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Résumé 

Ceîte thèse traite de l'utiiisation de  PULSE. un processeur à instruction unique et domies  

multiples (SIbID) pour le Traitement et la Compression d'Images en format MPEG-2. De 

nos jours. les équipements de confikences vidéo. de téléphonie vidéo. de stockage 

d'images vidtio numérique. de télévision haute-définition (HDTV) et les systèmes de 

té ICvision et de multémedia numériques utilisent ce genre de fonctionnalité. Le  stockage 

ou la transmission de données d'image numérique impliquent des bandes passantes et des 

quantités de m6moire importantes. 

L'objectif principal de cette thèse est d'étudier Iss systèmes de codage de compression 

d'imapc. Elle traite notamment de la conception de systèmes de haute performance et elle 

Ctudie les compromis entre ia prticision et la complexité afin de réaliser des systèmes 

sf'ticaces. 

1) Le mémoire propose un algorithme précis et efficace pour effectuer la détection du 

mouvement dans un flot d'images. La méthode de recherche complète est rapide et 

précise. Elle est cependant très coûteuse. Une méthode de recherche graduelle mais 

complète permet de trouver le meilleur appariement avec un effort moyen réduit pour 

des images simples. 



2) Une architecture adaptée à I'algorithme proposé est analysée et sa réalisation est 

dicrite. Nos résultats démontrent qu'une puce PULSE permet de réaliser des 

systkmes de compression d'images efficaces et flexibles. qui exploitent un haut degré 

de parallélisme. Combiné avec un processeur de traitement de signal 

commercialement disponible. 1s C4O de la société Texas Instruments. on peut réaliser 

efficacement des systèmes de compression d'images de haute performance. Une telle 

architecture hétérogène est efficace et flexible. 

5) Nous proposons aussi une méthode efficace pour le calcul de la transformée cosinus 

(DCT ct IDCT) avec uns puce PULSE. Cette methode exploite une table de cosinus 

chargée dans les mémoires internes de PULSE pour éviter des calculs qui  exigent un 

grand nombre d'opérations. 

Des dC\doppsments additionnels permettraient d'optimiser encore plus les aigorit!unes 

proposés afin d'accélérer la compression d'image avec PULSE. 



... 
V l l l  

Abstract 

This thesis is concemed with appiying a Fixed-point SIMD A m y  Processor PULSE to 

Image Compression with the MPEG-2 Standard. Video compressor is widely used in 

today's video conferences. videophone. digital video storage. Storage or transmission of 

digital images requires large memories and transmission bandwiuth. This motivated 

rcssarch on this topic. 

The main objecti\.e of this tliesis is to study image compression coding systems. Several 

aspects of design h r  Iiigh-speed and high accuracy processing are considered. In order to 

rcdize a simple and effscti~x image compression coding system. the follo~ving areas are 

im-estigatcd. 

1 ) A high-spced and high accuracy aigorithm for motion estimation is developed. 

The Gradua1 Full search method (GFSM) algorithm reduces the time required to find 

matches and no possible solution is neglected in the search area. AIthough the 

program is slightly more complex than the Full Searching Method (FSM), it is three 

times faster than FSM u-hen processing a simpie image. 

2) Different system architectures for image compression coding are discussed and 

designed. 



The results obtained dunng the research conducted for this thesis will prove that a 

PULSE chip can be used to construct flexible multi DSP systerns, to accelerate image 

compression. Using PULSE chips nith a C30 DSP and a FPGA control unit, we can 

construct a hardwadsof tuxe system for image compression. It will not only reduce 

the cost of an image compression coding systerns. but aIso improve its flexibility. 

3) A simple and effective method to calculate DCT or IDCT with cosine functions 

using the PULSE chip is deveIoped. 

-4 possible method to computs the cosine function uses exponential function. 

Calculating cosine function is relati~pely expensive. Thus we propose using 

precomputed tables stored in PULSE'S interna1 memory to accelerate cornputation of 

DCT or IDCT. 

Further de\-cloprnents could impro\-e the throughput of image compression on the 

PULSE chip. 



Table of Contents 

.-. Dedication ...............~.~............~.....~......................................... I I I  

..................................................................... Acknowledgemen ts iv 

....................................................................................... Résumé vi 

.a. 

........................................ A bstract ... . viii 

Table of Contents ...................................................................... .u 

............................................................................ a u  res SV List of Fi, 

......................................................................... List of Tables xvi 

........................................................................ List of Appendix svii 

Chapter 1 Introduction ........................................................... i 

Chapter 2 A Review of Image Cornpressing Algorithms and Their 

............................................ Processor Architectures 5 

2. I MPEG standard ........................ ... ..................................... 

Bac kground ........................................................... 

...................................... A bnef overview of MPEG-2 

.......................................................... Convolution 

2.2 Motion estimation algorithm ................................................. 

2.2.1 FSM (hl1 search method) ........................................... 



3.2.2 CDS (conjugate direction searching) .............................. 16 

2.2.3 Three-step searching ................................................. 18 

2.2.4 CSA (cross-search algorithm) ..................................... 20 

2.3.5 GFSM (gradua1 full search method) .............................. 21 

33 2.2.6 Cornparison of the different algorithms ............. .. ........... -- 

2.3 Processor architecture review .................................................. 23 

2.3.1 Custom chip set for MPEG-2 coding ............................. 23 

2.3.2 VLSI implementation for motion estimation ..................... 26 

2.3.3 APC based image compression system .................... .... 27 

2.4 SIMD architecture of the PULSE chip .................... ... .............. 29 

2.4.1 Introduction ........................................................... 29 

2.4.2 Chip architecture .................................................... 31 

2.4.3 Processing eIement block diagram ................................ 33 

......................................................... 2.4.4 Instruction set 35 

2.4.5 PULSE V1 assembler ................................................ 37 

2.4.6 PULSE applications ................................................ 38 

Chapter 3 Implementing a Convolution on PULSE ....................... 40 

3.1 The convolution algorithm versus PULSE architectural features ......... 40 

3.2 Structure of the convolution sohare ........................................ 44 

3.3 Summary .............................. ,... .................................. 46 



xii 

Chapter 4 Motion Estimation Algorithms and 

Implementations .......................................................... 47 

4.1 Motion estimation algorithm .................................................. 47 

4 . 1.1 General description ................................................ 18 

4.1.3 Data structure for motion estimation in PULSE ............... 49 

4.2 Gradua! fkI1 search method and full search 

algorithm ~ v i t h  the PULSE chip ............................................... 52 

4.2.1 Speed of GFSM and FSM algorithms in PULSE ................ 52 

4.2.2 Motion estimation program for PULSE .......................... 53 

Chapter 5 DCT & IDCT Algorithms and 

......................................................... Implementations 60 

5-1 DCT & IDCT algorithms ........................................................ 60 

5.1. I DCT ................................................................... 60 

.................................................................. 5.1.2 IDCT 63 

5.2 Implementation of DCT & IDCT on PULSE ............................... 64 

5.2.1 Data structure of DCT on PULSE ............................... 64 

5.2.2 Requirements and performance for DCT and 

IDCT on PULSE ..................................................... 67 

Chapter 6 Image Processing with PULSE Chips and 

a C40 Processor ......................................................... 68 

6.1 System architecture composed of one PULSE chip 



. . 
X l l l  

Chapter 

and a C40 ......................................................................... 69 

Irnprovernent of the C40PULSE system ..................................... 73 

7 Conclusions ................................................................. 77 

Results ............................................................................ 77 

Future work ................................................................... 78 

References .................................................................................. 8 1 



xiv 

List of Fi, oures 

Figure 1-1 

Figure 1-2 

Figure 1-3 

Figure 1-4 

Figure 1-5 

Figure 1-6 

Figure 1-7 

Figure 1-8 

Figure 1-9 

Figure 1-10 

Figure f - I l 

Figure 1- 12 

Figure 2-1 

Figure 2-2 

Figure 2-3 

Figure 2 4  

Figure 2-5 

Figure 2-6 

Figure 2-7 

Figure 2-8 

Figure 2-9. 

MPEG systern layer block diagram 

System layer pack and packet structure 

Picture types 

Essentid elements of coding system in MPEG standard 

Motion compensation 

Zigzag Scan 

MPEG cording system data flow block diagram 

PULSE chip VI logic syrnbol - subject to design review 

PULSE chip version 1 architecture 

.Architecture of PEs and communication chains 

PULSE V 1 -3 .f 16-bit processor architecture 

Pipeline structure instruction in four cycles of dock  

Function partitioning in h4PEG-2 encoding 

Chip sets feature of flexible pipeline architecture based on RiSC CPUs 

EST256 architecture 

Structure diagram for a video image compression systern 

The curent and previous fiames in a search area (N=l6,n=8) 

CDS method 

Three steps rnethod 

CSA method 

Gradually searching 



Figure 3-1 

Figure 3-2 

Figure 3-3 

Figure 3-4 

Figure 3-5 

Figure 4- 1 

Figure 4-3 

Figure 4-3. 

Figure 4-4. 

Figure 4-5. 

Figure 4-6 

Figure 4-7 

Figure 7-8 

Figure 5- 1 

Figure 5-2 

Figure 6- 1 

Figure 6-2. 

Figure 6-3 

Figure 6-4 

Splitting of 1K 'c 1 K original image into four parts for processing on a 

PULSE chip 

Distributed data structure for pa rde l  computation of a convolution 

Original picture data and result picture data (boundary effect) 

Instruction pipelining in a convolution 

Overiapping of calculation with exportation of output results 

Position & relation between blocks & search areas in frarneA & frameB 

Data of blocks and data of search areas in current picture and previous 

pictursmemA and memB 

Data structure in PEs 

FSM & GFSM program diagram and its instructions (one block) 

Flou-chart of a basic match unit 

Data of block search in independent memory space 

Program t 1 

Prograni t2 

Cosine table and input data stores in PEs mernories 

DCT program diagram and instructions 

The C-IOPULSE system 

Program flowchart for the C40PULSE system 

A C40PULSE system implementation 

The C40/4PULSE system 



xvi 

List of Tables 

Table 2- 1 Cornparison of dit'fsrent algoriiluns . . . . . . . . . . . . . . . . . . . . -. . . . . . . . . . . - -. . . 23 

Table 6-1 Corn parison searching results with di fferent algorithrns . . . . . . . . . . . . . 76 



List of Appendix ........................................................................ 85 

. Ippendir -4 PCLSE F'l Compet it ive analjsis ....................................... 85 

AppendLr B PULSE I..'I technical fearures .......................................... 89 

..................... .4 ppcndix C PC'LSE C'I logic qmbol-strbject to design rerielt 91 

.eippendi .r D The conidution proLqam jlolr.chart and program .................... 92 

. 4pper;Jix E Conr.olrïtiott progrnn . duta q f source image 

anudataofresultimdge .............................................. 96 

..I ppertdix F Pro<qarn of .4 forion estirnution ......................................... 101 

.......... ................................. .-lppendi .Y G Restrlr of titoric~n êsrirnurion .. 123 

. 4ppemii.r H DCT prngt-crnlfor P CiLLCE ........................................... 125 

.-l ppcndi.~ / /DCTprogrutn for- PLILSE .............................................. 128 

-4ppenJi-r J Cosine Table ............................................................... 131 

-4ppendix A' DCT progratn in C-  -. .................................................... 132 

.4 ppei1di.r L /DCT program in C'+ A ................................................. 134 

-4ppendi-Y .A f Cosine rable generation program in C+ + ............................... 139 

p e t d i  \ Data tramfer prograrns-for c4O arzd PCTLSE ............................ 130 

Appertdix O PULSE i's Cornpetitors ................................................. 147 



CHAPTER 1 

INTRODUCTION 

A General Presentation of the Problem 

This thesis presents a Hardware Software Co-design with the PULSE(Paralle1 Ultra 

Large Scale Engine) chip used for image processing. It reports o r  research canied as  part 

of the PULSE project that led to the development of the PULSE chip. Nowadays, rnoving 

image coding systems have a very promising application field: Videoconferencing, 

Videophone, Digital Video Storage, High-Definition Television (HDTV), Digital 

Television and Multimedia Systems. In moving image coding systems, data compression 

is needed for eficient management of  large amounts of information. For example, a 

coior image with a resolution of  1000 by 1000 pixels (picture elements) occupies 3 

megabytes of storage in an uncompressed form. Data compression is especially useful for 

the transmission of such high data through transmission channels. For instance, bit-rate 

ranges fiom 10 Mb/s for broadcast-quality video to more than 100 Mb/s for KDTV 

signais. 

In order to reduce the transmission rate, using prediction techniques based on motion 

estimation. This scheme increases the compression ratio to 50-200: 1. Motion Estimation 

is the rnost demanding part in the coding algorithm. For example, in an image coding 

system in MPEG2 standard (Figure 2-3), the compuîational power required is 

approximately 1.2 GOPS; and around 50% of this effort is devoted to motion estimation. 



At the decoder, motion estimation is not necessary, therefore lower computational power 

is required. 

Main Objective and Methodology 

The main objective of this thesis is to study image compression coding systems and some 

popular algorithms used for that purpose. Several aspects of design for high-speed and 

high accuracy processing are considered. In order to realize a simple and effective image 

compression coding system, the PULSE chip is considered as a potential platform. 

The PULSE chip is a new ultra-high performance SIND (Single Instruction Multiple 

Data) architecture DSP (Digital Signal Processing) for high-end video and related 

applications. It has one controller and four process elements with clock of 54MHZ and 4 

ports, having an VO capability as high as 2 16 Mega words/sec. Its VO ports are designed 

to allow foming linearly connected chains of chips. With this syaem architecture and 

using PULSE assembly language, a real time image processing system can be 

implemented. 

1) A high-speed and high accuracy algorithm for motion estimation is developed. 

The Gradua1 Full search method (GFSM) algonthm reduces the time required to find 

matches and no possible solution is neglected in the search area. AIthough the 



progam is slightly more complex than the Full Searching Method (FSM), it is three 

tirnes faster than FSM when processing a simple image. 

A simple and effective method to calculate DCT or IDCT with cosine fûnctions 

using the PULSE chip is developed. 

A possible method to compute the cosine funaien uses the exponential fùnction. 

Calculating cosine hnction is relatively expensive. Thus we propose using pre- 

compute tables, stored in PULSE'S interna1 mernories, to accelerate computation of 

DCT or IDCT. 

Further developments could improve the throughput of image compression on the 

PULSE chip. 

3)  Different system architectures for image compression coding are discussed and 

designed. 

The results obtained during the research conducted for this thesis will prove that a 

PULSE chip can be used to construct flexible multi DSP systems, and to accelerate image 

compression. Using PULSE chips with a C40 DSP and a FPGA control unit, we can 

constnict a hardware/software systern for image compression. It will not only reduce the 

cost of image compression coding systems, but also improve their fiexibility. 



Organization of the Thesis 

Chapter 3 will introduce the MPEG2 standard, the PULSE chip, and review some 

previous research work. 1 will also describe sorne proposed algorithms. Chapter 3 

describes the implementation of the convolution algorithms on PULSE. Chapter 4, 5 and 

6 are the main parts o f  this thesis. Chapter 4 and 5 include the processing of motion 

estimation and DCT algorithms using the PULSE chip. A hardware and software co- 

design system using a C40 chip & PULSE chips is discussed in chapter 6.  Chapter 7 

summarizes Our conclusions. 



CHAPTER 2 

A REVIEW OF IMAGE COMPRESSING ALGORITHMS AND 

THEIR PROCESSOR ARCHITECTURES 

2.1 MPEG Standard 

In todq-'s world. videoconferencing. videophone. digital vidco storage. high-definition 

telex-ision (HDTV). digital tele\ision and multimedia systems are widespread. Storage or 

transmission of thssr data requires Iarge memories and high bit-rate. Thercfore. data 

compression has been a subject of intensive research and dwelopmsnt for the p s t  few 

years. 

2.1.1 Background 

MPEG is a video compression technoIogy formulated b y the Mo\.ing P ictures Experts 

Group. a joint cornmittee of the International Standardization Organization (ISO). The 

first MPEG standard. known as MPEG-1. \vas fonnalized b>. the MPEG cornmittee in 

January 1992. 

MPEG- 1 compression incorporates both audio and video. For NTSC video (United States 

and Japan) MPEG-1 uses the Standard Image Format (SIF) of 352x240 at 30 frames per 

second. Audio is 16-bit, stereo sampled at 44KHz. MPEG data rates are variable, 



although MPEG-1 was designed to provide VHS video quality. and CD-ROM audio 

quality at a combined dzta rate of 1.2 megabits per second. 

By resolution and data rate. MPEG-1 is targeted primarily at the computer and games 

markets. By contrast. MPEG-2. adopted in the spring of  1994. is a broadcast standard 

speci-ing 720x480 pisels resolution. playback at 60 tlelds per second and data rates 

ranging from two to 10 megabits per second. MPEG-2 is the core compression 

technology for DVD. the liigh-density CD-ROM standard that many feir will replace 

VHS tapes as the standard for consumer video. 

MPEG-3 was dropped. and MPEG-3 is a v e q  low-bit-rate codec targeting 

~.ideoconferencing. Intemet. and other low-bandwidth applications. 

2.1.2 A Brief O\.en-iew of MPEG-2 

I ) b'hat is MPEG-2 

MPEG-2 is an audio/vidso compression/decompression standard. The audioivideo inputs 

are cornpressed by an encoder. and decompressed by a decoder for playback. 

The MPEG-2 standard is actually composed of three standards fomulated by the Moving 

Pichires Experts Group, a working group of the International Organization for 

Standardization (ISO). ISO standard 13 8 1 8- 1 covers the MPEG-2 system Stream, ISO 

standard 1 38 1 8-2 addresses MPEG-2 video, and ISO standard 13 8 1 8-3 describes MPEG- 



2 audio. Work on MPEG-2 startsd back in 1988. and al1 three standards were finally 

approved in November 1 994. 

MPEG-2 \.ide0 resolution can range from 720~480 to 1280x720, with the latter targeting 

high-de finition tekvision ( HDTV) applications (cable 1 5.1 ). The most cornmon 

resolution is 720x480, roughly the resolution of a full-screen NTSC (Nationai Television 

Standards Cornmittee) image This contrasts with MPEG-1's masimum resolution of 

352x240. or quartsr-scrern TV. Whils MPEG-1 is limitsd to 30 frarnes per second. 

MPEG-2 c m  opcrate at 60 fieIds, the scan rats of NTSC television. enhancing suitability 

for broadcast applications like HDTV. cable television. and broadcast satellite. 

2) Video Compression Tschnology 

Since h4PEG-2 includes both audio and t-ideo. al1 MPEG-2 codecs must address both 

formats. The block diagrarn of an MPEG-2 encoder system is shown in Figure2-1. 

Source corn prrssor / h.Iodulator j b 

V idco Video 
Source corn pressor , 

Ancillary data 
t 

)I 

Figurez-1 The block diagram of MPEG-2 encoder system 

This thesis is mainly focused on the implementation of the video cornpressor. MPEG 

video is specifically used in compression of video sequences which are simpIy a series of 



pictures taken at closely spaced intervals in time. Except for the special case of a scene 

change. these pictures tend to be quite similar from one to the next. htuitively. a 

compression system ought to be able to take advantage of this similarity. 

The compression techniques (compression models) with MPEG take advantage of this 

similarity or predictability frorn one picture to the next in a sequence. Compression 

techniques that use information frorn other pictures in the séquence are usually cailed 

interframe techniques. 

When a scene change occurs. interfrarne compression does not work and the compression 

mode! should be changed. In this case the compression mode1 should be structured to 

take advantage of the similarity of a given region of a picture to imrnediately adjacent 

area in the sarnr picture. Compression techniques that only use information from a single 

picture are usually callsd intraframe techniques. Thsse t\vo compression techniques. 

interfrarne and intraframe. are at the heart of the MPEG video compression aigorithm. 

Each video sequence is divided into one or more groups of pictures. and each group of 

pictures is composed of one or more pictures of three different types. 1. P. and B, as 

illustrated in Figure 2-2. I-pictures (intra-coded pictures) are coded independently, 

entirely without reference to other pictures. P and B-pictures are compressed by coding 

the differences between the picture and reference I or P-pictures, thereby exploiting the 

similarities from one picture to the next. 



P-pictures (prediciive-coded pictures) obtain predictions from ternpordy preceding 1 or 

P-pictures in the sequence. whereas B-pictures (bi-directionaliy predictive-coded 

pictures) obtain predictions fiom the nearest preceding and / or upcoming 1 or P-pictures 

in the sequence. Different regions o f  B-pictures may use different predictions, and may 

predict from preceding pictures. upcoming pictures. both. or neither. Similady. P-pictures 

rnay also predict from preceding pictures or use no prediction. If no prediction is used, 

that region cf the picture is coded by intrafiarne techniques. 

In a closed group of pictures. P and B-pictures are predicted only from other pictures in 

that group of pictures: in an open group of pictures. the prediction rnay be from pictures 

outside of the group of pictures [MPG97]. 



MPEG display order 
b 

Fonvard prediction of B-kames 
-> Backward predict ion of B-Eames - Foward prediction of P-fiames 

Figure 2-2 Picture types 

3) Video Encoder 

Figure 2-3 is a diagram showing the essential elements of a video coding system for 

MPEG -2 Standard. Temporal redundancy is reduced using the folIowing process. 



DI !Terence Picturc 

B u ffer DCT 
( N e w  picturc) - + 

I 

1 Prrdicted picturc 

Buffer fullness 

+ Ï-l Quantizer 1 

I I , picturc mcmor! 
C 

motion estimation (o ld  picture) 
1 encoded cocfficicnts 
I I 

+ Entrop? 1 P E S  packets 
C'ontrol data cncoder B il tti-r b 

L 1 

Figure 2-3 Essential elements of  vide0 coding system in MPEG -2 standard 

In the motion estimation section. an input vidso frame. called a new picture. is compared 

~v i th  a previouslj. transmitted picture held in the picture memory. Pixel blocks (an area of 

16-piscl n ide  and 16-pixel high) of the previous picture are exarnined to determine if a 

close match can be found in the iiew picture. First. the new picture buffer is divided into 

8x8 pissI blocks. each 8x8 pisel block is ssarched in the old picture area of 16x1 6 pixels. 

The match algorithm of motion estimation is: [Eq.2.1] 



Where M is the distortion value. A[i.j] and B[i,j] are the new and odd images' pixel 

values respectively. If the value of M is less than a threshola value. then the vector 

coordinate of this block is cdled a close match. When a close match is found, a motion 

vector is produced describing the direction and distance the pixel block moved. A 

predicted picture is generated by the combination of al1 the close matches as shown in 

Figurez-4. Finally. thé new picture is compared with the predicied picture to produce a 

di fference picture [hIPG97]. 

The blocks o f  a new picture are searched The blocks of old picture predict the 
in on old picture new picture 

Figure 2 3  hdotion compensation 

The process of reducing spatial redundancy begin with a DCT (Discrete Cosine 

Transform) on the difference picture o f  an 8x8 pixel block. The firs: value in the DCT 

matrix (top lefi corner) represents the DC value of the 64 pixels of the 8s8 block. The 

other 63 values in the matrix represent the AC values of  the DCT with higher horizontal 



and vertical frequencies as one moves to the bottom right corner of the rnatrix. If there is 

little detail in the picture. these higher frequency values become very small. The DCT 

values are presented to a quantizer which. in an irreversible manner, c m  "round-off' the 

values. Quantization noise anses because coefficients are rounded-offs. I t  is important 

that the round off be done in a manner that maintains the highest possible picture quality. 

When quantizing the coefficients, the perceptual importance of the various coefficients 

c m  be exploited by allocating the bits to the perceptually more important areas. The 

quantizer coarseness is adaptive. and is coarsest (fewest bits) when the quantization 

crrors are espected to be least noticeable. The DCT coefficients are transmitted in a 

zigzag order as sho~vn in Figure 2-5. After rounding. the higher frequency coefficients 

often have a zero-\Aue (See Chapter 5 The Algorithm of DCT and IDCT). This leads to 

frequent occurrence of several zero-value coefficients in sequence. 

Figure 2-5 Zigzag Scan 



The quantizer output is presented to an entropy encoder, which increases the coding 

efficiency. by assigning shorter codes to more frequently occumng code words. The 

entropy encoder bit strearn is placed in a buffer at a variable input rate. but taken from the 

buffer at a constant output rate. This is done to match the capacity o f  the transmission 

channel and to protect the decoder buffer from overfiow or underfiow. If the encoder 

buffer is almost fùll. the quantizer is signaled to decrease the precision of  coefficients to 

reduce the instantaneous bit rate. I f  the encoder buffer is almost empty. the quantizer is 

allowed to increase the precision of coefficients. The output of the buffer is packetized as 

a Stream of PES packets. [DIG94] 

In order to use the motion compensated picture for next prediction, the encoder requires 

the reconstruction of the picture contained in the transmitted bitstrem. The quantizer 

output is presented to the inverse quantizer, then to the inverse DCT. IDCT output adds 

the predicted picture. and then place the result in the picture rnemory [MPG97]. 

The data flow coding system in MPEG standard is shown in Figure 2-6. 
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Data tlow of coding system in MPEG standard 

2.1.3 Convolution 

Most motion pictures need some pre-processing filter. This pre-processing enhances as 

perceived by human visual sense. Convolution is one of the popular a1gonth.m~ used. It 

will be discussed in chapter 3. 

2.2 Motion Estimation Algorithm 

Several algorithms for motion estimation have been proposed. A number of popular 

methods, as well as the one proposed in this thesis, are presented below. 



2.2-1 FSM (full search method) 

The search of a block frame A (current picture) starts at the upper-left corner of the area 

of frarne B(previous picture). If the value of M in equation [Eq2.1] is less than the 

threshold value (zero means exact match). stop searching and output motion vector. 

Othenvise search from Ieft to right and from top to bottom through frarne B. The search 

is stopped when the right bottom corner is reached or when M is smaller than a threshold 

value. This search sequence is illustrated in figure 2-7. [MPG97] 

(nxn) block 
in the current 
fiame A 

search area in 
the previous frame B 

(nxn)block under the search in the 
area of previous fiame B, shiîled by i j 

Figure 2-7 The current and previous fiames in a search area (N=16,n=8) 

2-2.2 CDS (conjugate direction searching) 

The search progresses in the direction of the smaller distortion, until a minimum 

distortion is found (sel figure 2-8)[MPG97]. Descriptions of the algorithms refer to 

points to express the shift between the reference positions in the hvo compared images. 

The algonthm is listed below: 



M is the value in equation [Eq2.1]: threshold is a value selected by the designer according 

the allo~ved error: the left, right, up and down mean the direction of next compared center 

point from the current center point. 

[A ]horizontal: compare center point; 

if (M<threshold) then stop search and output vector: 

slse compare lefi and right point; 

if((right(3)<left(O)and(~ght>threshold)en let right be the new center point; 

elsit'((right(3)>left(O)and(lefi>threshold))en let lefi be the new center point: 

endif: 

endif: 

repcat [.4]horizontaI until boundary or minimum point is found in horizontal direction: 

[Blverticai: compare center point (4)(produced by [A]horizontal): 

if (M<t!xeshoId) then stop search and output vector: 

eIse compare up and down point; 

if((up(7)<do~vn(6)md(up(7)>threshold))then let up(7) be the new center point: 

clsif((up( 7)>do~\n(6)and(do\m(6)>threshold))then let down be the new center 
p p p p p p p p p p p p p - - - - - - - - - - - - - - -  

point; 

repeat [B]vsrtical until boundary o r  minimum point is found in vertical direction; 

end: 



Figure 2-8 CDS method 

2.2.3 Three-step searching 

The three-step searching method looks for motion displacements. As it progresses 

through the steps. the search range is decreased. As shown in figure 2-9[MPG97]. The 

algorithm is listed below: 

The definition of M and threshold are the sarne as with the CDS method. 

step( 1 ): compare center point: 

i f(M<threshold)then stop search and output vector; 

else compare four (a) point; 

if ((minimum M(a)<threshold)then stop search and output vector; 

else compare tw M(aa)points(in minimum (a) direction); 

if (minimum M(aa)<threshold)then stop search and output vector; 



else new center point = the position of minimum M((a) or (aa)); 

endi f: 

endif: 

repeat step( 1 )  three times:(minimum M(aa) be the center for b search),(minirnurn M(b) be 

the center for c search). 

end: 

From figure 2-9. the ria point (minimum (M(a) or M(aa))) is as the new center point in 

step(2) searching. Using a similar method. the b point (minimum (M(b) or M(bb))) is 

used as the new center point in step(3) searching. 

Figure 2-9 Three steps method 



2.2.3 CSA (Cross-Search -4lgorithm) 

This algorithm differs from other search methods in the final step. In reference to figure 

2-10. the final searching can be either the (X) or  (+) directions. This is dirtermined by 

minimum point. If i t  is in lefi up comer or right down corner. the nest searching point 

wi l l  choose (X) points. If it is in right up corner or lefi down corner. the next searching 

point will choose (+) points [CR090]. 

-7 -6 -5 -4 -3-3  -1  O 1 2 3 4 5 6 7 

Figure 2- 10 CSA meîhod 



2.2-5 GFSM(Gradua1 Full Search Method) 

The gradual full search algorithm is a new method proposed here. It begiiis at the center 

point and gradually increases the searching range around this point. The method is 

illustrated in figure 2-1 1. This method \vas developed for two  reasons. 

We analysed the fast algorithms and we found similar problems with most o f  them. The 

search direction is usually guided toward the minimum value of M (equation 1)  by 

comparing 4 points nt each step. Thus many points inside the search region are skipped. 

In some cases. moving by one pixel may give very different results. The search direction 

is controlled by the minimum M. \vhich may lead to incorrect dccisions. Fast algorithm 

are faster than FSM. but the? may give incorrect resuits. 

-41~0. ~ v h e n  successive frames d o  not change much. the last motion sector is a short 

distance from the center. 

The gradual full search method typically takes a short time to find the best match. and 

yet no point is ignored in the search area. Although the algorithm is slightly complex than 

FSM. it is much faster for most applications. 



Figure 2- 1 1. Gndual Fu11 Search Method (GFSM) 

2.2.6 Cornparison of the different algorithms 

Table 2-1 shows the maximum number of search points with the different algonthms. 

The fast algorithms (CDS. CSA and 3STEPS) are faster than FSM and GFSM. When w 

is large. this is more obvious. However. the fast algorithms sometimes produce incorrect 



W=(size of search area - size of block)/2 

Table 2- 1 Cornparison of different algorithms 

Algori thm 

FSM 

CDS 

CSA 

3 step 

Gradua1 ly 

2.3 Processor Architecture Review 

Maximum number 
of search points 

(2w+ 1 )? 

3+2w 

5+4 Iog w 
7 

25 

(2 w+ 1 )' 

w 

In order to implement a MPEG coding system. a powerful calculation engine is required. 

A huge number of calculations are required to perform motion estimation. DCT. etc. 

Therefore. some special purpose chips are ofien used to implement these functions. Three 

different MPEG-2 video encoders are discussed below. 

2.3.1 Custom chip set for MPEG-2 coding 

The paper "Two-chip MPEG-2 Video EncodingW[TW096], describes a system composed 

of two chips that implements a MPEG-2 video encoder. The key features of these chips 

set are: 
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The Enc-M chip mainly executes motion estimation and compensation steps. 
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The Enc-C chip is the main coding and control chip. It esecutes not only coding 

operations like discrete cosine transformation (DCT). inverse discrete cosine 

transformation (IDCT). quantization (Q). inverse quantization (IQ). and 

variablslen-eth coding (VLC). but also header generation, rate control. and output 

buffer contro1. It has an external output buffer (FIFO-structured desired fiom a 2- 

Mbit DRAM) to meet the requirements of the MPEG-2 algorithm. 

R e o r d t g  
Field bu ffer 

(4 Mbit 
w 

And actikin; : 
detection , 

Motion 
estirnaor 

(16 Mbit SDRAM or 
nvo 3 Mbit SDRAMs) 

2: 1:-, 
( 2  Mbit 

1 
- Data path 

Figure 3- 12 Function partitioning in MPEG-2 encoding 

Figure 2-12 shows the partitioning of the MPEG-2 encoder. It uses two encoder chips 

(Enc-M and Enc-c). as well as three peripheral rnemories, a reordering field buffer. a 

h e  memory. and an output buffer. 



Since MPEG-2 is a cornplex algorithm that requires a flexible and efficient control 

structure. the pipeline architecture based on RISC CPUs (Figure 2-13) is used. Both the 

Enc-M and Enc-C have thsir own RISC CPU. For flexible pipeline operation. each 

îùnctiunal unit has a CPU VO device controllrd by the CPU via the VO port. Somc units 

communicate with neighbouring units in a request-ûcknowledge manner. 
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Enc-C interface 
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' DRAM 
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CPUs 

Chip set feature of flexible pipeline architecture based on RISC 

The encoder chip set can easily be used to develop a compact encoder system. The 

encoding algorithm is the MPEG-2 simple profile at main Ievel with a variable h e  size 

from 61 to 720 pixels (column) and 61 to 576 pixels (row). The chip set thus supports the 

conventional sizes of 720x480. 720x576 and 640x380 pixels required for NTSC, PAL 



and VGA standards. Using a 4 2 2  video input format. the maximum b e  rate is 30 

frames per second for a 720x480 f i m e  size. That means the system processes up to 

40.500 macroclocks( 16 by 16 pixel) every second for a maximum output of 1 5 Mbits per 

second. 

2.3.2 VLSI irnplementation for Motion Estimation 

The papsr "VLSI Architecture for Motion Estimation using the Block-Matching 

A1gcrrithm'-[VLS96] introducss the EST256 chip used for motion estimation. The 

rtrcliitccture. EST256. ivhich consists of 256 processing elements. deals w<th a search 

areri(32s32 piscl) for block( l6'i l6pisel) and perfoms I 1 GOPS at 33MHz clock 

(subtrriction. absoluts \.alus determination. accumulation and companson). Considenng a 

7 2 0 ~ 5 7 6  pixel image. the processing rate for motion estimation is 39 frames per second. 

The numbsr of PEs n-orking concurrsntly is 256. and each single processor cornputes the 

cost function for one of the 256 possible locations of the reference block within the 

ssarch area. The rina? outputs the motion vector corresponding to each reference block. 

256 cycles rifier the Iast pisel of the block has been entered into the array. Figure 2-14 

shous the structure of the 256 processors array. To reduce the required bandwidth, 

EST256 has three %bit input ports. After initial latency, the comparator block inputs one 

error computation in each cycle and compares it +th the previous minimum, storing the 

lowest. The boundary block disables the comparator when its input value is not valid, this 

condition arises for some locations o f  the blocks located on the top, bottom, lefi and right 



boundaries of the image. The architecture provides the minimum error value, the 

coordinates of the motion vector for this position and the error value for the (0,O) motion 

vector (no movement). 

Error(MV) 

Figure 2- 14 EST256 architecture 
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2.3.3 A PC based image compression system 
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The paper "A High-performance System for Real-time Video Image Compression 

Applications"[HIG95] introduces a PC based image compression system. As shown in 

Figure 2-15. the system consists of a PC-486, a motion estimation processor (MEP), a 

DCTADCT processor (DCTADCTP), an image grabber, and a canera. MeanwhiIe, both 

the MEP and DCTADCTP act as backend processors for PC-486 through its Vesa local- 

bus interface. The PC-486 handles al1 the computations except motion estimation, DCT, 

and Inverse DCT. Currently, by operating at 12.5MHz, the MEP takes around 1 OOus to 

Error 
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PE#256 

- - *  

, 
A A 

Control 
1 1  



cornpute the motion vector with tracking range 32x32 for each 16x16 block, and. the 

DCTADCT takes around lOus to cornpute the two dimensional DCT or inverse DCT for 

each 8x8 block. Also. overlapping data loading and processing c m  achieve the optimal 

performance. Therefore. for ench 256x256 image frame. the system presented ~vould take 

around 25.6ms and lOms for computing motion vectors and two dimensional DCT or 

inverse DCT individually. 

Application 
Program 

Image 
Compression 

Control 
Program 

Vesa 

a Local Bus 

. 

a 
C 

Quantization. 
Dequant izat ion, 
Run-Lm_& Coding 
Variable-Lm-& Coding 

Estimation 
Processor 

Image 
Grabber 

Figure 2-1 5 Stmcture Diagram for a Video image compression System 

Conclusions 

As described above, in order to irnplement real time image processing, special processor 

or Functional units are needed. As a general purpose DSP, single PULSE chip rnay not be 

very powerful. However, it is easy to connect multiple PULSE chips to implement real 



time image processing. An array of PULSE chips c m  implement motion estimation. 

DCT. etc. Each chip also implements a control unit. and these chips can easily be 

interfaced with other processors. So- PULSE chips give us the ability to build different 

systems to implsment various dgorithms and applications. 

2.4 SIMD Architecture of PULSE Chip 

2.4.1 Introduction 

PULSE V1 is a 16 bit. fised point SIMD m a y  processor designed to operate cit 53 MHz- 

It contains (on a single chip) one controlltrr and four PEs (Processicg E l c ~ ~ n t s ) .  The 

custom designed architecture and instruction set of the PULSE processor allow efficient 

impkmentation of al1 linear (muItiply add accumulate etc.). nonlinear (mnimum. 

minimum. medium. r d  order. etc.) and hybrid operations. thus pro\-iding a cornplete 

solution for an' tïsed point DSP related applications. 

PULSE V1 employs heavy parallsl operations to handle data 110. inter-processor 

communications. address generations. and computations. One pgalle1 i n s ~ c t i o n  could~ 
p p p p p p p p p p p p p p p - - - - - - - - - - - - -  

sirnultaneously provide multiple computations (such as multiply add accumulate. and 3- 

point rank order). multiple address generations and memory access. multiple data transfer 

within the PE and between the neighbor PEs. Al1 these operations can be done at the rate 

of one per cycle however. PULSE data-path is a 4-stage pipeline. One PULSE instruction 

could perform more than IO conventionai operations. Effectively, the PULSE V1 chip 

c m  provide more than 2 Billion FUSC like operations per second for 1inea.r processing. 



tlsually conditional sxecution on SIMD machines c m  become highly inefficient, since 

each PE might get diffsrent conditions. but the controller c m  only supply a Single 

Instruction based on a single condition. The usual way to sotve this multi-condition 

problem is to turn somr PEs off. thus \vasting computation power. The imovative design 

of the PULSE VI processor partly removes these conditional executions by supporting a 

rich set of nonlinear instructions. For example. each PE cari implement a 3 point rank 

order (maximum. medium, and minimum) in a single cycle of  PULSE V1. The 

implementation of this operation ( r d  order of 4 LPectors. 3 data each) could require more 

than 60 opsrations on conventional processors such as TI TMS320C40. In that specified 

case. the PULSE processor provideç more than 4 Billion equivalent RISC like operations 

per second for nonlinear processing. 

To handle red-time image and \.ide0 processing. PULSE V I  provides up to 864 

Mb!tesisec. of bandxidth for data I/O and 332 Mbytss/sec. for inter-processor 

communications. An imovative communication mechanism provides efficient use of the 

bandw-idth and allows flexible algcrithrn mapping. Furthemore. the PULSE processor 

provides a rich set of parallel and vector instructions. which can be used to  improve the 

application performance while reducing the program size. 

PULSE VI  provides easy system integration for different classes o f  applications. It c m  

be used as a stand-alone processor to replace some ASIC chips; it can be used as a co- 

processor or accelerator to other processors of cornputer systems; it c m  have extemai 



programs and data memory for large kemel applications. The cascade o f  multiple PULSE 

chips is relatively straightfonvard. and it c m  be done without any additional glue-logic. 

-4 wide variety of  architectures and related system applications c m  be obtained wîth 

suitably cascaded PULSE chips. 

2-42 Chip Architecture 

The PULSE chip version 1 is a PE array. nith four data communication ports (two of 

them are compatible n-ith CAO). two address ports. global constant memory and intemal 

program memorq.. The chip architecture is shonn in Figure 2-1 6. The PE array is the core 

of the PULSE chip. Its architecture and communication chains are shown in Figure 2-1 7. 
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Figure 2-1 6 PULSE Chip Version 1 Architecture 
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Figure 2- 1 7 .\rchitecture of PEs and Communication Chains 

2.4.3 Proccssing element block diagram 

Each of the four PULSE processing elements contains the following elements: 

2 register files of 33. 16-bit words 

- 1 read port. I w-rite port gives optimal storage density/access 

* 2 mernories of 256, 16-bit words 

- Single port 1 read/wite with direct link to communication charnels 

- Addressing is direct, register indirect or via two modulo counters per memory 

for read and write addresses 



- Memories are designed to store data with a longer lifetime than those stored in 

the register files 

O 1 signsd multiplier-adder of 16s I6+32 bits tiith 32-bit signed result 

- This is to implsmsnt MADD (multiply add) 

- Direct connection of nsighbor processors data sources into addend input of the 

multiplier-adder allows accumulation c h a h  between processors to be built 

O 1 accumulator of 32 bits 

- Intcrnal rssolutiun is 33-bit signed u-ith overflow detection 

- Programmable saturation and clipping functions to 32-bit signed or 31-bit 

unsigned ranges 

- Separate accumulator aIlows implementation of reduction algorithrns it is 

possible to perfom MADD-4CC - multipIy-add-accumulate - 1 full barre1 shifier of 32 bits in. 32 bits out 

- Supports full rangs of shift logical and arithmetic shifi operations - 1 multi-function 3-operand arithrnetic-logic unit 

- Allows single c>.cle rank, mas. med. min, chip and cor functions on three 

operands 

- Usual arithmetic and logic functions available 

The functional units o f  each processing element are designed to operate in parallel so that 

a typical PULSE instruction will simultaneously perform a computation, data load and 

data communication operations. Also, the instruction set is designed to be as orthogonal 



as possible so that any operation c m  be performed on any piece of data, regardless of  

where it resides. Figure 2- 1 8 presents PULSE V 1 -3  -f 1 6-bit processor architecture. 

[accumulatorf 1 register 1 [ register 1 1 rnemory.4 1 

I . source selection rnarrix : : I 

1 destination selecrion marris 1 

source I 
1 I v I l 

buses 
i 

1 1 v .  1 1  1 1  * + + + + +  + + * 

destination v I I 
v I 

buses v 

r 

Figure 2-1 8 PULSE V 1.3.f 16-bit procsssor architecture 

2.4.4 Instruction Set 

PULSE cmploys highly parallel operations to handle data W0. interprocessor 

communications. address generations. and computations. Sorne parallel instmc~ions c m  

sirnultaneously perform multiple computations. multiple address generations and rnemory 

access. multiple data transfer \vithin the PE and between the neighbor PEs. Al1 its 

operations c m  be executed at the rate of one per cycle. 

+ + t t t  
I 1 

multiplier 
adder 

PULSE instructions, due to a 4-stage pipeline. generally require four clock cycles, except 

"stc", "fwd" and "io" instructions (one cycle). The pipeline operation is illustrated in 

barre1 
shi A e r  

ALiJ 



figure 2-1 9. At the first cycle. PULSE reads data fiom memory. register. or port. The 

second and third cycles esecute the operation. The fourth cycle write the results back to 

mernories. registers. or ports. 

w rite 

Instruction2 1 read \v rit4 

Instruc (ion3 1 read write 1 

Instruction4 read 

Figure 2-1 9 Pipeline Structure Instruction in Four CycIes of- Clock 

The PULSE instruction set is designed for both linear and non-linear digital signal 

processing. with an ernphasis on imagdvideo processing. It provides a rich set of  

instructions. including conventional instructions and estended non-conventional 

instructions. 

The instruction set is organized into the following functional groups: 

PEs instruction set 

MiscelIaneous 

Data movement 

Conventional arithmetic 



Special arithrntltic 

Conventional Iogical 

Shiftlrotate 

Transfer of control 

Shi% registsr communication 

Controller instxucrion set 

ParaIlel instruction set 

Vsctor instruction set 

Each of rhsss groups is listed in the PULSE Technical Report Composite Document. 

[PUL96] 

2.4.5 PCJLSE V1 Assembler 

The assembler translates assembly-laquage source files into object tiies. These files are 

in common object file fomiat (COFF). Source files c m  contain the following assembly 

language elements: 

Assembler directives 

Assembly language instructions 

The assembler does the following: 

Process the source statements in a text file to produce an object file. 

Produce a source listing (if requested) and provide the user with control over this 

listing 



Define and reference global syrnbols and append a cross-reference listing to the 

source listing (if requested) 

Each time the user uses the assembler. it processes one source program. The source 

p r o g m  is composed of one o r  more fiies (The standard input is also a file.) 

If no file namc is provided. the assembler attempts to read one input file from the 

standard input. w-hich is normally the terminal. 

2.4.6 PULSE Applications 

As mentioned earlier. the PULSE proccssor supports both Iinear and non-linear 

operations. and allows flexible algorithin mapping. These features make the PULSE 

processor ideal for a \-en. wide range of applications. Some of them are listed below for 

reference: 

Filtering 

Trans forrns 

Imagelvideolgraphics procsssing 

Image analysis and Machine Vision 

Neural networks 

Speech Processing 

Communications 

Instrumentation 



A brief cornparison between PULSE V1 and other competitive devices from adaptive 

solutions, Analog devices. Texas hstruments. and Oxford Computerç is provided in 

appendix A. As can be seen from appendix A. PULSE vl  offsrs significant advantages in 

various aspects over the competitive devices. such as strong support for inter-processor 

communication. and strong support for linear. non-linear and hybrid processing. 

The PULSE V I  technical features and the PULSE logic symbol are shown in appendix B 

and appendix C. 



CHAPTER 3 

IMPLEMENTING A CONVOLUTION ON PULSE 

3.1 The Convolution Algorithm Venus PULSE Architectural Features 

The convolution algorithrn plays an important role in image processing. For instance. it is 

used for noise reduction. edge sharpening and skeletonization. The generic convolution is 

3daptt.d to perhnn these various functions by appropriately selecting the weights of its 

kcrnel. In general. odd size ksrnels are used. 

For esample. the 3 by 3 generic convolution a l g o r i t h  is defined by equation [Eq.3.1]. 

Rr. j = C C Pr + i. + j Si. j 

in this equation, is the convoluted pixel, value PV is the input image pi'ceI vaiue, and 

SIJ is the convolution kemel weight. Equation 3.1 indicates that the 3 by 3 convolution 

P'm.n (m by n pixel image) of each pixel Px.y requires knowledge of  the values of its 8 

immediate neighbors. On the image boundary, a different algorithrn is applied depending 

on the application. 



The following discussion of a convoIution applied to a 3 x 3 sarnple window on a 1K by 

1 K image will refer to ri 2D FIR filter for brevity. These parameters are widely used for 

preprocessing of images. 

1 )  Each PE in a PULSE chip lias two 256 words memory units. For processing 1 K by 1K 

images, they must be partitioned. One possibility is to split the images in vertical bands. 

Thus we could calcuiate the 1024 lines of part one, then calculate part two, three and 

four. as shown in Figure 3-1. 

Figure 3- 1 Splitting of 1 K s i K original image into four parts for processing 

on a PULSE chip 

3) The processing of the convolution algorithm with a PULSE chip can be executed in 

parallcl. because each chip has 4 PEs. The first data line (256 points) of part one is stored 

in "memA". the second line is stored in "memB". Data is brought into 4PEs in parailel 

through the "North Chamel"(Figure 2- 1 7). At the first instruction cycle, the data point 

1.1 of the original image is stored in PEO, the unspecified data 'x' is stored in PEI, PE2 

and PE3 individually. At the second instruction cycle, the point data 1.2 of the original 

image and the data point 1.1 are respectively stored in PEO and PE 1, while an unspecified 



data 'x' is stored in PE2 and PE3. This progresses until the pipeline is full and each 

processor receives a pixel rit each cycle. The resuiting distributed data structure is shown 

in figure 3-2.  Respective positions in the rectangle correspond to data stored at the same 

address o f  respecti\-e processor mernories. The processing loop called "Ioopa" shown in 

figure 3-5. thus cornputes 1 pisels of the output image in parallel. 
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Figure 3-2 Distributed data stmcture for parallel computation o f  a convolution 

3) Only t ~ v o  lines of data can bc stored in rnernory, because each PE has only two 256 

words memory units. The data in "memii" is first used while a third line o f  data is stored 

in "inemA". When the processing of first data line is finished, the third line has replaced 

it in memory. The data in "memB" is then used and replaced by a fourth line of  data. 

Thus. '-memil'' always holds data of odd numbered lines, and "memB" stores even 

nurnbered lines. Processing alternates from one to the other. 



Line 1-3 

Line 2-4 

3 -5 

MemA 
MernB 
MemA 
MernB 
Me mA 
MernB 

Odd 

Even 

4) Con\.olution calculation results stored in csternai memop-. Considering the erosion of 

image boundaries induced by the algorithm. the output image starts from the second line 

at the second point (2.2). Thersfore. a result picture comprises 1022 b>. 1022 pixels and 

edge points --B*' as shoun in Figure 3-2. The edge points "B" of result image can be filled 

u-ith the cdgr points of the original image at the same position. In this case. the edge 

points are not the result of a convolution. In order to overcome boundary effects between 

parts (see Figure 3-1). the edge parts are calcuiated by processing 257 columns. Vertical 

bands expansion is illustrated in figure 3-3. For part 1. columns 1 to 258 (original image) 

are processed and columns 2 to 257 (result image) are produced. Part II. colurnns 257 to 

514 (original image) are produced and coIurnns 258 to 513 (result image) are produced. 

Part III, operates on pixels 512 to 770 (original image). and part IV operates on pixels 

768 to 1074+2 (original image). Thus, only the edge of the 1 K by 1 K output picture 

rshibits boundary effects. There are no boundary effects between part I and part II. part II 

and part III, and part III and part IV. 
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3.2 Structure of the Convolution Software 

1 . 2 5 8  

2 5 6 t h  P E 3  r 
1 . 3  

For a 3 x 3 convolution. nine multiplies are needed. The minimum theoretical processing 

tirne is 9 multiply instructions and 1 loop control instruction. However each instruction 

takes 4 cycles. Aiso, five additional instructions must be inserted with the 9 multiply 

instructions (three "fivd[lnsrl[io", one "madd" and one "ld"). Figure 3-4 shows the detail 

of a loop that cornputes a convolution. 

1 . 4  1.5 1 . 6  1 . 2 5 5  1 . 2 5 6  1 . 2 5 1  



More precisely. it shows that the result of the first mdtiply is available after the fifih 

cycle. Two kvait cycles are needed before the second multiply. Then, the "fivdllnsrl!io7' 

and "madd" instructions are inserted to avoid waiting time due to processing latency. 

Using the sarne pnnciple. two *-fivdllnsrllio.' and one "Id" instructions are inserted arnong 

the remaining instructions. thus. five additional instructions are inserted to fil1 up various 

waiting cycle. \vhich reduces the loop esecution time. 

qde  

Figure 3-4 Instructi~n pipelining in a convolution 



To process the basic 3 by 3 convolution. the output is first computed and then the result is 

sent out as shou-n in figure 3-5. The process of sending out the previously computed 

output line is overlapped with the calculation of the next to avoid wasting time. 

A 
+dial calculation 

A 

data input Ioopa 

results output 

tkure 3-5 OverIappi ng of calculation \\-ith exportation of output resu lts 

An ideal processor with one multiplier requires at least 10 cycles to compute a 3 by 3 

convolution. PULSE takes 15 instructions due to pipeline Iatencies and data 

dependencies. A PULSE chip cornputes 4 results at the same time. This corresponds to an 

average of  3.75 instructions (75ns) per 3x3 convolution. The program flow chart and 

listing are provided in appendix A. A sample image and the computed results are Iisted in 

appendix B. 



CHAPTER 4 

MOTION ESTIMATION ALGORITKMS AND 

IMPLEMENTATIONS 

The principle of Motion Estimation is to per fom a search that mavirnize the correlation 

or minimize error behveen a block in the new (current) picture and a corresponding area 

in the oId (prekrious) picture. The search process tries to find the coordinate values of  a 

block of already transmittcd pixel values in the new picture and transmit thsm. Thus. if 

the search succeeds. the block in the new picture is not trmsmitted- 

Motion estimation is a key component of an image processing system such as the 

MPEGI standard. because it consumes most of  the processing time. For this system. the 

data rate of 76Sx480x30~8bps can be reduced 100 times by motion estimation. 

Obviousb. choosing ri suitable processor and a good aIgorith.cn for motion estimation is 

key in an image processing system that supports the MPEGî standard. 

4.1 Motion Estimation Algorithm 

The motion estimation algorithm that was implemented is given in section 4.1.1. Section 

4.1.2 describes the data structure used in PULSE to implement it. 



4.1.1 General Description 

The mean Square Error (MSE) (Eq.4.1) and Mean Absolute Distortion (MAD) (Eq.4.2) 

are popular criterions used to msasure the fit behveen data blocks. MAD is the simplest. 

The method for choosiiig the corresponding area in the reference (old) picture is based on 

the estimation of the moving speed in the content of an image. If  this speed is slow. a 

small a r a  in the reference picture is chosen for searching, otherwise, it is necessary to 

ciioose rt larger rireri. The larger the area in the reference picture is. the longer is the 

ssarch tirne. Gsnerall!~. if 8x8 or 16x1 6 data block in the new picture is chosen, then, 

16s 16 or 32x32 search area in the reference picture is chosen. Considering the boundary, 

riccording to Figure 4-1 and equation (Eq.4.2). there are nine cases of interest, where for 

each case. the block size is not changed (8x8), but the size of the corresponding area is 

changed ( 1 2 pixels x 1 2 lines, 16 pixels x 12 lines, 12 pixels x 16 lines and 1 6 pixels x 16 

lines etc.). Thus. nine diffèrent programs have been created. 



Column 2 - 7 
Column 1 
k-+ 

- \ block in current picture ( 8x8 )  
\ cor responding  a r i a  in previous picture ( 1  2x1 2)  

Figure 4- 1 Position &: relation between blocks & search areas 

in current picture and previous picture 

4.1.2 Data Structure for Motion Estimation in PULSE 

The blocks of data frorn the new picture search area and from the old pichue are 

respectively loaded into memory A and memory B of each PE in PULSE. Each tirne 128 

pixels are loaded. Figure 4-2 illustrates these data structures. 



M e m A .  B 

8 x 8  Block in M e m A  
of current  picture 

1 6 s  area  in h lemB 
of  p r e v i o u s  p ic ture  

Figure 3-2 Data of blocks and data of search areas in memA and memB 

The data is distributrd in 4 PEs as shonn in Figure 4-3. The results for positions 68. 69, 

70 and 71 are calculated in paraIlel n-ith 4PEs in one processing phase. The nest step 

computcs elrments 72 to 75.  There is no ne\v input data in memA and memB before 

finishing the block search in the correspond area. 

Furthemore. Figure 4-3 illustrates the proposrd mrihod IO per fom a Gradua1 Full Search 

Method (GFSM). There are t u - O  nddress counters pointing rnrmory A and B holding 

respectively a block of new picture and a corresponding area of  an old picture. For each 

cornparison. 4 pixel pointers are adjusted to point to the next 4 pixels. When the first 

search over 64 pixels is completed. the counter indesing memory A is retumed to the fust 

pixel unit of the new picture block and the counter indexing rnemory B is set to the next 

start pointer of correspond area in the old picture according the gradua1 search algorithm. 



No matter whether a match is found or not. after 8 1 cornparisons with these data sets. the 

new data of nest block and nest corresponding area are loaded in MemA and MemB. The 

nest block searching thsn starts. The gradua1 search algorithm is somewhat more 

comples than FSM with respecr to the order in which pointers are adjusted. but it is 3 

times fastsr on average. 

Figure 4-3. Data structure in PEs 



4.2 Gradual Full Search Method and Full Search Algorithm with the PULSE Chip 

In section 3.2.1. the speed of the GFSM and FSM dgorithms (see chapter 2.2) are 

characterized. Moreover. the basic match program is presented in section 4-22. 

4.2-1 Speed of GFSM and FSM Algorithms in PULSE 

The kI.AD algorithm needs 192 operations (61 subtractions + 64 absoIute value 

cornputations + 64 accumulate instructions). If this \vas spread ideally on 4 processors. a 

minimum of 48 instructions n-ould be required. 

In order to complete 8 1 btock cornparisons over one region- 3888 instructions (38 x 8 1 ) 

are needed. There are 5760 (768 s 480 / 64) blocks in one frame. In a real time system. 

pictures must be processed at the rate of 30 per second. A total of (5760 x 30 = 172800) 

blocks search must be done e\.ep- second. 

Assuming 54 MHz PULSE chips. (18 x 81 x 172800 / 54E6 = 12.4) 12.4 chips wouId be 

required. Howe~rer. in practice. more resources are needed due to the overhead associated 

with data input. loop control, address counter setting and instructions that cannot be 

paral Ielized. 

Figure 3-3 shows the prograrn flow chart and its instructions with GFSM or FSM 

algorithms, for one block match. For a single search, it uses 768 input + 355 cal. = 1123 

cycles or 17.7 cycles / pixel. For a full search, time is 768 input +28009 calculations = 

28777 cycles or 449.6 cycles / pixels. Considering that: 1) one PULSE chip c m  run 

54,000.000 instnictions/second, 2) one 768x480 pixels image has 96x60=5760(8~8) 



blocks to be processsd out. 3 )  30 frame picnues/ second are used. then 28777instnictions 

x 30 s 5760 / 53E6 = 92 PULSE chips are needed for GFSM. 

input 128 1'1 6bits data 
to mr.m.4. B 

I input 128 I l  bbits data 
to mem.4. B 1 
- 

"O-'=' position I t x x t o r l  

I * I - 
basic match unit 3361 

* 

instructions 
FS h.1 GFSM 

minimum 

mavirnurn position - "1-'  

nrst block a 
Figure 43. FSM 6C GFSM program diagram and its instructions (one b1ock) 

4.2.2 Motion Estimation Program for PULSE 

Figure 4-5 shows the instructions executed to perfonn one basic match program for the 

full search method (FSM) or the gradua1 f i l 1  search method (GFSM). (corresponds to 

PULSE assembly language) 



l o o p  8 

l o o p  3 

ra16- addra 
rbI 6- addrb  

Figure 3-5. Flowchart of a basic match unit 

Ioop 2 

As showm in figure 3-2. address pointer for memA and memB is 256. If the address 

pointer is over 255. it \vil1 retum to O. For the second block search. some data remains 

fiom the first block search. thus the start address in the new picture is 193 and the start 

address of area in the old picture is 128. In other words. each block search only needs to 

rensw 138 pixels. In order to implement this behavior. mechanism to adjust address 

pointers are needed. In the basic match prograrn. 72 instructions are required for this 

task. For one block search, 5832 instructions are needed, out of which a f i f i  are used to 

check and adjust address pointers. Tbese instructions are identified in basic match 

prograrn (Figures 4-7 and 4-8). 

/ 'addra - * a d d r b ,  ra2I * 
[ / raz+ ra2  1 + 1 rb2 + ra+ra3] 

I 



For each block search. Figure 4-6, if 256 memory locations are resenred. starting at 

address zero, then some instructions can be saved. In order to implement this idea for 

each block search. 256 pixels (one search area) must be transferred from extemal 

memory- -4s shoun in Figure 3-6. some instructions are added to adjust the start address 

of the pointer that accesses the estemal memory. 80 PULSE chips would be required to 

support real time processing of this algorithm. 

p j c t u r e s  -. . . . . . . . . -. . . . . . . . . . . . .. - . . - -. . -- - . . -. -. . .-- - .- -. , . - . . - 

n 8 x 8  B l o c k  in M e m A  
o f  c u r r e n t  picture 

16x  area in  M e m B  
o f  p r e v i o u s  p i c t u r e  

J 

Figure 4-6 Data of block search in independent memory space 

In figure 3-7. the basic match program called 'tl  ', contains some 'nop' instructions due to 

PULSE' s pipeline architecture. h order to reduce the nurnber of hop'  instruction, some 

instructions c m  be shifted without changing the result. In Figure 4-8, the program 3.2' is 

an improved version exploiting this idea- It removes loop2 to Save loop set instruction 

cycles. The marked instructions are moved into other places occupied by 'nop' in ' t l ' .  



With tfiis improved version 21 3OOinstnictions x 172800/54E6 = 68 PULSE chips are 

nesded. 

~ccumülarc € 4  pixeis 

C -: 
r - nrc 

àdd râle, 4 ,  râ16; + 4  

àdd rb16, 4 ,  r~16; + 4  

dDr loow2 

add ra16, 8, ral6; 



Ici 
- 

ré:, s p o r t  

ret 

' *  The "2nd r o l 6 ,  c c f f h ,  r a 1 6 "  ï r i s t r üc t i on  keeps C h e  v a l u e  of r â 1 6  less 

t h a n  256 ,  when increase 4 .  

aad ra16, 4 ,  r a l 6 ;  



a n d  ra16,  O O f f h ,  r s l 6 ;  mode1 256 

Figure 3-7 Prograrn t l 

a b c  r b 2 ,  r c 2 ;  

$ 3  ncc 

cca  r L f ,  r z 3 ,  r a 3  

SUS *adcira,  'oddrb, rbf ; r a 2  

# 3  nop 

abs rb2 ,  rb2; 



ld r33, s p o r t  

p u s h  3 

â c d  r c 3 ,  sFor:, ra3 

?-;y  * - -  

Figure 3-8 Progrm t2 

Sample programs and corresponding results are provided in appendis A. The simulation 

uses Mentor Graphic QHSIh4 tool. The source file includes tn-O 64x64 pisel images. The 

8x8 block FSM and Gradua1 Full Ssarch Method (GFSM) are implernented with 16.u 16 

rnatching area. The running time. matched pixels coordinate values in new picture and 

the coordinate values of corresponding area in old picture for first block searching are 

also provided in appendis A. 



CHAPTER 5 

DCT & IDCT ALGORITHMS AND IMPLEMENTATIONS 

5.1 DCT & IDCT Algorithms 

In this section. a data cornprcssion algorithm. the Discrete Cosine transforrn (DCT) 

[Fa4S87] and its inverse algorithm. the Inverse Discrete Cosine Transfomi (IDCT) 

[IEE90] are described. These algorithms are u-idely used in image compression 

programs. The- implsmcnt ri transform from the timc domain to the frequency domain. 

5.1.1 DCT 

DCT is an essential pan of the MPEG data comprcssion. There are two good reasons for 

using DCT in data compression. First. DCT coefficients have bcen shown to be relatively 

uncorrelated. and this makss i t  possible to construct relativsly simple aigorithms for 

compressing the coefficient \dues .  Second. the DCT is a process for (approximately) 

decomposing the data into undsrlying spatial frequencies. This is very important in terms 

of  compression, as it allows the precision of the DCT coefficients to be reduced in a 

manner consistent ivith the properties of the human 1-isual system. [MPG97] 

For data compression tvith the MPEG standard, two-dimensionai array (2-D) of  samples 

are considered. Arrays of eight points by eight points (8x8) are usually considered. 

Suppose that a 2-D array of sample. f(x.y), is to be transformed into a 2-D DCT. The 

equation is as below (Eq.5.1): 



For esarnplr. the input value of matrix f(s.y) is: 

120 IO8 90 75 69 73 83 89 

127115 97 81 75 79 88 95 

13412210589 83 87 96 103 

137135 10792 86 90 99 106 

131 119 10186 80 83 93 100 

117105 87 73 65 69 78 85 

100 88 70 55 49 53 62 69 

89 77 59 53 48 42 51 58 

Also. suppose 'O' means black and '255' rneans white. The corresponding 8x8 bar 

diagram is represented below. 



Then. the DCT transform calculatrd with equation (Eq.5.l). produces the folloning 

result: 

70090 1 0 0 0 0 0 0 0  

It is remarkable that almost a11 values are equal to zero. the non-zero values are 

concentrated at the upper left corner of the matrix. These non-zero values are transferred 

to the receiver in zigzag scan order (see Chapter 2, Figure 2-5), which is 700 90 90 -89 O 

100 O O O . . . O. The zero values are not transferred. They are replaced by an 'end-of - 

block' sjmbol. 



5.1.2 IDCT 

IDCT is a inverse algorithm of DCT. It is used to regenerate the data back to the time 

domain from frequency domain representation. The IDCT algorithm is expressed in 

equation (Eq. 5.2)). 

( E q  -5 -2 )  

In equation (Eq.j.2). the F(u.\.) of DCT result with (Eq.5.I)  \vil1 be transformed again. 

the resuit of matrk f (S. ) ' )  is as below: 



Comparing the original matrix f (x. y) and the inverse transfer matrix f (s. y), there are 

few smdl differences betwesn them. It caused by the calculation accuracy. In other word. 

it is limited by the word length of the processor. This error is generated by two times 

transfer cdculation (DCT and IDCT). It means that the emor is produced at remote 

decoder device. In order to limit error accumulation in the decoder, the IDCT can be used 

in encoding systsm to generate an 'old picture' (See Chapter 2. Figure 2-3) .  

5-2 Implementation of DCT 8r IDCT on PULSE 

This section deals with the storage of a cosine table and ro the timr required to compute 

it. 

5.2-1 Data Structure of DCT on PULSE 

Parallel processing can be used to compute DCT and IDCT. With PULSE chips, a cosine 

table is insertsd in mernA. The use of this cosine table c m  Save a lot of calculation time. 

For example. the value of (cos[(2s+ l)un/lG]) c m  be found in the cosine table according 

the position of (x. u). For a 8x8 DCT or IDCT, a 64 elements cosine table c m  be 

generated with a C M  program executed on a host and then loaded to PEs mernories. 

Here, a benefit of using a C H  program on a host rather than the 16bit PULSE chip is that 

values are more exact. The cosine table size is related to the window size (8x8 pixel or 

l6x 16 pixel). So. this method is very effective for processing fixed window sizes. 



Figure 5-1 shows the cosine table and elements stored in PEs mernories continuously. 

The data structure is the same in each PE. In order to calculate in parallel. the beginning 

positions for 'u' in 4 PEs are 0. 8. 16 and 24 individually (Sre Figure 5-1 in shadow). 

Matriv of cosine table 
- 

x l u l  d u 2  ...... x7u7 
x i u 9  s2u10 ...... s7u15 

...... x lu17  d u 1 8  x7u23 
x l ti25 .Cu26 ...... x7u3 1 

...... xIu33 d u 3 4  x7u39 
x 1 u4 1 .Cu42 ...... ~71.147 

...... s l u 4 9  d u 5 0  x 7 S 5  
s l u 5 7  d u 5 8  ...... x7u63 

The  shadowed elements are a corresponds to 
the stxting points of calculations in the 4 PEs. 

24 
25 

PEO 

Ea 
x I u l  

xous  
X I  u9 
.**. 

..-. 

.... 
sOuI6 
s l u 1 7  

x o u î 4  
x l u 2 5  

x 11.133 

PEI 

xouo 
x 1 ul 

!BE!! 
x l u 9  

xOu16 
xlu17 

xOu34 
xlu25 

iOu32 
c l  u3; 
I 

~ 7 ~ 6 3  - 

PE2 

xouo 
s l u l  

xOu8 
x l u9 

x l u 1 7  

xOu2.l 
x lu25  

sou32 
u 1 u33 

f 
u7u63 

sou0 
x l u i  

xOu8 
xIu9 

KOU 1 6 
xlu17 

x lu25 

sou32 
x l u j 3  

I 
~ 7 ~ 6 3  

Figure 5-1 cosine table and input data stored in PEs mernories 

Figure 5-2 shows the program flowchart and the associated instruction count. From inside 

to outside. there are four loops (loopx, loopy, loopu and loopv). The calculation 'f(x, 

y)*cos[(2x+l )*u*3.14/16]*cos[(2y+l)*v*3.14/16]' requires only two instructions 'mult' 

and 'macc' in loopx. Using cosine table and setting address pointer appropriately makes 
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the complex calculation very simple and parallel. The key idea is that the address pointer 

points to different units in each PE. It is shown in Figure 5-2 (dark shaded block). 

1 Input cosine table, constant & data(8x8) 1 

Iocp 

la 

1 Constant from memory -> register * 

344 instructions, 

~CC*CV*CU- CC 
output acc (4 results) 
set f(s.y) Io start point 
1 ->CU, u+32-> u 

750 instructions 
1 

Figure 5-2. DCT Program Diagram and Instructions 

6032 instructions 

Appendix H and 1. provide an implementation of DCT and IDCT assembly programs for 

the PULSE machine, as well as the content of the cosine table, and compared C* 

programs of DCT and IDCT. 



5.2.2 Requirements and performance for DCT and IDCT on PULSE 

The flowchart of a DCT progrm is presented in Figure 5-2. For each DCT in an 8x8 

block. 6033 instructions are needed. To support real time DCT 6032 instructions x 

172800 / S E 6  = 19 PULSE chips are needed. Since the IDCT has the sarne complexity, 

the DCT and IDCT for the MPEG codec requires 38 chips, which is half the nwnber of 

chips required for motion estimation (68 chips). Obviously, motion estimation, DCT and 

IDCT represent the ~vhole  complesity of a MPEG codec. 



CHAPTER 6 

IMAGE PROCESSING WITH PULSE CHIPS AND A C40 

PROCESSOR 

A PULSE chip is a parallcl SIMD processor. It is not very high efficient when esecuting 

code with conditionals. For esample. when an "if' instruction is encountered. the 

operation is modulatsd by four conditionals on 4 PEs. It is generally very difficult to 

predict which condition from each PE influences the result. In order to get a certain 

condition from a PE. suppose the jump condition fiom PEO. which is set active "O'., the 

PE3. PE2 and PEI are set inactive "1'. with instruction (Idcr I 1 lob. acm), then PE3, PE2 

and PEI are set active(1dcr 0000b. acm) afier a jump instruction. The following program 

illustrates this method: 

ifeq ra3. 0. O 

$3 nop 

bpa jumpl 

jumpl : nop 



Obviously. these "set" and 'Ijump" instructions decrease performance. because some 

processors are l e f i  idle. In order to improve performance efficiency o f  PULSE, a 

codesign solution based on processor/coprocessor mode1 [PRiNC], composed of PULSE 

chips (calculation engins as hardware) and a TMS320C40 processor from Texas 

Instruments [TEX901 (for management and processing of segmental code). has been 

sspenmented. 

6.1 System Architecture Composed of one PULSE Chip and a C4O 

The TMS3ZOClO is a 32  bit. floating-point processor. Its Central Processing Unit (CPU) 

is configured for high-speed interna1 parallelism for the highest sustained performance. It 

contains a 40/32-bit Roating-pointhtegrr unit that supports multiply. divide. square-root 

and arïthmetic logic operations. The C10 has six on-chip communication pons (20M- 

byte/s bidirectional interface and separate 8-word-deep input/output FIFO for processor 

to processor communication with no extemal hardware and simple communication 

sohvare). 

As shown in Figure 6-1, the image processing C40PULSE system is composed of seven 

main functional blocks : a TMS320C40 (C40) as coprocessor. a PULSE chip as 

processor. a glue logic unit realized with FPGA technology, three memones and one 

oscillator (OSC). The C40 is a common DSP processor that can compensate the weakness 

o f  the PULSE chip. The C40 has three main functions. (1) transfers data from global 

memory to local memory; (2) output al1 calculation results from PULSE and itself to 



global memory: (3) nin accumulation and -'if' insrtuctions. PULSE gets data from local 

memory to nin parallel code with no or very little 'if instructions. The 32 bits DRAM is 

used as a buffer to store input data. as well as partial and final results. The 66 bits DRAM 

is a program memory or data memory. n i e  glue logic unit (FPGA) makes the system 

easicr to modify. 

Figure 6-1 The C$O/PULSE system 

The interrnediate result of motion estimation (before accumulate) are sent to local 

memory. The accumulation and "If' instructions are processed by the C40. Figure 6-2 

shows a flowchart for a program split for the proposed heterogeneous architecture. It 

suggests that the PULSE chip runs "sub'ànd "abs" instruction and the C40 coprocessor 

runs "accumulate" and "if' instructions. Here. the major problem is the synchronization 

between the C40 and the PULSE chip, more precisely data communication. In order to 



transfer data promptly. a flag is set in local mernory afier the 'abs' finished. The C40 

checks the flag unit and then start -'accumulate" while flag is not zero. An intermpt is 

generated from PULSE to C3O when PULSE output results to Iocal memory. Of course, 

the C-lO's procrssing time must Se less than PULSE'S processing time in each search 

penod. In this case. C30 crin process intempts. 

ckiay one step(one basic mitch) Ï 

Figure 6-2. Prograrn flowchart for the C40PULSE system 



I r i  O ,  r a 3 ;  

I d  r b 6 ,  r b l  

~ u s n  8 ;  

loop3 : 

p u s h  2 ;  

l o o ~ Z  : 

# 2  nop 

Id r s 1 6 ,  à d d r a  

I d  r ~ 1 6 ,  àcdrb 

$ 2  nop 

s u b  ' â cd rz ,  'zddxb, ra2 

83  nop 

âbs r a z ,  ra2; 

# 3  n o p  

Id raz, s p o r t  

# 2  n o p  

From the PULSE chip implementation (Figue 4-7). Figure 6-3 presents a passible 

C40/PWLSE system irnplementation. More precisely. bolded instructions represent 

instructions executed on the c4O processor. There were about 50% instructions in this 

Part. 

t l :  e c c u r n u l ? t s r  r a 3  

â c c u m ü l a t e  6 4  p i x e l s  

a c c a i u l a t e  1 lin? !I pix2lsj 



add ra16, 4 ,  ra16; + 4  

add rb16, 4 ,  rb16;  +if 

dbr l e o p 2  

àdd r a 1 6 ,  9 ,  ra16 ;  16-3xS=E 

cdd rb16, 8 ,  r b l 6 ;  16-4:<2=9 

dDr lcop3 

sub ral6, 125 ,  r a l 6 ;  -126 back to s t a r t  point 

s ~ b  rb16 ,  128,  r b l 6 ;  -128 back t o  s t a r t  point 

r e c  

i r e  6 -  A C30/PULSE system implementation 

The PULSE data input time is not incIuded in the program of figure 6-3. Considering 

GFSM or FSM algorithm. experimentation shows that the C40PULSE system is about 

0.3 times faster than the use of only one PULSE chip. 

Data transfer programs for C30 and PULSE are listed in appendix N. The C program and 

PULSE assembly program listed in Appendix N were simultaneously run in Mentor 

Grriphics simulator (QuickHDL) [PUL96] [TEX90]. 

6.2 Improvement of the CJO/PULSE system 

In order to increase performance, four PULSE chips are used in this system. This 

improved system is named C40/4PULSE system and it is presented in Figure 6-4. The 

four PULSE chips are comected directly into a c h a h  It is easier to transmit data from 



PEs of lefi PULSE chip to PEs of right PULSE chip on this chain. A common instruction 

controls al1 PEs on the four PULSE chips. 

Due to the increase of PE chain size. the Ioop limits are decreased and the time to inout 

date is also incrcased. So. the speed increase is not linear. This system runs 3.5 times 

fàster than using only one PULSE chip and 2.2 times faster than the C40/PULSE system- 

( Global 

Table 6.1 compares the procrssing time of various motion detection algorithms for three 

architectures: one PULSE chip. the C1O/PULSE system (one C40 and one PULSE chip) 

and thé C1O/IPULSE system (one C10 and four PULSE chips). The cornparison is 

assumes on image size of 760x480 pixels, The search block is 8x8 pixels and the search 

area is 16s 16 pisels. 



According to the different algorithms. the number of search steps varies fiom 11 to 81 

(see table 6-1). In the C4O/PULSE system. the processors are working in parallel and the 

C30 processing time is always less thm PULSE processing tirne. The maximum time is 

obtained for the one PULSE chip system. So. the Block Match Time (BMT) with only 

one PULSE chip is 335 instruction c~c l e s .  N'hile it 78 instruction cycles are required for 

the C-IO/-iPULSE s).stem. 

The FShl algorithm is slow but accurate. This cspIains its popularity. GFSM is a bit 

&ter than FSM bascd on tabIe 6.1. Although GFSM is more cornples. in practice. the 

change bsttveen an old picture and new- picture is often limited at rate of 30 frarnes per 

second. Thus. \vith GFSM. the number of search steps is generally much lower than the 

maximum value (8 1 in this case). 



Table 6-1 Cornparison searching results n-ith diffsrsnt algorithrns 

GFSM 

FSM 

CDS 

3 sttr, 

CS.4 

*B!Wl = Basic Match Unit S = Sccond inst. = insrruction 

hlaximum 
S d  s e p  

81 

8 1 

1 1  

3 

13 

one P L U E  chip 

355 inst. / BbW 
449 inst. / pisel 
3.1s i 6ame 

355 inst. ! BblU 
450 inst. ! pixel 
3.075 i tîarne 

355 ina. i BMü 
66.5 inst. / piscl 
453mS : fkne  

355 inst. / Bh.n! 
144 imt. / pixel 
9 8 2 6  / h n w  

355 inst. ; BMLI 
75 inst. / pixel 
51 lms ,. km 

the CJOtPULSE syst~m 
(one C4O md one 
PULSE chip 

256 im / Bblü 
3 2 3  inst. / pisel 
2 .2s  / fiame 

256 insr. i Bhfll 
360 irtst. / pisel 
2.4s 1 h m e  

256 inst. i BhW 
42.8 im. / piscl 
292mS / h m c  

256 insr. :' Bhfü 
97 inst. :' pixel 
6 6 3 6  1 f m  

256 inst. .' BhlLi 
5 0  i-1. p i d  
; 4 h S  ,' f m  

the C40/4PULSE systrin 
(one C30 and four 
PULSE chips) 

78 inst. i BMU 
98 inst. / pisel 
6 6 0 m S / ~  

78 inst. / BblU 
1 09 inst. / pixel 
7 U m S  / f i a ~ ~  

78 inst. / BMU 
l4.2 inst, t' pisel 
97mS / h m  

78 inst. / BhfU 
32.3 inst. / pisel 
22lmS/fnmc 

78 insr. i BiLW 
16.8 inst. / pixel 
I I - a m S i ~  



CHAPTER 7 

Conclusions 

This thesis highlights and explains the key features of how a fixed-point SIMD array 

processor. PULSE. c m  be used to implement MPEG-2 standard codec that performs 

\.ide0 compression. In particular. this research showed effective methods of partitioning 

algorithms to exploit the parallttlism of the PULSE processors. 

The main components of an MPEG-2 codec. the motion estimation that computes motion 

\-sctors. was designed and simulated. Its pef i rmance \vas evaluated and the algorithms 

w-ere optirnized for the PULSE architecture. It was found ihat low compIesity motion 

estimation algorithms are fastcr but ofien inaccurate (See 2.2). The GFSM algorithm is a 

better msthod than the other algorithms- because it is accurate but nevertheless 

significantl>. faster than the FSM. FinalIy. ws here shown that 68 chips are required to 

achieve the motion estimation under the MPEG standard. 

Another time consurning operation of  the MPEG-2 standard used to reduce the spatial 

redundancy is the Discrete Cosine Transform @CT) and its inverse (IDCT). An 

implementation of the DCT exploiting the parallelism of  the PULSE chip and requiring 



19 chips has been presented. An important point to underline in the implementation is the 

use of a predefined cosine table to perfonn the DCT. The use of this cosine table, first 

cornputed on a kvorkstation and aftenvards loaded on the PE mernories. reduces the 

processing time. and also increases the accurricy of calculation (due to the precision 

offered bu a laquage like C++ on a ~vorkstation, compared to the 16 bit PULSE 

processor). 

Finally. we have shonn that the convolution program is a good application for the 

PULSE chip applied to image processing. In particular. techniques that reduce the 

ninning time of loops and increases the efficiency of performance have been presented 

(Chapter 3).  We should that only 3.75 instructions are required on average to process 

each pisel tvith one PULSE chip. 

7-2 Future work 

Some issues are w-orth considering for fürùier research. These issues are as follows: 

Parallel Architecture: it \vas proved that the =chitechue of the PULSE chain affects the 

performance of MPEG-2 codec. Using a PULSE chah of excessive Iength is not 

effective. This could lead to propose a new architecture for the PULSE chain. The array 

could be divided into several macro blocks, where short PULSE chains process a macro 



block. In ordrr to suppon these parallel PULSE chains. multiple local memories or multi- 

port memories ncreded. The data transfer from global memory to local memones are 

expected to become a bottleneck. For this reason. several C30s could be used. One of 

them for DMA control and others could be used to process data. In this systzm, a PULSE 

chain could have different lengths for processing different algorithms. For example. 

eight parallel PULSE chains. sach comprising four PULSE chips. could support motion 

estimation. and other chains with only two PULSE chips could support DCT and IDCT. 

Management: For each macro block. its processing time could be different. For instance. 

if al1 PULSE chains have only one control unit. then the system must wait the slowest 

one done to continus processing. By contrast. if each chain has its own control unit, each 

chain can process at its onm pace. For irnplementing this kind of architecture. multiple 

program memclries are required to supply multiple instruction strearns. 

Program: In the view of appendis F "Program of motion estimation" and appendix H 

"DCT progam of PULSE". it is knoun that motion estimation and DCT prograrns are 

not as efficient as the convolution program. due to some waiting instructions in the 

program (see 5.2.1 and Appendix H). Generally speaking. these wait cycles appear after 

set address instructions and calculation instructions. For the first situation, adjusted input 

data sequence may reduce address change, thus fewer address setting instructions are 



required. For the second situation. input instructions should be inserted as much possible 

as in the waiting times. 

Furthermore. as shomn in figure 2-3. the MPEG-2 codec includes DCT and IDCT 

algorithms. For an 8 by 8 DCT. only 63 PE memory units are used to store cosine table 

and 64 PE memory units are used to store data. The other 128 PE memory units can be 

used to store DCT result. This DCT result can be used as the input of  IDCT. Using this 

idea will reduce data input time for IDCT. 

Others: Using FPGA technology for logic control c m  rnake PULSE chips easier to 

connect uith PCI or other standard interfaces for practicd applications. 
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Appendix 

PULSE VI Competirive analjxis 

CNAPS SHARC PULSE V I  Oxford 

-4236 

SIMD Architecture Single- 

processor 

MIMD SIMD 

CIocR 

Frequency 

20-25 MHz 

Number of 

Processor on 

the chip 

64 PNs. 

Without 

Controller 

Single 

floating 

point 

Processor 

One 

floating- 

point 

Processor 

One 

Controller 3 

fixed-point 

processors 

No inter-PE 

cornmunicati 

on 

One 

Controller 4 

fised-point 

processors 

Inter-PE 

Comrnunicat 

Cross Bar 

memory 

access 

S trong. 

Multichanne 

1 332 

hf b ytes/s 

Very strong 

3-input. 3- 

output ALU, 

Mult-add- 

ion support 

Very weak 

Multiply-acc 

Strong 

Two adders 

one 

multiplier 

Weak 

Multiply-acc 

rnultiply-add 

Parallel 

Operations 

in the PE 

- 

Strong 

3-input 

ALU 

Multiply-acc 

acc 

add-acc 



Non-linear 

processing 

Application 

Mapping 

Scalability 

Estsrnal 

Memory and 

Y 0  Interface 

Very 

restricted 

Weak 

Only mm. 

min and clip 

o f  two data 

Scalable 

4 buses. 63- 

bit datapath 

to SRAM 

10 DMA 

C hannels, 

160 

Weak 

V e v  

flexibIe. 

But very 

hard t O 

program 

No 

Single 64-bit 

Bus shared 

by al1 the 

processors 

for data and 

prog- 

No 

Very 

restricted 

Scalable 

400 

Mbytes/s 32- 

bit sync. 

Memory 

2 40 

Mbyteds 

86 

nled-add 

Very strong 

M a x  Min. 

Med 

Rank-order 

Index 

ranking 

Core 

function 

chip 

Flexible and 

easy to 

program 

Scalable 

Two buses 

$32 Mb/s 

jync. 

lliemory 

t 108 Mb/s 

iata ports 



On-c hip 

memory 

Micro- 

Instruction 

Instruction- 

set 

Software 

Tools 

3kbytes on 

each Pn 

64-bit total 

33-bit 

control 

32-bit PN 

Very limited 

Assembler 

C compiler 

Debugger 

2Mbits or 

3Mbits 

38-bit 

Rich, 

estended for 

non-1 inear 

processing 

Assembler 

C compiler 

Simulator 

Debugger 

Evaluation 

board 

SOKbytes 

64-bit for 

paralle1 

proc. 

32-bit 

master 

Rich. 

estended for 

logic 

processing 

Assembler 

C compiler 

Simulator 

Debugger 

Evaluation 

board 

DMA ports 

1 kbytes Ins. 

1 kbytes data 

Very limited 

Software 

development 

kit 

2kbytes Ins. 

2Skbytes 

data 

Very rich 

extended for 

both linear 

and non- 

linear proc. 

Assembler 

C compiler 

Simulator 

Debugger 

Evaluation 

board 

Application 

l ibraries 



Packaging 300-pin PN 

240-pin 

CSC 

PG-4 

Availability 1 Yes 

240-~in 

PQFP 

High 

305-pin 

ceramic 

PGA 

Yes 

High 

208-pin 

PQFP 

Low 

240-pin 

PQFP 

Low 



Appendir B PULSE Vl  technicalfeatures 

The following list is a summary of the features of PULSE VI: 

4 processing elements (PEs) per chip 

53 MHz operation (worst case) 

2 1 6 klega MXCCs per second ( 1 6x 1 6 MACC) 

2 16 Mega ;-operad ALU ops per second 

21 6 Mega ;?-bit shi Wrotate per second 

+stage esccution pipeline 

ES2 ECPD07 0.6 um process 

Sis modulo counters for easy modulo addressing 

2 1 6-bi t shi fi-register chains for inter-processor communications and data I/O 

32-bit accumuIate chain for direct data link between neighbor PEs 

Instruction set includss vector and parallel instructions 

Specializcd 3 operand aithmetic-logic unit 

Single cycle r d .  clip. cor. max, med and min operations on 3 course operuids 

Accumuiator has 33-bit interna] range 

Programmable overtlow saturation for both signed and unsigned values 

Signed saturates to +2 -1 and -2 

Unsigned saturates to O and +2 -1 

Four 16-bit reconfigurable data ports 432Mbis of data I/0 

S ynchronous, asynchronous pseudo-synchronous 

Up to 108 Mbytes/second per port 



2 ports may be configured as C40 type CQM ports 

256 word intemal program rnemor). 

64 bit extemal program data bus 

May be used as 432 Mb/s data port 

256 word interna1 constants memory 

Used for coefficient storage for filter algonthms etc. 

Two 24 bit tlexible address ports 

- Programmable modulo counters amilable for address generation 

Standard CPLr interface for configuration and status 

- Configuration can also be perforrned by program 

PULSE chips are cascadabls to form larger arrays of processors 

- Synchronous (/O ports allow direct connection between chips to form large 

Iinear arrays of processors 

- Two dimensional arrays are possible sincc there are 4 I/O ports 



Appendir C PULSE VI logic symbol-subject tu design review 

address-2-ac t ive 

ad&- l -active 

rst n 

CU: 

halt 

intr 

inanc hio 

tdo 

tdi 

tclk 

trstn 

unode 



Appert div D The con volution program flo wchart and program 

loopy I * 
1 input first 2 line's 256 points to PE's  memA and memB 1 

i oops  

* 1 input tirst 7 points o f  third line (odd  lines) to mrmA in ~ E s l  
14 resuit was  calculate and put it in each PE 's  acc 1 
push 63 to loop counter  (256-4)/4=63 

1 0 0 ~ 3  1 
- - -  - 

input next 4 point to memA in each  P t  and calculate convolutioi 
the result is in each PE's acc. put it to rO then Ioad it to sport and 
output to esternal  memory 

- 

l- 

output the final result o f  4 points. adjust the 
mca. rncb, rncc and mcd to nest line 

J 

input t i n t  7 points o f  third line ( r v c n  lines) to mcmB in PES ] 
14 result was calculate and put it in each PE's acc I 
1 push 63 to loop counter (256-4)/3=63 1 

input nest 4 point to  memB in each  PE and calculate convolution 
the result is in each PE's  acc. put it to rO then load it to sport and 
output to esternal  memory 

1 J 
F 

T 

output the final result o f  4 points, adjust the pointer o f  
mca, mcb, rncc and mcd to  nest line 

1 adjust the extemal memory counter  to the start o f  next 256 colurnnl 



.tex t 
ldeamc O. 0. mc-min. mc-min 
ldeamc 1048576. 10.18576, mc-mm. mc-max :(1024* 1024) 
ldeamc 1. 1. mc-stride, mc-stride 
ldeamc 0, 1025. mc-starr, mc-start ;start fiom second line and second point(I024+ 1) 
ldiarnc 3. 0, 255. mcar :read f?om 4* point 
ldiarnc O. 0. 255, mcaw 
ldiamc 3. 0. 255.  mcbr iread kom 4~ point 
ldiamc O. 0. 255. mcbw 

loopy: 

loopm: 

loopn: 

;THIRD L M E  

push 4 
push 257 

hvd nport. *mcaw(l) II nsr II io *mccro/o ;start input 256 point of  first line 
dbr loopm 
ldeamc 766. 1. mc-stride. mc-stride :(+ 1023-256-2) 
fivd nport, *rncaw(I) II nsr II io *rnccr?'o :end input 256+2 point of  first line 
ldeamc 1, 1. mc-stride. rnc-stride 

push 257 
hvd nport. *rncbw(l) II nsr II io *mccf?/o :start input 256 point o f  second line 
dbr loopn 
ldeamc 766, 1. mc-stride, mc-stride ;(+ 1024-256-2) 
hvd nport. *mcbw(l) II nsr II io *mccro/o :end input 2 3 3 2  point o f  second line 
ldearnc 1. 1. mc-stride. mc-stride 

push 5 1 1 

(mcan~=O. mcbnv=O. mccr=O at 3rd line. mcdw= 1 at znd Iine) 

:(( 1024-2)E) 
;(next line) 

fr3 fivd nport, *mcaw(l) [I nsr I I  io *mccro/o ;(input 1-3p and point to 4th) 
mult *mcar( l ), ra l 1, acc 
hvd nport, *mcaw(l) II nsr 11 io *mccro/o 
mult *mcar(l), ra12, acci- 
hvd nport. *mcaw(l) II nsr II io *mcd/o 
mult *mcar(-2), ra 13, acc+ 
mult *mcbr( 1 ), ra 14, acc+ 
hvd nport, *mcaw(2) 11 nsr II io *mccr?/o 
mult *mcbr(l), ra15, acc+ j ]  nsr II io *mccr% 
rnuk *mcbr(2), ra 1 6, acc+ 
mult *mcar( 1 ), ra 17, acc+ 
mult *mcar( 1 ), ra 18, acc+ 



mult *mcar(2). ra 1 9. acc+ 
input 7 point. The result o f  fmt 4 point is at  acc 

loopa: 
push 63 ;(2564)/3=63 
mult *mcar(l). ral 1. acc 
fivd nport. *mcaw( 1 ) 11 nsr II io *mccr?/o 
madd ra 1. 0. acc, rû 
mult *mcar( 1). ra 12, acc+ 
f\vd nport. *mcaw(l ) nsr II io *mccf?'o 
mult *mcar(-2). ra 13. acc+ 
Id rbO. sport 
rnult *mcbr( 1 ). ral4. acc+ 
fivd npon. *rncaw(2) 11 nsr II io *mccr?/a 
mult *mcbr(l). n15 ,  acc+ Il nsr 11 io *mccr?/o 
mult *mcbr(2). raI6, acc+ 1 1  ssr II io *mcdwO'o 
mult *mcar(I ). n17.  acc+ II ssr /I io *mcdw?'o 
mult *mcrir(l). ra18. acc+ jl ssr 11 io *mcdw?/o 
mult *mcar(2). n 19. acc- f l  ssr 11 io *mcdwO'o 
dbr loopa 

53 nop 
rnrtdd ra 1. 0. acc, rO 
$3 nop 
Id rbO. sport 
%j nop 
P3 ssr II io *mcd\v?0 
lderimc 766. 766. mc-stride. mc-stride ;! ! ! ( 1023-(256+3)) 
ssr Ij io *mcdwo&. *mccP6 

ldsamc 1. 1.  mc-stride. mc-stride 
:(mccr=new Iine 1 * point, mcdw=new line 2nd point) 

ldiarnc O, 0. 255. mcaw 
ldiamc 3.0. 255, mcbr 
ldiamc 3.0. 255. mcar 
ldiamc O. 0. 255. mcbw :(mcaw. m c b \ ~ O .  mcar. rncbr=3 rhe 4h point) 

-********* 
- * * * * **************************************  

#3  fivd nport. *mcbw(l) 11 nsr li io *mccr?/o ;(input 1-3p and point to 4th) 
mult *mcbr(l). ral 1 ,  acc 
fivd npon, *mcbw(l) nsr II io *mccP?  
mult *mcbr( 1). raI2, acc+ 
fivd nport. *mcbw( 1 ) II nsr 11 io *mccr?h 
mult *mcbr(-2), ra13, acc+ 
muh *mcar(l), ra14, acc+ 
fwd nport. *mcbw(2) 11 nsr 11 io *rnccro/o 
mult *rncar(l), ra15, acc+ II nsr II io *mccr?/o 
mult *mcar(2), ra16, acc+ 
mult *mcbr(i). ra17. acc+ 
mult *mcbr(l), ra18, acc+ 
mult *mcbr(2), n19 ,  acc+ 

;aiready input 7 point. The result o f  fus1 4 point is at acc 



push 63 :(2564)N=63 
loopb: mult *mcbr( 1). ra 1 1. acc 

fivd nport, *mcbw(l ) 11 nsr II io *mccP9 
madd ra l ,0. acc. rO 
mult *mcbr(l), n 12. acc+ 
fwd nport, *mcbw(l) II nsr I I  io *mccr?'o 
mult *mcbr(-2). ra 13. acc+ 
Id rbO, sport 
mult *rncar( 1). ra 14. acc+ 
fivd nport, *mcbw(2) II nsr II io *mccr?'o 
mult *mcar( 1 ), n 15. acc+ II nsr I I  io *mccr?b 
mult *mcar(Z). ra 16. acc+ II ssr / /  io *mcdw08 
mult *mcbr(l), ra 17, acc+ I I  ssr II io *rncd\t?L 
mult *mcbr(l). ra18. acc+ I l  ssr II io *mcdw0'o 
mult *mcbr(2). n 1 9. acc+ II ssr II io *mcdw04 
dbr loopb 

2 nop 
madd ra 1 .  0. acc. 13 
$3 nop 
Id rbO. sport 
43  nop 
g3 ssr 11 io *mcdwo6 
ldeamc 766. 766. mc-stride. mc-stride ;! !! ( 1024-(256+3)) 
ssr II io *mcdwQ6, *mcc& 

ldeamc 1. 1. mc-srride. mc-stride 
;(rnccr=new line 1" point, mcdw~new line 2nd point) 

ldiamc O. 0.255, mcaw 
ldiamc 3. 0. 255. rncbr 
ldiamc 3.0. 255. rncar 
ldiamc O. 0. 255, mcbw :(rncaw. mcbw=O. rncar, mcbr=3 the I~ point) 

-********************************  
dbr loops :(cuc in line) 

ldeamc 256.2304. mc-&de. mc-stride;(- 1 O X *  1024+256,- 1022* 1024t256) 
io *mccr?6, *rncdw?'o 
Idearnc 1. 1. mc-stride. mc-stride 

dbr loopy 
end 



Appendîx E Convolution program (3x3 window with 32x32 pke l  image), data of 

source image and data of result image 

p i x e l  image) puQ7- l  , 

.test 
ldeamc O. 0, mc-min. mc-min 
ldeamc 1023. 1023. mc-mau. mc-mm $32 * E )  
ldeamc 1. 1, mc-stride. mc-stride 
ldeamc 0. ;2. mc-start, rnc-start :start from second line and second point(3 1 + 
ldiarnc 3.0. 255. mcar :read from . I~ point 
Idiarnc 0.0. 255. mcaw 
Idiarnc 3.0. 255. mcbr :read frorn qLh point 
ldiamc O, 0. 255. rncbw 

loopm: 

loopn: 

loops: 
. * * * * * * * * *  

loopa: 

push 52 
hvd nport, *mcaw( 1 ) i l  nsr I I  io *rncct?/o ;start input 32 points of  first line 
dbr loopm 
push 32 
fivd nport *mcbw(l) [ I  nsr I I  io *rnccr?'o :start input 32 points of second line 
dbr loopn 

(mcam-O. r n c b n ~ 0 .  mccr=O at 3rd line. mcdw= l at znd Iine) 
push 15 :(32-2)i2= 15 ((1024-2)/2) 

:(nest fine) 

$3 hvd nport. *mcaw(l) II nsr / I  io *mccro/o :(input 1-3p and point to 4th) 
mult *rncar( 1). ral 1. acc 
fivd nport, *mcaw(l) ( 1  nsr I I  io *mccf!/o 
mult *mcar( 1). 1312, acc+ 
fivd nport, *rncaw(I) 11 nsr [I io *mccr9" 
mult *mm(-2). ra 13, acc+ 
rnult *mcbr(l), ral4. acc+ 
fivd nport, *mcaw(2) I I  nsr I I  io *mccP/o 
mult *mcbr(l), ra15, acc+ ( 1  nsr 11 io *mccf!/a 
mult *mcbr(t), ral6, acc+ 
mult *mcar( 1 ), ral7, acc+ 
mult *mcar( l), ra18, acc+ 
mult *mcar(2), ra19, acc+ 

:already input 7 point. The result of fhst 4 point is at acc 
nopllio *mcdw?? ;pro-set first result poin- 
p i h  7 ;(32-4)!4-7 (256-4)/4=63 
mult *mcar(I), ra11. acc 



fivd npon, *mcaw(l) II nsr II io *mccr?/o 
madd n 1.0. acc, rû 
mult *mcar( 1 ). raI 2. a c c i  
fivd nport. *mcaw(l)  I I  nsr II io *rnccro/o 
mult *mcar(-2), ra 13, acc+ 
Id rbO, sport 
mult *mcbr( 1 ), ra 13. acc+ 
iîvd nport. *mcaw(2) II nsr II io *rnccr?/o 
mult *mcbr( 1). raI5. acc+ II nsr II io *mccr?/o 
mult *mcbr(2 j. ra 16. acc+ [I ssr II io *mcdw% 
mult *mcar( 1 ). ra 17. acc+ II ssr [I io *mcdw?G 
mult *mcar( 1 ). ra 18. acc+ (1 ssr [I io *mcdw% 
mutt *rncar(2), n 19, acc+ If ssr io *mcdw?6 
dbr toopa 

a3 fi\.d nport. *mcbw(l)  il nsr II io *mccr?/o :(input 1-3p and point to 4th) 
rnult *rncbr( 1). ra 1 1 .  acc 
fivd nport. *mcbw( 1) II nsr / I  io *rnccr?'o 
rnult *rncbr(l j. ra12. acc+ 
îivd npon. *mcbw( 1 ) II nsr I j  io *rnccf% 
mult *rncbr(-3). ra 13. acc- 
mult *mcrtr( 1). ra 14. acc+ 
fivd nport. *mcbw(2) [I nsr II io *mccf% 
mult *mcar(l ). ra15. acc+ I( nsr I I  io *mccf% 
mult *mc3r(2). ra 16. acc+ 
mult *mcbr( l ), ra 17. acc+ 
rnult *mcbr( 1). ra 18, acc- 
mult *mcbr(2). ra19. acc+ 

;altead? input 7 point. The result of first 4 point is at acc 
noptiio *mcd\vO/o 
push 7 :(323)/4=7 

loopb: mult *mcbr(l ). ra 1 1, acc 
fivd npon. *mcbw(l)  II nsr /I io *mccr96 
madd n 1. O? acc, rû 
mult *mcbr( 1). n 12. acc+ 
fivd nport, *mcbw(l ) 11 nsr ( 1  io *mccr?/o 
rnutt *mcbr(-2). ra 13. acc+ 
Id rbO. sport 
mult *mcar(l). ra 14. acc+ 
fivd nport, *mcbw(2) II nsr f l  io *mccr?h 
mult *mcar(l), ra15. acc+ I I  nsr 11 io *mccr?h 
rnult *mcar(2), ra16. acc+ II ssr I[ io *mcdwo/o 
mult *mcbr(l), ra17, acc+ II ssr II io *mcdw?/o 
mult *nicbr(l). ra18. acc+ II ssr II io *mcdw?h 
mult *mcbr(2), ra19. acc+ II ssr II io *mcd@/o 
dbr loopb 

.******************************** 
dbr loopx ;(cyc in line) 
end 
.end 



2) Data of source image (32 x 32 pixel) 
2 -.. - c  
L 2 -  
- & =  
L - J d  

0 0 0 0 0 0 Q 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
I I 1 1 1 1 1 1 2 2 2 2 2 2 2 6 4 6 4 2 2 2 2 2 2  
2 1 1 1 1 1 1 1 1  
1 1 1 1 : 1 ! 1 2 2 2 2 2 2 5 4 6 4 6 4 6 4 2 2 2 2 2  

7 3 -  7 .  2 L - A : l L 1 1  . . I l  I i I ! I l  2 2 L Z 2 64 6 4  100 100 6 64 2 2 
2 2 2 1 1 1 1 1 1 1 1  
1 1 1 1 'i 1 1 1 2 2 2 2 6 4  6 4  100 100 100 100 64 64 
2 2 2 2 i l l l l l l l  
1 i 1 i i 1 1 i 2 2 2 54 64 100 100 130 130 100 100 
6 4 6 2 2 2 1 1 1 1 Z 1 1  
L 1 1 i i 1 1 1 2 2 4 64 100 100 130 130 130 130 100 
1 ~ 0 6 3 t 4 2 S I 1 1 1 1 1 1 1  
i 1 1  1 1  1 1  2 4 64 100 100 130 130 160 160 130 
130 100 190 64 64 2 1 1 1  1 1  1 1  1 

1 1 1 i 1 4 b 4  :OC 100 130 130 160 160 160 160 
i 3 C  130 1 0 r  I O 0  64  64 I 1 1 I 1 1 1 I 
1 ! 1 : 1 i I 64 4 100 100 130 130 160 160 180 180 
160 165 13Q 130 i@O 100 64 64 1 1 f 1 1 1 1 
1 1 i : 1 I 0 4  0 4  100 100 130 130 160 160 180 1 8 0  180 
190 1 5 0  16C 130 130 130 100 64 6 3  1 1  I l  1 1  
1 1 1 1 64 64 160 10Q 130 130 160 160 180 260 200 200 
190 190 160 160 130 130 1 0 0  100 64 63 1 1 1 1 1 
1 1 I 1 4 0 3  100 100 130 130 160 160 180 180 200 200 
2" CiZCiCl 151' 1153 150 i 3 O  130 105 100 64  64 1 1 1 1 
1 1 1 t a ;  64 1-0 1 13C 1 160 160 180 180 200 200 220 
220 ZCL7 2 1  l e 0  183 1 0 0  1 0 0  130 130 100 100 64 64 1 1 1 
1 '  - G d  4 IV@ 1120 1313 ' ,30  160 160 180 180 200 200 220 
2,Q I ::CI C I  2 3 9  IEO 160 160 i30 130 100 100 64 64 
1 1  

I 64 t 4  L'30 130 130 138 160  160 160 180 200 200 220 220 
250 2 5 Û  2213 220 200 200 LSO 180 160 160 130 130 100 100 
64 6 4  1 
0 Z o O ~ ~ ~ G 0 G 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0  
0 5 i ~ 3 L 7 0 0 0 0  
1 1 1 l 1 1 1 1 2 2 2 2 2 2 2 6 4 6 4 2 2 2 2 2 2  
S l l 1 1 l i l 1  
1 1 1 1 1 1 1 1 2 2 2 2 2 2 6 4 6 4 6 4 6 4 2 2 2 2 2  
2 1 1 1 1 1 1 1 1  
1 1 1 1 1 1 1 1 2 2 2 2 2 6 4 6 4 1 0 0 1 0 0 6 4 6 4 2 2  
2 2 2 1 1 1 1 1 1 1  1 
i 1 1 1 1 1 1 1 2 2 2 2 64 64 100 100 100 100 64 64 
2 2 2 2 1 1 1 1 1 1 1 1  
1 1 1 i 1 1 1 1 2 2 2 64 64 100 100 130 130 100 100 
6 4 6 4 2 2 2 1 1 1 1 1 1 1 1  
1 1 1 1 1 1 1 1 2 2 64 64 100 100 130 130 130 130 100 
1 0 0 6 4 6 4 2 2 1 1 1 1 1 1 1 1  



1 1 1 1 1 1 1 1 2 64 54 100 100 130 130 160 160 130 
130 100 100 63 63 2 1 1 1 1 1 1 1 1 
9 1 1 1 1 1. 1 1 64 64 100 IOC) 130 130 100 160 160 160 
130 130 100 100 64 64 1 1 i 1 1 1 1 1 
1 1 1 1 1 1 1 64 64 i O 9  100 130 130 160 160 IBO 180 
160 100 130 130 100 LOO 64 64 1 i 1 1 1 1 1 
1 1 1 1 1 1 64 64 100 100 130 130 160 160 180 180 1 8 0  
180 160 160 130 130 100 100 64 64 1 1 1 1 1 1 
? 1 I L 1 64 64 100 100 130 130  160 160 180 180 200 200 
180 160 160 160 130 130 100 160 6 4  64 1 1 1 1 1 
I 1 1 1 64 64 100 100 130 130 160 160 180 130 200 200 
C O 0  200 160 180 160 i60 130 130 100 100 64 64 1 1 1 1 
1 i 1 6-1 0 4  100 100 130 130  160 160 130 190 200 200 220 
2 2 s  200 200 180 1 8 G  160 160 130 130 100 100 64 63 1 1 1 
1 1 64 64 100 100 130 130 160 160 180 18U 200 200 22C 
220 220 220 200 260 180 1 E O  160 160 130 130 100 100 64 64 
1 1  
1 64 64 100 100 130 130 160 160 180 180 200 200 220 220 250 250 220 220 200 200 180 
ISO 160 160 130 130 100 100 64 64 1 

3) Data of result image (32  s 32 pixel) 
-. . 



i 6  40 6 5  5 6  103  I I E  132. 146 1 6 1  17s 1 7 0  163  1 5 1  131 122 2 0 6  



Appendiv F Program of motion estimation 

1) FSM 

c o r r l c o ~ f i g ;  
( 3 0  2 )  FcrY 1 as i n p u t ,  s y n c h r o n e o u s  mode 

c c r t l i n c c n ;  
(.:O I l  p c r t  1 connect to n o r t h  c h a ~ n e l  ( i n p c t  1 

pcrtZcenfig; 
(51 O 1  p o r t  2 3s i n ~ u t  

c o r ~ 2 i n c o n ;  
!>.1 2 )  p o r t  2 c o n n e c t  t o  s o x î h  c h a n n e l  ( i n p u t )  

~crt3cc,nfig 
s o r t  3ocr =cn  
pzrt4ccnfig 
~ o r t 3 ~ u t c a n  

for mcdulc 

; @ @ @ G $ - z @ @ @ @ $ @ @ @ ~ > @ $ $ @ @ @ @ @ @ @ @ @ @ @ s t a  col 1, row 1 
laiamc 0 ,  O, 1 4 4 ,  ncar;  48+96=144 
ldiemc O, 0 ,  1 3 1 ,  mcaw; 48+96=i44 
Idiamc O, O, 144, mcbr; 38+96=144 
idiàmc 9, 9, 1-14, rncbw; 48+36=144 

; .SS$SSSSSSST input frame A, 8 128-64-16=48 p i x e l s  
p c s h  4; 1x12 4 lines 
cüll t2 
Ld r a l ;  vector counter nimber 
Id O ,  r b l ;  l 6 k ,  temporal vector address positicn 

; $ S $ S $ S $ $ $ $ $  input frsme A, 3 128-32=96 pixels 
push 8; 8+8 
cal1 t2 

;!!!!!!!!col 1, r o w  1, calculate 
Id O ,  r a 1 6 ;  memA1s address 
I d  O ,  r b 1 6 ;  memB's address 
p u s h  5;  5line loop 
c a l 1  t 4  

; ! ! ! !  !!!!!first col, first block end 
;@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@end col  1, row 1 



; @ @ @ @ @ @ @ @ @ @ @ $ C @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ s t a r t  co l  1, row 2-127 
l d e a m c  256,  2097153,  m c  s t a r t ,  mc-start; 

2 5 6  ( 6 4 ~ 4 ) ~  ZO97lS2+l  ( v e c t o r )  
Ldiamc O ,  0 ,  1 9 2 ,  rnczr; 96+96=192 
l d i o m c  0 ,  0 ,  1 9 2 ,  mcaw; 96+96=192 
l c i h r n c  O ,  0 ,  1 9 2 ,  rncbr; 46+96=192 
l d i a m c  O ,  0 ,  1 9 2 ,  rncbw; 56+96=192 
I d  48,  r a 1 6 ;  4x12=48 f r omeA i n  memA s t a r t  p o i n t  
I d  O ,  r b l 8 ;  frameB i n  m e m B  s t a r t  p o i n t  

;SSS$SSSSSSS i n p u t  Erame A, 6 128-32=96 p i x e l s  
p u s h  9; e:cl2 8 l i n e s  
c a l 1  t 2  
p u s 5  6 ;  î o l u m n  1 l o o p s ( 1 2 8 - 2  f o r  b c u n d r y )  

i o o p c :  
;S$SsSSSSSSS i n ~ u t  frarne A ,  6 5 6  p i x e l s  

push 5; Ex12 
c s l l  c 2  

; ! ! ! ! ! ! !  !czi i ,  2-12? b l ~ r k  c a l c u i s t e  
it2 n c p  
la r a l ô ,  r s l 6 ;  rnenA's a d d r e s s  
Id rbiS, rb16;  memB ' s a d d r e s s  
p u s h  9; 9 l i n e  l o ~ p  
c a l 1  t 4  

- ' ! ! ! ! ! !  O n e  b l o c k  c a l c u l a t e  e n d  r - 
s d d  r a 1 8 ,  96, r a 1 8 ;  8x12  
add  rbl8, 96,  r b 1 8 ;  ô x 1 2  
dUr l o o p o  

; @ @ @ C ~ @ @ @ @ @ @ @ @ @ C @ @ ~ ~ @ @ i C C @ @ @ @ @ @ ~ @ @ @ @ @ @ @ C d e n d  c o l  1, row 2-127 
; @ @ @ @ @ @ @ @ @ @ @ @ G @ @ @ @ $ @ @ @ @ @ @ @ @ l ? @ @ s t a r t  c o l  1, row 128 
;SS$$S$SS$SS i n p u t  frsmo .+, 6 48 p i x e l s  

p u s h  4 ;  4 
c a l 1  t 2  

; ! ! ! ! ! ! ! ! c o l  1, 128  b l o c k  c a l c u l a t e  
# 2  n o p  
I d  r a 1 8 ,  r a16 ;  rnernA1s a d d r e s s  
i d  r b 1 8 ,  rb16;  memB ' s a d d r e s s  
~ u s h  5 ;  3 l i n e  l o o p  
c â l l  t 4  

; ! ! ! ! ! ! ! ! !  c a l c ~ l a t s  end  
ldeamc  - 4 0 9 2 ,  1, r n c - s t r i d e ,  r n c - s t r i d e ;  -4096+ ( 1 2 - 4 )  -3-1=- 

4092 
; o l d - 4 0 2 4 = - 6 4 ~ ( 6 4 - l ) - 8  o r  + 6 3 - 8  p o i n t e d  t o  n e x t  c o l .  S t a r t  p o i n t  
( 6 4 x 6 4 )  

# 3  n o p ; !  
i o  'mccrS 
nop;  ! 
ldeamc 1, 1, m c - s t r i d e ,  m c - s t r i d e  
# 2  nop;  now is p o i n t e d  t o  nex t  l i n e  b e g i n  

; @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ e n d  c o l  1, row 128 
; end  o f  c o l .  1 ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !  
;@@@@@@@@@@@@@@@@@@@@@e@@@@@@@@sta r t  c o l  2-127, r o w  1 

push 6; 1 2 6 c o l  . s  
loopcol : 

l d i a m c  O ,  0 ,  192,  mcar; 64+128=192 



l d i a m c  O ,  0 ,  192 ,  mcaw; 64+128=192  
ld i a rnc  O ,  0 ,  192 ,  rncbr; 64+128=192  
l d i a m c  O ,  0 ,  192,  mcbw; 64+128=192  

;SSSSSSSSSSS i n p u t  f r a m e  $., E 1 6 x 4 = 6 4  p i x e l s  
p u s h  4 ;  4 x 1 6  4 l i n e s  
c a l l  t 3  

;SSSSSS$SS$$ i n p u r  f r a m e  A, B 128  p i x e l s  
p u s h  9;  8 + 8  
c a l l  t 3  

; ! !  ! ! ! ! !  ! c o l  2-127,  r o w  1, c a l c u l a t e  
I d  4 ,  r a l 6 ;  ( + 3 )  m e m A ' s  a d d r e s s  
I d  O ,  r b 1 6 ;  memB1s a d d r e s s  
p u r h  5; S l i n e  l o o p  
c a l l  t 5  

; ! ! ! ! ! ! ! ! ! c a l c c l a t e  e n d  
; @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ e n d  c o l  2-127, row I 
; @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ G @ @ @ @ @ @ @ @ @ s t a r t  c o l  2-127,  row 2-127 

ldeamc  - 5 1 2 ,  1 ,  rnc - s t r i d e ,  m c - s t r i d e ;  -64x8-3-1 
# 3  nop ; !  
i o  * m c c r S  
nop;  ! 
ldeamc 1, 1, mc-stride, r n c - s t r i d e  
$ 2  nop; now is p o i n t e d  t o  n e x t  l i n e  b e q i n  
l d i a m c  O ,  0 ,  2 5 5 ,  m c a r ;  128+128=256  
Ldiamc O ,  0 ,  255,  mcaw; 128+129=256  
l d i a m c  O ,  0 ,  255 ,  m c b r ;  128+128=256  
l d i a m c  O ,  0 ,  255 ,  mcbw; 129+128=256  
Id  68,  r a 1 8 ;  4 x 1 6 + 4 = 6 8  frarneA i n  m e f i  s t a r t  p o i n t  
I d  O ,  rb18; frameB i n  mem9 s t a r t  p o i n t  

;SSSSSS$$SSS input f r a m e  A, E 128 p i x e l s  
p u s h  9 ;  9x16 8 lines 
c a l l  t 3  
p u s h  6; c o l u m n  1 l o o p s ( 1 2 8 - 2  f o r  b o u n d r y )  

l o o p o l :  
;S$SSSSSSSSS i n p u t  f r a m e  A, B 1 2 8  p i x e l s  

p u s h  8;  8 x 1 6  
c a l l  t 3  

; ! ! ! !  ! ! ! ! c o l  2-127, 2-127 b l o c k  c a l c u l a t e  
# 2  nop 
Id r a 1 8 ,  r a 1 6 ;  memA ' s a d d r e s s  
l d  r b 1 8 ,  r b 1 6 ;  mernB ' s a d d r e s s  
push 9;  9 l i n e  l o o p  
c a l l  t5 

; !  ! ! ! ! ! !  ! !  c a l c u l a t e  end 
add r a 1 8 ,  1 2 8 ,  r a 1 8 ;  8x16  
a d d  rb18, 1 2 8 ,  r b 1 8 ;  8 x 1 6  
dbr l o o p o l ;  

; @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ e n d  col 2-127, row 2-127 
;@@@@@@@@@@@@@b@@@@@@@@@@@@@@@start c o l  2-127, row 1 2 8  
;SSSS$S$$$$$ i n p u t  f r a m e  A, B 6 4  pixels 

push  4 ;  4 
c a l l  t 3  

;!!!!!!!!col 2-127, 1 2 8  block c a l c u l a t e  
# 2  nop 
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à c c u n ü l a t e  64 pixels 

e r c u l u l z t e  1 line (8 pixels) 

accumulste 4 pixels 

ssr 
abd r a3 ,  rb2, r â 3 ;  
dbr loopl 
sdd r a l 6 ,  4, r a 1 6 ;  
add rb16, 4 ,  rb16; 
dbr loop2 
add r a16 ,  8, r a16 ;  



back 
back 

to start point 
to start point 

ixsls 

-56 b a c k  t o  
-96  b o c k  t o  

stert point 
start point 

Ic nport, 'mcsw!l~ 

Ikecrnc 39, 1,  mc-st ride, mc-stride; 
# 3  r.0p; ! 

-3-12t64-1 read ,  (64x64  ) 

io 'mccrt 
nop; ! 
ldeamc 1, 1, mc-striae, mc-stride 
t 2  nop; now is pointed to next line 
dbr locpnO 

begin 

ret 

# 3  nsrl lssrllio ' m c c r ? ;  



E 
U 
tu 

a 
C, 
O 

(UO LJ 
LI O k 



add 
cdd 

eddress+l) 
r.cp 
ab r 

ad< 
âcid 
d b r  

f 3 no- 

# 3  nop 
5.2 jumpll 
r e s t o r e  
l d c r  0 0 0 0 0 ,  a c n  

rb6, 1 ,  rb6; nsxt begining point of frarneB (address+ll 
r b i 6 ,  1, r b l 6 ;  n ê x t  b e g i n n i n g  po in t  



2) G F S M  

par41 l e1  accumulate, (coll) 

; FULSZ moticn estimztion.dsm GFSM(8xGblock,i6sl6area,64~64irnag~) ; 
, fr2rne.A is 7.e~ ~ i c t u r e ,  framea is old picture 

idcr  3 ,  
- .  
'CCT 2 ,  

ni.-C F ~ , ~ ~ c c n f i s ;  3 

: SO 2 )  pc , r t  I as input, ~ynchrcnesus moce 
~crrlinccn; 

( - 0  I )  p o ~ t  i connect t o  n o r t h  c h a n n ~ i  iincuci 
p o r t 2 z c n f  ig; (91 0 )  pcrt 2 as irt~ut 
pcr?Zi~con; 

(Ai 2 :  port 2 connect t o  s o u t h  zhannel ! inpuy > 
pcr: 3ccnfiq 
F c r r  3cu tcorL  
pcrï4ccnf i c j  

I d c r  3, boc:lzontrcl; nàdress p ~ r t l  f c r  rncdulo zountrr 

L3esrnc Q, LCj57152,  mc nFn ,  mc-min; - 
i d e z n c  4 0 5 5 ,  2101248, rnc-max, mc-rnax; 

( ~ 4 ~ 6 ~ ~ s t ô r t = 4 0 9 6 + 2 0 5 7 1 5 2 )  
Ideàmc O ,  ZGc17152, mc-start, mc-start; 2+*21=2057152 
I c i s a m s  1, 1, r,c s t r i d e ,  nc stride; - - 

; @ ~ ~ @ l ~ l ~ l ~ ~ ~ ~ l ~ @ @ ~ ~ @ @ @ @ @ $ l ~ @ @ @ ~ @ @ @ @ ~ ~ ~ ~ ~  c o l  1, rc7J 1 

ldizms 0, 0, 143, ncor; 49+96=144 
Idismc 3, '2, 133, m t a w ;  4 8 ~ 3 6 = 1 3 4  
liiâmc 12, 0, 1 4 3 ,  mcbr; 48+96=144 
l z i i e m c  O ,  0, 143, m c b w ;  48*96=134 

;SSS5$5SSS55 rn- l i t  frzn? -=-, 3 1 2 8 - 6 3 - 1 6 = 4 a  pixels - 
~ c s h  4 ;  4 x ~ ~  1 lines 
call 7 2  
la O, ral; ~ e c t ~ r  c o u n t e r  nuriher 
1d O ,  rbl; 16k, temporal v e c t o r  address  position 

; Ç S S S S S S S S S S  inpur fran? A, 6 128-32=96 pixels 
~ u s h  S; P + 8  
c a l 1  t2 

-'!!!!!!!col 1, row 1, calculate ? - 
Id O, ra16; mernA1s address 
Id O, rb16; memB's address 
push 5; loop 
c a l 1  t4 

; ! ! ! ! ! ! ! ! ! first col, first block end 
;@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@end col 1, row 1 
; @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ s t a r t  c o l  1, r o w  2-127 



p o i n t  
p o i n t  

for D o u n d r y )  

push 5 ;  
cal1 :? 

. ' ! ! ! ! ! ! ! !  -- , .  - a i c ~ ~ l â t e  end 
ldeamc - 4062 ,  

4092 
;oid-4024=-61x (84-1) -8 or 
(64x64 ) 

# 3  nop;! 
i o  *mccrS 
nop; ! 

I I  mc-s t r ide ,  mc-stride;-4096+ ( 1 2 - 4 )  - 3 - l = -  

+64-8 p o i n t e d  tc n e x t  c o l .  S t a r t  point 

ldeamc 1 ,  1, rnc-stride, mc-striae 
442 nop; now is pointed to next l i n e  begin 

;@@@@@@@@@@@@@@@@@@@@@@@@@@$@@@@@@@@@@end c o l  1, row 128 
;end of col. 1 . . . . . . . . . . . . . . . . . . . . . . . .  
; @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ s t a r t  c o l  2-127, r o w  1 

push 6; 126~01. s 
loopcol : 



ldiamc O ,  0 ,  
ldismc O ,  0, 
ldiamc O ,  0 ,  
ldiamc O ,  0 ,  

;SSS$SS$SSSS input f r z n e  
push 4 ; 
c a l 1  t 3  

;SSSSSSSS$Ç$ incüt f r a m r  
push 2 ;  
cc11 z 3  

mcar; 
mcaw; 
mcbr; 
m c b w ;  
16x4=64 

64+198=192 
64+128=192 
64+126=192 
64+129=132 

pixels 
4x16 4 lines 

128 pixels 
s 4 5  

!! 3 ncp; ! 
ia -mccr: 
noF; ! 

ldeâmc 1, 1, m c - s t r i d e ,  
72 nop; now is pcinted 
ldiarnc n, 0, 
ldiamc O, 0, 
làiamc C,  0 ,  

ldiàmc 
i d  6 Ç ,  r s l t i ;  
Id 68 ,  r S 1 3 ;  

;SSSSSSSSSS$ i n ~ u t  f r a m e  
~ u s h  3; 
c a l 1  t 3  
p u s h  6 ;  

loopol : 
; 5 Ç S S S S $ $ $ $ $  i n p u t  frarne 

push E?; 
call c 3  

2 5 5 ,  m c a r ;  
2 5 5 ,  ncâw; 
2 5 5 ,  ncbr; 

C i ,  2 5 5 ,  
4x16+ 

mz s t r i d e  - 
C o  nEx: lin- begin 

128+iS9=.256 
12C+i26=.256  
+125=256  

mcow; i2Ô+128=256 
1=68 frame-2. i n  m e ~ G  s t c r t  point 

frarne9 in m e m B  s c â r ï  
5 1 2 E  p i x e l s  

Ex16 9 lines 

B 1 2 8  pixels 
8 x 1  6 

# 2  EOP 
I d  r â 1 8 ,  r a 1 6 ;  
Id r 5 1 8 ,  rbl6; 
. . . . .. . . * .  - .  . 
* 1 , 1 8 , , , , , 1 1 ,  

- 9 .  ;Fus, 3; z+L 

call t6; 
. . - . * . . . . * - . -  
t l 1 P 1 1 1 8 # 1 8 1 1  

calculate end 

n ê m ? ' s  âàdrrss 
memE1s a d d r c s s  

,$CF 

c a l l  t 5  

add r a 1 8 ,  1 2 8 ,  r a 1 8 ;  
and r a 1 8 ,  O O f f h ,  r a 1 8  
add r b 1 8 ,  1 2 8 ,  r b 1 8 ;  
and r b 1 8 ,  O O f f h ,  r b 1 8  
dbr loopo 1 ; 

point 

f o r  

; @@@@@@@@@@@@@@@@@@k@@@@@@@@@@@@@@@@@end c o l  2-127, row 
; @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ s t a r t  c o l  2-127, r o w  128 



;S$$$SSSSSSS i n p u t  frame A, B 64 p i x e l s  
p u s h  3 ;  4 
c a l1  ï 3  

- I I  f f !  " l r o l  ; - f 2 7 ,  , . . . . . . . 126 b l o c k  c s l c u l s t e  
.. 7 
? L  ncp 
I d  r a l E ,  r s 1 6 ;  memr?' s a d d r e s s  
I d  r b 1 8 ,  r b l 6 ;  rnemB's a d d x e s s  
~ u s h  5; 5 l i n e  loop  
zall t5 

; ! ! ! ! ! ! ! ! ! calculsce e n d  
1ceamc -3088,  1, m c - s t r i d e ,  m c - s t r i d e ;  -4096c8-3-1=-4088 

; o i c - 4 0 2 < = - S < s ( 6 3 - i ) - S  o r  +61-8 poinïed to n e s t  c o i .  S t a r t  point 
(64x64) 

R 3 nop; ! 
io ' m c c r E  
nop; ! 
i d e a m c  1, 1, m c - s t r i d e ,  nc-stride 
r 2  nop; now i s  pointed to next line begin 
cibr l c o ~ c o l  

; ?ZC~?@~@@@@@C@C@@$@@@@@@@@@@@@@Cd@Cd@@(Eend c o l  2-127, row 1 2 3  
;end c f  c o l .  2-12: . . . . . . . . . . . . . . . . . . . . . . . .  
;@G@@@@@@@@G@@@?Q@@@@@@@@@@@@@start col 128, row 1 

ldiamc O ,  0 ,  143 ,  mcar; 48+56=134 
i d i a n c  0 ,  0 ,  143, mcaw; 48+96=144 
l d i d m c  0 ,  0 ,  133 ,  mcbr; 38+96=144 
I a i a m c  0, 0 ,  143, mcbw; 48+96=144 

- q c c c c c ~ c S S $  i n ~ u t  f r ame  .&, O 1 2 x 3 = 4 8  p i x e l s  , W W - T - T S I  

r u s h  3 ;  4x12 4 L i n s s  
C -211 t L  

. : C c c S S $ S T S S  i ~ p u t  frarns .?, E 96  pixels , - - T I  

p x s h  2 ;  E t 9  
:al1 t2 

; ! ! ! ! ! ! c c  1 ,  w 1, calculate 
ld 4 ,  ra16; [ + 4 )  m e m r ? ' s  adaress 
l d  0 ,  rb16;  memB ' s address 
~ u s n  5; S l i n e  loop 
cali t l  

, . . - .  * " ' ! ! ! ! ! !  ~ e l c u l a t e  end 
; G ~ @ ~ ~ @ C ~ ~ @ @ ~ @ @ ~ @ @ @ @ @ C a @ @ C C @ C d ~ C a @ @ @ @ @ @ @ @ @ e n d  col 128 ,  row 1 
; @ @ @ ? ? S ? @ @ $ G $ $ @ @ $ $ @ @ @ @ @ @ @ @ L a Q @ @ s t a r t  col 1 2 8 ,  r o w  2-127 

l d r a m c  -512,  1, mc-stride, m c - s t r i d e ;  -510 
$ 3  no?; ! 
io * m c c r %  
nop ;  ! 
l d e a m c  1, 1, mc-stride, mc-stride 
# 2  n o p ;  non is pointed to n e x t  line begin 
fdiamc O ,  0 ,  191,  mcar; 46+96=192 
Idiamc 0 ,  0 ,  191 ,  mcaw; 96+96=192 
l d i a m c  O ,  O, 191 ,  mcbr; 96+96=192 
l d i a m c  O ,  0 ,  191 ,  mcbw; 96+96=192 
Id 52,  r a 1 8 ;  4x12+4=52 f r a m e A  i n  memA s t a r t  point 
Id 0,  rbf8; frameB i n  m e m 3  s t a r t  point 

;SSSS$$SSSSS i n p u t  frane .Q, B 128-32=96 pixels 
push 8; 8x12 6 lines 



c a l 1  t2 
~ u s h  6 ;  colurnn I loops(128-2 for boundry) 

1 ~ 0 ~ 0 2 :  
; S S S S S S S S $ S S  input frxne A,  B 9 6  pixels 

p u s h  E ;  8x12 
tàll tî 

- l f l l  I t  !col 1 2 9 ,  2 -127  Dlock c a l c u l z t e  , - - - - . . .  
<; + n i  Zc?F 

Id r a l l ,  ra16 ;  rnemA1 s àddress 
1.3 ~ 5 1 9 ,  rblO;  memB1s addrsss 
~ u s h  5;  9line l o o p  
csll t 4  

; ! ! ! ! ! ! ! ! ! z a l c x L z c e  2nd 
add r z 1 9 ,  9 6 ,  r c l18 ;  8x12 
znd ri18, î ~ Q 3 f h ,  r z l 6  
add r S l 6 ,  5 6 ,  rblE; Cx12 
s r d  r C 1 $ ,  @ 9 3 f h ,  rbl3 
.-ii- 1 -  .--- - U r  - I C k L L ;  

; ~ ~ + $ i ~ @ ~ j 8 ~ + 1 ; - t > ~ 3 @ $ ~ i ~ ~ @ ~ , ~ @ $ @ ~ ~ $ @ @ @ @ @ @ $ e @ l ~ @ s n d  col 128,  r o w  2 -127  
- I C I C ~ I > ~ I ~ ~ > @ + I ~ $ ~ ~ ~ $ ~ I ~ I > @ $ ~ ~ @ I ~ ~ @ ~ @ @ $ @ ~ ~ ~ ~ ~  col 123 ,  r o w  128  P L -  - - - - < C c C c S s $ S $  ir:cct f r , = m a  .>, E 4 s  p i x e l s  , - v - - v -  * - _ 

~ l i s h  4 ;  3 
rall t L  

; ! ! ! ! ! ! ! ! t z l  1, 12s c l c c k  z e ~ ~ z u l ~ t ~  
=: r:op 

E L :  I d  Ci, raz; occsmulstsr r a 3  
I d  rbC,  r b l  
p ~ s h  =; sccuinulâte 64 pixels 

iCQF;: 

cusk  2 ;  s r c u l u l ~ t e  1 l i n e  ( 8  p i x e l s )  
l;,-"? - L - .  - 

* - 
" L  93p 

13 r z 1 6 ,  addrs 
12 r k l 6 ,  a d a r b  
#3 no- 
sub ' addra,  *oddrb, rbî; 
# 3  nop 

abs r b î ,  rb2; 
# 3  nop 
add rb2 ,  r a 3 ,  r a 3  

add ra16, 1, ra16; + 4  
and r a 1 6 ,  00f f h ,  ra16 
add rb16, 4 ,  rb16; + 4  
and rb16, OOffh, rb16 



à b r  lcop2 
- ---- * 

add r a l 6 ,  8 ,  r316; 16-4:i2=8 
2nd r a l 6 ,  OOffh, r a l d  
add r b 1 6 ,  3, rb16; 16-4:t2=8 
and rD16, OOffh, rb16 
d b r  l o c p 3  

r 

I d  r - 3 ,  s p c r c  
puch  3 
loopi : 

add r s 3 ,  spsrt, r ü 3  
ss r ;  add befcre  ssr 

dbr  loopl 
SUD r.316, I f f i ,  r a l 6 ;  - 1 2 8  back  t o  start point 

iflt r d l 6 ,  O ,  O ;  ( i f  r a l 6 i 0 ,  + 2 5 6 )  
5 3  ncp 
edd r a 1 6 ,  256,  r o l 6  
e l s e  

n c c  
rss t i=.r% 

s u b  r b l 6 ,  122 ,  r b 1 6 ;  - 1 2 5  b â c k  t o  stàrt point 
i f l t  r b l 6 ,  O ,  O; ( i f  rb16<0 ,  + 2 5 6 )  
1 3  nop 
add r b 1 6 ,  216 ,  r b l 6  

~siumulater r a 3  

&scxnulste 61 p i x e l s  

cccululste i l i n s  ( 8  p i x e l s )  

Y - +  - T L  

Id O f  r 3 l ;  

1. i  r C 6 ,  r b l  

 US^ a ;  
1 ~ 0 ~ 2 3 :  

p u s h  2 ;  
lccp22: 

#2 nop 
Ld r a l 6 ,  a d a r a  
Id  rb76 ,  adrjrb 
t 3  n c p  
sub ' adara ,  'addrb,  rd2 
# 3  riop 

aSs rb2, rb2 ;  
$ 3  nop 
a d d  rb2 ,  ra3, ro3 

add ra l t5 ,  4, ra16; + 4  
and ra16, 0 0 3 f h ,  ra16 
add rb16, 4, rb16; +4 
and r 8 1 6 ,  0 0 3 f h ,  rb16 
db r  l oop22 
add r a 1 6 ,  4, ra16; 12-4x2=4 
and rü16, 0 0 3 f h ,  rd16 
add rb16, 4, rb16; 12-4x2=4 
and r b 1 6 ,  0 0 3 f h ,  r b 1 6  
d b r  loop23 



Id ra3, spor t  
push 3 
lûop2 1 : 

add ra3, sport, ra3 
ssr 

d9r loop21 
sub ra16, 46, ra16; -96 back to s t a r t  point 

iflt ra16, 0, O; i i f  ra16<0, t192) 
+ 3  ncp 
àdd r à l 6 ,  192, rs16 
else 

sub r 

nop 
restore 

,b16, 96, rb16; -46 batk to s t a r r  point 
lfLt rb16, 0, O; ( i f  rb16<0 ,  + 1 9 2 )  
# 3  no? 
zdd r510, 152 ,  rbl6 

loopn0: # 3  nsr l l ssr l l io 'rnccr? 
push 12; 12 

locpm0 :  sr l I ssr l l io 'rnccr? 
la  nport, ' r n c a w ( l 1  
Id sporc, 'mcbw ( 1 ;  
dbr LoopmCl 
ldeamc 4 9 ,  1, r n t  striae, rnc s i r i c e ;  - 3 - 1 2 + 6 ? - i  r ~ a d ,  (64x64) - - 
i i 3  nop; ! 
io 'nccrS 
n c p ;  ! 
Iaeamc 1, 1, m c  - strice, mc-stride 
k 2  nop; now is pcinted to next lin? begin 
abr loopnC 
ret 

t3: 
loopn0 1 : 33 nsrllssrl lio *mccr5; 

push 16; 16 
iooprnol: nsrilssrl lio 'mccrS 

Id nport, 'mcaw (1) 
Id s p o r t ,  'mcbw ( 1 ) 
dbr 1 o o p m O l  
l d e a m c  1 5 ,  1, mc-stride, mc-stride; -3-16+64-1 read, (64x64 1 
t 3  nop;! 
io +mccr% 
nop; ! 
ldearnc 1, 1, mc-stride, mc-stride 
# 2  nop; now is pointed to next l i n e  beqin 
dbr loopnOl 

ret 
t4: Id O, rb6 

1 0 0 ~ 5 :  
push 5; 5colum loop 



ûdd 
add 

acd 

nGP 
d b r  

t 1 2  
lacr 1110b,  acm 
i f e q  r a 3 ,  0,  . . . . . . . . . . . . . . . . . . . . .  
# 3  nop 
bpa j umpl 
restore;;;;;;;;;;;;;;;;;;;;;;;;;;; 
l d c r  0000b, acrn 

r b 6 ,  1 ,  r b6 ;  n e x t  b e q i n i n g  p o i n t  #2f frarneB!adbress+l)  
r b l o ,  I I  rb16; next  b e g i n n i n q  p o i n t  cf 

f r a m e B  ( m e r n B 1 s  a d d r r s s + l )  
r b l 6 ,  Û 0 3 E n ,  rb16  

# 3  nop 
zdd rb6 ,  7 ,  r b6 ;  
edd rb16 ,  7 ,  r b l 6 ;  
z n d  r b l 6 ,  003Eh,  rb16 

12 in  b l o c k  a d d r e s s  o f  fromeB 
8 memE+8 

3br  l oop5  
8 3  nop 
Id  9 9 0 9 ,  r b l ;  
i f e q  r b l ,  5949 ,  
$ 3  nop 
bpz j u r n p 2  

pcp;  
pop; 
restore 
l d c r  OOOOb, 

ld O ,  s p o r t  
Id r b l ,  nport 
# 3  nop 
io 'rncdwP, 
add r a l ,  1 ,  r a l  
1-t 

t 5 :  I d  9, rb6 
locpl5: 

p u s h  9; 
loccl4 : 

cal1 t l  
l d c r  
i feq 

9colüm loop  

# 3  nop 
bpa j ump l l  
restore;;;;;;;;;;;;;;;;;;;; 
l d c r  OOOOb, acrn 

a d d  rb6 ,  1, rb6 ;  n e x t  begining point of f rameB ( a d d r e s s + l )  
a d d  r b l 6 ,  1, rb16;  n e x t  beginning point of frameB ( r n e m B 1 s  

a d d r e s s + l )  
a n d  rb16 ,  OOffh, r b16  
noE' 
dbr 100pl4 
# 3  nop 
add  rb6 ,  7 ,  r b6 ;  
a d d  rb16 ,  7 ,  r b16 ;  

16 in block a d d r e s s  of f r a m e B  
8 memB+8 



a n d  rb16 ,  OOffh,  r b 1 6  
cibr loopl5 
$ 3  nop 
ld 9990, rbl; 
i f eq  r b l ,  9999 ,  O 
i13 ncp 
bpa j umpl2  

j tmp11:  FGP; loopf 4 

FOp; l00pl5  
jcrnpl2: r e s t o r e  

l d c r  0000b, acrn 
Ld û, sport 
Id r b l ,  n p o r t  
# 3  n c p  
io ' rncdws 
add r a l ,  1, ral 
r e t  
;centEr 
ld 6 8 ,  rb6 

û r b l 6  a l r e a d y  i n  c e n t e r  
îall t i  

ldcr  1110b, acrn 
i f e q  ra3, 0 ,  0 ; ; ; ; ; ; ; ; ; ; ; ; ;  
# 3 no- 
b ~ a  j timp.22 
restore;;;;;;;;;;;;;;;;;;;; 
l d c r  0000b, acrn 

àdd r b15 ,  -17,  rb16; next b e g i n i n g  p o i n t  o f  m e m B  
iflt rbl6, 0,  O; (if r b 1 6 ~ 0 ,  + 2 5 6 )  
# 3  nCF 
add r516, 256,  r b l 6  
e l s e  
no? 
restcre 

aad  rb6 ,  -17,  rb6; next b e g i n i n g  p o i n t  o f  frameB 
; ; ; 3x3 

p u s h  3 
loop211:  

p u s h  3 
loop20: 

c a l 1  t l  
l d c r  1110b ,  acrn 
i f eq  r a 3 ,  0 ,  0 ; ; ; ; ; ; ; ; ; ; ; ; ;  
# 3  nop 
bpa jump21 
restore;;;;;;;;;;;;;;;;;;;; 
ldc r  OOOOb, acrn 

add r b16 ,  1, r b l 6  
a n d  rb16 ,  OOffh,  r b 1 6  
add rb6 ,  1, r b 6  
dbr l oop20  
add r b l 6 ,  13,  r b16 ;  16-3 
and rb16 ,  OOffh,  r b 1 6  
add rb6, 13, rb6 





# 3  nop  
cpa jümp23 
res tors ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;  
l d c r  0000b, acrn 

a d d  r b 1 6 ,  4 ,  rbl6 
ând r b 1 6 ,  OOffh, r b 1 6  
adà r b 6 ,  4 ,  rb6 

c a l l  t l  
l d c r  1110b, acrn 
i f e q  r a 3 ,  0,  0 ; ; ; ; ; ; ; ; ; ; ; ; ;  
$ 3  ncp 
bpa jump23 
restore;;;;;;;;;;;;;;;;;;;; 
l d c r  OOOOb, â c m  

add r b 1 6 ,  1 2 ,  rb16; 16-4=12 
and r b 1 6 ,  OOffh, r b 1 6  
add r ~ 6 ,  1 2 ,  ri26 
dbr loop32 
add r b l 6 ,  -97 ,  r b l 6 ;  -16x6-1=-97 n e x t  b e g i n i n g  p i n f  of 

i f l t  rk16, O ,  O ;  ( i f  rD16<0, + 2 5 6 )  
13 nop 
add rb16 ,  256,  r b l 6  
e l s e  
nop 
r e s t c r e  

add rb6, -57, r b 6 ;  n e x t  ~ e g i n i n q  ~ o i n c  of frzmeB 

push 7 
laop40 : 

call t l  
l d c r  l l l g b ,  acrn 
i f eq  rs3, 0, 3 ; ; ; ; ; ; ; ; ; ; ; ; ;  
4 3  nop 
bpa j ump23 
restore;;;;;;;;;;;;;;;;;;;; 
l d c r  0000b, acrn 

ada r b 1 6 ,  1, r b 1 6  
and r b 1 6 ,  OOffh, r b 1 6  
add r b 6 ,  1, r b 6  
dbr loop40 

add r b 1 6 ,  8 9 ,  rb16 
; 16x6-7=89 

and r b l 6 ,  OOffh, rb16 
a d d  r b 6 ,  8 9 ,  r b 6  
push  7 

loop4l: 
call tl 

ldcr  l l l O b ,  acrn 
i f eq  ra3,  0 ,  0; ; ; ; ;; ; ;; ; ; ; ; 
t3 nop 
bpa jump23 





bpa j ump2 3 
rsstGr3;;;;;;;;;;;;;;;;;;;; 
ldcr  OOOOb, acrn 

âtid r b 1 6 ,  1, r b l 6  
z n d  rb16, O O f f h ,  r b 1 6  
acid r c6 ,  1, rb6 
d b r  l ocp50  

âcci r b 1 6 ,  119 ,  rD16; 
?cd r b l 6 ,  O O f E h ,  r 5 1 6  
a d d  r c 6 ,  115,  rS6 
ci isn 

l o r p 5 1  : 
Z E l l  t l  

ldcr  1110b ,  à c m  
ifeq r a 3 ,  0 ,  S ; ; ; ; ; ; ; ; ; ; ; ; ;  
$ 3  i . 0 ~  

kco  j l ~ m ~ 2 3  
restore;;;;;;;;;;;;;;;;;;;; 
l d c r  QQOCb, atm 

ab.5 r b l 6 ,  1 ,  r b l 6  
232 r k , l 6 ,  O Q f f h ,  rS16  
o c d  rb6,  1 ,  r b b  
b k r  lc?cp51 
a c b  r t l F ,  -121,  r b l C ;  -16x7-9=-121 
i f l t  rbic, a ,  fi; ! i f  r b l 6 < O ,  + 2 5 6 )  

, - n -: n c,-= 
zaa r b l c ,  2 5 6 ,  r b 1 6  
Z I C 2  - - - L  

7; .. 
zes tc - re  

zbd  r k 6 ,  -121,  1-56 
?ESb 7 

ldcr lllOb, acrn 
i f 2 q  r a 3 ,  O ,  fi;;;;;;;;;;;;; 
R3 nop 
bpz j urnc.23 

add 
and 
add 

c a l 1  t l  

add 
a n d  
ddd 

r e s t s r e ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;  
Ldïr 0000b,  acrn 

r816,  8 ,  r b 1 6  
rb16,  O O f f h ,  r b 1 6  
r b S ,  6 ,  r b 6  

i d c r  1110b,  acrn 
i f e q  ra3, 0 ,  0 ; ; ; ; ; ; ; ; ; ; ; ; ;  
# 3  nop  
bpa jcmp23 
restore;;;;;;;;;;;;;;;;;;;; 
ldcr 0000b,  acrn 

rb16, 8 ,  r b 1 6 ;  16-E=8 
rb16 ,  OOffh, rb16 
rb6, 8 ,  r b 6  



dbr loop52 

l a  4999, rbl ;  
i f e q  r b l ,  5959, O 
# 3  nop 
5pa jump22 

pop; 
FOP; 
r e s t G r e  
I d c r  12000t=, a c m  

li O, s -or t  
Id rB1, npcr t  
4 3  nop  
ic *mcdw; 
add r â l ,  1, rcl 
TCt 



Appendix G Result of motion estimation 
1) 
qhsin rnogood-asm out-aaa---sun, house, plan & man 

portgoodsun2 
16hours 23,252,160ns bourassa 

9 1162560 instructions . . .  
# - - - - - -  Frograrn ccmFleted with k r a n c h ~ c  hal: at 23251970 CS 

t using 1162565 instructions 
3 T s s t k n c h  completed with G errors at 2 3 2 5 2 1 S 0  ns 
# * +  Fâilure: Simulation Succesfull- Compieted 
# Time: 23252180 ns Iteràtion: 2 Instance:/run 
# Break ât 2-model-lchip-3mem.vhd line 4 5 0  
QPSIM 2>  

Y 1 5 4 5 7 5 0  instructions . . . 
d - - - - - -  Program completed with b r a n c h i o  hàlt S C  30915870 ns 
# u s i n g  1545760 i n s t r u c t i o n s  
# Testbench ccmpieted with O errors zt 30916060 ns 
5 + *  Failure: Simulation Succesfully Cornplet-a 

ii Time: 30916080 ns Itêration: 2 Instance: / r u n  
3 Break at 2-modsl - lchip-3mern.vhd line 550 
QHSIM 3> 
- 2 1 1 7 4 8 3 6 3 8  
0 0 0 0 0 0 0 0  
2 6 6 6 6  O O 0  O O 
2 32 9 9 9  5 O 7 1  7 1  7 1  
2 6 6  4  O O 999 999 999  
O O 7 7 68 68 4 68 
6 70 68 35 6 8  68 68 68  
6  7 0  6 68 68 68  4  68  
O 999 O O 5 2  5 2  5 2  52 
-2147483648  
-2147483648  
-2147483648  



3 
pcrtqocdshpm 
qfisin mogood-asm cut.saaî(sun house plane & man two picture is 
same 1 

# i 0 7 8 6 1 0  instructions . . . 
# - - - - - -  Prooram ccmcletea with brânchio halt at 21573050 ns 

% usinq 1 0 7 R 6 i 9  Fns~ructions 
t Tes~ctnîh zon~leted xith O srrors  ât 21573260 ns 
LL -. râilur-: - Simülaticn Succtsfully Completrd 

ti Time: 2 1 E 1 ~ 3 2 6 0  ns Iteration: 2 Instance:/run 
$ Ereak ac 2-rncd21-?chip - 3nem.vhd line 950 
Q H S I P !  2 >  

4 
c e n c r r s ?  J a n .  29, l59f 
qhsirn .mocent~r. zsm out.aaa2(sun house plane & mon two 
c i c t c r e  is sâme! 

R 325519 instructions .. , 
g - - - - - -  Progrcm sompl2ted with branchio halt 3t 6559030 ns 

# using 329318  instructicns 
i Tesrbench zomplcted with O errors àt 6599240 ns 
i! * -  Csilurs: Simulation Succesfully Completed 
11 T i r n e :  6599240 ns Iteracion: 2 1nstance:'run 
8 S r e z k  at 2-model - lchip-3mem.vhd line 950 
QHSIM 2 >  
- 2 1 4 7 4 e 3 6 1 5  
0 4 8 0 0 0 0 0 ( 3  
4 6 8  68  68  € 8  68 68 O 
4 68 6 8  68 68 68 68 O 
2 66 68 68 68 68 68  O 
O 61 68  68  68 68 68 O 
O 68 68  65 68  68 68 O 
4 68 68 68 68 68 6 8  O 
O 5 2  O O 52 52 52 52 
-2147483638 
-2147483648 
-2147483648 



Appendix H DCT program for PULSE 

I , 
, dct 3 .  asm 5x6 PCT at 64x64 frame 
, pzrallel DCT (16 times f a s t e z  thzn usin? one FE) , 
r , c ) C  (-:] i? isi~aa x=C->?{sigrna y=û->7 f (:<, y !  l 

: C S [  ; 2 : / + l ! ~ ' 3 . 1 4 ;  ' ; € ] ï ~ ~ [ 2 y * i j ~ 3 . i 4 / ' 1 6 ]  } }  1 

. .  . 
, =.rnc~t: , :n:  _ ' i l ~ j ,  z(-.-)=1, wP:en u, -.- > 0; C ( c )  c(ÿ; = G , T Û 7 ,  ; 
, xhen u ,  -.- = C. , 

1 ;331E: i ~ ~ 5  [ {;:-:fl) U S .  l4/ :<:O->?, u : C - > 7  r 

r I=!LS: j .  -III?=?@; 1 = 2 5 6 :  C . 7 @ 7 = 1 8 1  r 

r # 

. - . f . . * . - . . . . _ . . . . . . . - . . . . . . . - . . . - - - . . . * . - - . . . - - . . . . . . . ~ ~ - - . - . . . - .  
~ ~ ~ ~ l r r r 1 ~ ~ r ~ ~ # ~ ~ t 1 r ~ ~ r 1 ~ I I I ~ I ~ r l l 8 t ~ ~ I ~ r ~ l ~ ~ I ? ~ ~ l ~ r I ~ r r ? ~ ~ ~ ~ ~ ~ ~ ~ t  

pull: 

p c r t  linccn; 

ldcr 0, p o r t î c o n f  ig; 
ldîr 2, port2incon; 

( 9 0  2 )  p o r t  1 as input, 
synchroneous mous 
(.?O 1) port 1 connect to n o r t h  
channel (input) 
(51 0 )  pûrt 2 as input 
( A l  2 )  port 2 connect to south 
shannel (input ) 

ldcr 1, port3outcon 
l d c r  3, port4config 
ldcr 

ldcr 3, bootcontrol; address purtl for rnodulo counter 

ldearnc 0, 2097152, mc-min, mc-min; 
ldeamc 4095, 2101248, mc-max, m c m a x ;  

(64~64+start=4096+2097152 1 
ldeamc 0 ,  2097152, mc-start, mc-start; 2*+21=2C97152 





Id t4h, nport 
# 3  I?OD 

io *mcdw"a 
# 3  n s r l  llo ' rncdw% 

, 0 ,  2 5 5 ,  mcar;rerurn t o  s t c r t  point f (x, y )  ,mean f ( O ,  C)) 

u; ! ! !  
, u; n CI 

end 
SI: ; l ~ & d  table, constant 2nd dota 

push 132; 6 3 ;  64  ALifter table h; i s  4 - ;d lues  ( u l ,  i-1, 
i o c p l :  R 4  nsrl lssrilic 'rnccr?; 

l à  nport, +mcaw(l) 
Id nport, -ncbw(l) 
; 1c s-crt ,  ' m r b w i l j  

S b r  iocpI 
rst 

cul, tvl) 



Appendix I IDCT program for PULSE 
........................................................ 
l l ~ ~ l ~ r l r r r l l l l l f f f f I f f f f r I f f I r f I r f f r f r f r f ? r f l r f ? r r l f f r r  

. . 
, l z c t .  3.53 8 x 8  ECT at 6 4 x 6 4  frame , 
, p c r z l l e i  DCT (16 t i r n e s  f a s t e r  t h â n  u s i n g  o n e  PEI , 
, F ! u , v ) = C i c ) C ( t T ) i 4 { s i q a  x=0->7(sigma y=0->7 f ( x , y )  , 
, C G = [  ( 2 ~ + 1 ) ~ + 3 . 1 3 / 1 6 ] ~ 0 ~ [ 2 y + l ) v 3 ~ 1 4 / 1 6 ]  } } , 
, f {r ,  y! =sigm& x=0->7{s igma  g=0->7 C ( U ) C ( V ) / ~ * F ( E , V ) '  r 

r ' : C S [  (2~+1!~~3.i3/16]cos[2y+I)-~3.14/16] } , 
ccncition: ctu), c ( v ) = l ,  wher, u ,  v > 0; fl 

, C ( u ) ,  c ( ï ) = 0 , 7 0 7 ,  when ut v = 0 .  r 

, table: ccs  i [2x+l) u3.14/16] x :  0-17, u :  0->7 , 

, 1 = 1 2 S :  0.707=90;  1=250 :  0 .707=181  , 
I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

~ f ~ : r ~ f ~ 1 l l l r < l l t , ~ I ~ t I I f ~ 8 8 ~ I # 8 ~ I I I I t ~ I ~ ~ , ~ ~ ~ ~ ~ ? ~ ~ ~ 8 ~ ~ * ~ ~ , r , r r ~ r r I  

- - . L Y ? : t  

.ù . s e c  r z l  
- -  .set r d 2  
y .set rb3 
:< . se :  rb4 
,-. . ,u .set r a 5  
A - *  
,-, . s e t  rb6 
C - c l  . S E ?  f' 

11h . s s t  r t 7  
c i  . S e i  EC'; 

t:k . c e t  r b S  
:: r -  
03.. . E L  

:31 . s e c  r z e 3  
+ ,T c-r  . s e t  r i C l  
:4h . s r :  rblO 
ci . s e c  r a l l  
.* - 
., 1 .set r d 1 2  
csl .set rbll 
z ~ 1  .s?r rb12 

pu 11 : 
l'der 2, p c r t  ltcnfiq; ( 5 0  2 )  p o r t  1 a s  i n p u t ,  

s g n c h r o n e o u s  mode 
I d î r  1, p o r t l i n c o n ;  (AG 1) p o r t  I c o n n e c t  tc n o r t h  

c h a n n e l  ( i n p u t )  
l d c r  0 ,  p o r t S c ~ n f i g ;  ( 9 1  0 )  p o r t  2 a s  i n p u t  
l d c r  2 ,  p o r t 2 i n c o n ;  ( A l  2 )  p o r t  2 c o n n e c t  t o  s o u t h  

c h a n n e l  ( i n p u t  ) 

l dc r  1, p o r t 3 c o n f i g  
l d c r  1, p o r t 3 o u t c o n  
l dc r  3,  p o r t 4 c o n f i g  
i àc r  2 ,  p o r t 4 o u t c o n  

ldcr 3 ,  bootsontrol; a d d r e s s  purtl fo r  modulo c o u n r e r  

ldeamc  0 ,  2 0 9 7 1 5 2 ,  mc-min, mc-min; 



4095, 2101249, ac-max, nc-max; 
(64~+54+start=4096+2097152) 

0 ,  2097152 ,  mc-start, m c  - start; 2'+2i=2097152 

6 3 ,  0, 2 5 5 ,  m c a r ;  
0 ,  0 ,  2 5 5 ,  m c a w ;  
13, P I  255, mcbr; 
C ,  O ,  255, mcCw; 

. * t * * * + . - + * + - + r . t * + t * * + + * * t * * + ' * t + - + + * + + * ~ + * + * + * + + + + + +  
I 

.------------------.__________________________-.__________________________.__________________________--.__________________________.__________________________ , 
; i n p ~ t  t z c ? ~    si sr^ f r c m  12 Cs 631 C i n c c t  Oata (stzrt f r c m  - -  7 . 

- 3 1 ,  51 ;  : , - = , A  4- - 1,,, 2nd constznt 

câble value is 65535 
tzble v a l u e  i s  65535 

+ 3  n c p  
mult ' add ra ,  'addrb, tl; make the value a r r i v e  

high 16 bit in tl. 
# 3  nop 

mult 'mcar ( 1  1 , 
add u, 8, u; 
# 2  nop 

make the 

tlh, t4;mcar+tlh->t4 (high l 6 b i t )  

value arrive low 1 6  bit i n  t 3  mult cv, CU, t3; 
# 3  n o p  

I d  t4h, rb16; 
I d  t 3 1 ,  rb17; 



rnâcc t?h, ~ 3 1 ;  t3h*t3l+acc->acc(hign 16 bit) 
la 191, su; ! ! ! 
dbr locpu 

n e c d  C), reO, acc ,  r 2 ;  acc-> t2  (high 16 bit) 

àdd y ,  1, 1;; 1 

e n d  



Appendix J cosine table 





b=a [x] [ y )  *r+s+b; 
//y[Ol [O]=O; 

/ /  y[i+e] [j+f]=xc 100000000; 
1 

c f u ]  [ v ]  = (cuccv+b/4) /3.95;  

ofstream out ( "out .bll') ; 
for(j-0; j < 8 ;  + t j )  

{ 
for(i=û; i<9; ++i) 

o u t < < s e t w  ( 5 )  < c i n t  (a [il [ j ] ) < < ' O  "; 
GUt<i sfidl; 

1 



Appendix L IDCT program in C++ 

1) IDCT program of C++ 
/ / / / / / / / / / / ; / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /  
/ / 1 DCT idct3-l.cxx / 
/ / g + +  -1 /usr/lccâl/opt/FSFlibg++/1ib/g+t-include idct3-1-cxx / 
/ / K T  (eacn p i x s l  = 2 )  ( 3 x 8 )  /' 

/ / f  ( x ,  y) ={sigms u=r)-;7{sic~rnà .1=0->7 'C ( u ) c ^ ( v ]  / 4  *F(u, v) - / 
/ / c o s [  ( 2 x + 1 ] ~ ' 3 . 1 4 / 2 6 ] ~ ~ 0 ~ [ 2 ~ 1 f 1 ~ ~ ~ 3 . 1 4 / 1 6 ]  } ! / 
/ / c o n a i t i ~ n :  c(uj, c ( v )  =1, when u, v > û; / 
/ / î ( u ) ,  c(v)=0,707, wnen u, v = O .  / 
/ / / / / / / i / / / / / / / / / / t ' / / / / / / / / / / / / / / / / / ; / / / / / / / ; / / / / / / / / / / / / / / / / / / / / /  

8 i n c l ~ d e  <stdio.h> 
# include <fstream.h> 
# include <math.h> 
# include <iomanip,h> 
# include <stdlib.h> 
main  ( ! 
I 

const float PI = 3.14159, 1J=8.0;  
int x, y, u, i ,  j, m, n; 
float p, q, r, s, CU, cv, a [El] [ 8 1  ,b, c [ 8 ]  [ a ] ;  

/'generate original mdtrix 
for(m=O; m<8; ++m) 

for(n=O; n < 8 ;  + + n )  
a [ m l  [n]=l;+/ 

i +  read a [ m ]  [n] from out . b 9 * /  
ifstream input ("sut. bl") ; 
/!char A [ S ] ;  
//ifstream inpat {"oct .cl") ; 
char A [ 8  1 ; 
for(j=O; j < 8 ;  + + j )  

for(i=O; i<8; ++i) 
I 
input. read ( (char') &A, sizeof (A) ) ; 
a[i] [j] = acof(A); 
1 

/ 



q = (  (2+y+l)+v*3.14l6/16) ; 
s=scs ( q )  ; 
b= ( c u + c v / . l )  *a [u ]  [ V I  *r's+b; 
/ / y [ @ ]  [ 0 ] = 0 ;  

/ /  y!i+e] ( j + f ]  = x +  10G000000; 
cu=l .O; 
i 
C V = ~ .  O;  

1 
c [ x j  [ : , - ] = 0 + 3 . 9 5 ;  

1 

r f s t r f a m  o ü t  ("cut-dl"); 



for(j=8; jc16; ++j) 
for(l=O; i < 8 ;  ++i) 
t 

input.read((char*)&A, sizeof ( A ) ) ;  



f o r ( j = O ;  j < 8 ;  + + j )  
1 
for(i=3; i < 8 ;  ++il 

//out<<setw(5)<<int (a[i] [j] ) < < "  "; 
outc<setw(8) <<a [il f j ] < < "  "; 







Appendix N D a t a  transfer programs for C40 and PULSE 

1) Readhrite data from/to global memory with C30 (C 1anguage):-------------------------- 

#include 'rms330c40.cmd'' 

#de fine global process 1 

#define local process2 

+define TRUE 1 

+define FALSE O 

int valus: 

main( ) 

f 
i 

1 

global() 

int mem-mal: 

:* Initialize Part */ 

trace-on(); 

set - trace-level (GLOBALJ); 

idle ( 5 ) ;  

Ioad-reg (GLOBAL-CTRL, Ox37843faO); 



/* Read/write data f r o d t o  global memory */ 

msm-\*al = read (0x8 108000 1): 

I o a d j i n  (STAT. O s  1 ): 

edle (20): 

w i t e  (Os8 108000b. OxOf13fDfDf): 

loadqin (STAT. 0x5); 

idle (20): 

mem - \.al = read (Os0007000r): /* Durnrny read */ 

idle ( 1 O): 

synch(); 

2) Read/write data fromito IocaI rnernory with C40 (C 1anguage):---------------------------- 

#include "tms320c40.cmd" 

#de fine global process 1 

Rdefine local processî 

#define TRUE 1 

#define FALSE O 

int value; 

main() 

{ 



local () 

{ 

trace-on(): 

set-trace-Ievel (LOCAL.2); 

set-trace - level (PERIPH.2): 

idle (20): 

/* Readh-rite data f r o d t o  data rnemory*/ 

value = read (Os0500001 ): 

l o a d j i n  (LSTAT, Ox 1 ): 

idle (20): 

w i t e  (O~040000b. OsOfOfOtDf); 

Ioadjin (LSTAT, 0x5): 

idle (20): 

\ .due = read (Ox0007000F); /* Dummy read */ 

idle ( 1 0); 

synch(); 

3) Readwrite data fiom/to local memory with PULSE (PULSE assembly 1anguage):----- 

. text 



ldcr 3 .  bootcoritrol: Use interna1 program memory and Mcc for address-I 

:Read local memory 

ldcr 0. ponkonfig: port2: input sy-nchronous mode 

ldcr 0. portkonfig: port3: input s>-nchronous mode 

Idcr 2. port2incon; port2 => South Channel 

ldcr 1. port3incon; port3 => North Channel 

ldeamc O. 50000bh. mc - start. mc-start: 

I d e m c  0. 0. mc-min. mc - min 

ldeamc 4096. SOFFFFh, mc - mm, rqc-mau 

ldeamc 1. 1. mc-stride. rnc - stnde 

io *mccro/k 

Id nport. ral 

ld sport. rbl 

#30 nop 

;Write local memory 

ldcr 1. port2config; port2: output synchronous mode 

ldcr 1. port3config: p o d :  output synchronous mode 

Idcr 1. port3outcon: port3 => North Channel 



ldearnc O. 40000ah. mc - start. mc-start: 

ldearnc O. O, mc - min. rnc min - 

Idsamc 1. 1, rnc-strids. mc - stride 

Id 65535. nport 

Id 255,  sport 

X I  nop 

io *mcd\vO'o 

$32 mop 

4) Rr.nd/\\-rite data from/to program memory with Cd0 (C 1anpuage):------------------ 

eincluds "tms3 îOc4O.crnd" 

#de fine global process 1 

#de fine local processî 

ftdetine TRUE 1 

ffdefine FALSE O 

int value: 

main() 

{ 



global() 
C 

int mem-mal: 

/* Initializs Part */ 

trace - on(); 

set-trace-bel (G LO BAL.2); 

idls (5): 

load-reg (GLOBAL-CTRL. Os37843 faO): 

/* Read data from program memory */ 

idle (25): 

mem - val = read (Os0060000 1 ); /* Read at address 1 of band0 */ 

loadpin (STAT, Os9); 

idle (5): 

mem-\.al = read (0x0070000 1 ): /* Read ai address 1 of bankl *: 

load g i n  (STAT. 0x9): 

idle (5): 

mem)-val = read (0x0080000 1): /* Read at address 1 of bank2 */ 

loadpin (STAT, 0x9): 

/* Wnte data to program memory*/ 

idle (5); 



w-ite (OsOO3OOOO 1, Oxffffffff): /* W d e  rit address 1 of bankO */ 

loadqin  (STAT. Oxd): 

id1e (5) :  

wite (OsOO~OOOO 1. OxfüfOfOf0): /* Write at  address 1 of bank 1 */ 

loadqin  (STAT. Oxd): 

idle (5); 

w i t e  (0x00500001. OxOfOfOfOT); /* Wnte at address 1 of bank2 */ 

Ioadqin  (STAT. Osd): 

sync h o :  



Appendur O PULSE vs Contpetitors 

Features 

Architecture r 
Frequency 

Number of 

Processor on 

the chip 

Inter-PE 

Cornmunicatio 

n support 

PanIlel 

Operations in 

processing 

CNAPS 

SIMD 

20-25 MHz 

64 PNs. 

Without 

Controller 

Very Weak, 5 

Mbytes/s 

Mapping 

Scalability Scalable 

External No memory 

Memory and interface, 

W 0  Interface 8-bit I/O 

SHARC TI C80 Oxford 

A236 

processor I I 

I 

Single floating One floating- One Controller 

point Processor point Processor 4 fised-point 

processors 

Strong Srrong W eak 

Two adders ;-input ALU Multiply-acc 

one multiplier Multiply-acc multiply-add 

Weak Weak No 

Only max. min 

and clip of two 

data 

( But very hard I 
to program 

Scalable No Scalable 

4 buses, 64-bit Single 64-bit 400 Mbyteds 

datapath to Bus shared by 32-bit sync. 

SRAM al1 the Memory 

10 DMA processors for 2 40 Mbytesk 

PULSE v l  

SIMD 

One Controller 

4 fixed-point 

proccssors 

Multichannel 

Very strong 

3-input. 3- 

output ALU. 

Mult-add-acc 

add-acc 

med-add 

Very strong 

Mas, Min, 

bled 

Rank-order 

Indes ranking 

Core Function 

chip 

Flexible and 

easy to 

Pr0 gram 

Scalable 

Two buses 432 

Mb/s sync. 

Memory 

4 108 Mb/s 



Micro- 

Instruction 

Sofiware Tools 

Packaging 

4vailability 

Cost 

Jkbytes on 

each Pn 

64-bit total 

32-bit control 

32-bit PN 

Very limited 

Assembler 

C compiler 

Dsbugger 

200-pin PN 

'JO-pin CSC 

PGA 

Channels. 160 

Mbyteds 

Rich. estended 

for non-linear 

processing 

Assembler 

C compiler 

Simulator 

Drbugger 

Evaluation 

board 

340-pin PQFP 

data and 1 DMA ports 

1 1 kbytes data 

64-bit for 32-bit 

panllel proc. I 
Rich. extended Vsry limited I 

- 

for logic I 
processing 

Debugger 

Evaluation 

board 

Assembler So fhvare 

C compiler development 

Simulator kit 

305-pin 

cerarnic PGA 

208-pin PQFP 

Yes 

High Low 

data ports 

î-kbytes Ins. 

2.5kbytes data 

64-bit parallel 

Very rich 

extended for 

both linear and 

non-linear 

proc. 

Assern bler 

C compiler 

Sirnulator 

Debugger 

Evaluation 

board 

Application 

libraries 

240-ph PQFP 

Low 




