 -.. - c
L 2 -
- & =
L - J d

0 0 0 0 0 0 Q 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
I I 1 1 1 1 1 1 2 2 2 2 2 2 2 6 4 6 4 2 2 2 2 2 2
2 1 1 1 1 1 1 1 1
1 1 1 1 : 1 ! 1 2 2 2 2 2 2 5 4 6 4 6 4 6 4 2 2 2 2 2

7 3 - 7 . 2 L - A : l L 1 1 . . I l I i I ! I l 2 2 L Z 2 64 6 4 100 100 6 64 2 2
2 2 2 1 1 1 1 1 1 1 1
1 1 1 1 'i 1 1 1 2 2 2 2 6 4 6 4 100 100 100 100 64 64
2 2 2 2 i l l l l l l l
1 i 1 i i 1 1 i 2 2 2 54 64 100 100 130 130 100 100
6 4 6 2 2 2 1 1 1 1 Z 1 1
L 1 1 i i 1 1 1 2 2 4 64 100 100 130 130 130 130 100
1 ~ 0 6 3 t 4 2 S I 1 1 1 1 1 1 1
i 1 1 1 1 1 1 2 4 64 100 100 130 130 160 160 130
130 100 190 64 64 2 1 1 1 1 1 1 1 1

1 1 1 i 1 4 b 4 :OC 100 130 130 160 160 160 160
i 3 C 130 1 0 r I O 0 64 64 I 1 1 I 1 1 1 I
1 ! 1 : 1 i I 64 4 100 100 130 130 160 160 180 180
160 165 13Q 130 i@O 100 64 64 1 1 f 1 1 1 1
1 1 i : 1 I 0 4 0 4 100 100 130 130 160 160 180 1 8 0 180
190 1 5 0 16C 130 130 130 100 64 6 3 1 1 I l 1 1
1 1 1 1 64 64 160 10Q 130 130 160 160 180 260 200 200
190 190 160 160 130 130 1 0 0 100 64 63 1 1 1 1 1
1 1 I 1 4 0 3 100 100 130 130 160 160 180 180 200 200
2" CiZCiCl 151' 1153 150 i 3 O 130 105 100 64 64 1 1 1 1
1 1 1 t a ; 64 1-0 1 13C 1 160 160 180 180 200 200 220
220 ZCL7 2 1 l e 0 183 1 0 0 1 0 0 130 130 100 100 64 64 1 1 1
1 ' - G d 4 IV@ 1120 1313 ' ,30 160 160 180 180 200 200 220
2,Q I ::CI C I 2 3 9 IEO 160 160 i30 130 100 100 64 64
1 1

I 64 t 4 L'30 130 130 138 160 160 160 180 200 200 220 220
250 2 5 Û 2213 220 200 200 LSO 180 160 160 130 130 100 100
64 6 4 1
0 Z o O ~ ~ ~ G 0 G 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0
0 5 i ~ 3 L 7 0 0 0 0
1 1 1 l 1 1 1 1 2 2 2 2 2 2 2 6 4 6 4 2 2 2 2 2 2
S l l 1 1 l i l 1
1 1 1 1 1 1 1 1 2 2 2 2 2 2 6 4 6 4 6 4 6 4 2 2 2 2 2
2 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 2 2 2 2 2 6 4 6 4 1 0 0 1 0 0 6 4 6 4 2 2
2 2 2 1 1 1 1 1 1 1 1
i 1 1 1 1 1 1 1 2 2 2 2 64 64 100 100 100 100 64 64
2 2 2 2 1 1 1 1 1 1 1 1
1 1 1 i 1 1 1 1 2 2 2 64 64 100 100 130 130 100 100
6 4 6 4 2 2 2 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 2 2 64 64 100 100 130 130 130 130 100
1 0 0 6 4 6 4 2 2 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 2 64 54 100 100 130 130 160 160 130
130 100 100 63 63 2 1 1 1 1 1 1 1 1
9 1 1 1 1 1. 1 1 64 64 100 IOC) 130 130 100 160 160 160
130 130 100 100 64 64 1 1 i 1 1 1 1 1
1 1 1 1 1 1 1 64 64 i O 9 100 130 130 160 160 IBO 180
160 100 130 130 100 LOO 64 64 1 i 1 1 1 1 1
1 1 1 1 1 1 64 64 100 100 130 130 160 160 180 180 1 8 0
180 160 160 130 130 100 100 64 64 1 1 1 1 1 1
? 1 I L 1 64 64 100 100 130 130 160 160 180 180 200 200
180 160 160 160 130 130 100 160 6 4 64 1 1 1 1 1
I 1 1 1 64 64 100 100 130 130 160 160 180 130 200 200
C O 0 200 160 180 160 i60 130 130 100 100 64 64 1 1 1 1
1 i 1 6-1 0 4 100 100 130 130 160 160 130 190 200 200 220
2 2 s 200 200 180 1 8 G 160 160 130 130 100 100 64 63 1 1 1
1 1 64 64 100 100 130 130 160 160 180 18U 200 200 22C
220 220 220 200 260 180 1 E O 160 160 130 130 100 100 64 64
1 1
1 64 64 100 100 130 130 160 160 180 180 200 200 220 220 250 250 220 220 200 200 180
ISO 160 160 130 130 100 100 64 64 1

3) Data of result image (32 s 32 pixel)
-. .

i 6 40 6 5 5 6 103 I I E 132. 146 1 6 1 17s 1 7 0 163 1 5 1 131 122 2 0 6

Appendiv F Program of motion estimation

1) FSM

c o r r l c o ~ f i g ;
(3 0 2) FcrY 1 as i n p u t , s y n c h r o n e o u s mode

c c r t l i n c c n ;
(.:O I l p c r t 1 connect to n o r t h c h a ~ n e l (i n p c t 1

pcrtZcenfig;
(51 O 1 p o r t 2 3s i n ~ u t

c o r ~ 2 i n c o n ;
!>.1 2) p o r t 2 c o n n e c t t o s o x î h c h a n n e l (i n p u t)

~crt3cc,nfig
s o r t 3ocr =cn
pzrt4ccnfig
~ o r t 3 ~ u t c a n

for mcdulc

; @ @ @ G $ - z @ @ @ @ $ @ @ @ ~ > @ $ $ @ @ @ @ @ @ @ @ @ @ @ s t a col 1, row 1
laiamc 0 , O, 1 4 4 , ncar; 48+96=144
ldiemc O, 0 , 1 3 1 , mcaw; 48+96=i44
Idiamc O, O, 144, mcbr; 38+96=144
idiàmc 9, 9, 1-14, rncbw; 48+36=144

; .SS$SSSSSSST input frame A, 8 128-64-16=48 p i x e l s
p c s h 4; 1x12 4 lines
cüll t2
Ld r a l ; vector counter nimber
Id O , r b l ; l 6 k , temporal vector address positicn

; $ S $ S $ S $ $ $ $ $ input frsme A, 3 128-32=96 pixels
push 8; 8+8
cal1 t2

;!!!!!!!!col 1, r o w 1, calculate
Id O , r a 1 6 ; memA1s address
I d O , r b 1 6 ; memB's address
p u s h 5; 5line loop
c a l 1 t 4

; ! ! ! ! !!!!!first col, first block end
;@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@end col 1, row 1

; @ @ @ @ @ @ @ @ @ @ @ $ C @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ s t a r t co l 1, row 2-127
l d e a m c 256, 2097153, m c s t a r t , mc-start;

2 5 6 (6 4 ~ 4) ~ ZO97lS2+l (v e c t o r)
Ldiamc O , 0 , 1 9 2 , rnczr; 96+96=192
l d i o m c 0 , 0 , 1 9 2 , mcaw; 96+96=192
l c i h r n c O , 0 , 1 9 2 , rncbr; 46+96=192
l d i a m c O , 0 , 1 9 2 , rncbw; 56+96=192
I d 48, r a 1 6 ; 4x12=48 f r omeA i n memA s t a r t p o i n t
I d O , r b l 8 ; frameB i n m e m B s t a r t p o i n t

;SSS$SSSSSSS i n p u t Erame A, 6 128-32=96 p i x e l s
p u s h 9; e:cl2 8 l i n e s
c a l 1 t 2
p u s 5 6 ; î o l u m n 1 l o o p s (1 2 8 - 2 f o r b c u n d r y)

i o o p c :
;S$SsSSSSSSS i n ~ u t frarne A , 6 5 6 p i x e l s

push 5; Ex12
c s l l c 2

; ! ! ! ! ! ! ! !czi i , 2-12? b l ~ r k c a l c u i s t e
it2 n c p
la r a l ô , r s l 6 ; rnenA's a d d r e s s
Id rbiS, rb16; memB ' s a d d r e s s
p u s h 9; 9 l i n e l o ~ p
c a l 1 t 4

- ' ! ! ! ! ! ! O n e b l o c k c a l c u l a t e e n d r -
s d d r a 1 8 , 96, r a 1 8 ; 8x12
add rbl8, 96, r b 1 8 ; ô x 1 2
dUr l o o p o

; @ @ @ C ~ @ @ @ @ @ @ @ @ @ C @ @ ~ ~ @ @ i C C @ @ @ @ @ @ ~ @ @ @ @ @ @ @ C d e n d c o l 1, row 2-127
; @ @ @ @ @ @ @ @ @ @ @ @ G @ @ @ @ $ @ @ @ @ @ @ @ @ l ? @ @ s t a r t c o l 1, row 128
;SS$$SSSSS i n p u t frsmo .+, 6 48 p i x e l s

p u s h 4 ; 4
c a l 1 t 2

; ! ! ! ! ! ! ! ! c o l 1, 128 b l o c k c a l c u l a t e
2 n o p
I d r a 1 8 , r a16 ; rnernA1s a d d r e s s
i d r b 1 8 , rb16; memB ' s a d d r e s s
~ u s h 5 ; 3 l i n e l o o p
c â l l t 4

; ! ! ! ! ! ! ! ! ! c a l c ~ l a t s end
ldeamc - 4 0 9 2 , 1, r n c - s t r i d e , r n c - s t r i d e ; -4096+ (1 2 - 4) -3-1=-

4092
; o l d - 4 0 2 4 = - 6 4 ~ (6 4 - l) - 8 o r + 6 3 - 8 p o i n t e d t o n e x t c o l . S t a r t p o i n t
(6 4 x 6 4)

3 n o p ; !
i o 'mccrS
nop; !
ldeamc 1, 1, m c - s t r i d e , m c - s t r i d e
2 nop; now is p o i n t e d t o nex t l i n e b e g i n

; @ e n d c o l 1, row 128
; end o f c o l . 1 !
;@@@@@@@@@@@@@@@@@@@@@e@@@@@@@@sta r t c o l 2-127, r o w 1

push 6; 1 2 6 c o l . s
loopcol :

l d i a m c O , 0 , 192, mcar; 64+128=192

l d i a m c O , 0 , 192 , mcaw; 64+128=192
ld i a rnc O , 0 , 192 , rncbr; 64+128=192
l d i a m c O , 0 , 192, mcbw; 64+128=192

;SSSSSSSSSSS i n p u t f r a m e $., E 1 6 x 4 = 6 4 p i x e l s
p u s h 4 ; 4 x 1 6 4 l i n e s
c a l l t 3

;SSSSSS$SS$$ i n p u r f r a m e A, B 128 p i x e l s
p u s h 9; 8 + 8
c a l l t 3

; ! ! ! ! ! ! ! ! c o l 2-127, r o w 1, c a l c u l a t e
I d 4 , r a l 6 ; (+ 3) m e m A ' s a d d r e s s
I d O , r b 1 6 ; memB1s a d d r e s s
p u r h 5; S l i n e l o o p
c a l l t 5

; ! ! ! ! ! ! ! ! ! c a l c c l a t e e n d
; @ e n d c o l 2-127, row I
; @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ G @ @ @ @ @ @ @ @ @ s t a r t c o l 2-127, row 2-127

ldeamc - 5 1 2 , 1 , rnc - s t r i d e , m c - s t r i d e ; -64x8-3-1
3 nop ; !
i o * m c c r S
nop; !
ldeamc 1, 1, mc-stride, r n c - s t r i d e
$ 2 nop; now is p o i n t e d t o n e x t l i n e b e q i n
l d i a m c O , 0 , 2 5 5 , m c a r ; 128+128=256
Ldiamc O , 0 , 255, mcaw; 128+129=256
l d i a m c O , 0 , 255 , m c b r ; 128+128=256
l d i a m c O , 0 , 255 , mcbw; 129+128=256
Id 68, r a 1 8 ; 4 x 1 6 + 4 = 6 8 frarneA i n m e f i s t a r t p o i n t
I d O , rb18; frameB i n mem9 s t a r t p o i n t

;SSSSSS$$SSS input f r a m e A, E 128 p i x e l s
p u s h 9 ; 9x16 8 lines
c a l l t 3
p u s h 6; c o l u m n 1 l o o p s (1 2 8 - 2 f o r b o u n d r y)

l o o p o l :
;S$SSSSSSSSS i n p u t f r a m e A, B 1 2 8 p i x e l s

p u s h 8; 8 x 1 6
c a l l t 3

; ! ! ! ! ! ! ! ! c o l 2-127, 2-127 b l o c k c a l c u l a t e
2 nop
Id r a 1 8 , r a 1 6 ; memA ' s a d d r e s s
l d r b 1 8 , r b 1 6 ; mernB ' s a d d r e s s
push 9; 9 l i n e l o o p
c a l l t5

; ! ! ! ! ! ! ! ! ! c a l c u l a t e end
add r a 1 8 , 1 2 8 , r a 1 8 ; 8x16
a d d rb18, 1 2 8 , r b 1 8 ; 8 x 1 6
dbr l o o p o l ;

; @ e n d col 2-127, row 2-127
;@@@@@@@@@@@@@b@@@@@@@@@@@@@@@start c o l 2-127, row 1 2 8
;SSSS$S$$$$$ i n p u t f r a m e A, B 6 4 pixels

push 4 ; 4
c a l l t 3

;!!!!!!!!col 2-127, 1 2 8 block c a l c u l a t e
2 nop

-3'
1'. r i v
r d ,+
4 3 I I

1 0 '. D
(4 Li « i

ri. -r -r -t
4 . 7. CP -7 rn fn
O - * UJ d 4 Y* v r(
U - . (\ i II II II UJ

- . r l w w w * . %
a-. m m ~ n 3 . d
C -. .-4 4 4 - t a .Q U,
a - - O m m c n 0
(3 - . U T - ? ? . Eco O) -. -r (1)
pJ -. &J m. 0 . a. . II C
cuJ -. Cc k 3 k *r CP .A
(ol -. a ru lu a ?. x -1
e -. AJ u u u ,-I (d
er -. vi E E E -4 qr
eJ -. eJ
m - . w . . - r J U]
~ - - . w v - r - ~
& -. CI sr -r cf . .
(9 -. e) - 4 ri r l CJ r1:
a - * E J

à c c u n ü l a t e 64 pixels

e r c u l u l z t e 1 line (8 pixels)

accumulste 4 pixels

ssr
abd r a3 , rb2, r â 3 ;
dbr loopl
sdd r a l 6 , 4, r a 1 6 ;
add rb16, 4 , rb16;
dbr loop2
add r a16 , 8, r a16 ;

back
back

to start point
to start point

ixsls

-56 b a c k t o
-96 b o c k t o

stert point
start point

Ic nport, 'mcsw!l~

Ikecrnc 39, 1, mc-st ride, mc-stride;
3 r.0p; !

-3-12t64-1 read , (64x64)

io 'mccrt
nop; !
ldeamc 1, 1, mc-striae, mc-stride
t 2 nop; now is pointed to next line
dbr locpnO

begin

ret

3 nsrl lssrllio ' m c c r ? ;

E
U
tu

a
C,
O

(UO LJ
LI O k

add
cdd

eddress+l)
r.cp
ab r

ad<
âcid
d b r

f 3 no-

3 nop
5.2 jumpll
r e s t o r e
l d c r 0 0 0 0 0 , a c n

rb6, 1 , rb6; nsxt begining point of frarneB (address+ll
r b i 6 , 1, r b l 6 ; n ê x t b e g i n n i n g po in t

2) G F S M

par41 l e1 accumulate, (coll)

; FULSZ moticn estimztion.dsm GFSM(8xGblock,i6sl6area,64~64irnag~) ;
, fr2rne.A is 7.e~ ~ i c t u r e , framea is old picture

idcr 3 ,
- .
'CCT 2 ,

ni.-C F ~ , ~ ~ c c n f i s ; 3

: SO 2) pc , r t I as input, ~ynchrcnesus moce
~crrlinccn;

(- 0 I) p o ~ t i connect t o n o r t h c h a n n ~ i iincuci
p o r t 2 z c n f ig; (91 0) pcrt 2 as irt~ut
pcr?Zi~con;

(Ai 2 : port 2 connect t o s o u t h zhannel ! inpuy >
pcr: 3ccnfiq
F c r r 3cu tcorL
pcrï4ccnf i c j

I d c r 3, boc:lzontrcl; nàdress p ~ r t l f c r rncdulo zountrr

L3esrnc Q, LCj57152, mc nFn , mc-min; -
i d e z n c 4 0 5 5 , 2101248, rnc-max, mc-rnax;

(~ 4 ~ 6 ~ ~ s t ô r t = 4 0 9 6 + 2 0 5 7 1 5 2)
Ideàmc O , ZGc17152, mc-start, mc-start; 2+*21=2057152
I c i s a m s 1, 1, r,c s t r i d e , nc stride; - -

; @ ~ ~ @ l ~ l ~ l ~ ~ ~ ~ l ~ @ @ ~ ~ @ @ @ @ @ $ l ~ @ @ @ ~ @ @ @ @ ~ ~ ~ ~ ~ c o l 1, rc7J 1

ldizms 0, 0, 143, ncor; 49+96=144
Idismc 3, '2, 133, m t a w ; 4 8 ~ 3 6 = 1 3 4
liiâmc 12, 0, 1 4 3 , mcbr; 48+96=144
l z i i e m c O , 0, 143, m c b w ; 48*96=134

;SSS5$5SSS55 rn- l i t frzn? -=-, 3 1 2 8 - 6 3 - 1 6 = 4 a pixels -
~ c s h 4 ; 4 x ~ ~ 1 lines
call 7 2
la O, ral; ~ e c t ~ r c o u n t e r nuriher
1d O , rbl; 16k, temporal v e c t o r address position

; Ç S S S S S S S S S S inpur fran? A, 6 128-32=96 pixels
~ u s h S; P + 8
c a l 1 t2

-'!!!!!!!col 1, row 1, calculate ? -
Id O, ra16; mernA1s address
Id O, rb16; memB's address
push 5; loop
c a l 1 t4

; ! ! ! ! ! ! ! ! ! first col, first block end
;@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@end col 1, row 1
; @ s t a r t c o l 1, r o w 2-127

p o i n t
p o i n t

for D o u n d r y)

push 5 ;
cal1 :?

. ' ! ! ! ! ! ! ! ! -- , . - a i c ~ ~ l â t e end
ldeamc - 4062 ,

4092
;oid-4024=-61x (84-1) -8 or
(64x64)

3 nop;!
i o *mccrS
nop; !

I I mc-s t r ide , mc-stride;-4096+ (1 2 - 4) - 3 - l = -

+64-8 p o i n t e d tc n e x t c o l . S t a r t point

ldeamc 1 , 1, rnc-stride, mc-striae
442 nop; now is pointed to next l i n e begin

;@@@@@@@@@@@@@@@@@@@@@@@@@@$@@@@@@@@@@end c o l 1, row 128
;end of col. 1 .
; @ s t a r t c o l 2-127, r o w 1

push 6; 126~01. s
loopcol :

ldiamc O , 0 ,
ldismc O , 0,
ldiamc O , 0 ,
ldiamc O , 0 ,

;SSSSSSSSS input f r z n e
push 4 ;
c a l 1 t 3

;SSSSSSSS$Ç$ incüt f r a m r
push 2 ;
cc11 z 3

mcar;
mcaw;
mcbr;
m c b w ;
16x4=64

64+198=192
64+128=192
64+126=192
64+129=132

pixels
4x16 4 lines

128 pixels
s 4 5

!! 3 ncp; !
ia -mccr:
noF; !

ldeâmc 1, 1, m c - s t r i d e ,
72 nop; now is pcinted
ldiarnc n, 0,
ldiamc O, 0,
làiamc C, 0 ,

ldiàmc
i d 6 Ç , r s l t i ;
Id 68 , r S 1 3 ;

;SSSSSSSSSS$ i n ~ u t f r a m e
~ u s h 3;
c a l 1 t 3
p u s h 6 ;

loopol :
; 5 Ç S S S S $ $ $ $ $ i n p u t frarne

push E?;
call c 3

2 5 5 , m c a r ;
2 5 5 , ncâw;
2 5 5 , ncbr;

C i , 2 5 5 ,
4x16+

mz s t r i d e -
C o nEx: lin- begin

128+iS9=.256
12C+i26=.256
+125=256

mcow; i2Ô+128=256
1=68 frame-2. i n m e ~ G s t c r t point

frarne9 in m e m B s c â r ï
5 1 2 E p i x e l s

Ex16 9 lines

B 1 2 8 pixels
8 x 1 6

2 EOP
I d r â 1 8 , r a 1 6 ;
Id r 5 1 8 , rbl6;
. * . - . .
* 1 , 1 8 , , , , , 1 1 ,

- 9 . ;Fus, 3; z+L

call t6;
. . - . * * - . -
t l 1 P 1 1 1 8 # 1 8 1 1

calculate end

n ê m ? ' s âàdrrss
memE1s a d d r c s s

,$CF

c a l l t 5

add r a 1 8 , 1 2 8 , r a 1 8 ;
and r a 1 8 , O O f f h , r a 1 8
add r b 1 8 , 1 2 8 , r b 1 8 ;
and r b 1 8 , O O f f h , r b 1 8
dbr loopo 1 ;

point

f o r

; @@@@@@@@@@@@@@@@@@k@@@@@@@@@@@@@@@@@end c o l 2-127, row
; @ s t a r t c o l 2-127, r o w 128

;S$$$SSSSSSS i n p u t frame A, B 64 p i x e l s
p u s h 3 ; 4
c a l1 ï 3

- I I f f ! " l r o l ; - f 2 7 , , 126 b l o c k c s l c u l s t e
.. 7
? L ncp
I d r a l E , r s 1 6 ; memr?' s a d d r e s s
I d r b 1 8 , r b l 6 ; rnemB's a d d x e s s
~ u s h 5; 5 l i n e loop
zall t5

; ! ! ! ! ! ! ! ! ! calculsce e n d
1ceamc -3088, 1, m c - s t r i d e , m c - s t r i d e ; -4096c8-3-1=-4088

; o i c - 4 0 2 < = - S < s (6 3 - i) - S o r +61-8 poinïed to n e s t c o i . S t a r t point
(64x64)

R 3 nop; !
io ' m c c r E
nop; !
i d e a m c 1, 1, m c - s t r i d e , nc-stride
r 2 nop; now i s pointed to next line begin
cibr l c o ~ c o l

; ?ZC~?@~@@@@@C@C@@$@@@@@@@@@@@@@Cd@Cd@@(Eend c o l 2-127, row 1 2 3
;end c f c o l . 2-12: .
;@G@@@@@@@@G@@@?Q@@@@@@@@@@@@@start col 128, row 1

ldiamc O , 0 , 143 , mcar; 48+56=134
i d i a n c 0 , 0 , 143, mcaw; 48+96=144
l d i d m c 0 , 0 , 133 , mcbr; 38+96=144
I a i a m c 0, 0 , 143, mcbw; 48+96=144

- q c c c c c ~ c S S $ i n ~ u t f r ame .&, O 1 2 x 3 = 4 8 p i x e l s , W W - T - T S I

r u s h 3 ; 4x12 4 L i n s s
C -211 t L

. : C c c S S $ S T S S i ~ p u t frarns .?, E 96 pixels , - - T I

p x s h 2 ; E t 9
:al1 t2

; ! ! ! ! ! ! c c 1 , w 1, calculate
ld 4 , ra16; [+ 4) m e m r ? ' s adaress
l d 0 , rb16; memB ' s address
~ u s n 5; S l i n e loop
cali t l

, . . - . * " ' ! ! ! ! ! ! ~ e l c u l a t e end
; G ~ @ ~ ~ @ C ~ ~ @ @ ~ @ @ ~ @ @ @ @ @ C a @ @ C C @ C d ~ C a @ @ @ @ @ @ @ @ @ e n d col 128 , row 1
; @ @ @ ? ? S ? @ @ $ G $ $ @ @ $ $ @ @ @ @ @ @ @ @ L a Q @ @ s t a r t col 1 2 8 , r o w 2-127

l d r a m c -512, 1, mc-stride, m c - s t r i d e ; -510
$ 3 no?; !
io * m c c r %
nop ; !
l d e a m c 1, 1, mc-stride, mc-stride
2 n o p ; non is pointed to n e x t line begin
fdiamc O , 0 , 191, mcar; 46+96=192
Idiamc 0 , 0 , 191 , mcaw; 96+96=192
l d i a m c O , O, 191 , mcbr; 96+96=192
l d i a m c O , 0 , 191 , mcbw; 96+96=192
Id 52, r a 1 8 ; 4x12+4=52 f r a m e A i n memA s t a r t point
Id 0, rbf8; frameB i n m e m 3 s t a r t point

;SSSS$$SSSSS i n p u t frane .Q, B 128-32=96 pixels
push 8; 8x12 6 lines

c a l 1 t2
~ u s h 6 ; colurnn I loops(128-2 for boundry)

1 ~ 0 ~ 0 2 :
; S S S S S S S S $ S S input frxne A, B 9 6 pixels

p u s h E ; 8x12
tàll tî

- l f l l I t !col 1 2 9 , 2 -127 Dlock c a l c u l z t e , - - - - . . .
<; + n i Zc?F

Id r a l l , ra16 ; rnemA1 s àddress
1.3 ~ 5 1 9 , rblO; memB1s addrsss
~ u s h 5; 9line l o o p
csll t 4

; ! ! ! ! ! ! ! ! ! z a l c x L z c e 2nd
add r z 1 9 , 9 6 , r c l18 ; 8x12
znd ri18, î ~ Q 3 f h , r z l 6
add r S l 6 , 5 6 , rblE; Cx12
s r d r C 1 $, @ 9 3 f h , rbl3
.-ii- 1 - .--- - U r - I C k L L ;

; ~ ~ + $ i ~ @ ~ j 8 ~ + 1 ; - t > ~ 3 @ $ ~ i ~ ~ @ ~ , ~ @ $ @ ~ ~ $ @ @ @ @ @ @ $ e @ l ~ @ s n d col 128, r o w 2 -127
- I C I C ~ I > ~ I ~ ~ > @ + I ~ $ ~ ~ ~ $ ~ I ~ I > @ $ ~ ~ @ I ~ ~ @ ~ @ @ $ @ ~ ~ ~ ~ ~ col 123 , r o w 128 P L - - - - - < C c C c S s $ S $ ir:cct f r , = m a .>, E 4 s p i x e l s , - v - - v - * - _

~ l i s h 4 ; 3
rall t L

; ! ! ! ! ! ! ! ! t z l 1, 12s c l c c k z e ~ ~ z u l ~ t ~
=: r:op

E L : I d Ci, raz; occsmulstsr r a 3
I d rbC, r b l
p ~ s h =; sccuinulâte 64 pixels

iCQF;:

cusk 2 ; s r c u l u l ~ t e 1 l i n e (8 p i x e l s)
l;,-"? - L - . -

* -
" L 93p

13 r z 1 6 , addrs
12 r k l 6 , a d a r b
#3 no-
sub ' addra, *oddrb, rbî;
3 nop

abs r b î , rb2;
3 nop
add rb2 , r a 3 , r a 3

add ra16, 1, ra16; + 4
and r a 1 6 , 00f f h , ra16
add rb16, 4 , rb16; + 4
and rb16, OOffh, rb16

à b r lcop2
- ---- *

add r a l 6 , 8 , r316; 16-4:i2=8
2nd r a l 6 , OOffh, r a l d
add r b 1 6 , 3, rb16; 16-4:t2=8
and rD16, OOffh, rb16
d b r l o c p 3

r

I d r - 3 , s p c r c
puch 3
loopi :

add r s 3 , spsrt, r ü 3
ss r ; add befcre ssr

dbr loopl
SUD r.316, I f f i , r a l 6 ; - 1 2 8 back t o start point

iflt r d l 6 , O , O ; (i f r a l 6 i 0 , + 2 5 6)
5 3 ncp
edd r a 1 6 , 256, r o l 6
e l s e

n c c
rss t i=.r%

s u b r b l 6 , 122 , r b 1 6 ; - 1 2 5 b â c k t o stàrt point
i f l t r b l 6 , O , O; (i f rb16<0 , + 2 5 6)
1 3 nop
add r b 1 6 , 216 , r b l 6

~siumulater r a 3

&scxnulste 61 p i x e l s

cccululste i l i n s (8 p i x e l s)

Y - + - T L

Id O f r 3 l ;

1. i r C 6 , r b l

 US^ a ;
1 ~ 0 ~ 2 3 :

p u s h 2 ;
lccp22:

#2 nop
Ld r a l 6 , a d a r a
Id rb76 , adrjrb
t 3 n c p
sub ' adara , 'addrb, rd2
3 riop

aSs rb2, rb2 ;
$ 3 nop
a d d rb2 , ra3, ro3

add ra l t5 , 4, ra16; + 4
and ra16, 0 0 3 f h , ra16
add rb16, 4, rb16; +4
and r 8 1 6 , 0 0 3 f h , rb16
db r l oop22
add r a 1 6 , 4, ra16; 12-4x2=4
and rü16, 0 0 3 f h , rd16
add rb16, 4, rb16; 12-4x2=4
and r b 1 6 , 0 0 3 f h , r b 1 6
d b r loop23

Id ra3, spor t
push 3
lûop2 1 :

add ra3, sport, ra3
ssr

d9r loop21
sub ra16, 46, ra16; -96 back to s t a r t point

iflt ra16, 0, O; i i f ra16<0, t192)
+ 3 ncp
àdd r à l 6 , 192, rs16
else

sub r

nop
restore

,b16, 96, rb16; -46 batk to s t a r r point
lfLt rb16, 0, O; (i f rb16<0 , + 1 9 2)
3 no?
zdd r510, 152 , rbl6

loopn0: # 3 nsr l l ssr l l io 'rnccr?
push 12; 12

locpm0 : sr l I ssr l l io 'rnccr?
la nport, ' r n c a w (l 1
Id sporc, 'mcbw (1 ;
dbr LoopmCl
ldeamc 4 9 , 1, r n t striae, rnc s i r i c e ; - 3 - 1 2 + 6 ? - i r ~ a d , (64x64) - -
i i 3 nop; !
io 'nccrS
n c p ; !
Iaeamc 1, 1, m c - strice, mc-stride
k 2 nop; now is pcinted to next lin? begin
abr loopnC
ret

t3:
loopn0 1 : 33 nsrllssrl lio *mccr5;

push 16; 16
iooprnol: nsrilssrl lio 'mccrS

Id nport, 'mcaw (1)
Id s p o r t , 'mcbw (1)
dbr 1 o o p m O l
l d e a m c 1 5 , 1, mc-stride, mc-stride; -3-16+64-1 read, (64x64 1
t 3 nop;!
io +mccr%
nop; !
ldearnc 1, 1, mc-stride, mc-stride
2 nop; now is pointed to next l i n e beqin
dbr loopnOl

ret
t4: Id O, rb6

1 0 0 ~ 5 :
push 5; 5colum loop

ûdd
add

acd

nGP
d b r

t 1 2
lacr 1110b, acm
i f e q r a 3 , 0, .
3 nop
bpa j umpl
restore;;;;;;;;;;;;;;;;;;;;;;;;;;;
l d c r 0000b, acrn

r b 6 , 1 , r b6 ; n e x t b e q i n i n g p o i n t #2f frarneB!adbress+l)
r b l o , I I rb16; next b e g i n n i n q p o i n t cf

f r a m e B (m e r n B 1 s a d d r r s s + l)
r b l 6 , Û 0 3 E n , rb16

3 nop
zdd rb6 , 7 , r b6 ;
edd rb16 , 7 , r b l 6 ;
z n d r b l 6 , 003Eh, rb16

12 in b l o c k a d d r e s s o f fromeB
8 memE+8

3br l oop5
8 3 nop
Id 9 9 0 9 , r b l ;
i f e q r b l , 5949 ,
$ 3 nop
bpz j u r n p 2

pcp;
pop;
restore
l d c r OOOOb,

ld O , s p o r t
Id r b l , nport
3 nop
io 'rncdwP,
add r a l , 1 , r a l
1-t

t 5 : I d 9, rb6
locpl5:

p u s h 9;
loccl4 :

cal1 t l
l d c r
i feq

9colüm loop

3 nop
bpa j ump l l
restore;;;;;;;;;;;;;;;;;;;;
l d c r OOOOb, acrn

a d d rb6 , 1, rb6 ; n e x t begining point of f rameB (a d d r e s s + l)
a d d r b l 6 , 1, rb16; n e x t beginning point of frameB (r n e m B 1 s

a d d r e s s + l)
a n d rb16 , OOffh, r b16
noE'
dbr 100pl4
3 nop
add rb6 , 7 , r b6 ;
a d d rb16 , 7 , r b16 ;

16 in block a d d r e s s of f r a m e B
8 memB+8

a n d rb16 , OOffh, r b 1 6
cibr loopl5
$ 3 nop
ld 9990, rbl;
i f eq r b l , 9999 , O
i13 ncp
bpa j umpl2

j tmp11: FGP; loopf 4

FOp; l00pl5
jcrnpl2: r e s t o r e

l d c r 0000b, acrn
Ld û, sport
Id r b l , n p o r t
3 n c p
io ' rncdws
add r a l , 1, ral
r e t
;centEr
ld 6 8 , rb6

û r b l 6 a l r e a d y i n c e n t e r
îall t i

ldcr 1110b, acrn
i f e q ra3, 0 , 0 ; ; ; ; ; ; ; ; ; ; ; ; ;
3 no-
b ~ a j timp.22
restore;;;;;;;;;;;;;;;;;;;;
l d c r 0000b, acrn

àdd r b15 , -17, rb16; next b e g i n i n g p o i n t o f m e m B
iflt rbl6, 0, O; (if r b 1 6 ~ 0 , + 2 5 6)
3 nCF
add r516, 256, r b l 6
e l s e
no?
restcre

aad rb6 , -17, rb6; next b e g i n i n g p o i n t o f frameB
; ; ; 3x3

p u s h 3
loop211:

p u s h 3
loop20:

c a l 1 t l
l d c r 1110b , acrn
i f eq r a 3 , 0 , 0 ; ; ; ; ; ; ; ; ; ; ; ; ;
3 nop
bpa jump21
restore;;;;;;;;;;;;;;;;;;;;
ldc r OOOOb, acrn

add r b16 , 1, r b l 6
a n d rb16 , OOffh, r b 1 6
add rb6 , 1, r b 6
dbr l oop20
add r b l 6 , 13, r b16 ; 16-3
and rb16 , OOffh, r b 1 6
add rb6, 13, rb6

3 nop
cpa jümp23
res tors ;
l d c r 0000b, acrn

a d d r b 1 6 , 4 , rbl6
ând r b 1 6 , OOffh, r b 1 6
adà r b 6 , 4 , rb6

c a l l t l
l d c r 1110b, acrn
i f e q r a 3 , 0, 0 ; ; ; ; ; ; ; ; ; ; ; ; ;
$ 3 ncp
bpa jump23
restore;;;;;;;;;;;;;;;;;;;;
l d c r OOOOb, â c m

add r b 1 6 , 1 2 , rb16; 16-4=12
and r b 1 6 , OOffh, r b 1 6
add r ~ 6 , 1 2 , ri26
dbr loop32
add r b l 6 , -97 , r b l 6 ; -16x6-1=-97 n e x t b e g i n i n g p i n f of

i f l t rk16, O , O ; (i f rD16<0, + 2 5 6)
13 nop
add rb16 , 256, r b l 6
e l s e
nop
r e s t c r e

add rb6, -57, r b 6 ; n e x t ~ e g i n i n q ~ o i n c of frzmeB

push 7
laop40 :

call t l
l d c r l l l g b , acrn
i f eq rs3, 0, 3 ; ; ; ; ; ; ; ; ; ; ; ; ;
4 3 nop
bpa j ump23
restore;;;;;;;;;;;;;;;;;;;;
l d c r 0000b, acrn

ada r b 1 6 , 1, r b 1 6
and r b 1 6 , OOffh, r b 1 6
add r b 6 , 1, r b 6
dbr loop40

add r b 1 6 , 8 9 , rb16
; 16x6-7=89

and r b l 6 , OOffh, rb16
a d d r b 6 , 8 9 , r b 6
push 7

loop4l:
call tl

ldcr l l l O b , acrn
i f eq ra3, 0 , 0; ; ; ; ;; ; ;; ; ; ; ;
t3 nop
bpa jump23

bpa j ump2 3
rsstGr3;;;;;;;;;;;;;;;;;;;;
ldcr OOOOb, acrn

âtid r b 1 6 , 1, r b l 6
z n d rb16, O O f f h , r b 1 6
acid r c6 , 1, rb6
d b r l ocp50

âcci r b 1 6 , 119 , rD16;
?cd r b l 6 , O O f E h , r 5 1 6
a d d r c 6 , 115, rS6
ci isn

l o r p 5 1 :
Z E l l t l

ldcr 1110b , à c m
ifeq r a 3 , 0 , S ; ; ; ; ; ; ; ; ; ; ; ; ;
$ 3 i . 0 ~

kco j l ~ m ~ 2 3
restore;;;;;;;;;;;;;;;;;;;;
l d c r QQOCb, atm

ab.5 r b l 6 , 1 , r b l 6
232 r k , l 6 , O Q f f h , rS16
o c d rb6, 1 , r b b
b k r lc?cp51
a c b r t l F , -121, r b l C ; -16x7-9=-121
i f l t rbic, a , fi; ! i f r b l 6 < O , + 2 5 6)

, - n -: n c,-=
zaa r b l c , 2 5 6 , r b 1 6
Z I C 2 - - - L

7; ..
zes tc - re

zbd r k 6 , -121, 1-56
?ESb 7

ldcr lllOb, acrn
i f 2 q r a 3 , O , fi;;;;;;;;;;;;;
R3 nop
bpz j urnc.23

add
and
add

c a l 1 t l

add
a n d
ddd

r e s t s r e ;
Ldïr 0000b, acrn

r816, 8 , r b 1 6
rb16, O O f f h , r b 1 6
r b S , 6 , r b 6

i d c r 1110b, acrn
i f e q ra3, 0 , 0 ; ; ; ; ; ; ; ; ; ; ; ; ;
3 nop
bpa jcmp23
restore;;;;;;;;;;;;;;;;;;;;
ldcr 0000b, acrn

rb16, 8 , r b 1 6 ; 16-E=8
rb16 , OOffh, rb16
rb6, 8 , r b 6

dbr loop52

l a 4999, rbl ;
i f e q r b l , 5959, O
3 nop
5pa jump22

pop;
FOP;
r e s t G r e
I d c r 12000t=, a c m

li O, s -or t
Id rB1, npcr t
4 3 nop
ic *mcdw;
add r â l , 1, rcl
TCt

Appendix G Result of motion estimation
1)
qhsin rnogood-asm out-aaa---sun, house, plan & man

portgoodsun2
16hours 23,252,160ns bourassa

9 1162560 instructions . . .
- - - - - - Frograrn ccmFleted with k r a n c h ~ c hal: at 23251970 CS

t using 1162565 instructions
3 T s s t k n c h completed with G errors at 2 3 2 5 2 1 S 0 ns
* + Fâilure: Simulation Succesfull- Compieted
Time: 23252180 ns Iteràtion: 2 Instance:/run
Break ât 2-model-lchip-3mem.vhd line 4 5 0
QPSIM 2>

Y 1 5 4 5 7 5 0 instructions . . .
d - - - - - - Program completed with b r a n c h i o hàlt S C 30915870 ns
u s i n g 1545760 i n s t r u c t i o n s
Testbench ccmpieted with O errors zt 30916060 ns
5 + * Failure: Simulation Succesfully Cornplet-a

ii Time: 30916080 ns Itêration: 2 Instance: / r u n
3 Break at 2-modsl - lchip-3mern.vhd line 550
QHSIM 3>
- 2 1 1 7 4 8 3 6 3 8
0 0 0 0 0 0 0 0
2 6 6 6 6 O O 0 O O
2 32 9 9 9 5 O 7 1 7 1 7 1
2 6 6 4 O O 999 999 999
O O 7 7 68 68 4 68
6 70 68 35 6 8 68 68 68
6 7 0 6 68 68 68 4 68
O 999 O O 5 2 5 2 5 2 52
-2147483648
-2147483648
-2147483648

3
pcrtqocdshpm
qfisin mogood-asm cut.saaî(sun house plane & man two picture is
same 1

i 0 7 8 6 1 0 instructions . . .
- - - - - - Prooram ccmcletea with brânchio halt at 21573050 ns

% usinq 1 0 7 R 6 i 9 Fns~ructions
t Tes~ctnîh zon~leted xith O srrors ât 21573260 ns
LL -. râilur-: - Simülaticn Succtsfully Completrd

ti Time: 2 1 E 1 ~ 3 2 6 0 ns Iteration: 2 Instance:/run
$ Ereak ac 2-rncd21-?chip - 3nem.vhd line 950
Q H S I P ! 2 >

4
c e n c r r s ? J a n . 29, l59f
qhsirn .mocent~r. zsm out.aaa2(sun house plane & mon two
c i c t c r e is sâme!

R 325519 instructions .. ,
g - - - - - - Progrcm sompl2ted with branchio halt 3t 6559030 ns

using 329318 instructicns
i Tesrbench zomplcted with O errors àt 6599240 ns
i! * - Csilurs: Simulation Succesfully Completed
11 T i r n e : 6599240 ns Iteracion: 2 1nstance:'run
8 S r e z k at 2-model - lchip-3mem.vhd line 950
QHSIM 2 >
- 2 1 4 7 4 e 3 6 1 5
0 4 8 0 0 0 0 0 (3
4 6 8 68 68 € 8 68 68 O
4 68 6 8 68 68 68 68 O
2 66 68 68 68 68 68 O
O 61 68 68 68 68 68 O
O 68 68 65 68 68 68 O
4 68 68 68 68 68 6 8 O
O 5 2 O O 52 52 52 52
-2147483638
-2147483648
-2147483648

Appendix H DCT program for PULSE

I ,
, dct 3 . asm 5x6 PCT at 64x64 frame
, pzrallel DCT (16 times f a s t e z thzn usin? one FE) ,
r , c) C (-:] i? isi~aa x=C->?{sigrna y=û->7 f (:<, y ! l

: C S [; 2 : / + l ! ~ ' 3 . 1 4 ; ' ; €] ï ~ ~ [2 y * i j ~ 3 . i 4 / ' 1 6] } } 1

. . .
, =.rnc~t: , :n: _ ' i l ~ j , z(-.-)=1, wP:en u, -.- > 0; C (c) c(ÿ; = G , T Û 7 , ;
, xhen u , -.- = C. ,

1 ;331E: i ~ ~ 5 [{;:-:fl) U S . l4/ :<:O->?, u : C - > 7 r

r I=!LS: j . -III?=?@; 1 = 2 5 6 : C . 7 @ 7 = 1 8 1 r

r #

. - . f . . * . - _ - - . . . - - - . . . * . - - . . . - - ~ ~ - - . - . . . - .
~ ~ ~ ~ l r r r 1 ~ ~ r ~ ~ # ~ ~ t 1 r ~ ~ r 1 ~ I I I ~ I ~ r l l 8 t ~ ~ I ~ r ~ l ~ ~ I ? ~ ~ l ~ r I ~ r r ? ~ ~ ~ ~ ~ ~ ~ ~ t

pull:

p c r t linccn;

ldcr 0, p o r t î c o n f ig;
ldîr 2, port2incon;

(9 0 2) p o r t 1 as input,
synchroneous mous
(.?O 1) port 1 connect to n o r t h
channel (input)
(51 0) pûrt 2 as input
(A l 2) port 2 connect to south
shannel (input)

ldcr 1, port3outcon
l d c r 3, port4config
ldcr

ldcr 3, bootcontrol; address purtl for rnodulo counter

ldearnc 0, 2097152, mc-min, mc-min;
ldeamc 4095, 2101248, mc-max, m c m a x ;

(64~64+start=4096+2097152 1
ldeamc 0 , 2097152, mc-start, mc-start; 2*+21=2C97152

Id t4h, nport
3 I?OD

io *mcdw"a
3 n s r l llo ' rncdw%

, 0 , 2 5 5 , mcar;rerurn t o s t c r t point f (x, y) ,mean f (O , C))

u; ! ! !
, u; n CI

end
SI: ; l ~ & d table, constant 2nd dota

push 132; 6 3 ; 64 ALifter table h; i s 4 - ;d lues (u l , i-1,
i o c p l : R 4 nsrl lssrilic 'rnccr?;

l à nport, +mcaw(l)
Id nport, -ncbw(l)
; 1c s-crt , ' m r b w i l j

S b r iocpI
rst

cul, tvl)

Appendix I IDCT program for PULSE
..
l l ~ ~ l ~ r l r r r l l l l l f f f f I f f f f r I f f I r f I r f f r f r f r f ? r f l r f ? r r l f f r r

. .
, l z c t . 3.53 8 x 8 ECT at 6 4 x 6 4 frame ,
, p c r z l l e i DCT (16 t i r n e s f a s t e r t h â n u s i n g o n e PEI ,
, F ! u , v) = C i c) C (t T) i 4 { s i q a x=0->7(sigma y=0->7 f (x , y) ,
, C G = [(2 ~ + 1) ~ + 3 . 1 3 / 1 6] ~ 0 ~ [2 y + l) v 3 ~ 1 4 / 1 6] } } ,
, f {r , y! =sigm& x=0->7{s igma g=0->7 C (U) C (V) / ~ * F (E , V) ' r

r ' : C S [(2~+1!~~3.i3/16]cos[2y+I)-~3.14/16] } ,
ccncition: ctu), c (v) = l , wher, u , v > 0; fl

, C (u) , c (ï) = 0 , 7 0 7 , when ut v = 0 . r

, table: ccs i [2x+l) u3.14/16] x : 0-17, u : 0->7 ,

, 1 = 1 2 S : 0.707=90; 1=250 : 0 .707=181 ,
I .

~ f ~ : r ~ f ~ 1 l l l r < l l t , ~ I ~ t I I f ~ 8 8 ~ I # 8 ~ I I I I t ~ I ~ ~ , ~ ~ ~ ~ ~ ? ~ ~ ~ 8 ~ ~ * ~ ~ , r , r r ~ r r I

- - . L Y ? : t

.ù . s e c r z l
- - .set r d 2
y .set rb3
:< . se : rb4
,-. . ,u .set r a 5
A - *
,-, . s e t rb6
C - c l . S E ? f'

11h . s s t r t 7
c i . S e i EC';

t:k . c e t r b S
:: r -
03.. . E L

:31 . s e c r z e 3
+ ,T c-r . s e t r i C l
:4h . s r : rblO
ci . s e c r a l l
.* -
., 1 .set r d 1 2
csl .set rbll
z ~ 1 .s?r rb12

pu 11 :
l'der 2, p c r t ltcnfiq; (5 0 2) p o r t 1 a s i n p u t ,

s g n c h r o n e o u s mode
I d î r 1, p o r t l i n c o n ; (AG 1) p o r t I c o n n e c t tc n o r t h

c h a n n e l (i n p u t)
l d c r 0 , p o r t S c ~ n f i g ; (9 1 0) p o r t 2 a s i n p u t
l d c r 2 , p o r t 2 i n c o n ; (A l 2) p o r t 2 c o n n e c t t o s o u t h

c h a n n e l (i n p u t)

l dc r 1, p o r t 3 c o n f i g
l d c r 1, p o r t 3 o u t c o n
l dc r 3, p o r t 4 c o n f i g
i àc r 2 , p o r t 4 o u t c o n

ldcr 3 , bootsontrol; a d d r e s s purtl fo r modulo c o u n r e r

ldeamc 0 , 2 0 9 7 1 5 2 , mc-min, mc-min;

4095, 2101249, ac-max, nc-max;
(64~+54+start=4096+2097152)

0 , 2097152 , mc-start, m c - start; 2'+2i=2097152

6 3 , 0, 2 5 5 , m c a r ;
0 , 0 , 2 5 5 , m c a w ;
13, P I 255, mcbr;
C , O , 255, mcCw;

. * t * * * + . - + * + - + r . t * + t * * + + * * t * * + ' * t + - + + * + + * ~ + * + * + * + + + + + +
I

.------------------.__________________________-.__________________________.__________________________--.__________________________.__________________________ ,
; i n p ~ t t z c ? ~ si sr^ f r c m 12 Cs 631 C i n c c t Oata (stzrt f r c m - - 7 .

- 3 1 , 51 ; : , - = , A 4- - 1,,, 2nd constznt

câble value is 65535
tzble v a l u e i s 65535

+ 3 n c p
mult ' add ra , 'addrb, tl; make the value a r r i v e

high 16 bit in tl.
3 nop

mult 'mcar (1 1 ,
add u, 8, u;
2 nop

make the

tlh, t4;mcar+tlh->t4 (high l 6 b i t)

value arrive low 1 6 bit i n t 3 mult cv, CU, t3;
3 n o p

I d t4h, rb16;
I d t 3 1 , rb17;

rnâcc t?h, ~ 3 1 ; t3h*t3l+acc->acc(hign 16 bit)
la 191, su; ! ! !
dbr locpu

n e c d C), reO, acc , r 2 ; acc-> t2 (high 16 bit)

àdd y , 1, 1;; 1

e n d

Appendix J cosine table

b=a [x] [y) *r+s+b;
//y[Ol [O]=O;

/ / y[i+e] [j+f]=xc 100000000;
1

c f u] [v] = (cuccv+b/4) /3.95;

ofstream out ("out .bll') ;
for(j-0; j < 8 ; + t j)

{
for(i=û; i<9; ++i)

o u t < < s e t w (5) < c i n t (a [il [j]) < < ' O ";
GUt<i sfidl;

1

Appendix L IDCT program in C++

1) IDCT program of C++
/ / / / / / / / / / / ; /
/ / 1 DCT idct3-l.cxx /
/ / g + + -1 /usr/lccâl/opt/FSFlibg++/1ib/g+t-include idct3-1-cxx /
/ / K T (eacn p i x s l = 2) (3 x 8) /'

/ / f (x , y) ={sigms u=r)-;7{sic~rnà .1=0->7 'C (u) c ^ (v] / 4 *F(u, v) - /
/ / c o s [(2 x + 1] ~ ' 3 . 1 4 / 2 6] ~ ~ 0 ~ [2 ~ 1 f 1 ~ ~ ~ 3 . 1 4 / 1 6] } ! /
/ / c o n a i t i ~ n : c(uj, c (v) =1, when u, v > û; /
/ / î (u) , c(v)=0,707, wnen u, v = O . /
/ / / / / / / i / / / / / / / / / / t ' / / / / / / / / / / / / / / / / / ; / / / / / / / ; /

8 i n c l ~ d e <stdio.h>
include <fstream.h>
include <math.h>
include <iomanip,h>
include <stdlib.h>
main (!
I

const float PI = 3.14159, 1J=8.0;
int x, y, u, i , j, m, n;
float p, q, r, s, CU, cv, a [El] [8 1 ,b, c [8] [a] ;

/'generate original mdtrix
for(m=O; m<8; ++m)

for(n=O; n < 8 ; + + n)
a [m l [n]=l;+/

i + read a [m] [n] from out . b 9 * /
ifstream input ("sut. bl") ;
/!char A [S] ;
//ifstream inpat {"oct .cl") ;
char A [8 1 ;
for(j=O; j < 8 ; + + j)

for(i=O; i<8; ++i)
I
input. read ((char') &A, sizeof (A)) ;
a[i] [j] = acof(A);
1

/

q = ((2+y+l)+v*3.14l6/16) ;
s=scs (q) ;
b= (c u + c v / . l) *a [u] [V I *r's+b;
/ / y [@] [0] = 0 ;

/ / y!i+e] (j + f] = x + 10G000000;
cu=l .O;
i
C V = ~ . O;

1
c [x j [: , -] = 0 + 3 . 9 5 ;

1

r f s t r f a m o ü t ("cut-dl");

for(j=8; jc16; ++j)
for(l=O; i < 8 ; ++i)
t

input.read((char*)&A, sizeof (A)) ;

f o r (j = O ; j < 8 ; + + j)
1
for(i=3; i < 8 ; ++il

//out<<setw(5)<<int (a[i] [j]) < < " ";
outc<setw(8) <<a [il f j] < < " ";

Appendix N D a t a transfer programs for C40 and PULSE

1) Readhrite data from/to global memory with C30 (C 1anguage):--------------------------

#include 'rms330c40.cmd''

#de fine global process 1

#define local process2

+define TRUE 1

+define FALSE O

int valus:

main()

f
i

1

global()

int mem-mal:

:* Initialize Part */

trace-on();

set - trace-level (GLOBALJ);

idle (5) ;

Ioad-reg (GLOBAL-CTRL, Ox37843faO);

/* Read/write data f r o d t o global memory */

msm-*al = read (0x8 108000 1):

I o a d j i n (STAT. O s 1):

edle (20):

w i t e (Os8 108000b. OxOf13fDfDf):

loadqin (STAT. 0x5);

idle (20):

mem - \.al = read (Os0007000r): /* Durnrny read */

idle (1 O):

synch();

2) Read/write data fromito IocaI rnernory with C40 (C 1anguage):----------------------------

#include "tms320c40.cmd"

#de fine global process 1

Rdefine local processî

#define TRUE 1

#define FALSE O

int value;

main()

{

local ()

{

trace-on():

set-trace-Ievel (LOCAL.2);

set-trace - level (PERIPH.2):

idle (20):

/* Readh-rite data f r o d t o data rnemory*/

value = read (Os0500001):

l o a d j i n (LSTAT, Ox 1):

idle (20):

w i t e (O~040000b. OsOfOfOtDf);

Ioadjin (LSTAT, 0x5):

idle (20):

\ .due = read (Ox0007000F); /* Dummy read */

idle (1 0);

synch();

3) Readwrite data fiom/to local memory with PULSE (PULSE assembly 1anguage):-----

. text

ldcr 3 . bootcoritrol: Use interna1 program memory and Mcc for address-I

:Read local memory

ldcr 0. ponkonfig: port2: input sy-nchronous mode

ldcr 0. portkonfig: port3: input s>-nchronous mode

Idcr 2. port2incon; port2 => South Channel

ldcr 1. port3incon; port3 => North Channel

ldeamc O. 50000bh. mc - start. mc-start:

I d e m c 0. 0. mc-min. mc - min

ldeamc 4096. SOFFFFh, mc - mm, rqc-mau

ldeamc 1. 1. mc-stride. rnc - stnde

io *mccro/k

Id nport. ral

ld sport. rbl

#30 nop

;Write local memory

ldcr 1. port2config; port2: output synchronous mode

ldcr 1. port3config: p o d : output synchronous mode

Idcr 1. port3outcon: port3 => North Channel

ldearnc O. 40000ah. mc - start. mc-start:

ldearnc O. O, mc - min. rnc min -

Idsamc 1. 1, rnc-strids. mc - stride

Id 65535. nport

Id 255, sport

X I nop

io *mcd\vO'o

$32 mop

4) Rr.nd/\\-rite data from/to program memory with Cd0 (C 1anpuage):------------------

eincluds "tms3 îOc4O.crnd"

#de fine global process 1

#de fine local processî

ftdetine TRUE 1

ffdefine FALSE O

int value:

main()

{

global()
C

int mem-mal:

/* Initializs Part */

trace - on();

set-trace-bel (G LO BAL.2);

idls (5):

load-reg (GLOBAL-CTRL. Os37843 faO):

/* Read data from program memory */

idle (25):

mem - val = read (Os0060000 1); /* Read at address 1 of band0 */

loadpin (STAT, Os9);

idle (5):

mem-\.al = read (0x0070000 1): /* Read ai address 1 of bankl *:

load g i n (STAT. 0x9):

idle (5):

mem)-val = read (0x0080000 1): /* Read at address 1 of bank2 */

loadpin (STAT, 0x9):

/* Wnte data to program memory*/

idle (5);

w-ite (OsOO3OOOO 1, Oxffffffff): /* W d e rit address 1 of bankO */

loadqin (STAT. Oxd):

id1e (5) :

wite (OsOO~OOOO 1. OxfüfOfOf0): /* Write at address 1 of bank 1 */

loadqin (STAT. Oxd):

idle (5);

w i t e (0x00500001. OxOfOfOfOT); /* Wnte at address 1 of bank2 */

Ioadqin (STAT. Osd):

sync h o :

Appendur O PULSE vs Contpetitors

Features

Architecture r
Frequency

Number of

Processor on

the chip

Inter-PE

Cornmunicatio

n support

PanIlel

Operations in

processing

CNAPS

SIMD

20-25 MHz

64 PNs.

Without

Controller

Very Weak, 5

Mbytes/s

Mapping

Scalability Scalable

External No memory

Memory and interface,

W 0 Interface 8-bit I/O

SHARC TI C80 Oxford

A236

processor I I

I

Single floating One floating- One Controller

point Processor point Processor 4 fised-point

processors

Strong Srrong W eak

Two adders ;-input ALU Multiply-acc

one multiplier Multiply-acc multiply-add

Weak Weak No

Only max. min

and clip of two

data

(But very hard I
to program

Scalable No Scalable

4 buses, 64-bit Single 64-bit 400 Mbyteds

datapath to Bus shared by 32-bit sync.

SRAM al1 the Memory

10 DMA processors for 2 40 Mbytesk

PULSE v l

SIMD

One Controller

4 fixed-point

proccssors

Multichannel

Very strong

3-input. 3-

output ALU.

Mult-add-acc

add-acc

med-add

Very strong

Mas, Min,

bled

Rank-order

Indes ranking

Core Function

chip

Flexible and

easy to

Pr0 gram

Scalable

Two buses 432

Mb/s sync.

Memory

4 108 Mb/s

Micro-

Instruction

Sofiware Tools

Packaging

4vailability

Cost

Jkbytes on

each Pn

64-bit total

32-bit control

32-bit PN

Very limited

Assembler

C compiler

Dsbugger

200-pin PN

'JO-pin CSC

PGA

Channels. 160

Mbyteds

Rich. estended

for non-linear

processing

Assembler

C compiler

Simulator

Drbugger

Evaluation

board

340-pin PQFP

data and 1 DMA ports

1 1 kbytes data

64-bit for 32-bit

panllel proc. I
Rich. extended Vsry limited I

-

for logic I
processing

Debugger

Evaluation

board

Assembler So fhvare

C compiler development

Simulator kit

305-pin

cerarnic PGA

208-pin PQFP

Yes

High Low

data ports

î-kbytes Ins.

2.5kbytes data

64-bit parallel

Very rich

extended for

both linear and

non-linear

proc.

Assern bler

C compiler

Sirnulator

Debugger

Evaluation

board

Application

libraries

240-ph PQFP

Low

