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RESUME

Dans de trés nombreuses applications industrielles particuliérement dans le domaine de
I’énergie, de nombreuses structures sont soumises a des vibrations induites par des
écoulements annulaires ou de fuite. On peut citer par exemple, les tubes de générateur
de vapeur au niveau de leur support avec jeu, les faisceaux d’éléments de matiére
fissible (UO;) au niveau des grilles d’espacement ou entre les attaches de combustible
dans les réacteurs refroidis au gaz lors des opérations de remplissage, etc. Pourtant, la
recherché dans ce domaine se limite qu’a quelques articles. Dans cette étude, nous
étudierons a la fois expérimentalement et analytiquement les vibrations induites par un
écoulement annulaire sur un cylindre de 2.5m de long simplement supporté aux deux
extrémités. Les expériences ont été réalisées avec ou sans la présence d’un “diffuseur a

faible jeu” de quelque dizaine de millimetres de long situé a la mi-longueur du cylindre.

Le modéle analytique pour modéliser les vibrations du cylindre induite par un
€coulement annulaire est fondé sur les hypothéses suivantes : (1) La vibration induit que
de petites perturbations dans 1’écoulement principal. (2) L’écoulement reste 2D; on
néglige la composante radiale de 1’écoulement. (3) La force de friction due & la
perturbation ne dépend que de la variation dans 1’espace et le temps de la composante
axiale de 1’écoulement. Cette étude a permis d’aboutir aux conclusions suivantes : (1)
La différence entre un modéle 1D et 2D dépend essentiellement du rapport du rayon sur
la longueur du cylindre. (2) Le mod¢le 1D n’est valide que pour les problémes a un
degré de liberté ou pour des cylindres présentant un rapport rayon sur longueur tres
faible. (3) La méthode des petites perturbations n’a que peu d’influence sur la
dynamique du systéme mais permet une bien meilleure évaluation de la vitesse critique,

qui est considérablement diminuée.

Le modéle analytique a été confronté a des expériences sur un tube simplement supporté

soumis a un écoulement annulaire dans un “diffuseur a faible jeu” situé & mi-longueur
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du tube. La longueur du banc d’essai est de 2.5m. Plusieurs diffuseurs ont été utilisés
avec différents jeux, longueurs et angle d’entrée et sortie du diffuseur. Nous avons
observé une instabilité par flottement du tube. La vitesse critique d’instabilité est
fortement dépendante du jeu entre le tube et le diffuseur, ainsi que de 1’angle d’entrée du
diffuseur. Les perturbations de pression sur le tube ont été obtenues analytiquement
considérant la perte par friction, la contraction a l'entrée du diffuseur et le
rétablissement de la pression en sortie. La solution analytique démontre le réle
prédominant de la condition limite de sortie pour matérialiser le rétablissement de la
pression. Cependant nous ne trouvons pas d’instabilité par flottement pour des
conditions idéales comme aucune perte de pression a I’entrée et la conversion du débit
en pression a la sortie. Un modele semi-analytique a été proposé pour prédire la vitesse
d’instabilité. La prédiction semi-analytique s’accorde raisonnablement bien avec les
résultats expérimentaux. Cependant, le rétablissement de la pression a la sortie du

diffuseur devrait étre mesuré plus précisément afin d’améliorer la précision du modele.
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ABSTRACT

Many engineering applications with annular- or leakage-flow over a finite length can be
encountered especially in the power generation plants. For instance, heat exchanger
tubes with gap supports in steam generator, UO, fuel rods with spacer grids in fuel
bundles and fuel assemblies in gas-cooled reactors during refueling, etc. Nonetheless,
few articles can be found on this subject. In this study, therefore, the annular-flow-
induced vibrations of a pinned-pinned cylinder with and without a finite-length narrow-

gap diffuser are studied by analytical and experimental methods.

For the annular-flow-induced vibrations of a pinned-pinned cylinder, an analytical
model is proposed based on three main assumptions; (1) small perturbations in flow
components, (2) negligible radial flow to reduce the annular flow to two-dimensional
flow, and axial flow only for reduction to one-dimenstonal flow, and (3) perturbation
frictional loss depending on the variation of axial perturbation velocity in terms of space
and time. In this study, it is concluded that (1) the difference in fluidelastic forces
between two- and one-dimensional flow models depends mostly on cylinder radius, and
on whether perturbation flow is mainly allowed in the axial or circumferential direction,
(2) the one-dimensional flow model should be limited to 1-d.o.f vibration analysis or the
case of a cylinder having a large radius-to-length ratio, and (3) perturbation assumption
makes little change to the dynamics of annular-flow-induced vibrations, however, the

critical flow velocity is diminished considerably.

The stability of a simply-supported tube subjected to narrow annular flow in a finite-
length gap support is experimentally and analytically investigated. For the experiment, a
2.5 m test section and several finite-length gap supports have been made considering
different gap size and diffuser angles of the support. The tube was observed to lose
stability by flutter. The critical flow velocity was strongly dependent on the annular gap

size and the diffuser angle at the downstream end of the support. A solution for the
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perturbation pressure on the tube is analytically obtained considering the friction loss,
the contraction loss at the entrance, and the pressure recovery at the exit of the support.
In the analytical solution, the exit boundary condition for pressure recovery is found to
be predominant for flutter instability. However, flutter instability does not materialize
for lossless boundaries such as short-lossless inlet and free-discharge outlet. Based on
the solution, a simple semi-analytical model to predict the critical flow velocity is
proposed for the first mode instability. The prediction of the semi-analytical model
agrees reasonably well with the experimental results. However, it is judged that the
pressure recovery at the diffuser should be experimentally measured more accurately to

have better prediction.
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CONDENSE EN FRANCAIS

Introduction
Les problémes de vibrations induites par les écoulements sont classés selon leur type :
i) écoulement transversal ii) écoulement interne axial iii) écoulement externe axial iv)
écoulement annulaire ou de fuite sur une distance finie, parfois nommé configuration
avec diffuseur. La taille du confinement permet de distinguer les écoulements annulaires
(confinement normal) et de fuite (confinement extréme). L’écoulement annulaire peut
aussi bien faire référence a un écoulement autour d’un cylindre qu’autour d’une barre
plate ou d’un élément rectangulaire. On retrouve des écoulements annulaires et/ou de
fuite en particulier :
e dans les réacteurs nucléaires refroidis a gaz
o dans les générateurs de vapeur ou les fluides (primaire et secondaire) s’écoulent
dans des passages tres étroits
e autour des boucliers thermiques dans les conduits des réacteurs a eau pressurisée
e autour des éléments de contréles, entre les barres d’uranium et les conduits des
réacteurs refroidis au gaz de deuxiéme génération
e entre les tubes et leurs supports dans les échangeurs de chaleur.
Une raison fondamentale de I’intérét pour cette configuration d’écoulement c’est qu’elle

est observée dans des systémes trés flexibles.

L’équation du mouvement pour un cylindre dans un écoulement axial, développée par
Paidoussis (1966, 1973 et 1974), est bien connue et citée par de nombreux chercheurs.
Le confinement ne change pas le mécanisme de base de I’instabilité mais la vitesse
critique est beaucoup plus faible.

Dans les systémes conservatifs (simplement supportés ou encastrés), il est bien admis
que les cylindres en écoulement axial deviennent instables par divergence. Paidoussis et
Pettigrew (1979) ont montré expérimentalement qu’un cylindre flexible en écoulement

axial peut étre significativement déstabilisé par le confinement.



Un modéle non visqueux pour un corps interne dans un écoulement annulaire a été
développé par Mateescu et Paidoussis (1985). Dans cette étude, on considére un corps
axisymétrique rigide simplement supporté en un point et coaxialement monté dans un
canal avec un petit jeu de forme annulaire. L’écoulement est modélisé par un
écoulement potentiel afin de déterminer les forces instationnaires créées par le fluide.
Dans les articles suivants, les auteurs ont proposé une correction visqueuse (1988), ainsi
qu’un modéle analytique pour un corps flexible. Sim (1987) a prouvé que les forces
visqueuses ainsi que le confinement d’un jeu de forme annulaire contribuent & stabiliser

le systéme.

Inada et Hayama (1988, 1990 et 2000) ont étudié le cas d’un écoulement de fuite sur une
plaque supportée par des ressorts en translation et en rotation dans un passage étroit
délimité par deux plaques planes. Dans leur travail, les forces instationnaires sont
modélisées comme une masse, un amortissement et une raideur ajoutée. Ils démontrent
qu’une instabilité de flottement ou par divergence est possible pour un conduit
divergeant. Leurs études ont contribué a stimuler la recherche japonaise dans ce

domaine.

Le modele mathématique développé par Li, Kaneko et Hayama a été amélioré par
Langthjem, Morita, Nakamura and Nakano (2006). Ils ont étudié le cas d’un cylindre
flexible avec un déséquilibre (excentricité) avec des écoulements de fuite laminaire ou
turbulent. Selon eux, un cylindre simplement supporté peut devenir instable par
flottement ou par divergence. En considérant, le travail des forces, ils ont prouvé que la
force centrifuge est la seule responsable de I’instabilité par divergence d’un cylindre
simplement supporté ou encastré. Autrement dit, l’instabilité par divergence est
indépendante de la force de friction fluide. Cependant, des ondes progressives sont la

seule solution pour obtenir une instabilité par flottement.
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Hobson (1982) est responsable de la premicre tentative pour développer un modéle
analytique pour les écoulements de fuite. Son étude considére le mouvement
unidimensionnel d’un cylindre central, positionné dans un passage annulaire étroit.
Négligeant les perturbations de la vitesse radiale du fluide, la dynamique du cylindre a
été étudiée dans le but de comprendre le réle des conditions limites du fluide sur
I’amortissement aérodynamique. Méme si 1’étude ne décrit pas complétement la
dynamique de I’ensemble, elle démontre I’existence d’une instabilité par flottement pour
des écoulements divergents en aval. Spur et Hobson (1984) ont prouvé
expérimentalement la présence d’une instabilité par amortissement négatif pour des

angles de diffuseur de 4° ou plus.

La théorie de Hobson a été validée par les expériences de Fujita (1922 ) et Ito et al.
(1994). Leur banc d’essai permettait d’obtenir un mouvement a un degré de liberté dans
un conduit avec diffuseur et permettait de mesurer la force dynamique due au fluide (air
ou eau). Ils ont vérifié que le systéme peut devenir instable pour une configuration

divergente en amont.

Parkin et Watson (1984) ont rapporté des problémes de vibration des éléments de
combustible dans un réacteur refroidit au gaz. Ils ont mis en évidence
expérimentalement que le mécanisme d’instabilité dans un diffuseur a 30° est di a la
formation de tourbillons alternés. En revanche dans un diffuseur a 6°, 1’origine des
vibrations provient des caractéristiques de récupération de pression. Cette découverte
fondamentale nous propose des directions de recherches pour les instabilités par

amortissement négatif.

Mulcahy (1984) a rapporté des problémes de vibration induite par un écoulement de
fuite a travers un joint de glissement pour un tube en porte a faux. Il a découvert qu’a un
débit inférieur a celui ot le tube frappe la paroi, un cycle limite est atteint. A haut débit,

le mouvement d’instabilité passe du premier mode au second mode. Plusieurs années
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aprés I’étude avec mode a un degré de liberté de Hobson, Mulcahy (1988) étudia a son

tour les amortissements dynamiques dus aux écoulements.

Gorman, Godin et Planchard (1987) ont rapporté une vibration fluide-élastique d’un
tube a gobelet dans un réacteur a eau pressurisée. Dans cette étude, une buse divergente,
droite et de section carré avec quatre rayons verticaux différents ont été utilisées. Ils ont

découvert que de grandes vibrations apparaissent avec une buse divergente.

Yasuo et Paidoussis (1989) considéré le probléme d’instabilité induite par un
écoulement des tubes d’échangeur de chaleur soumis a un écoulement axial dans des
supports de type divergent, qui sont similaires a ceux utilisés dans notre étude. Dans leur
étude, une approximation a un mode pour le tube intérieur a €té utilisée de méme qu’un
diffuseur de petite longueur et la théorie des écoulements potentiels. Ils ont abouti a une

équation de la vitesse critique pour I’instabilité par divergence et par flottement.

Objectifs

Aujourd’hui, les simulations numériques comme FEM ou BEM sont trés populaires.
Elles sont parfois trés utiles, cependant dans certaines situations une solution analytique
est plus utile, en particulier pour expliquer les phénoménes inconnus et déchiffrer la
physique de ces phénoménes. Une solution analytique permet de donner un apercu des

applications et d’avancer par la suite sur I’ingénierie pratique.

Premié¢rement, la raison de cette étude est d’obtenir une solution analytique pour les
perturbations de pression a I’intérieur de 1’espace annulaire lorsque le tube interne est
soumis a un écoulement annulaire 2D. Cette étude a la prétention d’étendre les travaux
de Hobson en considérant un systéme continu ainsi que les pertes par friction au sein du

liquide.
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Deuxiémement, nous allons étudier analytiquement et expérimentalement les vibrations
d’un cylindre entouré d’un écoulement de fuite axial autour d’un diffuseur de petite
longueur. Le but de ces travaux est I’étude en détail des instabilités et la prédiction de la
vitesse critique d’instabilité pour un cylindre simplement supporté en fonction du jeu

annulaire et de la longueur du support.

Résultats

Dans cette étude, le travail de Hobson est étendu afin d’étre utilisable pour les vibrations
d’un cylindre simplement supporté induites par des écoulements annulaires, grace a une
modélisation 2D de I’écoulement avec perte visqueuse. Afin de modéliser la friction, un
nouveau facteur de perturbation de la friction est introduit sous la forme d’un nombre
complexe. L’utilisation de ce modele de friction permet d’analyser les effets de la
friction sur tous les modes de vibrations. 11 est démontré que non seulement le facteur de
friction mais aussi les perturbations de pression sont fortement couplés avec les modes

du cylindre simplement supporté.

Avec ce facteur de friction, les solutions théoriques pour des pressions et des vitesses
d’écoulement instationnaires sont facilement trouvées. De plus, les perturbations de
pression peuvent étre raisonnablement formulées avec trois termes : le terme en @°,
celui en @ et enfin celui indépendant de w. Le terme indépendant de w (la force de

raideur fluide-élastique) est le terme prédominant et une instabilité statique est attendue.

Le modéle d’écoulement 2D montre que les forces fluides prédites sont
significativement différentes que celles prévues par un modéle 1D pour un cylindre
simplement supporté soumis a un écoulement annulaire. La grande différence entre les
mod¢les est probablement due au ratio rayon sur longueur du cylindre et sur la
différence entre un écoulement plan et circonférentiel. Le modéle 1D ne permet pas a
I’écoulement de se déplacer dans la direction circonférentielle, donc le modele 1D est

limité au ratio rayon sur longueur plus grand que 0.8 ou a des vibrations a un degré de
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liberté comme une translation pure ou une rotation pure (Hobson ,1982, Fujita and Ito,

1992 and 1994, Porcher and de Langre, 1997).

La théorie des petites perturbations conduit & des changements dans la dynamique des
vibrations du cylindre induites par les écoulements annulaires comparativement a la
théorie ne considérant que 1’écoulement moyen. La théorie des petites perturbations
diminue la vitesse adimensionnelle critique d’instabilité & 2.4. comparativement a 3.14

pour la théorie avec écoulement moyen.

Le modéle incluant les pertes par friction est supposé donner des solutions dépendant
des différents supports ou conditions limites du cylindre (porte a faux, encastré-
encastré...). Ce modéle peut étre développé davantage pou donner des solutions

analytiques au probléme de support avec jeu annulaire de longueur limitée.

La stabilit¢ d’un cylindre flexible simplement supporté soumis a un écoulement
annulaire sur la longueur limitée du support a été explorée analytiquement et
expérimentalement. Les expériences ont permis de mesurer des vitesses critiques
d’instabilité pour des supports de longueur limitée ayant différents jeux et angles de
diffuseurs. L’approche analytique a permis d’obtenir les perturbations de pression
agissant sur le cylindre simplement supporté soumis a un écoulement annulaire de fuite
sur la longueur du support. La solution analytique considére un écoulement 2D avec
deux conditions limites du fluide. Les deux types de conditions sont :

e le cas idéal, une entrée sans perte et a la sortie une conversion compléte

e le cas plus réel considérant une perte due a la contraction a I’entrée et a la

detente en sortie.

Dans les expériences avec un tube intérieur en acier de 2.2 m de long et un support 3.8
cm de long, on observe une instabilité par flottement avec des débits d’air assez faibles

et cela pour tous les supports indépendamment du jeu et de 1’angle du diffuseur. Pour
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des écoulements annulaires, un cylindre simplement supporté perd sa stabilité par
divergence pour des vitesses bien plus grandes que celles rencontrées habituellement
dans les problémes d’ingénierie. Un petit support joue un rdle essentiel dans le
changement de comportement de la dynamique du cylindre en diminuant
significativement la vitesse critique d’instabilité. La vitesse critique d’instabilité obtenue
expérimentalement est trés en dessous de celle rencontrée habituellement dans les
générateurs de vapeur. En général, plus le jeu et ’angle du diffuseur sont petits la
vitesse critique diminue ou un amortissement négatif apparait. D’un autre c6té, pour le
jeu le plus grand (2.2 mm), la vitesse critique d’instabilité pour un grand angle de
diffuseur (20°) est plus petite que celle rencontrée pour le plus petit angle de diffuseur

(10°).

Dans la théorie, les forces d’amortissement négatif sont trés dépendantes de la
performance adimensionnel le du diffuseur (&4 ) qui est le ratio de D’efficacité du
diffuseur sur le jeu résiduel lors de la vibration. L’autre résultat important est que les
forces d’amortissement négatif sont essenticllement créées en sortie. A partir de ces
deux résultats, on peut conclure que I’expansion du canal en aval est la cause de

I’instabilité par flottement. Cela est en accord avec les recherches précédentes.

Un modele semi-analytique pour la force d’amortissement est proposé en s’appuyant sur
la solution analytique de la pression. Dans ’hypothése ol il n’y a aucune perte,
I’amortissement fluide-élastique est toujours positif. Pour les cas expérimentaux, les
calculs numériques par le modele semi-empirique conduit a des résultats en accord avec
les expériences. Un jeu et un angle de diffuseur plus faible sont plus déstabilisants.
Cependant, le jeu le plus grand (2.2 mm) et un grand angle de diffuseur (20°) générent

une vitesse critique d’instabilité assez basse.
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Pour un cylindre simplement supporté soumis a un écoulement de fuite sur un support
de petite longueur placé a mi-longueur, la vitesse critique d’instabilité pour de 1’air
comprimé est plus faible que 3 m/s, ce qui est une vitesse que 1’on peut rencontrer dans

les problémes d’ingénierie.
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CHAPTER 1

INTRODUCTION AND LITERATURE REVIEW

1.1 Review of previous studies

Structures immersed in fluid flow are subjected to forces generated by the flow. When
the fluid dynamic force is greater than the flexural rigidity of the structure, the dynamic
force causes the structure to move. As a result, the orientation or the form of the
structure changes. This deformation may in turn cause the fluid force to change, thus
resulting in an interaction between the fluid flow and the structure, what we call, fluid-
structure interaction or fluid-structure coupling. All structures in fluid flow are

susceptible to flow-induced vibration, sometime even to fluidelastic instabilities.

The types of flows responsible for vibration problems are classified, based on flow
configuration, as 1) cross-flow, ii) internal axial flow, iii) external axial flow, iv) annular
and/or leakage flow, and v) annular flow in finite lengths, irrespective of annular length;
sometimes referred to as diffuser configuration. Confined flow may be divided into two
types. The first one is relatively confined flow which is called annular flow. The other is
tightly confined flow which is called leakage flow. The leakage flow refers not only to
cylindrical geometries but also flat plates in rectangular ducts. Annular and/or leakage
flow configurations, especially of finite length, are widely encountered in gas and water
cooled nuclear reactor components and steam generators. For instance, the primary or
secondary coolant flows in narrow annular passages around thermal shields in PWRs,
around flow control devices, between fuel stringers and channels on AGRs, and between

heat exchange tubes and supports. An important reason for interest in the configuration



is that annular-flow-induced vibration can be mostly observed in inherently flexible

systems.

Axial-flow-induced vibration has been of less concern relative to its cross-flow
counterpart. The reason for this is understood when considering cross-flow-induced
vibrations where even moderate flow velocities may cause large amplitudes. In axial
flow, however, the amplitudes of vibrations in industrial structures are generally small.
Typical vibration amplitudes due to axial flow would be in the range 102 <
Amplitude/Rod diameter < 102 (Paidoussis, 2004). The other reason why many
researchers have been less concerned is that the phenomenon caused by the axial flow is
basically random vibration. For this reason, no dynamic buckling (pitchfork bifurcation)
and no flutter (Horf bifurcation) can be easily encountered. Paidoussis (1966) showed
that instabilities can occur for cylinders even in axial flow, but at the same time that
critical flow velocities are much higher than velocities in normal engineering

applications.

The equation of motion for a cylinder in confined axial flow which was derived by
Paidoussis (1966, 1973, and 1974) is well known and is popularly cited by researchers.
When we consider the confinement effects, the basic mechanism is the same as for

unconfined cases. However, the critical flow velocity is now much lower.

It is well known that cylinders in axial flow generally lose stability by divergence in the
case of conservative systems such as pinned-pinned or clamped-clamped beam.
Paidoussis and Pettigrew (1979) showed experimentally, with a flexible cylinder in

confined flow, that cylinders could be significantly destabilized by confinement.

An inviscid analytical model for a body subjected to an external flow was developed by
Mateescu and Paidoussis (1985). In this study, a small annular clearance and an

axisymmetric rigid body pinned at one point and coaxially mounted in a cylindrical duct



was considered. Potential flow theory was used to determine the unsteady fluid dynamic
forces. In a subsequent paper (Mateescu and Paidoussis, 1987), using a simplified form
of the Navier-Stokes equations, the effect of fluid viscosity on the flow-induced
vibration of the rigid center body was taken into account. In a latter study by Mateescu,
et al. (1988), the analytical model was extended to deal with a continuous flexible
centerbody in a narrow annular passage. Sim (1987) showed that friction forces
contribute to the stability of the system, and that an annular gap generally has a

destabilizing effect on the system as the annular gap becomes narrower.

Inada and Hayama (1988, 1990 and 2000) studied one-dimensional leakage-flow-
induced vibrations of a rigid plate supported by translational and rotational springs in a
narrow tapered passage formed by two fixed plates. In their work, the unsteady fluid
force was obtained in terms of the added mass, the added damping and the added
stiffness. They showed that single-mode flutter as well as divergence is possible with a

divergent channel. Their studies strongly stimulated Japanese research in the field.

The effect of the annular gap on dynamic instability was studied by Tanaka et al. (2001),
using small interconnected cylinders to simulate a fast train passing through a tunnel.
They showed experimentally that as the annular gap diminished, instability for all test

cases was observed, and the critical flow velocity decreased.

The dynamics of train-like articulated systems were recently studied by Sakuma at al.
(2008a and 2008b) to investigate the dynamics of a high-speed train travelling in a
confined cylindrical tunnel. They showed that the system loses stability by flutter, and
that viscous frictional drag has a considerable effect on the stability of the system
(2008a). The consecutive study (2008b) showed that no standing wave solution exists in
the system, and that the response of the articulated system can be considerably amplified

under certain conditions.



Inada (2004) considered the dispersion relation obtained by a travelling wave solution.
He found that one component related to a forward travelling wave causes negative
damping which is responsible for the onset of flutter for the multi-degree-of-freedom
system. He pointed out that this mechanism is different from the flutter caused by a fluid
force delay, which can occur in one-degree-of-freedom system in a leakage-flow system
as was shown by Inada and Hayama (1988 and 1990) considering a rigid plate which

allowed only translational motion.

Li et al. (2002) developed a mathematical model to study flutter instability of leakage-
flow-induced vibration for a translational and rotational two-degree-of-freedom system.

The mathematical model was extended by Langthjem et al. (2006). In their study, a
flexible rod with equilibrium offset (eccentricity) in laminar or turbulent leakage flow
was considered. According to their research, a simply supported rod may become
unstable by either divergence or flutter. Considering a work-energy balance equation,
they found that the centrifugal force is solely responsible for the divergence instability
of the pinned-pinned and clamped-clamped rod. In other words, divergence is
independent of fluid friction while flutter instability is affected by fluid friction.

However, a travelling-wave solution is the only way to formulate the flutter instability.

The first attempt to develop a comprehensive analytical model for leakage-flow induced
vibration was made by Hobson (1982). In that study, he considered the 1-D translational
motion of a cylindrical center body coaxially positioned in an annular narrow passage.
Neglecting the ﬂuid.velocity perturbation in the radial direction, the dynamics of the
rigid cylindrical body was studied to see what the role of fluid boundary conditions is
from the viewpoint of aerodynamic damping. Even though this study did not describe
the overall dynamic behavior, it showed that the system can lose stability by flutter with
a divergent flow boundary condition at the downstream end. Spur and Hobson (1984)
later showed experimentally that negative aerodynamic damping could be possible for a

diffuser angle of 4° or more.



Hobson’s theory was validated by the experiments of Fujita et al. (1992 and 1994). The
researchers made a test apparatus which could be closely controlled to simulate one-
degree-of-freedom rigid body motion in a diffuser channel and could measure the fluid
dynamic forces both for air and water flow. As a result, they verified that the system lost
stability in the cases of a divergent configuration at the upstream end and a diffuser

configuration at the downstream end, but not for the straight or convergent channel.

Parkin and Watson (1984) reported the vibration problem of a fuel rod in a gas cooled
reactor. They showed experimentally that the instability mechanism in a 30° diffuser is
predominantly a forced vibration due to vortex shedding, while that of a 6° diffuser
originates from the pressure recovery characteristics of the diffuser. This was a very
important discovery which served as a guideline a research on aerodynamic negative

damping.

A rigid rod moving periodically in a finite-length annular-gap support was studied by
Mulcahy (1980) to investigate fluid forces and hydraulic damping. In his study, tests
were preformed in still water, so that a pressure recovery could not be simulated at the
exit of the finite-length support. Consequently he found only positive damping in terms
of annular gap and length. Hydraulic damping increases with decrease in gap size and
increase in annular length. Mulcahy (1984) reported on a cantilevered tube conveying
water which showed self-induced-excitation by leakage flow through a slip joint.
Interestingly, he found that a limit cycle is attained below the flow rate at which the tube
hits the wall, and that at high flow rate the unstable motion switched from first-mode to
predominantly second-mode motion. As in Hobson’s one-degree-of-freedom study,
Mulcahy (1988) studied hydrodynamic negative damping for viscous fluid boundary

conditions.



Gorman, et al. (1987) reported the fluid-elastic vibration of a thimble tube in a
pressurized water reactor. In the study, a diffuser nozzle, straight hole nozzle and split
square nozzle which has four vertical radial grooves were utilized. He found that large

vibrations occurred with the diffuser nozzle.

Yasuo and Paidoussis (1989) investigated the flow-induced instability problem of heat
exchanger tubes subjected to axial flow in a diffuser-shaped, loose intermediate support
which is a problem similar to that studied in this research. In their study, a diffuser of
finite length and the potential flow theory to determine fluid forces were considered
together with a one-mode approximation of the inner tube. The researchers proposed a

critical flow velocity equation for either divergence or flutter.



1.2 Motivation

Since Hobson reported, in 1982, the negative damping of a rod in a divergent channel,
studies by Hobson (1984) and Fujita and Ito (1992 and1994) on the aerodynamic
damping followed. These studies were all for 1-D translational mode of the rod. A few
years later, hinged plates under rotational or rotational plus 1-D translational motion
have been studied by Inada & Hayama (1988), then, other Japanese researchers
followed the same scheme and extended their theory. Gorman reported, in 1987, that a
finite-length diffuser caused the inner rod within it to reach dynamic instability. This
work was followed by the study of Yasuo and Paidoussis for a cylinder subjected to
axial flow through a finite-length diffuser. The problem that Yasuo and Paidoussis
investigated is very practical and applicable to several important piping in power plants.
However, the suggested model for critical flow velocity seems to be practically
inapplicable for the piping. The critical velocity predicted by the model was too high,

much higher than the critical velocity measured by experiments.

Many engineering applications for this subject can be found especially in the power
generation plants, for instance, heat exchanger tubes with gap supports in steam
generators, UO; fuel rods with spacer grids in fuel bundles and fuel pins in gas-cooled
reactors during refueling, etc. Nonetheless, few articles can be found on this subject so
far. Only a few studies on the dynamical behavior of the cylinder, treated as a
continuous system, subjected to annular flow through a finite-length diffuser have been

conducted.

Since a finite-length diffuser is a kind of gap support for the inner tube, and the inner
tube could be damaged by fretting wear, it is very important not only to understand the
physics behind the instability but also to develop a practical model to predict the critical

flow velocities.



The foregoing is the motivation for the present work.

1.3 Objectives

Nowadays, numerical simulations such as FEM or BEM are very popular. For many
engineering problems, these numerical tools are useful and appropriate. However, in
many situations, analytical solutions are valuable, especially to explain an unknown
phenomenon, to understand the physics behind it, to give insight on applications and to

advance the related engineering field, often leading to unexpected results or applications.

For this reason, firstly, the purpose of this study is to obtain an analytical solution for
the perturbation pressure inside of an annulus when a pinned-pinned inner cylinder is
subjected to 2-D annular flow. For this study, Hobson’s theory has been extended to

consider a continuous system and frictional losses by the fluid.

Secondly, comparing the 1-D and 2-D annular flow models, a limitation of the 1-D flow

model for a continuous beam will be found.

Thirdly, based on the analytical solution, the finite-length diffuser-induced vibration of a
cylinder in axial leakage flow will be investigated by both analytical and experimental

approaches.

Fourthly, the final goal of this study is to propose a semi-analytical model to predict the
critical flow velocity for a pinned-pinned cylinder in terms of annular gap and diffuser

angle of the finite-length gap support.

The expected contributions of this study are:
1. description of the limitation of the 1-D flow model for an annular-flow-induced

vibration,



2. development of a frictional loss model for a pinned-pinned tube subjected to
annular-flow,

3. development of an analytical model for annular-flow-induced vibration of a pinned-
pinned tube,

4. experimental demonstration that a pinned-pinned tube subjected to annular flow in
a finite-length gap support loses stability by flutter at low flow velocity,

5. development of an analytical solution for the perturbation pressure in a finite-length
narrow-gap support when the inner tube is vibrating.

6. development of a semi-analytical model to predict the critical flow velocity for the

tube in the finite-length gap support.

1.4 Thesis outline

This thesis consists of five chapters. Chapter 1 gives an introduction of the whole
project. The historical background on this subject is briefly described from axial-flow-

induced vibration to the annular- or leakage-flow-induced vibration in a finite-length

gap support.

The second and third chapters are represented in the form of papers having their own

abstract, introduction, methodology, results and list of references.

In Chapter 2, 1-D and 2-D flow models are developed for the annular-flow-induced
vibration of a pinned-pinned tube and compared. With a new friction-loss model,
analytical solutions for a perturbation pressure in an annulus are obtained for several

flow boundary conditions at the ends of the tube when the inner tube vibrates.

In Chapter 3, the stability of a simply-supported tube subjected to narrow annular flow
in a finite-length gap support is experimentally and analytically investigated. Based on
the analytical solution, a simple semi-analytical model to predict the critical flow

velocity is proposed for the first mode instability.
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Chapter 4 is devoted to general discussion consisting of review of objectives, summary

of contributions and recommendations for future work.

Final conclusions are presented in Chapter 5, followed by the references that are

different from the references in Chapters 2 and 3.
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CHAPTER 2

ANALYTICAL SOLUTION FOR A VIBRATING SIMPLY-
SUPPORTED CYLINDER SUBJECTED TO 2-D CONCENTRIC
ANNULAR FLOW CONSIDERING FRICTION

When an annular-flow-induced vibration of a long slender tube is analyzed, it would
seem reasonable that 1-D flow model would be adequate. This is because not only the
annular gap but also the radius-to-length ratio is small, so that the radial and
circumferential flows can perhaps be considered negligible. Initially, the author,
therefore, tried to solve the annular-flow-induced vibration problem by a one-
dimensional flow model. However, the 1-D flow model could not correctly reproduce

the experimental results.

In Chapter 2, therefore, 1-D and 2-D flow models are developed for the annular-flow-
induced vibration of a pinned-pinned tube and compared. It is found that the 1-D model

is not applicable for the continuous beam in general.

In addition, with a new friction-loss model, analytical solutions for the perturbation
pressure in an annulus are obtained for several flow boundary conditions at the ends of
the annulus when the inner tube vibrates. This study shows that the dynamics of
annular-flow-induced vibrations obtained by the pressure loss theory is almost the same
as by potential flow theory. However, the critical flow velocity is diminished

considerably.
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The results are presented in the form of a paper submitted to Journal of Fluids and
Structures. In addition, Appendices containing the detailed derivation of the key

equations are included at the end of the thesis.
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Nomenclature(i)

C,»p perturbation term of the friction factor

C,s or C,  steady term of the friction factor

C ot total friction factor (steady + perturbation)

EI flexural rigidity

F, fluid forces per unit length due to perturbations

h vibration response of the cylinder

K ;o proposed friction factor

K1 modified friction parameter ( chlz =1+K,,/H)

L length

m mode number

M, structural mass per unit length

M, added fluid mass

)4 perturbation pressure

p. coefficient of cosine component of perturbation pressure for
particular solution

D, coefficient of sine component of perturbation pressure for particular
solution

Dratio ratio of each of perturbation pressure terms: 2-D to 1-D flow model

q ratio of radius to length of the inner cylinder (R, /L)

r radial coordinate

R, radius of inner cylinder

Re Reynolds number (Re = PUD, )

U mean flow velocity in axial direction
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Nomenclature(ii)
1 perturbation velocity in axial flow velocity
u, coefficient of cosine component of axial perturbation velocity for

particular solution

u coefficient of sine component of axial perturbation velocity for
particular solution

v perturbation velocity in circumferential flow velocity

v coefficient of cosine component of circumferential perturbation
velocity for particular solution

v coefficient of sine component of circumferential perturbation velocity
for particular solution
axial coordinate
circumferential coordinate

T frictional shear stress in axial direction
T, frictional shear stress in circumferential direction

@ cyclic frequency
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2.1 Abstract

An analytical model is proposed based on three main assumptions; (1) small
perturbations in flow components, (2) negligible radial flow to reduce the annular flow
to two-dimensional flow, and axial flow only for reduction to a one-dimensional flow,
and (3) perturbation frictional loss depending on the variation of axial perturbation
velocity in terms of space and time. In this study, it is concluded that (1) the difference
in fluidelastic forces between two- and one-dimensional flow models mostly depends on
cylinder radius, and on whether perturbation flow is mainly allowed in the axial or
circumferential direction, (2) the one-dimensional flow model should be limited to 1-
d.o.f vibration analysis or the case of a cylinder having a large radius-to-length ratio,
and (3) the perturbation assumption makes little change to the dynamics of annular-

flow-induced vibrations, however, the critical flow velocity is diminished considerably.

2.2 Introduction

Axial-flow-induced vibration problems have been of less concern than cross-flow-
induced vibration problems, largely because the associated instabilities have rarely been
encountered in practical applications. However, when axial flows are confined in narrow
annular passages, the critical flow velocity may drop to the range of common
engineering flow velocities. Recently, it was reported that for some fluid boundary
conditions, a rod in annular flow could lose stability by flutter at a relatively low
velocity. When low velocity instability is possible, dynamic instability (flutter) is more
likely than static instability (divergence). For example, steel piping in practical
application generally has low damping, so that fluidelastic forces could possibly
overcome damping forces. It has been shown that fluidelastic stiffness needs high flow

velocity to overcome rod stiffness.
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In order to model the vibration response of a rod in annular viscous flow, Mateescu and
Paidoussis (1985) adopted a linearized potential flow theory while Miller (1970),
Hobson (1982) and Inada and Hayama (1988) took linearized pressure drop theory. The
linearized potential flow theory seems to provide a relatively convenient procedure to
obtain analytical solutions for concentric or even eccentric annular flows. However, the
potential flow theory cannot model a dynamic instability such as flutter. On the contrary,
by the linearized pressure drop theory, the dynamic instability can materialize although
it is more difficult and even unlikely to obtain the analytical solution for a continuous

system and 2-D flow with friction.

It is known that the first attempt to explain the dynamic instability of annular-flow-
induced vibration was by Miller (1970). He used a simple restrictor in an annular
channel, moving in a 1-D manner in a direction transverse to the axial flow, to
demonstrate flutter instability. Hobson (1982) proposed an analytical model for a
cylinder vibrating in an annular flow passage with several fluid boundary conditions. He
obtained a closed- form solution, and showed that negative damping is possible for
annular flow with an expansion channel at the downstream end. Even though his work
was limited to 1-D translational motion of the cylinder, his work gave birth to several
studies on this subject. Fujita and Ito (1992 and 1994) scrutinized Hobson’s study with
precise air and water loop tests. They showed that an annular flow passage with
expansion channels, such as an abrupt expansion and diffuser, could lead to 1-D
translational and rotational (rocking mode) destabilization and vibration. Porcher and de
Langre (1997) proposed an analytical model of 1-D translational and rotational vibration
based on 1-D flow considerations. They also carried out an experiment showing that a

rod free to vibrate in 1-D rotational motion could lose stability by flutter.

The stability of a narrow tapered passage undergoing translational motion was studied
by Inada (1988). The work was later further extended to a 2-d.o.f. vibrational model for

translational and rotational motions (1990). It was shown that flutter and divergence are
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possible for divergent channels. Since then, Inada and Hayama (2000), Kaneko et al.
(2000) and Wu and Kaneko (2005) have tried to explain sheet flutter based on the 2-D
plane leakage flow model of Inada (1990). Recently, Langthjem et al. (2007) used the 2-
D plane model to analyze the instability mechanism of a flexible rod in leakage flow.

The authors used flow rates instead of flow velocities in their analysis.

Many models of annular-flow problems neglect the flow velocity or axial flow
distribution in the radial direction. The importance of the radial direction effects
increases for annular flow with relatively large gaps, or for centrifugal pump where the
inside shaft is rotating in a viscous fluid. In this case, however, circumferential flow
consideration is also important. When radial direction effects are not considered, annular
flow problems reduce to 2-D flow problems, or may be considered as 1-D if the
circumferential flow is also negligible. For this reason, new comers in the field of
annular-flow-induced vibration may question whether the 1-D flow model is enough for
their analyses in cases where a continuous system is considered, and whether the

differences between 1-D and 2-D flow models are important.

It is not easy to obtain an analytical solution particularly when friction is considered.
However, once an analytical solution is obtained, a comparison can easily be made
between 1-D and 2-D models. The aim of this study is, therefore, (1) to propose an
analytical solution for a simply-supported cylinder subjected to two-dimensional
concentric annular flow based on a new friction model, (2) based on the solution, to

explain the discrepancies in fluidelastic forces between 1-D and 2-D flow models.

2.3 Fluid and structure equations

2.3.1 Equation of motion of a flexible inner cylinder in annular flow
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Let’s consider an oscillating flexible cylinder subjected to annular flow. The cylinder

may be considered as an Euler-Bernoulli beam characterized by a flexural rigidity EI,

length L, and structural mass per unit length M_. Expressing the added fluid mass as
M, the small amplitude vibration response of the cylinder by 4, and fluid forces per

unit length due to perturbations by F,, the equation of motion of the flexible cylinder

becomes
o*h 0°h &*h 5h
El—+M, U*~— +2M,U +(M. +M)—=F 2-1
axt T et 7™ oxor (M, f)af / (2-1)

The fluid force F; coupled to the small amplitude vibrations may be obtained by

integrating the fluctuating pressure on the cylinder surface.

2.3.2 Fluid equations and boundary conditions

Consider the two-dimensional unsteady, incompressible annular flow between two
concentric cylinders as shown in Fig. 2.1. Assuming small flow perturbations, the first-

order continuity and momentum equations may be expressed as

ou Hov_ _0oh_,0h_, (2-2)
ox r 06 ot Oox
op Ou 10v lou 7 U 0Oh U? oh
DLy i L ppy P B L YT 23
o Pa P e T H PHa CH o (2-3)
LP o oy sy (2-4)

;55 Ot ox H

In equation (2-3) and (2-4), 1, and 1¢ are the non-conservative frictional shear stress. Ty

‘ may be neglected since there is no bulk flow in the circumferential direction. The reader
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is referred to Appendix I for more details on the derivation of linearised equations (2-2)

~(2-4).

Now, one may express several flow boundary conditions for both ends as follows:

Short loss-less inlet: p(0)+ pU u(0)=0 (2-5)
Contraction loss (K,) inlet: p(0)+pUu(0)(1+K,)=0 (2-6)
Free discharge outlet: p(L)=0 2-7

Diffuser of efficiency # and diffuser performance coefficient 6 at exit (Hobson, 1982):
p(L)+7n pUu(L)+ﬁ pU’Sh(L)=0 (2-8a)

Diffuser of efficiency # and diffuser performance coefficient d at entrance:

p(0)+7 pUu(0)+ﬁ U5 h(0) =0 (2-8b)

Irrotational flow at entrance: v(0) =0 (2-9)

2.3.3 Two-dimensional flow

The partial differential equations (2-2), (2-3), and (2-4) are not simple since they deal
with four functions p, u, v, and A, and two variables, x and &. Once the support
conditions of the inner cylinder are known, a solution may be approximated based on

beam eigenfunctions. For a beam simply supported at both ends, one may assume that
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the solution consists of a sum of sine functions of the axial variable x, and a sum of sine

and cosine functions of the circumferential variable 6.

Considering the pinned-pinned beam, the total channel gap coupled with the vibration

amplitude may be expressed as

h(x,0,t)= H +h(x,0,1) (2-10)
where h(x,0,t) =Y (x,t)cos0+ Z(x,t)sin8 (2-11)

With the help of equation (2-11), the following solutions are assumed for the dependent

perturbation variables.

u(x,0,t) =u, (x,t)cos@ +u, (x,t)sinf (2-12a)
v(x,0,t) =v, (x,t)cos8 + v, (x,t)sinb (2-12b)
p(x,0,t) = p, (x,t)cosO + p, (x,t)sinf (2-12¢)

Substituting the assumed solutions and equations (2-12a) ~ (2-12c) into equations (2-2)
~ (2-4) and collecting and equating the coefficients of sinf and cosf, one obtains six

equations. Introducing the four complex variables

h=Y+jZ (2-13a)
u=u,+ ju, (2-13b)
v=y, + jv, (2-13¢)
P =Pt P (2-13d)

yields the following three complex equations (Childs 1993).
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Z—i+pg—l;—ipg—v+2pUg—z+%= —p%%—p%% (2-15a)
or Z—i+p%+pU%+%= 0 (2-15b)
—i%p+p%+pU(;—a; =0 (2-16)

where, 7_is the fluid friction shear stress. Equation (2-15b) is obtained by substituting

equation (2-14) multiplied by pU into equation (2-15a) to eliminate v and 4. Starting
with equations (2-11) ~ (2-16) and using the procedure developed by Childs (1993), the

partial differential equations are transformed to ordinary differential equations.

The complex displacement of function A(x,?) in equation (2-13a) is expressed in the

following form for a simply-supported cylinder.
h(x,t) = a sin (mTﬂ x] e 2-17)

Analytical solutions for #, v and p consist of sum of complementary and particular

solutions. For the pinned-pinned cylinder, the solutions may be expressed as

3

u(x,t)= 217] Ml +(us h+u, -%)e“‘” (2-18)
j=1
3 _ Ax it dh iwt

p(x,t)=2pj-e T+ Ps'h‘*Pc'E e (2-19)
j=l

3
v(x,t) = ZVJ e +(vs ‘h+v, ﬁ) e (2-20)
= dx
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The quentities, us, u., ps, Pe Vs, and v, are coefficients which must be determined. While
the assumed solutions (2-18), (2-19) and (2-20) should satisfy equations (2-14) ~ (2-16),

the homogenous and particular solutions can be determined independently. Injecting

only the homogeneous solution components in equations (2-18) ~ (2-20) into equations

(2-14) ~ (2-16), the following eigenvalue equation for A, and [17 P, Vj]ris obtained.

For simplicity, the analysis presented in this section is restricted to the frictionless case.

A, 0 —il u
s
plio+2UA,) A, ——i% 1P, =0
1
0 —z; pliw+UA)) v,

2-21)

Similarly, injecting only the particular solution components into equations (2-14) ~ (2-

16) yields the following set of equations for u,, u., ps, p., Vs, and v..

(Ur + Hru, —iHv,) dh N (—iHvS —HrA 'u + ira))
Hr dx Hr

h=0

rpU* + H(p,r+2rpUu, —ipUv, +irpau,) dh
Hr dx

H[rxlm2 (p.+2pUu )+ip(Uv, —rou, )]—irpa)U 0
Hr -

—ip, +pr(ia)vc + UVS) ﬁ'}l . —ip, +pr(ia)vs —Zsz"C) he0
r dx r -

where 4 =-’"L—”, m=1,23..

(2-22a)

(2-22b)

(2-22¢)
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In equation (2-21), the determinant of the matrix must be zero to have a non-trivial

. . : . 1 1 )
solution. One easily arrives at the three conditions, A, =——, A, =— and A, =—15
r r

similarly to Hobson (1982). Knowing that 4 =sin(4,x) and dh/dx =24, cos(4,x),

equations (2-22a) ~ (2-22c¢) yield six equations from which six coefficients (, u,, u., ps

Po Vs, and v, are determined.

The final three solutions with corresponding relationships are

3 A rPA 2 . rw dh
u(x)=Nu | — U h—i——— .77 2-23
) ; g {H(Hrzlmz) H(1+74,7) dx (2-23)
S A p”z(Uumz‘sz) 2pr0U  dh
)=3p -+ h—i Rl (2-24)
Px) ;p’ [ H(1+r°4,) H(1+r%2,7) dx
3 A rw . rU dh
vix)=>)v.-e’ + : -h—i —_ 2-25
) ,le / [H(Hrzﬂmz) H(1+7°4,) de (2-25)
with
(1) A, :—%: i, v, =0, p,+p(U~-ire)-u =0 (2-26)
() A, =%: i, +v,=0, p,+p(U+irw)-u,=0 (2-27)
. _ ro _ —
(3) Ay=-ie: v3+7-u3:0, 7,=0 (2-28)

As noted by Hobson (1982), the first two conditions (2-26, 2-27) represent irrotational
velocities associated with pressure fields while the third stands for a vortical velocity.

‘ However, once the friction term is considered in equation (2-15a) or (2-15b), the three
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conditions are not as simple as equation (2-26) ~ (2-28) owing to the existence of non-

conservative energy loss.

Final solutions are obtained by using the non-triviality conditions, equations (2-26) ~ (2-

28), and two flow boundary conditions among equations (2-5) to (2-9).

For instance, when an annular flow is coupled with a short-lossless inlet and a free-

discharge outlet, equation (2-5) with equations (2-23) and (2-24) give

= s 2 pr'wU  dh
e H(1+r*4,%) dx

2
%ﬁ =0 (2-29)
H(1+7°4,) dxl.

+pU|u +u,+i
x=0
In addition, #, is zero because the inlet flow is irrotational so that the vortical velocity is

zero. For a free discharge at the exit, equation (2-7) together with equations (2-23) and
(2-24) give

L L

= _ = _ . 2prioU (dhj
e B e -p,—i—LIOY [} 2-30
pl p2 H(1+r21m2) dx . ( )

Equations (2-26), (2-27), (2-29), (2-30) with u#, =0 give

—p(iro-U) 0 0 1 0] f. [ 0 ]
0 p(iro+U) 0 0 " 0
0 0 1 0 0fl* 0

(2-31)

pU pU 0 1 1]/~ H(1+7°4,) dxl,
_ 2pr*0lU (ﬁ)
L L||P H(1+r2/1m2) dx ),
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dh

where (—] =(-1)"-a-(4,), 4,=——, m=12,3,... (2-32)
24 x=L -

and a is the vibration response amplitude.

Solving equation (2-31) for each %, and p;, substituting these into equation (2-24), and

following some mathematical operations, one obtains the following equation:

_ pr’ (/1sz2 +a)2) . 2pr’0U dh
PeI= H(+rA?)  H(1474,) dx
~ prU(U+ire)(U -irw)- e |dn (2-33)
H(1+r2,7)[ (147 )U +i(~1+ € )roo] ld].g
o 207U (U ~ire)- ™" dh

H(1+72,2 )1+ )U +i(-1+ Y ra] |l
For the mathematical operations, the Mathematica (2007) software was utilized with

the assumptions that » < L and e*’” < e’*’". When e “**"" « 1 is considered, equation

(2-33) becomes

_ pr’ (lszz +w2) . 2pr0U  dh
P = H(1+r2,%) 'h—lH(1+r2/1m2)'E
(2-34)
prU(U~—irw) _,, |dh 207°U  |dh (~Lex)/r
— . | — +i0———— 4
H(1+74,%) |, H(1+7°4,}) |dxl,_,

The procedure for the other fluid boundary conditions is described in Appendix A.
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Once the pressure is determined, the fluid force per unit length ¥, in equation (2-1) is

calculated by integrating the perturbation pressure p(x,t) over the surface of the cylinder

as follows:

2z 2n
F,=- I(pcosﬁ)-(rd&)cosé’dﬁ =— Ip-r(cos&)z do (2-35)
0 0

2.3.4 One-dimensional flow

When it comes to one-dimensional flows, by eliminating the circumferential

components from equation (2-2), (2-3) and (2-4), the following two simple equations

emerge:
Ha—u+%+U—aj£=0 (2-36)
ox Ot Ox
op Ou ou
L v p—+pU— +2=0 2-37
ox Po P TH 237

Now, the vibration response of the cylinder may be expressed by

H(x,t) = H + h(x)-&*" (2-38)

Using the technique of separation-of-variables, substituting equation (2-38) into (2-36)
and integrating with respect to the spatial variable x, one obtains an expression for u(x),
then, with equation (2-37), the pressure function may be obtained. If the cylinder is
simply-supported, u(x) and p(x) are, respectively,
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iow dh Uh
- = _ .c 2-39
u(x) H /1m2 dxc H ! ( )

U'A’+a* | i2poU dh
PO =p=—2 h_lHZZ . —ipoxC,+ G, (2-40)

where C; and C, are integration constants which may be determined from the fluid
boundary conditions of equations (2-5) ~ (2-9). One finds four solutions for the pressure

function with respect to the spatial variable x.

For instance, in the case of the short loss-less inlet and free discharge outlet, the pressure

function is giving by

UA’+a’ P i2pUw dh

px)=p

HA? HA' dx
U'h, U+i(L-x)o)+ 0’ U +i(L-x)o) P
HA'(U+ilo) =0
(2-41)
(L—x) ) |dh
_pU. n @ - —
HA!(U+ilw) |dx|_,

U2,1m2(U+ixw)+a)2(U+ixa)) w2p UU + ixw) d_h

HA'(U+ilw) =t HAU+ilw) dx|,_,

where a is the vibration amplitude. Since |h|x=O =0 and |h|x=L =0, equation (2-41)

becomes
() = U2 +o ,_i2pUo dh
po=e HA} HA}! dx
(2-42)
U (L-x) , dh . 2pUU +ixw) dh

X

HA(U+ilo) die  HAN(U+ile) i,
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The reader is referred to Appendix B for the pressure functions corresponding to other

fluid boundary conditions.

2.4 Comparison of 1-D with 2-D flow equations

As shown in equation (2-34) and Appendix A, the pressure functions for the two-
dimensional flow model may be divided into two groups; one having the displacement

function h(x), or A (x) and the other consisting of the exponential functions, ™" (-

,Or e
L/ The effect of the exponential functions is most important at the annular entrance (e
1y or at the exit (¢®"). In the rest of the region, their effects are almost negligible. The
simply-supported cylinder does not vibrate at the ends, so that the entrance and exit

effects are insignificant despite the exponential terms in the solutions.

Similarly, as shown in equation (2-42) and Appendix B, solutions for one-dimensional
flow consist of the same functions A(x), or 4 (x) as for the two-dimensional model, and
of some linear functions, such as, x and L-x, of the cylinder length x which are

equivalent to the entrance and the exit effects of the two-dimensional flow model.

Comparing equation (2-34) and (2-42), it can be noted that the difference between the

models comes mainly from the term »*/ H (1 + rzﬂmz) and 1/HA,’ for 2-D and 1-D flow,
respectively. Knowing that A =mz/L , the two terms may be rewritten as

2 2
L2 and L2 —. Therefore, they may be approximately equated only if
H[(L/r) +m27:2:| Hm' 7

2
£2-+(m7r)2 ~(mr)’, which means that the higher the mode number and the larger the
-
cylinder radius, the better the approximation. In other words, a 1-D flow model may be
inappropriate for real piping since the cylinder radius is small, and a few low modes are

important.
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In the next two sections, comparison is made in two ways; one is for the case where the
entrance and exit effects are neglected, which we call a simplified comparison, the

second when all terms are included, thus a full comparison.

2.4.1 Simplified Comparison

For a simply-supported cylinder, since both ends do not vibrate, the entrance and the
exit effects are negligible, so that a simple comparison could be effective even for
different fluid boundary conditions.

Neglecting the terms having ™"

and e®™" for all flow boundary conditions, the
pressure perturbation solutions reduce to one case, which can be confirmed in
Appendices. There are three added terms; fluid inertia term, fluid damping term, and
stiffness term. In order to make a comparison of each of the pressure terms, we divide
each term of the 1-D flow by the equivalent 2-D term. In the three cases, the following

equation is obtained.

X RA?
Praio = 2,p =—rr (2-43)
p(x)z—D 1+Rd /1m

where, R, is the radius of the inner cylinder.

Since 4, =mzx/L, (m=12,3,...), where m is the mode number of the beam
eigenfunction, introducing a new parameter ¢ which is the ratio of radius to length of the

inner cylinder, equation (2-43) becomes
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222

qgmr

Yy = 2-44
pratto 1+q2m27z_2 ( )

where g=R, /L.

The variation of p,, is shown in Fig. 2.2 as a function of ¢ and m. As shown in Fig. 2.2,
when the radius-to-length ratio is small, the pressure ratio is small as well, which means
that the one-dimensional model exaggerates the three fluidelastic forces for small
radius-to-length ratios. Generally, for most engineering applications, e.g. piping system
such as tubes in steam generators and the fuel tubes of Pressurized Water Reactors
(PWR), the ratio q is 0.03 at the most. The overstatement worsens with decreasing mode

number.

2.4.2 Full Comparison

When the exponential terms are included, there are additional terms involving U ir @

in the pressure equations (2-33), (2A-3), (2A-5) and (2A-8) for the two-dimensional
model, and U +iL @ in the denominator of the pressure equations (2-42), (2B-1), (2B-

2) and (2B-3) for the one-dimensional model. It is, therefore, hard to separate every term
according to w’,w or other, and to make the direct comparison in terms of inertia,

damping and stiffness forces.

It is, however, worth noting that the two terms, U +i L @ in the one-dimensional model
and U tirw in the two-dimensional model, have velocity dimensions, and the second
terms i Lw, and ir@ are added due to the vibration of the inner cylinder. Since the

one-dimensional model does not allow the flow to be squeezed in the circumferential
direction, when the inner cylinder moves toward the wall of the outer cylinder during
vibration, the perturbed flow can only move in the axial direction while for the two-

dimensional model flow in the circumferential direction occurs as well. This may be the
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reason why the vibration frequency @ is coupled with the inner rod length L in the 1-D
model. Physically, however, only some mid-length part of the whole length reaches
close to the wall. Some fluid near the mid-length region probably moves in the axial
direction, and the fluid flows relatively easily when the radius of the inner cylinder is
considerably large. Therefore, the one-dimensional model may be suitable for an inner
cylinders of large diameter and short length which vibrates in the manner of a rigid body.
However, generally speaking, fluid squeezing in the circumferential direction is more
plausible for many engineering applications. U +irw and U tiL @ are included in the
terms which give strong effects at the ends, so that the effects may be exaggerated when

the cylinder vibrates in a one-dimensional manner, without any support at the ends.
In order to separate and collect the terms with respect to the order of @, with

consideration of the structure equation (2-1), one may make the equation third order in

terms of frequency @ by multiplying every numerator on the right side by U +iL @ for
1-D flow or U zirw for 2-D flow. For instance, for the case of the two-dimensional

flow model with short loss-less and free discharge boundary conditions, one obtains
-iM, @ -M, & +iD,-0o+K,=0 (2-45)

where,

M, =r-[(M,) ——/)-L]-h (2-46a)
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prr prr dh
M,=U M,+——) h+2Ur| M, + ————— |- —

H(1+7r'4] HQ1+7r'4}) ) dx

s LU\ e 20U e e

H(1+7'4) |dx|,_, HQA+r4}) |dx|., i
+ 2pxr'U i”_’ e (LI

HQA+747) |dx|,.

3yr2 3
D =rA 2| EIA 2__pErU a2 | P ah
oo " HA+rA7) TOHA+PA ) | dx
d’h 2apxru’ dh
2 —Ltx)ir
UM THA 2)'6( B e (2-46¢)
m x=1
_ 2apﬂr3U2 _e—(L+x)/r . ﬁ
H(1+7r2") x| _,
3ryr2 2
K =40 B3 --L2"Y | uim, L
H(1+r Zm ) dx
s (2-46d)
+ pﬂ.r U . e—x/r . @
H(+r*4%) dx| _,

For the one-dimensional model for the same boundary conditions, the equivalent terms

are

7["'3
M, =L-[(M,)+im i }-h (2-47a)

3 3
M, =U| M+ 220 | hvaur| m, + B2 | 2
HA, HA® ) dv
(2-47b)
_pirrU
x=L H//i’

m

~(L—x)-ﬂ
HA dx dx

m

2p7rU Idh
a— -x--—

x=0
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3U2 3 d
D =14} B4 -2E Y v m, + B2 |2
HA HA’ | dx
&’h 2pzrU’ |dh (2-479)
prr
+LU'M, — - s
o’ HA x|,
U d*h
K, = /IMZU{EI P A By A 5 Y (2-47d)
dx

When it comes to the third order equation, there are some similarities between equation
(2-46a) ~ (2-46d) for the two-dimensional model and equation (2-47a) ~ (2-47d) of the
one-dimensional model, relative to the variables “#” and " L”. The overall expressions are,
however, very different. Multiplication by the length L, instead of the radius », makes

the coefficients of each term very large when r << L.
Numerical simulations

For the short loss-less inlet and free-discharge outlet, utilizing equation (2-45), (2-46a) ~
(2-46d) and (2-47a) ~ (2-47d), a Galerkin projection may be used to grasp and to
compare the dynamics provided by the one-dimensional and the two-dimensional flow
models. A state-space algorithm is employed to solve the third order equations and to
depict the solution in Argand diagrams. The parameters used for the numerical
computations are

(1) ratio of radius to length (r/ L ): 0.00364 (= 0.008/2.2)

(2) inner diameter of cylinder: 14.2 mm

(3) annular gap (H) : 5.15 mm

(4) Young’s modulus (E): 2.1x10"" Pascal

(5) compressed air density (p): 10 kg/m3

(6) inner cylinder density: 7,800 kg/m’
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_ ,M
For definition of the dimensionless flow velocity, the expression U = LU E_If is used.

Not only inviscid hydrodynamic mass ( M = p- A) but also annular confinement are

virtual

considered to yield a fluid mass per unit length M, (Paidoussis, 2004).

A pinned-pinned cylinder subjected to annular-flow-induced vibrations is known to lose
stability consecutively by divergence at a dimensionless flow velocity of 3.14 for the
first mode and 6.28 for the second mode when the same parameters are used. Coupled-
mode flutter is then observed. Fig. 2.3 shows the dynamics based on linear theory,

reproduced according to Paidoussis’ theory (Paidoussis, 2004).

However, completely different predictions are made with the one-dimensional flow
model as shown in Fig.2.4. First of all, the inner cylinder loses stability in the second
mode by flutter at dimensionless velocity U =0.01(=1.1 m/s). Since then, this model
gives divergence instability at the first mode. These critical flow velocities are, however,
too low. It is believed that these implausible results occur because flow is not allowed in
the circumferential direction but only in the axial direction, so that the fluid effects from

the cylinder vibration are coupled only with the cylinder length.

The two-dimensional flow model gives results similar to those of the axial flow theory
(Paidoussis 1966 and 1969) as shown in Fig. 2.5. In accordance with the theory which is
proposed here, the inner rod loses stability by divergence in the first mode and the
second mode consecutively at dimensionless flow velocities of 2.36 and 4.71,
respectively. As the flow velocity is increased coupled-mode flutter occurs at 4.95
dimensionless flow velocity. The two first modes undergo divergence, and then

experience coupled-mode flutter at much higher flow. This is a linear dynamics
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approach based on a linear theory, so that, strictly, it may not be applicable to the
behavior beyond the first instability.

2.5 Friction

2.5.1 Perturbation pressure and axial flow velocity

In developing the analytical model, the most difficult part is implementation of the

friction loss. Since the friction loss has the form ch—l’%Uu , the eigenvalues for a

nontrivial solution do not have a simple form as in section 2.3. In order to avoid this

complexity and to have a simpler form of solution, equation (2-3) or equation (2-15) is

written as
op Ou ou p(.  ou 6uj
Dol vk, PluZ o 2.48
o Cor P e CfOH( ox ot (2-48)

In equation (2-48), the last term represents the rate of change of turbulent friction

. . . o 0).
momentum per unit length, in which the operator (U a—+a—J is assumed to have a
X t

similar definition as in Paidoussis (2004, chapter 8.2). Differently from conventional
steady friction loss, the frictional loss due to flow perturbations is assumed to be
proportional not only to the product of the mean flow velocity and the spatial variation

of the perturbation flow velocity but also proportional to its time variation.

Equating the friction term in equation (2-48) to equation (2-15b), the friction term

becomes
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ou a”j (2-49)

T—"=£—cho(U +—
H H ox Ot

Here, regarding equation (2-49), a definition of the friction factor K, is needed. This is

done in section 2.5.2 below.

Substituting equation (2-49) into (2-15b), and rewriting equation (2-15b), the following

matrix equation can be written which is equivalent to equation (2-21) for the frictionless

case:
- (=
A, 0 S ||
r
plio(x,?)+UA,(x,7)] A, 0 1p,t=0 (2-50)
1
0 —i— io+UAN) || =
where x,° =1+K .,/ H (2-51a)
or k" =1+K_, (2-51b)
Complementary solutions can be obtained for the three conditions; A, =— il , A, = En
¥ r

and A, =-i T For each, one obtains three relationships between the coefficients of

pressure p,, circumferential flow velocity v, and the axial flow velocity #, as follows:

Kepr . _ — . _
(1) A, === ik, 7 -7, =0, P+ Pk, Uk, ~iro] =0 (2-51)

(5

@) A, = ";f'  iKy 47, =0, Py + pK, (KU +iro)-m, =0 (2-52)
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(3) Ay =i Y+ B =0, By =0 (2-53)

Similarly to the case without friction effects, following the procedure from equation
(2-23) to equation (2-27) and equation (2-29) to (2-33), the following equations are
obtained for the perturbation flow velocity and perturbation pressure p(x,z) considering

friction loss.

_ przlccfl2 (/1sz2 + a)z) . 2p rzl(cfl2 oU dh
p(x)= H(Kcﬂ2 + rzﬂmz) - H(chl2 + rlemz) dx
) pr2 .e‘x'fcn/r Uchl (Uzcc,1 —ira)) { dh}
+iw : : —
H(1+ rzﬂmz) [(—1 + chlz)U -iK,, ra):| dx ], (2-54)
C 22U g
e H(1+r21m2) |:El=L
u(x) = 'y . dh +iw a h
CH(k, P2 & H(k,2+rA7) dx
U e dh
—j .- Y i 2-55
le(1+r2/1m2) [(—1+K412)U—iiccf,ra):| dx |, —
. 2e(—L+xc/1x)/r . I"2 dh
+le(1+r2/1m2)chl(K U+i rco) x|,

o1

The first term in equation (2-54) dominates the real pressure field while the second term
dominates the imaginary pressure component. Both terms have a strong effect over the
entire channel length while the last two terms have an effect at the entrance (third term)
and at the exit (fourth term) of the annular channel. Knowing that the simply-supported
cylinder does not allow displacement at either end, the perturbation pressure field is

unlikely to have significant effect on the dynamics of the cylinder. Equation (2-54) is
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equivalent to equation (2-34) for the short-lossless inlet and the free-discharge exit with

no friction consideration.

2.5.2 Perturbation friction factor

The steady friction factor may be described by a single variable which is the mean flow
velocity U. The perturbation friction factor, however, needs more variables such as the
perturbation flow velocity and the vibration frequency. Knowing that the fluid and
structure are coupled, one may reasonably assume that the perturbation and its friction
factor come not only from the flowing fluid but also from the vibrating structure. There
is no available experimental data so far, and it may not be easy to determine the
perturbation friction factor by experiment. In the present work, the commonly used
steady friction factor has been divided into real and imaginary components as described

below.

It is widely accepted that the steady friction factor is dependent on the Reynolds number.

For instance, Langthjem (2006) used the experimental results of Shimoyama and

Yamada (1957) in which C, =0.26xRe™* for turbulent flow, and C, =48xRe™ for
laminar flow. In this study, K ,,is defined to be a friction factor for perturbation flow.

The perturbation flow frictional loss cannot be easily predicted or obtained by a simple

experiment.

Let’s introduce the work of Langthjem(2006), which is developed based on the work of

Shimoyama and Yamada (1957). The total friction factor is expressed as

C

[ total =

Cf,S + Cf,P (= Cf,Steady + Cf,Pertub.)

A
=48-Re”'(1- QQy ), Re<1300 (Langthjem ,2006)

y
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A
=0.26-Re®*(1-0.24 QQy ), Re>2000 (Langthjem ,2006)

¥

The flow rate Q is used in place of flow velocity. Considering concentric annular flow,

the perturbation friction factor in terms of flow velocity may be rewritten as

C,,,o,a,=48-Re"(1—§), Re <1300 (2-56)
C i =026 R (1-0245),  Re22000 (2-57)

In accordance with the assumption that every term has a perturbation component, the

friction loss ( F, ) in the axial momentum equation (2-15b) is written as

rc

T, 1 , 1 Yo, Yo R

== 5-(0,,5 +C, ) pU+u) = Cr g Uu+Cr, U (2-58)
For laminar flow, equation (2-58) becomes

% —48.Re L Uu+ 48-Re-'-(-1)iU2

H H U)2H (2-59)

=24-Re"-LUu,
H

and for turbulent flow, equation (2-58) gives

% =0.26- Re‘°~2"-§Uu +0.26- Re‘“”-(—O.M%)%UZ

(2-60)

—0.2288-Re**. 2y
H
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Substituting equation (2-59) and (2-60) into equation (2-49), one obtains two equations

as follows:

(1) Laminar flow, Re <1300:

pU o o pU 0 0
24. ‘R f)= U—+— ,t 2-61
g e —u(x,f) = T c/o( . atju(x ) (2-61)
(2) Turbulent flow, Re >2000:
~0.24 ,0 P 0 a
0.2288-Re u(x,t)= K U— u(x,t) (2-62)
Gx ot

When a simply supported beam having eigenfunctions ¢, (x) = Sin(nz /L) is considered,

the axial perturbation flow velocity equation (2-55) becomes

2
r

H(x,, +7°A

m

u(x) = > ) . (U ¢"(x)+iw ¢'(x)) (2-63)

2 2 2
Introducing the operators | U 6_2+_6__ , Or —a—(U i+£j nd a4 U d—+za) d
ox"  OxoOt ox\_ ox ot dx  dx’ dx
and using equation (2-63), equations (2-61) and (2-62) become

2

24.Re™ U - (ng—ﬂw ]qﬁ(x)
(2-64)

—K o {U;X(ij—zﬂw d ]¢(x)+za)[U§x2—+za)iJ¢(x)}
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2

0.2288-Re™** U -(U%+ iw%} #(x)

d(, &  d & d (263
- chO l:UE(U-d? + la)aj ¢(X) + la)(U‘d—x; + ICUE] ¢(.?C)i| =0
Cancelling out the common terms, one obtains
24-Re”' U-¢(x)- K, (U d fg‘) +img(x) ) =0, (2-66)
and
0.2288-Re™** U -g(x)- K, (U d‘fiix) +iwg(x) ) =0 (2-67)
The final equations are
-1
K o= 24Re U for Re<1300 (2-68)
[U(# )/ ¢(x))+io]
—0.24
(0.2288)- Re .U for Re > 2000 (2-69)

7 TU (¢ ()] g(0)) + i ]

The friction factor for laminar flow, equation (2-68), is small and almost flat over the
total cylinder length and flow velocity, which is generally less than a few m/s for
moderate gap size annular flows. The friction factor for turbulent flow, equation (2-69),

depends significantly on the axial position and flow velocity.

Strictly speaking, however, K

o 1s actually not a dimensionless factor anymore. K

has length dimensions, so that 1+ K,/ H or 1+I€d0 in equation (2-51a, 2-51b) can,
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practically, be interpreted as a friction factor. When K, is zero, the matrix equation (2-

50) reduces to the frictionless case. Therefore, the new friction factor becomes

-1
K,>=1+K_ =1+ 2‘} Re .U — for Re <1300 (2-70)
H[U(#(x)/ $(x))+io |
-0.24
K, =1+K,=1+—02288 Re ~ U ) pe>2000 (2-71)
H[U(#(x)/ $(x)) +io |

Equations (2-70) and (2-71) suggest that the perturbation friction factor is dependent not
only on the flow velocity but also on the vibration frequency of the inner cylinder. It is

also not constant, depending on the axial location on the cylinder.

Numerical simulations

For the numerical simulations of the short loss-less entrance and free-discharge exit, the
following parameters are used.

(1) ratio of radius to length (1/L): 0.00364

(2) inner diameter of cylinder: 14.2 mm

(3) annular gap (H): 5.15 mm

(4) Young’s modulus of the cylinder: 2.1x10"! Pascal

(5) inner cylinder density: 7,800 kg/m’

(6) hydraulic diameter: 10.3 mm

(7) compressed air density: 10 kg/m’

Fig. 2.6 to 2.8 shows the variation of the new friction factor chlz over the inner

‘ cylinder length as a function of air flow velocity for the first three modes when the

frequency = ,, and the flow boundary conditions are a short loss-less entrance and a
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full discharge exit. Fig. 2.6 shows that first friction factor is not flat over the cylinder
length but coupled somehow with the mode shape of the inner cylinder, and the shape
becomes sharper and magnitudes bigger as flow velocity increases. Interestingly, the
real part of the first friction factor shows a similarity to the second mode shape of the
cylinder, and the real peak-to-peak values are almost the same as the absolute imaginary
values. The second and the third friction factors show similar trends to the first one in
terms of flow velocity except that the real part of the second friction factor resembles
the fourth mode shape of the cylinder while the third one is similar to the 6™ mode. The
second and third imaginary friction factors have two and three peaks, respectively,

which are shown in Figs. 2.7 and 2.8.

Substituting the perturbation friction factor developed for the simply-supported cylinder
in equation (2-71) into equation (2-54), one may obtain the perturbation pressure
distribution as a function of the cylinder length, frequency and flow velocity. The
pressure function, as seen in equation (2-54), can be divided into three terms; @’ related
terms, @ related terms and @ independent terms, which may be called inertia, damping,
and stiffness terms, respectively. The three terms are shown in Fig. 2.9 ~2.11 for the

case where the entrance and exit effects are not considered.

As seen in the figures, even though the mass and stiffness terms have imaginary
components, they are negligibly small hence the two terms have mostly real values.
Conversely, the damping term has predominantly imaginary values. It is physically true
that the phase difference between mass and stiffness is 180°, and between mass and
damping, or stiffness and damping is 90°. The stiffness term is the most predominant

among the three terms.

What is the meaning of the imaginary part of the mass and the stiffness term, and the
real part of the damping term? It is believed that the terms are perturbations coming

from system complexity. The strongly coupled system may not be clearly distinguished


http://~2.11

44

into the three terms. Our new friction factor in equations (2-70) and (2-71) turns out to
be coupled with vibration frequency (imaginary) as well as flow velocity (real), so that,
as far as the mass and stiffness terms are concerned, imaginary parts could come from
the frequency-coupled components while the real part of the damping could come from
the flow velocity-dependent term. As seen in Fig. 2.9, each term of the first perturbation
pressure is strongly coupled with the first beam mode; although the damping term does
not seem to correspond to the first mode, it matches a 90-degree-shifted first mode.
Similarly, each term of the second and third perturbation pressure is coupled with the

second mode and the third mode, respectively.

Fig. 2.12 shows the total perturbation pressure, real and imaginary components,
normalized for the different modes. As expected, stiffness terms are predominant in the
real part while the damping term is dominant in the imaginary part. Comparing the real

and imaginary parts, 90° phase differences are clearly seen.

The dynamic behavior of the simply-supported cylinder in annular flow is shown in Fig.
2.13. The dynamics of the present model is basically similar to the model of axial-flow-
induced vibration developed by Paidoussis (1966, 1969). Beyond the first instability, the
second mode divergence is found, then, the converged first and second modes undergo
coupled-mode flutter as the third instability. One may predict that, since the stiffness
term of the perturbation pressure is negatively predominant, the system loses stability by
divergence. The cylinder is estimated to lose its first stability at U =2.36 while the non-
perturbation-based model predicts a critical flow velocity of 3.14. Even though the
overall dynamics proposed by the friction-based model is somewhat different, the first
critical flow velocity is very close to the velocity predicted by the previous model

neglecting friction.
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2.6 Conclusions

In this study, Hobson’s work is further extended to be applicable to annular-flow-
induced vibration of a pinned-pinned cylinder based on a two-dimensional flow model
with friction. For the friction consideration, a new concept of a perturbation friction
factor is introduced, which consists of a real and imaginary part. By using the proposed
friction model, friction effects can be analyzed and applied for all the vibration modes.
It is shown that not only the friction factor but also the perturbation pressure is strongly

coupled with the mode shapes of the simply-supported cylinder.

By the proposed new friction factor, the theoretical solutions for unsteady pressure and
flow velocities are easily obtained. In addition, the perturbation pressure can reasonably
be analyzed as three terms; @" related terms, w related terms and @ independent terms.
The @ independent term, which is a fluidelastic stiffness force, is the most predominant

among the three terms, so that static-type instability could be expected.

The proposed two-dimensional flow model shows that the predicted fluid forces are
significantly different from those of a one-dimensional fluid model for a pinned-pinned
cylinder subjected to annular flow. It is believed that the large difference is attributable
to the cylinder radius-to-length ratio and to whether or not circumferential flow is
allowed. Considering that the one-dimensional flow model does not allow for fluid to be
squeezed in the circumferential direction, utilization of the one-dimensional flow model
is probably limited to radius-to-length ratios larger than 0.8, or to one-dimensional
vibrations such as 1-d.o.f translational or rotational (rocking) motion (Hobson 1982,

Fujita and Ito, 1992 and 1994, Porcher and de Langre, 1997).

The flow perturbation theory does lead to some change of dynamics of the annular-flow-

induced vibrations of a cylinder as compared to the confined mean flow velocity theory
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which does not consider perturbations. It turns out that small perturbations decrease the
first dimensionless critical flow velocity down to 2.36 from 3.14 when only mean flow

is considered.

The proposed friction-based model is expected to give solutions for different support
conditions of a cylinder such as cantilevered and fixed-fixed cylinders. Also, it may
further be extended to give an analytical solution to the problem of a finite-length

annular gap support.



47

L
- o e i e et e NN .
N/ —+u=U+tu —>
p =p+p T h'=H+h
D N —_ e
(a) {b)

Figure.2.1 (a) Definition of coordinates and symbols of the system in radial direction,
and (b) in longitudinal direction. A flexible cylinder of length L and
external radius Ry is confined in an annulus with a fluid gap H. The fluid
pressure p’, axial flow velocity u’, circumferential flow velocity v’, and
vibration amplitude of the rod h' consist of steady terms P, U, V, and H and
perturbation terms p, u, v and h respectively. However, bulk flow in the

circumferential direction does not exist because the main flow is in axial

direction, so v' equals zero.
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Figure 2.2 Pressure ratios of the two-dimensional flow model to the one-dimensional
flow model as a function of the radius-to-length ratio and beam

eigenfunction mode number.
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Figure 2.3 Argand diagram for the pinned-pinned cylinder subjected to annular air flow
according to Paidoussis theory. The first instability is the first mode
buckling at Uc; = 3.14, the second mode buckling at Uc, = 6.28, the first
and second coupled-mode flutter at Uc; = 6.7 and the third mode buckling
at Uc, =9.43
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Figure 2.4 Argand diagram for the pinned-pinned cylinder subjected to annular air flow

for the one-dimensional flow model without frictional loss. The first

instability is the second mode flutter at Uc; = 0.01 (1.1 mv/s), the third
mode flutter at Uc, =0.08 (9 m/s).
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Figure 2.5 Argand diagram for the pinned-pinned cylinder subjected to annular air flow
for the two-dimensional flow model without frictional loss. The first
instability is the first mode buckling at dimensionless Uc; = 2.36, the
second mode buckling at Uc, =4.72, the first and second coupled-mode

flutter at Uc; = 4.95, and the third mode buckling at Ucs =7.15
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Figure 2.6 Real and imaginary parts of friction factor chlz (:1+ cho) when the
inner cylinder vibrates at 10 Hz in the 1st mode, and the dimensionless

flow velocities are 0.457, 0.914, 1.827,2.74, 3.65, and 4.57



53

Re(lgff)

02 04 0.6 0.8
x/L

(a) Real Part

{I=0.457 M

10 b |
Im(chlz) {: ‘
15 F :

] |

2'05 \\// T=457_ \
S S S

(b) Imaginary Part

Figure 2.7 Real and imaginary parts of friction factor K’ (= l+I{'cf0) when the
inner cylinder vibrates at 35 Hz in the 2nd mode, dimensionless flow

velocities are 0.457, 0.914, 1.827, 2.74, 3.65, and 4.57



54

(a) Real Part

¢f1

(b) Imaginary Part

Figure 2.8 Real and imaginary parts of friction factor K, /12 (: 1+K Cfo) when the
inner cylinder vibrates at 75 Hz in the 3rd mode, dimensionless flow

velocities are 0.457, 0.914, 1.827, 2.74, 3.65, and 4.57
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inner cylinder vibrates at 10 Hz in the 1st mode. When the vibration

amplitude is 1 mm, the different quantities are (a, d) inertia, (b, €) stiffness

and (c, f) damping
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Figure 2.9 (a — ¢) Real and (d- f) imaginary parts of the perturbation pressure when the
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Figure 2.10 (a — ¢) Real and (d- f) imaginary parts of the perturbation pressure when the
inner cylinder vibrates at 35 Hz in the 2nd mode. When the vibration
amplitude is 0.2 mm, the different quantities are (a, d) inertia, (b, €)
stiffness and (c, f) damping.
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Figure 2.11 (a — c) Real and (d- f) imaginary parts of the perturbation pressure when the
inner cylinder vibrates at 75 Hz in the 3rd mode. When the vibration
amplitude is 0.05 mm, the different quantities are (a, d) inertia, (b, €)
stiffness and (c, f) damping.
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Figure 2.12 Real and imaginary parts of the perturbation pressure when the inner
cylinder vibrates at 10 Hz, 35 Hz, and 75 Hz in the 1st, 2nd and 3rd modes.
Vibration amplitudes are 1 mm for the 1st, 0.2 mm for the 2nd and 0.04
mm for 3rd mode, respectively. (al), (a2) and (a3) are real parts of the
pressure at the 1st, 2nd and 3rd modes, and (bl), (b2) and (b3) are

Imaginary parts of the pressure at the 1st, 2nd and 3rd modes, respectively.
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Figure 2.13 Argand diagram for a simply-supported inner cylinder subjected to unsteady
annular flow. The cylinder loses its first stability at 2.36 dimensionless

velocity, second at 4.71, third at 7.15.
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APPENDIX 2A: PRESSURE FUNCTIONS FOR 2-D FLOWS FOR
SEVERAL FLOW BOUNDARY CONDITIONS
WITHOUT FRICTION TERM

(1) Contraction loss inlet and free discharge outlet

In the case of a contraction loss factor K, at the entrance, the flow boundary conditions

equation (2-6) with equation (2-23) and (2-24) give

2pr 0l dh

ﬁl+ﬁz—im o

x=0

(2A-1)
ro dh
+pU| @ +it, +i, +i—————-—|  |[-(1+K,)=0
o [ T U H(1+0%4,)) & 0] (1+K,)
In this case, the flow downstream of the contraction is not irrotational, so that
v(0)=0 (2A-2)

Equation (2-6), (2-23), (2-24), (2-25), (2-30) and (2A-1) yield the following matrix

equation.

[—p(ireo-U) 0 0

1 0 0 0 0]z

0 p(iro+U) 0 0 1 0 0 0f|z

0 0 —ro/U 0 0 0 0 1|z
pU1+K) pUQ+K) pUQa+kK,) 1 1 0 0 0f|p
0 0 0 e & 0 0 o||B

0 0 0 0 -1 0 0||¥%

0 i 0 0 0 0 1 0fl%
0 0 0 0 0 1 1 1[(%]
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ah
1K ) pra- 22
(1-K,)-pro-—

- irU (2A-3)
2prw-@ 'H(1+r2/1 2)
dx m

x=L

x=0

where 4, =—mL—”, m=1, 2, 3,...

Solving equation (2A-3) for #;, p, and V,, and then, substituting them into equation

(2-24), the following equation is obtained:

_prz(ﬂm2U2+a)2) . 2pr'0U  dh 20 U (~L+x)/r
PO = H(1+74,7) '_IH(1+r2/1m2)'Z_M)H(Hr%j)'e '
prU[~(+K ) U +(-1+K,)r o ‘dh
 H(P )UKy rire]  lax

dh
dx

x=L

. efx/r
x=0

(2A-3)

(2) Short-lossless inlet and diffuser outlet

When a short loss-less entrance and a diffuser at the exit are considered, the flow
boundary condition (2-5) and (2-8a) with equation (2-23) ~ (2-28) give equation (2-29)

and
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e_é.— +eé-}—7 _iM (ﬁ)
P P OH(1+727) \dx ),
(2A-4)
L L 2 dh
+npUle’ -u +e" -u. +i———L-(—) =0
OH(+2,}) \dx ),

Equation (2-9), (2-23), (2-24), (2-25), (2-29) and (2A-4) yield matrix equation as

follows:
—p(iro-U) 0 10 0 0]f#)
0 p(ira)+U) 0 1 0 0]|un
pU pU 1 1 0 O<E
pUne—L/r pUﬂ eL/r e-L/r Lir 0 0 ﬁz
i 0 0 0 -1 0||v
i 0 i 0 0 0 1](¥
0
(2A-5)
0
pra)-@.
_ x=0 ] irU
dh H(1+r2/12)
ro(2-n) — ’”
pro( n)dxsz
0
0

where, 4, =TL£, m=1, 2, 3,...

Solving equation (2A-5) for each #,, p, and Vv, , and then, substituting them into

equation (2-24), one may obtain the following equation:
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prz(ﬂszzwLa)z). _ 270U .ﬂ_prU(U—ira))_@
H(1+r°2}) H(1+r4) dc  H(147°4,)
; prroU(U+ire)(n-2) |dh|
H(1+r2/1,,,2)[(77—1)U—ira)] dx

—x/r

p(x)=

0 (2A-5)

—L+x)/
L)

x=L

(3) Diffuser inlet and free discharge outlet

When a diffuser at the entrance and a free discharge at the exit are considered, flow

boundary conditions (2-8b) and (2-7) with equations (2-23) ~ (2-28) give

5 4% 2apr’olU
bt
b H(l+r2/1m2)

dh
d

J =0 (2A-6)

x=0 x=

Equation (2-9), (2-23), (2-24), (2-25), (2-30) and (2A-6) yield a matrix equation as

follows:
[ —p(iro-U) 1 1(# )
pliro+U) 1 i,
npU neU 1 1 2
-L/r Lir 4— >
P
i -1 Y
i i 11V
_ 0 i
(2A-7)
0
dh
pro2-mn)-—
_ dx x=0 . irU
2 2
2pra @t H(1+7°4,})
dx x=L
0

0
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where, A ="’—L’f, m=1,2,3,...

Solving equation (2A-7) for each #;, p, and v, , and then, substituting them into

equation (2-24), one may obtain the following equation:

2( 1 22 2 2
po =Lt 0) , dpreU b
H(1+r47) H(1+7°47) dx
. 201U (-L+x)r |aN przUa)(n—2)[U—irw] s |dh
+la)——.e o | — . o | o—
H(1+7°2,7) drl.., H(+r2)[U@-D+ire) dx|,_

(2A-8)
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APPENDIX 2B: PRESSURE FUNCTIONS FOR 1-D FLOWS FOR
SEVERAL FLOW BOUNDARY CONDITIONS

(1) Contraction loss inlet and free discharge outlet

In the case that the contraction loss factor K, is considered at the entrance, flow
boundary condition (2-6) and (2-7) with equations (2-39) and (2-40) give the pressure

function p(x) as follows:

U2, +a’ | i2poU dh_pU (K,-1)(L-%) |dh
HA? Ha}! dx HA|U(1+K,)+ilw] |dx
2p0U[U(1+K,)+ixeo] |dh
"THA[U(+K,)+ilo] |d

p(x)=p
x=0 (2B-1)

x=L

(2) Short-lossless inlet and diffuser outlet

In the case of pressure recovery, the recovery efficiency #, is considered at the exit and
flow boundary conditions (2-5) and (2-8a) with equation (2-39) and (2-40) give the

pressure function p(x) as follows:

U2/1m2+a)2'h_i2pa)U.@
HAS HA' dx
~Un+i(L-x)o  |dh

HA [U(1-n)+iLlo)] (dx
(2-n)(U+ixw) |dh

HA[U(l-n)+ilo] |d

p(x)=p

(2B-2)

+iawpU -

x=0

+tipoU -

x=L

(3) Diffuser inlet and free discharge outlet
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In the case of pressure recovery, the recovery efficiency #, occurs at the entrance and
flow boundary condition (2-8b) and (2-7) with equations (2-39) and (2-40) give the

pressure function p(x) as follows:

UL+ | i2poU dh pUa’(2-n)(L-x) |dh
PO = P AT % HA(Un+ile) |d., B3
+i2pUa)( Un +ixw) |dn
HA, (Un+ilw) |dx

x=L



67

2.7 References

Childs, D., 1993. Turbomachinery rotodynamics, Chapter 4, John Wiley & Sons, Inc.

Fujita, K and Ito, T., 1992. Study of leakage-flow-induced vibration of an axisymmetric
cylindrical rod due to axial flow, Symposium on Flow-Induced Vibration and Noise,

ASME. PVP 244, 33-43.

Fujita, K, Ito, T. Kawata, Y and [zumi, H., 1994. Axial leakage-flow-induced vibration
of a long flexible rod with small gaps, Flow-Induced Vibration, ASME, PVP-Vol. 273,
pp-133-143.

Hobson, D.E., 1982. Fluid-elastic instabilities caused by flow in an annulus,
Proceedings of 3rd International Conference on Vibration of Nuclear Plant, Keswick,

UK, BNES, London (1982), pp. 460-463.

Inada, F., 1988. A study on leakage-flow-induced vibrations (fluid dynamic forces
acting on the walls of a one dimensional , narrow passage, JSME international J. Series

I11, 31, 39-47.

Inada, F. and Hayama, S., 1990. A study on leakage-flow-induced vibrations. Part 1:
fluid dynamic forces and moments acting on the walls of a narrow tapered passage. Part
2: stability analysis and experiments for two-degree of freedom systems combining
translational and rotational motions, Journal of Fluids and Structures Vol. 4, pp. 395
412 and 413-428.

Kaneko, S., Tanaka, S., Watanabe, T., 2000. Leakage-flow-induced flutter of highly
flexible structures, In: Ziada, S., Staubli, T. (Eds.), Flow-induced vibration 2000, pp.
837-844.



68

Langthjem, M. A., Morita, H. Nakamura, T. and Nakano, M., 2006, A flexible rod in
annular leakage flow: Influence of turbulence and equilibrium offset, and analysis of

instability mechanism, Journal of Fluids and Structures, 22 617-645.

Mateescu and Paidoussis, 1985 D. Mateescu and M.P. Paidoussis, The unsteady
potential flow in an axially-variable annulus and its effect on the dynamics of the
oscillating rigid center-body, ASME Journal of Fluids Engineering 107 (1985), pp. 412—
427.

Miller, D.R., 1970. Generation of positive and negative damping with a flow restrictor
in axial flow. In: Proceedings of the Conference on Flow-Induced Vibrations in Reactor
System Components. Argonne National Laboratory Report ANL7685, Argonne IL,
USA, pp. 304-311.

Paidoussis, M.J., 1966, Vibrations of cylinders with supported ends, induced by axial
flow, Proceedings Institution of Mechanical Engineers, 180, 268-278.
Paidoussis, M.J., 1969, An experimental study of vibrations of flexible cylinders

induced by nominal axial flow, Nuclear Science and Engineering, 35, 127-138.

Paidoussis, M.J., 2004, Fluid-structure interactions: Slender structures and axial flows,

Chapter 8.2, Elsevier academic press.

Porcher, G., de Langre, E., 1997. A friction-based model for fluidelastic forces induced
by axial flow. In: M.P. Paidoussis, et al. (Eds.), Proceedings 4th Int’l Symposium on
Fluid—Structure Interactions, Aeroelasticity, Flow-Induced Vibration and Noise, Vol. II,
AD-Vol. 53-2. ASME, New York, pp. 67-74.



69

Shimoyama, y, Yamada, y., 1957. Experiments on the labyrinth packing (1* report).
Transactions of Japan Society of Mechanical Engineers, Part 3 23, 44-49 (in Japanese).

Wu, X., Kaneko. S., 2005. linear and nonlinear analyses of sheet flutter induced by

leakage flow, Journal of Fluids and Structures, 20, 927-948.



70

CHAPTER 3

ANNULAR-FLOW-INDUCED VIBRATIONS OF A SIMPLY-
SUPPORTED TUBE IN A FINITE-LENGTH NARROW-GAP
SUPPORT

The stability of a simply-supported tube subjected to narrow annular flow in a finite-
length gap support is experimentally and analytically investigated in this Chapter.
Numerous experiments show that a pinned-pinned tube subjected to leakage flow in a
finite-length narrow-gap support first loses stability by flutter, and the critical flow

velocity is low.

The problem is analytically solved based on the solution obtained in Chapter 2. In the
analytical solution, the exit boundary condition for pressure recovery is found to be
predominant for flutter instability. Based on the analytical solution, a simple semi-
analytical model to predict the critical flow velocity is proposed for the first mode
instability. The prediction of the semi-analytical model agrees reasonably well with the

experimental results.
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Nomenclature(i)

C damping coefficient

C.. effective damping coefficient of the n™ mode

EI flexural rigidity

F, fluid forces per unit length due to perturbations

Fp fluid damping force due to perturbation

F,, fluid inertia force due to perturbation

F, . fluid stiffness force due to perturbation

F, fluid force per unit length at support

Fp inner tube damping force

Fg, inner tube inertia force

F « inner tube stiffness force due to perturbation

h vibration response of the cylinder

En ® vibration response of time (t)

K, friction factor

K, friction parameter (K, =1+K ./ H)

L length

m mode number

M, added fluid mass

M, structural mass per unit length
L

M,, modal mass of the ™ mode (M,, = IMS -, (x)*dx)
0

S
~

perturbation pressure




72

Nomenclature(ii)

P

P

Py
P;

SEFE

<

2 © =

RS

coefficient of cosine component of perturbation pressure for particular

solution
mode number

coefficient of sine component of perturbation pressure for particular

solution
static pressure before diffuser
static pressure after diffuser

pUD,

Reynolds number (Re = )

radial coordinate

radius of inner cylinder

mean flow velocity in axial direction

perturbation velocity in axial flow velocity

coefficient of cosine component of axial perturbation velocity for
particular solution

coefficient of sine component of axial perturbation velocity for
perturbation velocity in circumferential flow velocity

coefficient of cosine component of circumferential perturbation
velocity for particular solution

coefficient of sine component of circumferential perturbation velocity
for particular solution

axial coordinate

circumferential coordinate

cyclic frequency

natural frequency at zero mean flow velocity
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Nomenclature (iii)

é’n
o

n
7,

damping ratio of the n™ mode

dimensionless diffuser performance coefficient

recovery coefficient

static recovery coefficient
perturbation recovery coefficient

air density (Kg/m’)

frictional shear stress in axial direction

frictional shear stress in circumferential direction




74

3.1 Abstract

The stability of a simply-supported tube subjected to narrow annular flow in a finite-
length gap support is experimentally and analytically investigated. For the experiment, a
2.5 'm test section and several finite-length gap supports have been made considering
different gap size and diffuser angles of the support. The tube was observed to lose
stability by flutter. The critical flow velocity was strongly dependent on the annular gap
size and the diffuser angle at the downstream end of the support. A solution for the
perturbation pressure on the tube is analytically obtained considering the friction loss,
the contraction loss at the entrance, and the pressure recovery at the exit of the support.
In the analytical solution, the exit boundary condition for pressure recovery is found to
be predominant for flutter instability. However, flutter instability does not materialize
for lossless boundaries such as short-lossless inlet and free-discharge outlet. Based on
the analytical solution, a simple semi-analytical model to predict the critical flow
velocity is proposed for the first mode instability. The prediction of the semi-analytical
model agrees reasonably with the experimental results. However, it is judged that the
pressure recovery at the diffuser should be experimentally measured more accurately to

have even better prediction.

3.2 Introduction

Considerable effort has been made to develop methodologies to predict the instabilities
of a flexible rod subjected to annular or leakage flow. As a result, several methods to
predict the dynamic behavior have been developed, such as the linearized potential flow
theory based model (Mateescu, Paidoussis and Sim, 1985, 1987, 1988), and the
pressure-loss models (Hobson, 1982; Spurr and Hobson, 1984; Fujita and Ito, 1992; and
Langthjem et al., 2006). The basic dynamics due to annular flow are known by virtue of

these models.
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On the other hand, to tackle industrial problems such as heat exchanger tube and control
rod vibrations in gas and water cooled reactors, the practical conditions provided by the
tube-support plate geometry should be considered. For heat exchanger tubes, the support
causes leakage flow (highly confined annular flow) and sometimes, additional divergent
or convergent flow at the exit or the entrance of the support, which is due to chamfering
of the support hole for manufacturing convenience. The tube has therefore no positive
contact support when centered within the loose support. Therefore, when it comes to
heat exchangers, leakage flow over a finite length and divergent or convergent fluid
boundary conditions should be considered in addition to the basic annular flow. For

brevity, the term ‘support’ is used here to mean a ‘loose support’.

Unlike the basic annular flow case, a rigid rod translating periodically in a finite length
annular region of confined flow was studied by Mulcahy (1980). He studied the fluid
forces and hydraulic damping. However, since the study was done for still water, only
positive damping was found. Later, Yasuo and Paidoussis (1989) considered the flow-
induced instability problem of heat exchanger tubes subjected to axial flow in a diffuser-
shaped, loose intermediate support which is the same problem as this study examines. In
their study, potential flow theory was considered with a one-mode approximation of the
tube. They suggested critical flow velocity equation for divergence and flutter.
Application of this theory to practical problems is, however, limited because of the one-

mode approximation and inaccurate prediction of the critical flow velocity.

It is not easy to obtain an analytical solution particularly when friction loss is considered.
However, once an analytical solution is obtained, numerous applications are possible.
The aim of this study is, therefore, (1) with an experimental approach, to measure the
critical flow velocity for several annular gaps and diffuser angles, (2) to propose an
analytical solution for the fluctuating pressure on the surface of a simply-supported

cylinder subjected to the annular flow at the finite-length narrow-gap support, (3) based
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on the solution, to propose a simple calculation procedure to predict the critical flow

velocity for the first vibration mode of the tube.

3.3 Experiments

3.3.1 Description of apparatus

The test section with associated instrumentations is schematically shown in Figures 3.1
(a) and (b). Experiments were conducted in a 2.5m long test section in which the flow
rate ranged up to flow velocity of 12 m/s. A 2.2 m long and 15.9 mm (0.627 inch)
diameter inner tube was used with a mid-support (finite-length narrow-gap support)
having a length of 38.7 mm (1.525 inch). Several geometries of the axisymmetric mid-
support were investigated. The inner tube was supported by four pins at one end,
therefore, a total of eight contact points for both ends to simulate pinned-pinned
boundary conditions. The gaps between the inner tube and supports were 0.29 mm, 0.42
mm, 0.67 mm, 2.2 mm, and the annular gap between the inner tube and outer plexiglass
glass tube is 5.15 mm. Diffuser angles of 10° and 20° were provided at the downstream

end of the support. All dimensions are summarized in Table 3.1.

Fluid parameters and vibration characteristics of the inner cylinder are summarized in
Table 3.2. Compressed air comes into the test loop through a pressure regulator
connected to the building services air supply. The air meets a contraction at the entrance
to the test section due to the tube support, enters the annulus provided by the lower glass
tube, and then, flows into the much smaller annular channel provided by the replaceable
support. The air flow is controlled by a valve at the end of the test loop, so that higher

flow velocities can be obtained by opening the valve.

As seen in Figures 3.1 (a) and (b), two static pressures are measured at locations just
upstream and downstream of the diffuser so that the pressure recovery can be calculated.

Unfortunately, with this pressure gage setup, the expansion loss at the downstream end
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of the support cannot be measured. Vibration amplitudes are measured with four laser
sensors (reflex sensor, Wenglor Company), in two directions near the support, at mid-
span and at the one-fourth position along the test section. The measurement signals were

acquired and analyzed using an Oros data acquisition system.

3.3.2 Experimental results

The inner pinned-pinned cylinder loses its first mode stability at very low flow velocity
for all support cases. The first instability is clearly observed in the first mode. The
instability is believed to be a dynamic instability, not a static one. The reasons are that
the critical flow velocity is too low to overwhelm the stiffness of the steel cylinder by
negative fluid stiffness, the natural frequencies do not change before the inner cylinder
starts impacting the support, and limit cycles are clearly observed for all the supports

below or above the critical flow velocities.

Figure 3.2 shows the measured rms vibration amplitude and damping factor as functions
of the upstream flow velocity for the support having a 0.29 mm gap with a 20° diffuser
angle. The vibration amplitude starts increasing rapidly from 0.2 m/s. At the same time,
the damping ratio has decreased to nearly zero. Then, as the inner cylinder starts
impacting the support, the amplitude decreases while the "effective” damping ratio
increases. The damping ratio is estimated by curve fitting the response spectrum in the
neighborhood of the first mode frequency. All measurements for the different support

geometries show the same trend as in Figure 3.2.

While the vibration amplitude and the damping change, the natural frequency of the
cylinder does not change at all before the onset of impacting, as shown in Figure 3.3.

The 12.5 Hz and 40.2 Hz components are, respectively, the first and the second natural
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frequencies. When the inner cylinder starts impacting, the first natural frequency

increases to 14.5 Hz. Physically impacting increases the effective stiffness of the tube.

Figure 3.4 shows X-Y plots of the cylinder motion at the support elevation. As the
amplitude increases, whirling motions are clearly observed, which is believed to be a
limit cycle. It is well known that the limit cycle is the result of a dynamic instability.
Once impacting starts, the limit cycle disappears. When the cylinder contacts the
support, the cylinder seems to vibrate in a one-dimensional motion. This is a very

typical vibration behavior for all the supports with increasing flow velocity.

The vibration amplitudes for different gaps and diffuser angles as functions of flow
velocity are shown in Figure 3.5. The lowest critical flow velocity of 0.10 m/s
(equivalent to 2.38 m/s or 790 Reynolds number at the support) is obtained with the
support having a 0.29 mm gap and a 10° diffuser while the highest critical flow velocity
of 2.82 m/s (equivalent to 7.6 m/s or 17,000 Reynolds number at the support) is
observed with a 2.20 mm gap and a 10° diffuser. Generally speaking, the smaller the
gap and the diffuser angle the lower the critical flow velocity. However, for the 0.68
mm gap support, the critical flow velocity of 0.12 m/s is obtained with the 10° diffuser,
which is significantly lower than that of the 0.42 mm gap support. The upstream critical
flow velocity of 0.12 m/s is equivalent to 1.14 m/s or 870 Reynolds number at the
support. For the largest gap (2.2 mm) support, interestingly, the critical flow velocity of
the 20° support is much lower. Critical flow velocities for all the supports are

summarized in Table 3.4.
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3.4 Analytical model

3.4.1 Assumptions

For the development of an analytical model, the following assumptions are made:

1. Although fluid flows in an annular confinement before and after the support, the fluid
effects from such confinements are considered to be negligible at low flow velocity.
Therefore, the analytical model to be solved is as illustrated in Figure 3.6.

2. The mechanical damping of the inside cylinder is assumed to be small; the damping

ratio (£) in the experiments is 0.2%.

3. For the inner cylinder, the radius-to-length ratio is assumed to be so small that shell-
type vibration may be neglected.
4. Every flow-related term may be expressed as the sum of an average (steady)

component plus a small perturbation component.

3.4.2 Equation of motion of a flexible inner-cylinder

The oscillating flexible inner-cylinder simply supported at the ends is considered as an
Euler-Bernoulli beam having flexural rigidity E/, length L, mass per unit length A, and
damping coefficient C. The cylinder is subjected to distributed external forces which
occur due to the fluid motion. Since the fluid forces are coupled to the inner-cylinder

motion, the equation of transverse motion A(x,?) of the cylinder is expressed as
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2 4
. h()zc,t) L odhD) | o dhGD)

S 7 X =F,(x,1) G-

2z
where F,(x,1) = F,(x)-e” =- IPf(x, 1)- e (cos 0)2 rdo (3-2)
0

The following modal expansion solution is assumed.
h(x,0)=) 4,(x)-h,() =D 4,(x)-a,- (3-3)
n=1 n=1

It is assumed that the pressure perturbation varies as a cosine function around the
circumference of the inner cylinder. Figure 3.6 shows that an arbitrary perturbation
pressure p acting on the inner cylinder surface when the cylinder moves in the positive y
direction. ¢, (x) and a, in equation (3-3) are the n™ eigenfunction and the vibration
amplitude, respectively. Fr and Pqx,t) in equation (3-2) are the fluidelastic force/unit

length and the pressure on the cylinder surface, respectively. For a simply-supported

beam, the eigenfunctions are

8,(x) = sin(A4,x), 4, =%; n=12,3.. (3-4)
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Substituting equations (3-3) and (3-4) into equation (3-1) gives

> [ M3, )+ Ch )+ EI4,R,0) |- 4,0 = F, (x.) (3-5)

n=1

Multiplying equation (3-5) by, (x) in order to use the mode orthogonality property,

and integrating over the length gives

. N _ L2
Me’,ﬁn O +24,0,M, h, () + wnzMe,"h,, )= f¢n (%) F(x,0)dx (3-6)
Ll
L
where , M, , = IMS -, (x)’dx, (3-7a)
0
h()=a,e™, (3-7b)
é’ Cen (3 7 )
= 2 s -Tc
"2M, o,

L
j EIA*- ¢ (x)'dx
a)nz _20 — (3-7d)

en

When a finite-length narrow-gap support is considered, the entrance and exit locations at

L;, and L,, respectively, shown in Figure 3.6 demarcate the forcing region, thus

F,#0 for L, <x<L,,and otherwise, F, =0 (3-8)
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Since the cylinder motion is coupled with the fluid motion, the cylinder vibration leads
to increased pressure fluctuations. The fluctuating pressure may be separated into three

terms related to fluid added mass (P, ), damping ( P, ,) and stiffness (P, , ) and written

as follows:
F,(x,0)=—nr[ -0’ P, 4 (x) +ioP, o,(x) + P, (8,(x) | P, (1) (3-9)

Substituting equation (3-9) into equation (3-6) and using (3-7b) ~ (3-7d) gives

-0 (1 +Q [P, dx] ¥ iw(zgw,, +Q- [P, 8, dxj

L (3-10)
+(a)n2 +0- [P 8, (x)’ dx] =0
Lt
where Q=7#r/M,,, (3-11)
and P, , =P ,# P, #0 for L, <x<L,, otherwise. P,, =P, , =P, , =0

3.4.3 Fluid equations and boundary conditions

Consider a two-dimensional unsteady, incompressible, annular flow between two
concentric cylinders. Assuming small perturbations of the flow, the first-order

continuity and momentum equations may be expressed as
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ou Hov__oh_ oh

oY __ Ay (3-12)
ox r 06 ot ox
op  Ou 1 ov ou Uoh U’oh
L AL N Ay WY § A NS LN 3-13
o P P70 " H PHa PH™ (3-13)
1P, 2 vTe g (3-14)

r 06 ot ox

In equation (3-13) and (3-14), 1 and 1 are non-conservative friction shear stresses. Tg

may be neglected since there is no bulk flow in the circumferential direction.

In this study, the three fluid equations together with two boundary conditions for the
entrance and the exit are considered. A short lossless entrance and a free discharge exit
are considered as ideal conditions. As realistic conditions, a contraction-loss entrance
and a diffuser exit are taken into account.

For the short-lossless entrance and the free-discharge exit boundary conditions, the

following equations are obtained:

p(L)+pUn(L) =0 (3-15)

for the entrance, and

p(L,)=0 (3-16)
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for the exit of the finite-length support.

For the realistic fluid boundary conditions, we consider a contraction loss factor K, at

the entrance, and a diffuser efficiency # at the exit of the finite-length support. For the

contraction loss at the entrance of the support, one obtains

p(L)+pUuL)(1+K,) =0 (3-17)

Considering Bernoulli’s equation just before and after the exit gives

OPS;:,D =7, (3-18)
M 1

1,
p+1.pUu, + n, —2—pU1 =0 (3-19)

In equation (3-18), A and P, are the static pressures immediately before and after the
diffuser, respectively. 7, is the static pressure recovery coefficient at the diffuser. In
equation (3-19), p, and u, represent the perturbation pressure and flow velocity

upstream of the diffuser. Linearizing and assuming that the perturbation recovery

coefficient 7, is a function of (x), one can write
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A
7, A_’Z;. h (3-20)

As proposed by Hobson (1982), a dimensionless diffuser performance coefficient ¢ is

introduced as follows:

=ﬂ (3-21)
Ah/H

Then, substituting into equation (3-19), one obtains

pU;’
+ Uu +6—"--h=0 3-22
b +1,pu Y, 2H ( )

3.4.5 Friction coefficient and friction loss

A new concept to consider friction has been proposed by Kang et al. (2009). To take the
friction term in the momentum equation (3-13) into account, the axial momentum loss
due to friction is expressed in the form

ou auj (3-23)

P
==K U—+—
H Cf"( ox ot

S
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Setting K_,°>=1+K_,/H simplifies the solution procedure, and the analytical

solutions for perturbation flows can be obtained without difficulties. Using the friction

coefficient of the Shimoyama and Yamada (1957) model, K ,,, and K_,* are obtained

as follows:

(0.2288)-Re™**

o0 = [U e (x))+iw] .U for Re > 2000, (3-24)

21 (0.2288)-Re™**

K, =1+ U0/ 4) 1] -U for Re >2000. (3-25)

3.4.6 Analytical solution for pressure perturbation

The authors proposed an analytical solution for annular-flow-induced vibration
considering a new friction concept in Kang et al. (2009). For a brief description of the
solution, we start with substituting equations (3-23) and (3-25) into equation (3-13). By

virtue of equation (3-12), equation (3-13) becomes

—a—p—+p(ch1)26—u+pU(K

0
ot Cﬂ)z ;

— =0 3-26
™ (3-26)
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Equations (3-12) and (3-14) may be expressed as first order complex differential

equations.

ou .1 1 dh U dh
i—v

(3-27)

(3-28)

The vibration response of a simply-supported inner cylinder vibrating in mode » can be

written as

h,(x,0)=¢,(x)-a,e”.

where ¢, (x) = sin (E—E— x]

(3-29)

The solutions of (3-26) ~ (3-28) for u, (x,?), v,(x,t) and p,(x,t) may be expressed as

3 —_—
u,(x,0)= 7, e +(u, g, +u, @) (1)

j=1

3 A ) N —
V(0= D7, e 4 (v, g, +v, 8, ) B0

P =2 e e +(p, 4, + 14, ) B

(3-30)

(3-31)

(3-32)
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Substituting equations (3-29) ~ (3-32) into equation (3-26) ~(3-28), collecting the
homogeneous terms ( independent of l?n) of equations (3-30) ~(3-32), and setting to

zero yields

A, 0 LL [
"
p[iw(xcfﬁ)wzxj (chﬁ)] A, 0 15,+=0 (3-33)
1
I 0 —z; p(za)+UAj)_ v,

where K,* =1+K .,/ H

o0 :

In order to have a non-trivial solution for equation (3-33), the determinant of the matrix

should be zero. The resulting characteristic equation yields the following three

) . K, K, W . )
eigenvalues; A, =— , A,=—"— and A, =—z—U—. Utilizing each eigenvalue, three
v v

relationships between the coefficients of pressure p,, circumferential flow velocity V,

and axial flow velocity #, are determined.

ch] . —_ - — . —
(1) A, === i3 - =0, Bi+pKy, Uk —ire]-5=0 (3-34)
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K
Q)M::jﬂi&ﬂE+E=O,ﬁﬁjMﬁ&&ﬂU+ﬁw)%=0 (3-35)
3) A3=—i§,v3+fl—]“l-ﬁ3=o, p,=0 (3-36)

As noted by Hobson (1982), the first two conditions, (3-34) and (3-35), represent
irrotational velocities and pressure fields while the third stands for a vortical velocity

field convecting with the fluid without an associated perturbation pressure field.
In the equations (3-30) ~ (3-32), u,, u., ps, p., Vs, and v, are coefficients to be determined.

By substituting equations (3-29) ~ (3-32) into equations (3-26) ~ (3-28), with equation

(3-33), the following three equations are obtained:

(Ur + Hru, — ich) , (—iHvS ~ HrA 'u_+ ira))

=0 3-37
Hr g+ Hr /. (3-37)
rpU + H(pr+2rpUu, —ipUv, +irpau,) "
Hr !
(3-38)
H|:r/1n2 (p. +2pUu,)+ip(Uv, —raw, )]——irpa)U 0
Hr b =
_ lpc +l"p(UVs +ia)vc) ¢nr _ D +rp(_iU/1n2vc _a)vs)¢n =0 (3_39)

s r

where 4, =%, n=123...
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Knowing that A(x,?) is a sine function in x and the derivative of h(x,?) is a cosine function,
the first and the second terms in equation (3-37) ~ (3-39) may be separated and set to

zero independently, so that the six coefficients can be determined.

The three final solutions are

uw= {37 RO NS PR R R (3-40)
= H(K,>+r°A}) " H(K, +r27) " ||
s | K e KU ,

v(x) = e+ g ¢ —i 2 . R 3-41

) {,Z‘ ’ H(K, +r°A}) Z H(K, +r"A?) Z G-41)
L | K (UA v 0?) 2K preU

x)= e+ @, —i 2 @, (3-42)
Pe) {;p’ [ H(K, +7r°4}) / H(K, +r’4}) ’

with three conditions, equations (3-34) ~ (3-36), for A,, A, and A,.

For the short lossless entrance and free discharge, equations (3-15) and (3-16) can be

rewritten as
Kyl Kgik K UA? + 0’ , —i2oU-9,| | _
_ ; P o1 " =L, =
pe ' +p,-e + H(K 2+I"212) ,.h,,(t)
of1 n

_K/|L1 KL pU"'z (_ﬂ’nZU ¢Vl x=1, +iw.¢" x=l1) 1,

+pU|u-e 7 +uy-e © |+ H(K 247242 (=0
(chl +r°A, )
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and
Kyl KL
b€ tpyre '
Kcﬂzprz(UZ/12+a)2) 4 R - 2K ' prioU " (=0 (3-44)
. . t —1 . . t =
H(chlZ_*_rZA‘nZ) nlx=L, n H(chll+r22n2) n iy n

In the case of the short lossless entrance, the flow is assumed to be irrotational, so that

u, = 0. This 1s the reason why there is no #, in equation (3-43).

Combining equations (3-34), (3-35), (3-43) and (3-44), one obtains the matrix equation

ch](UK‘f,—ira)) 0 1 0 & )
0 K1 (chf, —ira)) 0 1 u,
KL KL kn o k|9 p/p
Ue - Ue e’ e’
_KL, KL,
0 0 e e’ | PP
( 0
0
K, -1\ U*A*+K, ‘&’ 1-2K .2
( @ ) n (L1 -, +HaU ( (Ll)) '

Y H(K(Ll)2 +r2/1"2) H(K(“)2 +r2/1n2) e ] (f)

(3-45)
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KL, K, -x KL, K, -x
where —=—2 | , —2=—* | s b =8|y > b=80_,
r v =Ll r F x=L2
de dg,(x)
2 2 2 2 —r EE—
K(Ll) = KC.fl x=L1’ K(LZ) = ch‘ |x=L2 s by = " »and §,, = C;X 12
x= x=

For the contraction-loss entrance and diffuser exit, equation (3-17) and (3-19) can be

rewritten as equations (3-43) and (3-44), then, with equations (3-34) and (3-35), one can

obtain the matrix equation below

chl(Uchl—ira)) 0 1 0| ( u |
0 kp(Uky—ire) 0 1 i,
K K kn Kl p/py
d+K)Ue - d+K)Ue " e’ e’
K _KL, KL, LY /
Une - Une - e e’ |\PP
( 0
0
2 2 2 2 2
[(K(Ll) _Ka)U ﬂ'n +K(L1) @ :I , Ka _ZK(L1)2 ’
2 2 242 '¢"L1+MOU' 2 242 ¢'1Ll .
2] H(K,, +r'A}) H(K, +r'2) ™ L o)
(Kuo® -1)UA" +K )"0 . +ioU- n-2Ky,’ 4 (3-46)
H(K,, +r'A}) n2 H(K,, +ral) ™

where K, =1+K,.
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The two simultaneous equations in matrix forms may be solved with the help of a
symbolic computer softwares such as Mathematica or Maple. Mathematica 6.0 (2007)

was utilized to obtain solutions for perturbation pressures, based on the relations

eZKCf]-x/r 2K gyoxlr eK(Ll).(leH)/r K12y (2L +x)r

Ke
x=L1 x=L2

, and <e

The resulting perturbation pressures at the narrow annulus are

2 2
pr ch]
2 2

H(K,+7r°4,})

p(x)= x[-i20U ¢, -U’ - ¢+ 0’4, |

2 2 2
K(u) +r°A,

PVZ 2 2,2 2 2 . 2 '
- (K, =-D)-UA + K, -¢n , HioU(1-2K,, '¢n1
{H( )[( )t et/ (126,7) L]} (3-47)

chl (Uchl

(U(K,-1)-iroK,, |

—i rw) KoKy
. e r

2, 2 e
_H(]?r 2flr2.2]'2)X[(U21n2+w2)'¢n1‘2—1'2(0U'¢,:L2:I'e ' f
(L2) "

for the short-lossless entrance and free-discharge exit, and
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2 2
pr chl

H(chlz +r2,1n2)

x| ~i20U -4, -U -¢!+ @4, |

p(x)=

2

_{H(K o ) [(&-K) U4 +K, o) -4, +iaU (K, ‘2K“2)'¢”l“]}

2 2 2
an T A,

'thl

[U(Kcﬂz —Ka)—ira)KCf,]

-KL)+K p1x

ot e © K,(UK

(UK, ~iro) Kl—Kpyx

X .e r

cf1

+ira))
_ x :
H(K(Lz)2 + r2/1,,2) |:U(Kcﬂ2 —n)+ira)ch1]

X

{[(5+ 2K, -m)rP AU+ K, (8U° 420707 ) | 4, + 200U (- 2K,.7)- ¢;L2}

(3-48)

for the contraction-loss entrance and diffuser exit,

Equations (3-47) and (3-48) may be divided into three terms; a term proportional to

KL—xKp)/ 7 (~KLy+xKop )l r

e( , a term proportional to e and a term independent of these two

(KLI _X'chl)

exponential functions. The function e ""has a peak at the entrance (x=L,). The

magnitude of this function decreases rapidly with increment of the variable x beyond the

(KL—xK )/

entrance, so that this term multiplied by e "may be called the ‘entrance effect’.

Similarly, e(_KLZH'K”f U may be called the ‘exit effect’. Unlike these two terms, the first
term, in equations (3-47) and (3-48) consist of eigenfunction and derivatives of the
eigenfunction, so that the latter term has an effect in the whole spatial domain. For this

reason, the latter term may be called the ‘mid-way effect’. It is not difficult to identify
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the three fluid effects in the three terms: inertia (®’), Coriolis (i) and, centrifugal

effects, respectively.

Recognizing that the fluid mass is independent of the fluid velocity, it is true that small
effective lengths of entrance and exit are insufficient to induce significant fluid inertia
forces. Therefore, it is assumed that the real part of the entrance and exit effects is
limited to fluidelastic stiffness while the imaginary part is fluidelastic damping (i@
terms).

The fluidelastic force per unit length may be calculated by integrating the pressure field

which is given by equation (3-2). Accordingly, equation (3-47) gives

I 2
—prr KCfI . ' 2 g 2
F(x)= Dol -d¢ -U?-
ST ﬂnz)x[ RoU ¢, -U’ g+ &4, | 00
KL -K f\x —Kb+K pyx
+[EET1]xe ! +[F;EXI]Xe !
where F,,,, =R, -[((Ku2 -1)-UA’ +K“2a)2)-¢nu +ia)U(1—2KL12)-¢,:LJ
K, (UK, -irm) e@r_ (3-50)
(U(K,-1)-iroK,,]
—KL2+chlx
Fipn =R, '[(Uzlnz + wz)'¢nL2 —i2a)U-¢,;L2]-e " 3 (3-51)
prr
R, = (3-52)

H(K 2+r2,1,,2)’

(L)
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3 2
prr’-K,,
R, = . 3-53
T OH(Kyy +747) (3-53)
Similarly, equation (3-48) gives
F(x): _pﬂr3ch12 X[—i20)U’¢’—U2'¢”+0)2¢]
T H(K, ) T (3-54)
KL—K p1x KL+ K%
+[F/Erz]xe ’ +[Esxz]xe g
2 2 2 2 2 . 2 4
where F;, =R, '|:((Ku -K,)UA +K o )'¢nu +le(Ka -2K,, )'¢nu:!
K (UK, -iro) eﬂ (3-55)
[U(ch,2 —Ka)—ira)Kcﬂ:l
. [(6+2(K,,2-m) AU + K, (8U° 2707 ) |- 4.,
IEX2™
+i20r°U (7 ~2K,) )4, (3-56)

: - K
K, (UK, +ire) eM

[U(chf —77)+ira)chl:l

xR, -
It is not easy to formulate one fluid-structure coupled equation similar to equation (3-10)
by identifying every single term in equation (3-49) and (3-50) in terms of factors of
@’ ,m, and @’. A single equation may be obtained from the denominators of the two
equations, which renders the equation of motion a third-order differential equation. Also,
it is not easy to utilize Galerkin’s projection for the whole dynamic behavior in terms of

mean flow velocity due to the complexity of the fluidelastic force equations.
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However, if the inner cylinder first loses stability by flutter at low flow velocity, the
imaginary part of the fluidelastic force may be used to see if damping becomes negative,
and overcomes the structural damping forces. From equations (3-6), (3-7a) and (3-7b),

one may set a damping balance condition for the negative damping force.
L _ L2
iw(zqw,, [M.9,(° dxjh,, (-Im [4,(0)-F(x,0dc< 0 (3-57)
0 L1

By utilizing equations (3-49) — (3-56) considering the earlier discussion on the entrance

and exit effects, the fluid damping force in equation (3-57) becomes

200 L2
. 2) 48,0 — J.Im(F;En +EEX|)¢ndx
Il

A H(K,'+r

n

—thn[F,(x)]qﬁ,,dx _ _Lf 207K

(3-58)

for the short-lossless entrance and free-discharge exit, and

L2 L2 2pﬂ' r3K
— | Im[F(x)]¢,dx = - A
LJ; [ 1 ] LJ;H(chlz +7°2,

1za)U L2
2) ¢,; ¢ndx— _[Im(FlETz +FlEX2)¢ndx
Ll

(3-59)
for the contraction-loss entrance and diffuser exit. One may add a Coriolis’ term to

equation (3-58) and (3-59) when the flow velocity is not negligible.
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By virtue of the discussion above on the fluidelastic forces, the modal fluid mass may be

expressed by

prr’K
H(K, ' +r°4)

n

_ 2
Ff,, =

¥ [, () ax (3-60)

The fluid stiffness forces are

2 222 L2
U ) I[¢n(x)_Re(EET1 + Figyy ):|¢ndx

L1

3
prrK

H(K,’+r'4,

n

L
Fy = [MU$)(x)$,dx +
0

(3-61)

for the short-lossless entrance and the free-discharge exit, and

prr’K JUPA} 12
H(K412+r2,12) L_!-[%(x) e(Fiery + Fiyy ) |4,

n

F

K=

M U] (x),dx +

O'_.l\

(3-62)

for the contraction-loss entrance and diffuser exit.
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3.5 Numerical calculations

For a one-mode approximation, the first mode can be utilized since the inner tube was

observed to lose stability in the first mode.

The dimensions of the physical properties and fluid characteristics are summarized in
Table 3.1 and Table 3.2. All the properties and the dimensions are selected to model the

experimental test setup.

The finite-length gap support having a 38.1 mm length is considered to be positioned at
the mid length of the inner cylinder as shown in Figure 3. 6. The mid point of the
support coincides with the mid length of the inner cylinder. For the upstream end of the
support, a contraction loss factor K, is considered. On the other hand, for the
downstream diffuser exit, the diffuser efficiency 7 and a dimensionless diffuser

performance coefficient § are considered.

The calculated fluidelastic forces, inertia, damping and stiffness, were normalized by

structural damping force for the convenience.
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3.5.1 Parametric study

The calculated fluidelastic inertia ratios are plotted in Figure 3. 7. Since the inertia force
is independent of the annular-flow velocity, as Blevins (1990) indicated, the added mass
becomes large as the gap decreases, so that a larger inertia force results from the smaller

annulus.

The entrance and exit effects are assumed to be limited to fluidelastic stiffness (Real)
and fluidelastic damping (Imaginary) components of the fluid force, so that the inertia
effects at the entrance and exit are neglected. Based on this assumption, Figure 3. 8
illustrates the normalized fluidelastic stiffness as a function of Reynolds number for
different fluid boundary conditions and annular gap sizes. For the lossless entrance and
exit, the stiffness varies little with the fluid boundary conditions and Reynolds number.
However, for the loss and recovery boundaries, depending on gap size, the normalized
fluidelastic stiffness changes significantly. The fluidelastic stiffness decreases much

more with the smaller annular gap as the Reynolds number decreases.

In addition to the annular gap, the other important parameter is the dimensionless
diffuser performance coefficient . The coefficient & has much more effect than the

diffuser efficiency ;7 on the fluidelastic stiffness. The two factors are related to the
diffuser angle at the downstream end. However, It must be understood that 7 is a static

coefficient while & is a dynamic coefficient. One can appreciate the difference from
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equations (3-18) and (3-20). With K,, § =0.1 and 7 =0.8, the stiffness is almost the
same as the stiffness with K,=& =0.1 and 7 =0.1 for all supports. However, when
K~=1n=0.1 and & =0.5, the fluidelastic stiffness decreases much more than when

K,=n=0.1 and §=0.1 for all gap sizes.

In equation (3-57), the negative total damping force means that the fluid energy
absorbed by the inner cylinder is larger than the energy dissipated through damping.
Normalized total damping variations are shown in Figure 3. 9. In order to obtain Figure
3. 9, a structural damping ratio of 0.2 % is assumed. The damping ratio of fuel rods in
Pressurized Water Reactor PWR (PWR) and of steam generator tubes in nuclear power
plants are known to be near or less than 0.2% (excluding damping introduced by loose
support). For the lossless entrance and exit, the total damping forces do not change
much as Reynolds number is varied. However, in the case of the contraction loss at the
entrance and diffuser at the exit, the total damping forces may become negative. As the
annular gap decreases, or the diffuser performance coefficientd increases, the total
damping force decreases rapidly. For the support having 0.29 mm gap with
K.~=6=n=0.1, the fluid damping overcomes the structural damping at a Reynolds
number of 4,790 or 0.54 m/s upstream flow velocity, which is equivalent to 12.3 m/s at
the gap. On the other hand, for the same parameters withd =0.5, negative damping is
obtained at a Reynolds number of 1,850 or 0.21 m/s upstream flow velocity which is
equivalent to 4.8 m/s at the gap. A velocity at the upstream end of only 0.21 m/s (5.15

mm gap) is needed to have negative damping. When the gap is 2.2 mm, the Reynolds
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number for the negative damping goes up to 61,060 or 7.7 m/s upstream of the support,
which is equivalent to 21 m/s at the gap. Figure 3. 10 shows the total damping forces as
functions of the upstream flow velocity. All flow velocities are believed to be within the
practical engineering range in terms of orders of magnitude. This is especially to be
contrasted with the case of unconfined axial flows which result in instability velocities

far above any prototypical flow velocities.

For the support having a 0.29 mm gap, the entrance and exit effects on the negative
damping can be seen in Figures 3.11 and 3.12. As seen in thes, the effect of é on
damping is obvious. The total damping force for & =0.5 is approximately 10 times lower
than the total damping force for & =0.1. Furthermore, the exit effect is more dominant
on the damping force than the entrance effect or the mid-way effect. These figures
possibly explain why the expansion channel of the downstream end is primarily

responsible for negative damping as many previous studies have shown.

3.5.2 Experimental cases

Pressure recovery and dimensionless performance coefficient

The pressure recovery efficiency 7, of the support is obtained by experiments based on

the static pressures measured upstream and downstream of the diffuser. As expected, all

of the measurements show that the pressure recovery efficiency 7, is not constant but

varies with Reynolds number, which is seen in Figures 3.13 and 3.14. The efficiency
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seems peak at some value of Reynolds number. The Reynolds number range from 1,000
to 5,000 is very important since it is within this range that instabilities with small gap
supports are observed in experiments. With the largest gap, the Reynolds number range
from 8,000 to 20,000 is also important. Unfortunately, however, we do not have

measurements in this higher range of Reynolds number.

The resolution of our pressure gages is 107 psi (approximately 68.9 Pascal). Thus a
difference less than the resolution cannot be measured at present. This is the reason why
the 77, at low Reynolds numbers is not shown in the two figures for any of the supports.

Based on Figures 3.13 and 3.14, one may use 0.2 as 7, for the 0.29 mm — 0.67 mm gap
supports, and 0.45 for the 2.2 mm gap support. On the other hand, from Figure 3. 14, for

20 degree diffusers, we take 0.1 as 7, for the 0.29 mm — 0.67 mm gap supports, and 0.3

for the 2.2 mm gap support.

To determine a dimensionless diffuser performance coefficient 6 based on the

experiments, equation (3-21) may be expressed as

Aﬂ _ ”peak -n inital

VYT (oot =)/ H (3-63)

peak -
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Assuming 77, to be the value at the maximum vibration amplitude, and A’ to be at 70

cak
percent of the gap, one may calculate & . The dynamic gap closure Ah is assumed to be
70 percent of the gap based on the argument that since the rms vibration amplitude is
measured, the maximum amplitude before impacting could be assumed to be the 70
percent of the gap. The peak & is obtained when the vibration reaches the maximum
amplitude. Based on this, one may calculate ¢ ; for instance, in the case of the 0.29

mm/10° support, & =0.43 (= (0.5-0.2)/0.7).

The calculated 77, and 6 are summarized in Table 3.3.

Calculations for the experiments

For the calculations, the contraction loss factor K, is set to 0.3, which is believed to be

realistic for normal engineering piping. When the short-lossless entrance and the free-
discharge exit are considered, the loss factor K, and the performance coefficient &
should be set to zero with the diffuser efficiency 7 =1. With these values, no loss
entrance and full conversion of the dynamic pressure into static pressure are obtained.

As seen in Figure 3. 15, the trend of the stiffness force ratio as function of Reynolds
number is very similar trend to that of Figure 3. 8. Since § has a strong effect on the
fluidelastic forces, the difference between Figure 3. 8 and Figure 3. 15 comes from the
different results of &. For the case of the 0.67 mm gap support, the stiffnesses for the

two different diffuser angles show almost the same behavior with increasing Reynolds
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number. For the gaps smaller than 0.67 mm, the 10° diffuser loses fluidelastic stiffness

at lower Reynolds number than the 20° diffuser.

Figure 3. 16 shows the total damping force ratio as a function of Reynolds number at the
support gap. For the two small gap sizes, 0.29 mm and 0.42 mm, the damping of the 10°
diffuser becomes negative at a lower Reynolds number than the 20° diffuser. On the
other hand, for the largest gap, 2.2 mm, the damping of the 20° diffuser becomes

negative at a lower Reynolds number than 10° diffuser.

The 0.29 mm/10° support is expected to have negative damping at a Reynolds number
of 1,800 or 5.5 m/s at the gap, which is equivalent to 0.24 m/s upstream of the support.
Before the 0.29 mm/20° support becomes negatively damped, the 0.42 mm/10° support
loses positive damping at a Reynolds number of 2,800 or 6 m/s at the gap, which is
equivalent to 0.38 m/s upstream of the support. A Reynolds number of 6,800 results in
negative damping for the 0.67 mm gap supports. For the largest gap, 2.2 mm, negative
damping occurs at Reynolds numbers of 23,500 and 24,700. These Reynolds numbers
are equivalent to 9.5 m/s and 10 m/s respectively at the gap, or 3.48 m/s and 3.66 m/s

upstream of the support.

Figure 3.17 shows the total damping ratio as a function of the upstream flow velocity
corresponding to the Reynolds number in Figure 3. 16. As may be seen in the figure, all

of the critical flow velocities are below 4 m/s which are believed to be well below
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practical engineering flow velocities. All the calculated and measured critical flow
velocities are summarized in Table 3.4. Although the calculated critical flow velocities
for the 0.67 mm gap supports do not égree well with the experiment results, the

calculated results are, overall, in reasonable agreement with the experiments.

It is worth noting that the Shimoyama and Yamada friction model (1957) shows some
scatter in the Reynolds number range of 1,300 ~ 2,000. In addition, the friction loss with
vibration may be different from the friction loss without vibration. The Shimoyama and
Yamada model does not consider vibration. Applying the laminar friction model,
equation (3-24), with very high n and & (for instance, 77 = 6 =0.8) for the 0.67 mm gap
support, the critical flow velocity for the negative damping decreases down to a
Reynolds number of 1,518 or 2 m/s at the gap which is equivalent to 0.20 m/s at the

upstream instead of 0.85 m/s. This is the same value as the experimental value.

3.6 Conclusions

The stability behavior of a pinned-pinned flexible rod subjected to narrow annular flow
over a finite-length gap support has been experimentally and analytically investigated.
By the experimental approach, the critical flow velocities were measured for varying
gap size and diffuser angles for a finite-length support. Analytically a solution was
obtained for the perturbation pressure acting on a pinned-pinned cylinder subjected to a

leakage flow at a finite-length gap support. For the analytical solution, two-dimensional
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flow with two fluid boundary conditions was considered. The two sets of boundary
conditions are, a lossless entrance and a full conversion exit for the ideal conditions, and

a contraction-loss entrance and diffuser exit for practical boundary conditions.

In experiments with a 2.2 m long steel tube, and 3.8 cm long support, and significantly
low air flow, flutter instability is observed for all supports; independently of the gap size
and diffuser angle. With annular flow, the simply supported cylinder is known to lose
stability by divergence at very high flow velocity beyond practical engineering
applications. Interestingly, a small support plays a significant role to change the
dynamic behavior of the pinned-pinned rod, decreasing the critical flow velocities down
to engineering flow velocities. Generally speaking, the smaller gaps and the smaller
diffuser angles lower the critical flow velocity for negative damping. On the other hand,
for the largest gap (2.20 mm), the critical flow velocity of the larger diffuser angle (20°)

is lower than that of the smaller diffuser angle (10°).

In the theory, the negative damping force is shown to be very dependent on the
dimensionless diffuser performance efficiency ( & ), which is the ratio of diffuser
efficiency to dynamic gap closure. The other important result is that the negative
damping force is mostly generated at the exit. From these two results, it may be
concluded that expansion channels at the downstream end cause flutter instability. This

is in agreement with previous research findings.



108

A semi-analytical model for the fluidelastic damping force is proposed based on the
analytical pressure solution. In the case where no losses are assumed at the entrance and
the exit of the support, fluidelastic damping remains positive at all Reynolds numbers.
For the experimental cases, numerical calculation by the semi-analytical model yields
results that are comparable with experiments. The smaller gap size and diffuser angle
are shown to be more destabilizing. However, in the case of the largest gap (2.2 mm),

the bigger diffuser angle (20°) generates negative damping at a lower flow velocity.

For the pinned-pinned cylinder subjected to leakage flow in a finite-length gap support
at its mid length, the critical flow velocity with compressed air (p =~ 8.5 Kg/m’) turns

out to be less than 3 m/s, which is within the range of most engineering applications.



Table 3.1 Major dimensions of test apparatus
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Item

Dimension

Inner Cylinder

Inner diameter: 14.15 mm

Outer diameter: 15.93 mm

Length: 2.2 m

Young’s modulus (E): 266.1 N/ m’

Outer glass tube

Inner diameter:; 26.24 mm

Gap: 5.16 mm

Support

Length: 38.1 mm

Inner diameter (gap): (a) 16.51 mm (0.29 mm)
(b) 16.76 mm (0.42 mm)
(c) 17.27 mm (0.67 mm)
(d) 20.32 mm (2.2 mm)

Diffuser angle: 10° and 20°




Table 3.2 Fluid parameters and vibration characteristics of the inside cylinder

110

Item

Dimension

Fluid

(a) compressed air : ~ 100 psig
(b) density: ~8.5 kg/m3

Hydraulic diameter at

support and L/D),

(a) 16.51 support: 0.58 mm, L/D;=50

(b) 16.76 support: 0.84 mm, L/D;=34.8
(c) 17.27 support: 1.35 mm, L/D;=21.7
(d) 20.32 support : 4.39 mm, L/Dy=6.6

Hydraulic diameter at

glass tube and L/Dj,

10.31 mm, L/D, =203.6

Natural frequency (Hz)
of the inner cylinder
without flow:

experiment (theory)

1* natural frequency: 12.5 (9.1)

2" natural frequency: 40.2 (36.6)
3" natural frequency: 89.2 (82.3)
4™ natural frequency: 150.2 (146.3)

Damping factor of the

inner cylinder

¢, =0.2 % for the 1* natural frequency
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Table 3.3 Steady diffuser efficiency I: and dimensionless diffuser performance

coefficient 9 for finite-length narrow-gap supports

Support 7, ]
1. 0.29 mm gap with 10° diffuser angle 0.2 0.43
2. 0.29 mm gap with 20° diffuser angle 0.07 0.1
3. 0.42 mm gap with 10° diffuser angle 0.3 0.43
4. 0.42 mm gap with 20° diffuser angle 0.07 0.1
5. 0.67 mm gap with 10° diffuser angle 0.2 0.285
6. 0.67 mm gap with 20° diffuser angle 0.1 0.285
7. 2.2 mm gap with 10° diffuser angle 0.4 0.357
8. 2.2 mm gap with 20° diffuser angle 0.3 0.43
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Table 3.4 Comparison of the measured and the calculated critical flow velocity for

negative damping

Critical flow velocity at the
upstream (m/s
Support n/o P (m/s)
Experiment Calculation

1. 0.29 mm gap with 10° 0.2/0.43 0.10 0.23
2. 0.29 mm gap with 20° 0.07/0.1 0.19 0.54
3. 0.42 mm gap with 10° 0.2/0.43 0.22 0.36
4. 0.42 mm gap with 20° 0.07/0.1 0.45 0.85
5. 0.67 mm gap with 10° | 0.2/0.285 0.12 0.84
6. 0.67 mm gap with 20° | 0.07/0.285 0.20 0.85
7.2.2 mm gap with 10° 0.4/0.357 2.82 3.49
8. 2.2 mm gap with 20° 03/0.43 1.21 3.38
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Figure 3.2 Vibration amplitude and damping ratio as a function of upstream flow

velocity for the inside cylinder in the support with 0.29 mm gap and 20°

diffuser angle
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Figure 3.11 Ratio of total damping force to structural damping force with a finite-length

support of 0.29 mm gap with Ka=0.1, n=0.1, 6=0.1.
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Figure 3.12 Ratio of total damping force to structural damping force with a finite-length
support of 0.29 mm gap with Ka=0.1, n=0.1, 6=0.5
—-&- : Damping force at the entrance of the support
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CHAPTER 4

GENERAL DISCUSSION

4.1 Review of objectives

The primary purpose of this study was to obtain an analytical solution for the
perturbation pressure inside of the annulus when a pinned-pinned inner cylinder is

subjected to 2-D annular flow.

Comparing 1-D and 2-D annular flow models, the secondary purpose was to describe
the limitations of the 1-D flow model for annular-flow-induced vibration of a

continuous beam.

Thirdly, based on the analytical solution, the purpose was to investigate experimentally
the finite-length diffuser-induced vibration of a cylinder in axial leakage flow, and to

develop an analytical model to explain the experimental results.

Fourthly, the final goal of this study was to propose a semi-analytical model to predict
the critical flow velocity for the pinned-pinned cylinder in terms of annular gap and

diffuser angle of the finite-length gap support.

4.2 Contributions

Hobson’s model has been extended to analyze a continuous beam subjected to a 2-D
annular flow considering friction loss. The proposed friction model in Chapter 2 is

capable of giving solutions for different support conditions. This study showed that the



132

dynamics of annular-flow-induced vibrations obtained by the pressure loss theory is
almost the same as the dynamics by potential flow theory; the tube loses stability
consecutively by divergence in the 1% and 2" mode, then by the coupled-mode flutter.

However, the critical flow velocity was predicted to be considerably lower.

It is shown that the one-dimensional model is limited to one-dimensional vibrations
such as 1-d.o.f translational or rotational (rocking) motions which were studied by

Hobson (1982), Fujita and Ito (1992 and 1994) and Porcher and de Langre (1997).

Experiments show that a pinned-pinned tube subjected to annular flow in a finite length
narrow gap support first loses stability by flutter. With annular flow, the simply
supported cylinder is known to lose stability by divergence at very high flow velocity. A
small support at the mid length of the tube plays a significant role not only to change the
dynamic behavior of the pinned-pinned rod but also to decrease the critical flow
velocities down to engineering flow velocities. Generally speaking, the smaller the gap

and the smaller the diffuser angle the lower the critical flow velocity.

In the theory, the negative damping force is shown to be strongly dependent on the
dimensionless diffuser performance efficiency ( & ), which is the ratio of diffuser
efficiency to dynamic gap closure. The other important result is that the negative
damping force is mostly generated at the exit of the support. From these two results, it
may be concluded that expansion channels at the downstream end of the support cause

flutter instability. This is in agreement with previous research findings.

A semi-analytical model for the fluidelastic damping force is proposed based on the
analytical pressure solution. In the case where no losses are assumed at the entrance and
the exit of the support, fluidelastic damping remains positive at all Reynolds numbers.
The semi-analytical model yields results that are comparable with experiments. The

smaller gap size and diffuser angle are shown to be more destabilizing.
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For the pinned-pinned cylinder subjected to leakage flow in a finite-length gap support

at its mid-span, the critical flow velocity with compressed air (p = 8.5 Kg/m®) turns out

to be less than 3 m/s, which is within the range of most engineering applications.
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CHAPTER 5

CONCLUSION AND RECOMMENDATIONS

5.1 Conclusion

In this study, Hobson’s work has been further extended to annular-flow-induced
vibration of a pinned-pinned cylinder based on a two-dimensional flow model with
friction. For the friction consideration, a new concept of a perturbation friction factor is
introduced, which consists of a real and imaginary part. By using the proposed friction
model, friction effects can be analyzed and applied for all the vibration modes. It is
shown that not only the friction factor but also the perturbation pressure is strongly

coupled with the mode shapes of the simply-supported cylinder.

With the proposed new friction factor, the theoretical solutions for unsteady pressure
and flow velocities are easily obtained. In addition, the perturbation pressure can
reasonably be represented using three terms; @’ related terms, @ related terms and @
independent terms. The @ independent term, the fluidelastic stiffness force, is the most

dominant among the three terms, so that static-type instability may be expected.

The proposed two-dimensional flow model shows that the predicted fluid forces are
significantly different from those of a one-dimensional fluid model for a pinned-pinned
cylinder subjected to annular flow. It is believed that the large difference is attributable
to the cylinder radius-to-length ratio and to whether or not circumferential flow is
allowed. Considering that the one-dimensional flow model does not allow for fluid to be
squeezed in the circumferential direction, utilization of the one-dimensional flow model
is probably limited to radius-to-length ratios larger than 0.8, or to one-dimensional
vibrations such as 1-d.o.f translational or rotational (rocking) motion (Hobson 1982,

Fujita and Ito, 1992 and 1994, Porcher and de Langre, 1997).
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The flow perturbation theory does lead to significant changes in the dynamics of the
annular-flow-induced vibrations of a cylinder when compared to the confined mean
flow velocity theory which does not consider perturbations. It turns out that small
perturbations decrease the first dimensionless critical flow velocity down to 2.36 from

3.14 when only the mean flow is considered.

The proposed friction-based model is capable of giving solutions for different support
conditions of a cylinder such as cantilevered and fixed-fixed cylinders. Also, it may
further be extended to give an analytical solution to the problem of a finite-length

annular gap support.

The stability behavior of a pinned-pinned flexible rod subjected to narrow annular flow
over a finite-length gap support has been experimentally and analytically investigated.
With the experimental approach, the critical flow velocities were measured for varying
gap size and diffuser angles for a finite-length support. With the analytical approach, an
analytical solution was obtained for the perturbation pressure acting on the pinned-
pinned cylinder subjected to a leakage flow at a finite-length gap support. For the
analytical solution, two-dimensional flow with two fluid boundary conditions was
considered. The two sets of boundary conditions are, a lossless entrance and a full
conversion exit for the ideal conditions, and a contraction-loss entrance and diffuser exit

for practical boundary conditions.

In experiments with a 2.2 m long steel tube, a 3.8 cm long support, and a significantly
small air flow, flutter instability is observed for all supports; independently of the gap
size and diffuser angle. With annular flow, the simply supported cylinder is known to
lose stability by divergence at very high flow velocity beyond practical engineering
applications. Interestingly, a small support plays a significant role to change the

dynamic behavior of the pinned-pinned rod, decreasing the critical flow velocities down
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to engineering flow velocities. The critical flow velocity obtained experimentally is
much lower than practical flow velocities generally encountered in power generation
plants. Generally speaking, the smaller the gap and the smaller the diffuser angle the
lower the critical flow velocity for negative damping. However, for the largest gap (2.20
mm), the critical flow velocity of the larger diffuser angle (20°) is lower than that of the
smaller diffuser angle (10°).

In the theory, the negative damping force is strongly dependent on the dimensionless
diffuser performance efficiency (&), which is the ratio of diffuser efficiency to dynamic
gap closure. It is also found that the negative damping force is mostly generated at the
exit. From these two results, it is concluded that an expansion channel at the

downstream end causes flutter instability, in agreement with previous research findings.

A semi-analytical model for the fluidelastic damping force is proposed based on the
analytical pressure solution. In the case where no losses are assumed at the entrance and
the exit of the support, fluidelastic damping remains positive at all times. For the
experimental cases, numerical calculation by the semi-analytical model yields results
that are comparable with experiments. The smaller gap size and diffuser angle are more
destabilizing. However, in the case of the largest gap (2.2 mm), the bigger diffuser angle

(20°) generates negative damping at a lower flow velocity.

For the pinned-pinned cylinder subjected to leakage flow in a finite-length gap support
at its mid length, the critical flow velocity of the compressed air (p = 8.5 Kg/m®) turns

out to be below 3 m/s. This falls within the range of engineering flow velocity.

5.2 Recommendations

For the annular flow problem, using the perturbation flow model, a critical flow velocity

of 2.36 in dimensionless form is predicted. By the unperturbed confined axial flow
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theory, a critical flow velocity of 3.14 in dimensionless form is predicted for a pinned-
pinned tube. The perturbation theory developed in the thesis, therefore, needs to be

verified experimentally.

The thesis has covered only a simply-supported tube. Basically, the pinned-pinned tube
is a conservative system excluding friction effects, so that one may assume that
dynamics of the fixed-fixed tube may not be different from the pinned-pinned tube.
What about a cantilevered tube? It is known that the cantilevered tube has interesting
dynamic behavior. To obtain analytically the single mode flutter, the perturbation
assumption is unnecessary. If the critical flow velocity is reduced, however, the

dynamics of the cantilevered tube become possibly more complex and more interesting.

The thesis used the experimental model of Shimoyama and Yamada (1937) for the.
friction model. However, Shimoyama and Yamada obtained the experimental data from
a fixed annulus. No vibration of the inner tube was considered. When the inner tube is
vibrating, friction loss in a finite-length support could be different. The following graph,
Figure 4.1, was recently obtained by the author for friction loss as functions of Reynolds
numbers. The same notations as in Figure 3.15 are used. As shown in Figure 4.1, the
measured friction loss is not exactly coincident with Shimoyama and Yamada’s model
prediction. Annular-flow-induced vibration, therefore, still needs many clarifications by

flow measurements.
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Figure 5.1 Friction loss factor for annular gap as a function of Reynolds number

(The notation of Figure 3.15 is used here)
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APPENDICES

APPENDIX I: Linearization of fluid equations

The non-linear fluid equations in the (x, &) plane may be written as follows (Hobson,

1982):

Continuity equation:

2 )+ L (9)+ 2 < @1
x -Momentum:

p%(l_zﬁ)+—(%|:}7(ﬁ+pz72):|+—'f—5%(i—zz7§)—ﬁ%+rx =0 (1-2)
6 -Momentum:

p 2 (59 oL (R e L 2Tk (5 o) 22 1r, =0 (13)

These equations can be linearized by assuming that %, p, 7 andv may be expressed as

the sum of a steady component and a small perturbation component as follows:

h=H+h(x,0,1) (I-4)

p=P+ p(x,0,1) (I-5)

u=U+u(x,0,t) (1-6)
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v= +v(x,0,1) I-7

Equation (I-7) reflects the fact that there is no mean circumferential flow velocity.

Substituting equations (I-4) ~ (I-7) into equation (I-1) and retaining only the first order

terms gives
0 1 0 0
—(Uh+ Hu)+——(Hv)+—(h)=0 1-8
o U+ Hu) e o5 ()5 (1) (5)

Since the steady components are independent of x and &, equation (I-8) simplifies to

u 1w _Udh 1k 9)

Oox r 06 Hox H ot

Similarly, substituting equations (I-4) ~ (I-7) into equations (I-2) and (I-3) and keeping

only the first order terms gives

2 2 : 22 (1w _
p= (Hu+Uh)+ ax(Hp+pU h+2U pHu)+ - aH(HUV)—O (1-10)

o 0 18 P oh

—(H —(HU¥)+——(Hp+Ph+.)-———=+1,=0 I-11
P H )+ P (HUT )+ Dog (s Phe ) =25+ (1D

Simplifying and rearranging, the following form of the first order x-momentum and & -

momentum equations is obtained.

2
a_p+pa_u+£Uﬁ+2Upgli+T_x=_£[_].§.Iz_£% (1_12)
Ox ot r 00 ox H H ot H ox
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+p—+pU—+-"L=0 (I-13)

7% ot ox H

Equations (I-9), (I-12) and (I-13) correspond to equations (2-2), (2-3) and (2-4),
respectively, in Chapter 2.
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APPENDIX II: The first order fluid boundary conditions for a diffuser

exit

Considering diffuser efficiency 77 at the exit, Bernoulli’s equation relating the pressure

at locations just before and after the exit is

Dou — D —
ot = Pin _ 11-1
o712 n (1I-1)

Expressing the pressure, velocity and diffuser efficiency in terms of steady and

perturbation components (with 7 =7, +7,(x,8,t) ), one obtains
(Bu+p)+ (0, +7,)- 5 +20u) = B, (11-2)

P, = p,..1s based on the reasonable assumption that there is no perturbation past the

out

exit. Equation (II-2) can be separated into the following equations: one for the steady

terms, and the other for the perturbation terms

P —-P

TR (11-3)
Prr_

p,, +1n.pUu + m, EU =0 (I1-4)

Assuming that the perturbation recovery coefficient 7, is a function of A(x), one can

write (Hobson, 1982)
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An
=—"s.p I1-5
T =n (11-5)
Defining the dimensionless diffuser performance coefficient 6 as follows:
__An, (11-6a)
Ah/H
the following convenient expression for 7, is obtained:
_h o 6b
n,= 7 (11-6b)

Then, substituting into equation (II-4), considering the exit location, one obtains
p(L)+nspUu(L)+§£U2h(L) =0 (I1-7)

Similarly, when the diffuser exists at the entrance, x=0, the following equation can

be obtained:

2(0)+7,pUu(0) + 5%{]%(0) -0 (11-8)
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Appendix III: Childs’ procedures (Childs, 1993)

We start with equations (2-11) ~ (2-12c) without friction consideration.

h(x,0,t) =Y (x,t)cos@ + Z(x,t)sinb (2-11)

u(x,0,t) =u, (x,t)cosd +u, (x,t)sin@ (2-12a)
v(x,0,t) =v, (x,t)cosO +v, (x,t)sind (2-12b)
p(x,0,t) = p,_(x,t)cos@ + p, (x,t)sin@ (2-12¢)

Substituting the five equations into equation (2-2) gives

e o5+ s sm6’+l%(vlccos6+ v, siné)

ox ox r (I1I-1)

=_ga—ycosO—QG—Zsinﬁ—ig{cosﬁ——l—a—YsinH
H ot

H ox H ox H ot

Similarly, equation (2-3) and (2-4) yield

P cosl9+ap'5 sm6’+2Upa < cos @

Oy, ou
—<cos @+ s sin @ + —<
r P ax ox o

+2Up—= aa s sing+ 20U aag (v,.cos0+v,, sinB)
¥

2
_ﬂaY 0s6— pU aY ind— pU” azcos
H ot H 6 H ox H Hox
(I11-2)
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pa%(vlc cos@+v, sind)+ pUai(vlc cos@+v, sin6)
x

Lo (I11-3)
+;5§(plc cosf+ p, sinf)=0
Equation (III-1) can be separated into two equations.
Me cos 49.,_1_6_(1,“(;059) __ YO -1 os0 (111-4)
ox r 06 H ox H ot
o, inﬁ—li(vlc sin9)=—ga—zsin9—iézsin6’ (I11-5)
ox r 06 H ox H ot

Eliminating cosé and siné from these equations, multiplying (I1I-5) by ‘i’ and
adding the result to (111-4) yields

d . 10 . U o .y 10 :
a(ulc +1u|5)+;%(vls —iv, )= —Ea(Y+lZ)——I_76—t(Y+lZ) (111-6)

Next we define the following four complex variables

h=Y+iZ (I11-7)
u=u,_+iu, (1I1-8)
v=y_ +iv, (111-9)
p=p.+ip, (I1I-10)

Using equations (I1I-7) ~ (II1-9) and employing complex variable properties, equation

(I11-6) reduces to the form



ou .1 Uodh 1 0oh

v
ox r Hox H ot
By using the same procedure, equations (Il1-2) and (III-3) become

_a£+ _a_Ii_l gv+2 Ua_u—_ y_@_ U_zéfl_
o P P TP s T TP H e PH o

1 ov ov
—i—p+p—+pU— =0
lrp pat p ox
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(111-11)

(111-12)

(I1-13)
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Appendix IV: Solution for a short-lossless entrance and a full-

discharge exit fluid boundary conditions

Analytical solutions consist of homogeneous solutions, which can be obtained by setting
the right hand side to zero, and adding the particular solutions. For the pinned-pinned
cylinder, knowing that the eigenfunction is a sine function, the solutions may be

expressed as

h(x,t) = a sin (%x} e (IV-1)
3
u(x,t) = Zﬁj M (us ‘h+u, ﬁ) e (Iv-2)
= dx
S dh\ .
p(x,t)=2pj~e m.e? +(ps-h+pc-—)-e‘“’ (Iv-3)
j=I dx
3
v(x,t) = ZVJ M e +(vs “h+v, %) e (IvV-4)
j=1

Substituting the assumed solutions above into the equations (III-11) ~ (1II-13), in

Appendix 111, one obtains the following equations.
3 — ij iw dh th iwt
Aj-z e e+ ”S'T,E”‘C'E -e

1= | AV-5)
__l_[z_j _e/\jx _eiw’ +(VS .h+vc .@).eiwt} — _‘l"]—g]z'eiwt —Eh-eiw
r dx



dh

®

j iwt
il

dx

dh)
— -e
dx
dh)
—_— .e
dx

4V -
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(IV-6)

(IV-7)

d
“a

2
hj.eiwt:| =0

In equations (IV-5) ~ (IV-7), separating purely fluid-related terms (the homogeneous

parts of each solution) and the terms in parenthesis (the particular solution

components), setting each separately to zero and canceling out common terms, one can

obtain the following equations,

1
Aj 0 —17
plio+2UA) A, —i%U—
.1 .
0 —17 plio+UA))

(1V-8)
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Ur+ Hru —iHh —iHv, —Hr/lmzuc +irw
(Ur + Hru, —i Vc)@_’_( )h=0 (IV-9)
Hr dx Hr

rpU? + H(p,r+2rpUu, —ipUv, +irpau,) dh

Hr & (IV-10)
H[Mmz(pc+2pch)+ip(UvS—ra)us)]—irpcoUh 0
_ - =
_ipc +pr(ia)vc +UVS) ﬁ + —ips +pr(ia)vs —ﬂszVc) =0 (IV-I 1)

r dx v

In equation (IV-8), to have nontrivial solutions, the determinant of the matrix must be

zero. From the non-triviality condition, the following three eigenvalues, A, = L ,
B
A, = 1 and A, =i % are obtained (Hobson, 1982). Knowing that / =sin(4,x) and
v

dh/dx = A, cos(4,x), equations (IV-9) ~ (IV-11) yield six equations from which the six

coefficients (u,, u,, ps, pc, Vs, and v.) are determined. Equation (IV-9) yields

Ur+ Hru, —iHv, =0, (Iv-12)

—iHv, — Hrd,'u, +iro=0 (Iv-13)
Similarly, equations (IV-10) and (IV-11) give

rpU* + H(p,r+2rpUu, —ipUv, +irpau, )=0 (IV-14)

H[Mmz (p. +2pUu,)+ip(Uv, - raw, )]—irpa)U =0 (IV-15)



156

—ip, + pr(iov, +Uv,)=0 (IV-16)

—ip, + pr(iwv, - 1,70y, ) =0 (IV-17)

Utilizing the six equations (IV-12) ~ (IV-17), the six unknown coefficients can be

determined as follows:

u, =—ﬁmU (IV-18)
¢ H(1:2:;,1m2) (v-19)
)
ety
y, = ?1'(1—:%7) (IV-22)
v =Y (IV-23)

3. AL A2 _ e dh
___z e | —— "  poh—j—— = Iv-24
“) j:lu’ ¢ H(1+r74,7) lH(1+r2/1m2) dix ( )
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g S g e
V)= ,ZB;VJ < {H(lii)zﬂmz) i H(lilr]umz) '%} (IV-26)
With the following eigenvalue dependence,
€)) Al=—%: in,—-v,=0, p,+p(U—-irw)-u,=0 (Iv-27)
() A2=%: i, +v,=0, p, + p(U +irw)-u, =0 (IV-28)
3) A3=—iza])—: V3+%-ﬁ3=0, p,=0 (IV-29)

For a short-lossless inlet, p(0) and #(0) are needed. Introducing x =0 into equations

(IV-24) and (IV-25) gives

— r’au . ro dh i
O T~ ) M () il (V=30
o pr (U, ) _ 2pr0U  dh
PO=P P e R T 7] il V31

Substituting equations (IV-30) and (IV-31) into equation (2-5) gives
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5 45 —i 2pr’0U  dh|
b H(l+r2/1m2) dx

x=0

(IV-32)

=0
x=0

u, is zero because the inlet flow can be assumed to be irrotational so that the vortical

+pU-| u, +u. +i£—-g’ﬁ
S H(1+7°2,7) dx

velocity is zero. For a full-discharge exit, p(L) is needed. Introducing x = L into

equation (IV-25) gives

v . 2pr'oU  dh

L)=p e +p, " - IV-33
pL)=p e Dye lH(l+r2/1m2) &l ( )

Therefore, for a short-lossless entrance and a free-discharge exit, the following equation
is obtained using equations (IV-27), (IV-28), (IV-32), (IV-33) with the irrotational

assumption (#, =0)

[ —p(iro-U) 0 0 1 of|%] [ 0 l
0 pliro+U) 0 0 1 |[% 0
0 0 1 0 0" 0
15 (= zrza)—'OU+1 an
pU pU 0 1 1||& H(1+r2/1m2) dx| _,
5 2 pr*oU (dh]
L L |
0 0 0 7 e |l ] H(1+r°4,2) \ax |

(IV-33)



