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RESUME 

Dans de tres nombreuses applications industrielles particulierement dans le domaine de 

l'energie, de nombreuses structures sont soumises a des vibrations induites par des 

ecoulements annulaires ou de fuite. On peut citer par exemple, les tubes de generateur 

de vapeur au niveau de leur support avec jeu, les faisceaux d'elements de matiere 

fissible (UO2) au niveau des grilles d'espacement ou entre les attaches de combustible 

dans les reacteurs refroidis au gaz lors des operations de remplissage, etc. Pourtant, la 

recherche dans ce domaine se limite qu'a quelques articles. Dans cette etude, nous 

etudierons a la fois experimentalement et analytiquement les vibrations induites par un 

ecoulement annulaire sur un cylindre de 2.5m de long simplement supports aux deux 

extremites. Les experiences ont ete realisees avec ou sans la presence d'un "diffuseur a 

faible jeu" de quelque dizaine de millimetres de long situe a la mi-longueur du cylindre. 

Le modele analytique pour modeliser les vibrations du cylindre induite par un 

ecoulement annulaire est fonde sur les hypotheses suivantes : (1) La vibration induit que 

de petites perturbations dans l'ecoulement principal. (2) L'ecoulement reste 2D; on 

neglige la composante radiale de l'ecoulement. (3) La force de friction due a la 

perturbation ne depend que de la variation dans l'espace et le temps de la composante 

axiale de l'ecoulement. Cette etude a permis d'aboutir aux conclusions suivantes : (1) 

La difference entre un modele ID et 2D depend essentiellement du rapport du rayon sur 

la longueur du cylindre. (2) Le modele ID n'est valide que pour les problemes a un 

degre de liberie ou pour des cylindres presentant un rapport rayon sur longueur tres 

faible. (3) La methode des petites perturbations n'a que peu d'influence sur la 

dynamique du systeme mais permet une bien meilleure evaluation de la vitesse critique, 

qui est considerablement diminuee. 

Le modele analytique a ete confronte a des experiences sur un tube simplement supporte 

soumis a un ecoulement annulaire dans un "diffuseur a faible jeu" situe a mi-longueur 
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du tube. La longueur du banc d'essai est de 2.5m. Plusieurs diffuseurs ont ete utilises 

avec differents jeux, longueurs et angle d'entree et sortie du diffuseur. Nous avons 

observe une instabilite par flottement du tube. La vitesse critique d'instabilite est 

fortement dependante du jeu entre le tube et le diffuseur, ainsi que de Tangle d'entree du 

diffuseur. Les perturbations de pression sur le tube ont ete obtenues analytiquement 

considerant la perte par friction, la contraction a 1'entree du diffuseur et le 

retablissement de la pression en sortie. La solution analytique demontre le role 

predominant de la condition limite de sortie pour materialiser le retablissement de la 

pression. Cependant nous ne trouvons pas d'instabilite par flottement pour des 

conditions ideales comme aucune perte de pression a l'entree et la conversion du debit 

en pression a la sortie. Un modele semi-analytique a ete propose pour predire la vitesse 

d'instabilite. La prediction semi-analytique s'accorde raisonnablement bien avec les 

resultats experimentaux. Cependant, le retablissement de la pression a la sortie du 

diffuseur devrait etre mesure plus precisement afin d'ameliorer la precision du modele. 
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ABSTRACT 

Many engineering applications with annular- or leakage-flow over a finite length can be 

encountered especially in the power generation plants. For instance, heat exchanger 

tubes with gap supports in steam generator, UO2 fuel rods with spacer grids in fuel 

bundles and fuel assemblies in gas-cooled reactors during refueling, etc. Nonetheless, 

few articles can be found on this subject. In this study, therefore, the annular-flow-

induced vibrations of a pinned-pinned cylinder with and without a finite-length narrow-

gap diffuser are studied by analytical and experimental methods. 

For the annular-flow-induced vibrations of a pinned-pinned cylinder, an analytical 

model is proposed based on three main assumptions; (1) small perturbations in flow 

components, (2) negligible radial flow to reduce the annular flow to two-dimensional 

flow, and axial flow only for reduction to one-dimensional flow, and (3) perturbation 

frictional loss depending on the variation of axial perturbation velocity in terms of space 

and time. In this study, it is concluded that (1) the difference in fluidelastic forces 

between two- and one-dimensional flow models depends mostly on cylinder radius, and 

on whether perturbation flow is mainly allowed in the axial or circumferential direction, 

(2) the one-dimensional flow model should be limited to 1-d.o.f vibration analysis or the 

case of a cylinder having a large radius-to-length ratio, and (3) perturbation assumption 

makes little change to the dynamics of annular-flow-induced vibrations, however, the 

critical flow velocity is diminished considerably. 

The stability of a simply-supported tube subjected to narrow annular flow in a finite-

length gap support is experimentally and analytically investigated. For the experiment, a 

2.5 m test section and several finite-length gap supports have been made considering 

different gap size and diffuser angles of the support. The tube was observed to lose 

stability by flutter. The critical flow velocity was strongly dependent on the annular gap 

size and the diffuser angle at the downstream end of the support. A solution for the 
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perturbation pressure on the tube is analytically obtained considering the friction loss, 

the contraction loss at the entrance, and the pressure recovery at the exit of the support. 

In the analytical solution, the exit boundary condition for pressure recovery is found to 

be predominant for flutter instability. However, flutter instability does not materialize 

for lossless boundaries such as short-lossless inlet and free-discharge outlet. Based on 

the solution, a simple semi-analytical model to predict the critical flow velocity is 

proposed for the first mode instability. The prediction of the semi-analytical model 

agrees reasonably well with the experimental results. However, it is judged that the 

pressure recovery at the diffuser should be experimentally measured more accurately to 

have better prediction. 
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CONDENSE EN FRAN£AIS 

Introduction 

Les problemes de vibrations induites par les ecoulements sont classes selon leur type : 

i) ecoulement transversal ii) ecoulement interne axial iii) ecoulement externe axial iv) 

ecoulement annulaire ou de fuite sur une distance finie, parfois nomme configuration 

avec diffuseur. La taille du confinement permet de distinguer les ecoulements annulaires 

(confinement normal) et de fuite (confinement extreme). L'ecoulement annulaire peut 

aussi bien faire reference a un ecoulement autour d'un cylindre qu'autour d'une barre 

plate ou d'un element rectangulaire. On retrouve des ecoulements annulaires et/ou de 

fuite en particulier: 

• dans les reacteurs nucleaires refroidis a gaz 

• dans les generateurs de vapeur ou les fluides (primaire et secondaire) s'ecoulent 

dans des passages tres etroits 

• autour des boucliers thermiques dans les conduits des reacteurs a eau pressurisee 

• autour des elements de controles, entre les barres d'uranium et les conduits des 

reacteurs refroidis au gaz de deuxieme generation 

• entre les tubes et leurs supports dans les echangeurs de chaleur. 

Une raison fondamentale de l'interet pour cette configuration d'ecoulement c'est qu'elle 

est observee dans des systemes tres flexibles. 

L'equation du mouvement pour un cylindre dans un ecoulement axial, developpee par 

Paidoussis (1966, 1973 et 1974), est bien connue et citee par de nombreux chercheurs. 

Le confinement ne change pas le mecanisme de base de 1'instability mais la vitesse 

critique est beaucoup plus faible. 

Dans les systemes conservatifs (simplement supportes ou encastres), il est bien admis 

que les cylindres en ecoulement axial deviennent instables par divergence. Paidoussis et 

Pettigrew (1979) ont montre experimentalement qu'un cylindre flexible en ecoulement 

axial peut etre significativement destabilise par le confinement. 
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Un modele non visqueux pour un corps interne dans un ecoulement annulaire a ete 

developpe par Mateescu et Paidoussis (1985). Dans cette etude, on considere un corps 

axisymetrique rigide simplement supporte en un point et coaxialement monte dans un 

canal avec un petit jeu de forme annulaire. L'ecoulement est modelise par un 

ecoulement potentiel afin de determiner les forces instationnaires creees par le fluide. 

Dans les articles suivants, les auteurs ont propose une correction visqueuse (1988), ainsi 

qu'un modele analytique pour un corps flexible. Sim (1987) a prouve que les forces 

visqueuses ainsi que le confinement d'un jeu de forme annulaire contribuent a stabiliser 

le systeme. 

Inada et Hayama (1988, 1990 et 2000) ont etudie le cas d'un ecoulement de fuite sur une 

plaque supportee par des ressorts en translation et en rotation dans un passage etroit 

delimite par deux plaques planes. Dans leur travail, les forces instationnaires sont 

modelisees comme une masse, un amortissement et une raideur ajoutee. lis demontrent 

qu'une instabilite de flottement ou par divergence est possible pour un conduit 

divergeant. Leurs etudes ont contribue a stimuler la recherche japonaise dans ce 

domaine. 

Le modele mathematique developpe par Li, Kaneko et Hayama a ete ameliore par 

Langthjem, Morita, Nakamura and Nakano (2006). lis ont etudie le cas d'un cylindre 

flexible avec un desequilibre (excentricite) avec des ecoulements de fuite laminaire ou 

turbulent. Selon eux, un cylindre simplement supporte peut devenir instable par 

flottement ou par divergence. En considerant, le travail des forces, ils ont prouve que la 

force centrifuge est la seule responsable de l'instabilite par divergence d'un cylindre 

simplement supporte ou encastre. Autrement dit, l'instabilite par divergence est 

independante de la force de friction fluide. Cependant, des ondes progressives sont la 

seule solution pour obtenir une instabilite par flottement. 
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Hobson (1982) est responsable de la premiere tentative pour developper un modele 

analytique pour les ecoulements de fuite. Son etude considere le mouvement 

unidimensionnel d'un cylindre central, positionne dans un passage annulaire etroit. 

Negligeant les perturbations de la vitesse radiale du fluide, la dynamique du cylindre a 

ete etudiee dans le but de comprendre le role des conditions limites du fluide sur 

ramortissement aerodynamique. Meme si l'etude ne decrit pas completement la 

dynamique de l'ensemble, elle demontre l'existence d'une instabilite par flottement pour 

des ecoulements divergents en aval. Spur et Hobson (1984) ont prouve 

experimentalement la presence d'une instabilite par amortissement negatif pour des 

angles de diffuseur de 4° ou plus. 

La theorie de Hobson a ete validee par les experiences de Fujita (1922 ) et Ito et al. 

(1994). Leur banc d'essai permettait d'obtenir un mouvement a un degre de liberie dans 

un conduit avec diffuseur et permettait de mesurer la force dynamique due au fluide (air 

ou eau). lis ont verifie que le systeme peut devenir instable pour une configuration 

divergente en amont. 

Parkin et Watson (1984) ont rapporte des problemes de vibration des elements de 

combustible dans un reacteur refroidit au gaz. lis ont mis en evidence 

experimentalement que le mecanisme d'instabilite dans un diffuseur a 30° est du a la 

formation de tourbillons alternes. En revanche dans un diffuseur a 6°, l'origine des 

vibrations provient des caracteristiques de recuperation de pression. Cette decouverte 

fondamentale nous propose des directions de recherches pour les instabilites par 

amortissement negatif. 

Mulcahy (1984) a rapporte des problemes de vibration induite par un ecoulement de 

fuite a travers un joint de glissement pour un tube en porte a faux. II a decouvert qu'a un 

debit inferieur a celui ou le tube frappe la paroi, un cycle limite est atteint. A haut debit, 

le mouvement d'instabilite passe du premier mode au second mode. Plusieurs annees 
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apres l'etude avec mode a un degre de liberte de Hobson, Mulcahy (1988) etudia a son 

tour les amortissements dynamiques dus aux ecoulements. 

Gorman, Godin et Planchard (1987) ont rapporte une vibration fluide-elastique d'un 

tube a gobelet dans un reacteur a eau pressurisee. Dans cette etude, une buse divergente, 

droite et de section carre avec quatre rayons verticaux differents ont ete utilisees. lis ont 

decouvert que de grandes vibrations apparaissent avec une buse divergente. 

Yasuo et Paidoussis (1989) considere le probleme d'instabilite induite par un 

ecoulement des tubes d'echangeur de chaleur soumis a un ecoulement axial dans des 

supports de type divergent, qui sont similaires a ceux utilises dans notre etude. Dans leur 

etude, une approximation a un mode pour le tube interieur a ete utilisee de meme qu'un 

diffuseur de petite longueur et la theorie des ecoulements potentiels. lis ont abouti a une 

equation de la vitesse critique pour l'instabilite par divergence et par flottement. 

Objectifs 

Aujourd'hui, les simulations numeriques comme FEM ou BEM sont tres populaires. 

Elles sont parfois tres utiles, cependant dans certaines situations une solution analytique 

est plus utile, en particulier pour expliquer les phenomenes inconnus et dechiffrer la 

physique de ces phenomenes. Une solution analytique permet de dormer un apercu des 

applications et d'avancer par la suite sur l'ingenierie pratique. 

Premierement, la raison de cette etude est d'obtenir une solution analytique pour les 

perturbations de pression a 1'interieur de l'espace annulaire lorsque le tube interne est 

soumis a un ecoulement annulaire 2D. Cette etude a la pretention d'etendre les travaux 

de Hobson en considerant un systeme continu ainsi que les pertes par friction au sein du 

liquide. 
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Deuxiemement, nous allons etudier analytiquement et experimentalement les vibrations 

d'un cylindre entoure d'un ecoulement de fuite axial autour d'un diffuseur de petite 

longueur. Le but de ces travaux est 1'etude en detail des instabilites et la prediction de la 

vitesse critique d'instabilite pour un cylindre simplement supporte en fonction dujeu 

annulaire et de la longueur du support. 

Resultats 

Dans cette etude, le travail de Hobson est etendu afin d'etre utilisable pour les vibrations 

d'un cylindre simplement supporte induites par des ecoulements annulaires, grace a une 

modelisation 2D de l'ecoulement avec perte visqueuse. Afin de modeliser la friction, un 

nouveau facteur de perturbation de la friction est introduit sous la forme d'un nombre 

complexe. L'utilisation de ce modele de friction permet d'analyser les effets de la 

friction sur tous les modes de vibrations. II est demontre que non seulement le facteur de 

friction mais aussi les perturbations de pression sont fortement couples avec les modes 

du cylindre simplement supporte. 

Avec ce facteur de friction, les solutions theoriques pour des pressions et des vitesses 

d'ecoulement instationnaires sont facilement trouvees. De plus, les perturbations de 

pression peuvent etre raisonnablement formulees avec trois termes : le terme en a>2, 

celui en co et enfin celui independant de<y. Le terme independant de#>(la force de 

raideur fluide-elastique) est le terme predominant et une instability statique est attendue. 

Le modele d'ecoulement 2D montre que les forces fluides predites sont 

significativement differentes que celles prevues par un modele ID pour un cylindre 

simplement supporte soumis a un ecoulement annulaire. La grande difference entre les 

modeles est probablement due au ratio rayon sur longueur du cylindre et sur la 

difference entre un ecoulement plan et circonferentiel. Le modele ID ne permet pas a 

l'ecoulement de se deplacer dans la direction circonferentielle, done le modele ID est 

limite au ratio rayon sur longueur plus grand que 0.8 ou a des vibrations a un degre de 
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liberie comme une translation pure ou une rotation pure (Hobson ,1982, Fujita and Ito, 

1992 and 1994, Porcher and de Langre, 1997). 

La theorie des petites perturbations conduit a des changements dans la dynamique des 

vibrations du cylindre induites par les ecoulements annulaires comparativement a la 

theorie ne considerant que 1'ecoulement moyen. La theorie des petites perturbations 

diminue la vitesse adimensionnelle critique d'instabilite a 2.4. comparativement a 3.14 

pour la theorie avec ecoulement moyen. 

Le modele incluant les pertes par friction est suppose dormer des solutions dependant 

des differents supports ou conditions limites du cylindre (porte a faux, encastre-

encastre...). Ce modele peut etre developpe davantage pou donner des solutions 

analytiques au probleme de support avec jeu annulaire de longueur limitee. 

La stabilite d'un cylindre flexible simplement supporte soumis a un ecoulement 

annulaire sur la longueur limitee du support a ete exploree analytiquement et 

experimentalement. Les experiences ont permis de mesurer des vitesses critiques 

d'instabilite pour des supports de longueur limitee ayant differents jeux et angles de 

diffuseurs. L'approche analytique a permis d'obtenir les perturbations de pression 

agissant sur le cylindre simplement supporte soumis a un ecoulement annulaire de fuite 

sur la longueur du support. La solution analytique considere un ecoulement 2D avec 

deux conditions limites du fluide. Les deux types de conditions sont: 

• le cas ideal, une entree sans perte et a la sortie une conversion complete 

• le cas plus reel considerant une perte due a la contraction a l'entree et a la 

detente en sortie. 

Dans les experiences avec un tube interieur en acier de 2.2 m de long et un support 3.8 

cm de long, on observe une instabilite par flottement avec des debits d'air assez faibles 

et cela pour tous les supports independamment du jeu et de Tangle du diffuseur. Pour 
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des ecoulements annulaires, un cylindre simplement supporte perd sa stabilite par 

divergence pour des vitesses bien plus grandes que celles rencontrees habituellement 

dans les problemes d'ingenierie. Un petit support joue un role essentiel dans le 

changement de comportement de la dynamique du cylindre en diminuant 

significativement la vitesse critique d'instabilite. La vitesse critique d'instabilite obtenue 

experimentalement est tres en dessous de celle rencontree habituellement dans les 

generateurs de vapeur. En general, plus le jeu et Tangle du diffuseur sont petits la 

vitesse critique diminue ou un amortissement negatif apparait. D'un autre cote, pour le 

jeu le plus grand (2.2 mm), la vitesse critique d'instabilite pour un grand angle de 

diffuseur (20°) est plus petite que celle rencontree pour le plus petit angle de diffuseur 

(10°). 

Dans la theorie, les forces d'amortissement negatif sont tres dependantes de la 

performance adimensionnel le du diffuseur ( S ) qui est le ratio de l'efficacite du 

diffuseur sur le jeu residuel lors de la vibration. L'autre resultat important est que les 

forces d'amortissement negatif sont essentiellement creees en sortie. A partir de ces 

deux resultats, on peut conclure que l'expansion du canal en aval est la cause de 

l'instabilite par flottement. Cela est en accord avec les recherches precedentes. 

Un modele semi-analytique pour la force d'amortissement est propose en s'appuyant sur 

la solution analytique de la pression. Dans l'hypothese ou il n'y a aucune perte, 

1'amortissement fluide-elastique est toujours positif. Pour les cas experimentaux, les 

calculs numeriques par le modele semi-empirique conduit a des resultats en accord avec 

les experiences. Un jeu et un angle de diffuseur plus faible sont plus destabilisants. 

Cependant, le jeu le plus grand (2.2 mm) et un grand angle de diffuseur (20°) generent 

une vitesse critique d'instabilite assez basse. 
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Pour un cylindre simplement supporte soumis a un ecoulement de fuite sur un support 

de petite longueur place a mi-longueur, la vitesse critique d'instabilite pour de l'air 

comprime est plus faible que 3 m/s, ce qui est une vitesse que Ton peut rencontrer dans 

les problemes d'ingenierie. 
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CHAPTER 1 

INTRODUCTION AND LITERATURE REVIEW 

1.1 Review of previous studies 

Structures immersed in fluid flow are subjected to forces generated by the flow. When 

the fluid dynamic force is greater than the flexural rigidity of the structure, the dynamic 

force causes the structure to move. As a result, the orientation or the form of the 

structure changes. This deformation may in turn cause the fluid force to change, thus 

resulting in an interaction between the fluid flow and the structure, what we call, fluid-

structure interaction or fluid-structure coupling. All structures in fluid flow are 

susceptible to flow-induced vibration, sometime even to fluidelastic instabilities. 

The types of flows responsible for vibration problems are classified, based on flow 

configuration, as i) cross-flow, ii) internal axial flow, iii) external axial flow, iv) annular 

and/or leakage flow, and v) annular flow in finite lengths, irrespective of annular length; 

sometimes referred to as diffuser configuration. Confined flow may be divided into two 

types. The first one is relatively confined flow which is called annular flow. The other is 

tightly confined flow which is called leakage flow. The leakage flow refers not only to 

cylindrical geometries but also flat plates in rectangular ducts. Annular and/or leakage 

flow configurations, especially of finite length, are widely encountered in gas and water 

cooled nuclear reactor components and steam generators. For instance, the primary or 

secondary coolant flows in narrow annular passages around thermal shields in PWRs, 

around flow control devices, between fuel stringers and channels on AGRs, and between 

heat exchange tubes and supports. An important reason for interest in the configuration 
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is that annular-flow-induced vibration can be mostly observed in inherently flexible 

systems. 

Axial-flow-induced vibration has been of less concern relative to its cross-flow 

counterpart. The reason for this is understood when considering cross-flow-induced 

vibrations where even moderate flow velocities may cause large amplitudes. In axial 

flow, however, the amplitudes of vibrations in industrial structures are generally small. 

Typical vibration amplitudes due to axial flow would be in the range 10" < 

Amplitude/Rod diameter < 10"2 (Paidoussis, 2004). The other reason why many 

researchers have been less concerned is that the phenomenon caused by the axial flow is 

basically random vibration. For this reason, no dynamic buckling (pitchfork bifurcation) 

and no flutter (Horf bifurcation) can be easily encountered. Paidoussis (1966) showed 

that instabilities can occur for cylinders even in axial flow, but at the same time that 

critical flow velocities are much higher than velocities in normal engineering 

applications. 

The equation of motion for a cylinder in confined axial flow which was derived by 

Paidoussis (1966, 1973, and 1974) is well known and is popularly cited by researchers. 

When we consider the confinement effects, the basic mechanism is the same as for 

unconfined cases. However, the critical flow velocity is now much lower. 

It is well known that cylinders in axial flow generally lose stability by divergence in the 

case of conservative systems such as pinned-pinned or clamped-clamped beam. 

Paidoussis and Pettigrew (1979) showed experimentally, with a flexible cylinder in 

confined flow, that cylinders could be significantly destabilized by confinement. 

An inviscid analytical model for a body subjected to an external flow was developed by 

Mateescu and Paidoussis (1985). In this study, a small annular clearance and an 

axisymmetric rigid body pinned at one point and coaxially mounted in a cylindrical duct 
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was considered. Potential flow theory was used to determine the unsteady fluid dynamic 

forces. In a subsequent paper (Mateescu and Paidoussis, 1987), using a simplified form 

of the Navier-Stokes equations, the effect of fluid viscosity on the flow-induced 

vibration of the rigid center body was taken into account. In a latter study by Mateescu, 

et al. (1988), the analytical model was extended to deal with a continuous flexible 

centerbody in a narrow annular passage. Sim (1987) showed that friction forces 

contribute to the stability of the system, and that an annular gap generally has a 

destabilizing effect on the system as the annular gap becomes narrower. 

Inada and Hayama (1988, 1990 and 2000) studied one-dimensional leakage-flow-

induced vibrations of a rigid plate supported by translational and rotational springs in a 

narrow tapered passage formed by two fixed plates. In their work, the unsteady fluid 

force was obtained in terms of the added mass, the added damping and the added 

stiffness. They showed that single-mode flutter as well as divergence is possible with a 

divergent channel. Their studies strongly stimulated Japanese research in the field. 

The effect of the annular gap on dynamic instability was studied by Tanaka et al. (2001), 

using small interconnected cylinders to simulate a fast train passing through a tunnel. 

They showed experimentally that as the annular gap diminished, instability for all test 

cases was observed, and the critical flow velocity decreased. 

The dynamics of train-like articulated systems were recently studied by Sakuma at al. 

(2008a and 2008b) to investigate the dynamics of a high-speed train travelling in a 

confined cylindrical tunnel. They showed that the system loses stability by flutter, and 

that viscous frictional drag has a considerable effect on the stability of the system 

(2008a). The consecutive study (2008b) showed that no standing wave solution exists in 

the system, and that the response of the articulated system can be considerably amplified 

under certain conditions. 
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Inada (2004) considered the dispersion relation obtained by a travelling wave solution. 

He found that one component related to a forward travelling wave causes negative 

damping which is responsible for the onset of flutter for the multi-degree-of-freedom 

system. He pointed out that this mechanism is different from the flutter caused by a fluid 

force delay, which can occur in one-degree-of-freedom system in a leakage-flow system 

as was shown by Inada and Hayama (1988 and 1990) considering a rigid plate which 

allowed only translational motion. 

Li et al. (2002) developed a mathematical model to study flutter instability of leakage-

flow-induced vibration for a translational and rotational two-degree-of-freedom system. 

The mathematical model was extended by Langthjem et al. (2006). In their study, a 

flexible rod with equilibrium offset (eccentricity) in laminar or turbulent leakage flow 

was considered. According to their research, a simply supported rod may become 

unstable by either divergence or flutter. Considering a work-energy balance equation, 

they found that the centrifugal force is solely responsible for the divergence instability 

of the pinned-pinned and clamped-clamped rod. In other words, divergence is 

independent of fluid friction while flutter instability is affected by fluid friction. 

However, a travelling-wave solution is the only way to formulate the flutter instability. 

The first attempt to develop a comprehensive analytical model for leakage-flow induced 

vibration was made by Hobson (1982). In that study, he considered the 1-D translational 

motion of a cylindrical center body coaxially positioned in an annular narrow passage. 

Neglecting the fluid velocity perturbation in the radial direction, the dynamics of the 

rigid cylindrical body was studied to see what the role of fluid boundary conditions is 

from the viewpoint of aerodynamic damping. Even though this study did not describe 

the overall dynamic behavior, it showed that the system can lose stability by flutter with 

a divergent flow boundary condition at the downstream end. Spur and Hobson (1984) 

later showed experimentally that negative aerodynamic damping could be possible for a 

diffuser angle of 4° or more. 
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Hobson's theory was validated by the experiments of Fujita et al. (1992 and 1994). The 

researchers made a test apparatus which could be closely controlled to simulate one-

degree-of-freedom rigid body motion in a diffuser channel and could measure the fluid 

dynamic forces both for air and water flow. As a result, they verified that the system lost 

stability in the cases of a divergent configuration at the upstream end and a diffuser 

configuration at the downstream end, but not for the straight or convergent channel. 

Parkin and Watson (1984) reported the vibration problem of a fuel rod in a gas cooled 

reactor. They showed experimentally that the instability mechanism in a 30° diffuser is 

predominantly a forced vibration due to vortex shedding, while that of a 6° diffuser 

originates from the pressure recovery characteristics of the diffuser. This was a very 

important discovery which served as a guideline a research on aerodynamic negative 

damping. 

A rigid rod moving periodically in a finite-length annular-gap support was studied by 

Mulcahy (1980) to investigate fluid forces and hydraulic damping. In his study, tests 

were preformed in still water, so that a pressure recovery could not be simulated at the 

exit of the finite-length support. Consequently he found only positive damping in terms 

of annular gap and length. Hydraulic damping increases with decrease in gap size and 

increase in annular length. Mulcahy (1984) reported on a cantilevered tube conveying 

water which showed self-induced-excitation by leakage flow through a slip joint. 

Interestingly, he found that a limit cycle is attained below the flow rate at which the tube 

hits the wall, and that at high flow rate the unstable motion switched from first-mode to 

predominantly second-mode motion. As in Hobson's one-degree-of-freedom study, 

Mulcahy (1988) studied hydrodynamic negative damping for viscous fluid boundary 

conditions. 
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Gorman, et al. (1987) reported the fluid-elastic vibration of a thimble tube in a 

pressurized water reactor. In the study, a diffuser nozzle, straight hole nozzle and split 

square nozzle which has four vertical radial grooves were utilized. He found that large 

vibrations occurred with the diffuser nozzle. 

Yasuo and Paidoussis (1989) investigated the flow-induced instability problem of heat 

exchanger tubes subjected to axial flow in a diffuser-shaped, loose intermediate support 

which is a problem similar to that studied in this research. In their study, a diffuser of 

finite length and the potential flow theory to determine fluid forces were considered 

together with a one-mode approximation of the inner tube. The researchers proposed a 

critical flow velocity equation for either divergence or flutter. 
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1.2 Motivation 

Since Hobson reported, in 1982, the negative damping of a rod in a divergent channel, 

studies by Hobson (1984) and Fujita and Ito (1992 and 1994) on the aerodynamic 

damping followed. These studies were all for 1-D translational mode of the rod. A few 

years later, hinged plates under rotational or rotational plus 1-D translational motion 

have been studied by Inada & Hayama (1988), then, other Japanese researchers 

followed the same scheme and extended their theory. Gorman reported, in 1987, that a 

finite-length diffuser caused the inner rod within it to reach dynamic instability. This 

work was followed by the study of Yasuo and Paidoussis for a cylinder subjected to 

axial flow through a finite-length diffuser. The problem that Yasuo and Paidoussis 

investigated is very practical and applicable to several important piping in power plants. 

However, the suggested model for critical flow velocity seems to be practically 

inapplicable for the piping. The critical velocity predicted by the model was too high, 

much higher than the critical velocity measured by experiments. 

Many engineering applications for this subject can be found especially in the power 

generation plants, for instance, heat exchanger tubes with gap supports in steam 

generators, UO2 fuel rods with spacer grids in fuel bundles and fuel pins in gas-cooled 

reactors during refueling, etc. Nonetheless, few articles can be found on this subject so 

far. Only a few studies on the dynamical behavior of the cylinder, treated as a 

continuous system, subjected to annular flow through a finite-length diffuser have been 

conducted. 

Since a finite-length diffuser is a kind of gap support for the inner tube, and the inner 

tube could be damaged by fretting wear, it is very important not only to understand the 

physics behind the instability but also to develop a practical model to predict the critical 

flow velocities. 
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The foregoing is the motivation for the present work. 

1.3 Objectives 

Nowadays, numerical simulations such as FEM or BEM are very popular. For many 

engineering problems, these numerical tools are useful and appropriate. However, in 

many situations, analytical solutions are valuable, especially to explain an unknown 

phenomenon, to understand the physics behind it, to give insight on applications and to 

advance the related engineering field, often leading to unexpected results or applications. 

For this reason, firstly, the purpose of this study is to obtain an analytical solution for 

the perturbation pressure inside of an annulus when a pinned-pinned inner cylinder is 

subjected to 2-D annular flow. For this study, Hobson's theory has been extended to 

consider a continuous system and frictional losses by the fluid. 

Secondly, comparing the 1-D and 2-D annular flow models, a limitation of the 1-D flow 

model for a continuous beam will be found. 

Thirdly, based on the analytical solution, the finite-length diffuser-induced vibration of a 

cylinder in axial leakage flow will be investigated by both analytical and experimental 

approaches. 

Fourthly, the final goal of this study is to propose a semi-analytical model to predict the 

critical flow velocity for a pinned-pinned cylinder in terms of annular gap and diffuser 

angle of the finite-length gap support. 

The expected contributions of this study are: 

1. description of the limitation of the 1-D flow model for an annular-flow-induced 

vibration, 
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2. development of a frictional loss model for a pinned-pinned tube subjected to 

annular-flow, 

3. development of an analytical model for annular-flow-induced vibration of a pinned-

pinned tube, 

4. experimental demonstration that a pinned-pinned tube subjected to annular flow in 

a finite-length gap support loses stability by flutter at low flow velocity, 

5. development of an analytical solution for the perturbation pressure in a finite-length 

narrow-gap support when the inner tube is vibrating. 

6. development of a semi-analytical model to predict the critical flow velocity for the 

tube in the finite-length gap support. 

1.4 Thesis outline 

This thesis consists of five chapters. Chapter 1 gives an introduction of the whole 

project. The historical background on this subject is briefly described from axial-flow-

induced vibration to the annular- or leakage-flow-induced vibration in a finite-length 

gap support. 

The second and third chapters are represented in the form of papers having their own 

abstract, introduction, methodology, results and list of references. 

In Chapter 2, 1-D and 2-D flow models are developed for the annular-flow-induced 

vibration of a pinned-pinned tube and compared. With a new friction-loss model, 

analytical solutions for a perturbation pressure in an annulus are obtained for several 

flow boundary conditions at the ends of the tube when the inner tube vibrates. 

In Chapter 3, the stability of a simply-supported tube subjected to narrow annular flow 

in a finite-length gap support is experimentally and analytically investigated. Based on 

the analytical solution, a simple semi-analytical model to predict the critical flow 

velocity is proposed for the first mode instability. 



10 

Chapter 4 is devoted to general discussion consisting of review of objectives, summary 

of contributions and recommendations for future work. 

Final conclusions are presented in Chapter 5, followed by the references that are 

different from the references in Chapters 2 and 3. 
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CHAPTER 2 

ANALYTICAL SOLUTION FOR A VIBRATING SIMPLY-

SUPPORTED CYLINDER SUBJECTED TO 2-D CONCENTRIC 

ANNULAR FLOW CONSIDERING FRICTION 

When an annular-flow-induced vibration of a long slender tube is analyzed, it would 

seem reasonable that 1-D flow model would be adequate. This is because not only the 

annular gap but also the radius-to-length ratio is small, so that the radial and 

circumferential flows can perhaps be considered negligible. Initially, the author, 

therefore, tried to solve the annular-flow-induced vibration problem by a one-

dimensional flow model. However, the 1-D flow model could not correctly reproduce 

the experimental results. 

In Chapter 2, therefore, 1-D and 2-D flow models are developed for the annular-flow-

induced vibration of a pinned-pinned tube and compared. It is found that the 1-D model 

is not applicable for the continuous beam in general. 

In addition, with a new friction-loss model, analytical solutions for the perturbation 

pressure in an annulus are obtained for several flow boundary conditions at the ends of 

the annulus when the inner tube vibrates. This study shows that the dynamics of 

annular-flow-induced vibrations obtained by the pressure loss theory is almost the same 

as by potential flow theory. However, the critical flow velocity is diminished 

considerably. 
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The results are presented in the form of a paper submitted to Journal of Fluids and 

Structures. In addition, Appendices containing the detailed derivation of the key 

equations are included at the end of the thesis. 



Nomenclature(i) 

Cfp perturbation term of the friction factor 

Cfs or C, steady term of the friction factor 

Cy totai total friction factor (steady + perturbation) 

EI flexural rigidity 

Ff fluid forces per unit length due to perturbations 

h vibration response of the cylinder 

Kcf0 proposed friction factor 

rccfl modified friction parameter ( Kcfl
2 = 1 + Kcf01H) 

L length 

m mode number 

Ms structural mass per unit length 

Mf added fluid mass 

p perturbation pressure 

pc coefficient of cosine component of perturbation pressure for 

particular solution 

ps coefficient of sine component of perturbation pressure for particular 

solution 

pratio ratio of each of perturbation pressure terms: 2-D to 1-D flow model 

q ratio of radius to length of the inner cylinder (Rd/ L) 

r radial coordinate 

Rd radius of inner cylinder 

Re Reynolds number ( Re = — — - ) 

U mean flow velocity in axial direction 



Nomenclature(n) 

i perturbation velocity in axial flow velocity 

uc coefficient of cosine component of axial perturbation velocity for 

particular solution 

us coefficient of sine component of axial perturbation velocity for 

particular solution 

v perturbation velocity in circumferential flow velocity 

vc coefficient of cosine component of circumferential perturbation 

velocity for particular solution 

vs coefficient of sine component of circumferential perturbation velocity 

for particular solution 

x axial coordinate 

9 circumferential coordinate 

TX frictional shear stress in axial direction 

Te frictional shear stress in circumferential direction 

co cyclic frequency 
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2.1 Abstract 

An analytical model is proposed based on three main assumptions; (1) small 

perturbations in flow components, (2) negligible radial flow to reduce the annular flow 

to two-dimensional flow, and axial flow only for reduction to a one-dimensional flow, 

and (3) perturbation factional loss depending on the variation of axial perturbation 

velocity in terms of space and time. In this study, it is concluded that (1) the difference 

in fluidelastic forces between two- and one-dimensional flow models mostly depends on 

cylinder radius, and on whether perturbation flow is mainly allowed in the axial or 

circumferential direction, (2) the one-dimensional flow model should be limited to 1-

d.o.f vibration analysis or the case of a cylinder having a large radius-to-length ratio, 

and (3) the perturbation assumption makes little change to the dynamics of annular-

flow-induced vibrations, however, the critical flow velocity is diminished considerably. 

2.2 Introduction 

Axial-flow-induced vibration problems have been of less concern than cross-flow-

induced vibration problems, largely because the associated instabilities have rarely been 

encountered in practical applications. However, when axial flows are confined in narrow 

annular passages, the critical flow velocity may drop to the range of common 

engineering flow velocities. Recently, it was reported that for some fluid boundary 

conditions, a rod in annular flow could lose stability by flutter at a relatively low 

velocity. When low velocity instability is possible, dynamic instability (flutter) is more 

likely than static instability (divergence). For example, steel piping in practical 

application generally has low damping, so that fluidelastic forces could possibly 

overcome damping forces. It has been shown that fluidelastic stiffness needs high flow 

velocity to overcome rod stiffness. 
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In order to model the vibration response of a rod in annular viscous flow, Mateescu and 

Paidoussis (1985) adopted a linearized potential flow theory while Miller (1970), 

Hobson (1982) and Inada and Hayama (1988) took linearized pressure drop theory. The 

linearized potential flow theory seems to provide a relatively convenient procedure to 

obtain analytical solutions for concentric or even eccentric annular flows. However, the 

potential flow theory cannot model a dynamic instability such as flutter. On the contrary, 

by the linearized pressure drop theory, the dynamic instability can materialize although 

it is more difficult and even unlikely to obtain the analytical solution for a continuous 

system and 2-D flow with friction. 

It is known that the first attempt to explain the dynamic instability of annular-flow-

induced vibration was by Miller (1970). He used a simple restrictor in an annular 

channel, moving in a 1-D manner in a direction transverse to the axial flow, to 

demonstrate flutter instability. Hobson (1982) proposed an analytical model for a 

cylinder vibrating in an annular flow passage with several fluid boundary conditions. He 

obtained a closed- form solution, and showed that negative damping is possible for 

annular flow with an expansion channel at the downstream end. Even though his work 

was limited to 1-D translational motion of the cylinder, his work gave birth to several 

studies on this subject. Fujita and Ito (1992 and 1994) scrutinized Hobson's study with 

precise air and water loop tests. They showed that an annular flow passage with 

expansion channels, such as an abrupt expansion and diffuser, could lead to 1-D 

translational and rotational (rocking mode) destabilization and vibration. Porcher and de 

Langre (1997) proposed an analytical model of 1-D translational and rotational vibration 

based on 1-D flow considerations. They also carried out an experiment showing that a 

rod free to vibrate in 1-D rotational motion could lose stability by flutter. 

The stability of a narrow tapered passage undergoing translational motion was studied 

by Inada (1988). The work was later further extended to a 2-d.o.f. vibrational model for 

translational and rotational motions (1990). It was shown that flutter and divergence are 
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possible for divergent channels. Since then, Inada and Hayama (2000), Kaneko et al. 

(2000) and Wu and Kaneko (2005) have tried to explain sheet flutter based on the 2-D 

plane leakage flow model of Inada (1990). Recently, Langthjem et al. (2007) used the 2-

D plane model to analyze the instability mechanism of a flexible rod in leakage flow. 

The authors used flow rates instead of flow velocities in their analysis. 

Many models of annular-flow problems neglect the flow velocity or axial flow 

distribution in the radial direction. The importance of the radial direction effects 

increases for annular flow with relatively large gaps, or for centrifugal pump where the 

inside shaft is rotating in a viscous fluid. In this case, however, circumferential flow 

consideration is also important. When radial direction effects are not considered, annular 

flow problems reduce to 2-D flow problems, or may be considered as 1-D if the 

circumferential flow is also negligible. For this reason, new comers in the field of 

annular-flow-induced vibration may question whether the 1-D flow model is enough for 

their analyses in cases where a continuous system is considered, and whether the 

differences between 1-D and 2-D flow models are important. 

It is not easy to obtain an analytical solution particularly when friction is considered. 

However, once an analytical solution is obtained, a comparison can easily be made 

between 1-D and 2-D models. The aim of this study is, therefore, (1) to propose an 

analytical solution for a simply-supported cylinder subjected to two-dimensional 

concentric annular flow based on a new friction model, (2) based on the solution, to 

explain the discrepancies in fluidelastic forces between 1-D and 2-D flow models. 

2.3 Fluid and structure equations 

2.3.1 Equation of motion of a flexible inner cylinder in annular flow 
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Let's consider an oscillating flexible cylinder subjected to annular flow. The cylinder 

may be considered as an Euler-Bernoulli beam characterized by a flexural rigidity EI, 

length L, and structural mass per unit length Ms. Expressing the added fluid mass as 

Mf, the small amplitude vibration response of the cylinder by h, and fluid forces per 

unit length due to perturbations by Ff, the equation of motion of the flexible cylinder 

becomes 

d4h n 2 6 2 / i _ , , TT d2h . . . .d2h 
— - + MM2—T +2MfU + (M+Mf)—r-, , 
dx4 f dx2 f dxdt s f dt2 f 

EI^-r + MfU1^- +2MM-— + (Ms+Mf)^—T = Ff (2-1) 

The fluid force Ff coupled to the small amplitude vibrations may be obtained by 

integrating the fluctuating pressure on the cylinder surface. 

2.3.2 Fluid equations and boundary conditions 

Consider the two-dimensional unsteady, incompressible annular flow between two 

concentric cylinders as shown in Fig. 2.1. Assuming small flow perturbations, the first-

order continuity and momentum equations may be expressed as 

Hd1+fidL = _dh_udh=0 ( 2 .2 ) 

dx r 36 dt dx 

dp du TJ\dv . TJ\du rx U 8h U2 dh .... 
—+p— + pU + 2pU + — = - /? p (2-3) 
dx dt r 30 r dx H H dt H dx 
I dp dv rrdv T„ ._ .̂  
—— + p— + pU— +-*- = 0 (2-4) 
rdd dt dx H 

In equation (2-3) and (2-4), TX, and te are the non-conservative frictional shear stress, xe 

may be neglected since there is no bulk flow in the circumferential direction. The reader 
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is referred to Appendix I for more details on the derivation of linearised equations (2-2) 

~ (2-4). 

Now, one may express several flow boundary conditions for both ends as follows: 

Short loss-less inlet: p(0) + pUu(0) = 0 (2-5) 

Contraction loss (Ka) inlet: p(0) + pUw(0)(l + Ka) = 0 (2-6) 

Free discharge outlet: p(L) - 0 (2-7) 

Diffuser of efficiency rj and diffuser performance coefficient 8 at exit (Hobson, 1982): 

p(L) + TjpUu(L)+—pU2Sh(L) = 0 (2-8a) 
2.H 

Diffuser of efficiency rj and diffuser performance coefficient £ at entrance: 

p(0) + rjpUu(0) +—pU2Sh(0) = 0 (2-8b) 
2H 

Irrotational flow at entrance: v(0) = 0 (2-9) 

2.3.3 Two-dimensional flow 

The partial differential equations (2-2), (2-3), and (2-4) are not simple since they deal 

with four functions p, u, v, and h, and two variables, x and 8. Once the support 

conditions of the inner cylinder are known, a solution may be approximated based on 

beam eigenfunctions. For a beam simply supported at both ends, one may assume that 
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the solution consists of a sum of sine functions of the axial variable JC, and a sum of sine 

and cosine functions of the circumferential variable 6. 

Considering the pinned-pinned beam, the total channel gap coupled with the vibration 

amplitude may be expressed as 

h(x,0,t) = H + h(x,9,t) (2-10) 

where h(x, 9, t) = Y(x, t)cos9 + Z(x, t)sin6 (2-11) 

With the help of equation (2-11), the following solutions are assumed for the dependent 

perturbation variables. 

u(x, 9, t) = uic (x, t)cos6 + uls (x, t)sin9 (2-12a) 

v(x,9,t) = vlc(x,t)cos0 + vu(x,t)sin0 (2-12b) 

p{x,9,t) = pic(x,t)cos0 + pu(x,t)sin9 (2-12c) 

Substituting the assumed solutions and equations (2-12a) ~ (2-12c) into equations (2-2) 

~ (2-4) and collecting and equating the coefficients of sinO and cosO, one obtains six 

equations. Introducing the four complex variables 

h = Y + jZ (2-13a) 

u = u]c+juu (2-13b) 

V = Vlc+JVU (2"1 3 C) 

P = Pic+JPis (2-13d) 

yields the following three complex equations (Childs 1993). 
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du__.}_ __}_dh__}L®L 
8x r ~ H dt H dx 

dp du . U _ TTdu rr 

— + p ip—v + 2pU— + — •• 
dx dt r dx H 

dp du TJdu r , 
or — + p— + pU— + — = 0 

dx dt dx H 

.1 dv dv 
-i-p+p— + pu— =o 

r dt dx 

U_dh__ U_5h_ 
P H dt P H dx 

(2-14) 

(2-15a) 

(2-15b) 

(2-16) 

where, rx is the fluid friction shear stress. Equation (2-15b) is obtained by substituting 

equation (2-14) multiplied by pU into equation (2-15a) to eliminate v and h. Starting 

with equations (2-11) ~ (2-16) and using the procedure developed by Childs (1993), the 

partial differential equations are transformed to ordinary differential equations. 

The complex displacement of function h(x,t) in equation (2-13 a) is expressed in the 

following form for a simply-supported cylinder. 

h(x, t) = a sin 
1mn ^ 

(2-17) 

Analytical solutions for u, v and p consist of sum of complementary and particular 

solutions. For the pinned-pinned cylinder, the solutions may be expressed as 

p(x,t) = fdpj-e^x.e^ + 
7=1 

v{x,t) = jyj-e
K'x-ei'al + 

dh 
us-h + uc- — 

ax 
, dh 

Ps-h + Pc- — 
dx 

7=1 

v-h + v„ 
dh_ 

dx •e 

(2-18) 

(2-19) 

(2-20) 
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The quentities, us, uc, ps, Pc, vs, and vc are coefficients which must be determined. While 

the assumed solutions (2-18), (2-19) and (2-20) should satisfy equations (2-14) ~ (2-16), 

the homogenous and particular solutions can be determined independently. Injecting 

only the homogeneous solution components in equations (2-18) ~ (2-20) into equations 

(2-14) ~ (2-16), the following eigenvalue equation for A7 and [iT, Pj vyJ is obtained. 

For simplicity, the analysis presented in this section is restricted to the frictionless case. 

A,-

p(ia> + 2UAj) 

0 

0 

Aj 

.1 
-i — 

r 

.1 
-i — 

r 

r 

piico + UA;) 

Pi 

l v , J 

= 0 (2-21) 

Similarly, injecting only the particular solution components into equations (2-14) ~ (2-

16) yields the following set of equations for us, uc, ps, pc, vs, and vc. 

(Ur + Hrus - iHvc) dh {~iHvs - HrXm\ + irco) 
V £ c_>_ + ^ '-h = § 

Hr dx Hr 

rpU2 +H(psr + 2rpUus -ipUvc + irpcouc) dh 

Hr dx 

H\fAm
2 (pc + 2pUuc) + ip(Uvs -rcm s ) ] - irpcoU 

h = 0 
Hr 

-ipc+pr(io)vc+Uvs) dh -ip, + pr(i<ovs -&m
2Uvc) 

dx 
h = 0 

(2-22a) 

(2-22b) 

(2-22c) 

where 1 = , m = 1,2,3. 
m L 
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In equation (2-21), the determinant of the matrix must be zero to have a non-trivial 

solution. One easily arrives at the three conditions, A, = — , A2 =— and A3 = - / — 
r r U 

similarly to Hobson (1982). Knowing that h = sin(Amx) and dhldx = Am cos (A m x) , 

equations (2-22a) ~ (2-22c) yield six equations from which six coefficients (, us, uc, ps, 

pc, vs, and vc) are determined. 

The final three solutions with corresponding relationships are 

u(x) = ^Uj e '" -
7=1 

2 i 2 rLA. 
-U-h-i 

r2a> dh 

H(l + r2Aj) H(\ + r2Aj) dx 
(2-23) 

P(x) = ^Pj-eAjX + 
7=1 

Pr2{U2Am
2+<»2) . 2pr2coU dh_ 

H(l + r2Am
2) ' lH(l + r2Am

2)'dx 
(2-24) 

v(x) = Yjvj-e
AjX + 

7=1 

rco •h-i 
rU dh 

H(l + r2Am
2) H(l + r2Am

2) dx 

with 

(2-25) 

(1) A, = — : iux - v , = 0 , px + p(U -irco)-ux = 0 

(2) A2 = — : iu2 +v2 = 0 , p2 + p(U + irco)-u2 = 0 
r 

,„. A . co _ rco _ . _ 
(3) A, = - / — : v, + u, = 0 , p . = 0 

3 U U 

(2-26) 

(2-27) 

(2-28) 

As noted by Hobson (1982), the first two conditions (2-26, 2-27) represent irrotational 

velocities associated with pressure fields while the third stands for a vortical velocity. 

However, once the friction term is considered in equation (2-15a) or (2-15b), the three 
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conditions are not as simple as equation (2-26) ~ (2-28) owing to the existence of non-

conservative energy loss. 

Final solutions are obtained by using the non-triviality conditions, equations (2-26) ~ (2-

28), and two flow boundary conditions among equations (2-5) to (2-9). 

For instance, when an annular flow is coupled with a short-lossless inlet and a free-

discharge outlet, equation (2-5) with equations (2-23) and (2-24) give 

_ _ . 2 pr2(oU dh 

H\l + rzAm J dx 
+ pU 

i*=o 
ux + u2 +1 

r to dh 

H(l + r2Am
2) dx 

^ 

x=0 

= 0 (2-29) 

In addition, w3 is zero because the inlet flow is irrotational so that the vortical velocity is 

zero. For a free discharge at the exit, equation (2-7) together with equations (2-23) and 

(2-24) give 

_L £ 

e r -px+er -p2 
. 2pr2coU (dh\ 
1H(l + r2Am

2)\dx)x=L~ 
(2-30) 

Equations (2-26), (2-27), (2-29), (2-30) with u3 = 0 give 

-p(ira-U) 0 0 1 0 

0 p(irco + U) 0 0 1 

0 0 1 0 0 

pU pU 0 1 1 

_L_ L_ 

0 e r er 

u3 

Pi 

Pi 

0 

0 

0 

x=0 

. 2 pU + l dh 
ir co—j- —-T-

H(l + r2Am
2) dx 

. 2pr2coU fdh\ 
1 H(\ + r2Xm

2)\dx)x=L 

(2-31) 
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where 
fdh^ = (-i)-.fl.(^,), K mn 
Jx)x__L ^ ' ^ " " " L 

and a is the vibration response amplitude. 

, m = l, 2, 3 , . (2-32) 

Solving equation (2-31) for each w. and p . , substituting these into equation (2-24), and 

following some mathematical operations, one obtains the following equation: 

pr2(Am
2U2+co2) . 2pr2a>U 

pyx) = -, :—7T—^ -h-i 
dh 

H(l + r2Am
2) H(l + r%2) dx 

prU{U + ira>)(U -irco)-e(2L~x)lr 

+ia> 

H(\ + r2Am
2)[(l + e2Ur)u + i(-l + e2L/r)ra> 

2pr2U(U-irco)-e{-L+x)/r 

dh 

dx 

dh 

x=0 

H(l + r2Am
2)[(l + e2L"-)u + i(-l + e2Ur)rco] dx 

(2-33) 

For the mathematical operations, the Mathematica (2007) software was utilized with 

the assumptions that r <sc Z, and eLlr « : e2Llr. When e~(L+x)lr « 1 is considered, equation 

(2-33) becomes 

, , Pr2(K2U2+a)2) 2pr2coU 
p(x)= -, :—Ts—^-h-l-

dh 
H(l + r2Am

2) H(\ + r%2) dx 

prU(U-ira>) 
-xlr 

H(l + r%2) 

dh_ 

dx 
+ 16) 

2pr2U 

H{l + r%2) 
dh 

dx 

(2-34) 
J-L+x)/r 

x=L 

The procedure for the other fluid boundary conditions is described in Appendix A. 
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Once the pressure is determined, the fluid force per unit length^ in equation (2-1) is 

calculated by integrating the perturbation pressure p(x,t) over the surface of the cylinder 

as follows: 

2/r In 

Ff = -]"(/? cos #)•(rdO)cos0d0 = - Jp-r(cos0)2d0 (2-35) 

2.3.4 One-dimensional flow 

When it comes to one-dimensional flows, by eliminating the circumferential 

components from equation (2-2), (2-3) and (2-4), the following two simple equations 

emerge: 

Hto+dh+udh=Q ( 2 . 3 6 ) 

dx 8t dx 

?P+p?! + pU?l+I± = 0 (2-37) 
dx 8t dx H 

Now, the vibration response of the cylinder may be expressed by 

h'{x,t) = H + h{x)-eio" (2-38) 

Using the technique of separation-of-variables, substituting equation (2-38) into (2-36) 

and integrating with respect to the spatial variable x, one obtains an expression for u(x), 

then, with equation (2-37), the pressure function may be obtained. If the cylinder is 

simply-supported, u(x) axuXpfx) are, respectively, 
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. . ico dh Uh _ 
U(x) = - hC, 

HA2 dx H ' 

(2-39) 

U2Am
2+co2, ilpcoU dh . „ „ 

p(x) = p !S—-— h *—— ipcoxQ + C2 
HA HAJ dx 

(2-40) 

where C/ and C2 are integration constants which may be determined from the fluid 

boundary conditions of equations (2-5) ~ (2-9). One finds four solutions for the pressure 

function with respect to the spatial variable x. 

For instance, in the case of the short loss-less inlet and free discharge outlet, the pressure 

function is giving by 

U2A 2+co2 , ilpUto dh 
p(x) = p =—„ h. 

HA HAJ dx 

U Aj(U + i(L-x)co) + (o1{U + i{L-x)o)) • , 
+ P HAm

2(U + iLco) ' ' 

.pU—i^±-y dh 
x=0 

dx 

(2-41) 

U2A 2(U + ixco) + co2(U + ixco) ,,, 2pU(U + ixco) dh 
+ p ^ -Ah\ +ico—— 

HA2(U + iLco) ' ix~L HA2(U + iLco) dx 

where a is the vibration amplitude. Since |/z|^=o == 0 and \h\ , = 0 , equation (2-41) 

becomes 

U2A2+a>2 , HpUco dh 
p{x) = p =—. h-

HX_ HAJ dx 

-pU-
(L-x) dh 

0) 
HAm

2{U + iLa>) dx 

2p U(U + ixco) dh 
+ ico — 

HA2(U + iLo)) dx 

(2-42) 
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The reader is referred to Appendix B for the pressure functions corresponding to other 

fluid boundary conditions. 

2.4 Comparison of 1-D with 2-D flow equations 

As shown in equation (2-34) and Appendix A, the pressure functions for the two-

dimensional flow model may be divided into two groups; one having the displacement 

function h(x), or h (x) and the other consisting of the exponential functions, e('x/r), or e(x~ 
L)/r. The effect of the exponential functions is most important at the annular entrance (e~ 
x/r) or at the exit (e(x'L)/r). In the rest of the region, their effects are almost negligible. The 

simply-supported cylinder does not vibrate at the ends, so that the entrance and exit 

effects are insignificant despite the exponential terms in the solutions. 

Similarly, as shown in equation (2-42) and Appendix B, solutions for one-dimensional 

flow consist of the same functions h(x), or h (x) as for the two-dimensional model, and 

of some linear functions, such as, x and L-x, of the cylinder length x which are 

equivalent to the entrance and the exit effects of the two-dimensional flow model. 

Comparing equation (2-34) and (2-42), it can be noted that the difference between the 

models comes mainly from the term r21H(l + r2Am
2) and 1/HA2 for 2-D and 1-D flow, 

respectively. Knowing that Am-mnlL , the two terms may be rewritten as 

L2 L2 

—j= =r and ——. Therefore, they may be approximately equated only if 
/ / [ ( L / r ) 2 + m V j Hm27i2 

—r + {mn:) »{mn) , which means that the higher the mode number and the larger the 
r 

cylinder radius, the better the approximation. In other words, a 1-D flow model may be 

inappropriate for real piping since the cylinder radius is small, and a few low modes are 

important. 
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In the next two sections, comparison is made in two ways; one is for the case where the 

entrance and exit effects are neglected, which we call a simplified comparison, the 

second when all terms are included, thus a full comparison. 

2,4.1 Simplified Comparison 

For a simply-supported cylinder, since both ends do not vibrate, the entrance and the 

exit effects are negligible, so that a simple comparison could be effective even for 

different fluid boundary conditions. 

Neglecting the terms having e'xlr and e(x'L)/r, for all flow boundary conditions, the 

pressure perturbation solutions reduce to one case, which can be confirmed in 

Appendices. There are three added terms; fluid inertia term, fluid damping term, and 

stiffness term. In order to make a comparison of each of the pressure terms, we divide 

each term of the 1-D flow by the equivalent 2-D term. In the three cases, the following 

equation is obtained. 

= p{x\_D R/Am
2 

"ratio / \ 1 , D 2 i 2 ^ > 

p(x)2_D \ + RdAm 

where, Rj is the radius of the inner cylinder. 

Since Xm=mn!'L, {m = 1,2,3,... ) , where m is the mode number of the beam 

eigenfunction, introducing a new parameter q which is the ratio of radius to length of the 

inner cylinder, equation (2-43) becomes 
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2 2 2 

Prano=,l 2 2 2 (2"44) 

where q = Rdl L. 

The variation of pratio is shown in Fig. 2.2 as a function of q and m. As shown in Fig. 2.2, 

when the radius-to-length ratio is small, the pressure ratio is small as well, which means 

that the one-dimensional model exaggerates the three fluidelastic forces for small 

radius-to-length ratios. Generally, for most engineering applications, e.g. piping system 

such as tubes in steam generators and the fuel tubes of Pressurized Water Reactors 

(PWR), the ratio q is 0.03 at the most. The overstatement worsens with decreasing mode 

number. 

2.4.2 Full Comparison 

When the exponential terms are included, there are additional terms involving U±ira> 

in the pressure equations (2-33), (2A-3), (2A-5) and (2A-8) for the two-dimensional 

model, and U + iLco in the denominator of the pressure equations (2-42), (2B-1), (2B-

2) and (2B-3) for the one-dimensional model. It is, therefore, hard to separate every term 

according to <a2 ,a> or other, and to make the direct comparison in terms of inertia, 

damping and stiffness forces. 

It is, however, worth noting that the two terms, U ± i L co in the one-dimensional model 

and U±ira> in the two-dimensional model, have velocity dimensions, and the second 

terms iLco, and irco are added due to the vibration of the inner cylinder. Since the 

one-dimensional model does not allow the flow to be squeezed in the circumferential 

direction, when the inner cylinder moves toward the wall of the outer cylinder during 

vibration, the perturbed flow can only move in the axial direction while for the two-

dimensional model flow in the circumferential direction occurs as well. This may be the 
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reason why the vibration frequency co is coupled with the inner rod length L in the 1-D 

model. Physically, however, only some mid-length part of the whole length reaches 

close to the wall. Some fluid near the mid-length region probably moves in the axial 

direction, and the fluid flows relatively easily when the radius of the inner cylinder is 

considerably large. Therefore, the one-dimensional model may be suitable for an inner 

cylinders of large diameter and short length which vibrates in the manner of a rigid body. 

However, generally speaking, fluid squeezing in the circumferential direction is more 

plausible for many engineering applications. U ±irco and U±iLco are included in the 

terms which give strong effects at the ends, so that the effects may be exaggerated when 

the cylinder vibrates in a one-dimensional manner, without any support at the ends. 

In order to separate and collect the terms with respect to the order of co , with 

consideration of the structure equation (2-1), one may make the equation third order in 

terms of frequency co by multiplying every numerator on the right side by U±iLco for 

1-D flow or U±irco for 2-D flow. For instance, for the case of the two-dimensional 

flow model with short loss-less and free discharge boundary conditions, one obtains 

-iM^a? -M2-co2 + iDl-co + K0 = 0 (2-45) 

where, 

M3=r- ( M , ) + ^ 
H(l + r2Am

2) 
•h (2-46a) 
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^ H(l + r2Am
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pnrAU 

H(l + r2Am
2) 

2pnr4U 

H(l + r2Am
2) 

dh 

dx 

dh 

dx 

x=0 

x=L 

f 
•h + 2Ur Mf + 

pnr 

\ H(l + r2Am
2) 

-xir 2pnr U 

H{\ + r2A2) 

dh 

dx 

dh 

dx 

J-L+x)/r 

x=L 

-(L+x)/r 

(2-46b) 

D, = rA_ EI A2- P ^ U l 

H(l + r2A2) 
•h + 2U2 Mf + 

pnr 

m+r2tj), 
dh_ 

dx 

+ rU>M .Hi _ 2apnriU2 , 
dx* H(\ + rAj) 

dh 

dx 
IJC=£ 

2apnrU _(i+I)/r 
e 

/¥(l + r 2 l 2 ) 

difc 

dx x=L 

(2-46c) 

tf0 - A lU 
0 m 

£71 
pnr'U2 

H(\ + r2A2) 
h +UlM, 

d2h 

dx2 

+ ;——-e 
dh 

dx x=0 

(2-46d) 

For the one-dimensional model for the same boundary conditions, the equivalent terms 

are 

M 3 = L (K) + 
pnr 

HA2 
(2-47a) 

M2=U M.+ pnr 

HA 

3 \ f 

2pnrU 

HA 

h + 2UL 

dh 

Mf + 

V 

dx x=L 

pnrU 

HA 

3 \ 

pnr 
UK1) 

(L-x)-

dh 

dx 

dh 

dx x=0 

(2-47b) 
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D, = LA EI A 
pjtSU2 

+ LU2 Mt-

HA1 

m 

d2h IpnrJJ2 

h + 2U2 

dh 

Mf + 

dx2 HA dx x=L 

pnr 

HA2 

dh_ 

dx 
(2-47c) 

K0 = KU EI A 
3x7-2 

2 pnr U 
HA 

h+U>Mf.l± 
f dx2 (2-47d) 

When it comes to the third order equation, there are some similarities between equation 

(2-46a) ~ (2-46d) for the two-dimensional model and equation (2-47a) ~ (2-47d) of the 

one-dimensional model, relative to the variables "r" and " L". The overall expressions are, 

however, very different. Multiplication by the length L, instead of the radius r, makes 

the coefficients of each term very large when r « L. 

Numerical simulations 

For the short loss-less inlet and free-discharge outlet, utilizing equation (2-45), (2-46a) ~ 

(2-46d) and (2-47a) ~ (2-47d), a Galerkin projection may be used to grasp and to 

compare the dynamics provided by the one-dimensional and the two-dimensional flow 

models. A state-space algorithm is employed to solve the third order equations and to 

depict the solution in Argand diagrams. The parameters used for the numerical 

computations are 

(1) ratio of radius to length ( r / L ): 0.00364 ( = 0.008/2.2) 

(2) inner diameter of cylinder: 14.2 mm 

(3) annular gap (H) : 5.15 mm 

(4) Young's modulus (E): 2.1xlOn Pascal 

(5) compressed air density (p): 10 kg/m3 

(6) inner cylinder density: 7,800 kg/m3 
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For definition of the dimensionless flow velocity, the expression U = LUA—— is used. 

Not only inviscid hydrodynamic mass (Mvjrlual = p-A) but also annular confinement are 

considered to yield a fluid mass per unit length Mf (Paidoussis, 2004). 

A pinned-pinned cylinder subjected to annular-flow-induced vibrations is known to lose 

stability consecutively by divergence at a dimensionless flow velocity of 3.14 for the 

first mode and 6.28 for the second mode when the same parameters are used. Coupled-

mode flutter is then observed. Fig. 2.3 shows the dynamics based on linear theory, 

reproduced according to Paidoussis' theory (Paidoussis, 2004). 

However, completely different predictions are made with the one-dimensional flow 

model as shown in Fig.2.4. First of all, the inner cylinder loses stability in the second 

mode by flutter at dimensionless velocity [7 = 0.01 (=1.1 m/s). Since then, this model 

gives divergence instability at the first mode. These critical flow velocities are, however, 

too low. It is believed that these implausible results occur because flow is not allowed in 

the circumferential direction but only in the axial direction, so that the fluid effects from 

the cylinder vibration are coupled only with the cylinder length. 

The two-dimensional flow model gives results similar to those of the axial flow theory 

(Paidoussis 1966 and 1969) as shown in Fig. 2.5. In accordance with the theory which is 

proposed here, the inner rod loses stability by divergence in the first mode and the 

second mode consecutively at dimensionless flow velocities of 2.36 and 4.71, 

respectively. As the flow velocity is increased coupled-mode flutter occurs at 4.95 

dimensionless flow velocity. The two first modes undergo divergence, and then 

experience coupled-mode flutter at much higher flow. This is a linear dynamics 
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approach based on a linear theory, so that, strictly, it may not be applicable to the 

behavior beyond the first instability. 

2.5 Friction 

2.5.1 Perturbation pressure and axial flow velocity 

In developing the analytical model, the most difficult part is implementation of the 

friction loss. Since the friction loss has the form Kcf— Uu , the eigenvalues for a 

H 

nontrivial solution do not have a simple form as in section 2.3. In order to avoid this 

complexity and to have a simpler form of solution, equation (2-3) or equation (2-15) is 

written as 

dp du du p du du 

t+"^"u*+K«°ii\u^\=0 (2"48> 
dx dt 

In equation (2-48), the last term represents the rate of change of turbulent friction 

( r) r>\ 
momentum per unit length, in which the operator \U— + — is assumed to have a 

V dx dt J 

similar definition as in Paidoussis (2004, chapter 8.2). Differently from conventional 

steady friction loss, the frictional loss due to flow perturbations is assumed to be 

proportional not only to the product of the mean flow velocity and the spatial variation 

of the perturbation flow velocity but also proportional to its time variation. 

Equating the friction term in equation (2-48) to equation (2-15b), the friction term 

becomes 
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H H c/O 
rTdu 8u 
U — + — 

dx dt 
(2-49) 

Here, regarding equation (2-49), a definition of the friction factor Kcf0 is needed. This is 

done in section 2.5.2 below. 

Substituting equation (2-49) into (2-15b), and rewriting equation (2-15b), the following 

matrix equation can be written which is equivalent to equation (2-21) for the frictionless 

case: 

p f t o ^ J + C/A,^,2)] Ay 0 

-/'— pQco + UAj) 
r 

Uj 

(2-50) 

where /rc/1
2 = 1 + Kcf01H 

0 r Kcfl2=l + KcfO 

(2-5 la) 

(2-5 lb) 

1C K" 
Complementary solutions can be obtained for the three conditions; A, = ——, A2 = —— 

r r 

and A, =- /—. For each, one obtains three relationships between the coefficients of 
U 

pressure /?,, circumferential flow velocity vt and the axial flow velocity ui as follows: 

(1) A, - — £ - : iK^Si -v^O, A +PKcfi[
u,ccfi -ira\'Ux =0 

(2) A 2 = - ^ - : ifccflu2+v2=0, p2 +prcfl(KcflU + ira>)-u2 = 0 

(2-51) 

(2-52) 
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... A . <y _ rco _ _ _ rt 

(3) A, = -i —: v, H u., = 0 , D, = 0 
3 U U 

(2-53) 

Similarly to the case without friction effects, following the procedure from equation 

(2-23) to equation (2-27) and equation (2-29) to (2-33), the following equations are 

obtained for the perturbation flow velocity and perturbation pressure p(x,t) considering 

friction loss. 

pr2Kcf
2(Am

2U2 + 0)2) _2pr2Kcf
20)U dh 

P\x) = 7 H ; — 7 ^ " " " _ / 7 V~—i—TT'T 
H(Kc/

2+r2Am
2) H(Kcf

2+r%2) dx 

pr2.eXK^'r UKcfX{UKcfx-ir<o) 
10) 

H{l + r2Am
2) [(-l + fccf

2)U-iKcf]ra>] 

dh_ 

dx x=a 
(2-54) 

+ ia> 
2pr2U-e(-L+^iX),r 

H{l + r%2) 
dh_ 

dx Jx=L 

u(x) = 
r2U d2h 

+ 10)-
dh 

a(Kcf
2+r2A2) dx2 H(Kcf

2+r2Am
2) dx 

10) 
r2U 

+io) 

Hil + rX2) [(-\ + Kcf
2)U-iKcf,ra)] 

dh\ 

dh 

dx x=0 

2e(~L+KcfxX)lr • r2 

H{l + r2Am
2)tccfl(Kcf]U + iro)) dx x=L 

(2-55) 

The first term in equation (2-54) dominates the real pressure field while the second term 

dominates the imaginary pressure component. Both terms have a strong effect over the 

entire channel length while the last two terms have an effect at the entrance (third term) 

and at the exit (fourth term) of the annular channel. Knowing that the simply-supported 

cylinder does not allow displacement at either end, the perturbation pressure field is 

unlikely to have significant effect on the dynamics of the cylinder. Equation (2-54) is 
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equivalent to equation (2-34) for the short-lossless inlet and the free-discharge exit with 

no friction consideration. 

2.5.2 Perturbation friction factor 

The steady friction factor may be described by a single variable which is the mean flow 

velocity U. The perturbation friction factor, however, needs more variables such as the 

perturbation flow velocity and the vibration frequency. Knowing that the fluid and 

structure are coupled, one may reasonably assume that the perturbation and its friction 

factor come not only from the flowing fluid but also from the vibrating structure. There 

is no available experimental data so far, and it may not be easy to determine the 

perturbation friction factor by experiment. In the present work, the commonly used 

steady friction factor has been divided into real and imaginary components as described 

below. 

It is widely accepted that the steady friction factor is dependent on the Reynolds number. 

For instance, Langthjem (2006) used the experimental results of Shimoyama and 

Yamada (1957) in which C7 =0.26xRe~024 for turbulent flow, and Cf =48xRe"' for 

laminar flow. In this study, Kcf0 is defined to be a friction factor for perturbation flow. 

The perturbation flow frictional loss cannot be easily predicted or obtained by a simple 

experiment. 

Let's introduce the work of Langthjem(2006), which is developed based on the work of 

Shimoyama and Yamada (1957). The total friction factor is expressed as 

^-f,total ~ ^f,S + *"f,P \ ^f, Steady + ^f.Pertub. ) 

a 
= 48-Re_,(l—==^), Re< 1300 (Langthjem,2006) 
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= 0.26• Re^ 24(1 -0.24^=2-), Re > 2000 (Langthjem ,2006) 

The flow rate Q is used in place of flow velocity. Considering concentric annular flow, 

the perturbation friction factor in terms of flow velocity may be rewritten as 

C, ( W B /=48-Re-1( l--) , Re<1300 
U 

C u. 
fMal = 0.26 • Re—(1 - 0 .24-) , Re > 2000 

(2-56) 

(2-57) 

In accordance with the assumption that every term has a perturbation component, the 

friction loss (Ffrc) in the axial momentum equation (2-15b) is written as 

T. 1 

H 2 V f* f.P) r\ H f * H f.P2ff 
(2-58) 

For laminar flow, equation (2-58) becomes 

• = 48 • Re"1 •-£-£/!/+ 48-Re-1 • 
f ,.\ 

H H 

= 24-Re-1 •-£-£/«, 
H 

P-U> 
UJ2H 

and for turbulent flow, equation (2-58) gives 

(2-59) 

^ - = 0.26-Re-024-^-t/a + 0.26-Re-024 

H H 

= 0.2288-Re 024--^-Uu 
H 

f 
- 0 . 2 4 ^ 

U 

p-u2 

2H (2-60) 
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Substituting equation (2-59) and (2-60) into equation (2-49), one obtains two equations 

as follows: 

(1) Laminar flow, Re < 1300: 

pU.-o.-i.PU f 
2 4 - ^ — R e 

H H «(*>0 = — * v o 
fix dt 

u(x, t) (2-61) 

(2) Turbulent flow, Re > 2000: 

0.2288-Re-024
 ^ M ( J C , 0 = — Kcf0 

H H cf0 

f 

fix dt 
u(x,t) (2-62) 

When a simply supported beam having eigenfunctions <f>„{x) - Sin(nnl L) is considered, 

the axial perturbation flow velocity equation (2-55) becomes 

u(x) = 
H(Kcf]+r2Am

2) 
(U</>"(x) + ico<f>'(x)) (2-63) 

Introducing the operators 
r
TT d2 e2 ̂  u—-+— 

fix Bxdt 
, or 

fix fix dt 
and 

dx 
TTd2 . d 
U—j + io)— 

dx dx 

and using equation (2-63), equations (2-61) and (2-62) become 

( ^ 
24-Re"'t/ U — j + ico— 

dx dx 
m 

-K c/0 

d 
U— 

dx 

TTd2 . d 
U - + IG) 

dx dx 

<j>{x) + ico 
TTd2 . d 

dx dx 
</>{x) 

(2-64) 
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0.2288 -Re^24*/ 
d2 . d 

U—- + ico— 
dx dx 

m 

-K c/0 dx 
TTd2 . d 
U—j + ict)— 

dx dx 

\ f 

<j>{x) + ico 
J 

TTd2 . d 
U—Y + IG)— 

dx dx 
</>(*) = 0 

(2-65) 

Cancelling out the common terms, one obtains 

24 • Re"1 U • <t>(x) -Kcf0 U ̂ ^ - + IC^(JC) 
^ dx 

0, 

and 

(2-66) 

0.2288 • Re^24 U • 0(x) - KcfQ \U ^ ^ + ico(f>{x) 
\ dx 

- 0 (2-67) 

The final equations are 

K. 
24 Re" 

c /0 \U(4>'{x)lftxj) + ia>\ 
•U for Re< 1300 (2-68) 

K 
(0.2288)-Re -0.24 

c /0 \u(</)'(x)l<l>(x)) + i(a\ 
•U for Re>2000 (2-69) 

The friction factor for laminar flow, equation (2-68), is small and almost flat over the 

total cylinder length and flow velocity, which is generally less than a few m/s for 

moderate gap size annular flows. The friction factor for turbulent flow, equation (2-69), 

depends significantly on the axial position and flow velocity. 

Strictly speaking, however, K ,0 is actually not a dimensionless factor anymore. K c/0 

has length dimensions, so that l + Kcf0/H or \ + Kcf0 in equation (2-5la, 2-5lb) can, c/0 
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practically, be interpreted as a friction factor. When KcfQ is zero, the matrix equation (2-

50) reduces to the frictionless case. Therefore, the new friction factor becomes 

i , ,\ . 24-Re_1-l/ 
Kcfl<=l + Kcf0 = l+ , forRe<1300 (2-70) 

77 [t/ (^ (x) / (f)(x)) + ico J 

V = 1 + ^ o = l+ (°-2288)-Re-024^ f o r R e > 2 0 0 0 ( 2 . ? 1 ) 
c/1 c/0 H\u((/>\x)l(f>{x)) + ico] 

Equations (2-70) and (2-71) suggest that the perturbation friction factor is dependent not 

only on the flow velocity but also on the vibration frequency of the inner cylinder. It is 

also not constant, depending on the axial location on the cylinder. 

Numerical simulations 

For the numerical simulations of the short loss-less entrance and free-discharge exit, the 

following parameters are used. 

(1) ratio of radius to length (r/L): 0.00364 

(2) inner diameter of cylinder: 14.2 mm 

(3) annular gap (H): 5.15 mm 

(4) Young's modulus of the cylinder: 2.1xlOn Pascal 

(5) inner cylinder density: 7,800 kg/m3 

(6) hydraulic diameter: 10.3 mm 

(7) compressed air density: 10 kg/m3 

Fig. 2.6 to 2.8 shows the variation of the new friction factor Kcfi
2 over the inner 

cylinder length as a function of air flow velocity for the first three modes when the 

frequency co = con, and the flow boundary conditions are a short loss-less entrance and a 



43 

full discharge exit. Fig. 2.6 shows that first friction factor is not flat over the cylinder 

length but coupled somehow with the mode shape of the inner cylinder, and the shape 

becomes sharper and magnitudes bigger as flow velocity increases. Interestingly, the 

real part of the first friction factor shows a similarity to the second mode shape of the 

cylinder, and the real peak-to-peak values are almost the same as the absolute imaginary 

values. The second and the third friction factors show similar trends to the first one in 

terms of flow velocity except that the real part of the second friction factor resembles 

the fourth mode shape of the cylinder while the third one is similar to the 6th mode. The 

second and third imaginary friction factors have two and three peaks, respectively, 

which are shown in Figs. 2.7 and 2.8. 

Substituting the perturbation friction factor developed for the simply-supported cylinder 

in equation (2-71) into equation (2-54), one may obtain the perturbation pressure 

distribution as a function of the cylinder length, frequency and flow velocity. The 

pressure function, as seen in equation (2-54), can be divided into three terms; co1 related 

terms, co related terms and co independent terms, which may be called inertia, damping, 

and stiffness terms, respectively. The three terms are shown in Fig. 2.9 ~2.11 for the 

case where the entrance and exit effects are not considered. 

As seen in the figures, even though the mass and stiffness terms have imaginary 

components, they are negligibly small hence the two terms have mostly real values. 

Conversely, the damping term has predominantly imaginary values. It is physically true 

that the phase difference between mass and stiffness is 180°, and between mass and 

damping, or stiffness and damping is 90°. The stiffness term is the most predominant 

among the three terms. 

What is the meaning of the imaginary part of the mass and the stiffness term, and the 

real part of the damping term? It is believed that the terms are perturbations coming 

from system complexity. The strongly coupled system may not be clearly distinguished 

http://~2.11
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into the three terms. Our new friction factor in equations (2-70) and (2-71) turns out to 

be coupled with vibration frequency (imaginary) as well as flow velocity (real), so that, 

as far as the mass and stiffness terms are concerned, imaginary parts could come from 

the frequency-coupled components while the real part of the damping could come from 

the flow velocity-dependent term. As seen in Fig. 2.9, each term of the first perturbation 

pressure is strongly coupled with the first beam mode; although the damping term does 

not seem to correspond to the first mode, it matches a 90-degree-shifted first mode. 

Similarly, each term of the second and third perturbation pressure is coupled with the 

second mode and the third mode, respectively. 

Fig. 2.12 shows the total perturbation pressure, real and imaginary components, 

normalized for the different modes. As expected, stiffness terms are predominant in the 

real part while the damping term is dominant in the imaginary part. Comparing the real 

and imaginary parts, 90° phase differences are clearly seen. 

The dynamic behavior of the simply-supported cylinder in annular flow is shown in Fig. 

2.13. The dynamics of the present model is basically similar to the model of axial-flow-

induced vibration developed by Paidoussis (1966, 1969). Beyond the first instability, the 

second mode divergence is found, then, the converged first and second modes undergo 

coupled-mode flutter as the third instability. One may predict that, since the stiffness 

term of the perturbation pressure is negatively predominant, the system loses stability by 

divergence. The cylinder is estimated to lose its first stability at U =2.36 while the non-

perturbation-based model predicts a critical flow velocity of 3.14. Even though the 

overall dynamics proposed by the friction-based model is somewhat different, the first 

critical flow velocity is very close to the velocity predicted by the previous model 

neglecting friction. 
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2.6 Conclusions 

In this study, Hobson's work is further extended to be applicable to annular-flow-

induced vibration of a pinned-pinned cylinder based on a two-dimensional flow model 

with friction. For the friction consideration, a new concept of a perturbation friction 

factor is introduced, which consists of a real and imaginary part. By using the proposed 

friction model, friction effects can be analyzed and applied for all the vibration modes. 

It is shown that not only the friction factor but also the perturbation pressure is strongly 

coupled with the mode shapes of the simply-supported cylinder. 

By the proposed new friction factor, the theoretical solutions for unsteady pressure and 

flow velocities are easily obtained. In addition, the perturbation pressure can reasonably 

be analyzed as three terms; co2 related terms, a> related terms and co independent terms. 

The co independent term, which is a fluidelastic stiffness force, is the most predominant 

among the three terms, so that static-type instability could be expected. 

The proposed two-dimensional flow model shows that the predicted fluid forces are 

significantly different from those of a one-dimensional fluid model for a pinned-pinned 

cylinder subjected to annular flow. It is believed that the large difference is attributable 

to the cylinder radius-to-length ratio and to whether or not circumferential flow is 

allowed. Considering that the one-dimensional flow model does not allow for fluid to be 

squeezed in the circumferential direction, utilization of the one-dimensional flow model 

is probably limited to radius-to-length ratios larger than 0.8, or to one-dimensional 

vibrations such as 1-d.o.f translational or rotational (rocking) motion (Hobson 1982, 

Fujita and Ito, 1992 and 1994, Porcher and de Langre, 1997). 

The flow perturbation theory does lead to some change of dynamics of the annular-flow-

induced vibrations of a cylinder as compared to the confined mean flow velocity theory 
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which does not consider perturbations. It turns out that small perturbations decrease the 

first dimensionless critical flow velocity down to 2.36 from 3.14 when only mean flow 

is considered. 

The proposed friction-based model is expected to give solutions for different support 

conditions of a cylinder such as cantilevered and fixed-fixed cylinders. Also, it may 

further be extended to give an analytical solution to the problem of a finite-length 

annular gap support. 
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L 

J_ 

Figure.2.1 (a) Definition of coordinates and symbols of the system in radial direction, 

and (b) in longitudinal direction. A flexible cylinder of length L and 

external radius Rd is confined in an annulus with a fluid gap H. The fluid 

pressure p', axial flow velocity u', circumferential flow velocity v', and 

vibration amplitude of the rod h' consist of steady terms P, U, V, and H and 

perturbation terms p, u, v and h respectively. However, bulk flow in the 

circumferential direction does not exist because the main flow is in axial 

direction, so v' equals zero. 

*r 3z: u' = U -t- u 

7 \ —— 

(a) (b) 
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Figure 2.2 Pressure ratios of the two-dimensional flow model to the one-dimensional 

flow model as a function of the radius-to-length ratio and beam 

eigenfunction mode number. 
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Figure 2.3 Argand diagram for the pinned-pinned cylinder subjected to annular air flow 

according to Paidoussis theory. The first instability is the first mode 

buckling at Uci = 3.14, the second mode buckling at Uc2 = 6.28, the first 

and second coupled-mode flutter at UC3 = 6.7 and the third mode buckling 

at Uc4 = 9.43 
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Figure 2.4 Argand diagram for the pinned-pinned cylinder subjected to annular air flow 

for the one-dimensional flow model without frictional loss. The first 

instability is the second mode flutter at Uci = 0.01 (1.1 m/s), the third 

mode flutter at Uc2 =0.08 (9 m/s). 
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Figure 2.5 Argand diagram for the pinned-pinned cylinder subjected to annular air flow 

for the two-dimensional flow model without frictional loss. The first 

instability is the first mode buckling at dimensionless Uci = 2.36, the 

second mode buckling at Uc2 =4.72, the first and second coupled-mode 

flutter at UC3 = 4.95, and the third mode buckling at UC4 =7.15 
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Figure 2.6 Real and imaginary parts of friction factor % 2(=l + K ) when the 

inner cylinder vibrates at 10 Hz in the 1st mode, and the dimensionless 

flow velocities are 0.457, 0.914, 1.827, 2.74, 3.65, and 4.57 
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Figure 2.7 Real and imaginary parts of friction factor Kcf* (=1 + Kcf0) when the 

inner cylinder vibrates at 35 Hz in the 2nd mode, dimensionless flow 

velocities are 0.457, 0.914, 1.827, 2.74, 3.65, and 4.57 
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x/L U 

Figure 2.9 (a - c) Real and (d- f) imaginary parts of the perturbation pressure when the 

inner cylinder vibrates at 10 Hz in the 1st mode. When the vibration 

amplitude is 1 mm, the different quantities are (a, d) inertia, (b, e) stiffness 

and (c, f) damping 
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gure 2.10 (a - c) Real and (d- f) imaginary parts of the perturbation pressure when the 

inner cylinder vibrates at 35 Hz in the 2nd mode. When the vibration 

amplitude is 0.2 mm, the different quantities are (a, d) inertia, (b, e) 

stiffness and (c, f) damping. 
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Figure 2.11 (a - c) Real and (d- f) imaginary parts of the perturbation pressure when the 

inner cylinder vibrates at 75 Hz in the 3rd mode. When the vibration 

amplitude is 0.05 mm, the different quantities are (a, d) inertia, (b, e) 

stiffness and (c, f) damping. 
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Figure 2.12 Real and imaginary parts of the perturbation pressure when the inner 

cylinder vibrates at 10 Hz, 35 Hz, and 75 Hz in the 1st, 2nd and 3rd modes. 

Vibration amplitudes are 1 mm for the 1st, 0.2 mm for the 2nd and 0.04 

mm for 3rd mode, respectively, (al), (a2) and (a3) are real parts of the 

pressure at the 1st, 2nd and 3rd modes, and (bl), (b2) and (b3) are 

Imaginary parts of the pressure at the 1st, 2nd and 3rd modes, respectively. 
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APPENDIX 2A: PRESSURE FUNCTIONS FOR 2-D FLOWS FOR 

SEVERAL FLOW BOUNDARY CONDITIONS 

WITHOUT FRICTION TERM 

(1) Contraction loss inlet and free discharge outlet 

In the case of a contraction loss factor Ka at the entrance, the flow boundary conditions 

equation (2-6) with equation (2-23) and (2-24) give 

_ _ . 2pr2a>U dh 

H\\ + r Xm\ dx *=o 

+ pU ut+u2+u3+i-
r2a> dh 

l*=0 

•( i+*,) = o 
H(l + r2Am

2) dx\ 

In this case, the flow downstream of the contraction is not irrotational, so that 

(2A-1) 

v (0) = 0 (2A-2) 

Equation (2-6), (2-23), (2-24), (2-25), (2-30) and (2A-1) yield the following matrix 

equation. 

-p(ino-U) 0 0 

0 p(ira + U) 0 

0 0 -rcolU 

pU(l + Ka) pU(\ + Ka) pU{\ + Ka) 

0 0 0 

i 0 0 

0 i 0 

0 0 0 

1 

0 

0 

1 
-Llr 

0 

0 

0 

0 

1 

0 

1 
LI 

e 
0 

0 

0 

0 

0 

0 

0 

0 

-1 

0 

1 

0 

0 

0 

0 

0 

0 

1 

1 

o" 
0 

1 

0 

0 

0 

0 

1 

ux 

u2 

u3 

Pi 
< 

Pi 

v, 

v2 

- ^ 3 . 
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0 

0 

0 

{\-KayPra> 

dh 
2 pro) 

dx 

dh 

dx 

x=L 

0 

0 

dh_ 

dx 

irU 

H(}+SX:) 

(2A-3) 

where A = mn m = \, 2, 3,. 

Solving equation (2A-3) for u., Pj and vy, and then, substituting them into equation 

(2-24), the following equation is obtained: 

pr2(Xm
2U2+co2) 2pr2coU dh . 2pr2 U (.L+x)/r 

P(X) = 7 ; -r-^-h-l -, -T- ICO -, -r-e ' 
H(l + r%2) H(l + r2Zm

2) dx H(l + r%2) 

dh 

dx 

prU[-(l + KJU2 +(-\ + Ka)r
2 a] 

H(l + r%2)[U(l + Ka) + ira>] 

dh 

dx 

(2A-3) 

(2) Short-lossless inlet and diffuser outlet 

When a short loss-less entrance and a diffuser at the exit are considered, the flow 

boundary condition (2-5) and (2-8a) with equation (2-23) ~ (2-28) give equation (2-29) 

and 
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— _ - _ . 2pr2coU (dh\ 
e r -p,+er • V-,-1 7 : 77• 

+T] pU e r •ul+er -u2+i 
r2co fdh^ 

H(l + r2Am
2) Vdx)x=L 

(2A-4) 

= 0 

Equation (2-9), (2-23), (2-24), (2-25), (2-29) and (2A-4) yield matrix equation as 

follows: 

-p(ira)-U) 0 1 

0 p(ira) + U) 0 

pU 

pUt]e-Llr 

i 

0 

pU 

pUT]eLlr 

0 

i 

1 

0 0 0 

1 0 0 

1 0 0 

e-L,r eLlr Q Q 

-1 0 0 

0 

0 

0 0 1 

0 

0 

dh 
pro) 

dX n 
**•* x=0 

prail-rf)- — 
dx 

0 

0 

u2 

A 

Pi 

F 2 j 

x=L 

irU 

H{l + rX2) 

mn where, Am =——, m = \, 2, 3,. 

(2A-5) 

Solving equation (2A-5) for each u., p} and v. , and then, substituting them into 

equation (2-24), one may obtain the following equation: 
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pr2(Am
2U2+co2) 2pr2Q)U dh prU(U-irto) dh 

dx 

+i 
pr2G)U(U + irct))(rj-2) 

H(l + r2Xm
2)[{rj-\)U-irco] 

dh 

dx 

(2A-5) 
<-L+x)/r 

(3) Diffuser inlet and free discharge outlet 

When a diffuser at the entrance and a free discharge at the exit are considered, flow 

boundary conditions (2-8b) and (2-7) with equations (2-23) ~ (2-28) give 

Pi
+Pi~ 

ilapr coU 

H(l + r2Aj) 

dh 

dx 

f 
+ rjpU 

c=0 

ir co 
u]+u2 + 

H(l + r2Am
2) 

dh_ 

dx 

\ 
= 0 (2A-6) 

Equation (2-9), (2-23), (2-24), (2-25), (2-30) and (2A-6) yield a matrix equation as 

follows: 

-p(irco-U) 

rjpU 

p{ino + U) 

rjpU 1 1 

e-
Llr eLlr 

0 

0 

prco(2-jj) 

Pi 

Pi 

L V 2J 

dh 

dx irU 

2pra> 
dh_ 

dx 

H(l + r%>) 

0 

0 

(2A-7) 
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where, Xm 
mn , m = l, 2, 3,. 

Solving equation (2A-7) for each Uj, pj and v. , and then, substituting them into 

equation (2-24), one may obtain the following equation: 

pr2U2U2+ca2) 2pr2coU dh 
P(x) = 7 :—rr h-i—T —rv 

H(l + r%2) H(l + r2Aj) dx 

2pr2U i-L+x)/r dh 

H(l + r2Am
2) dx 

pr2Uo)(j]-2)[U-irco\ _xlr 

X__L //(l + rU^C/fa-D + i H 
dh 

dx x=0 

(2A-8) 
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APPENDIX 2B: PRESSURE FUNCTIONS FOR 1-D FLOWS FOR 

SEVERAL FLOW BOUNDARY CONDITIONS 

(1) Contraction loss inlet and free discharge outlet 

In the case that the contraction loss factor Ka is considered at the entrance, flow 

boundary condition (2-6) and (2-7) with equations (2-39) and (2-40) give the pressure 

functionp(x) as follows: 

p{x)-pU2^\C°2 h i2p0)U dk PU°>2(K
a-

l)(L-x) 
HA HX2 dx HAm

2[u(\ + Ka) + iL(o] 
dh 
dx :=0 

+ / 
2pcoU\u{\ + Ka) + ixco] 

HX2[U{\ + Ka) + iLco\ 
dh 
dx 

(2B-1) 

(2) Short-lossless inlet and diffuser outlet 

In the case of pressure recovery, the recovery efficiency n, is considered at the exit and 

flow boundary conditions (2-5) and (2-8a) with equation (2-39) and (2-40) give the 

pressure functionp(x) as follows: 

V K +°> 7 ilpcoU dh 
p(x) = p ^—. h !——_ 

HXJ HA2 dx 
+icopU • 

+ipa>U 

-U7] + i(L-x)a> 

HAm
2[u{l-rj) + iLco]' 

(2-tj)(U + ixco) 

HAm
2[U{l-Tj) + iLa>] 

dh 
dx 

dh 
dx 

x=0 

(2B-2) 

(3) Diffuser inlet and free discharge outlet 
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In the case of pressure recovery, the recovery efficiency rj, occurs at the entrance and 

flow boundary condition (2-8b) and (2-7) with equations (2-39) and (2-40) give the 

pressure functionp(x) as follows: 

p(x) = p •h-
i2pcoU dh pUco2(2-7])(L-x) 

HAm
2 dx HXm(Ur] + iLo)) 

dh 

dx x=0 

,2pUco{ Urj + ixco) 
1 HXm(Uri + iL(D) 

dh 

dx 

(2B-3) 
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CHAPTER 3 

ANNULAR-FLOW-INDUCED VIBRATIONS OF A SIMPLY-

SUPPORTED TUBE IN A FINITE-LENGTH NARROW-GAP 

SUPPORT 

The stability of a simply-supported tube subjected to narrow annular flow in a finite-

length gap support is experimentally and analytically investigated in this Chapter. 

Numerous experiments show that a pinned-pinned tube subjected to leakage flow in a 

finite-length narrow-gap support first loses stability by flutter, and the critical flow 

velocity is low. 

The problem is analytically solved based on the solution obtained in Chapter 2. In the 

analytical solution, the exit boundary condition for pressure recovery is found to be 

predominant for flutter instability. Based on the analytical solution, a simple semi-

analytical model to predict the critical flow velocity is proposed for the first mode 

instability. The prediction of the semi-analytical model agrees reasonably well with the 

experimental results. 



Nomenclature(i) 

C damping coefficient 

Ce n effective damping coefficient of the nth mode 

EI flexural rigidity 

Ff fluid forces per unit length due to perturbations 

Ff D fluid damping force due to perturbation 

Ff j fluid inertia force due to perturbation 

Ff K fluid stiffness force due to perturbation 

Fl fluid force per unit length at support 

Fs D inner tube damping force 

Fs j inner tube inertia force 

Fs K inner tube stiffness force due to perturbation 

h vibration response of the cylinder 

hn (t) vibration response of time (t) 

Kcf0 friction factor 

KcfX friction parameter (Kc/l
2 = 1 + KqfQ IH) 

L length 

m mode number 

Mf added fluid mass 

Ms structural mass per unit length 

L 

Me n modal mass of the nth mode (Men = $Ms -faixfdx) 
0 

Pf perturbation pressure 



Nomenclature(n) 

pc coefficient of cosine component of perturbation pressure for particular 

solution 

n mode number 

ps coefficient of sine component of perturbation pressure for particular 

solution 

Pi static pressure before diffuser 

P2 static pressure after diffuser 

Re Reynolds number (Re = — — - ) 

M 

r radial coordinate 

Rd radius of inner cylinder 

U mean flow velocity in axial direction 

u perturbation velocity in axial flow velocity 

uc coefficient of cosine component of axial perturbation velocity for 

particular solution 

us coefficient of sine component of axial perturbation velocity for 

v perturbation velocity in circumferential flow velocity 

vc coefficient of cosine component of circumferential perturbation 

velocity for particular solution 

vs coefficient of sine component of circumferential perturbation velocity 

for particular solution 

x axial coordinate 

6 circumferential coordinate 

co cyclic frequency 

co natural frequency at zero mean flow velocity 



Nomenclature (111) 

^n damping ratio of the n th mode 

8 dimensionless diffuser performance coefficient 

rj recovery coefficient 

TJS static recovery coefficient 

rjp perturbation recovery coefficient 

p air density ( Kg /m3) 

TX frictional shear stress in axial direction 

T0 frictional shear stress in circumferential direction 
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3.1 Abstract 

The stability of a simply-supported tube subjected to narrow annular flow in a finite-

length gap support is experimentally and analytically investigated. For the experiment, a 

2.5 rn test section and several finite-length gap supports have been made considering 

different gap size and diffuser angles of the support. The tube was observed to lose 

stability by flutter. The critical flow velocity was strongly dependent on the annular gap 

size and the diffuser angle at the downstream end of the support. A solution for the 

perturbation pressure on the tube is analytically obtained considering the friction loss, 

the contraction loss at the entrance, and the pressure recovery at the exit of the support. 

In the analytical solution, the exit boundary condition for pressure recovery is found to 

be predominant for flutter instability. However, flutter instability does not materialize 

for lossless boundaries such as short-lossless inlet and free-discharge outlet. Based on 

the analytical solution, a simple semi-analytical model to predict the critical flow 

velocity is proposed for the first mode instability. The prediction of the semi-analytical 

model agrees reasonably with the experimental results. However, it is judged that the 

pressure recovery at the diffuser should be experimentally measured more accurately to 

have even better prediction. 

3.2 Introduction 

Considerable effort has been made to develop methodologies to predict the instabilities 

of a flexible rod subjected to annular or leakage flow. As a result, several methods to 

predict the dynamic behavior have been developed, such as the linearized potential flow 

theory based model (Mateescu, Paidoussis and Sim, 1985, 1987, 1988), and the 

pressure-loss models (Hobson, 1982; Spurr and Hobson, 1984; Fujita and Ito, 1992; and 

Langthjem et al., 2006). The basic dynamics due to annular flow are known by virtue of 

these models. 
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On the other hand, to tackle industrial problems such as heat exchanger tube and control 

rod vibrations in gas and water cooled reactors, the practical conditions provided by the 

tube-support plate geometry should be considered. For heat exchanger tubes, the support 

causes leakage flow (highly confined annular flow) and sometimes, additional divergent 

or convergent flow at the exit or the entrance of the support, which is due to chamfering 

of the support hole for manufacturing convenience. The tube has therefore no positive 

contact support when centered within the loose support. Therefore, when it comes to 

heat exchangers, leakage flow over a finite length and divergent or convergent fluid 

boundary conditions should be considered in addition to the basic annular flow. For 

brevity, the term 'support' is used here to mean a 'loose support'. 

Unlike the basic annular flow case, a rigid rod translating periodically in a finite length 

annular region of confined flow was studied by Mulcahy (1980). He studied the fluid 

forces and hydraulic damping. However, since the study was done for still water, only 

positive damping was found. Later, Yasuo and Paidoussis (1989) considered the flow-

induced instability problem of heat exchanger tubes subjected to axial flow in a diffuser-

shaped, loose intermediate support which is the same problem as this study examines. In 

their study, potential flow theory was considered with a one-mode approximation of the 

tube. They suggested critical flow velocity equation for divergence and flutter. 

Application of this theory to practical problems is, however, limited because of the one-

mode approximation and inaccurate prediction of the critical flow velocity. 

It is not easy to obtain an analytical solution particularly when friction loss is considered. 

However, once an analytical solution is obtained, numerous applications are possible. 

The aim of this study is, therefore, (1) with an experimental approach, to measure the 

critical flow velocity for several annular gaps and diffuser angles, (2) to propose an 

analytical solution for the fluctuating pressure on the surface of a simply-supported 

cylinder subjected to the annular flow at the finite-length narrow-gap support, (3) based 
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on the solution, to propose a simple calculation procedure to predict the critical flow 

velocity for the first vibration mode of the tube. 

3.3 Experiments 

3.3.1 Description of apparatus 

The test section with associated instrumentations is schematically shown in Figures 3.1 

(a) and (b). Experiments were conducted in a 2.5m long test section in which the flow 

rate ranged up to flow velocity of 12 m/s. A 2.2 m long and 15.9 mm (0.627 inch) 

diameter inner tube was used with a mid-support (finite-length narrow-gap support) 

having a length of 38.7 mm (1.525 inch). Several geometries of the axisymmetric mid-

support were investigated. The inner tube was supported by four pins at one end, 

therefore, a total of eight contact points for both ends to simulate pinned-pinned 

boundary conditions. The gaps between the inner tube and supports were 0.29 mm, 0.42 

mm, 0.67 mm, 2.2 mm, and the annular gap between the inner tube and outer plexiglass 

glass tube is 5.15 mm. Diffuser angles of 10° and 20° were provided at the downstream 

end of the support. All dimensions are summarized in Table 3.1. 

Fluid parameters and vibration characteristics of the inner cylinder are summarized in 

Table 3.2. Compressed air comes into the test loop through a pressure regulator 

connected to the building services air supply. The air meets a contraction at the entrance 

to the test section due to the tube support, enters the annulus provided by the lower glass 

tube, and then, flows into the much smaller annular channel provided by the replaceable 

support. The air flow is controlled by a valve at the end of the test loop, so that higher 

flow velocities can be obtained by opening the valve. 

As seen in Figures 3.1 (a) and (b), two static pressures are measured at locations just 

upstream and downstream of the diffuser so that the pressure recovery can be calculated. 

Unfortunately, with this pressure gage setup, the expansion loss at the downstream end 
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of the support cannot be measured. Vibration amplitudes are measured with four laser 

sensors (reflex sensor, Wenglor Company), in two directions near the support, at mid-

span and at the one-fourth position along the test section. The measurement signals were 

acquired and analyzed using an Oros data acquisition system. 

3.3.2 Experimental results 

The inner pinned-pinned cylinder loses its first mode stability at very low flow velocity 

for all support cases. The first instability is clearly observed in the first mode. The 

instability is believed to be a dynamic instability, not a static one. The reasons are that 

the critical flow velocity is too low to overwhelm the stiffness of the steel cylinder by 

negative fluid stiffness, the natural frequencies do not change before the inner cylinder 

starts impacting the support, and limit cycles are clearly observed for all the supports 

below or above the critical flow velocities. 

Figure 3.2 shows the measured rms vibration amplitude and damping factor as functions 

of the upstream flow velocity for the support having a 0.29 mm gap with a 20° diffuser 

angle. The vibration amplitude starts increasing rapidly from 0.2 m/s. At the same time, 

the damping ratio has decreased to nearly zero. Then, as the inner cylinder starts 

impacting the support, the amplitude decreases while the "effective" damping ratio 

increases. The damping ratio is estimated by curve fitting the response spectrum in the 

neighborhood of the first mode frequency. All measurements for the different support 

geometries show the same trend as in Figure 3.2. 

While the vibration amplitude and the damping change, the natural frequency of the 

cylinder does not change at all before the onset of impacting, as shown in Figure 3.3. 

The 12.5 Hz and 40.2 Hz components are, respectively, the first and the second natural 
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frequencies. When the inner cylinder starts impacting, the first natural frequency 

increases to 14.5 Hz. Physically impacting increases the effective stiffness of the tube. 

Figure 3.4 shows X-Y plots of the cylinder motion at the support elevation. As the 

amplitude increases, whirling motions are clearly observed, which is believed to be a 

limit cycle. It is well known that the limit cycle is the result of a dynamic instability. 

Once impacting starts, the limit cycle disappears. When the cylinder contacts the 

support, the cylinder seems to vibrate in a one-dimensional motion. This is a very 

typical vibration behavior for all the supports with increasing flow velocity. 

The vibration amplitudes for different gaps and diffuser angles as functions of flow 

velocity are shown in Figure 3.5. The lowest critical flow velocity of 0.10 m/s 

(equivalent to 2.38 m/s or 790 Reynolds number at the support) is obtained with the 

support having a 0.29 mm gap and a 10° diffuser while the highest critical flow velocity 

of 2.82 m/s (equivalent to 7.6 m/s or 17,000 Reynolds number at the support) is 

observed with a 2.20 mm gap and a 10° diffuser. Generally speaking, the smaller the 

gap and the diffuser angle the lower the critical flow velocity. However, for the 0.68 

mm gap support, the critical flow velocity of 0.12 m/s is obtained with the 10° diffuser, 

which is significantly lower than that of the 0.42 mm gap support. The upstream critical 

flow velocity of 0.12 m/s is equivalent to 1.14 m/s or 870 Reynolds number at the 

support. For the largest gap (2.2 mm) support, interestingly, the critical flow velocity of 

the 20° support is much lower. Critical flow velocities for all the supports are 

summarized in Table 3.4. 
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3.4 Analytical model 

3.4.1 Assumptions 

For the development of an analytical model, the following assumptions are made: 

1. Although fluid flows in an annular confinement before and after the support, the fluid 

effects from such confinements are considered to be negligible at low flow velocity. 

Therefore, the analytical model to be solved is as illustrated in Figure 3.6. 

2. The mechanical damping of the inside cylinder is assumed to be small; the damping 

ratio (£) in the experiments is 0.2%. 

3. For the inner cylinder, the radius-to-length ratio is assumed to be so small that shell-

type vibration may be neglected. 

4. Every flow-related term may be expressed as the sum of an average (steady) 

component plus a small perturbation component. 

3.4.2 Equation of motion of a flexible inner-cylinder 

The oscillating flexible inner-cylinder simply supported at the ends is considered as an 

Euler-Bernoulli beam having flexural rigidity EI, length L, mass per unit length Ms, and 

damping coefficient C. The cylinder is subjected to distributed external forces which 

occur due to the fluid motion. Since the fluid forces are coupled to the inner-cylinder 

motion, the equation of transverse motion h(x,t) of the cylinder is expressed as 
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d2h(x, t) dh{x, t) d4h(x, t) 
2 *~ *" 4~ 

dt dt dx 
K ^ ^ + c^21l + EI^_^1l = FiXtt) ( 3 . 1 } 

In 

where F,(x,/) = F,(x)• eia" =-\Pf (x,t)• eim (cos0)2 rd9 , (3-2) 

The following modal expansion solution is assumed. 

CO 00 

Kx,t)=Z^(x)-K(0 = ^n(x)-an-e
M (3-3) 

It is assumed that the pressure perturbation varies as a cosine function around the 

circumference of the inner cylinder. Figure 3.6 shows that an arbitrary perturbation 

pressure p acting on the inner cylinder surface when the cylinder moves in the positive y 

direction. <j)n(x) a nd an in equation (3-3) are the nth eigenfunction and the vibration 

amplitude, respectively, iy and P/x,t) in equation (3-2) are the fluidelastic force/unit 

length and the pressure on the cylinder surface, respectively. For a simply-supported 

beam, the eigenfunctions are 

(/>n(x) = sin(A,nx), Xn = —; « = 1,2,3... (3-4) 
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Substituting equations (3-3) and (3-4) into equation (3-1) gives 

Mshn(t) + Chn(t) + EIA„X(t) <l>n{x) = Ff{x,t) (3-5) 

Multiplying equation (3-5) by^m(x) in order to use the mode orthogonality property, 

and integrating over the length gives 

^ J a O + 2C,o>„Me A ( 0 + « „ X A ( 0 = S<f>„(x)-Ff(x,t)dx (3-6) 

L, 

where , Men = JMS -^(xfdx, 

c. 
2Me,„«„ 

(3-7a) 

(3-7b) 

(3-7c) 

co}=^ 

\En;-l(xfdx 

M. 
(3-7d) 

When a finite-length narrow-gap support is considered, the entrance and exit locations at 

Lj, and L2, respectively, shown in Figure 3.6 demarcate the forcing region, thus 

Ff •*• 0 for L.<x<L2, and otherwise, Ff = 0 (3-8) 
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Since the cylinder motion is coupled with the fluid motion, the cylinder vibration leads 

to increased pressure fluctuations. The fluctuating pressure may be separated into three 

terms related to fluid added mass (P f l ) , damping (Pf D ) and stiffness (P f K ) and written 

as follows: 

Ff (x, t) = -nr [-co2PfJn (x) + i(oPfJn (x) + Pf K<j>n (*)] Pf (t) (3-9) 

Substituting equation (3-9) into equation (3-6) and using (3-7b) ~ (3-7d) gives 

f 12 

-co \ + Q\PfJ<f>n(x)2dx + ia> 
V L\ J 

12 

2£„a>H + Q- \PLJ„(x)2dx 

L2 

<o2+Q\PfJ„{xfdx = 0 

(3-10) 

where Q = nrlMen, 

and Pfl * PfD * PfK *0 for /,, < x < L2, otherwise. Pf] = Pf D = Pf K = 0. 

3.4.3 Fluid equations and boundary conditions 

(3-H) 

Consider a two-dimensional unsteady, incompressible, annular flow between two 

concentric cylinders. Assuming small perturbations of the flow, the first-order 

continuity and momentum equations may be expressed as 
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Hs1+!L^=_dh_udh (3_12) 
fix r 80 dt dx 

dp du Tr 1 dv _ rrdu rr U dh U2 dh ,„ , „. 
— + / ? — + /?t/ + 2/? t /— + -£ -= - / ? p (3-13) 
dx dt r 80 8x H H dt H dx 

1 dp dv TTdv T„ ,„ , .. 
—^- + p — + pU— +-^- = 0 (3-14) 
rd0 dt dx H 

In equation (3-13) and (3-14), xx and xe are non-conservative friction shear stresses, xe 

may be neglected since there is no bulk flow in the circumferential direction. 

In this study, the three fluid equations together with two boundary conditions for the 

entrance and the exit are considered. A short lossless entrance and a free discharge exit 

are considered as ideal conditions. As realistic conditions, a contraction-loss entrance 

and a diffuser exit are taken into account. 

For the short-lossless entrance and the free-discharge exit boundary conditions, the 

following equations are obtained: 

p(L]) + pUu(L]) = 0 (3-15) 

for the entrance, and 

p(L2) = 0 (3-16) 
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for the exit of the finite-length support. 

For the realistic fluid boundary conditions, we consider a contraction loss factor Kx at 

the entrance, and a diffuser efficiency rj at the exit of the finite-length support. For the 

contraction loss at the entrance of the support, one obtains 

p(Ll) + pUu(Ll)(l + Kl) = 0 (3-17) 

Considering Bernoulli's equation just before and after the exit gives 

P -P 
2 l =rjs (3-18) 0.5/tf/, 2 Is 

Pi+KpUn+tj^pU^O (3-19) 

In equation (3-18), Pl and P2 are the static pressures immediately before and after the 

diffuser, respectively. t]s is the static pressure recovery coefficient at the diffuser. In 

equation (3-19), px and w, represent the perturbation pressure and flow velocity 

upstream of the diffuser. Linearizing and assuming that the perturbation recovery 

coefficient t]p is a function ofh(x), one can write 
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A 7. 
Ah 

VP=^r-h (3-20) 

As proposed by Hobson (1982), a dimensionless diffuser performance coefficient 8 is 

introduced as follows: 

S = - ^ - (3-21) 
Ah/H 

Then, substituting into equation (3-19), one obtains 

•2 

2H 
pl+TjspU,ul+S^r-h = 0 (3-22) 

3.4.5 Friction coefficient and friction loss 

A new concept to consider friction has been proposed by Kang et al. (2009). To take the 

friction term in the momentum equation (3-13) into account, the axial momentum loss 

due to friction is expressed in the form 

rx p „ frrdu 8u^ 
x _ r j/-

H~H cf0 
U— + — 

V dx dt j 
(3-23) 
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Setting Kcfl
2 =l + Kcf0/H simplifies the solution procedure, and the analytical 

solutions for perturbation flows can be obtained without difficulties. Using the friction 

coefficient of the Shimoyama and Yamada (1957) model, Kcf0, and Kcfl
2 are obtained 

as follows: 

= (0 2288)-Re^24
 for R g > 

^ = i + „ r T
(

r ° - 2 , 2 8 8 ) ; R e r . n • U for Re > 2000. (3-25) 
H[u(<f,'n(x)/<f>n(x)) + ico] 

3.4.6 Analytical solution for pressure perturbation 

The authors proposed an analytical solution for annular-flow-induced vibration 

considering a new friction concept in Kang et al. (2009). For a brief description of the 

solution, we start with substituting equations (3-23) and (3-25) into equation (3-13). By 

virtue of equation (3-12), equation (3-13) becomes 
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Equations (3-12) and (3-14) may be expressed as first order complex differential 

equations. 

du__.}_ __^_M__U_M_ 
dx r H dt H dx 

.1 dv 8v 
-i-p+p— + pu— =o 

r ot ox 

(3-27) 

(3-28) 

The vibration response of a simply-supported inner cylinder vibrating in mode n can be 

written as 

h„(x't) = '/>„(x)-ane" (3-29) 

where <f>n (x) = sin 
1tin ^ 

x 
L J 

The solutions of (3-26) ~ (3-28) for un(x,t), vn(x,t) and p„(x,t) may be expressed as 

in(x,t) = ^j-eAjX -eico' +(us.^+uc^'n)-hn(t) 
7=1 

7=1 V ' 

7=1 V ' 

(3-30) 

(3-31) 

(3-32) 
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Substituting equations (3-29) ~ (3-32) into equation (3-26) ~(3-28), collecting the 

homogeneous terms ( independent of hn) of equations (3-30) ~(3-32), and setting to 

zero yields 

A.-
.1 

-i — 

r 
p[to(*:^) + C/Ay(V)] Ay 0 

-i— p(ico + UA.) 
r 

Pj = 0 (3-33) 

where Kc/l
2 =l + Kcf0/H. 

In order to have a non-trivial solution for equation (3-33), the determinant of the matrix 

should be zero. The resulting characteristic equation yields the following three 

CO eigenvalues; A, = — , A2 =—— and A 3 = - i — . Utilizing each eigenvalue, three 
r r U 

relationships between the coefficients of pressure p., circumferential flow velocity v. 

and axial flow velocity ui are determined. 

K. 
(1) A, = ^- , iKcfx ux -v, = 0, px +pKcfX [Ufccf} -i rco\-ux = 0 (3-34) 
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(2) A 2 = - ^ - , iKcfxu2+v2 = 0, p2+ pKcn(KcfxU + irco)-u2 = 0 (3-35) 

<y _ r<y _ _ 
(3) A 3 = - / — , v3+ — - w 3 = 0 , p 3 = 0 (3-36) 

As noted by Hobson (1982), the first two conditions, (3-34) and (3-35), represent 

irrotational velocities and pressure fields while the third stands for a vortical velocity 

field convecting with the fluid without an associated perturbation pressure field. 

In the equations (3-30) ~ (3-32), us, uc, ps, pc, vs, and vc are coefficients to be determined. 

By substituting equations (3-29) ~ (3-32) into equations (3-26) ~ (3-28), with equation 

(3-33), the following three equations are obtained: 

Hr r" Hr 

rp U1 + H(psr + 2rpUus - ipUvc + i rp couc) , 
- -m 

Hr Vn 

H \_r\2 (Pc + 2p£/«c) + ip(Uvs - rcms)] - irp cdU 

Hr 

(3-38) 

^„=0 

ipr + rpiUv, + ieov ) , Ps+ rp{-iUXn v -cov ) 
.££ >1^_? il^ _ i 2 LA L^ 11 f = o (3-39) 

r r 

where A = , n = 1,2,3. 
" L 
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Knowing that h(x,t) is a sine function in x and the derivative of h(x,t) is a cosine function, 

the first and the second terms in equation (3-37) ~ (3-39) may be separated and set to 

zero independently, so that the six coefficients can be determined. 

The three final solutions are 

u(x) = uj-e' -
7=1 

2 ] 2 rlA. -U-h-i 
r2a> 

H(K^+r^) Y" /f(V+^2) " 
(3-40) 

v(x) = Z — A,JC 

vre> + 
7=1 

Kcf
2rco 

fa-i-
Kcfl

2rU 

H(K^+rX2)Y" H(K^+^) 
< (3-41) 

p(x) = Dy**' 
7=1 

Kcf
2pr2(u2An

2+co2) . 2Kcf
2pr2a>U ' 

H(K* 
2+r%2) H(Kcf

2
+r2\2) 

(3-42) 

with three conditions, equations (3-34) ~ (3-36), for A,, A2 and A3. 

For the short lossless entrance and free discharge, equations (3-15) and (3-16) can be 

rewritten as 

jW K^ pr2Kcf,
2\(U2An

2+CD2\h\x,-i2o}U-<f>n\ } _ 
•e r +p, e r + =̂  -, ; — — 2 - T —-h 

+pU 

Pi 

( Kcsvh 

ux-e
 r + u2 • e r 

v 

KcfvL\ 

»(vv) m 

(3-43) 
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and 

^c / l ^2 

pre
 r +p2-e " 

Kcf
2pr2(U2An

2
+co2) 

+ -
2Kcf

2pr2coU 
H(Kcf

2
+r2X2) 't-U-W ->H(Kif2+^yr. 

(3-44) 

A(0 = o 
x=i2 

In the case of the short lossless entrance, the flow is assumed to be irrotational, so that 

u3 = 0. This is the reason why there is no «3 in equation (3-43). 

Combining equations (3-34), (3-35), (3-43) and (3-44), one obtains the matrix equation 

K,. (UK ,, 
cf\ \ cf\ 

-iro) ) 0 1 0 

K
tfi(

UKrfi-ira)) ° 1 
AX, AX, 

Ue Ue> 

0 

AX, AX, 

e r e r 

rU 

KL2 

e r 

0 

0 

AX, 

e r 

P\lp 

P2I p_ 

(K^-ip'V + ̂ W (1-2^,,') 
/ /(^ ( £ 1 )

2
+r2A„2) / / ( K ( I I )

2 + r 2 V ) 

+ ; — - r--Q> i-> -icoU 1—— 

H(K(L2
2
+r2An

2) %L2 H{K(L1)
2+r2\2) • * nL2 

•Kit) 

(3-45) 
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where 
KLx_KcfX-x KL2_KcfX-x 

=u 
A L 1 = ^ ( C > ̂ 2=AWL2 » 

=£2 

^ 2 _ ^ 2 
•^(11) — ^ c / l 

V 2 - K 2 

x=n ' A d 2 ) - -^c/1 

d(j)„ 

=",r"Li dx 
and $ i 2 = 

d(j>n{x) 

x=L\ dx x=L2 

For the contraction-loss entrance and diffuser exit, equation (3-17) and (3-19) can be 

rewritten as equations (3-43) and (3-44), then, with equations (3-34) and (3-35), one can 

obtain the matrix equation below 

0 Kcf\ (UKcfX -iro)\ 
KL^ KL\ 

(\ + Kx)Ue (l + K^Ue 
KL2 KL2 

Utje Urje 

1 

0 
AX, 

e r 

KL2 

e r 

0 

1 
AI, 

e r 

AXj 

e r 

• • 

« i 

u2 

Px>'P ' 

p2/p 

-r2< 

0 
0 

UK..n
1-K)u2A2+K..n

2a>2~\ K -2K 

"OW+'-'V) #0w+r2v) r n £l 

±-^—^—-——— • #,i2 +iffl £/ — - — < m 

H(KlL2)
2+r\2) n{KiL2)

2+r2An
2) fnll 

Kit) 

(3-46) 

where Ka=\ + Kl. 
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The two simultaneous equations in matrix forms may be solved with the help of a 

symbolic computer softwares such as Mathematica or Maple. Mathematica 6.0 (2007) 

was utilized to obtain solutions for perturbation pressures, based on the relations 

2KcfVxlr 2Krf, -xlr 

<s:e cfX 
x=L\ x=L2 

and e
K^y(2Li+x)lr « e

Kw(2L>+x)'r _ 

The resulting perturbation pressures at the narrow annulus are 

p(x)-
pr2Kcf? 

-x[-i2aU-ti-U2-0:+a)2</>n~] 
H(Kcf]

2+r2A„2)' 

~\ „(/? 23^{(^i2-1)-^2+^1V)-^1+^(l-2^,2)-^1] 

Kcf\UKcfl-irco) Bz^l 
X[u(K<f,

2-\)-ira)K<fX'\e 

2 „ 2 -KLt+K 

(3-47) 

-KL2+Kcflx 

for the short-lossless entrance and free-discharge exit, and 
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Pr2Kcl
 2 

H \Kcf\ + r \ ) 

'[£/(V-*.)-,>fl,**i] 
^ 

pr2 e ~' • Kcfl (UKcfl + i ra>) 

H(K(L2)
2

+r2A„2) [ufaf-rf + iraK^] 

{[(S + 2(KL2
2 -rj))r2l2U2 +KL2

2(SU2 + 2 r V ) ] - ^ i 2 + / 2 ^ 2 t / ( 7 - 2 ^ 2
2 ) - ^ 

(3-48) 

for the contraction-loss entrance and diffuser exit. 

Equations (3-47) and (3-48) may be divided into three terms; a term proportional to 

e- cfl'r, a term proportional to & +* cfl' rand a term independent of these two 

exponential functions. The function e- * cf>' 'has a peak at the entrance (x = Lx). The 

magnitude of this function decreases rapidly with increment of the variable x beyond the 

{ vi —x-K \tY 

entrance, so that this term multiplied by ey cfi} may be called the 'entrance effect'. 

Similarly, ey +* cf''r may be called the 'exit effect'. Unlike these two terms, the first 

term, in equations (3-47) and (3-48) consist of eigenfunction and derivatives of the 

eigenfunction, so that the latter term has an effect in the whole spatial domain. For this 

reason, the latter term may be called the 'mid-way effect'. It is not difficult to identify 
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the three fluid effects in the three terms: inertia (a>2), Coriolis (ico) and, centrifugal 

effects, respectively. 

Recognizing that the fluid mass is independent of the fluid velocity, it is true that small 

effective lengths of entrance and exit are insufficient to induce significant fluid inertia 

forces. Therefore, it is assumed that the real part of the entrance and exit effects is 

limited to fluidelastic stiffness while the imaginary part is fluidelastic damping (ico 

terms). 

The fluidelastic force per unit length may be calculated by integrating the pressure field 

which is given by equation (3-2). Accordingly, equation (3-47) gives 

-pnr1^ 2 

H\Kcf\ +r K ) 

+[FIEn]xe - +[FIEXl]xe ' 

(3-49) 

where FlETX=Rx{((KL
2 -\)-U2\2

 +KL
2w2)-(Pnn+icoU{\-2KL

2)-lLX] 

K (UK -iroA ^V^/i* 
Kcfx[UK ira>) —r-^ ( 3 . 5 0 ) 

[u(Kc/
2-l)-ircoKcfX] 

—KLi+KcfXx 

F1EXl=R2{(u2An
2+co2y<f>„L2 -i2coU-</>'nL2\e * , (3-51) 

par3 

H(K(Ln
2
+r2An

2) 
(3-52) 
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prtr-KL2 

H(K(L2)
2
+r2An

2Y 
(3-53) 

Similarly, equation (3-48) gives 

-p7rr3Kcf]
2 

H\Kcf\ +r K ) 

+[FiETi\xe 

(3-54) 

where FlET2 =R, {((KLI
2 -Ka)-U

2V +KL1W)^nU + ioAj(Ka-2KL
2).^u] 

Kcf](UKcfi-ira>) J^± 

[u(Kcf
2-Ka)-ircoKcfl] 

(3-55) 

F = 
1 IEX2 

'[(6 + 2(KL2
2 - tj)) r2X2U2 + KL

2 (SU2 + 2rW )] • <f>nL2' 

+ i2cor2u(rj-2KL2
2y^L2 

„ Kcfi(UKcf]+ira>) zE^nl 

[u(Kcn
2-7l) + ir(DKcfX] 

(3-56) 

It is not easy to formulate one fluid-structure coupled equation similar to equation (3-10) 

by identifying every single term in equation (3-49) and (3-50) in terms of factors of 

co2 ,a>, and a>°. A single equation may be obtained from the denominators of the two 

equations, which renders the equation of motion a third-order differential equation. Also, 

it is not easy to utilize Galerkin's projection for the whole dynamic behavior in terms of 

mean flow velocity due to the complexity of the fluidelastic force equations. 
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However, if the inner cylinder first loses stability by flutter at low flow velocity, the 

imaginary part of the fluidelastic force may be used to see if damping becomes negative, 

and overcomes the structural damping forces. From equations (3-6), (3-7a) and (3-7b), 

one may set a damping balance condition for the negative damping force. 

( L \ £2 

ICO 2Ca)„JMj„(x)2dx h„(t)-hn l</>n(x)-F,(x,t)dx< 0 (3-57) 
V o J £1 

By utilizing equations (3-49) - (3-56) considering the earlier discussion on the entrance 

and exit effects, the fluid damping force in equation (3-57) becomes 

£2 £2 o ^ ^ „ 3 ^ 2 * T £2 

- I Im[F,(x)\<l>ndx = -\ 2
 y • 0Jndx- I hn(FlEn + FIEXl)(f>„t 

£1 L\H\Kcf\ + r K ) £1 

(3-58) 

for the short-lossless entrance and free-discharge exit, and 

A2 £2 ~,„„,3v 2TT £2 
f f 2/?;rr K n coU , t , \ 

- I ImlF^lfadx = - J __/„ 2 2, W<t>n fad*- J lm{FlET2 + FlEX2)4ndx 
£1 LlM\Kcf\ + r An ) £1 

(3-59) 

for the contraction-loss entrance and diffuser exit. One may add a Coriolis' term to 

equation (3-58) and (3-59) when the flow velocity is not negligible. 
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By virtue of the discussion above on the fluidelastic forces, the modal fluid mass may be 

expressed by 

Ffj=a>2 

H(Kcfl
2+r2An

2) £ 
(3-60) 

The fluid stiffness forces are 

3 ^ 2 r r 2 5 2 £2 
pnriK'UlXn FLK = \MfUy„(x)<f>ndx+

/" f " • J [A(x) -Re(F l m +FaBn)]+mdX 
0 H\J<icf\ + r K ) L\ 

(3-61) 

for the short-lossless entrance and the free-discharge exit, and 

Ff* = \MfU
2fn{x)<t>ndx+

 F f • • J [ ^ W - R e ( F / £ r 2 + J F ^ 2 ) ] ^ > 
0 - " y^cf\ + r ^n ) LI 

(3-62) 

for the contraction-loss entrance and diffuser exit. 
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3.5 Numerical calculations 

For a one-mode approximation, the first mode can be utilized since the inner tube was 

observed to lose stability in the first mode. 

The dimensions of the physical properties and fluid characteristics are summarized in 

Table 3.1 and Table 3.2. All the properties and the dimensions are selected to model the 

experimental test setup. 

The finite-length gap support having a 38.1 mm length is considered to be positioned at 

the mid length of the inner cylinder as shown in Figure 3. 6. The mid point of the 

support coincides with the mid length of the inner cylinder. For the upstream end of the 

support, a contraction loss factor Ka is considered. On the other hand, for the 

downstream diffuser exit, the diffuser efficiency tj and a dimensionless diffuser 

performance coefficient 8 are considered. 

The calculated fluidelastic forces, inertia, damping and stiffness, were normalized by 

structural damping force for the convenience. 
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3.5.1 Parametric study 

The calculated fluidelastic inertia ratios are plotted in Figure 3. 7. Since the inertia force 

is independent of the annular-flow velocity, as Blevins (1990) indicated, the added mass 

becomes large as the gap decreases, so that a larger inertia force results from the smaller 

annulus. 

The entrance and exit effects are assumed to be limited to fluidelastic stiffness (Real) 

and fluidelastic damping (Imaginary) components of the fluid force, so that the inertia 

effects at the entrance and exit are neglected. Based on this assumption, Figure 3. 8 

illustrates the normalized fluidelastic stiffness as a function of Reynolds number for 

different fluid boundary conditions and annular gap sizes. For the lossless entrance and 

exit, the stiffness varies little with the fluid boundary conditions and Reynolds number. 

However, for the loss and recovery boundaries, depending on gap size, the normalized 

fluidelastic stiffness changes significantly. The fluidelastic stiffness decreases much 

more with the smaller annular gap as the Reynolds number decreases. 

In addition to the annular gap, the other important parameter is the dimensionless 

diffuser performance coefficient 5. The coefficient 5 has much more effect than the 

diffuser efficiency rj on the fluidelastic stiffness. The two factors are related to the 

diffuser angle at the downstream end. However, It must be understood that 7 is a static 

coefficient while S is a dynamic coefficient. One can appreciate the difference from 
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equations (3-18) and (3-20). With Ka, 8=0.1 and tj =0.8, the stiffness is almost the 

same as the stiffness with Ka=S =0.1 and 77=0.1 for all supports. However, when 

Ka=Tj =0.1 and £=0.5, the fluidelastic stiffness decreases much more than when 

Ka=Tj =0.1 and 8=0.1 for all gap sizes. 

In equation (3-57), the negative total damping force means that the fluid energy 

absorbed by the inner cylinder is larger than the energy dissipated through damping. 

Normalized total damping variations are shown in Figure 3. 9. In order to obtain Figure 

3. 9, a structural damping ratio of 0.2 % is assumed. The damping ratio of fuel rods in 

Pressurized Water Reactor PWR (PWR) and of steam generator tubes in nuclear power 

plants are known to be near or less than 0.2% (excluding damping introduced by loose 

support). For the lossless entrance and exit, the total damping forces do not change 

much as Reynolds number is varied. However, in the case of the contraction loss at the 

entrance and diffuser at the exit, the total damping forces may become negative. As the 

annular gap decreases, or the diffuser performance coefficient 8 increases, the total 

damping force decreases rapidly. For the support having 0.29 mm gap with 

Ka=8 = rj=0.\, the fluid damping overcomes the structural damping at a Reynolds 

number of 4,790 or 0.54 m/s upstream flow velocity, which is equivalent to 12.3 m/s at 

the gap. On the other hand, for the same parameters with8=0.5, negative damping is 

obtained at a Reynolds number of 1,850 or 0.21 m/s upstream flow velocity which is 

equivalent to 4.8 m/s at the gap. A velocity at the upstream end of only 0.21 m/s (5.15 

mm gap) is needed to have negative damping. When the gap is 2.2 mm, the Reynolds 



102 

number for the negative damping goes up to 61,060 or 7.7 m/s upstream of the support, 

which is equivalent to 21 m/s at the gap. Figure 3. 10 shows the total damping forces as 

functions of the upstream flow velocity. All flow velocities are believed to be within the 

practical engineering range in terms of orders of magnitude. This is especially to be 

contrasted with the case of unconfined axial flows which result in instability velocities 

far above any prototypical flow velocities. 

For the support having a 0.29 mm gap, the entrance and exit effects on the negative 

damping can be seen in Figures 3.11 and 3.12. As seen in thes, the effect of 8 on 

damping is obvious. The total damping force for 8 =0.5 is approximately 10 times lower 

than the total damping force for 8 =0.1. Furthermore, the exit effect is more dominant 

on the damping force than the entrance effect or the mid-way effect. These figures 

possibly explain why the expansion channel of the downstream end is primarily 

responsible for negative damping as many previous studies have shown. 

3.5.2 Experimental cases 

Pressure recovery and dimensionless performance coefficient 

The pressure recovery efficiency T]s of the support is obtained by experiments based on 

the static pressures measured upstream and downstream of the diffuser. As expected, all 

of the measurements show that the pressure recovery efficiency TJS is not constant but 

varies with Reynolds number, which is seen in Figures 3.13 and 3.14. The efficiency 
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seems peak at some value of Reynolds number. The Reynolds number range from 1,000 

to 5,000 is very important since it is within this range that instabilities with small gap 

supports are observed in experiments. With the largest gap, the Reynolds number range 

from 8,000 to 20,000 is also important. Unfortunately, however, we do not have 

measurements in this higher range of Reynolds number. 

The resolution of our pressure gages is 10" psi (approximately 68.9 Pascal). Thus a 

difference less than the resolution cannot be measured at present. This is the reason why 

the TJS at low Reynolds numbers is not shown in the two figures for any of the supports. 

Based on Figures 3.13 and 3.14, one may use 0.2 as t]s for the 0.29 mm - 0.67 mm gap 

supports, and 0.45 for the 2.2 mm gap support. On the other hand, from Figure 3.14, for 

20 degree diffusers, we take 0.1 as TJS for the 0.29 mm - 0.67 mm gap supports, and 0.3 

for the 2.2 mm gap support. 

To determine a dimensionless diffuser performance coefficient 8 based on the 

experiments, equation (3-21) may be expressed as 

MIH {hpeak-hmal)lH 
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Assuming rjpeak to be the value at the maximum vibration amplitude, and Ah to be at 70 

percent of the gap, one may calculate 8. The dynamic gap closure Ah is assumed to be 

70 percent of the gap based on the argument that since the rms vibration amplitude is 

measured, the maximum amplitude before impacting could be assumed to be the 70 

percent of the gap. The peak 8 is obtained when the vibration reaches the maximum 

amplitude. Based on this, one may calculate 8; for instance, in the case of the 0.29 

mm/l0° support, £ = 0.43 (= (0.5-0.2)/0.7). 

The calculated TJS and 8 are summarized in Table 3.3. 

Calculations for the experiments 

For the calculations, the contraction loss factor Ka is set to 0.3, which is believed to be 

realistic for normal engineering piping. When the short-lossless entrance and the free-

discharge exit are considered, the loss factor Ka and the performance coefficient S 

should be set to zero with the diffuser efficiency ij=\. With these values, no loss 

entrance and full conversion of the dynamic pressure into static pressure are obtained. 

As seen in Figure 3. 15, the trend of the stiffness force ratio as function of Reynolds 

number is very similar trend to that of Figure 3.8. Since S has a strong effect on the 

fluidelastic forces, the difference between Figure 3. 8 and Figure 3. 15 comes from the 

different results of S. For the case of the 0.67 mm gap support, the stiffnesses for the 

two different diffuser angles show almost the same behavior with increasing Reynolds 
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number. For the gaps smaller than 0.67 mm, the 10° diffuser loses fluidelastic stiffness 

at lower Reynolds number than the 20 ° diffuser. 

Figure 3. 16 shows the total damping force ratio as a function of Reynolds number at the 

support gap. For the two small gap sizes, 0.29 mm and 0.42 mm, the damping of the 10° 

diffuser becomes negative at a lower Reynolds number than the 20° diffuser. On the 

other hand, for the largest gap, 2.2 mm, the damping of the 20° diffuser becomes 

negative at a lower Reynolds number than 10° diffuser. 

The 0.29 mm/10° support is expected to have negative damping at a Reynolds number 

of 1,800 or 5.5 m/s at the gap, which is equivalent to 0.24 m/s upstream of the support. 

Before the 0.29 mm/20° support becomes negatively damped, the 0.42 mm/10o support 

loses positive damping at a Reynolds number of 2,800 or 6 m/s at the gap, which is 

equivalent to 0.38 m/s upstream of the support. A Reynolds number of 6,800 results in 

negative damping for the 0.67 mm gap supports. For the largest gap, 2.2 mm, negative 

damping occurs at Reynolds numbers of 23,500 and 24,700. These Reynolds numbers 

are equivalent to 9.5 m/s and 10 m/s respectively at the gap, or 3.48 m/s and 3.66 m/s 

upstream of the support. 

Figure 3.17 shows the total damping ratio as a function of the upstream flow velocity 

corresponding to the Reynolds number in Figure 3. 16. As may be seen in the figure, all 

of the critical flow velocities are below 4 m/s which are believed to be well below 



106 

practical engineering flow velocities. All the calculated and measured critical flow 

velocities are summarized in Table 3.4. Although the calculated critical flow velocities 

for the 0.67 mm gap supports do not agree well with the experiment results, the 

calculated results are, overall, in reasonable agreement with the experiments. 

It is worth noting that the Shimoyama and Yamada friction model (1957) shows some 

scatter in the Reynolds number range of 1,300 ~ 2,000. In addition, the friction loss with 

vibration may be different from the friction loss without vibration. The Shimoyama and 

Yamada model does not consider vibration. Applying the laminar friction model, 

equation (3-24), with very high TJ and 5 (for instance, TJ = 8 =0.8) for the 0.67 mm gap 

support, the critical flow velocity for the negative damping decreases down to a 

Reynolds number of 1,518 or 2 m/s at the gap which is equivalent to 0.20 m/s at the 

upstream instead of 0.85 m/s. This is the same value as the experimental value. 

3.6 Conclusions 

The stability behavior of a pinned-pinned flexible rod subjected to narrow annular flow 

over a finite-length gap support has been experimentally and analytically investigated. 

By the experimental approach, the critical flow velocities were measured for varying 

gap size and diffuser angles for a finite-length support. Analytically a solution was 

obtained for the perturbation pressure acting on a pinned-pinned cylinder subjected to a 

leakage flow at a finite-length gap support. For the analytical solution, two-dimensional 
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flow with two fluid boundary conditions was considered. The two sets of boundary 

conditions are, a lossless entrance and a full conversion exit for the ideal conditions, and 

a contraction-loss entrance and diffuser exit for practical boundary conditions. 

In experiments with a 2.2 m long steel tube, and 3.8 cm long support, and significantly 

low air flow, flutter instability is observed for all supports; independently of the gap size 

and diffuser angle. With annular flow, the simply supported cylinder is known to lose 

stability by divergence at very high flow velocity beyond practical engineering 

applications. Interestingly, a small support plays a significant role to change the 

dynamic behavior of the pinned-pinned rod, decreasing the critical flow velocities down 

to engineering flow velocities. Generally speaking, the smaller gaps and the smaller 

diffuser angles lower the critical flow velocity for negative damping. On the other hand, 

for the largest gap (2.20 mm), the critical flow velocity of the larger diffuser angle (20°) 

is lower than that of the smaller diffuser angle (10°). 

In the theory, the negative damping force is shown to be very dependent on the 

dimensionless diffuser performance efficiency ( 5 ) , which is the ratio of diffuser 

efficiency to dynamic gap closure. The other important result is that the negative 

damping force is mostly generated at the exit. From these two results, it may be 

concluded that expansion channels at the downstream end cause flutter instability. This 

is in agreement with previous research findings. 
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A semi-analytical model for the fluidelastic damping force is proposed based on the 

analytical pressure solution. In the case where no losses are assumed at the entrance and 

the exit of the support, fluidelastic damping remains positive at all Reynolds numbers. 

For the experimental cases, numerical calculation by the semi-analytical model yields 

results that are comparable with experiments. The smaller gap size and diffuser angle 

are shown to be more destabilizing. However, in the case of the largest gap (2.2 mm), 

the bigger diffuser angle (20°) generates negative damping at a lower flow velocity. 

For the pinned-pinned cylinder subjected to leakage flow in a finite-length gap support 

at its mid length, the critical flow velocity with compressed air (p « 8.5 Kg/m3) turns 

out to be less than 3 m/s, which is within the range of most engineering applications. 



Table 3.1 Major dimensions of test apparatus 

Item 

Inner Cylinder 

Outer glass tube 

Support 

Dimension 

Inner diameter: 14.15mm 

Outer diameter: 15.93 mm 

Length: 2.2 m 

Young's modulus (E): 266.1 N/ m 

Inner diameter: 26.24 mm 

Gap: 5.16 mm 

Length: 38.1 mm 

Inner diameter (gap): (a) 16.51 mm (0.29 mm) 

(b) 16.76 mm (0.42 mm) 

(c) 17.27 mm (0.67 mm) 

(d) 20.32 mm (2.2 mm) 

Diffuser angle: 10° and 20° 



Table 3.2 Fluid parameters and vibration characteristics of the inside cylinder 

Item 

Fluid 

Hydraulic diameter at 

support and L/Dh 

Hydraulic diameter at 

glass tube and L/Dh 

Natural frequency (Hz) 

of the inner cylinder 

without flow: 

experiment (theory) 

Damping factor of the 

inner cylinder 

Dimension 

(a) compressed air : ~ 100 psig 

(b) density: ~8.5 kg/m3 

(a) 16.51 support: 0.58 mm,L/Dh=50 

(b) 16.76 support: 0.84 mm, L/Dh=34.S 

(c) 17.27 support: 1.35 mm, L/Dh=2\.l 

(d) 20.32 support: 4.39 mm, L/Dh=6.6 

10.31 mm, L/Dh =203.6 

1st natural frequency: 12.5 (9.1) 

2nd natural frequency: 40.2 (36.6) 

3rd natural frequency: 89.2 (82.3) 

4th natural frequency: 150.2 (146.3) 

£Ul = 0.2 % for the 1st natural frequency 
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Table 3.3 Steady diffuser efficiency ls and dimensionless diffuser performance 

coefficient ° for finite-length narrow-gap supports 

Support 

1. 0.29 mm gap with 10° diffuser angle 

2. 0.29 mm gap with 20° diffuser angle 

3. 0.42 mm gap with 10° diffuser angle 

4. 0.42 mm gap with 20° diffuser angle 

5. 0.67 mm gap with 10° diffuser angle 

6. 0.67 mm gap with 20° diffuser angle 

7. 2.2 mm gap with 10° diffuser angle 

8. 2.2 mm gap with 20° diffuser angle 

Vs 

0.2 

0.07 

0.3 

0.07 

0.2 

0.1 

0.4 

0.3 

8 

0.43 

0.1 

0.43 

0.1 

0.285 

0.285 

0.357 

0.43 
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Table 3.4 Comparison of the measured and the calculated critical flow velocity for 

negative damping 

Support 

1.0.29 mm gap with 10° 

2. 0.29 mm gap with 20° 

3. 0.42 mm gap with 10° 

4. 0.42 mm gap with 20° 

5. 0.67 mm gap with 10° 

6. 0.67 mm gap with 20° 

7. 2.2 mm gap with 10° 

8. 2.2 mm gap with 20° 

rjs/S 

0.2 / 0.43 

0.07/0.1 

0.2 / 0.43 

0.07/0.1 

0.2 / 0.285 

0.07 / 0.285 

0.4 / 0.357 

0.3 / 0.43 

Critical flow velocity at the 
upstream (m/s) 

Experiment 

0.10 

0.19 

0.22 

0.45 

0.12 

0.20 

2.82 

1.21 

Calculation 

0.23 

0.54 

0.36 

0.85 

0.84 

0.85 

3.49 

3.38 
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Pressure tap 
(4x<|>1.6 mm) 

Pressure 
Gage 3 

Pressure 
Cage 2 4 

(a) (b) 

Figure 3.1 Schematic drawing of the test section, (a) Inner tube and instrument setup (b) 

Dimensions near the support 
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Figure 3.2 Vibration amplitude and damping ratio as a function of upstream flow 

velocity for the inside cylinder in the support with 0.29 mm gap and 20° 

diffuser angle 
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velocity for the inside cylinder in the support with 0.29 mm gap and 20° 

diffuser angle 
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Figure 3.4 X-Y plots for the vibration of the inner cylinder in the support with 0.29 mm 

gap and 20° diffuser angle. Reynolds numbers (upstream velocity): (a) 

1,682 (0.22 m/s), (b) 1,994 (0.26 m/s), (c) 2,262 (0.30 m/s), (d) 2,843 (0.38 

m/s) 
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Figure 3.5 RMS amplitude of the inner cylinder as a function of flow velocity upstream 

of the support for different support gaps 
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Figure 3.6 Analytical model for the inner cylinder with a finite-length gap support 
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Figure 3.7 Ratio of total inertia force to structural inertia force as a function of Reynolds 

number at the gap. S-F: a short-lossless entrance and a free-discharge exit 

for the gap support. A vibration amplitude of 0.3 mm is assumed. 
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Figure 3.8 Ratio of total stiffness force to structural stiffness force as a function of 

Reynolds number at the gap for an amplitude of 0.3 mm at the 1st mode. 

G 0.29 (1): Annular gap=0.29 mm, Ka=0.1, rpO.l, 8=0.1, 

G 0.29 (2): Annular gap=0.29 mm, Ka=0.1, r|=0.1, 5=0.5, 

G 0.67 (1): Annular gap=0.67 mm, Ka=0.1, r|=0.1, 5=0.1, 

G 0.67 (2): Annular gap=0.67 mm, Ka=0.1, r|=0.1, 5=0.5, 

G 2.20 (1): Annular gap=2.20 mm, Ka=0.1, r|=0.1, 5=0.1, 

G 2.20 (2): Annular gap=2.20 mm, Ka=0.1, rpO.l, 5=0.5, 

G 0.29 (S-F): Annular gap=0.29 mm, Short-lossless and free-discharge, 

G 0.67 (S-F): Annular gap=0.67 mm, Short-lossless and free-discharge, 

G 2.20 (S-F): Annular gap=2.20 mm, Short-lossless and free-discharge 
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Figure 3.9 Ratio of total damping force to structural damping force as a function of 

Reynolds number at the gap for a structural damping factor of 0.2% and a 

max. amplitude of 0.3 mm in the 1st mode. 

G 0.29 (1): Annular gap=0.29 mm, Ka=0.1, T)=0.1, 5=0.1, 

G 0.29 (2): Annular gap=0.29 mm, Ka=0.1, r|=0.1, 5=0.5, 

G 0.67 (1): Annular gap=0.67 mm, Ka=0.1, r|=0.1, 5=0.1, 

G 0.67 (2): Annular gap=0.67 mm, Ka=0.1, r|=0.1, 5=0.5, 

G 2.20 (1): Annular gap=2.20 mm, Ka=0.1, n=0.1, 5=0.1, 

G 2.20 (2): Annular gap=2.20 mm, Ka=0.1, n=0.1, 5=0.5, 

G 0.29 (S-F): Annular gap=0.29 mm, Short-lossless and free-discharge, 

G 0.67 (S-F): Annular gap=0.67 mm, Short-lossless and free-discharge, 

G 2.20 (S-F): Annular gap=2.20 mm, Short-lossless and free-discharge 
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Figure 3.10 Ratio of total damping force to structural damping force as a function of 

upstream flow velocity for a structural damping factor of 0.2% and a max. 

amplitude of 0.3 mm in the 1st mode. 

G 0.29 (1): Annular gap=0.29 mm, Ka=0.1, r|=0.1, 5=0.1, 

G 0.29 (2): Annular gap=0.29 mm, Ka=0.1, r|=0.1, 5=0.5, 

G 0.67 (1): Annular gap=0.67 mm, Ka=0.1, r|=0.1, 5=0.1, 

G 0.67 (2): Annular gap=0.67 mm, Ka=0.1, rj=0.1, 5=0.5, 

G 2.20 (2): Annular gap=2.20 mm, Ka=0.1, r|=0.1, 5=0.5, 

G 0.29 (S-F): Annular gap=0.29 mm, Short-lossless and free-discharge, 

G 0.67 (S-F): Annular gap=0.67 mm, Short-lossless and free-discharge, 

G 2.20 (S-F): Annular gap=2.20 mm, Short-lossless and free-discharge 
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gure 3.11 Ratio of total damping force to structural damping force with a finite-length 

support of 0.29 mm gap with Ka=0.1, r|=0.1, 8=0.1. 
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gure 3.12 Ratio of total damping force to structural damping force with a finite-length 

support of 0.29 mm gap with Ka=0.1, n=0.1, 8=0.5 

- • - : Damping force at the entrance of the support 

-+-: Damping force at the exit of the support 

- • - : Damping force at mid-way along the support 

-A- : Total damping force including the structural damping 
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Figure 3.13 Pressure recovery measurements as functions of Reynolds number at the 

supports with 10 degree diffuser angle 
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Figure 3.14 Pressure recovery measurements as functions of Reynolds number at the 

supports with 20 degree diffuser angle 
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Figure 3.15 Ratio of total stiffness force to structural stiffness force as a function of 

Reynolds number at the gap. Dotted line and solid line correspond to a 

short-lossless entrance and a free-discharge exit, and a contraction-loss 

entrance and a diffuser exit, respectively. In the legend, G x.xx/yy 

represents a gap size of x.xx mm and a diffuser angle of yy deg. 
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Figure 3.16 Ratio of total damping force to structural damping force as a function of 

Reynolds number at the gap for the contraction-loss entrance and the 

diffuser exit of the support. In the legend, G x.xx/yy represents for gap size 

of x.xx mm and a diffuser angle of yy deg. 



128 

EsjitEjjx o 
FS,D 

-1.5 

0.0 1.0 2.0 3.0 

Upstream flow velocity (m/s) 

4.0 5.0 

Figure 3.17 Ratio of total damping force to structural damping force as a function of 

upstream flow velocity for a contraction-loss entrance and a diffuser exit of 

the support. In the legend, G x.xx/yy represents a gap size of x.xx mm and 

diffuser angle of yy deg. 
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CHAPTER 4 

GENERAL DISCUSSION 

4.1 Review of objectives 

The primary purpose of this study was to obtain an analytical solution for the 

perturbation pressure inside of the annulus when a pinned-pinned inner cylinder is 

subjected to 2-D annular flow. 

Comparing 1-D and 2-D annular flow models, the secondary purpose was to describe 

the limitations of the 1-D flow model for annular-flow-induced vibration of a 

continuous beam. 

Thirdly, based on the analytical solution, the purpose was to investigate experimentally 

the finite-length diffuser-induced vibration of a cylinder in axial leakage flow, and to 

develop an analytical model to explain the experimental results. 

Fourthly, the final goal of this study was to propose a semi-analytical model to predict 

the critical flow velocity for the pinned-pinned cylinder in terms of annular gap and 

diffuser angle of the finite-length gap support. 

4.2 Contributions 

Hobson's model has been extended to analyze a continuous beam subjected to a 2-D 

annular flow considering friction loss. The proposed friction model in Chapter 2 is 

capable of giving solutions for different support conditions. This study showed that the 
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dynamics of annular-flow-induced vibrations obtained by the pressure loss theory is 

almost the same as the dynamics by potential flow theory; the tube loses stability 

consecutively by divergence in the 1st and 2nd mode, then by the coupled-mode flutter. 

However, the critical flow velocity was predicted to be considerably lower. 

It is shown that the one-dimensional model is limited to one-dimensional vibrations 

such as 1-d.o.f translational or rotational (rocking) motions which were studied by 

Hobson (1982), Fujita and Ito (1992 and 1994) and Porcher and de Langre (1997). 

Experiments show that a pinned-pinned tube subjected to annular flow in a finite length 

narrow gap support first loses stability by flutter. With annular flow, the simply 

supported cylinder is known to lose stability by divergence at very high flow velocity. A 

small support at the mid length of the tube plays a significant role not only to change the 

dynamic behavior of the pinned-pinned rod but also to decrease the critical flow 

velocities down to engineering flow velocities. Generally speaking, the smaller the gap 

and the smaller the diffuser angle the lower the critical flow velocity. 

In the theory, the negative damping force is shown to be strongly dependent on the 

dimensionless diffuser performance efficiency ( S ), which is the ratio of diffuser 

efficiency to dynamic gap closure. The other important result is that the negative 

damping force is mostly generated at the exit of the support. From these two results, it 

may be concluded that expansion channels at the downstream end of the support cause 

flutter instability. This is in agreement with previous research findings. 

A semi-analytical model for the fluidelastic damping force is proposed based on the 

analytical pressure solution. In the case where no losses are assumed at the entrance and 

the exit of the support, fluidelastic damping remains positive at all Reynolds numbers. 

The semi-analytical model yields results that are comparable with experiments. The 

smaller gap size and diffuser angle are shown to be more destabilizing. 
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For the pinned-pinned cylinder subjected to leakage flow in a finite-length gap support 

at its mid-span, the critical flow velocity with compressed air (p « 8.5 Kg/m ) turns out 

to be less than 3 m/s, which is within the range of most engineering applications. 
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CHAPTER 5 

CONCLUSION AND RECOMMENDATIONS 

5.1 Conclusion 

In this study, Hobson's work has been further extended to annular-flow-induced 

vibration of a pinned-pinned cylinder based on a two-dimensional flow model with 

friction. For the friction consideration, a new concept of a perturbation friction factor is 

introduced, which consists of a real and imaginary part. By using the proposed friction 

model, friction effects can be analyzed and applied for all the vibration modes. It is 

shown that not only the friction factor but also the perturbation pressure is strongly 

coupled with the mode shapes of the simply-supported cylinder. 

With the proposed new friction factor, the theoretical solutions for unsteady pressure 

and flow velocities are easily obtained. In addition, the perturbation pressure can 

reasonably be represented using three terms; of related terms, co related terms and co 

independent terms. The co independent term, the fluidelastic stiffness force, is the most 

dominant among the three terms, so that static-type instability may be expected. 

The proposed two-dimensional flow model shows that the predicted fluid forces are 

significantly different from those of a one-dimensional fluid model for a pinned-pinned 

cylinder subjected to annular flow. It is believed that the large difference is attributable 

to the cylinder radius-to-length ratio and to whether or not circumferential flow is 

allowed. Considering that the one-dimensional flow model does not allow for fluid to be 

squeezed in the circumferential direction, utilization of the one-dimensional flow model 

is probably limited to radius-to-length ratios larger than 0.8, or to one-dimensional 

vibrations such as 1-d.o.f translational or rotational (rocking) motion (Hobson 1982, 

Fujita and Ito, 1992 and 1994, Porcher and de Langre, 1997). 
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The flow perturbation theory does lead to significant changes in the dynamics of the 

annular-flow-induced vibrations of a cylinder when compared to the confined mean 

flow velocity theory which does not consider perturbations. It turns out that small 

perturbations decrease the first dimensionless critical flow velocity down to 2.36 from 

3.14 when only the mean flow is considered. 

The proposed friction-based model is capable of giving solutions for different support 

conditions of a cylinder such as cantilevered and fixed-fixed cylinders. Also, it may 

further be extended to give an analytical solution to the problem of a finite-length 

annular gap support. 

The stability behavior of a pinned-pinned flexible rod subjected to narrow annular flow 

over a finite-length gap support has been experimentally and analytically investigated. 

With the experimental approach, the critical flow velocities were measured for varying 

gap size and diffuser angles for a finite-length support. With the analytical approach, an 

analytical solution was obtained for the perturbation pressure acting on the pinned-

pinned cylinder subjected to a leakage flow at a finite-length gap support. For the 

analytical solution, two-dimensional flow with two fluid boundary conditions was 

considered. The two sets of boundary conditions are, a lossless entrance and a full 

conversion exit for the ideal conditions, and a contraction-loss entrance and diffuser exit 

for practical boundary conditions. 

In experiments with a 2.2 m long steel tube, a 3.8 cm long support, and a significantly 

small air flow, flutter instability is observed for all supports; independently of the gap 

size and diffuser angle. With annular flow, the simply supported cylinder is known to 

lose stability by divergence at very high flow velocity beyond practical engineering 

applications. Interestingly, a small support plays a significant role to change the 

dynamic behavior of the pinned-pinned rod, decreasing the critical flow velocities down 
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to engineering flow velocities. The critical flow velocity obtained experimentally is 

much lower than practical flow velocities generally encountered in power generation 

plants. Generally speaking, the smaller the gap and the smaller the diffuser angle the 

lower the critical flow velocity for negative damping. However, for the largest gap (2.20 

mm), the critical flow velocity of the larger diffuser angle (20°) is lower than that of the 

smaller diffuser angle (10°). 

In the theory, the negative damping force is strongly dependent on the dimensionless 

diffuser performance efficiency (S), which is the ratio of diffuser efficiency to dynamic 

gap closure. It is also found that the negative damping force is mostly generated at the 

exit. From these two results, it is concluded that an expansion channel at the 

downstream end causes flutter instability, in agreement with previous research findings. 

A semi-analytical model for the fluidelastic damping force is proposed based on the 

analytical pressure solution. In the case where no losses are assumed at the entrance and 

the exit of the support, fluidelastic damping remains positive at all times. For the 

experimental cases, numerical calculation by the semi-analytical model yields results 

that are comparable with experiments. The smaller gap size and diffuser angle are more 

destabilizing. However, in the case of the largest gap (2.2 mm), the bigger diffuser angle 

(20°) generates negative damping at a lower flow velocity. 

For the pinned-pinned cylinder subjected to leakage flow in a finite-length gap support 

at its mid length, the critical flow velocity of the compressed air ( p « 8 . 5 Kg/m3) turns 

out to be below 3 m/s. This falls within the range of engineering flow velocity. 

5.2 Recommendations 

For the annular flow problem, using the perturbation flow model, a critical flow velocity 

of 2.36 in dimensionless form is predicted. By the unperturbed confined axial flow 
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theory, a critical flow velocity of 3.14 in dimensionless form is predicted for a pinned-

pinned tube. The perturbation theory developed in the thesis, therefore, needs to be 

verified experimentally. 

The thesis has covered only a simply-supported tube. Basically, the pinned-pinned tube 

is a conservative system excluding friction effects, so that one may assume that 

dynamics of the fixed-fixed tube may not be different from the pinned-pinned tube. 

What about a cantilevered tube? It is known that the cantilevered tube has interesting 

dynamic behavior. To obtain analytically the single mode flutter, the perturbation 

assumption is unnecessary. If the critical flow velocity is reduced, however, the 

dynamics of the cantilevered tube become possibly more complex and more interesting. 

The thesis used the experimental model of Shimoyama and Yamada (1937) for the 

friction model. However, Shimoyama and Yamada obtained the experimental data from 

a fixed annulus. No vibration of the inner tube was considered. When the inner tube is 

vibrating, friction loss in a finite-length support could be different. The following graph, 

Figure 4.1, was recently obtained by the author for friction loss as functions of Reynolds 

numbers. The same notations as in Figure 3.15 are used. As shown in Figure 4.1, the 

measured friction loss is not exactly coincident with Shimoyama and Yamada's model 

prediction. Annular-flow-induced vibration, therefore, still needs many clarifications by 

flow measurements. 
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Figure 5.1 Friction loss factor for annular gap as a function of Reynolds number 

(The notation of Figure 3.15 is used here) 
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APPENDICES 

APPENDIX I: Linearization of fluid equations 

The non-linear fluid equations in the (x, 9) plane may be written as follows (Hobson, 

1982): 

Continuity equation: 

d , T , 1 d 
—[hu + , 
dxK ' rd9y ' dt 

^(hu) + ̂ ±(hv) + ^ = 0 (I-l) 

x -Momentum: 

4(")+^(^^)]+7^»")^f+r-=° «-2> 

fl-Momentum: 

p ^ ( ^ ) + / f e ) + i A ^ ( ^ ^ ) l _ Z ^ + r o (1-3) 
8ty ' dxK > rdO\- K >1 rd8 e 

These equations can be linearized by assuming that h, p,u andv may be expressed as 

the sum of a steady component and a small perturbation component as follows: 

h=H + h{x,6,t) (1-4) 

p = P+p(x,0,t) (1-5) 

u=U + u(x,0,t) (1-6) 



v = + \{x,9,t) (1-7) 

Equation (1-7) reflects the fact that there is no mean circumferential flow velocity. 

Substituting equations (1-4) ~ (1-7) into equation (1-1) and retaining only the first order 

terms gives 

—(Uh + Hu) + -—(Hv) +—(h) = 0 (1-8) 
dxK ' rd9y ' 6ty J 

Since the steady components are independent of x and 9, equation (1-8) simplifies to 

dx + r d9~ H dx H dt 

Similarly, substituting equations (1-4) ~ (1-7) into equations (1-2) and (1-3) and keeping 

only the first order terms gives 

p—(Hu + Uh) +—(Hp + pU2h + 2UpHu) + £—(HUv) = 0 (I-10) 

pl(Hv) + p^-(HUv) + ^(Hp + Ph + . . ) - ^ + Te=0 (I-ll) 
dt ox r oG r 30 

Simplifying and rearranging, the following form of the first order x-momentum and 9-

momentum equations is obtained. 

dx dt r 89 dx H H dt H dx 
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\ dp dv TTdv T0 . 
—— + p— + pU — + — = 0 (1-13) 
rdG dt dx H 

Equations (1-9), (1-12) and (1-13) correspond to equations (2-2), (2-3) and (2-4), 

respectively, in Chapter 2. 
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APPENDIX II: The first order fluid boundary conditions for a diffuser 

exit 

Considering diffuser efficiency fj at the exit, Bernoulli's equation relating the pressure 

at locations just before and after the exit is 

Po"L2
 Pin = rj (II-1) 

pWll 

Expressing the pressure, velocity and diffuser efficiency in terms of steady and 

perturbation components (with JJ=TJS + TJ (x,0,t)), one obtains 

(Pin + Pj + (17S+?1P)-^(U2 + 2Uu) = Poul (II-2) 

Poul = pout is based on the reasonable assumption that there is no perturbation past the 

exit. Equation (II-2) can be separated into the following equations: one for the steady 

terms, and the other for the perturbation terms 

P -P 
out -L = rJs (H-3) pWll 

pb,+tItfiUu + rip£u2=0 (11-4) 

Assuming that the perturbation recovery coefficient rjp is a function of h(x), one can 

write (Hobson, 1982) 



rj„= — -h 01-5) 

Defining the dimensionless diffuser performance coefficient S as follows: 

S = - ^ - (II-6a) 
Ah/H 

the following convenient expression for 77 is obtained: 

%=jfs (n"6b) 

Then, substituting into equation (II-4), considering the exit location, one obtains 

p(L) + rjspUu(L) + d^-U2h{L) = 0 (II-7) 
Zti 

Similarly, when the diffuser exists at the entrance, x=0, the following equation can 

be obtained: 

p(0) + TjspUu(0) + S-?-U2h(0) = 0 (11-8) 
2.H 



Appendix III: Childs' procedures (Childs, 1993) 

We start with equations (2-11) — (2-12c) without friction consideration. 

h(x,0,t) = Y(x,t)cos0 + Z(x,t)sin0 (2-11) 

u(x,0,t) = ulc(x,t)cos0 + uu(x,t)sin0 (2-12a) 

v{x,9,t) = vlc(x,t)cos0 + vu{x,t)sin0 (2-12b) 

p(x, 6, t) = p]c (x, f)cosd + p[s (x, t)sind (2-12c) 

Substituting the five equations into equation (2-2) gives 

——cos# +——sm0 + (v.cosO + v. sin#) 
8x 8x rdOy ,c ls } 

U BY U dZ . 1 dY 1 dY . 
= cost? suit? cos# sin# 

H 8x H dx H dt H dt 

Similarly, equation (2-3) and (2-4) yield 

dt dt dx dx dx 

+2Up^sm0 + ̂ -U—Uccos0 + vu sintf) 
dx r d0 

pU dY n pU dY . . pU2 dZ . pU2 U dZ . n 

= - - cos t? - - sine' c o s t / - - sin# 
H dt H dt H dx H H dx 

(III-l) 

(III-2) 
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dt ox 
1 ^ 

+ (plr cos0 + pu sin6>) = 0 

Equation (III-l) can be separated into two equations. 

(III-3) 

— - c o s # + (vucos0) = cos# cos# (III-4) 
dx rd0yu ' H dx H dt 

duu . 1 d , x U dZ I dY 
——sin# (v. sin#) = sin# sin# (HI-5) 
6x rdOKXc ' H dx H 8t 

Eliminating cos 0 and sin 0 from these equations, multiplying (III-5) by ' / ' and 

adding the result to (III-4) yields 

—U +iuu) + -—(vls-ivlc) = -——(Y + iZ)-—-(Y + iZ) (111-6) 
dxK le u) rd9Ku lc) H dxK ' HdtK ' 

Next we define the following four complex variables 

h = Y + iZ (111-7) 

u = ulc+ iuu (III-8) 

v = vlc+/vIf (III-9) 

P = P>c + ipls (HMO) 

Using equations (III-7) ~ (HI-9) and employing complex variable properties, equation 

(III-6) reduces to the form 



152 

du .1 U dh 1 dh 
i—v = (111-11) 

dx r H dx H 8t 

By using the same procedure, equations (III-2) and (III-3) become 

dp ^ du . U . TTdu U dh U2 dh m T 1 „ 
— + p ip—v + 2pU— = -p p (111-12) 
dx dt r dx H dt H dx 

.1 dv TTdv /TTT 

-i-p + p— + pU— =0 (111-13) 
r dt ox 
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Appendix IV: Solution for a short-lossless entrance and a full-

discharge exit fluid boundary conditions 

Analytical solutions consist of homogeneous solutions, which can be obtained by setting 

the right hand side to zero, and adding the particular solutions. For the pinned-pinned 

cylinder, knowing that the eigenfunction is a sine function, the solutions may be 

expressed as 

h(x,t) = a sin 
1mn ^ 

V ^ J 
(IV-1) 

u{x,t) = Yjuj-e
K'x-eia" + 

j=t 

dti 
us-h + uc 

V dxj 

(IV-2) 

f 

7=1 
Ps-h + Pc 

dh 

dx 
(IV-3) 

s(x,t) = fdvj-e
AjX-ei°" + 

( 

7=1 

dh 

v^+v— 
dx 

(IV-4) 

Substituting the assumed solutions above into the equations (III-l 1) ~ (III-13), in 

Appendix III, one obtains the following equations. 

A ^~"*— A or ioyt , 

j-2J*]'e 'e + 
7=1 

3 

( dh_ d2h\ 

dx c dx2 

dh 
Iv'v-«'-+[v*+v^ 

U dh ta, ico im = e h-e 
H dx H 

(IV-5) 
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Vl/y«v-*" , + 
f dh </V 

P.—r+P, 

+P 

7=1 

ICO 

dx dx c J„2 

•2]s;-ev.e , ' f l"+to-

. U 
-ip— 

r 

+2pU 

7=1 

3 f 
£ v . - e v •<?'*" + v.-A + v, 

.7=1 

, dh 
us-h + uc-— 

dx 
•e 

dh 

dx 
J tot 

Ar^u,e^.e- + 

r dh d2h^ 

7=1 dx c dx2 

+io)p—h-eia"+p——-eio"=0 
H H dx 

(IV-6) 

.1 
—i — 

r 
±-Pj.e>,,,..Jp,h+p,£ 
7=1 

+ia>p 

+ pU 

7=1 

, dh 
dx 

7=1 

.eV.g'-»< + ' J/2 < / V 
• + v c J 2 

G&C <& 
= 0 

(IV-7) 

In equations (IV-5) ~ (IV-7), separating purely fluid-related terms (the homogeneous 

parts of each solution) and the terms in parenthesis (the particular solution 

components), setting each separately to zero and canceling out common terms, one can 

obtain the following equations, 

A, -i-

p(io) + 2UAj) A j -i ;
pu 

1 -/'— p(io) + UA) 
r 

Pj 

1V7J 

= 0 (IV-8) 
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(Ur + Hru, - iHvr) dh (~iH\ ~ HrK\ + ir(°) 
y s c} +± — '-h = 0 (IV-9) Hr dx Hr 

rpU2 + H(psr + 2rpUus -ipUvc + irpamc) dh 

Hr dx 
H|/42 (Pc + 2pUuc) + ip(Uvs - raxus)] - irpcoU 

Hr 

(IV-10) 

h = 0 

-ipc+pr(icovc + Uvs) dh ^-ips+pr(io>vs-Am
2Uvc) ^ = Q 

r dx r 

In equation (IV-8), to have nontrivial solutions, the determinant of the matrix must be 

zero. From the non-triviality condition, the following three eigenvalues, A, = — , 
r 

A2 =— and A3 = -/— are obtained (Hobson, 1982). Knowing that h = sin(Amx) and 
r U 

dh! dx = Xm cos(^.mx), equations (IV-9) ~ (IV-11) yield six equations from which the six 

coefficients ( us, uc, ps, pc, vs, and vc) are determined. Equation (IV-9) yields 

Ur + Hrus - iHvc = 0, (IV-12) 

-iHvs - HrAm\ + irco = 0 (IV-13) 

Similarly, equations (IV-10) and (IV-11) give 

rpU2+H(psr + 2rpUus -ipUvc +irpcmc) = 0 (IV-14) 

H \_rX™ (Pc + 1PUuc) + ip(Uv, - roMs)] - irp coU = 0 (IV-15) 
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-ipc + pr(iavc+Uv,) = 0 

-ips+pr(ia>vs-Am
2Uvc) = 0 

(IV-16) 

(IV-17) 

Utilizing the six equations (IV-12) ~ (IV-17), the six unknown coefficients can be 

determined as follows: 

„, = - A ' .,!/ 
H(i+sx:) 

r2co 
« „ = / 

Ps = 

Pc=~l 

pr2(U2Am
2

+a>2) 

2pr2coU 

H(l + r%2) 

ra> 
v„ = 

H(l + r%2) 

rU 
v„ =—i 

H(l + r%2) 

(IV-18) 

(IV-19) 

(IV-20) 

(IV-21) 

(IV-22) 

(IV-23) 

Substituting equations (IV-18) ~ (IV-23) into (IV-2) ~ (IV-4), the final solutions are 

u(x) = Y, = > U;-e ' -
y=i 

2 l 2 rlX. 
-U-h-i r co dh 

H(\ + r2Aj) H(\ + r2Aj) dx 
(IV-24) 



7=1 

pr2(u2K2+«>2) 2pr2coU dh_ 

H(\ + r%2) ' fffl + r V ) ' * 
(IV-25) 

7=1 

rco h-i 
rU dh 

H(\ + r%2) H(l + r2Am
2) dx 

(IV-26) 

With the following eigenvalue dependence, 

(1) A, = — : iux - v , = 0 , pi + p(U-irco)-ux = 0 
r 

(2) A2 = —: iu2 + V2 = 0 , p2 + p{U + irco)-u2 = 0 
r 

,„. . . co _ rco _ . _ 
(3) A, = - j — : v, H w, = 0 , D, = 0 

3 U U 

(IV-27) 

(IV-28) 

(IV-29) 

For a short-lossless inlet, p(0) and w(0) are needed. Introducing x = 0 into equations 

(IV-24) and (IV-25) gives 

W(0) = W, + W2 
r'XJU 

^*=o+l H(I 
r2co dh 

H(l + r2Am
2) ^ H(l + r2Am

2) dx 

/ m _ _ pr2(U2Am
2+a>2) v . 2prW J// 

p(0) = / ? .+ ; ? 2 + ^ rr-^'AU - / J- : r r — -
H(l + r2Am

2) ^ H(l + r%2) dx 

(IV-30) 

(IV-31) 
x=0 

Substituting equations (IV-30) and (IV-31) into equation (2-5) gives 
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pl+p2-i 
2pr2a>U dh 

H(l + r2Am
2) dx 

+ pU-

\x=0 

Ul+Uj+l 
r2co dh 

H(l + r2Am
2) dx x=0 

(IV-32) 

u3 is zero because the inlet flow can be assumed to be irrotational so that the vortical 

velocity is zero. For a full-discharge exit, p(L) is needed. Introducing x = L into 

equation (IV-25) gives 

LIT , - ur . 2pr2a>U dh 
p(L) = pre-L,r+p2-e^-i 

H(l + r2Aj) dx 
(IV-33) 

Therefore, for a short-lossless entrance and a free-discharge exit, the following equation 

is obtained using equations (IV-27), (IV-28), (IV-32), (IV-33) with the irrotational 

assumption (u3 = 0) 

-p(ir<o-U) 0 0 1 0 

0 p(irco + U) 0 0 1 

0 0 1 0 0 

pU pU 0 1 1 

_L_ L_ 

0 e r er 
Pi 

0 
0 
0 

. 2 pU + l dh 
ir co—j- — - T -

H[l + r2Am
2) dx 

. 2pr2coU fdh\ 
1 H(\ + r2Am

2)\dx)x=L 

(IV-33) 


