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Resume 

Des cuves agitees operant en regime de transition sont souvent rencontrees dans les 

precedes industriels. Une bonne connaissance de l'ecoulement genere dans les cuves de 

melange est utile pour pouvoir determiner les conditions d'operations optimales ou 

pour pouvoir proposer des directives de conception. Les modeles de simulation en 

dynamique des fluides numeriques (CFD) permettent de livrer ce type d'information. 

Le principal handicap des modeles de CFD est le cout informatique eleve en memoire 

et en temps de calcul demande, pour pouvoir predire avec une bonne precision les 

ecoulements dans la cuve agitee en particulier ceux en regime de transition. Afin 

d'eviter cette limitation, l'objectif de cette these est de developper une strategie 

numerique permettant de modeliser le regime de transition dans les cuves agitees en 

utilisant le calcul parallele. 

Pour completer l'objectif principal, la premiere phase du projet est consacree au 

developpement d'un algorithme element fini parallele qui soit capable de predire 

Fhydrodynamique de problemes d'ecoulements tridimensionnels incompressibles sur 

des maillages non structures. La parallelisation se base sur une methode de 

decomposition de domaine sans chevauchement. Des multiplicateurs de Lagrange sont 

utilises pour assurer la continuite aux frontieres entre les sous-domaines. L'originalite 

du travail reside dans la resolution couplee du systeme d'equations en vitesse-pression-
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multiplicateurs de Lagrange decoulant de la discretisation des equations de Navier-

Stokes avec un solveur parallele a memoire distribute de type Krylov et un 

preconditionnement par factorisation incomplete (ILU). Une technique de penalisation 

est introduite aux interfaces entre sous-domaines pour eviter le blocage de l'algorithme 

de factorisation ILU. Pour s'assurer de la portabilite du code, le protocole de 

communication Message Passing Interface (MPI) est employe. La methode est verifiee 

sur differents cas de reference, tels que l'ecoulement dans une conduite et dans une 

cavite, avec des maillages tetraedriques non-structures. On montre ainsi que 

l'algorithme de partitionnement et la numerotation des variables physiques sont 

essentiels pour la performance du solveur parallele. Une acceleration des temps de 

calcul variant entre 5 et 13 est obtenue avec 16 processeurs. 

La seconde phase est consacree au developpement d'un algorithme parallele prenant en 

compte la technique du maillage glissant (sliding mesh) pour s'assurer de la rotation 

des agitateurs. Les multiplicateurs de Lagrange sont utilises aux interfaces de 

glissement pour garantir la continuity entre les deux partitions stationnaire et fixe. Pour 

stabiliser le solveur lorsque la convection devient dominante, deux methodes sont 

utilisees, le schema de Newton-Raphson et la linearisation semi-implicite. Cette 

methode de stabilisation est validee pour des ecoulements entre deux cylindres 

concentriques et dans des cuves agitees. Une acceleration des temps de calcul de 

presque 8 est obtenue avec 16 processeurs. 
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Finalement, pour presenter l'utilite des algorithmes paralleles developpes, la derniere 

partie de cette these sera consacree a la caracterisation de l'hydrodynamique d'un 

melangeur coaxial en regime de transition. Le melangeur coaxial est compose d'une 

grande palette (Maxblend) et d'un agitateur a double ruban helicoidal montes sur deux 

arbres coaxiaux independants et tournants a des vitesses differentes. Les maillages en 

tetraedres utilises comptent 1.4 a 3.8 millions de noeuds, produisant un systeme 

d'equations respectivement de 4.4 a 14.5 millions d'inconnues. Les simulations sont 

basees sur la resolution des equations de Navier-Stokes avec l'aide du solveur parallele 

developpe. Pour modeliser la rotation des agitateurs, une approche hybride est utilisee. 

Elle est basee sur l'appariement des methodes de maillage glissant et de domaine fictif. 

La consommation de puissance ainsi que les temps de melanges obtenus des 

simulations montrent une bonne concordance avec les resultats experimentaux. Les 

simulations permettent d'observer l'ecoulement a partir du regime laminaire profond 

jusqu'au regime de transition. 
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Abstract 

Agitated tanks operating in the transition flow regime are often encountered in 

industrial processes. Knowledge of the flow generated within the mixing tanks is useful 

to determine optimal operating conditions or to propose design guidelines. 

Computational fluid dynamics (CFD) models are able to give such insight. The main 

problem of the CFD models is the high computational cost required to accurately 

predict the transition flow regime in stirred tanks. In order to circumvent this limitation, 

the general scope of the thesis is to develop a numerical strategy to model the transition 

flow regime of agitated tanks employing parallel computing. 

To accomplish the main objective, the first stage of the project focuses on the 

development of a parallel finite element algorithm capable to predict the 

hydrodynamics of three-dimensional incompressible fluid flow problems on 

unstructured grids. The parallelization is based on non-overlapping domain 

decomposition methods. Lagrange multipliers are used to enforce continuity at the 

boundaries between subdomains. The novelty of the work is the coupled resolution of 

the velocity-pressure-Lagrange multiplier system of the discrete Navier-Stokes 

equations by a distributed memory parallel ILU preconditioned Krylov method. A 

penalty function on the interface constraints equations is introduced to avoid the 

locking of the ILU factorization algorithm. To ensure portability of the code, a message 



X 

based memory distributed model with MPI is employed. The method has been tested 

over different benchmark cases such as the lid-driven cavity and pipe flow with 

unstructured tetrahedral grids. It is shown that the partition algorithm and the order of 

the physical variables are central to parallelization performance. A speed-up in the 

range of 5 to 13 is obtained with 16 processors. 

The second step involves the design of a parallel sliding mesh technique in view of the 

necessity to take into account the unsteady motions of the agitators. Lagrange 

multipliers are used at the sliding interfaces to enforce the continuity between the fixed 

and moving subdomains. To handle the convective term, both the Newton-Raphson 

scheme and the semi-implicit linearization are utilized. The method is validated for 

concentric cylinders and stirred tank flows. Running on 16 processors, the obtained 

speed-up is close to 8. 

Finally, to show the utility of the constructed parallel algorithms the last part of this 

thesis consists in the characterization of the hydrodynamics of a coaxial mixer in the 

transition regime. The coaxial mixer is composed of a large paddle (Maxblend) 

impeller and a double helical ribbon agitator mounted on two independent coaxial 

shafts rotating at different speeds. The used tetrahedral grids consisted on 1.4 to 3.8M 

of nodes producing 4.4 and 13.5M equations to solve. The simulations are based on the 

resolution of the Navier-Stokes equations with help of the developed parallel three-

dimensional finite element solver. To model the rotation of agitators, which rotates at 
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different speeds, a hybrid approach based on the novel finite element sliding mesh and 

the fictitious domain method is used. The power consumption and mixing times 

obtained from the simulations show good agreement with the ones acquired from a 

laboratory pilot rig. The simulations allow observing the flow as it evolves from deep 

laminar to transition regime. 



XII 

Condense en frangais 

Le melange de fluides dans une cuve agitee peut se faire en regime laminaire, de 

transition ou turbulent, tout dependant des conditions d'operation telles que la nature 

du produit ou bien des contraintes du procede. II est etonnant que le regime 

d'ecoulement de transition n'ait pas recu le meme interet scientifique que le melange 

en regime laminaire et turbulent (TATTERSON, 1991; HARNBY et al. 1997 et PAUL 

et al. 2003). Ainsi, les operations de melange en regime de transition sont typiquement 

concues sur la base de mesures experimentales ou de modeles valides pour le regime 

laminaire ou pour le regime turbulent se rapprochant le plus des conditions d'operation 

souhaitees. Pourtant, la comprehension du mecanisme de melange dans le regime 

d'ecoulement de transition est essentielle pour maximiser la securite et l'efiicacite du 

procede. La technologie standard utilisee pour melanger en regime de transition 

consiste a reprendre l'equipement employe pour le regime laminaire (agitateurs de 

proximite: ancre ou rubans helicoi'daux) ou pour le regime turbulent (turbines, palettes, 

hydrofoils). Une facon d'aborder le probleme de facon plus efficace consiste a 

combiner les agitateurs «laminaires» et «turbulents» pour concevoir une configuration 

hybride plus versatile. Toutefois, l'optimisation est plus complexe etant donne que cela 

demande une comprehension accrue de la nouvelle hydrodynamique resultant de 
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l'interaction entre les deux agitateurs. Dans cette perspective, les modeles numeriques 

permettent d'apporter des elements de reponse. 

La modelisation numerique de l'ecoulement dans une cuve agitee est gouvernee par les 

equations de Navier-Stokes. Lorsque ces dernieres sont discretisees avec un schema 

numerique, comme les elements finis ou les volumes finis, on obtient un systeme 

d'equations algebrique. L'obstacle principal pour modeliser le regime de transition 

dans les cuves agitees est que la maille de la grille de calcul a besoin d'etre raffinee 

suffisamment pour bien evaluer le terme d'inertie, composante cle du momentum dans 

ces conditions d'ecoulement II en resulte une augmentation considerable de la taille du 

systeme d'equations. Bien evidemment, cela entraine des exigences importantes en 

ressources informatiques aussi bien en memoire qu'en temps de calcul. A cet egard, 

l'option de recourir au calcul distribue parait difficile a ecarter. La disponibilite 

d'ordinateurs multiprocesseurs a prix abordables est un argument de taille qui plaide en 

faveur de cette option. Par consequent, l'objectif principal de cette these est de 

developper une strategic numerique pour modeliser le regime de transition dans des 

cuves agitees en ayant recours au calcul distribue. 

Pour atteindre l'objectif principal, le premier objectif specifique du travail est consacre 

au developpement d'un algorithme element fini parallele capable de predire 

l'hydrodynamique d'un probleme d'ecoulement tridimensionnel de fluide 

incompressible sur des maillages non structurees. Le deuxieme objectif specifique 
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quant a lui, implique la conception d'une technique de maillage glissant parallele afin 

de tenir compte de la rotation des agitateurs. Finalement, pour demontrer l'efficacite 

des algorithmes paralleles developpes, le dernier objectif est consacre a la 

caracterisation de l'hydrodynamique d'un agitateur multiple dans une cuve de melange 

operant en regime de transition. 

La mise en ceuvre informatique consiste a adapter le logiciel POLY3D (Rheosoft, Inc.) 

pour y integrer les nouveaux algorithmes paralleles. Developpe a Forigine au debut des 

annees 80 en Fortran, POLY3D est un solveur d'element fini tridimensionnel 

sequentiel dedie a la resolution de problemes thermo-fluides avec des elements finis 

tetraedres a pression discontinue conservant la masse localement. Les nouveaux 

algorithmes sont developpes et testes sur des ordinateurs IBM-P690 a 16 processeurs 

avec une memoire partagee de 64GB. Pour s'assurer de la portabilite du code, notre 

choix s'est porte vers le protocole de communication Message Passing Interface (MPI). 

Les maillages tetraedriques tridimensionnels utilises pour effectuer les tests sont 

generes avec l'aide des logiciels commerciaux I-DEAS (Siemens) et GAMBIT 

(ANSYS). Enfin, le post-traitement des resultats est effectue avec le logiciel ENSIGHT 

(CEI). 

La strategie de parallelisation se base sur les methodes de decomposition de domaine 

sans chevauchement. Les multiplicateurs de Lagrange sont utilises pour assurer la 

continuite aux frontieres entre les sous-domaines. L'espace des multiplicateurs de 



XV 

Lagrange est discretise en utilisant des fonctions de Dirac. Cela se fait avec l'idee de 

simplifier la discretisation de la contrainte d'interface ce qui permet son imposition 

ponctuelle. Par consequent, on elimine le besoin de calculer des integrates de surface a 

la frontiere entre les sous-domaines. L'originalite de ce travail reside dans la resolution 

couplee du systeme d'equations en variables de vitesse-pression-multiplicateurs de 

Lagrange resultant de la discretisation des equations de Navier-stokes par une methode 

de Krylov parallele et un preconditionnement par factorisation incomplete ILU (0) avec 

memo ire distribute. Une technique de penalisation est introduite a 1'interface pour 

eviter le blocage de l'algorithme de factorisation ILU. 

La methode est verifiee sur deux cas de reference (ecoulement dans une conduite et 

dans une cavite) en utilisant des approximations par elements finis discontinues en 

pression (P1+-P0/P2+-P1) sur des maillages, en tetraedres, non structures. Puisque le 

terme convectif n'est pas encore considere pour le moment, les ecoulements de Stokes 

(problemes lineaires) sont resolus avec le solveur parallele de Krylov du type gradient 

conjugue (GC) et multiplicateurs de Lagrange. On constate que l'acceleration des 

temps de calcul n'est pas lineaire en raison de deux facteurs: i) le temps systeme genere 

dans chacune des operations de preconditionnement matrice-vecteur; ii) 1'augmentation 

du nombre d'iterations du GC necessaires pour converger par rapport au nombre de 

partitions. Pour l'ecoulement dans une conduite, l'acceleration globale des temps de 

calcul pour le nombre maximum de partitions utilisees (16) varie dans une plage de 8 a 

14, ce qui donne une efficacite de parallelisation variant entre 50 et 88%. Pour 
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l'ecoulement dans une cavite, le nombre d'iterations montre une augmentation plus 

drastique par rapport au nombre de partitions. En consequence, 1'acceleration globale 

des temps de calcul par rapport a la serie sequentielle est de 5 a 5.8 fois plus rapide en 

calculant sur 16 processeurs. Afm d'ameliorer cette performance, l'ordre des variables 

physiques ainsi que la strategie de partitionnement sont etudies. Dans ce travail, il est 

demontre que la performance en parallele peut etre amelioree en utilisant une strategie 

adequate dans le cas des maillages non structurees, ou l'homogeneite de l'interface et la 

connectivite de la partition sont des parametres cles dans l'obtention d'une bonne 

performance, meme au prix d'une plus grande aire interfaciale. Avec cette strategie, 

une acceleration globale de 11 est obtenue, ce qui signifie une efficacite parallele de 

68%. 

Afin de considerer les frontieres mobiles de l'agitateur, un algorithme parallele de 

maillage glissant a ete developpe pour la simulation par elements finis des ecoulements 

tridimensionnels incompressibles et visqueux sur des maillages non structures. Comme 

pour le solveur parallele, la technique des multiplicateurs de Lagrange est utilisee aux 

interfaces de glissement pour assurer la continuite entre les partitions stationnaires et 

fixes. La methode est validee dans deux cas d'ecoulement: i) entre deux cylindres 

concentriques; ii) dans une cuve agitee, demontrant une excellente precision. Pour 

stabiliser le solveur lorsque la convection domine, deux methodes sont utilisees, a 

savoir, le schema de Newton-Raphson et la linearisation semi-implicite. II est prouve 

que la technique de maillage glissant en combinaison avec le schema de Newton-
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Raphson apporte une precision legerement superieure a celle obtenue avec le schema 

semi-implicite, surtout quand de grands pas de temps sont employes. Cependant, le 

schema semi-implicite economise une quantite considerable de temps CPU. II est etabli 

que la technique de maillage glissant est tres stable pour converger en utilisant des 

grands pas de temps que le schema implicites de type Gear autorise. Comme on pouvait 

s'y attendre, la technique montre une reduction quadratique de l'erreur en fonction de 

la taille du pas de temps. L'approche est parallelisee pour simuler l'ecoulement non 

permanent dans une cuve agitee avec des chicanes. La consommation de puissance 

calculee presente une difference de 2% par rapport aux donnees experimentales. Une 

acceleration de 7.4 est obtenue avec 16 processeurs. II est confirme que la technique 

permet de partitionner encore plus, autant la partition de glissement que celle fixe, pour 

avoir un nombre souhaite de partitions, permettant ainsi une parallelisation encore plus 

agressive. 

Finalement, l'hydrodynamique et le mecanisme de melange a l'echelle macroscopique 

du melangeur coaxial compose d'une large palette (Maxblend®) et d'un double ruban 

helicoidal montes sur deux arbres coaxiaux independants sont etudies par simulation 

numerique. Les simulations sont basees sur la resolution des equations de Navier-

Stokes avec 1'aide du solveur parallele developpe. Pour modeliser la rotation des 

agitateurs qui tournent a des vitesses differentes, une approche hybride est utilisee 

basee sur 1'appariement des techniques de maillage glissant et de domaine fictif. Le 
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maillage tetraedrique utilise contient de 1.4 a 3.8 millions de nceuds, correspondant 

respectivement a un nombre d'inconnues variant de 4.4 a 14.5 millions d'inconnues. 

Les simulations permettent d'observer les patrons d'ecoulements produits par le 

melangeur coaxial Superblend alors que l'hydrodynamique evolue du regime laminaire 

profond jusqu'au regime de transition. L'ecoulement se caracterise par la formation de 

plusieurs zones de recirculation au-dessus et en dessous du milieu de la cuve. Pour le 

mode contre-rotatif, plusieurs tourbillons, dont le nombre augmente en fonction du 

nombre de Reynolds, ont ete observes sur une section transversale horizontale au 

milieu de la cuve. Ce phenomene n'est pas observe en mode co-rotatif. De plus, le 

patron d'ecoulement en mode co-rotatif montre un ecoulement vers le haut a la paroi de 

la cuve et vers le bas pres de l'arbre de rotation. Le patron s'inverse en mode contre-

rotatif, a savoir que le fluide se deplace vers le bas pres de la paroi et vers le haut a 

proximite de l'arbre. 

A partir des profils de pompage et de cisaillement le long de la hauteur du melangeur, 

on observe que le pompage moyen et les valeurs de cisaillement sont superieurs en 

mode contre-rotatif comparativement au mode co-rotatif. Cependant, quand le 

melangeur fonctionne en mode contre-rotatif, ces variables montrent une distribution 

heterogene le long de la hauteur de la cuve, ce qui contraste avec les patrons plus 

homogenes observes en mode co-rotatif. Les valeurs du cisaillement ainsi que ceux du 

pompage sont constants en regime laminaire, par contre en regime de transition, ils 
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augmentent considerablement. En plus, il est prouve que l'effet principal du mode de 

rotation sur le pompage axial est que dans le mode co-rotatif la zone d'ecoulement 

axial principale est localisee dans la partie superieure de la cuve, tandis qu'en mode 

contre-rotatif, elle se trouve dans la region inferieure. 

En terme de consommation d'energie, le mode co-rotatif consomme moins de 

puissance et les temps de melange sont egaux ou plus petits que ceux qu'on obtient en 

mode contre-rotatif. La consommation de puissance plus elevee demandee par le mode 

contre-rotatif est causee par la presence de tourbillons a haut cisaillement, lesquels sont 

generes entre les deux melangeurs coaxiaux. Les temps de melange plus longs obtenus 

avec le mode contre-rotatif sont causes par les difficultes rencontrees par le traceur 

pour atteindre la zone d'ecoulement axial la plus importante dans le melangeur, se 

situant dans la zone centrale inferieure de la cuve. Finalement, base sur le concept 

d'energie de melange, on observe que le mode co-rotatif est plus efficace que le mode 

contre-rotatif. Le cout de consommation d'energie pour pomper et pour cisailler 

diminue quand les melangeurs fonctionnent en co-rotation. 

A la lumiere des resultats obtenus dans le cadre de cette these, de nouvelles 

perspectives de recherche apparaissent. Par rapport a la methodologie, il serait 

interessant de combiner le developpement du solveur parallele avec des techniques 

multi-grilles pour pouvoir controler 1'augmentation du nombre d'iterations par rapport 

au nombre de sous-domaines. Afin de resoudre des problemes sur des maillages 
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beaucoup plus fins que ceux utilises dans le present travail, une avenue de recherche 

possible est l'extension de la methode de parallelisation aux elements finis moins riches; 

nous pensons notamment a 1'element MINI. Par rapport a 1'analyse du melange, la 

caracterisation du melangeur Superblend demeure un champ d'investigation ouvert. II 

serait, en effet approprie d'analyser les effets du rapport des vitesses des agitateurs 

interieur et exterieur ainsi que ceux de la rheologie non-Newtonienne sur 

1' hydrodynamique. 
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Chapter 1 . Introduction 

1.1 Mixing in the transition flow regime 

Mixing is defined as the combination of two or more dissimilar portions of materials, 

resulting in the attainment of a desired level of uniformity, either physical or chemical, 

in the final product. In the processing of industrial fluids, it is necessary to introduce 

mechanical energy to promote good homogeneity (HOLLAND and CHAPMAN, 1966). 

The standard equipment consists in a tank provided with an agitator mounted on a 

rotating shaft located at the center of the vessel. The motion of the impeller produces 

high velocity streams that transfer momentum to stagnant zones, resulting in a fully 

developed flow. 

Figure 1-1: Schematic representation of the flow inside agitated tanks (HOLLAND and 

CHAPMAN, 1966). 
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The flow intensity depends on the relationship between the fluid movement induced by 

the agitator and the resistance presented by the viscous forces of the fluid, which 

defines the mixing Reynolds number (Re). The mixing flow regime can be classified in 

laminar, transitional and turbulent based on the relation between the dimensionless 

power consumption (Np) and the Reynolds numbers. 

Fluid mixing occurs in any of the flow regimes describe above, depending on the 

product characteristic and the process constraints. It can be remarked that the transition 

flow regime has not received the same scientific interest as laminar and turbulent 

mixing (TATTERSON; 1991; NIENOW et al.; 1997; PAUL et al., 2003). Equipment 

that operates in the transition regime is typically designed based on experimental 

measurements or models valid in the laminar or the turbulent regime, whichever is 

closer to the transitional operating conditions. However, the transitional flows show 

more complex patterns than the laminar ones but without developing as much 

hydrodynamic fluctuations as in fully turbulent conditions. In the initial stage of the 

transition regime instabilities appear but they vanish due the still high molecular 

viscosity. As the flow becomes less dependent on the viscosity, these instabilities grow 

until secondary flows are formed. In its final stage, the flow is very unstable fluctuating 

until it becomes fully turbulent. Some examples where the transition regime is 

encountered are given next. 
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A common case is found in the scaling-up of agitated tanks. If the power input per 

volume or the tip velocity speed rules are chosen to keep the same viscous dissipation 

distribution, the flow evolves from the laminar to the transition regime as shown in 

Figure 1-2 and Figure 1-3, respectively. 

Transition range 

Figure 1-2: Variation of specific power for different Re at different scales. 

a 0.1 

0.01 

Figure 1-3: Variation of tip speed velocity for different Re at different scales. 
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The transition flow regime is also present in the mixing of moderate viscosity materials 

that are sensitive to shear or heat such as cell culture broths, crystals and colorant 

suspensions. With these fluids, attempting to reach the turbulent regime by increasing 

the rotational speed of the impeller becomes inefficient since the energy introduced to 

the system is converted mostly in heat due to viscous dissipation. On the other hand, 

keeping the flow in deep laminar regime may require longer processing times ( N # ) in 

most mixing configurations as shown in Figure 1-4. In these conditions, the transitional 

regime may be the best option for a successful mixing. 

viscous range I T rans i t i on range 

Figure 1-4: Variation of dimensionless mixing time {NO) and power consumption 

(Np) in laminar and transition regime (NOVAK and RIEGER, 1969). 

Transition regime is becoming potentially important for the industries that utilize 

solvents in their products. Environment regulations seeking to minimize discharge of 

volatile organic compounds (VOCs) have encouraged companies to reduce or eliminate 
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solvents from many products which translate in the processing of materials with higher 

viscosities (COHEN and LANGHORN, 2004). As a consequence these industries 

might be forced at some point to mix at lower Reynolds number; i.e., from the turbulent 

regime to the transition or laminar ones. 

Finally the transition regime is found in the mixing of materials that experience 

changes in viscosity during processing such as in fermentations, cosmetics or bulk 

polymerization operations. These processes start out with watery liquids where 

turbulent mixing is possible. However, as the viscosity starts to build-up due to the 

addition of ingredients or to physico-chemical changes, the process needs to be carried 

out in the best scenario in the transition flow regime. Turbulent conditions become no 

longer feasible due to the large increases in the fluid viscosity. Lack of knowledge of 

the hydrodynamics in this regime may lead to complications in the control of the 

process reducing the quality, yield of the product and sometimes the safety of the 

process. 

1.2 Technology to mix in transition flow regime 

The standard technology used to mix in the transition flow regime consists of the 

equipment utilized in the laminar (proximity agitators: anchors or helical ribbons) or 

the turbulent (turbines, paddles, hydrofoils) regimes as can be deduced from Figure 1-5. 

Baffles need to be included in the design to avoid central vortex formation when 
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turbulent agitators are used. The efficiency of these agitators in transition regime is 

usually lower than in any other regime, i.e., proximity impellers are more efficient in 

laminar conditions and turbines, paddles and hydrofoils are more efficient in turbulent 

regime. 

2 
2 

II 

<500 

Turbine 

Pitched blade 

Impeller® 
(Pfaudler) 

Propeller 

Liquid viscosity [m Pa s] 

5 0 0 - 5 0 0 0 

N L 
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CD 
CO 
Frame Blade 

s=#=e 
MCf9 (Ekato) INTEHMIG® (Ekato) 

5x103-5xW 

U? 

Helical ribbon 

Figure 1-5: Agitators for different viscosity ranges (ZLOKARNIK, 2001) 

An efficient mixer for the transition region should provide enough shear action to 

disperse the materials. Furthermore, the pumping capacity produced by such impeller 

should generate good circulation through the tank to avoid hot spots or segregated 

zones. One option is the fusion of different agitators as in the case of the Maxblend™ 

agitator (Sumitomo Heavy Industries), where a grid and a wide paddle were blended as 
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shown in Figure 1-6. The grid helps to enhance dispersion while the paddle produces 

pumping. Maxblend™ has been shown to be very efficient in the transition region 

(IRANSHAHI et al., 2007). 

Grid part 

Paddle part 

Maxblend agitator 

Figure 1-6: Maxblend™ Agitator (Sumitomo Heavy Industries, Japan) 

Another approach is to combine laminar and turbulent impellers to build hybrid 

configurations with higher versatility. This concept has been employed to design novel 

configurations composed of multiple agitators rotating at different speeds. ESPENOSA-

SOLARES et al. (2002) proposed a helical ribbon with a turbine at the bottom of the 

tank to disperse gas in viscous fluids (Figure 1-7'a). THIBAULT and TANGUY (2002) 

presented the performance of a coaxial mixer composed of an anchor and a series of 

rods and a pitched-blade turbine for the production of pigment suspensions used in the 

paper coating industry (Figure l-7b). FOUCAULT et al. (2006) used an anchor and a 
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set of different turbines to mix fluids with non-Newtonian viscosities. BARAR POUR 

et al. (2007) utilized an angled anchor (Paravisc™) in combination with an eccentric 

positioned rotor-stator to disperse solids in liquids phases (Figure l-7c). KHOPKAR et 

al. (2007) employed the same design to prepare emulsions. As can be noted from the 

wide diversity of applications, combination of impellers generally gives good results. 

However its optimization is more complex since it requires a deeper understanding of 

the new hydrodynamics obtained from the interaction between agitators. 
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Figure 1-7: Novel mixing technologies suitable for transition regime, a) Helical ribbon 

and turbine (ESPINOSA-SOLARES et al., 2002); b) Anchor and series of rods 

(THIBAULT and TANGUY, 2002); c) Anchor and turbine (FOUCAULT et al., 2006); 

d) Angled anchor (Paravisc™) and rotor-stator (BARAR POUR et al., 2007). 
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1.3 Methods to characterize mixing hydrodynamics 

An understanding of the fluid mixing mechanism in the transition flow regime is a 

critical step to maximize safety and efficiency. The mixing operation can be 

characterized utilizing experimental and numerical models. Experimental works are 

usually carried out on small pilot rigs where power consumption and mixing times can 

be determined by several techniques developed through the years (ASCANIO et al., 

2004; CABARET et al., 2007). These experimental techniques mostly provide global 

information of the mixing performance and a qualitative observation of the flow 

patterns if transparent vessels and fluids are employed. For non-transparent tanks most 

techniques rely on the insertion of probes in the flow to measure pH or temperature 

which may alter the flow. 

To properly design efficient mixers, local flow information is meaningful. Detailed 

experimental measurement techniques, such as laser Doppler anemometry (LDA) (WU 

and PATTERSON, 1989; DUCCI and YIANNESKIS, 2005), particle image 

velocimetry (PIV) (ESCUDIE and LIN, 2003), and laser-induced fluorescence (LIF) 

(DISTELHOFF and MARQUIS, 1998) are very helpful in resolving large-scale as well 

as small-scale flow structures in small vessels. However, the local parameters 

dominating the flow (vorticity, energy dissipation rates, shear rates, axial pumping rates) 

in the whole three dimensional tank are hardly accessible by these techniques not 

forgetting that they are unfeasible for reactors at the industrial size. Furthermore, in 

order to apply them, both the fluid and the vessel and sometimes the impeller need to 
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be optically transparent. Other techniques as radioactive particle tracking 

(RAMMOHAN et al., 2001) and electric resistance tomography (MANN et al, 1997; 

DUDUKOVIC, 2002) show promising results since they work very well for non-

transparent material and vessels, but they are still limited due their costly or complex 

experimental procedures. Computational modeling is an alternative route to obtain 

local and global information of the flow field. With the convenience of high 

performance computers and the efficient implementation of accurate numerical 

algorithms, computational fluid dynamics (CFD) is a helpful tool to characterize 

mixing industrial equipment. 

1.4 Challenges to numerically model transition flow regime in 

agitated tanks 

The modeling of the isothermal single phase flow in agitated vessels is governed by the 

Navier-Stokes equations, namely: 

/?(v + vgradv)- / /V 2 v + gradp = 0 (1.1) 

divv = 0 (1.2) 

These equations are capable to predict any flow regime. However, since the resolution 

is performed in finite precision computers, the continuum medium needs to be 

represented by a mesh consisting of several interconnected elements or cells. The 
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partial derivates are then approximated with help of a numerical scheme such as the 

finite element or finite volume methods to obtain an algebraic system of equations. 

The accurate numerical modeling of transition flows in agitated tanks is still 

challenging, the main obstacle being the time and memory required to accurately 

predict the convective term (v • grad v) in the Navier-Stokes equations which is not 

negligible in the transition regime. As shown in Figure 1-8, as the Reynolds number 

increases, the flow structures become more complex and the mesh size to represent the 

problem needs to be refined otherwise numerical instabilities arise when convection 

dominates the flow (ZIENKIEWICZ and TAYLOR, 2000). Furthermore, convection 

introduces a nonlinearity to the equations, requiring special handling. If implicit 

schemes are used then extra fixed point iterations are required. On the other hand, if 

explicit treatment is utilized, many time steps are necessary to satisfy the Courant-

Friedrisch-Lewy condition. 

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 

Re 

Figure 1-8: Mesh size requirement with respect to the Reynolds number for a 40 L. 

agitated tank 

; 0.001 
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As already discussed in section 1.2, the geometries employed at this regime are 

generally complex, usually requiring locally refined unstructured grids with high aspect 

ratios to properly represent geometrical details such as the curved, angled shapes and 

small gaps of agitated tanks. Special handling is generally required to reproduce the 

motion of the impellers that may require extra time and memory. 

Excessive waiting times are not efficient for process design. Taking into account that 

high performance computations have been successfully applied to several large-scale 

flow problems, it becomes necessary to design computational algorithms suited for 

multi-processor computers. Early applications in fluid mechanics were made by 

FARHAT et al. (1993) and JOHAN et al. (1995). Their works demonstrated the 

possibility to speed-up calculations and to reduce the memory per processor by the use 

of parallel computers. 

1.5 General objective 

The general scope of the project is to develop a numerical method to model the 

transition flow regime in novel mixing technologies exploiting the capabilities of 

parallel computers. The methodology will be designed to tackle two challenges of the 

present investigation: 

• the increase in computation time and memory as mesh is refined 

• the modeling of the motion of the agitators 
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Chapter 2. Literature review 

Based on the general objective of this thesis, the literature review is divided in three 

parts; transition flow regime in agitated tanks, parallel computing and numerical 

modeling of the agitator motion. The first section is intended to provide the state-of-

the-art of the mixing in the transition regime. The purpose of the last two sections is to 

give a general background of the computational techniques required to develop a 

parallel algorithm capable to predict the hydrodynamics in stirred tanks. 

2.1. Transition flow regime in agitated tanks 

The log-log plot of the Reynolds number with respect to the dimensionless power 

number is commonly used to identify the flow regime the mixing is performed. The 

Reynolds number is defined as: 

pND2 (2-1) 
Re = 

H 

and the power number is expressed as: 

P (2.2) 

pN3D5 N P = ^ 5 

The characteristic shape of this plot for different impellers is depicted in Figure 2-1. 
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Figure 2-1: Flow regimes for standard agitated tank configuration (HOLLAND and 

CHAPMAN, 1996) 

Based on classical mixing theory, in the laminar regime (point A to B region in Figure 

2-1) the slope of the regression Np = Kp(Re)a is equal to -1. In the turbulent regime 

(point D to E region in Figure 2-1) the power number is constant, i.e., the slope in 

Np-Kp(Rey is zero. The region comprised from point B to D in Figure 2-1 defines the 

transition regime. 

2.1.1. Experimental studies 

a) Macro-variables 

Early studies of mixing in the transition regime are focused on the determination of 

macro-variables such as the effective deformation rate generated within the mixing 
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tank. In laminar regime, this parameter is calculated with help of the relation given by 

METZNER and OTTO (1957): 

t=KsN (2.3) 

By this approximation it is possible to define a modified Reynolds number for power 

law fluids as: 

pK]-nN2-"D2 (2.4) 
ReMO=-

m 

However, as evidenced in the work of METZNER et al. (1961), relation (2.3) only 

holds in the laminar region. Literature points out that in the transition region the 

deformation rate increases with respect to the Reynolds number. For example, 

POLLARD and KANTYKA (1969) found that for anchor agitated tanks the average 

shear rate is proportional to almost the fourth power of the agitator speed as shown in 

Figure 2-2. 
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Figure 2-2: Effect of the agitator speed on the average shear rate in the laminar regime 

(N<50 rev/min) and the transition regime (N>50 rev/min) (POLLARD and 

KANTYKA, 1969) 

In a different work WITCHERLE et al. (1984) reported deformation rate values in the 

vicinity of the turbine blade based on an electrochemical technique as presented in 

Figure 2-3. 
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Figure 2-3: Dependence of the dimensionless shear rate ya/N with respect to Re in the 

vicinity of the agitators blade (WITCHERLE et al , 1984) 

They have proposed the following correlation for the average shear rate in the 

transition regime: 

fc =(1+5.3,,)"" 
(pN2~"D2^ 

v m ) 

l/(n+l) 

N 
(2.5) 

Furthermore, JAHANGIRI et al. (2001) using laser Doppler anemometry observed that 

in the transition region (30<Re<2000) the variation of local deformation rate in an 

agitated tank with a Rushton turbine is well correlated by the following equation: 

t=<Nb (2.6) 
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In view to determine the deformation rate, several methods have been proposed. 

ZEPPENFELD and MERSMANN (1988) presented an iterative procedure based on the 

increase of the mean flow velocity standardized with the stirrer tip velocity. Their 

technique requires several parameters such as the power characteristic of the impeller 

for the whole region from laminar to turbulent flow, the Ks constant, the turbulent 

pumping coefficient, and the dimensionless mean velocity. An alternative approach is 

proposed by FORSCHNER et al. (1992) who modified the Metzner-Otto equation 

utilizing a varying Ks parameter that is calculated from: 

KtramUion = K2Ks RC"MO (2-7) 

The empirical constants (K2 and a) are determined from experimental data correlations. 

CHENG and CARREAU (1994) developed models to determine the effective 

deformation rates in the transition regime based on an analogy with the Couette flow. 

The first model is originated from the relation between the power consumption and the 

torque exerted on the inner cylinder producing the following equation: 

Ya 7u2d2H 
dtp 
m 

'q (2-a)/ 

N /q 

where q - n(\ - a) + a. In the same work, the authors proposed a model based on the 

helical flow between two concentric cylinders taking into account the contribution from 

the axial velocity: 
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7a = 

' j 3 
Kpdt 

7U2d2H 

dep 

m 

^(•-"V 

N 
(2-a)/ ^ ^ > 

v2«'y 
v'2 + 

rd\* \ 
0.5 

ft? 

v ^ y 

-ni s (2.9) 

where s = a(l - «) and the values of v' and aj are calculated at the inner cylinder wall. 

The predictions obtained with these models show very good agreement with data 

obtained from various non-Newtonian fluids as shown in Figure 2-4. 
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Figure 2-4: Comparison of the experimental deformation rate with the theoretical 

model predictions. Equation (9) and (26) are (2.8) and (2.9) in the text. (CHENG and 

CARREAU, 1994) 
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CHENG and CARREAU (1994) pointed out the necessity to improve the accuracy of 

numerical models to obtain a better estimation of the deformation rate in complex 

configurations. In the same study, they also observe a decay of the mixing time when 

Reynolds number increase in the transition region (Figure 2-5). 

300 

250 

200 

150 

100 

50 

lcuninar 
reglmo 

10' 

Re. 

Figure 2-5: Reduction of the dimensionless mixing time (Ntm) in the transition regime 

(CHENG and CARREAU, 1994) 

Later, WASSMER and HUNGENBERG (2005) developed a way to extend the 

Metzner-Otto method for both the transition and the turbulent flow regimes employing 

the relation between the effective shear stress and specific power input. They proposed 

an effective shear rate calculated by the following expression: 

y =C 
la s 

pNpN
2D5 

(2.10) 
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where the constant Cs is determined with help of the following correlation: 

Ks 
Cs=cgeom— (2.11) 

Kp 

As in the approach ofZEPPENFELD and MERSMANN (1988), an iterative procedure 

is used to calculate the Tje parameter. 

b) Velocity measurements 

Other studies are focused on the local hydrodynamic characterization of the flow close 

to the impeller with help of techniques such as laser Doppler anemometry (LDA) or 

particle image velocimetry (PIV). Table 2-1 summarizes the authors, the configurations, 

the flow conditions and the techniques used in these works. The main findings are 

resumed next. 
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Table 2-1: Experimental single phase mixing studies in the transition flow regime 

Authors 

KOUTSAKOS et al. 

(1990) 

DYSTERetal. (1993) 

HOCKEY and NOURI 

(1996) 

MAVROSetal. (1996) 

MONTESetal. (1997) 

SCHAFERetal. (1998) 

JAHANGIRI (2006) 

JAHANGIRI (2007) 

ESCUDIE et al. (2002) 

Agitator type 

Rushton turbine and 

baffles 

Rushton turbine and 

baffles 

Pitched blade turbine and 

baffles 

Radial and axial turbines 

Pitched blade turbine and 

baffles 

Pitched blade turbine and 

baffles 

Rushton turbine 

Helical ribbon impeller 

Hydrofoil 

Flow conditions 

Re=5-5000 (shear-thinning 

fluids) 

Re=5-5000 (water) 

Re=200-5000 (water and 

maltose syrup) 

Re=480 (CMC solutions) 

Re=300-1200 (water and 

glycerine) 

Re=225-7500 (water) 

Re=35-1800 (Viscoelastic 

liquids) 

Re=70-6700 (Viscoelastic 

liquids) 

Re= 17-280 

Laser Doppler anemometry measurements have been reported for agitated tanks 

operating in the transition regime by KOUTSAKOS et al. (1990) and DYSTER et al. 

(1993) who measured mean velocity profiles with help of LDA. They reported an 

increase in the radial pumping with respect to the Reynolds number as shown in Figure 

2-6. 
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Figure 2-6: Flow number with respect to the Reynolds number in the laminar, transition 

and turbulent regimes (DYSTER et al., 1993) 

Other studies have reported the evolution of the flow from a primary pattern to a 

secondary one. HOCKEY and NOURI (1996) observed at Re=1200 a flow 

reorientation from radial to axial direction. This finding agrees with the velocity 

measurements of NOURI and WHITELAW(1990). MAVROS et al. (1996) reported a 

well-defined flow segregation when agitating non-Newtonian liquids with radial 

impellers. The authors have concluded that in the transition regime, non-Newtonian 

liquids have more difficulties to be pumped along the whole tank than a Newtonian 

liquid. MONTES et al. (1997) based on the unsteady analysis of the velocity near the 

impeller showed a non-stationary, pseudo-periodic instability at a frequency much 

lower than the blade passage frequency (6%), and linearly coupled with the impeller 

rotational speed. The same authors have noted that above Re=600, the main vortex in 
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the agitated tank was unstable; the fluctuations in the flow increased rapidly (as shown 

in Figure 2-7), and the angle of the impeller discharge fluctuated. 

%w® xwa i4oc 

Figure 2-7: Velocity R.M.S. variations of the flow with respect to the Reynolds number 

(MONTES et al., 1997) 

As Re increases, the flow induced by a pitched blade turbine (PBT) evolves from one 

single loop to a flow where many vortices structures appear in the upper part of the 

vessel. SCHAFER et al. (1998) also observed the creation of secondary recirculation 

zones as Reynolds number was increased. They also found out instabilities in the 

impeller discharge flow direction at Re=500. ESCUDIE et al. (2002) with help of 

particle image velocimetry have observed an increase of the radial component 
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magnitude and an increase in the pumping capacity of the agitator as the viscosity of 

the fluid decreases. Finally, they pointed out that the flow in turbulent regime is quite 

different than the flow produced in lower part of the transition regime. 

2.1.2. Numerical studies 

Table 2-2 summarizes the numerical models that have been developed to predict the 

hydrodynamics in agitated tanks in the transition regime. In Table 2-2, the label 

laminar model is used to indicate that the Navier-Stokes equations are considered 

without the addition of any turbulence model. The methods listed in the column 

'agitator motion' are explained in section 2.3 of the present literature review. 
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The first attempt to develop a numerical model of the transition regime is presented by 

VASCONCELOS et al. (1996) who represented the hydrodynamics within the tank by 

a fixed cascade of well mixed compartments with backflow, where the backflow 

parameters are experimentally determined. A schematic representation of such model is 

shown in Figure 2-8. 

a a 

Q, 

conductivity 
e p probe 

a) 

r Qt 
TZL 

Qt 

izr 

b) 

Figure 2-8: Simplification used to model transition regime in agitated tank a) Agitated 

tank with three turbines, b) structure of the compartment model for the agitated tank 

(VASCONCELOS et al., 1996) 



30 

They were able to predict the mixing time, power consumption and pumping capacity 

of the mixer in the upper transition region (Re>400) but not in the lower transition 

region. They found that the mixing time and power number depend on the Reynolds 

number as long as the full turbulent regime is inhibited by the viscosity. Later, 

BAKKER et al. (1997), with the objective to validate the sliding mesh technique in the 

context of agitated tanks, presented a CFD prediction of the pumping rate in the 

transition regime. 

N , 

* Sliding Mesh '•< LDV Experiments 

Re 

Figure 2-9: Comparison between experimental and CFD results for the pumping 

number with respect to the Reynolds number (BAKKER et al., 1997) 

In order to capture the flow details generated in the transition regime, some authors 

resorted to turbulence models to simulate the transition regime. These works assumed 

that the flow structures and variations smaller than the mesh size can be well 
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represented by the turbulent contribution. MURTHY and JAYANTI (2002) employed a 

low Reynolds number version of the k- e model to analyze the laminar and the 

transitional flow of an eight blade paddle impeller. They concluded that good results in 

the transition regime may be obtained with this approach. CHOI et al. (2004) also used 

turbulence model to predict the residence time distribution in a continuous reactor in 

the laminar and the transitional flow regime. They employed a standard k- e model to 

simulate all the conditions (even the laminar) reporting good agreement between the 

experimental and numerical residence time distributions. 

Most authors preferred to employ grids with small mesh sizes to avoid the re-

laminarization effect. For example, ZALC et al. (2001) presented a finite element 

model for the laminar and the transition regime to predict the chaos in agitated tanks. 

Due to the large number of unknowns (370K nodes) in their simulations, they run their 

computations in parallel using eight processors per simulation. Based on the obtained 

hydrodynamics, they visualized the heterogeneous distribution of deformation rate 

produced within the mixing tank. Furthermore, they found that the pumping capacity of 

their configuration depends on Reynolds numbers as shown in Figure 2-10. 
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Figure 2-10: Increase of the pumping capacity with respect to Reynolds number in the 

range 20-200 (ZALC et al., 2001) 

Literature review shows that BARTELS et al. (2002) have used the most refined grids 

to predict the flow generated by a turbine in the transition regime. To accelerate their 

simulations they employed a parallel multi-grid finite volume code developed by 

DURST and SCHAFER (1996) on a 16 processors shared memory computer. With the 

results they observed an evolution of the flow with respect to the Reynolds number as 

shown in Figure 2-11. 
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Figure 2-11: Flow streamlines at different Reynolds numbers generated in an agitated 

tank (BARTELS et al., 2002) 

CFD simulations involving non-Newtonian fluids in the transition flow regime have 

also been performed. LETELLIER et al. (2002) reported the simulation of the flow in a 

multi-stage agitator at three different scales. They assessed the effect of scale-up rules 

over the flow patterns and pumping number in the laminar and the transition regimes. 

They verified that the plot of the dimensionless pumping number with respect to the 

Reynolds number was independent of the scale of the mixer. KELLY and GIGAS 

(2003) and RICCI and KELLY (2004) have studied the effect of power law fluids in 

the power characteristic and heat transfer of different stirred vessels. They found that 
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the power number and discharge angle of the agitator depends not only on the Reynolds 

number but also on the flow behaviour index. Furthermore, their results indicated that 

in the transition regime the average shear rate near the impeller increases not only with 

increasing the velocity of the agitator, but also with decreasing the flow behaviour 

index. ADAMS and BARIGOU (2007) have performed simulations of yield stress 

fluids to measure the size of the well mixed regions called caverns with respect to the 

Reynolds number. They concluded that the shape behaviour of the caverns is more 

complex than suggested by the toroidal cavern model. 

2.2. Parallel computing 

Parallel computing is a form of data processing in which many calculations are carried 

out simultaneously on several computer processors; operating on the principle that a 

problem can be partitioned into smaller ones. It allows reducing times and to solve 

problems that cannot be handled by single processor units due to excessive memory 

requirements. 

2.2.1. Types of parallel computers 

Parallel computers can be divided in two main categories based on their architecture: 

• A single computer with multiple processors interconnected to a shared address 

space, known as a Shared Memory Multiprocessor (Figure 2-12a). 
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• A set of computers interconnected through a network, known as a Distributed 

Memory Multicomputer (Figure 2-12b). 
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Figure 2-12: Parallel computer architectures: a) distributed memory computer b) shared 

memory computer 

The advantages and disadvantages of shared and distributed memory computers are 

listed on Table 2-3 and Table 2-4. 
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Table 2-3: Advantages and disadvantages of shared memory computers. 

Advantages 

Global address space provides a user-

friendly programming perspective. 

Data sharing between tasks is both fast 

and uniform due to the proximity of 

memory to CPUs. 

Disadvantages 

Lack of scalability between memory and 

CPUs. Adding more CPUs may 

geometrically increase traffic on the 

shared memory-CPU path. 

Computer price becomes excessive as the 

number of processor increases. 

Table 2-4: Advantages and disadvantages of distributed memory computers. 

Advantages 

Memory is scalable with number of 

processors. Augment the number of 

processors and the size of memory 

increases proportionately. 

Each processor can easily access its 

own memory. 

Computer price is more affordable. 

Disadvantages 

Difficult to adapt data structures and 

algorithms, based on shared memory, to 

distributed memory. 
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2.2.2. Performance of parallel systems 

There are various methods that are used to measure the performance of a parallel 

algorithm. Each of them reflects certain properties of the parallel code. 

a) Run time 

The simplest way to measure the performance of a parallel computer is the run time. 

The serial run time of a program (ts) is the time elapsed between the beginning and the 

end of its execution on a sequential computer. The parallel run time (tn) is the time that 

elapses from the moments that a parallel computations starts to the moments that the 

last processor finishes execution. 

b) Speed-up 

Speed-up is a measure that evidences the relative benefit of solving a problem in 

parallel. It is defined as the ratio of the time taken to solve a problem on single 

processors to the time required to solve the same problem on a parallel computer with p 

identical processors. Namely: 

The ideal speedup is np when using np processors. 
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c) Efficiency 

The efficiency of a parallel system describes the fraction of the time that is being used 

by the processors for a given computation. It is defined as: 

E(nP) = - ^ - (2-13) 

In practice, ideal behaviour is not achieved because while executing a parallel 

algorithm, the processors cannot devote one hundred percent of their time to the 

computations of the algorithm. Part of the time required by the processors is spent in 

communication. 

2.2.3. Causes of inefficiencies in paraliel computing 

In parallel computing science, overhead is defined as the collection of causes that 

produces non-optimal efficiency of the parallel system. The major sources of overhead 

in a parallel system are: 

• Inter-processor communication: It is the most significant source of parallel 

processing overhead. It contains the time spent to communicate data between 

processors. 

• Load imbalance: It is caused by the uneven partition of the problem that results 

in a disproportionate amount of work assigned between processors. If different 
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processors have different work loads, some processors may be waiting during 

part of the time that others are working on the problem. 

• Extra computation: It is produced by the use of algorithms that may perform 

poorer compared to the best sequential algorithm but are easier to parallelize. 

2.2.4. Parallel algorithms to simulate flow problems 

Computational fluid dynamics (CFD) models are typically based on the solution of the 

Navier-Stokes equations with help of approximation schemes such as the finite volume 

or finite element method. As a result, a system of algebraic equations is obtained. Its 

solution is the most time consuming step for CFD codes. Several parallel algorithms 

have been proposed to reduce time and in some instances to reduce memory too. Most 

of them are based on domain decomposition methods which consist in the subdivision 

of the original computational domain into a set of interconnected subdomains. In this 

manner, internal unknowns are calculated in parallel, while the communications is 

restricted to the unknowns at the subdomain interfaces. Depending on the way the 

interfaces are handled they can be classified in overlapping and non-overlapping as 

shown in Figure 2-13. 
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a) b) 

Figure 2-13: Schematic representation of domain decomposition: a) overlapping 

partitions, b) non-overlapping partitions. 

The most common techniques are described next. 

a) Direct solvers 

Direct solution methods based on the LU-decomposition of the global matrix and 

subsequent forward-backward substitution schemes are often selected as they are very 

robust especially for ill-conditioned problems. Parallel variants are the multi-frontal 

methods (SCOTT, 2003), the sparse Cholesky algorithms proposed in SuperLU 

software (LI and DEMMEL, 2003) or the tree assembly factorization presented by 

AMESTOY et al. (2000) for the MUMPS solver. The parallel efficiency of these 

methods depends on equations reordering and pivoting strategies as has been shown by 

GOULD et al. (2005). 
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Examples of the application of such methods in fluid dynamics are given by 

AGGARWAL et al. (1994) and HENRIKSEN and KEUNINGS (1994) who employed 

parallel direct solvers to simulate the flow of viscoelastic fluids. Recently, SAHIN and 

WILSON (2008) utilized MUMPS to simulate the viscoelastic flow past an array of 

circular cylinders in a channel. Unfortunately the large memory requirements limit the 

use of parallel direct solvers to massive parallel computing composed of hundreds or 

thousands of processors. For example, LI and DEMMEL (2003) required 32 processors 

to solve a system of approximately 106 equations (40K equations/processor). 

b) Krylov iterative solvers 

To overcome the memory limitations, at least partly, an alternative is to use 

preconditioned iterative Krylov subspace methods. With these methods, several algebra 

operations like sparse matrix-vectors products, inner products, vector updates and 

lower-upper solves need to be performed. The success of Krylov solvers depends 

highly on the preconditioner utilized. Preconditioning consists in transforming the 

coefficients matrix into one that has a lower condition number improving the 

convergence of the method. The transformation matrix is what is called the 

preconditioner. Their parallelization has been the subject of numerous investigations. 

For example, CAREY et al. (1998) presented the performance of a parallel diagonal 

preconditioner for a conjugate gradient solver using structured grids in the context of 

transport problems. Attempts to parallelize more robust preconditioners as incomplete 

lower-upper factorizations have been presented. DUTTO and HABASHI (1999) 
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proposed to reorder the variables by the so-called coloring techniques to facilitate 

parallelization of ILU. They showed that the approach is useful only for 4-6 processors 

when using ILU (O)-GMRES. WILLE et al. (2003) and STAFF and WILLE (2005) 

used domain decomposition, a priori pivoting and segregation of variables to parallelize 

the ILU preconditioning of conjugate gradient solver. Results presented for the Navier-

Stokes equations, approximated with a mixed formulation, showed that the speed-up is 

limited due to the sequential characteristics of ILU algorithms as shown in Figure 2-14. 
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Figure 2-14: CPU time with respect to the number of processors (satellites) for parallel 

ILU preconditioning applied to Navier-Stokes problems (WILLE et al , 2003). 

With the purpose to build highly parallel preconditioners, HUGHES et al. (1983) 

introduced the concept of element-by-element (EBE) preconditioners. It consists of 
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computing the preconditioner from the element matrix avoiding the storage of both the 

global matrix and preconditioner. This idea can be combined with domain 

decomposition to give better performance. Different variants such as the clustered-

element-by-element (CEBE), the mixed CEBE and the cluster companion (CC) 

preconditioners were proposed by TEZDUYAR and LIOU (1989) and TEZDUYAR et 

al. (1992). KASHIYAMA et al. (2000) used an EBE preconditioner for the simulation 

of incompressible flow on benchmark cases. SHEU et al. (1999) developed a finite 

element model of the three-dimensional incompressible flow in a cavity using an EBE 

preconditioned BiCGSTAB solver. A maximum speed-up of four was obtained as 

shown in Figure 2-15. 
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Figure 2-15: Speed-up of element-by-element preconditioned BiCGSTAB for the lid-

driven cavity flow case (SHEU et al., 1999) 
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c) Overlapping domain decomposition methods 

A well known domain decomposition approach based on overlapping partitions is the 

additive Schwarz method. This technique has been used to build parallel 

preconditioners for Krylov solvers. An excellent introduction and application of 

Schwarz methods is presented by SMITH et al. (1996). Figure 2-16 exemplifies a three 

overlapped partitions and their communication pattern. 

(HrttiDoSO fjsnitjori ffl! 

Figure 2-16: Three overlapping partitions and their communications patterns 

(DARWISH et al, 2008) 
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Examples of overlapping Schwarz domain decomposition for the simulation of 

incompressible flows are given next. BRAKKEE et al. (1998) compared the 

performance of Schwarz domain decomposition in combination with CG and GMRES 

solver to reduce the computational time with respect to direct methods. GROPP et al. 

(2001) examined several tuning parameters such as the partitioning and the ordering of 

variables of an additive Schwarz ILU-GMRES solver to simulate a large CFD case 

containing 2.8M nodes. BORELLO et al. (2003) used an explicit Schwarz algorithm 

and GMRES solver to speed-up the solution of turbulent flows in turbo-machinery. 

CHAU et al. (2007) proposed an explicit alternating Schwarz domain decomposition 

that runs on asynchronous mode, where all the synchronization points are skipped and 

updated with the most recent information available. 

Overlapping domain decomposition suffers from an increase in the number of iterations 

as the number of subdomains increases. The problem comes from the fact that the 

information at one node is conveyed through to another node only by passing through 

all the intermediate subdomains, each of which retards the transfer of information 

(SMITH et al., 1996). To alleviate this problem, many works have proposed the use of 

several levels of grids in a similar way than multi-grid techniques. It has been proved 

that the condition number of a two-level overlapping Schwarz method, for symmetric 

positive definite problems and generous overlap between subdomains, is bounded 

independently of the number of subdomains and the mesh size (DRYJA and 

WIDLUND, 1987). Examples of hybrid multi-grid and Schwarz solvers for fluid flow 
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simulations are widely found in literature. CAOLA et al. (2001) and CAOLA and 

BROWN (2002) utilized a two-level additive Schwarz, Newton method and 

BiCGSTAB solver to solve buoyancy driven convection and viscoelastic flows. CAI et 

al. (2002) and HWANG and CAI (2005) combined two-level Schwarz methods, 

GMRES and inexact Newton schemes to predict the flow at high Reynolds numbers in 

cavities. VAINIKKO and GRAHAM (2004) used a two level additive Schwarz 

preconditioner with GMRES applied to the solution of the Navier-Stokes equations 

with mixed discontinuous pressure elements. DOLEAN and LANTERI (2004) showed 

the usefulness of a parallel multi-grid and additive Schwarz domain decomposition for 

the simulation of unsteady flows on unstructured grids. LIN et al. (2006) studied the 

performance of a Newton-Krylov method in the finite element context using three 

levels of the algebraic multi-grid loop. Recently, DARWISH et al. (2008) compared 

different algebraic multi-grid techniques for overlapping partitions to improve the 

parallel efficiency of a finite volume parallel solver. These works show that the 

parallelization of multi-grid techniques is not straightforward. As pointed out by JOHN 

and TOBISKA (2000), multi-grid methods contradict the optimal condition for high 

parallel efficiency, which is data locality. The calculations on the grids that are coarser 

than the finest tend to show a bad parallel performance (JOHN and TOBISKA, 2000). 

d) Non-overlapping domain decomposition methods 

Non-overlapping approaches are based on the resolution of independent set of adjacent 

partitions and an interface problem. TOSELLI and WIDLUND (2005) presented a 



47 

complete mathematical description of these methods in their book. The most common 

non-overlapping domain decomposition technique is based on the introduction of 

Lagrange multipliers constraints to ensure continuity of the variables at the interface. 

There exist two approaches for solving such methods. One is based on the elimination 

of the degrees of freedom internal to the subdomains in order to solve an interface 

problem by an iterative algorithm (FARHAT and ROUX (1991); ACHDOU et al. 

(1995); HU et al. (2004)) as in the finite element tearing and interconnecting (FETI) 

method. Similar algorithms applied to incompressible flow simulations are highlighted 

next. GLOWINSKI et al. (1995) presented the use of Lagrange multiplier for domain 

decomposition in combination with fictitious domain methods. In their work, the 

Lagrange multipliers were obtained through a conjugate gradient algorithm. 

VANDERSTRAETEN and KEUNINGS (1998) reported flow simulations using a 

direct method to solve the internal equations and a parallel GMRES to solve the 

corresponding Lagrange multiplier equations. CALGARO and LAMINIE (2000) 

developed a non-overlapping domain decomposition method for the Stokes equations 

where preconditioned conjugate gradient was used for the interface equation. The 

velocity and pressure were obtained by means of Uzawa iterations or penalty methods. 

ZSAKI et al. (2003) implemented a CFD solver based on Uzawa iterations to uncouple 

the pressure from the mixed velocity-pressure problem. After each pressure update, the 

FETI algorithm was used to solve for the velocity and Lagrange multiplier unknowns. 

VEREECKE et al. (2003) extended the two-level FETI method for nearly 

incompressible problems. 
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The second option is to directly solve the full saddle-point problem by a preconditioned 

iterative method. This has the advantage of allowing the use of inexact low memory 

Krylov solvers for both the interior and multiplier variables. This approach has been 

applied to solve the diffusion equation on non-matching grids (KUZNETSOV, 1995), 

elasticity problems (KLAWONN and WIDLUND, 2000; KLAWONN and 

RHEINBACH, 2007) and elliptic problems with variables coefficients (HU et al., 

2004). For preconditioning, KUZNETSOV (1995) proposed block preconditioners. 

KLAWONN and WIDLUND (2000) utilized block preconditioners combining 

different versions of incomplete LU factorization of the global matrix. No applications 

of this second approach were found in the literature for the Navier-Stokes equations. 

2.3. Numerical modeling of the agitators motion 

The treatment of the agitator periodic motion within a stirred tank provided with baffles 

is particularly critical for the accurate prediction of the flow. As the agitator moves, the 

position of the boundary of the problem changes as shown in Figure 2-17. 
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time step 1 time step 2 time step 3 

Figure 2-17: Unsteady motion of a paddle impeller on a two-baffle tank at three time 

steps. 

Several simplifications and techniques have been developed through the years to 

handle such conditions. The most popular methods are outlined in the next paragraphs. 

2.3.1. Black box approach 

An early approach to handle the motion of impellers consisted in excluding the 

impeller swept volume from the computational domain. Boundary conditions in the 

black box region were prescribed from time averaged experimental data or empirical 

functions as shown in Figure 2-18. The task of the CFD solver was to compute a steady 

state average flow in the remainder of the tank. 
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X 

a) b) 

Figure 2-18: Schematic representation of the black box approach, a) Half of an agitated 

tank; b) Computational domain used for the half on the domain in the black box 

approach. 

HARVEY and GREAVES (1982) utilized this approach to model the two-dimensional 

flow produced by an agitator. They employed parabolic profile for the radial and axial 

velocity assuming rigid body motion profile for the tangential velocity in the impeller 

swept region. The turbulent quantities at the boundary of the agitators were set to zero. 

MIDDLETON et al. (1986) extended this technique for three-dimensional flow in 

mixing tanks using a finite volume code. The experimental data used for boundary 

conditions in the impeller region were obtained from laser anemometry. RANADE and 

JOSHI (1990) described a computer code to simulate turbulent flows in agitated tanks 

based on k-e model. Their model approximates the partial differential equations using 

finite volume method coupled with a Gauss-Seidel linear solver. Unlike the work of 
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HARVEY and GREAVES (1982), they used non-zero boundary conditions for the 

turbulent levels on the impeller region. GOSMAN et al. (1992) presented a 

computational procedure based on the finite volume method for the prediction of multi

phase turbulent flows in baffled, impeller-stirred vessels. Their resolution algorithm 

was based on two phase implicit velocity-pressure coupling and the k-e model. The 

main limitations of the black box approach are that only steady state solutions are 

obtained and it requires experimental data which is not always available. 

2.3.2. Rotating frame of reference 

A more general approach is to simulate the flow using the exact shape of the impellers. 

A simplification that removes time dependency for some cases is the rotating or 

Lagrangian frame of reference model. It consists in solving the steady-state momentum 

equations for the entire domain in a rotating frame. Due to the change of frame of 

reference, the Coriolis and centrifugal forces need to be included in the equations of 

change. Problems solved in a rotating frame typically use the angular velocity of the 

impeller as the angular velocity of the frame. Thus, the impeller is at rest in the rotating 

frame of reference while the wall of the tanks rotate at the angular speed of the agitator, 

as shown in Figure 2-19. 
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a) b) 

Figure 2-19: Rotating frame of reference approach, a) The impeller rotates in the 

laboratory frame of reference; b) The walls rotate in the rotating frame of reference 

A rotating frame of reference has been utilized in several works where the geometry of 

the tank is symmetric. For example, TANGUY et al. (1992) utilized this technique to 

simulate the flow of a helical ribbon impeller vessel with the help of the finite element 

method. ZALC et al. (2001) used this approach to model the flow generated by several 

turbines on a single shaft positioned at the center of the tank. 

2.3.3. Techniques based on body forces 

A different approach is to introduce body forces in the Eulerian version of the 

momentum equations to emulate the effect of the moving impellers over a background 

mesh. PERICLEOUS and PATEL (1987) presented a technique for the solution of the 
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time averaged Navier-Stokes equations describing the flow in the reactor. The 

impellers were represented as sources of tangential, axial or radial momentum and 

similarly flow resistances such as baffles were represented as momentum sinks. The 

momentum terms were computed from correlations involving variables such as drag 

coefficients, number of baffles or blades and time average area of the object. The 

resulting partial differential equations were solved numerically using a finite difference 

solver. They have applied their model to simulate the flow in a bioreactor composed of 

three-turbines stacked on a single shaft. RANADE and DOMMETI (1996) developed a 

steady-state three-dimensional finite volume model for stirred tank simulation. In this 

approach, impeller blades were considered as fixed at one particular position. The 

influence of the blade rotation is modeled by mass sources in front of and behind the 

impeller based on an empirical approximation of the time derivative as shown in Figure 

2-20. 
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Figure 2-20: Computational snapshot model (RANADE et al., 2002) 

Another example is the immersed boundary method developed by PESKJN and 

MCQUEEN (1989) for the simulation of blood flow in the human heart. Their model 

consisted in representing the moving bodies by a set of control points on which body 

forces are imposed. These forces were not known a priori and were calculated using 

theoretical models. Variants of this method are the immersed interface method of 

LEVEQUE and LI (1994) and the immersed finite element method of ZHANG et al. 

(2004). REVSTEDT and FUCHS (2001) employed a similar approach in combination 

with large eddy simulations to model the turbulent flow produced in a baffled tank 

agitated by a turbine. Their model was based on finite difference method on Cartesian 

grids and a multi-grid solver. The boundary conditions on the solid boundaries were 

applied by replacing the boundary with a surface force distribution. These artificial 

forces were obtained iteratively based on the defect in satisfying the boundary 
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conditions. VERZICCO et al. (2004) presented an immersed boundary technique for 

the resolution of turbulent flows in agitated tanks. Their approach resembles the 

technique of REVSTEDT and FUCHS (2001); a body force iteratively computed was 

used to impose the effect of the moving agitator over the flow. Their model relies on 

large eddy simulations and a second order finite difference approximation on structured 

grids. The equations were integrated in time using a fractional step method where the 

viscous terms were computed implicitly and the convective terms explicitly. 

In the finite element context, the fictitious domain method of GLOWINSKI et al. 

(1994) operates in an analogous way to the method proposed by PESKIN and 

MCQUEEN (1989) with the difference that this approach does not resort to empirical 

forces but rather to Lagrange multipliers to enforce the velocity constraints at the 

moving surfaces. One important issue of this approach is the evaluation of surface 

integrals which are computationally expensive and not necessarily easy to compute for 

three-dimensional complex geometries. A different (and independent) approach was 

proposed by BERTRAND et al. (1997) based on a collocation method to impose the 

surface constraints point-wise by the use of Dirac functions as shown in Figure 2-21. 

Briefly, their approach consists in the imposition of the impeller kinematics by means 

of a set of control points distributed along the surface of the impeller (this is done using 

Lagrange multipliers and penalty techniques). At each time step, the velocity and 

position of the control points are updated and a new optimization problem is solved. 

The method was called by the authors the virtual finite element method (VFEM). 
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a) b) 

Figure 2-21: Virtual finite element method, a) six-blade turbine rotating in a tank; b) 

control points used by VFEM to discretize the surface of the rotating impeller. 

This technique has been successfully employed to simulate the flow of mixers in 

laminar regime with multiple agitators and unconventional motions (TANGUY et al., 

1996; BERTRAND et al., 1997). The algorithm used computes the Lagrange multiplier 

from Uzawa algorithm. Recently, in an effort to reduce computational times, 

COESNON et al. (2008) reformulated the algorithm using a fully coupled approach 

calculating the velocity, pressure and Lagrange multipliers simultaneously with the 

help of preconditioned Krylov iterative methods. They reported a reduction of the CPU 

time for the studied scenarios. The main advantage of the techniques based on body 

forces is the simplification of mesh generation and possibility to model the flow of a 

wide range of complex geometries and motions. Its main disadvantage is that in some 

cases, it may require special mesh refinement techniques in the regions near the moving 
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agitator surface to ensure accurate results as shown in the work of RIVERA et al. 

(2004) for fictitious domain methods. 

2.3.4. Techniques based on domain decomposition 

An interesting alternative is the use of domain decomposition methods. The basic idea 

is to use two grids, one corresponding to the rotating part and another one to the 

stationary part. These techniques allow the preservation of the exact shape of the 

moving boundaries as the object rotates without re-meshing. Based on this type of 

partitioning, several techniques and simplifications have been proposed. 

a) Multiple frame of reference (MFR) 

A hybrid method between the rotating frame model and domain decomposition 

techniques is the multiple frame of reference approach proposed by LUO et al. (1993). 

The method consists in utilizing more than one reference frame in order to obtain a 

steady-state model. The mesh utilized for a MRF simulation requires a non-overlapping 

partition that splits the region that rotates from the stationary zone as shown in Figure 

2-22. 
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Figure 2-22: Domain decomposition for multiple frames of reference approach, (a) 

Impeller region; (b) baffles region (BRUCATO et al., 1998) 

The momentum equations inside the rotating partition are solved in a Lagrangian frame 

of reference while those outside the rotating frame are solved in the Eulerian frame. 

This means that in the rotating zone, the Coriolis and centrifugal forces must be added 

to the Navier-Stokes equations. This steady-state approach permits for the modeling of 

baffled stirred tanks. Since this technique allows computing steady-state solutions, the 

time required for a simulation with this model is normally shorter than the one required 

for a non-steady simulation. However, it only provides an average flow and it is very 

difficult to observe interaction between the baffles and the agitator. For that reason this 

model is recommended for simulations in which the impeller-baffle interaction is weak 

or inexistent. 
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b) Chimera or composite overset methods 

One way to apply domain decomposition techniques is to overlap independent three-

dimensional grids by means of composite overset or Chimera methods (STEGER et al., 

1983). This model is a time dependent unsteady approach. It requires a background 

mesh and patch grids. The grids are not required to align with neighboring grids in any 

special way. The idea of the method is to remove some elements from the background 

mesh in order to generate an apparent interface. The nodes in the background mesh that 

form this interface are referred as fringe nodes. This procedure is called hole cutting 

and the nodes of the elements removed are denominated holes or ghost nodes. Suitable 

transfer conditions are exchanged at the interface between the outer boundary of the 

patch and the apparent interface. At each time step, the patch grids move, a new 

apparent interface is defined and a new problem is solved. 

Figure 2-23: The apparent interface formed by a patch grid (circular mesh) over a 

background mesh required for the Chimera method (rectangular mesh) (HOUZEAUX 

and CODINA, 2003). 
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Based on similar ideas, TAKEDA et al. (1993) presented a multi-block technique based 

on finite difference method capable to handling overlapping partitions. They applied 

their model to the simulation of agitated tank with baffles and multiple impellers. 

HOUZEAUX and CODINA (2003) also employed this technique to simulate 

incompressible fluid flows in agitated vessels with help of a stabilized finite element 

method. They proposed a method based on an iteration-by-subdomain algorithm and 

Dirichlet/Neumann coupling to handle each independent grid. 

The advantage of the composite overset method is that it allows simulating any type of 

motion. However, the coupling between the different meshes requires a hole cutting 

strategy to generate an overlapping interface among the grids that may entail to 

complex coding. Furthermore, the forth and back interpolations between the moving 

and background meshes in the overlap region may be a computationally costly 

procedure. 

c) Sliding mesh technique 

The sliding mesh technique is a time-dependent model based on the decomposition of 

the original mesh into stationary and moving grids interconnected by a sliding 

interface. As time advances, the moving grid slides along the sliding interface as shown 

in Figure 2-24. 
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Figure 2-24: Grid used in the sliding mesh method at two different time step. The grid 

in the impeller region moves with the impeller and slides past the stationary grid for the 

rest of the tank (BARKER et al., 1997) 

Examples of this technique are found in wide variety of applications. WAYMEL et al. 

(2006) proposed a sliding mesh finite volume model to simulate the flow around trains. 

Their method was based on a two-dimensional face reconstruction of the contact 

boundaries. The velocity components at the interface faces were obtained from a linear 

interpolation of the velocity at the center of the cells, corrected by a third order pressure 

gradient term. GARTLING (2005) presented a finite element sliding mesh algorithm to 

solve moving body thermal and flow problems. The algorithm was based on an 

efficient node-in-mesh search procedure and penalty type constraints to enforce the 

continuity of the primary variables. FENWICK and ALLEN (2006), in a work 

involving the simulation of the flow around the wings of an airplane, studied different 

finite volume interpolation techniques for the sliding mesh technique. BLADES and 



62 

MARCUM (2007) presented a parallel sliding mesh finite volume model to determine 

the flow around a missile. At the subdomain interfaces, the faces along interfaces were 

extruded into the adjacent subdomain to create new volume cells forming a one-cell 

overlap. These new volume elements were then used to compute a flux across the 

subdomain interface. The values at the new cells were obtained through linear 

interpolation. STEIJL and BARAKOS (2008) developed a parallel finite volume 

sliding mesh with non-matching cell faces to model the hydrodynamics around the 

blades of helicopters. 

The application of the sliding mesh technique to mixing tanks was presented by LUO et 

al.(1993) who implemented a finite volume sliding mesh technique in the code STAR-

CD, to predict the flow of a four-baffle tank stirred by a six-blade turbine. The 

computation was based on half of the domain. 

A variant of the sliding mesh is presented by PERNG and MURTHY (1993), who 

developed a moving-deforming mesh technique for the commercial finite volume code 

FLUENT to simulate the unsteady flow in mixing tanks with a four-blade turbine. A 

single mesh and a single reference frame were used for stationary and moving parts, 

but the grid cells associated with the impeller is rotating with it, causing the interfacial 

mesh to deform. When the mesh distortion became excessive, the mesh at the interface 

is regenerated. Later, FLUENT replaced this technique by a sliding grid technique 

described by MURTHY et al. (1994). Following the basic idea of the sliding mesh 
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technique, the moving grid was allowed to slide with respect to the stationary one, with 

no mesh distortion, and a conservative interpolation was used to obtain flow variables 

and face fluxes across the slip surface. They have applied their model to simulate the 

flow in a six-baffled mixing tank with a six-blade turbine. The computational domain 

was limited to a one sixth of the whole tank. BAKKER et al. (1997) validated this 

sliding mesh model for a mixing tank agitated by a pitched-blade turbine based on the 

comparison of the numerical and experimental pumping capacity of the impeller. In a 

different work, BRUCATO et al. (1998) compared the MFR and the sliding mesh 

methods. They found that the best results were obtained by the sliding mesh method. 

However, they mentioned the high computational cost of this technique due its time 

dependence. 

One particular simplification of the sliding mesh method is the clicking mesh method 

(BOHM et al., 1998; WECHSLER et al., 1999) where the grid movement is such that 

the boundary nodes must match at the interfaces at any time step. As it can be difficult 

and tedious to ensure this condition, most finite element sliding mesh implementations 

are extensions of the mortar method developed by BERNARDI et al. (1994) to couple 

non-matching grids. They are usually based on the imposition of linear multi-point 

constraints at the interfaces such as Lagrange multipliers, penalty methods or master-

slaves elimination. 
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2.4. Synthesis 

The literature review has shown that the transition flow regime in stirred tank has not 

been extensively studied. Most studies in mixing science are focused on fully laminar 

or turbulent conditions. Experimental investigations working in the transition regime 

have studied standard mixing configurations such as agitated tanks equipped with 

turbines or hydrofoils. Special attention has been given to the determination of an 

average deformation rate within the mixing tank for which many empirical and 

theoretical models were found. These models follow the trend observed in the 

experimental data which indicate that in the transition regime, the deformation rate 

increases with respect to the Reynolds number. A deeper understanding of the flow 

complexity has been obtained from the analysis of the velocity field obtained from 

laser Doppler anemometry (LDA). The main limitation of LDA is that the velocity is 

measured in a few points localized in a small region close to the agitator. The main 

conclusion from the experimental studies is that in the transition regime, the flow is 

completely different than the laminar one. The pumping capacity and the deformation 

rates increase as a function of the Reynolds number which have a direct impact on the 

mixing and circulation times. 

Numerical simulations reported in literature have also utilized standard mixing tanks 

configurations using commercial CFD codes such as FLUENT or CFX. To model the 

transition regime, two approaches have been found. A few authors have opted to use 

steady-state simulations with the k-e turbulence model. However, only an average 
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steady-state flow field is obtained and the turbulence models may alter the flow pattern 

due to the re-laminarization effect. In view of that, other authors have resorted to small 

mesh sizes in order to capture the flow structures found in the transition regime. Most 

of the studies have assumed symmetry of the flow in order to reduce the computational 

cost of the simulations, allowing them to simulate only a fraction of the vessel. 

Furthermore, in the multiple frame of reference approach the unsteadiness of the flow 

caused by the motion of the blades has been neglected. The literature is not limited to 

Newtonian fluids; simulations involving non-Newtonian fluids have also been reported. 

These studies have shown the effect of shear-thinning behaviour over the 

hydrodynamics in the transition regime, concluding that the non-Newtonian behaviour 

delays the onset of the transition regime. 

As discussed in the introduction of this thesis, stirred tank with multiple impellers are a 

good choice to operate in the transition region. Nonetheless, the majority of authors 

have focused on standard mixing tank configurations. A deeper understanding is 

needed about the mixing hydrodynamics in multiple impeller configurations in the 

transition regime. As shown by the literature review, numerical simulations are capable 

to provide us with both global and local information of the hydrodynamics in agitated 

tanks. From the obtained hydrodynamics, it is possible to reproduce the mixing tests 

performed in pilot rigs without the complications of laboratory procedures. 
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The main obstacle for CFD simulations is the limited memory and processor speed of 

computers. As a consequence, the CFD simulations of the flow in a mixer take 

significant amounts of time and memory. To deal with this problem, simplifications in 

the simulation of stirred tanks are commonly used such as: 

• The simulation of a fraction of the tank, assuming flow symmetry in the vessel; 

• The assumption of steady-state flow even if the flow in an agitated tank is 

unsteady. 

These simplifications help in reducing computational cost but they also restrict the 

information that is possible to extract from the simulations. For example, removing the 

unsteadiness of the flow may alter the trajectories followed by a tracer dispersed by the 

flow. As a consequence, mixing times obtained from steady hydrodynamics may differ 

from the ones obtained in the laboratory. In view of the necessity to take into account 

these effects, parallel computing becomes a requirement for CFD simulations of 

agitated tanks in the transition regime. In the context of the finite element method, the 

possibility to solve problems for larger number of unknowns also open the possibility 

of using more accurate finite element approximations. 

The parallelization of CFD solvers is based on domain decompositions which consist in 

partitioning the computational domain into a set of subdomains interconnected by an 

interface. They can be categorized in overlapping and non-overlapping methods and 

can be combined with direct or iterative solvers. Direct solvers are very robust for 

difficult problems. Unfortunately, for cases comprising several millions of unknowns, 
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their large memory requirements limits their use to parallel computers composed of 

hundreds or thousands of processors. On the other hand, iterative solvers are less 

memory demanding. The key ingredient of any iterative solvers is the preconditioning 

step and many strategies have been proposed. The majority of authors have opted for 

iterative solvers with overlapping domain decomposition. However, the convergence 

rate of these methods decays with respect to the number of processor used. Multigrid 

techniques have been incorporated into these algorithms to improve the convergence 

rate at the cost of a more complicated algorithm with lower parallel efficiency. Another 

point to consider is that from the programming point of view, overlapping data 

structures are more complex to handle than non-overlapping ones, mainly on 

unstructured grids. In view of that, and the fact that algorithms combining non-

overlapping techniques and iterative methods have not been widely investigated in the 

context of fluid flow problems, it becomes interesting to explore them in this thesis. 

Another important issue in the modelling of agitated tanks is the treatment of agitators 

motion. A suitable modeling strategy must be capable to take into account the unsteady 

interaction between agitators since it is critical for the mixing. The literature review has 

shown that sliding mesh techniques are very accurate methods to predict the flow field 

unsteadiness. However, it is know to be very costly in terms of CPU times. In view of 

the fact that both the parallel solver and the sliding mesh techniques are based on 

domain decomposition, it is a good opportunity to formulate a sliding mesh technique 
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that not only helps to decouple the computational domain into rotating and stationary 

subdomains, but also facilitates its parallelization. 
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Chapter 3. Specific objectives 

Based on the information already presented, the specific objectives of this thesis are: 

1. To develop a parallel finite element algorithm capable of predicting the 

hydrodynamics of three-dimensional incompressible fluid flow problems on 

unstructured grids. 

2. To develop a parallel sliding mesh technique capable of predicting the unsteady 

hydrodynamics caused by the rotation of the agitators. 

3. To characterize the hydrodynamics and mixing mechanisms of a multiple 

impeller mixer operating in the transition flow regime utilizing the developed 

algorithms on high performance parallel computers. 
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Chapter 4. Overall methodological approach 

In this chapter the hardware and the strategy of development to accomplish the general 

objective of this project is presented. 

4.1. Computational resources 

The parallel computer used in this project was the IBM-P690 computer, better known 

as Regatta. This computer is a 64-bit multiprocessing UNIX server with 16 RISC 

POWER4 processors sharing 128GB of RAM memory. The transfer rate among the 

processors is about 204 GB/s. 

Figure 4-1: IBM-P690 computer (IBM) 
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4.2. Program development strategy 

The overall methodology was based on the modification of the POLY3D software 

(Rheosoft, Inc.) written in FORTRAN 70, developed in the 90s by the URPEI research 

group of the Ecole Polytechnique of Montreal. This code is a sequential three-

dimensional finite element flow and thermal solver for unstructured tetrahedral grids 

with several finite element approximations for the velocity and pressure variables. It is 

equipped with sequential iterative Krylov and direct methods for the resolution of the 

discrete linear system of equations. 

The sequence of steps required to run a simulation is as follows. The first step consists 

in creating a mesh for the domain of the problem. This task is carried out with the help 

of the commercial software I-DEAS (EDS) or Gambit (Ansys). From that step, further 

pre-processing steps are necessary which are schematically represented in Figure 4-2. 
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Figure 4-2: Standard procedure to run a simulation with the software POLY3D. 

In Figure 4-2, step 1 involves the processing of both the mesh and the boundary 

conditions. In a similar manner, in step 2, both the reordering algorithm and the 

memory requirements of the global finite element matrix are calculated. Thus, if a 

simulation requires a modification in the boundary conditions, step 1 and 2 need to be 

repeated before running a simulation. Step 2 is very costly in term of time due the 

reordering algorithm used by POLY3D. In view of that, a different paradigm was 

followed in this work in order to increase the flexibility of the code. Figure 4-3 shows 

the proposed procedure: 
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Figure 4-3: Proposed procedure to run a simulation in this thesis. 

In the strategy proposed in Figure 4-3, the first major change is that the reordering 

algorithm is performed in the first step together with the mesh pre-processing. The 

second step consists in the mesh partitioning required for the parallelization of the code. 

The Chaco (HENDRIKSON and LELAND, 1993) and the Metis (KARYPIS and 

KUMAR, 1998) softwares are used for this purpose. The partitioning will be discussed 

in more detail in the next chapter. The third step involves the input of boundary 

conditions by the user. This step is completely independent of the other steps. In this 

way, if boundary conditions are required to change, the only step to repeat is step 3. 

The second major change is the inclusion of subroutines related with the memory 
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requirements for the global finite element matrix in the main solver (step 4). This 

modification opens the possibility to add or eliminate equations from the global matrix 

at each time step. The implications of such change will be easier to understand after the 

next two chapters. This thesis focuses on the parallelization of step 4 of the proposed 

procedure. Finally, for the visualization of the results, the Ensight software (CEI) was 

employed (step 5). 

The programs and subroutines employed in this work were programmed using the 

FORTRAN 90 language. The dynamic memory allocation features included in this 

programming language were highly exploited with the help of the ALLOCATE ( ) and 

DEALLOCATE ( ) subroutines. In order to create a readable code, GOTO statements 

were avoided as much as possible. To ensure portability of the code, a message based 

memory distributed model with MPI was employed. 
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5.1. Presentation of the article 

This article was submitted to the Journal of Computational Physics. It comprises the 

development of the finite element parallel solver that is used in the next chapters to 

predict the hydrodynamics in agitated tanks. A characterization is performed to know 

the parallel behaviour of the solver on benchmark cases. Guidelines to improve the 

parallel performance of the solver are given at the end of the article. 

5.2. Abstract 

A parallel approach to solve three-dimensional viscous incompressible fluid flow 

problems using discontinuous-pressure finite elements and a Lagrange multiplier 

technique is presented. The strategy is based on non-overlapping domain 

decomposition methods, and Lagrange multipliers are used to enforce continuity at the 

boundaries between subdomains. The novelty of the work is the coupled resolution of 

the velocity-pressure-Lagrange-multiplier system of the discrete Navier-Stokes 

equations by a distributed memory parallel ILU (0) preconditioned Krylov method. A 

penalty function on the interface constraints equations is introduced to avoid the 

locking of the ILU factorization algorithm. To ensure portability of the code, a message 

based memory distributed model with MPI is employed. The method has been tested 

over different benchmark cases such as the lid-driven cavity and the pipe flow with 

unstructured tetrahedral grids. It is found that the partition algorithm and the ordering 
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of the physical variables are central to parallelization performance. A speed-up in the 

range of 5 to 13 is obtained with 16 processors. 

5.3. Introduction 

Computational fluid dynamics (CFD) models are typically based on the solution of the 

Navier-Stokes equations with the help of discretization schemes such as the finite 

volume or finite element method. In most practical situations, the mesh needs to be 

highly refined to capture the physics of the problem, making the computations highly 

demanding in memory and time. To address this issue, parallel finite element 

computations have been developed and successfully applied to several large-scale flow 

problems. Some early applications in fluid mechanics were made by FARHAT et al. 

(1993) and JOHAN et al. (1995). These applications demonstrated the possibility to 

speed-up calculations by the use of several CPU processors. 

The most time-consuming part of the simulation is the resolution of the generated 

algebraic system of equations. Several parallel algorithms have been proposed to 

reduce time and memory. Most of them are based on domain decomposition methods 

which consist in the subdivision of the original computational domain into a set of 

interconnected subdomains. In this manner, internal unknowns are calculated in parallel, 

while the inter-processor communications is restricted to the unknowns at the 

subdomain interfaces. 
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Direct solution methods based on the LU-decomposition of the matrix and subsequent 

forward-backward substitution schemes are often selected as they are very robust 

especially for ill-conditioned problems. Parallel variants can be found in the case of 

multi-frontal methods (SCOTT, 2003), or sparse Cholesky algorithms as in the 

SuperLU software (LI and DEMMEL, 2003). An evaluation of several solvers such as 

PARDISO, MA57 and BSLIB-EXT for the direct solution of large sparse linear 

systems can be found in GOULD et al. (2005). They concluded that the parallel 

efficiency of these methods depends on equations reordering and pivoting strategies. 

AGGARWAL et al. (1994) and HENRIKSEN and KEUNINGS (1994) have employed 

these solvers to simulate the flow of viscoelastic fluids. Unfortunately the large 

memory requirements limit its use to massive parallel computing composed of 

hundreds of processors. LI and DEMMEL (2003) required 32 processors to solve a 

system of approximately 106 equations (40K equations/processor). 

To overcome the memory limitations, at least partly, an alternative is to use 

preconditioned iterative Krylov subspace methods. With these methods, several algebra 

operations like sparse matrix-vectors products, inner products, vector updates and 

forward and backward substitutions need to be performed. Their parallelization has 

been the subject of numerous investigations. For example, one option to facilitate 

parallelization is to reorder the variables by the so-called coloring techniques (DUTTO 

and HABASHI, 1999). They show that the approach is useful only for 4-6 processors 
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when using ILU(0)-GMRES. WILLE et al. (2003) and STAFF and WILLE (2005) used 

domain decomposition, a priori pivoting and segregation of variables to parallelize the 

ILU preconditioning of an conjugate gradient solver. Results presented for the Navier-

Stokes equations showed that the speed-up is limited due to the sequential 

characteristics of ILU algorithms. HUGHES et al. (1983) introduced the concept of 

element-by-element (EBE) preconditioners. It consists of computing the preconditioner 

from the element matrix, avoiding the storage of both the global matrix and the 

preconditioner. This idea can be combined with domain decomposition to give better 

performance. Different variants such as the clustered-element-by-element (CEBE), the 

mixed CEBE and the cluster companion (CC) preconditioners were proposed by 

TEZDUYAR and LIOU (1989) and TEZDUYAR et al. (1992). However, the 

effectiveness of the EBE technique is limited because it does not often provide a 

substantial improvement in CPU time with respect to fast sequential techniques (DUFF 

and VAN DER VORST, 1999). 

A well known domain decomposition approach based on overlapping partitions is the 

Schwarz method. An excellent introduction and application of this method is presented 

by SMITH et al. (1996). It has been applied to solve incompressible Navier-Stokes 

equations in various situations: flows in turbomachinery (BORELLO et al., 2003), 

viscoelastic fluid flows (CAOLA et al., 2001; CAOLA and BROWN, 2002), high 

Reynolds number flows (CAI et al., 2002; HWANG and CAI, 2005), backward flow 

step (VAINIKKO and GRAHAM, 2004), multi-physics problems (SHADID et al., 
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2005), and large scale computing (GROPP et al., 2001). Nevertheless, Schwarz 

methods require a larger amount of inter-processor communications with respect to 

non-overlapping techniques. Additionally, the data structure required by an overlapping 

partition is always more difficult to handle than the one employed by a non-

overlapping one. 

Non-overlapping approaches are based on the resolution of independent sets of 

adjacent partitions with the subsequent resolution of an interface problem. TOSELLI 

and WIDLUND (2005) give a complete mathematical description of these methods. 

They are normally based on Lagrange multipliers. There are different approaches for 

implementing Lagrange multiplier based methods. One is based on the elimination of 

the degrees of freedom internal to the subdomains in order to solve an interface 

problem by a conjugate gradient algorithm (FARHAT and ROUX, 1993; ACHDOU et 

al., 1995; HU et al., 2004) as in the finite element tearing and interconnecting (FETI) 

method of FARHAT and ROUX (1993). It is worth noting that this method has been 

applied to incompressible flow in the work presented by VANDERSTRAETEN and 

KEUNINGS (1998), ZSAKI et al. (2003) and VEREECKE et al. (2003). A similar 

approach is presented by GLOWINSKI et al. (1995) in combination with fictitious 

domain methods. The main drawback of FETI algorithm is that it requires direct 

method solvers that may demand a large amount of memory. One way to alleviate this 

shortcoming is to directly solve the saddle-point problem by a preconditioned iterative 

method. This has the advantage of allowing the use of inexact low memory Krylov 
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solvers for both the interior and multiplier variables. This type of domain 

decomposition has been applied to solve the diffusion equation on non-matching grids 

(KUZNETSOV, 1995), elasticity problems (KLAWONN and WIDLUND, 2000; 

KLAWONN and RHEINBACH, 2007) and elliptic problems with variable coefficients 

(HU et al., 2004). 

In this work we present a domain decomposition method based on Lagrange multipliers 

in the context of the finite element solution of the Stokes equations (laminar flows). 

The particular motivation is the study of viscous fluid mixing, where computer 

resources needed dramatically increase when attempting to simulate industrial 

problems. To benefit from the full computational potential of nowadays multi

processor machines, it is mandatory to develop a parallel solver with distributed 

memory so that it enables to perform large simulations on very refined grids that can 

hardly be handled on a single processor. For that purpose, a parallel finite element 

solver for the Navier-Stokes equations based on non-overlapping partitions is 

developed to speed-up computations and to reduce memory requirements per processor. 

The continuity at the interface is enforced by a set of Lagrange multipliers located at 

the subdomains interfaces. This method can be seen as a variant of the FETI technique. 

The novelty of the work is that the velocity-pressure-Lagrange multiplier system 

arising from the finite element discretization of the Navier-Stokes equations is solved 

simultaneously by a distributed memory parallel ILU(0) preconditioned Krylov method. 

As presented by COESNON et al. (2008), a penalty parameter is introduced on the 
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interface constraints to avoid zero entries on the diagonal of the global matrix that 

prohibits the ILU factorization. To ensure code portability, a message passing interface 

(MPI) communication protocol is employed. The finite element parallel solver was 

implemented in the POLY3D (Rheosoft Inc.) software. The organization of the paper is 

as follows; in section 2 we describe the proposed numerical model with emphasis on 

the domain decomposition mathematical formulation. Section 3 presents the details 

about the parallelization of the method using MPI. Section 4 shows results for three-

dimensional benchmark cases as the pipe and cavity flows. The effect of several 

partitioning algorithms and reordering of variables is described. 

5.4. Parallel numerical model 

5.4.1. One-domain variational formulation 

For the sake of brevity the mathematical formulation is presented for the steady Stokes 

problem in a computational domain Q with boundary dQ. (Figure 5-la). 
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b) 

Figure 5-1: Three-dimensional domain Q with boundaryD dQ.: a) one partition; b) 

partitioning into two subdomains £2, and Q2 . 

juV2 v + grad p = f, in Q, 

div v = 0, in Q. 

(5.1) 

(5.2) 

where v stands for the velocity, f the body force, p the pressure and ju the Newtonian 

fluid viscosity. It is well known that problem (5.1) and (5.2) is equivalent to finding the 
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functions v and p from the following saddle-point problem defined for any admissible 

w and q functions. 

inf 3 sup L(w,q), in Q, 

where: 

L(yf,q) = ^-\ IgradwfdQ-f o d i v w d Q - f f w d Q , i n Q , (5.4) 
2 J n ' Jn Jn v ' 

This last expression is known as the Lagrangian functional. After derivation with 

respect to each variable, the Euler-Lagrange equations are obtained: 

a(y,y/)-b(y/,p) = (f,y/), V ^ e [ ^ ( 0 ) ] \ in ft, (5.5) 

b(\,(p) = 0, V p e L 2 ( Q ) , i n Q (5.6) 

where 

a ( v , ^ ) = //f g r a d v g r a d ^ d Q , (5.7) 

b{\,(p)=\ p d i v v d Q , (5.8) 

and (.,.)a is the scalar product in L2(Q): 

( u , v ) Q = J a u v d Q , Vu,veL2(Q) (5.9) 
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in (5.5)-(5.8) if/ and (p stand for the shape functions for the velocity and pressure 

respectively. 

5.4.2. Two-domain decomposition method with Lagrange 

multipliers 

First, a partition of the domain is introduced. For instance, let us consider two 

subdomains (Figure 5-lb). Due to the decomposition, the coupled problem defined by 

equations (5.1) and (5.2) is equivalent to: 

-//Av,. + grad p. = f,, in Q,. for / = 1,2 

d ivv ,=0 , in Q., for i = l,2 (5.11) 

v , = v 2 , i n r (5.12) 

3v, 3v, j_ 

dn, 3n2 
, i n T (5.13) 

where rij stands for the outward normal to the subdomain interface T . Dirichlet 

boundary conditions are assumed on the domain boundary. Thus, the domain 

decomposition removes the strong point-wise continuity at the parallel boundary by a 

weak integral condition generating extra constraints over the subdomains interface 

[Equations (5.12) and (5.13)]. We resort to a Lagrange multiplier method and 

constrained optimization techniques to reformulate the problem in (5.10)-(5.13) to find 
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the solutions v , p and X of the modified saddle point problem defined for any 

admissible functions w, q and p: 

inf sup sup I (w,.,^.,|i) in Q, for i = l,2 , , M , 
WE[//J(n)] ?ez.2(n),.E[L2(r)]3 ' V J - l i + ; 

where, 

^ (w ,9 ,n ) = A ( w , ^ ) - | r n - ( w 1 - w 2 ) d r (5.15) 

In (5.15) we introduce a Lagrange multiplier function u associated with the interface 

boundary condition. The Euler-Lagrange equations corresponding to this constrained 

problem are given by 

a(Yl,r) = (fl,y) + b(}r,pl) + (k,r)r , V ^ e [//^(ft,)]3, in Q, for i = l,2 (5.16) 

b(\„p) = 0, V^eZ 2 (Q, . ) , inQ. for /= 1,2 (5.17) 

( ( v , - v 2 ) ^ ) r = 0 , V ^ e [ l 2 ( r ) ] 3 ^ T (5.18) 

where £ stands for the shape function of the Lagrange multiplier space. The solution of 

the Lagrange multiplier function k is nothing but the jump of normal derivates at the 

subdomain interface GLOWINSKI et al. (1995). To connect multiple subdomains (as 

in the simple example of Figure 5-2), the only valid constraints to impose are the ones 
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where a face (edge for two-dimensional problems) connecting subdomains exists. Thus 

in our example, only the following constraints are considered. 

J r i2^2K-w2)dr i2, (5.19) 

^ ^ • ( w . - w j d l ^ , 

Jr23^23-(W2-W3)dr23, 

J r 3 4^34-(w3-w4)dr3 4 . 

(5.20) 

(5.21) 

(5.22) 

Figure 5-2: Multiple domain decomposition of a 2D computational domain Q in four 

Q; subdomains and respective boundaries fV . 
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This is in agreement with the discussion presented by FARHAT and ROUX (1991) for 

the FETI method. As they pointed out, this particularity helps to reduce communication 

between processors improving parallel computing performance. 

5.4.3. Finite element discretization 

In the present work, P^-Po (Figure 5-3a) (BERTRAND et al., 1992) and P2
+-Pi (Figure 

5-3b) (CROUZEIX and RAVIART, 1973) tetrahedral finite elements approximations 

are used. The former is an enriched version of the Pi-Po finite element. Extra degrees of 

freedom are added at the middle of each face and the pressure is assumed constant at 

each element. The latter element approximates the velocity by continuous quadratic 

shape functions, while the pressure and its gradients are computed inside each element. 

Both elements belong to the class of discontinuous pressure elements that satisfies the 

Brezzi-Babuska condition ensuring numerical stability. 
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• i m 

Velocity Pressure 
a) 

Velocity Pressure 
b) 

Figure 5-3: Tetrahedral finite element approximations a) P1+-P0; b)P2+-Pl. 

The Lagrange multiplier space A is discretized using Dirac functions that are defined 

by: 

S(x-xi) = 
I 0 if x * x,. 

(5.23) 

The use of Dirac functions is inspired by the fictitious domain method (BERTRAND et 

al., 1997; COESNON et al., 2008). This is done with the purpose to simplify the 

discretization of the constraint in (5.18) allowing its imposition point-wise, and 

therefore eliminating the need to compute surface integrals at the subdomain interface. 
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r T VV 

Thus for each constraint distributed over the set of nodes |x,.} that lie over the 

interface between subdomains, we have, 

v,(x,.) = v2(x,.) (5.24) 

where subscripts 1 and 2 stand for subdomain labels. 

A fully coupled approach is used to solve the set of equations (5.16)-(5.18), meaning 

that velocity, pressure and multipliers are solved simultaneously. The matrix form of 

the problem is the following 

A, 

B, 
0 

0 

-KA1 

Bf 
0 

0 

0 

0 

0 

0 

A2 

B2 

K A 2 

0 

0 

B^ 
0 

0 

-iC 
0 

K A 2 

0 

0 

where As stands for the convection-diffusion matrix, Bjthe matrix obtained from the 

incompressibility constraint, B r the transpose of B;, KAi the matrix from the interface 

constraint, U. , P;, A and Fs stand for the velocity, pressure, Lagrange multipliers and 

body forces respectively. 

Although the mathematical formulation is well-posed, the presence of zeros on the 

main diagonal makes the ILU preconditioning fail due to the lack of pivoting during the 

u, 
p, 

u2 
p2 

A 

• = • 

F, 
0 

F2 

0 

0 

(5.25) 
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ILU decomposition. To overcome this problem, we introduce penalty parameters in 

(5.25) for both the divergence and Lagrange multipliers equations. In this way, 

equations (5.17) (pressure/?) and (5.18) (Lagrange multiplier X) are replaced by 

b(vi,(p) = -{pi,<p ) / e p , V<pA e P h , in Q , for / = 1,2 (5.26) 

( ( v 1 - v 2 ) ^ ) r = - ( > . , ^ ) r / f / l , V ^ G A , , (5.27) 

where ep and ex are penalty parameters. According to (5.26) and (5.27), the matrix form 

(5.25) is rewritten as follows 

" A, Bf 0 0 -KT
A 

B, e-1 0 0 0 

0 0 A2 BT
2 KT

A2 

0 0 B 2 £~p
l 0 

_ - K A l 0 K A 2 0 e? 

In this work, penalty parameters are defined by the expressions given in (5.26) 

and(5.27). 

Ep=Wa/pju (5.29) 

ex=Wphlp/i (5.30) 

[u/ 
p, 

u2 
p2 

i A , 

. = . 

X 
0 

F2> 

0 

0 

(5.28) 
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where a and /? has been heuristically determined to be between 6 and 12. In this work, 

a value of 8 is taken for both parameters. A fixed-point Newton iterative algorithm is 

chosen to solve the problem in incremental form to give the Algorithm 5-1. It must be 

remarked that only one fixed point iteration is required for linear problems. 

0. Given \P\Pm and Am. 

1 • For n = 1,2, ..., until convergence: 

1.1. Solve simultaneously for #7, SP and 5A: 

0 
0 

• K , 

B? 

0 

0 

0 

0 

0 

A 2 

0 

0 

BJ 

K A2 

-K;, ' 

0 
K L 

0 

&_ 

aV 
SP, 

• JU2 

JP2 

SA 

• = • 

R ,(„) 

V 
Rv,«> 

v> 
R ^ 

'"W 
K-
R * . 

R -(!!) 
p2( ' 

R , 

> = ' 

X 
0 

F, 
0 

0 

• -

A x 

» i 

0 

0 

-K A , 

B : 

0 

0 

0 

0 

0 

A 2 

B 2 

KA 

0 

0 
-K 

K 

Al 

A2 

*I'I 

UJ («) 
»(«) 

U < B ) J-
nOi) 

. ( B ) 

1.2. Upda te U / n ) , P,-(n) and A (n ): p(n+l) _ p(n) I Jfp 
i i i 

A ( « + D ^ A W + J A 

1.3. in SI. for i = 1,2 

Algorithm 5-1: Two-domain fixed-point solution algorithm 
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5.5. Parallel implementation 

The parallel implementation of the Algorithm 5-1 is composed of several key elements; 

in this section we describe the particularities for each one of them. 

5.5.1. Matrix partition 

The block structure of the matrix for each subdomain can be exploited to adapt iterative 

methods to the capabilities of parallel computers. To allow efficient parallelization, 

each block A, has been subdivided into smaller blocks, depending whether the 

equations belongs to internal or interface. 

(5.31) 
A..= 

Aint H 

. G A,/flce. 

In (5.31) the subscripts int and if ace refer to internal and interface equations 

respectively while matrices H and G correspond to the coupling between internal and 

interface equations (for symmetric problems H = GT). In this way, computations can 

be done in parallel for Aint block variables, being the communication limited to the 

equations let in the Aiface block. Thus each processor stores and computes the data 

related to the block structure. 
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"-int(i) H 

B 

-K AG) 

"(0 

int(/) 

0 

('•) 
l int(0 

B iface(i) 

K A ( » ) 

D i n t ( / ) 

B r 

iface(i) 

" K A O ) 

0 
T 
A(0 

0 

°~l I 

K 

U;, 

u iface 

P 0 

0 

(5.32) 

In (5.32), the subscript (/) refers to the entries that belong to subdomains /' and subscript 

(/) refers to the entries that belong to subdomains y connected to subdomain / where_/</. 

Although not performed in practice, the union of all blocks distributed in the processors 

regenerates the global system of equations presented in Algorithm 5-1. 

5.5.2. Mesh partitioning schemes 

To partition the computational domain several mesh partitioning schemes such as the 

coordinate recursive bisection, the multilevel k-way (KARYPIS and KUMAR, 1998), 

the multilevel-KL (HENDRIKSON and LELAND, 1993) and the spectral octasection 

partitioning method (HENDRIKSON and LELAND, 1993) were considered. 

Furthermore Kernigham-Lin local refinement (KERNIGHAN and LIN, 1970) and 

terminal propagation (DUNLOP and KERNIGHAN, 1985) were also investigated in 

combination with spectral methods. Kernigham-Lin local refinement is nothing but a 

greedy local smoothing strategy, moving elements between subdomains in an effort to 

reduce the amount of interfacial area. Terminal propagation is another technique that 

yields a partition connectivity suitable for the machine architecture. In our case, we use 
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this feature to simplify as much as possible the connectivity of the partition generating 

stripped partitions. The multilevel k-way partitioning technique is available from Metis 

software (KARYPIS and KUMAR, 1998). Multilevel-KL and all spectral partitioning 

techniques are available in the Chaco software (HENDRIKSON and LELAND, 1993). 

To characterize how well the computational work is uniformly distributed among the 

processors, we define the load distribution that can be computed by 

load distribution = min(NNZ)/max(NNZ) (5.33) 

where NNZ stands for a list that contains the number of non-zero entries in each 

submatrix. The size of each sub-matrix is determined by NNZ instead of number of 

equations (NEQ) because the demand for CPU and memory resources is directly 

related to NNZ, and not to NEQ. In this way, the load distribution takes values between 

0 and 1; a value of 1 corresponds to the ideal load distribution and a value of 0 

corresponds to the worst case scenario. 

5.5.3. Krylov subspace iterative solvers 

The system of equations of Algorithm 5-1 is solved by an iterative Krylov method, 

which is composed of parallelizable algebra operations like matrix-vector products, 

inner products and vector updates. This approach is characterized by its low memory 

requirements allowing the solution of a larger number of equations per processor than 
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with direct methods. The choice of iterative methods for the systems arising from the 

finite element discretization of the Navier-Stokes equations is restricted by the non-

symmetry and non-definite positiveness properties of the matrix. The conjugate 

gradient method, very efficient for symmetric matrices, becomes inapplicable. One 

should use variants based on the Quasi-Minimal Residuals (QMR) or the Biconjugate 

Gradient Stabilized approach (BiCGSTAB). 

Preconditioning is a central issue because in many cases it makes a diverging problem 

converging. In this work, an incomplete factorization with zero fill-ins (ILU(O)) was 

selected due to its well known robustness in comparison to other techniques (e.g. 

diagonal preconditioners), low memory requirements and reduced operations counts 

with respect to their fill-in counterparts (SAAD, 2003). Matrix factorization and 

forward-backward substitution operations on a memory distributed parallel 

environment has been performed based on algorithms presented by SAAD (2003). 

5.5.4. Ordering of variables 

The ordering of variables inside each sub-matrix can play a critical role in the 

convergence rate behaviour of the Krylov solver as shown in HENICHE et al. (2001). 

It consists in reordering internal velocity (Ux, Uy, Uz), interface velocity (I), pressure 

(P) and Lagrange multipliers (LM) sub-blocks in each of the sub-systems that form the 

global system of equations. 



97 

Five configurations were tested based on modifying the structure of the internal 

velocity and pressure sub-blocks. Lagrange multiplier and interface velocity sub-blocks 

were not modified since parallel efficiency depends on them. One option is to keep 

contiguous each component of the velocity for each node in the mesh while the 

pressure is kept in a separate block; this creates two orderings depending if the pressure 

sub-block is located after or before the interface velocity, represented as follows, 

UxUyUz-I-P-LM-^\ 

lu, Wint v l ' M i n t z l ' • • • ' Mintxn ' U\ i n t i l ' w i n t j ' l ' M i n t z l ";. int;tn' intjw' intzn' 

ifacexX' ifacey\' ifacez\' * *' ifacexm' ifaceym ' ifacezm ' 

\AxX,AyX,AzX,..., Axm, Aym, Azm 

(5.34) 

UxUyUz-P-I-LM-^{ 

' ^ i n t t l ' Uinty\' M i n t z l ' •"» Uintxn ' Umtyn'Umtzn ' 

Pl,~,Pn> 

ifacex\'' ifacey\'' ifacez\i'*'*' ifacexm' ifaceym' ifacezm' 

\^x\ ' A>y\' A>z\ ' • " ' 4 m ' A'ym'A-zm 

(5.35) 

Another variant was to consider a sub-block for each component of the velocity and 

pressure; this was denoted as Ux-Uy-Uz-I-P-LM. 



98 

'M intxl ' --- 'M intOT'M int j l ' - -- 'M int jn 'M intzl ' -" 'M i i i tz« ' 

Ux-Uy-Uz-I-P-LM-^l P"-'P"' 
It U U IS U U 

ifacexl' ifacey 1' ifacez 1 ' * *' ifacexm ' ifaceym ' ifacezm ' 

(5.36) 

Another option was to consider a single sub-block for both velocity and pressure where 

each component of the velocity and pressure equations are kept adjacent for each node 

in the mesh; this was referred to as UxUyUzP-I-LM. 

M in txl 'M in t> ' l 'M in tz l ' / ? ] ' " 'W in tOT'W in t j 'n 'M in tzn ' / '« ' \ /"C 3 7 ^ 

UxUyUzP — I — LM —>( uf ,,uf ,,u.f ,,..,«., ,uf ,uf 
^ \ ifacexX' ifaceyX' ifacezX' ' ifacexm'ifaceym' ifacezm' 

Finally the pressure sub-block was positioned before the internal velocity in the 

ordering named P-UxUyUz-I-LM. 

P\T-">Pn-> Um\x\ •> Um\y\' U\xAz\' • " ' U'm\xn ' Um\yn ' Uintzn ' ' 

P — UxUyUz — I — LM —>( «., .,«., ,,«., ,,..,ur -,uf ,u-r 
w ^ v w ^ v ^ ^ . J. " ' " ' \ **ifacexl > ifaceyl ' ifacezl ' > ifacexm' ifaceym' ifacezm' 

\ K\ > 4.1 > 4 l > "> 4m > 4m > 4 , 

(5.38) 

j c l ' >>1' z\> * " ' x m ' JTW
 ? zm 

5.5.5. Communications 

The communication pattern is governed by the forward/backward parallel substitution 

algorithms presented in SAAD (2003) that were adapted to the linear system in 

Algorithm 5-1. They consist in two steps. The first one consists in sending the interface 
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velocity from subdomain /' to subdomains j where j>i (forward communication). The 

second step requires to send the Lagrange multiplier values from subdomain i to 

subdomains j where j<i (backward communication). Figure 5-4 presents a schematic 

representation of this process for the case of two partitions. 

b) 

Figure 5-4: Schematic representation of the communication between two subdomains 

a) forward communication for the interface velocities; b) backward communication for 

the Lagrange multipliers 
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In the case of multiple partitions as shown in Figure 5-5, it is necessary to communicate 

data to only certain partitions. One way is to communicate from the sender partition to 

the receivers (the ones that are related with the sender) making a send-receive call at 

each time a partition communicates to other partitions. By experience this is a very 

inefficient procedure in terms of communication and overhead time. A better option is 

to use the MPIBROADCAST routine, which allows sending data in an optimized way 

from a 'sender' process to the rest of partitions included in the communicator. The 

communicator here is defined as a collection of processes that can send messages to 

each other. By default MPI uses MPICOMMWORLD communicator where all the 

processes in the computation are included. For our application the use of a unique 

MPICOMMWORLD communicator in the broadcast of information would generate 

overhead time for the processes that are not related to the sender. This is caused by the 

fact that the broadcast function would not return until all the data is send to all receiver 

processes included in MPICOMMWORLD. To avoid this, we have defined several 

sets of communicators, one for each process, which is composed of the partitions that 

are related. Figure 5-5 exemplifies the set of subdomains that compose the 

communicator for subdomains 2 and 3. In this way, in the case of several subdomains, 

broadcast operations make use of these particular communicators instead of 

MPICOMMWORLD. Thus, processes that are not related to the sender can continue 

their work while processes that are connected can receive their information. 
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I > Communicator 3: 

Communicator 2: 

H, u£X, uH4 uQ u £ \ 

Figure 5-5: Schematic representation of a domain partitioned into 9 subdomains, that 

exemplifies the set of subdomains that define communicators for subdomain 2 (broken 

line) and 3 (dotted line). 

5.6. Three-dimensional benchmark cases 

The proposed numerical methodology was tested on two benchmark problems, namely 

the flow in a pipe and the lid driven cavity flow, with the purpose to analyze the effect 

of the shape of the geometry over the parallel performance. Since the convective term 

was not considered at this point, Stokes flows (linear problems) were solved by means 

of the Lagrange multiplier based parallel conjugate gradient Krylov solver developed in 

this work. Furthermore, the solutions obtained by the CG Krylov solver were 
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considered converged when the norm ratio between the last residual (V) and the first 

residual (r°) satisfies the following: 

|r°|<10-6 (5-39) 

where |||stands for the Euclidean norm. The initial solution for all cases was set to 

zero. The simulations were run on a 16 processor IBM-P690 with 64 GB of shared 

memory. In section 4.1 and 4.2 Metis was used for partitioning and the variables were 

UxUyUz-I-P-LM ordered. 

5.6.1. Flow in a pipe 

The partitioning for the pipe flow consisted in simply connected strips where each 

interface connects only two subdomains avoiding the multiple subdomain issue 

described in 2.4. The total number of elements, number of equations, number of non

zero entries in the matrix and time required to solve the problem in sequential mode for 

each of the computational grid can be found in Table 5-1. A characteristic of the 

method is the growth in size of the global system of equations due to the addition of the 

Lagrange multipliers equations with respect to the number of subdomains, as can be 

seen on Figure 5-6. As was already discussed, the partitioning was performed using 

Metis that distributes in an almost uniform fashion the number of elements in the 

subdomains. This characteristic can be better observed with the help of the load balance 

ratio, as shown in Table 5-2. 
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Table 5-1: Number of equations and size of the matrix for the pipe flow test case. 

Nomination 

Meshl 
Mesh2 
Mesh3 
Mesh 1 
Mesh2 
Mesh3 

Finite 
element 

Pt-PO 

P2+-P1 

# Elements 

100k 
200k 
400k 
100k 
200k 
400k 

# Nodes 

338.5k 
646.8k 
1.32M 
474.6k 
903.7k 
1.84M 

v-p equations 
(xlO*) 

0.7 
1.4 
2.9 
1.6 
3.1 
6.5 

NNZ 
(xlO6) 
28.7 

256.8 
545.9 
128.5 
256.5 
545.9 

CPU 
lime(min) 

3.30 
43.28 
43,87 
30.85 
176.56 
255.34 

Table 5-2: Ratio between minimum and maximum number of NNZ in the subdomains 

for the pipe flow test case. 

Partitions 

2 

4 

8 

16 

meshl 

0.985 

0.973 

0.951 

0.941 

mesh2 

0.998 

0.990 

0.940 

0.910 

mesh3 

0.997 

0.979 

0.964 

0.939 
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0 2 4 6 8 10 12 14 16 1f 

Number of subdomains 

Figure 5-6: Increase of the number of equations due to the introduction of Lagrange 

multiplier constraints at the interface with respect to the number of subdomains for the 

P1+-P0 and P2+-P1 finite elements for the pipe flow test case 

Figure 5-7 presents the speed-up per CG iteration with respect to the CPU time to solve 

the problem by a sequential ILU(0)-CG solver. A value close to 12 was obtained with 

P2+-P1 element, while the maximum speed-up/iteration with P1+-P0 was around 11.3. 

It can be noted that the speed-up is not linear due to: i) the overhead generated in each 

matrix-vector and preconditioning operations; ii) the increase in the number of 

conjugate gradient iterations required to reach convergence with respect to the number 

of partitions (Table 5-3). In some cases one observes a decrease of the number of 

iterations as the number of partitions increases (mesh3/Pl-P0 and mesh2/P2 -PI), but 
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overall, a slight increase (around 1.5 times for 16 partitions) in the number of iterations 

is observed as the number of partitions increases. A normal result considering the fact 

that the number of Krylov iterations grows with respect to the number of equations. 

Finally, we present in Table 5-4 the overall speed-up that combines both the 

convergence rate deterioration due to the overhead and the increment in conjugate 

gradient iterations with respect to the lowest CPU time we could obtain for an ILU(O)-

CG solver running in sequential mode. The speed-up for the maximum number of 

partitions employed (16) varies in the range of 8 to 14, leading to a parallel efficiency 

of50to88%. 

16 

o 

cc 

14 

12 

3 10^ 
o 
=3 

Q. 
• 

T3 
CD 

a. 

~i i i r 

Linear speed-up / 
/ 

/ 
/ 

/ 

Mesh1_p1+-p0 
Mesh2_p1+-p0 
Mesh3_p1+-p0 

— • - Mesh1_p2+-p1 
- J r - Mesh2_p2+-p1 
—•— Mesh3_p2+-p1 

J I I L. 

4 6 8 10 12 14 16 

Number of subdomains 

Figure 5-7: Speed-up per ILU(O) preconditioned conjugate gradient iteration for the 

pipe flow test case with P1+-P0 and P2+-P1 finite elements. 
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Table 5-3: Number of conjugate gradient iterations to solve the pipe flow test case. 

Partitions 

1 
2 

4 
8 

16 

meshl mesh! mesh3 

P1+-P0 

284 

333 

341 

351 

372 

1894 

2913 

2697 

2230 

2793 

826 

596 

629 

623 

643 

meshl mesh2 niesh3 

P2+-P] 

567 

615 

718 

669 

683 

1530 

1615 

1793 

1345 

1249 

1084 

1440 

1100 

1146 

1503 

Table 5-4: Overall speed-up for pipe flow test case (CPU time in seconds in 

parenthesis). 

Partitions 

2 

4 

8 

16 

meshl mesh2 mesh3 
P1+-P0 

1.6 
(118) 
2.9 
(67) 
5.3 
(36) 
8.8 
(21) 

1.2 
(2116) 

2.5 
(1030) 

5.1 
(504) 
7.7 

(336) 

2.6 
(1012) 

4.6 
(572) 

8.8 
(298) 
14.3 

(182) 

meshl mesh2 mesh3 
P2+-P1 

1.7 
(1079) 

2.8 
(651) 
5.6 

(330) 
10.1 

(182) 

1.7 
(6034) 

3.1 
(3414) 

7.2 
(1461) 

14.9 
(709) 

1.4 
(10779) 

3.5 
(4333) 

6.5 
(2366) 

8.8 
(1734) 

5.6.2. Lid-driven cavity flow 

The objective of this second example is to apply the parallel computational method 

developed in this work to the lid-driven cavity flow case where the hydrodynamics are 

more complex. Three unstructured meshes were employed to conduct the analysis. The 

Metis-based partitions into 2, 4, 8, 16 subdomains are presented in Figure 5-8. 
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a) b) 

c) d) 

Figure 5-8: Partitions generated by METIS: a) 2 partitions, b) 4 partitions, c) 8 

partitions, d) 16 partitions 

In comparison to the pipe flow, this problem has the particularity that the subdomains 

are highly interconnected yielding several nodes that connects multiple subdomains 

requiring a more complicated communication pattern. Table 5-5 presents the total 

number of elements, number of equations, the number of non-zero entries in the matrix 
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and time required to solve the problem in sequential mode for each of the 

computational grids. 

Table 5-5: Number of equations per mesh used and corresponding CPU time required 

to solve the cavity flow test case with a single processor. 

Nomination 

Mesh I 
Mesh2 
Mesh 3 
Meshl 
Mcsh2 
Mesh3 
Mcsh4 

Finite element 

pr-po 

P2+-P1 

# Elements 

100k 
200k 
400k 
100k 
200k 
400k 
800k 

# Nodes 

360.1k 
685.9k 
1.303M 
498.6k 
947.4k 
1.79M 
3.69M 

Equations 
(xlO6) 

0.8 
1.5 
3.0 
1.8 
3.5 
6.7 
13.9 

NNZ 
(xlO6) 

36.4 
71.0 
137.2 
159.7 
310.6 
599.4 
625.9 

CPU 
time(min.) 

4.83 
13.66 
171.47 
48.63 
136.49 
541.60 
912.35 

Figure 5-9 presents the percentage of Lagrange multiplier equations obtained for both 

type of finite element discretizations used in this work. It can be observed that the 

amount of constraints required for this case is larger than for the pipe flow since the 

interfacial area is considerably superior. Table 5-6 provides the sub-matrices balance 

defined in the same way as in the previous section. It is worth to underline that it is 

hard to obtain a good load distribution ratio as the partitions increases varying from 

0.97 for 2 subdomains to around 0.778-0.84 for 16 subdomains. 
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Figure 5-9: Increase of the number of equations due Lagrange multiplier constraints at 

the interface for P1+-P0 and P2+-P1 finite element for the cavity flow test case 

Table 5-6: Ratio between minimum and maximum number of NNZ in the subdomains 

for the cavity flow test case. 

Partitions 

2 
4 
8 
16 

Meshl Meshl Mesh3 

P1*-P0 
0.985 
0.913 
0.869 
0.779 

0.974 
0.976 
0.945 
0.821 

-
0.963 
0.902 
0.800 

Meshl Mesh2 Mesh3 

P2+-P1 
0.986 
0.9.17 
0.878 
0.804 

0.976 
0.978 
0.951 
0.840 

-
0.964 
0.908 
0.820 

Figure 5-10 presents the speed-up per conjugate gradient iteration with respect to the 

sequential ILU(0)-CG solver. As should be expected, the speed-up is lower than for the 

pipe flow problem due the larger connectivity between sub-matrices taking values in 
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the range of 9.5 to 11 with 16 processors. It can also be observed that the expected 

increase in parallel efficiency as the problem becomes larger (increasing NEQ values). 

Table 5-7 presents the number of iterations to reach convergence. Contrary to the pipe 

flow case, the number of iterations tends to increase in a more regular fashion with 

respect to the partitions. The overall speed-up with respect to the sequential run is in 

the range of 5-5.5 for 16 processors (Table 5-8). The differences between the iteration 

speed-up and the overall speed-up are discussed in 4.4. 
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Figure 5-10: Speed-up per ILU(O) preconditioned conjugate gradient iteration for the 

cavity flow test case with P1+-P0 and P2+-P1 finite elements. 
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Table 5-7: Number of conjugate gradient iterations to solve the cavity flow test case. 

Subdomains 

1 
2 
4 
8 
16 

Meshl Mesh2 Mesh3 

P1+-P0 
316 
422 
487 
523 
587 

432 
537 
628 
715 
754 

3076 
Not run 

4091 
4160 
5001 

Meshl Mesh2 Mesh3 

P2+-P1 
685 
867 
1064 
1138 
1440 

961 
1146 
1585 
1528 
1831 

1908 
Not run 

2577 
2713 
3823 

Table 5-8: Overall speed-up for cavity flow test case (CPU time in seconds in 

parenthesis). 

Subdomains 

2 

4 

8 

16 

Meshl Mesh2 Mesh3 

P1+-P0 
1.3 

(202) 
2.1 

(131) 
3.3 
(82) 
5.0 
(54) 

1.4 
(553) 
2.4 

(332) 
3.7 

(215) 
5.5 

(144) 

Not run 

2.5 
(4172) 

4.4 
(2329) 

5.5 
(1850) 

Meshl Mesh2 Mesh3 

P2+-P1 
1.4 

(1950) 
2.1 

(1308) 
3.7 

(767) 
5.0 

(560) 

1.6 
(5134) 

2.1 
(3661) 

4.0 
(1971) 

5.8 
(1374) 

Not ran 

2.5 
(12343) 

4.7 
(6782) 

5.5 
(5772) 

a) Effect of the ordering of the variables 

As a preliminary test it was necessary to know the optimal way to order the unknowns 

in the system of equations. We present in Figure 5-11 the convergence rates of ILU(0)-

CG when 16 partitions are employed for the studied configurations. It is observed that 

UxUyUz-I-P-LM produces the best results. Similar trends were observed when the 

number of partitions was varied. This is the ordering that is used in the next section. 



112 

T — | — i — i — i — i [ i .3 , ;i.i.tiii_r'„;.;r" i—i—i—i—I—i—r-

— — UxUyUz-l-P-LM 
—>•- Ux-Uy-Uz-I-P-LM 
— — UxUyUzP-l-LM 
— : — UxUyUz-P-l-LM 

* P-UxUyUz-l-LM 

j I i I _ I i l _ i i * • i • i i • i • • . • i t • • • 

0 500 1000 1500 2000 2500 300C 
CG iterations 

Figure 5-11: ILU(0)-CG convergence rate for different ordering of internal velocity 

(UxUyUz), interface velocity (I), pressure (P) and Lagrange multiplier (LM) unknowns 

for 16 partitions on the cavity flow test case. 

b) Effect of the partitioning schemes 

Two factors limit the overall speed-up of the method. The first factor is dealing with 

the parallel implementation of the linear algebra where the main parameter to consider 

is the speed-up per iteration. It is dominated by the parallel efficiency of the employed 

parallel algebra operations, where parallel matrix-vector products and ILU 

preconditioning operations are the most time consuming as evidenced in Figure 5-12. It 
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must be remarked that the ideal linear speed-up is very difficult to obtain due to the 

unbalanced charge loading when using unstructured meshes. 

SAXPY & Inner products SAXPY & Inner products 
3% 4% 

1 domain 16subdomains 

Figure 5-12: CPU time distribution at each conjugate gradient iteration 

The second factor is dealing with the numerical scalability governed by the number of 

iterations required to reach convergence. The general trend is that the number of CG 

iterations increases with respect to partitioning. One cause of this trend could be 

attributed to the increase in the total number of equations. It is also expected that the 

global matrix structure plays a role in the numerical performance since it affects the 

quality of the ILU preconditioner (BENZI et al., 1999; OLIKER et al., 2002). Figure 

5-13 and Figure 5-14 illustrate how the matrix structure evolves as the number of 
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partitions increases, having an impact on the quality of the ILU preconditioner. Another 

factor that could affect the parallel scalability is the smoothness of the interfaces. To 

observe its effect over the speed-up, a 100K element block structured mesh was 

discretized using P2+-P1 finite elements. Coordinate recursive bisection was employed 

producing smooth partitions as evidenced in Figure 5-15a in opposition to the irregular 

ones presented in Figure 5-15b. This latter configuration was attained by the coordinate 

recursive bisection method applying a small perturbation that produces an irregular 

subdomain interface shape. It was important to use the same partitioning method to 

keep the subdomains connectivity unchanged. As can be observed in Figure 5-16, the 

alteration of the interface smoothness causes a considerable increase of the number of 

iterations. As the interface becomes more irregular, the number of Lagrange multiplier 

equations increases, inducing a decay of the convergence rate. 
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Figure 5-13: Matrix non-zero entries for the pipe flow test case a) 1 domain; b) 2 

domains; c) 4 domains; d) 8 domains; e) 16 domains. 
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Figure 5-14: Matrix non-zero entries for the cavity flow test case a) 1 domain; b) 2 

domains; c) 4 domains; d) 8 domains; e) 16 domains. 
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Figure 5-15: Partitions generated by the recursive bisection technique: a) smooth 

interfaces b) irregular interfaces. 



118 

03 
C 

o 
'•a 3 
i _ 
CD 

In o 
g 
to 
CD 

• U 

2 

• fit 
• 2 

16 

16 

—•— Bisection - regular interfaces 
-*7— Bisection - irregular interfaces 

5 10 15 20 25 
% increment in equations 

30 

Figure 5-16: Normalized variation in iterations for the cavity flow test case 

(Numbers close to symbols indicate the number of partitions used for each point in the 

graph). 

The convergence rate is also associated with the structure of the global matrix for the 

already discussed reasons. To demonstrate that, we have run some experiments using 

different partition schemes to solve the cavity flow case. The purpose of the 

experiments is to show that different partition algorithms produce different amount of 

multiplier equations and non-zero matrix entries patterns allow to check their 

respective influence. Table 5-9 shows the obtained results, where spectral octasection 

with terminal propagation and Kerninghan-Lin smoothing being the one that gives the 

best results in terms of number of iterations and overall speed-up (8.9), even faster than 

the case were smooth interfaces where employed (8.4). When considering spectral-

octasection parallel performance, it is interesting to mention that a good speed-up per 
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iteration does not imply a good overall speed-up. The results confirm that both the 

amount of Lagrange multipliers and the matrix structure (average number of adjacent 

subdomains) influence the overall performance of the method. The data suggests that 

irregular subdomains connectivity with large non-smooth interfacial area induce a 

deterioration in the convergence rate. When comparing the performance of spectral 

methods, it appears that the interface smoothing, by Kernighan-Lin heuristics, is critical 

to reduce the number of CG iterations. The smoothing action of Kerninghan-Lin rule 

can be observed in Figure 5-17. Furthermore, the speed-up per iteration remains almost 

constant for the different schemes studied. Finally, we have run again the cases 

presented in Table 5-5 with this new partitioning strategy (spectral method-Kernighan-

Lin refinement- terminal propagation) to verify the validity of our findings. Table 5-10 

summarizes the new speed-ups for these cases using 16 partitions. They show a 

significant improvement with respect to the ones in Table 5-8, confirming our 

preliminary observations. It is worth mentioning the results of KLAWONN and 

WEDLUND (2000) who used a similar method applied to elasticity problems over 

structured grids. They also observed an increase in iterations and concluded that there 

is a strong indication that this problem would be cured by the use of a better block 

preconditioner as algebraic multi-grid instead of ILU. We have demonstrated in this 

work that this situation can also be controlled by the use of suitable partitioning 

strategies in the case of unstructured meshes where the smoothness of the interface and 

partition connectivity are key parameters to obtain good performance even at the cost 

of larger interfacial area. 



Table 5-9: Summary of the speed-ups obtained for the different partitioning schemes investigated of the cavity flow test case 

when running on 16 processors. 

Partition method 

Spectral-octasection 

Coordinate recursive 
bisection 
Spectral-octasection 
Spectral-octasection 
Multilevel-k-way 
Spectral-octasection 
Coordinate recursive 
bisection 
Multilevel-octaseetion 

Refinement 

Kernighan-Lin + 
Terminal propagation 
regular interfaces 

Terminal propagation 
Kernighan-Lin 
None 
None 
irregular interfaces 

Kernighan-Lin 

Increase In Average 
equations adjacent 

<%} suhdomains 

19 2.375 

9 4.375 

20 2.500 
11 4.250 
7 6.250 
11 4.125 

27 4.375 

10 7.875 

Iteratlonsfp)/ 
iteration(l) 

1.179 

1,355 

1.404 
1.422 
1.518 
2.314 

3 022 

No convergence 

speed
up/iteration 

10.5 

11.3 

10.9 
10.2 
10.8 
11.3 

10.1 

10.0 

overall 
speed-up 

8.9 

8.4 

7.8 
7.2 
7.1 
5.1 

3.4 

CPU lime 
(s) 

427 

456 

484 
531 
536 
754 

1143 

No No 
convergence convergence 
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Figure 5-17: Smoothing effect over the interfaces due to Kernighan-Lin heuristics for 

16 partitions in the cavity flow test case a) spectral octasection without Kernighan-Lin; 

b) spectral octasection with Kernighan-Lin; c) spectral octasection and terminal 

propagation without Kernighan-Lin; d) spectral octasection and terminal propagation 

with Kernighan-Lin. 
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Table 5-10: Overall speed-up obtained from the 16 partition cases described in Table 

5-5. 

Mesh 

meshl 
mesh2 
mesh3 
meshl 
mesh2 
mesh3 
mesh4 

Finite 
element 

P1+-P0 

P2+-P1 

v-p equations 
(xlO6) 

0.8 
1.5 
3.0 
1.8 
3.5 
6.7 
13.9 

Increase in 
equations 

(%) 
21 
17 
14 
19 
15 
12 
10 

Average 
adjacent 

subdomains 
2.125 
1.875 
1.875 
2.125 
1.875 
1.875 
1.875 

iterations(p) 
/iterations(l) 

1.8 
1.5 
1.0 
1.5 
1.4 
1.1 
1.4 

Overall 
Speed-up 

5.5 
7.3 
10.0 
7.5 
8.8 
11.0 
8.9 

CPU time 
(s) 

49 
108 
1020 
373 
900 
2888 
6158 

5.7. Conclusions 

The objective of this paper was to present a method to parallelize a finite element 

Navier-Stokes solver based on non-overlapping domain decomposition and Lagrange 

multiplier for the simulation of viscous fluid flows. It was done with the aim to 

distribute the memory and speed-up calculations to solve large problems unfeasible on 

a single processor. The novelty of the work is that the velocity-pressure-Lagrange 

multiplier system of Navier-Stokes equations is solved simultaneously by a distributed 

memory parallel ILU(0) preconditioned Krylov method. A penalty technique applied to 

the Lagrange multipliers equations is introduced to avoid ill-conditioning of the matrix 

that threats the ILU factorization of the global system of equations. The method was 

tested over two benchmark cases (pipe and cavity flow) employing discontinuous 

pressure finite element approximations (P1+-P0/P2+-P1) on unstructured tetrahedral 

grids. It was found that the proposed approach can solve problems around 5 to 13 times 

faster than the sequential ILU-Krylov subspace solver running on 16 processors. The 
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speed-up is mainly affected by the load distribution balance and convergence rates 

which decay as the number of partitions increases. The ordering of physical variables 

and partitioning strategy are critical to obtain good convergence rate. It was found that 

the UxUyUz-I-P-LM ordering combined with the spectral octasection with terminal 

propagation and Kerninghan-Lin smoothing partitioning scheme produced the most 

promising speed-up performance. 
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6.1. Presentation of the article 

This article was submitted to the Journal of Computational Physics. It explains the 

sliding mesh technique used to reproduce the unsteady motion of the agitator. A 

validation of the method is presented for two examples. The parallel performance is 

examined at the end of the article. 

6.2. Abstract 

A sliding mesh algorithm for the finite element simulation of three-dimensional 

incompressible viscous flows on unstructured grids is presented. Lagrange multipliers 

are used at the sliding interfaces to enforce the continuity between the fixed and 

moving subdomains. The novelty of the method consists in the coupled solution of the 

resulting velocity-pressure-Lagrange multipliers system of equations by an ILU(O)-

QMR solver. A penalty parameter is introduced for both the interface and the 

incompressibility constraints to avoid pivoting problems in the ILU(O) algorithm. To 

handle the convective term, both the Newton-Raphson scheme and a semi-implicit 

linearization are tested. The method is validated for concentric cylinders and stirred 

tank flows. Furthermore, this approach allows additional partitioning for both sliding 

and fixed subdomains if parallelization is required. 
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6.3. Introduction 

Many industrial flows are driven by the motion of mechanical components such as 

agitators in stirred tanks, pistons in internal combustion engines or screws in extruders 

to name a few. In some instances, more than one kinematics is involved. This is 

particularly true in the case of the mixing of viscous fluids where the lack of turbulence 

requires the combination of different types of impellers distributed in the tank that are 

rotating at different speeds to improve mixing (ESPINOSA-SOLARES et al., 1997; 

FOUCAULT et al., 2006). The simulation of such flows poses special challenges due 

to the difficulties of taking into account the time varying position of the boundaries. 

One early method was to resort to a Lagrangian frame of reference to ease their 

handling as presented by TANGUY et al. (1992) for symmetric geometrical 

configurations. 

Various techniques have also been introduced, which are based on re-meshing 

algorithms. For example, BRAVO et al. (2000) regenerate the full three-dimensional 

mesh at each time step by an automatic mesh generator in the simulation of flows in 

extruders. To avoid complete re-meshing, BEHR and TEZDUYAR (1999) propose the 

shear-slip mesh update method where a local re-meshing in a small overlapping region 

is performed as the objects rotate. More widespread techniques are based on the 

arbitrary Lagrangian-Eulerian (ALE) formulation where the fluid mesh deforms as the 

object moves. This technique has been employed to study hydro-structural problems 

(BELYTSCHKO and KENNEDY, 1975), free surface flows (HUERTA and LIU, 1988; 
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SOULAIEMANI et al., 1991), flows around parachutes (TEZDUYAR et al., 2006) and 

sedimentation problems (SAKSONO et al., 2007) among others. Its main drawback is 

that a complete re-meshing is necessary when displacements are large, to avoid mesh 

distortion. AVALOSSE and CROCHET (1997) propose a mesh superposition 

technique without re-meshing at each time step to simulate the flow in twin-screw 

extruders. The technique consists in locating the elements that are crossed by the 

moving object boundary. The velocity of the moving object is then imposed by a 

penalty method over each node of these elements. CONNELLY and KOKINI (2006) 

used the same technique to simulate the three-dimensional flow of a viscous fluid in a 

sigma blade mixer. 

A different approach is to introduce body forces in the momentum equations to emulate 

the effect of the moving body over a background mesh. PERICLEOUS and PATEL 

(1987) modeled the flow in multi-stage agitators as distributed sources of momentum 

that were computed from drag coefficients. Another example is the immersed boundary 

method developed by PESKIN and MCQUEEN (1989) for the simulation of blood 

flows in the human heart. It consists in representing the moving bodies by a set of 

control points on which body forces are imposed. These forces are not known a priori 

and are calculated using theoretical models. Variants of this method are the "immersed 

interface method" of LEVEQUE and LI (1994) and the immersed finite element 

method of ZHANG et al. (2004). A similar technique is the fictitious domain method of 

GLOWINSKI et al. (1994) with the difference that this approach does not resort to 
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empirical forces but rather to Lagrange multipliers to enforce the velocity constraints at 

the moving surfaces. One important issue of this approach is the evaluation of surface 

integrals which are computationally expensive and not necessarily easy to compute for 

3D complex geometries. A different (and independent) approach was followed by the 

group of Tanguy in the 90's, based on a collocation method to impose the surface 

constraints point-wise by the use of Dirac functions. This technique has been 

successfully employed to simulate the flow of mixers in laminar regime (TANGUY et 

al, 1996; BERTRAND et al, 1997; JONGEN, 2000; RIVERA et al., 2004 and 2006). 

VAN LOON et al. (2004) have also applied this technique for fluid-structure 

interactions in heart valves. They pointed out the necessity of mesh adaptation in order 

to improve the accuracy of this method close to the fluid-structure interface. 

An interesting alternative is the use of domain decomposition methods. They allow 

preserving the exact shape of the moving boundaries as the object rotates without re-

meshing. One way to apply these techniques is to overlap independent three-

dimensional grids by means of overset or Chimera methods (STEGER et al., 1983). 

TAKEDA et al. (1993) and HOUZEAUX and CODINA (2003) have applied this type 

of technique to simulate incompressible fluid flows in agitated vessels. The advantage 

of this approach is that it allows simulating any type of motion. However, the coupling 

between the different meshes requires a hole cutting strategy to generate an overlapping 

interface among the grids that may lead to complex coding. Furthermore, the forth and 

back interpolations between the moving and background meshes in the overlap region 
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may be a computationally costly procedure. An alternative solution is to decompose the 

original mesh into static and moving subdomains allowing them to slide along their 

common interfaces. This is the principle of the sliding mesh techniques introduced in 

the finite volume context in the 90's (RAI, 1985; LUO et al., 1993; PERNG and 

MURTHY, 1993). One particular simplification of the sliding mesh method is the 

clicking mesh method (BOHM et al., 1998; WECHSLER et al., 1999) where the grid 

movement is such that the boundary nodes must match at the interfaces at any time 

step. As it can be difficult and tedious to ensure this condition, most of sliding mesh 

implementations are extensions of the mortar element method developed by 

BERNARDI et al. (1994) to couple non-matching grids. They are usually based on the 

imposition of linear multi-point constraints at the interfaces by Lagrange multipliers, 

penalty methods or master-slaves elimination. The reader is referred to GARTLING 

(2005) for the application of sliding mesh techniques in the finite element framework to 

solve moving body thermal and flow problems. 

The objective of this paper is to present a sliding mesh algorithm for the simulation of 

incompressible fluid flows around moving bodies by discontinuous pressure finite 

elements and Lagrange multipliers. The novelty of the method consists in the coupled 

resolution of the velocity-pressure-Lagrange multipliers system of equations by an 

ILU(0)-QMR solver. A penalty parameter is introduced for both the interface and the 

incompressibility constraints to avoid ILU(O) failure due to the lack of pivoting. 

Furthermore, this approach allows additional partitioning for both the sliding and fixed 
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subdomains in the case of parallel computing. The proposed sliding mesh technique has 

been implemented to run in sequential or parallel mode using FORTRAN and MPI in 

the POLY3D software (Rheosoft Inc.). 

The organization of the paper goes as follows; in section 2, the domain decomposition 

formulation, sliding interface methodology and resolution schemes are introduced. 

Section 3 presents the parallelization procedure of the sliding mesh algorithm. Section 

4 shows a validation of the proposed approach for the concentric cylinders and stirred 

tank flows on three-dimensional grids. Finally, section 5 presents the time reduction 

obtained when running on parallel computers for the simulation of the unsteady flows 

in a stirred tank with baffles. 

6.4. Numerical method 

6.4.1. Domain decomposition for sliding mesh techniques 

Let Q be the computational domain with boundary 3Q presented in Figure 6-1. Since 

in sliding mesh technique, the mesh is rotated in one of the subdomains, the arbitrary 

Lagrangian-Eulerian (ALE) formulation of the incompressible Navier-Stokes equations 

is employed, which reads as: 



136 

/?(v + (v -v J -g radv ) - / /V 2 v + gradp = f , inQ, (6.1) 

divv = 0 , inQ, (6.2) 

where v is the velocity, vm is the mesh velocity, v the velocity time derivative, f a 

body force, p the pressure, fi the Newtonian viscosity and p the fluid density. 

Suitable initial conditions and boundary conditions must also be applied for 

mathematical well-posedness. A partition of the domain is introduced as in Figure 

6-2b. 

da da 

a) b) 

Figure 6-1. Schematic representation of the sliding mesh technique; a) domain Q with 

boundaryD 3Q and a squared rotating object; b) domain decomposition of Q into Q.fa 

and Q.mt by a sliding interface T. 
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For sake of brevity, we will limit ourselves to two subdomains. Extra moving bodies 

can be added on the condition that they do not intersect. Due to the decomposition, the 

coupled problem defined by equations (6.1) and (6.2) is equivalent to the following 

problem 

P (v, + (v, - vmi.) • grad v,) - fi Av, + grad p, = f;, in Q, for / = 1,2 

div v; = 0, in Qi, for /' = 1,2 (6.4) 

v, = v2, in T (6.5) 

ju 3v,/3n, = - / / d\2/dn2, in T (6.6) 

where iij is an outward normal to the interface T. Dirichlet boundary conditions are 

assumed on the domain boundary. Let us introduce the following constraint in the 

energy principle of equation (6.3): 

J>(v,-v2)dr = 0 (6.7) 

where X is a Lagrange multiplier that satisfies the Steklov-Poincare interface equation 

associated with the interface boundary conditions. According to GLOWINSKI et al. 

(1995) by choosing (6.7), (6.5) and (6.6) are simultaneously satisfied. In addition, we 

have: 
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}. = jU 8v,/3n, = - / / 3v2/9n2 (6.8) 

The variational form corresponding to this modified problem is given by: 

{\i,y/) + a(\i,y/) = {ii,y/) + b(yr,Pi) + (k,y/\ ,Vy/e [ / / ' (Q,)]3 , in Q, for 

i = l,2 

(6.9) 

&(v,.,p) = 0, VpeZ,2(Q,.),in Q, for/ = 1,2 (6.10) 

((y]-^2),4)r=o,y^[L\r)']3 on r (6.11) 

where 

a(\,y/) = ji\ g radvgrad^dQ + pf y/-(\-vJgradvdQ (6.12) 

6 ( v , p ) = ( p d i v v d Q , (6.13) 

and (.,.)n is the scalar product in Z,2(Q): 

(u ,v ) Q =J u - v d Q , V U , V G L 2 ( Q ) , (6.14) 

where ys, ^ and £are suitable interpolation functions for the velocity, pressure and 

Lagrange multiplier spaces respectively. YOTOV (1996) provides theoretical basis for 

the use of these techniques to handle non-matching grids in the context of flow 

problems. 
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6.4.2. Finite element discretization 

In the present work, Pi+-P0 (BERTRAND et al., 1992) and P2
+-Pi (CROUZEIX and 

RAVIART, 1973) tetrahedral finite element approximations are used. The former is an 

enriched version of the linear element Pi-Po- Extra degrees of freedom are added at the 

middle of each face and the pressure is assumed constant on each element. The latter 

element approximates the velocity by continuous quadratic shape functions, while the 

pressure is approximated by linear discontinuous functions. They belong to the class of 

discontinuous pressure elements that satisfies the Brezzi-Babuska condition ensuring 

numerical stability. 

The transient term is discretized by an implicit &-step method based on backward 

differentiation formulas (BDF), as first proposed by GEAR (1971), which is less 

restricted to the Courant-Friedrichs-Levy (CFL) condition for explicit schemes. These 

types of methods can be proven to be A -stable for k<l so that the error tends to zero as 

the time goes to infinity (SMITH, 1985; DEUFLHARD and FOLKMAR, 2002). This 

opens the possibility to use larger time steps than those required by explicit schemes to 

ensure convergence. In this work, a second-order-three-level-step approximation is 

used where the transient term is approximated by 

V = ( V - V ' - 1 ) / A ? + A ? ( V ' - 2 V ' - | + V ' - 2 ) / 2 A ? 2 + 0 ( A ? 2 ) 

, x (6-15) 
= 1/A/ 3/2 v' - 2v'-' +1/2 v'-2 + 0(At2) 



140 

6.4.3. Sliding interface 

In our partitioned domain, the sliding interface is composed of the faces that connect 

the moving and static grids. When the sliding grid is moving, holes are created between 

the sliding and fixed subdomains, as can be observed in Figure 6-2a. 

Holes between 
sliding and fixed 

subdomains 
Overlap between 
sliding and fixed 

subdomains 

WjT 

* .—k 

w 

! 

a) b) 

Figure 6-2. a) Holes generated between sliding and fixed subdomains due geometrical 

approximation error; b) Overlapping between fixed and sliding partitions that prevents 

holes. 

As the existence of holes between sliding and fixed subdomains violates the finite 

element method principle of interface connection, a conservative treatment of the 

interface based on Lagrange multipliers is introduced. To simplify the computation of 

surface integrals required by constraint (6.11), Lagrange multipliers are enforced point-

wise over an independent set of points {x,.} hereafter called sliding points, which are 
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located on the nodes along the interface of the fixed grid. The finite elements that 

contain sliding points will be referred as host elements. This approach is reminiscent of 

the virtual finite element method of BERTRAND et al. (1997). It is equivalent to (6.11) 

if the Lagrange multipliers A space, is discretized using Dirac functions defined by 

f+oo if x = x; 
S(x-xi) = \ / (6.16) 

As the time advances, the sliding grid moves and the host elements change. In this 

respect, a point-to-element algorithm is used at each time step to determine the host 

element of each sliding point (LOHNER, 2007; STOBIAC et al., 2008). One issue is 

the likely loss of sliding points by the search algorithm due to round-off errors and the 

presence of holes caused by the geometrical approximation, as depicted in Figure 6-2a. 

Since sliding points are used to represent the sliding interface, failure to locate them 

appropriately may lead to a loss in the overall accuracy of the method. In this work, it 

is proposed to geometrically expand the sliding subgrid by some factor to remove the 

holes between the fixed and moving domains, thus increasing the success of the point-

to-element search algorithm (see Figure 6-2b). The geometric factor is obtained 

heuristically through the following formula, 

a = \±Ph/Rsi (6.17) 
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where h is an average mesh size, Rsi is the radius of curvature of the sliding interface 

and P is a factor that should be as small as possible to avoid excessive changes in the 

subdomain dimensions but large enough to help the search algorithm in its accuracy. In 

the case the inner subdomain is the one that rotates, the sign in (6.17) becomes positive 

(expansion), otherwise it is taken negative (contraction). Tests were run to find a 

suitable /? value using different mesh sizes over two concentric cylinders. It was found 

that /? = 0.1 is the minimum value required to keep the loss of sliding points by the 

search algorithm close to zero, as shown in Figure 6-3. It must be noticed that as the 

mesh size (h) decreases, the geometric factor comes closer to unity. 

100 

80 

w 
c 
o 
CL60 
D) 
C 

"w 
to 40 
_o 

5̂ 

20 

0 
1e-5 1e-4 1e-3 1e-2 1e-1 1e+0 

(P) 

Figure 6-3. Effect of ji on the loss of sliding points by the point- to-element search 

algorithm (Dimensions of mesh size (h) are in mm). 

r r r « 1 ' I • • i i l l 

Meshl (/7=4.96) 
Mesh2 (h=2.39) 
Mesh3 (/7=1.73) 
Mesh4 (7J=1 .22) 

Comfort zone 
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6.4.4. Matrix formulation and algorithm 

A fully coupled approach is used to solve equations (6.9), (6.10) and (6.11). It means 

that velocity, pressure and multipliers are solved simultaneously. The matrix version 

for a two-domain problem is 

(6.18) 

A , + j / A r ' M 

B, 

0 

0 

-KA1 

BT
t 0 

0 0 

0 A ,+ / A r ' M 
2 / 2 

0 B2 

0 KA2 

0 

0 

0 

0 

- < 

0 

K A 2 

0 

0 

u;' 
p, 

'V'2 

A 

X 
0 

F2 

0 

0 

• + • 

Ar'M^u;-'-

0 

0 

0 

/2K
2) 

yv?) 

where Ai=] 2 stands for the convection-diffusion matrix, M a mass matrix that comes 

from the Gear time discretization scheme (6.15), At the time step, B. the matrix 

obtained from the incompressibility constraint, B r the transpose of B., KAi the matrix 

coming from the interface constraint and U, , P,, A and F. stand for the velocity, 

pressure, Lagrange multipliers and body forces respectively. Note that this implicit 

time scheme improves the conditioning of the matrix, thanks to the addition of a mass 

matrix y Ar 'M on the main diagonal of Ai=1>2. Another issue that must be addressed 

is the presence of zeros along the main diagonal, which leads to the failure of the ILU 

preconditioning because pivoting is not possible. To cure the problem, penalty 

parameters are introduced for both the divergence and Lagrange multipliers equations. 

As a result, the discretized equations corresponding to (6.10) (pressure/!) and (6.11) 

(Lagrange multiplier X) become, respectively: 
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b(yi,<p) = -{pi,(p)/£p ,\/(PeL2(ni),mQlfori = \,2 (6.19) 

( ( v , - v 2 ) ^ ) r = - ( ^ ^ ) r M , V # e [ z 2 ( n ] 3 on T (6.20) 

where ep and £x are penalty parameters. This leads to the matrix system: 

A. + V AT'M B 
1 / 2 

B, £•: 

o 

0 0 

0 

0 

0 A2 + / A r ' M B^ KT
A2 

2 

p 

0 

fu' p, 

ui 
p2 

[A 

. = . 

F,' 

0 

F2 

0 

0 

• + < 

Ar'M^u;-' - /2K
2) 

0 

Ar1M(2u;"1-^/u'2-2) 

0 

0 

(6.21) 

The scaling of the penalty parameters is done in such a way they remain dimensionally 

consistent: 

£p=lO~a/pM (6.22) 

ex =10""h/p/i (6.23) 

The a and /? parameters require to take values as large as possible to ensure good 

accuracy. However, excessive large values can produce a break-down in the ILU 

algorithm since £x and e become too small. In this work, it has been heuristically 

determined a value of 8 for both parameters. 
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In flows where the convection term is not negligible, the system of equations in (6.21) 

is nonlinear. One way to handle such problems is by means of fully nonlinear Newton-

Raphson type scheme. A Newton-Raphson scheme for the velocity can be written as: 

For k = 1,2,... until convergence do 

Solve T)AUt = -AtVk (6.24) 

Update U i + 1 =U,+AU, 

where A. stands for the convection-diffusion matrix and 1) the tangent matrix, 

namely: 

A. =ju(gradys-gmdys) + pv(Ui)grsidi/f-pi/f(Ym -g rad^) (6.25) 

T. = / / ( g r a d ^ - g r a d ^ ) + p ^ ( U , - g r a d ^ + ^ g r a d U . ) - / 7 ^ ( v m - g r a d ^ ) ( 6 2 6 ) 

Another manner to deal with the convection term is based on semi-implicit schemes 

presented by TUREK (1996) where the convection term is linearized by extrapolation 

in time as: 

v'-gradv'+1 (6.27) 
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The semi-implicit treatment of the convective term allows solving linearized problems 

at each time step; nonetheless, the accuracy is expected to be highly dependent on the 

size of the time step due the dependence of (6.27) on the velocity field computed at the 

last time step (v ') . Furthermore, they can only be used for unsteady simulations. For 

this scheme, the matrix C. and A(. become: 

(6.28) 
T. = A. = //(grady/• grady/) + py/V\ • g r a d ^ - p y f ( \ m - grady/) 

Both techniques are tested for the stirred tank without baffles case presented in the next 

section. The general algorithm of the sliding mesh technique is presented in Algorithm 

6-1. 
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If the Newton-Raphson scheme is used, the number of fixed-point iterations is greater 

than one, depending on the nonlinearity of the problem. On the other hand, the semi-

implicit scheme requires only one fixed-point iteration per time step. The system of 

equations in Algorithm 6-1 can be solved either by a direct method or a sparse iterative 

solver depending on the total number of equations. In this work, a ILU(O) 

preconditioned QMR solver is used. This iterative solver was chosen because of its 

robustness to deal with systems of equations that possess non-symmetric matrices. The 

details about the QMR algorithm can be found in FREUND and NACHTIGAL (1991). 

The solutions obtained by the QMR solver were considered converged when the norm 

ratio between the current residual (/-') and the initial residual (r°) satisfies: 

p l / p l <1(T6 (6.29) 

where || | stands for the Euclidean norm. The initial solution for all cases was set to 

zero. This solver can be implemented on distributed memory parallel computers. 

Details about its implementation are given in the next section. 

6.5. Parallel implementation 

For parallel computations, the variables were reordered in blocks, depending if the 

equations correspond to internal, interface, pressure or Lagrange multipliers: 
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M i n tx l ' ^ i n t y l ' M i n t z l ' "•> M int in ' M i n t ^ « ' Wintz« ' 

TT TT TT T r> T i s I ifacexl' ifaceyl' i f acez l ' " ' ifacetm' ifaceym' ifacezm' i _ „ . 

UxUyUz -1 - P - LM ->( y y ) (6.30) 

where subscripts int and iface in (6.30) refer to the internal and interface velocity 

equations. In this way, linear algebra operations can be performed in parallel for the 

internal block variables, while the inter-processor communication is only required for 

the interface velocity and the Lagrange multipliers blocks. To reduce the memory 

required per processor, a piece of the global matrix of (6.21) is built and stored in each 

processor. 

Load balancing is a key feature in parallel computing. One important issue to consider 

in the sliding mesh method is that the initial domain decomposition of sliding and 

moving grids may not be optimal for parallel computing. For example, Figure 6-4a 

presents the matrix profile where the sliding domain is much larger than the fixed 

domain. This would cause inefficiencies in the parallel resolution process due to 

unbalanced load distribution. To alleviate this difficulty, each sub-grid can be further 

partitioned into smaller partitions (Figure 6-4b) and the Lagrange multiplier method 

can be applied again over the new subdomain interfaces. The main difference between 

these new sub-partitions and the original partitions is that they are connected through 
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interfaces, the nodes which always match, hereafter called matching boundaries, as 

opposed to the sliding interfaces where the nodes do not match all the time. 

a) b) 

Figure 6-4. Partitioning technique applied to two concentric cylinders: a) one sliding 

subdomain and one fixed subdomain; b) two sliding subdomains and four fixed 

subdomains. 

Figure 6-5 gives a schematic representation of both types of boundaries. In the case 

where a single point connects multiples subdomains, only the constraints corresponding 

to a face (or an edge for two-dimensional problems) connecting subdomains must be 

imposed, as shown in Figure 6-6. A parallel version of the preconditioned ILU(O)-

Quasi-Minimal Residual (QMR) solver (FREUND and NACHTIGAL, 1991) is 
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employed to solve (6.21), which entails the parallel execution of sparse linear algebra 

operations (SAAD, 2000). 

Matching 
boundary 

Matching 
boundary 

dQ. Sliding 
interface 

Matching 
boundary 

Matching 
boundary 

Figure 6-5. Domain partitioned into four subdomains with boundary D dQ.. The sliding 

subdomain (Q, u Q2) and the fixed subdomain (Q3 u Q4) are joined by matching 

boundaries and a sliding interface. 
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Figure 6-6. Constraints imposed when four partitions share a point in the finite element 

sliding mesh technique. 

6.6. Numerical examples 

In this section, the behaviour and accuracy of the finite element sliding mesh technique 

is assessed. Two cases are considered, the two-dimensional flow between two 

concentric cylinders and the three-dimensional flow induced by a flat blade turbine in a 

baffle-free tank (Figure 6-8a). Simulations of this section were run on a single 

processor; the parallel performance is presented in the next section. 
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6.6.1. Couetteflow 

As a first test, the incompressible laminar Couette flow between two concentric 

cylinders is considered. The inner cylinder has a radius KR and the outer cylinder of 

radius R rotates at constant speed Q 0 . The analytical solution can be obtained by 

solving the Stokes equations in cylindrical coordinates: 

ve=Q.(iR(KRIr-rlKR)l{K-\lK) (6.31) 

The parameters for the simulation were set as R=0.05 m, K =0.5, 

p -1000 kg m~3, ju = 100 Pa-s and Q.0 -100rev min"1. The problem was discretized 

with the help of the Crouzeix-Raviart P2+-P1 element over unstructured three-

dimensional grids with different grid sizes as summarized in Table 6-1. For the sliding 

mesh technique, several time steps were simulated until the solution reached the steady 

state. At each time step, the outer sub-domain was rotated and the incompressible 

Navier-Stokes equations in the ALE formulation were solved. For the inner subdomain 

(fixed), the mesh velocity ( \m ) was set to zero and for the outer one, we 

tookvm = Q n x r . 
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Table 6-1: Characteristics of the meshes utilized for the concentric cylinders problem. 

Label 

Meshl 
Mesh2 
Mesh3 
Mesh4 

Mesh size 
(mm) 
4.96 
2.39 
1.73 
1.22 

Number 
of elements 

6,238 
51,666 
133,520 
376,188 

Number 
of equations 

9,921 
85,621 

223,185 
634,656 

Figure 6-7 shows a plot of the infinity norm of the error on velocity with respect to the 

grid size. It shows a linear decrease of the error as the mesh is refined. The small 

deviation from a straight line may be caused by inaccuracies in the evaluation of the 

mesh size since unstructured meshes were employed, where the mesh size on each 

element varies. 

1e-2 

1e-3 
0.001 0.01 

mesh size (m) 

Figure 6-7. Infinity norm of the error on velocity versus mesh size. 
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6.6.2. Agitated tank 

The next step was to simulate the three-dimensional incompressible flow in a stirred 

tank agitated by a Rushton turbine (Figure 6-8 a) by the proposed sliding mesh 

technique. To validate the sliding mesh method, we resorted to the Lagrangian frame of 

reference approach that consists in solving the equations of motion from the point of 

view of an observer that rotates with the impeller. Figure 6-8bc gives a schematic 

representation of the two approaches. 

a) 

Figure 6-8. a) Stirred tank agitated by a Rushton turbine without baffles; b) sliding 

mesh technique; c) Lagrangian frame of reference technique. 
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The following conditions were considered. The turbine of diameter D= 0.2 m was 

moved at a rotational speed (N) of 100 rev min "'. A Newtonian fluid was considered 

with a viscosity (ju) of 10 Pa s and a density (p) of 1350 kg m"3. In these conditions, 

the Reynolds number ,Re = pND2/ju, is 9, which ensured that the flow was laminar 

and vortex free at the free surface. For the simulations, the P1+-P0 finite element was 

used to approximate the velocity and the pressure. 

a) Sliding mesh 

For the sliding mesh technique, an unstructured three-dimensional mesh comprising 

125K tetrahedral elements was used. The computational domain was partitioned into 

two subdomains. The rotating subdomain included the turbine. The total number of 

equations was approximately 1M equations. The ALE equations were solved for a 

mesh velocity defined by \m = Q0 x r on the rotating subdomain. Boundary conditions 

were as follows: 

• No slip condition at the tank wall 

• Rotational speed of 100 rev. min"1 on the turbine boundary 

• Zero normal velocity at the flat free surface 

Several time step sizes were tested to evaluate the effect on the accuracy of the method. 
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b) Lagrangian frame of reference 

The Lagrangian frame of reference approach simplifies the imposition of the boundary 

conditions and the problem can be treated at steady state as explained by TANGUY et 

al. (1992). Consequently, the acceleration term can be omitted. However, as the frame 

of reference is no longer inertial, the Navier-Stokes equations must be complemented 

by centrifugal and Coriolis forces. 

The solution obtained with the standard finite element method was taken as the 

reference solution. The same mesh and finite element type that was employed for the 

sliding mesh was used. The total number of equations was 915K. With this classical 

approach, the boundary conditions were as follows: 

• No slip condition at the turbine boundary 

• Rotational speed of 100 rev min"1 for the tank walls 

• No normal velocity at the free surface 

c) Accuracy and stability of the sliding mesh method 

Figure 6-9 shows the axial-radial velocity profiles on a vertical cross-section for the 

two studied techniques. As can be observed, the sliding mesh technique reproduces the 

shape of the vortexing rings above and below the impeller. 
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• * , 

Figure 6-9. Velocity profile on a vertical cross-section at the middle of the tank; a) 

Sliding mesh technique; b) Lagrangian frame of reference technique. 

Figure 6-10 presents the effect of the time step with respect to the relative error in axial 

pumping through 100 planes that traverse the vessel height. Both the Newton-Raphson 

and the semi-implicit schemes were used to deal with the convective term. Axial 

pumping across these planes is computed as 

Q+
z{z) = \Av:dA=-\AV-zdA (6.32) 

The relative error in axial pumping is defined by 

Error Qz=mx(Max\Qzi_SM-Q2i_Lag\)/Max{Qzi_Lag) (6.33) 
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where Qzi_SM and Qzi_Lag are the axial pumping values obtained for each cross-section 

for the sliding mesh and Lagrangian approaches, respectively. The plot shows a 

quadratic decrease of the error as the size of time steps is reduced for both Newton-

Raphson and semi-implicit schemes, which is a consequence of the second-order nature 

of the Gear scheme. It is noted also in Figure 6-10 that the semi-implicit scheme 

slightly reduces the accuracy of the method in comparison with the Newton-Raphson 

scheme, mainly when large time step sizes are used, as expected. 

i—'—•—'—'—i—'—'—'—•—r 

Newton scheme 
Semi-implicit scheme 

0 20 40 60 80 100 120 140 

Rotation angle per time step (degrees) 

Figure 6-10. Error in axial pumping with respect to the rotation angle per time step for 

the stirred tank simulation (Re=9). 
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Table 6-2 and Table 6-3 present the number of QMR iterations and CPU time for each 

time step size studied for both the Newton-Raphson and the semi-implicit schemes, 

respectively. For the Newton-Raphson method, as the time step becomes smaller, the 

number of QMR iterations and CPU time per time step tend to decrease. On the other 

hand, the semi-implicit scheme shows an almost constant number of QMR iterations 

and CPU time per time step for all the time step sizes tested. The semi-implicit scheme 

shows interesting results. In comparison with the Newton-Raphson scheme, it requires 

less QMR iterations since it only requires a single fixed-point iteration per time step 

which saves considerable amount of CPU time. Note that the sliding mesh technique is 

very stable for both convection schemes, as it is capable to converge regardless of the 

value of the time step size. 

Table 6-2: Number of iterations and CPU time (1 processor) for different rotation 

angles per time step (Re=9) using the sliding mesh technique in combination with the 

Newton-Raphson scheme for the convective term. 

Rotation 
angle/time step 

(degrees) 

3.6 
9 
15 
30 
45 
90 
120 

Newton Raphson 
iterations/time 

step 

3 
3 
3 
3 
3 
4 
4 

Total number of 
QMR 

iterations/time 
step 
548 
634 
735 
1014 
1105 
1024 
892 

CPU time/time 
step (seconds) 

1215 
1386 
1630 
2350 
2416 
2232 
2050 

CPU time/ 
agitator revolution 

(minutes) 

2025 
924 
652 
470 
322 
148 
102 
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Table 6-3: Number of iterations and CPU time (1 processor) for different rotation 

angles per time step (Re=9) using the sliding mesh technique in combination with the 

semi-implicit scheme for the convective term. 

Angle 
rotation/time 

step 
3.6 
9 
15 
30 
45 
90 
120 

Total number 
ofQMR 

iterations 
235 
206 
205 
201 
232 
265 
268 

CPU time/time 
step (seconds) 

521 
457 
455 
446 
515 
588 
595 

CPU 
time/revolution 

(minutes) 
869 
305 
182 
89 
69 
39 
30 

Figure 6-11 compares the axial pumping produced by the Lagrangian frame of 

reference and the sliding mesh techniques with the Newton-Raphson scheme using the 

smallest time step employed in this study (At = 3.6 degrees). Sliding mesh gives a 

maximum difference (with respect to the Lagrangian solution) of 0.75%. Figure 6-11 

presents the average deformation norm through 100 planes that traverse the vessel 

height for both Lagrangian and sliding mesh techniques. The deformation norm is 

obtained by: 

M=^(|y|)-(lYlf («4) 

where: 
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|y| = I(Vv + (Vv)r) (6.35) 

The error in average deformation norm is smaller than the error obtained for the axial 

pumping since differences of approximately 0.5 % were found for the sliding mesh 

method with respect to the Lagrangian velocity field. 

0.6 h 

"R1 

0.4 

0.2 

0.0 

• Lagrangian frame 
° Sliding mesh 

< • * * 

9 

• * 

JC 
0.0 5.0e-4 1.0e-3 1.5e-3 2.0e-3 2.5e-3 

Axial pumping (m3/s) 

Figure 6-11. Comparison between the Lagrangian and sliding mesh average 

deformation norms at different tank heights for the flat-blade turbine system. 
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Figure 6-12. Comparison between the Lagrangian and sliding mesh average 

deformation norms at different tank heights for the flat-blade turbine system. 

6.7. Parallel performance 

The parallel performance was evaluated by means of the simulation of the unsteady 

flow in a stirred tank with baffles (Figure 6-13). The simulation consisted in solving the 

unsteady incompressible Navier-Stokes equations by the sliding mesh technique with 

the Newton-Raphson scheme using an IBM-P690 with 64 Gb of shared memory. The 

following conditions were considered. The turbine of diameter D=0.2 m was moving at 

a rotational speed (TV) of 200 rev min "'. A Newtonian fluid was considered with a 

• Lagrangian frame 
o Sliding mesh 

o o o 0 

,o° 
oO° o ° o o o o 
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-3 viscosity (ju) of 5 Pa s and a density (p) of 1350 kg m" . The flow was at the threshold 

of the transition regime since the Reynolds number is 36. The presence of baffles 

ensures that the flow was vortex free at the free surface. The time step was set to 0.006 

s, which corresponds to a rotation of 7.2 degrees at each time step. The mesh velocity 

was computed as in the previous section. The boundary conditions were as follows: 

• No slip condition at the tank and baffles walls 

• Rotational speed of 200 rev min"1 on the turbine boundary 

• Zero normal velocity at the free surface 

Dtank=0.38m 

0.66h 

0B8m 
b) 

Baffles width =0.0318m 

a) c) 

Figure 6-13. a) Geometrical description of the stirred tank agitated by flat-blade turbine 

with static baffles; b) sliding subdomain (turbine); c) fixed subdomain (baffles). 
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An unstructured grid comprising 202,083 tetrahedral elements was used for the 

computation. The mesh was initially partitioned into sliding and fixed subdomains. The 

fixed partition contained 128,241 elements and the sliding one, 73,842 elements. These 

partitions were further subdivided to observe the parallel performance of the method as 

shown in Figure 6-14. The total number of subdomains generated was varied from 2 to 

16, distributed in such a way that the total number of elements in each partition was as 

balance as possible. These partitions were performed with the help of spectral 

algorithms and the Kerninghan-Lin smoothing techniques included in the Chaco 

partitioning software (HENDRIKSON and LELAND, 1993). 

a) b) c) d) 

Figure 6-14. Partitions used to test the parallel performance of an agitated tank with 

baffles simulation; a) 3 subdomains b) 6 subdomains c) 12 subdomains d) 16 

subdomains. 
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The power consumption (P) for the simulated scenario was computed from the 

obtained hydrodynamics by 

P-^-ydQ ( 6 3 6 ) 
n 

Table 6-4 compares the numerical power consumption with the experimental results of 

FARHAT et al. (2007), showing an error of 2.2% that demonstrates the validity of the 

solutions. Table 6-5 summarizes the parallel performance obtained for the different 

tests. As the number of partitions increases, the number of equations increases due the 

generation of additional Lagrange multipliers. Table 6-5 also displays the load 

distribution defined as: 

load distribution = mm(MVZ)/max( JV7VZ) (6.37) 

where NNZ stands for a list that contains the number of nonzero entries in each 

submatrix that assembles the global system of equations in Algorithm 6-1. 

Table 6-4: Numerical and experimental power consumption values (W) for the stirred 

tank with baffles. 

Method 

Experimental data 
from FARHAT etal. 

(2007) 
Sliding mesh method 

Power 
consumption 

(W) 

89.60 
87.63 
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Table 6-5: Summary of the speed-ups obtained for the flow in the stirred tank with 

baffles case (Re=36). 

Number of 
processors 

1 
2 
3 
6 
12 
16 

Number of 
subdomains 

per 
fixed/sliding 

partitions 
1/1 
1/1 
2/1 
4/2 
8/4 
10/6 

Number of 
equations 

(xlO6) 

1.546 
1.546 
1.558 
1.582 
1.629 
1.611 

Load 
distribution 

(fixed 
partitions) 

1 
1 

0.987 
0.952 
0.910 
0.917 

Load 
distribution 

(Sliding 
partitions) 

1 
1 
1 

0.992 
0.943 
0.952 

Overall 
load 

distribution 
(fixed/sliding 
partitions) 

0.692 
0.692 
0.725 
0.711 
0.678 
0.872 

Total 
QMR 

iterations 

673 
673 
737 
773 
793 
936 

Total 
CPU time (s) 
per time step 

2,552 
1,698 
1,057 
624 
383 
342 

Overall 
speed-up 

1.0 
1.5 
2.4 
4.1 
6.6 
7.4 

As can been seen, the best load distribution values for the sliding partitions and fixed 

partitions was around 0.9. However, the overall load distribution for the full simulation 

is worse, with values in the range of 0.69-0.82. This anomaly affects the parallel 

performance due to the disproportionate amount of work in each processor that leads to 

an increase in the overhead time. Figure 6-15 shows a maximum speed-up of 10 for the 

QMR iterations when 16 processors are employed. A small deterioration in the QMR 

convergence rates can be observed in Table 6-5 as the number of partitions increases, 

which can be explained by the larger size of the linear system. An overall speed-up of 

7.4 is obtained with the 16 processors. In all cases, increasing the number of processors 

always reduced the computational time. 
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Figure 6-15. Speed-up for the ILU(0)-QMR iterations for the unsteady simulation of 

the flow in the stirred tank with baffles. 

6.8. Conclusions 

The objective of this paper was to present a sliding mesh algorithm based on Lagrange 

multipliers for incompressible viscous fluid flows on unstructured tetrahedral grids. 

The method consists in the use of discontinuous pressure finite elements and Lagrange 

multipliers to enforce continuity at the interfaces between sliding and fixed subdomains. 

Then, the obtained global system of equations is solved simultaneously for velocity, 

pressure and Lagrange multipliers by a ILU(0)-QMR solver. The method is assessed in 

the case of concentric cylinders and stirred tank flows showing excellent accuracy. To 

handle the convection, two methods are tested: the fully nonlinear Newton-Raphson 
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scheme and the semi-implicit linearization proposed by TUREK (1996). It is 

demonstrated that the sliding mesh technique in combination with the Newton-Raphson 

scheme provides slightly higher accuracy than with the semi-implicit scheme, mainly 

when large time step sizes are employed. However, the semi-implicit scheme saves 

considerable amount of CPU time. It is shown that the sliding mesh technique is very 

stable, being able to converge using large time steps due the implicit properties of the 

Gear time discretization scheme. As expected, the technique shows a quadratic 

reduction in the error as the size of the time steps decreases. The approach is 

parallelized to simulate the unsteady flows in a stirred tank with baffles. The computed 

power consumption presented a difference of 2% with respect to experimental data. A 

speed-up of 7.4 is obtained when running on 16 processors. It is demonstrated that the 

technique allows to further subdivide both the sliding and fixed partitions into a desired 

number of partitions, allowing efficient parallelization. 
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7.1. Presentation of the article 

This article was submitted to Chemical Engineering Science. It shows the application 

of the developed parallel algorithms for the study of a complex mixing tank with two 

agitators. A characterization based on the obtained hydrodynamics is presented. 

7.2. Abstract 

The macro-mixing mechanisms of the Superblend coaxial mixer consisting of a 

Maxblend impeller and a double helical ribbon agitator mounted on two independent 

coaxial shafts rotating at different speeds are numerically investigated. The simulations 

are based on the resolution of the Navier-Stokes equations with the help of a parallel 

three-dimensional finite element solver exploiting the capabilities of high-performance 

computers. To model the rotation of agitators a hybrid approach based on a novel finite 

element sliding mesh and a fictitious domain method is used. The simulations allow 

observing the flow as it evolves from deep laminar (Re=0.1) to transition (Re=520) 

regime. The power consumption and mixing times obtained from the simulations show 

good agreement with the ones acquired from a laboratory pilot rig. 

7.3. Introduction 

The mixing of fluids in stirred tanks is widespread in several industrial processes. 

Classical examples are polymerization, fermentation, and blending of mineral slurries. 
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The selection of a mixer for these processes is critical to the success of the mixing 

operation. It has to be versatile enough to achieve good homogeneity in any region of 

the flow spectrum, namely; laminar, transition and turbulent regimes. Conventional 

mixing technologies is unable to provide a satisfactory solution. Standard mixer 

designs based on turbines, paddles or hydrofoils mounted on a single shaft at the center 

of the tank are incapable to promote enough mixing for high viscous fluids, on the 

other hand, close clearance impellers which are very efficient in deep laminar regime 

perform poorly for medium (10 to 0.5 Pa s) and low viscosity fluids (less than 0.5 Pa s). 

One alternative is to change the impeller during the process which is rather costly, 

inefficient, and sometimes unsafe. 

A more promising option is the use of multiple impellers. The judicious combination of 

agitators may deliver a mixing unit capable to adapt to the changing process 

requirements with minimum modifications. The most common form of multiple 

impellers system is the case of several turbines stacked on a single shaft. This 

arrangement is widely found in multiphase system where gas or solids are dispersed. 

However, as shown numerically in the work of ZALC et al. (2002) when viscosity 

rises, regions with poor mixing are formed. To handle though mixing processes several 

unconventional designs have been proposed based on multiple shafts. MARUKO and 

KUSUMOTO (1992) have presented a dual shaft lattice-type horizontal agitator in a 

polymerization reactor for handle fluid viscosities of 5 kPa s. TANGUY et al. (1999) 

employed a planetary mixer where multiple kneading paddles are mounted on carousel 
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to process polyurethane composites. SCHAFFER et al. (2001) designed a reactor with 

two co-rotating helical impellers mounted on dual shaft in a tank that was build from 

two intersecting cylinders for melt-phase polymerization. KHOPKAR et al. (2007) and 

BARAR POUR et al. (2007) studied the mixing performance of a dual shaft mixers 

based on a twisted anchor and an off-centered rotor-stator turbine. 

An interesting technology due to its wide range of applicability is the dual shaft coaxial 

mixer as pointed out by RIVERA et al. (2006). It is based on the combination of a high 

speed agitator and a low-speed close clearance impeller that can be operated either in 

co- and counter-rotation mode. Recently, a coaxial mixer that combines the wide 

impeller Maxblend and a double helical ribbon mounted on dual coaxial shafts has 

been introduced named Superblend. Maxblend is a relative new agitator that consists in 

a wide paddle that promotes flow circulation and a grid that provides mixing 

dispersion. Maxblend impeller is characterized by its low energy dissipation, simple 

geometry making it easy to clean and its capacity of operating over a wide range of Re 

numbers. Maxblend impeller has been tested for different applications. KOUDA et al. 

(1997) and HIRUTA et al. (1997) have employed Maxblend in fermentation processes 

in aerated conditions showing very competitive mass transfer coefficients while 

keeping the broth culture very well mixed. It has also been employed in TAKAHASHI 

et al. (2006) in a boiling liquid system with very good results. DOHI et al. (2004) and 

TAGAWA et al. (2006) found that Maxblend impeller in transition and turbulent 

regime is more efficient in terms of energy for solid suspension than multiple turbine 
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systems. In a numerical work, YAO et al. (2001) performed a comparison about the 

dispersive mixing characteristics of Maxblend and double helical ribbons (DHR). They 

conclude that while DHR produce good bulk circulation in the tank without strong 

elongation, Maxblend provides an ideal local dispersive mixing efficiency mainly on 

the grid part of the impeller, which can induce strong elongation flow. However, 

Maxblend cannot generate enough circulation in deep laminar regime. These 

characteristics of the Maxblend have been later confirmed by IRANSHAHI et al. 

(2007) in an experimental and numerical study. Based on those observations, the 

combination of Maxblend and a double helical ribbon proposed for Superblend is 

excellent since double helical ribbons are among the best agitators in deep laminar 

regime. 

Process constraints such as fluid viscosity, heat dissipation, size of the equipment and 

rheological changes may force the operating conditions to fall in the transition flow 

regime. Agitated tanks that operate in this regime are typically designed based on 

extrapolation of information coming from laminar or turbulent regime, whichever is 

closer to the actual operating conditions. However, the hydrodynamics in transition 

regime may be considerable different than laminar or turbulent ones. Lack of 

knowledge of the hydrodynamics in this regime may lead to complications in the 

control of the process reducing the quality, yield of the final product and sometimes the 

safety of the process. The accurate numerical modeling of transition flows in agitated 

tanks is still challenging, the main obstacle being the time and memory required to 
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accurately predict the effect of the convective term (v • grad v) in the Navier-Stokes 

equations which cannot be neglected. As Re increases, the flow structures become 

more complex so that the computational grid needs to be refined to accurately capture 

the hydrodynamics. Furthermore, geometries like coaxial mixers require locally refined 

unstructured grids with high aspect ratios to properly represent the geometrical details 

such as curved, angled shapes and small gaps. Fortunately, the availability of 

affordable multi-processor makes possible to simulate the transition regime in coaxial 

mixers. Nevertheless a particular adaptation of the flow solver must be performed. This 

issue will be discussed later. 

The simulation of multiple shaft impellers rotating at different speeds is not easy to 

handle. Since the impellers rotate at different speeds, the boundary of the fluid problem 

moves its position at each time step. In this situation, a change in the frame of reference 

does not help to simplify the equations. TANGUY et al. (1997) have presented the 

three-dimensional simulation of the laminar non-Newtonian fluid flow (Re<10) in a 

coaxial mixer composed of a flat-blade and a helical ribbon by means of the virtual 

finite element method described in BERTRAND et al. (1997). THIBAULT and 

TANGUY (2002) and RIVERA et al. (2006) have used the same technique to 

reproduce the motion of impellers in turbine-anchor coaxial mixers. RUDOLPH et al. 

(2007) modelled the flow in a coaxial mixer composed of an anchor and a dual set of 

centered open impellers with help of finite volume sliding mesh technique using three 

rotating grid zones, one for each impeller. 
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The objective of this work is to numerically model the flow in the Superblend coaxial 

to understand the fluid mechanics in the vessel, the interaction between impellers and 

the macro-mixing mechanism produced when the flow evolves from deep laminar to 

transition regime. The effect of rotation mode between agitators, co-rotating or counter-

rotating, is highlighted herein. A parallel solver based on finite element domain 

decomposition techniques is used to speed-up the computations. The impellers motion 

is modeled by the combination of two techniques. The Maxblend agitator motion is 

taken into account with help of a finite element sliding mesh technique while for the 

DHR we resort to the virtual finite element method of BERTRAND et al. (1997). The 

results are validated with experimental data obtained from a pilot rig. 

The organization of the paper is as follows: in section 7.4 the Superblend coaxial mixer 

is presented and the operational conditions studied. In section 3 the numerical model is 

presented where the motion of the agitators, the parallelization procedure and the 

discretization of the convective term are described. Section 4 contains the 

hydrodynamics characterization of the Superblend mixer for co- and counter-rotation 

modes with special emphasis on the power consumption, flow patterns, pumping rates, 

shearing and the effect of the Reynolds number in these parameters. In Section 5 a 

tracer is dispersed by the flow in order to understand the mixing mechanism and 

determine a numerical mixing time. Finally, in section 6 the efficiency of the mixer is 

evaluated with help of the mixing energy. 
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7.4. Superblend coaxial mixer configuration 

A Superblend coaxial mixer with capacity of 40 L. is considered in this work. It is 

composed of a Maxblend and a DHR mounted on independent shafts. The dimensions 

of the impellers and tank are detailed in Figure 7-1. The rotation velocity of the 

Maxblend and DHR agitators was set to 100 RPM and 25 RPM, respectively. 

Newtonian fluids with viscosities in the range from 0.25 to 1400 Pas and densities 

between 1200 to 1450 kg/m3 were used as working fluids. Co-rotating and counter-

rotating modes were investigated assuming the Maxblend agitator to rotate clockwise 

while the DHR rotates both clockwise and counter-clockwise. 

Figure 7-1: Superblend dual shaft coaxial mixer geometrical dimensions in millimetres 

(Sumitomo Heavy Industries). 
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7.5. Numerical model 

In this section we present the numerical model based on a parallel fictitious domain and 

sliding mesh methods. As depicted in Figure 7-2, the sliding partition contains the 

Maxblend impeller and the fictitious domain method is employed to mimic the helical 

ribbon. 

Helical ribbon 
blade (VFEM, 

Helical ribbon 
blade (VFEM) 

Figure 7-2: Domain partitioning for sliding mesh and control points for VFEM used to 

reproduce the motion of Maxblend and helical ribbon agitators. 
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7.5.1. Finite element approximation of the Navier-Stokes 

equations 

Let us consider that the incompressible fluid flow in a stirred tank is governed by the 

Navier-Stokes equations expressed in the arbitrary Lagrangian-Eulerian (ALE) 

weighted integral formulation, namely: 

J ^ ( / ? ( v + (v -v m )g radv) + divT + gradp)dQ. =0 (7.1) 

J Q ^ d i v v d Q , =0 (7.2) 

where for Newtonian fluids: 

r = MJ (7.3) 

Y = | ( V v + (Vv) r) (7.4) 

where v stands for the velocity, \m the sliding partition velocity, v the velocity time 

derivate, p the pressure, ju the Newtonian viscosity, p the fluid density, q> and y/ the 

shape functions for the velocity and pressure, respectively. When the mesh does not 

move ( vm = 0 ) the standard formulation is obtained. In this work we have 

approximated the above equations by means of the finite element method due to its 

robustness and accuracy to handle complex geometries on unstructured grids. 
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Unstructured three-dimensional tetrahedral meshes have been utilized. The number of 

elements and nodes has been varied depending on the flow conditions and summarized 

in 

Table 7-1. The 9-node tetrahedral finite element Pi+-Po described in BERTRAND et al. 

(1997) has been chosen to approximate the spatial derivates in (7.1) and (7.2). It 

belongs to the class of discontinuous pressure elements that satisfies the Babuska-

Brezzi-Ladyzhenskaya (BBL) condition that guarantees numerical stability. The grids 

are generated utilizing elements with a maximum edge size of 0.4 mm near the high 

speed impeller to avoid high mesh Peclet numbers that could cause solution procedure 

instabilities as pointed out by ZIENKIEWICZ and TAYLOR (2000). 

Table 7-1: Number of elements and nodes utilized for each Re interval. 

Name 

Mesh 1 

Mesh 2 

Re 
range 

0.1-130 

260-520 

Number of 
elements 
492, 727 

1,210,508 

Number of nodes 

1,458,057 

3,863,664 

Avg. mesh 
size (mm) 

4.45 

3.29 

Since the flow is unsteady due the impellers rotation, the transient term (v ) in the 

Navier-Stokes equations is not zero. An implicit method second order accurate is used 

to discretize the transient term as first proposed by GEAR (1971). The number of time 

steps per Maxblend revolution for each condition is summarized in Table 7-2. 
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Table 7-2: Number of time steps per Maxblend revolution and time step size employed 

for each Re interval. 

Re range 

0.1-65 

130-260 

520 

Number of time 
steps /Maxblend 

revolution 
20 

100 

200 

Time step size (s) 

0.030 

0.006 

0.003 

7.5.2. Treatment of convection dominated flows 

As the Reynolds number increases, the convective term in the Navier-Stokes equations 

is no longer negligible and the system of equations becomes nonlinear on the velocity. 

One way to handle such type of problems is by means of the Newton-Raphson scheme. 

A different way to deal with the convection term is based on semi-implicit schemes 

presented by TUREK (1996) where the convection term is linearized by extrapolation 

in time. Semi-implicit treatment of the convective term permits solving linearized 

problems at each time step; however, the accuracy depends on the size of the time step. 

In this work, the fully implicit Newton-Raphson scheme was used for low Reynolds 

numbers (Re<100) and the semi-implicit scheme for higher Reynolds numbers 

(Re>100). In the fully implicit Newton-Raphson scheme the convective term is 

discretized from: 
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vr+1-gradv'+1 (7.5) 

In the semi-implicit scheme presented by TUREK (1996) the convection term is 

linearized by extrapolation in time as: 

v'-gradv'+1 (7.6) 

where the superscript t stands for time step. No turbulence model was used in any of 

the simulations since for stirred tanks operating in the lower part of the transition 

regime (Re < 1000) it is much better in terms of accuracy to resort to small grid sizes as 

evidenced in other works such as ZALC et al. (2001), BARTELS et al. (2002) and 

KELLY and GIGAS (2003). 

7.5.3. Motion of agitators 

A finite element sliding mesh (SM) approach was used to reproduce the motion of the 

Maxblend. Sliding mesh is a very popular technique in the finite volume framework. It 

consists in dividing the computational grid into two parts: one remains fixed (vm = 0) 

and the other one rotates at the speed of the impeller agitator (vm * 0). A critical issue 

of the methodology is to ensure that both the velocity field and the mass fluxes are 

unique across the stationary-rotating interface ( TSM ) which guarantees mass 

conservation. In order to fulfill these conditions in the formulation (7.1) and (7.2), 
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Lagrange multipliers constraints k are distributed on the interpolation nodes of the 

interface (TSM) of the stationary grid (See Figure 7-2). 

The virtual finite element method (VFEM) was first employed to reproduce the motion 

of the double helical ribbon. Originally it was used to avoid the difficulties in meshing 

in the small gap between the helical ribbon and the tank wall that a SM technique 

would require. VFEM is a very flexible approach based on fictitious domain methods 

that enables to model complex motion of objects immersed in a computational domain. 

The reader is referred to GLOWINSKI et al. (1994) and BERTRAND et al. (1997) for 

a complete description of the method. Briefly, it consists in enforcing impeller 

kinematics through a collocation method. Lagrange multipliers ( k* for VFEM) are then 

introduced to impose the velocity field (v*) over the agitator surface (T*) (See Figure 

7-2). At each time step, the position of the agitator surface (T*) is updated and a new 

fluid flow solution is calculated. 

7.5.4. Parallel fictitious domain-sliding mesh solver 

A total of 4.4M and 13.5M equations are obtained from the discretization of the 

equations of change on meshl and mesh2, respectively. To speed-up the run, a parallel 

computing approach based on non-overlapping domain decomposition is used. It 

consists in partitioning the mesh into several subgrids interconnected through 

interfaces. A spectral partitioning scheme included in Chaco software of 
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HENDRIKSON and LELAND (1993) is employed to partition the mesh. To respect the 

SM interface, the parallel partitioning strategy is performed in a segregated manner: the 

stationary subgrid is partitioned independently of the moving subdomain (Figure 7-3). 

Stationary partitions Rotating partitions 

Figure 7-3: Domain decomposition of the Superb lend coaxial mixer: 10 partitions for 

stationary subdomains and 6 partitions for rotating subdomains. 

Lagrange multipliers constraints are applied at these interfaces to ensure the continuity 

of the finite element solution. A high performance 16-processor 64 GB shared memory 

IBM P690 machine is used to perform the calculations. For each hydrodynamic 

scenario run, the number of processors employed and their corresponding CPU time are 

summarized in Table 7-3. 
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Table 7-3: Amount of processors, number of partitions in stationary/rotating 

subdomains and CPU time per time step. 

Re range 

0.1-130 

260-520 

Number of 
processors 

12 

16 

Number 
partitions 
stationary 
subdomain 

8 

10 

Number 
partitions in 

rotating 
subdomain 

4 

6 

CPU time per 
time step (min.) 

12.28 

18.45 

7.6. Hydrodynamics in Superblend coaxial mixer 

7.6.1. Power consumption 

In order to take into account the motion of both impellers, the Reynolds number is 

modified according to FARHAT et al. (2008): 

Re = PNCD8
: 

(7.7) 

where Nc is a characteristic speed defined for this type of mixing system as: 

N. 
,(N0D0+N,D,) 

(7.8) 

where Nj and Dj are respectively the speed and the diameter of the inner impeller 

(Maxblend),; and N0 and D0 are respectively the speed and the diameter of the outer 
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impeller (helical ribbon), respectively. The corresponding power number of the 

Superblend is expressed as follows: 

N P 
p PCNA+N.DJ'D? ( 7-9 ) 

From the simulated hydrodynamics scenarios, the power consumption (P) is computed 

by: 

P=JT:ydQ ( 7 1 0 ) 

Figure 7-4 shows a good agreement between the computed power consumption and the 

experimental measurements of FARHAT et al. (2008). At low Re (<10) the slope of the 

log-log plot Np-Re is -1 as expected from laminar mixing theory. From 

Figure 7-4, one obtains the following Kp power number values: in co-rotation mode: 

Kp=NpxRe = 112.01 (7.11) 

and in counter-rotation mode: 

Kp=NpxRe = 143.11 (7.12) 
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Figure 7-4: Power consumption curves of the Superblend: a) co-rotation mode, b) 

counter-rotation mode. 

Figure 7-4 reveals that the transition flow regime for the Superblend mixer starts at 

Re>10. Let us remind that the Re number value at which transition regime starts 

coincides with the fact that the slope of the power master curve departs from the 

theoretical value of-1. The values of power consumption obtained from the simulations 

showed that in the laminar and the transition regimes (Re<500) the power consumption 
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in counter-rotation mode is systematically higher than the one required in co-rotation 

mode. 

7.6.2. Flow pattern transitions 

Figure 7-5 shows the axial pumping over four planes along the height of the tank for 

both studied rotating modes. Co-rotation mode exhibits an upward flow at the vessel 

wall that becomes downward near the shaft. The opposite trend is observed for counter-

rotation mode where the flow goes downward close to the wall and upward in the 

vicinity of the shaft. 

a) b) 

Figure 7-5: Axial flow over four planes at Re=0.1: a) co-rotation mode, b) counter-

rotation mode. 
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Figure 7-6a presents the flow patterns in co-rotation mode projected over a vertical 

cross-section at the middle of the tank for different Reynolds numbers. In deep laminar 

regime (Re=0.1-1), the flow pattern remains unchanged and consists of a single main 

circulation loop. For Re=10, the paddle section of the Maxblend generates a second 

circulation loop at the lower part of the tank. In the Re range from 10 to 130 the lower 

circulation zone intensifies and the rotation center of the upper loop moves upward. For 

Re=260, the upper loop is divided into three smaller loops due the passage of the 

ribbon. For Re=520, an extra circulation loop rises close to the shaft center. 
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Re=0.1 Re=9 Re=130 Re=260 Re=520 

Figure 7-6: The evolution of the instantaneous velocity field projected over a vertical 

cross section as Re increases: a) co-rotation mode, b) counter-rotation mode. 

Figure 7-6b illustrates the flow patterns for counter-rotation mode. In contrast with the 

observations for co-rotation mode, counter-rotation mode does not exhibit a secondary 
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loop at Re=10. The main effect at this Re with respect to deep laminar regime is a 

contraction of the primary circulation zone in the upper part of the tank. In the range of 

Re=10 to 130, the flow patterns changes from a single recirculation loop system to a 

three-loop one, two above and one below the middle of the vessel. For Re=260, one of 

the circulation zones positioned at the upper part section of the tank is divided in two 

circulation zone at the lower part of the ribbon blade. Furthermore, the lower 

circulation zone is greatly intensified. For Re=520 a small loop is formed at the top the 

tank. 

Figure 7-7 presents the flow streamlines over a cross-section located at 0.25m from the 

bottom of the tank at four different time steps and Re values operating in counter-

rotation mode. The time elapsed between each position in Figure 7-7 is 0.06 s. The 

presence of many vortices is observed. The number of vortices varies depending of the 

relative position of the Maxblend with respect to the helical ribbon. In laminar regime, 

two to six vortices are created in a periodic fashion located in the region between the 

agitators (Figure 7-7a). As Re increases up to Re = 130, the number of vortices 

decreases to two, irrespective of the position of the impellers (Figure 7-7b). For 

Re>130, new vortices are developed close to the wall, at both sides of the ribbon blades 

as shown in Figure 7-7c due the strong circulation generated by the Maxblend agitator. 

These high shear vortices explain the larger energy inputs obtained in counter-rotation 

mode. For all the simulated scenarios, when the agitators co-rotate, no vortices were 
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observed. The flow is mainly tangential with a radial component that increases 

according to Re. 

Position 1 Position 2 Position 3 Position 4 

c) 

Figure 7-7: Streamlines over a horizontal cross section (time step between 

position=0.06 s) at the middle of tank for four different time steps: a) Re = 0.1, b) Re 

130, c) Re = 520. 
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7.6.3. Pumping capacity 

Mixing requires suitable amount of pumping in order to achieve a desired degree of 

homogeneity. For example in bulk polymerization process, a good circulation is 

required to avoid the formation of hot spots that can damage the quality of the product 

or degrade the safety of the process. In this work the average radial, tangential and 

axial pumping capacity has been calculated for both rotation modes with help of 100 

cross-sections located at different height of the vessel. We define the pumping number 

as: 

Nqk = ̂ r , k=6,r,z (7.13) 

The total pumping number is obtained from: 

Nq=7Nqe
2+Nqr

2+Nqz
2 (7.14) 

From the calculated values of pumping, averages are computed. Figure 7-8 presents the 

evolution of total average pumping number (Nq) for both rotation modes in the Re 

range 0.1-520. Counter-rotation shows a higher average pumping than co-rotation 

mode. In laminar regime, Nq is constant, being equal to 0.92 in co-rotation mode and 

0.93 in counter-rotation mode. In transition flow regime Nq increases as Re increases. 
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Figure 7-8: Average pumping number (Nq) with respect to Re for co- and counter-

rotation modes. 

In the range 0.1 < Re < 520 the relation between Re and Nq fits in the following 

correlations: 

In co-rotation mode: 

Nq = -2x10"' Re2+6xl(T Re+0.9213 (7.15) 

and in counter-rotation mode: 

Nq = -2x10"" Re2+1.6xlO"J Re+0.9578 (7.16) 

Figure 7-9 shows the average radial and axial pumping numbers. The average radial 

pumping exhibits an unusual behaviour in counter-rotation mode; from 0.1 to 1, it is 

constant with a value of 0.34; in the Re range of 1 to 21, it decreases from 0.34 to 0.23 
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and between Re=65 to Re=520, it increases again from 0.24 to 0.59. This is a 

consequence of the growth of the number of vortices in the horizontal cross-section 

already discussed with respect to Figure 7-7. In the range 0.1 to 260, co-rotation mode 

shows a slight increase of the radial flow going from 0.15 to 0.20. For Re=520, the 

radial flow notably increases due the strong jet flow generated by the paddle section of 

the Maxblend from 0.20 to 0.42. 
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Figure 7-9: Average components of the pumping with respect to Re for co- and 

counter-rotation modes: a) radial component, b) axial component 
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With respect to the average axial pumping, the plot shows a constant behaviour in 

laminar regime for rotating modes, 0.068 for co-rotating mode and 0.11 for counter-

rotating mode. In counter-rotating mode there is a slight drop at the beginning of the 

transition regime (from 0.11 to 0.08) with a constant increase as this regime develops, 

going from 0.08 to 0.32. It is noted that the average axial circulation for both rotation 

modes becomes very close at the beginning of transition (Re= 10-25). In co-rotation 

mode the average axial circulation reaches a plateau with a value of 0.21 for Re greater 

than 260. Figure 7-10a shows the values of axial pumping along the vessel height in co-

rotation mode. It is noted that in laminar regime, the most important axial flow region 

is in the upper section of the vessel, having its maximum at the position z/H=0.8 which 

corresponds to the grid part of the Maxblend. In the transition flow regime (Re > 10), 

two main axial flow regions that expand as Re increases are formed, one above; located 

between z/H=l to 0.42, and the other below positioned between z/H=0-0.42. In 

transition regime the maximum value of axial flow is found at the upper part of the tank 

at z/H=0.75. 



202 

Co-rotation mode Counter-rotation mode 

Nqz Nq2 

a) b) 

Figure 7-10: Axial pumping along the tank height: a) co-rotation mode, b) counter-

rotation mode. 

Figure 7-10b presents the axial pumping for counter-rotation mode. In deep laminar 

regime (Re=0.1 to 1) counter-rotation mode shows a similar trend as co-rotation mode 

having its maximum at z/H=0.8; however for the transition regime the situation is 

completely reversed. The main axial flow zone is shifted to the lower part of the tank 

with a maximum of 0.74 between z/H=0.3 to 0.4, near the paddle zone of the Maxblend. 

The axial flow on the lower part of the vessel contributes to the larger average axial 

flow shown for counter-rotation mode in Figure 7-9. Furthermore, the upper axial flow 

zone is placed between z/H=l to 0.6 showing a contraction with respect to the situation 

observed for co-rotation mode. Indeed, careful examination of Figure 7-10 shows that 
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the zone between z/H=0.1 to 0.6 is where the rotation mode has a significant impact 

over the axial pumping. 

From these results, it is noted that the shape of the Maxblend plays an important role in 

the flow patterns found in transition regime. The fact that the Maxblend is divided into 

grid and paddle parts is the main responsible for the creation of the two main axial flow 

zones observed in Figure 7-6 and Figure 7-10 located at the middle of tank 

(0.4<z/H<0.6) that coincides with the zone where the impeller changes its shape. 

7.6.4. Deformation rate 

For processes as fermentations and emulsions the deformation rate inside a mixer is a 

key parameter. It affects the quality and the mechanical properties of the end product. 

In this work we compute an average deformation norm over 100 cross-sections 

distributed at different height of the vessel for both rotating modes. The deformation 

norm is obtained by: 

\\y\\=^(y)--(y)T ow 

It is possible to define a dimensionless shear number (Ns) as: 

N s = ^ (7.18) 
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From the computed Ns values an average Ns is calculated. Figure 7-11 presents the 

variation of Ns as Re varies from laminar to transition regime. 
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Figure 7-11: Average shear number (Ns) with respect to Re for co- and counter-

rotation modes. 

It can be remarked that in any studied scenario the shear is greater in counter-rotation 

mode than in co-rotation mode, which can be explained by the already discussed 

vortexing pattern. In the range 0.1 < Re < 520 the relation between Ns and Re can be 

fitted with the following correlations: 

In co-rotation mode: 

-3 Ns = -5x10"" Re'+8.3xl0_J Re+2.437 (7.19) 

and in counter-rotation mode: 

Ns = -2xl0"5Re2+1.78xl0"'Re+2.643 (7.20) 
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Figure 7-12 presents the values of Ns for different locations along the tank height. Co-

rotating mode exhibits a homogeneous deformation rate along the tank height. This 

finding contrasts the localized deformation rates observed in RIVERA et al. (2006) for 

turbine based coaxial mixers. For counter-rotating mode, the shear rate is almost 

constant for Re < 10. For Re > 10, Ns remarkably increases and becomes very 

heterogeneous throughout the vessel. As expected, the shear rate decrease at the bottom 

of the tank due the low speed of the double helical ribbon. 

Co-rotation mode Counter-rotation mode 
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8 10 12 14 16 
Ns 

b) 

Figure 7-12: Shear number (Ns) along the tank height: a) co-rotation mode, b) counter-

rotation mode 

The correlations presented in equations (7.19) and (7.20) demonstrate that in the 

laminar regime the average shear rate is almost constant while in the transition regime, 

Ns strongly depends on Re. This finding has important consequences in the handling 

of non-Newtonian fluids, where the viscosity is a function of the shear rate distribution 
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within the tank. It helps to understand why the model proposed by METZNER and 

OTTO (1957) to estimate the effective shear rate works well in the laminar regime but 

fails in the transition one. In the transition regime, a model to approximate the shear 

rate within the tank must consider the three components of the flow (radial, tangential 

and axial) produced by the agitator and not just the tangential component. Due the flow 

complexity the development of such model using theoretical or empirical models is not 

straightforward, showing the utility of high performance CFD modeling for such task. 

7.7. Mixing 

A passive scalar was dispersed by the flow field into the vessel to determine the mixing 

time of the simulated scenarios. The simulation is based on the resolution of a pure 

advection mass transfer equation, 

£J£ + (v.Vc) = 0 (7.21) 
at 

where c corresponds to the passive scalar concentration, and v is the transient velocity 

field obtained from the simulations. It was assumed that the scalar does not affect the 

flow hydrodynamics. A Petrov-Galerkin finite element with an implicit second order 

accurate Gear scheme was used to discretize equation in (7.21). A no flux condition 

was considered as boundary condition. The injection point was located close to the 

shaft just below the top of the tank. At each time step, approximately 70K 
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concentration equations were solved by an iterative solver. The numerical details of the 

technique can be found in IRANSHAHI et al. (2007). The mixing time was defined as 

the instant when the coefficient of variation (COV) of the tracer concentration reached 

an arbitrary value. We recall the COV definition: 

COV== (7.22) 
c 

where s stands for the standard deviation and cJthe mean concentration of the tracer. 

The results were validated with help of the mixing times reported in FARHAT et al. 

(2008) obtained from acid-base decolorization technique. Their experiments show a 

constant mixing time for Re<5 with a decrease in the Re range 5 to 100. In this interval 

co-rotation exhibits smaller mixing times than counter-rotation mode. For Re greater 

than 100 they report that the mixing time is constant and equal for both rotating modes. 

Figure 7-13 presents a plot of the dimensionless mixing time obtained from our 

simulations with respect to Re. The numerical results evidence similar trends than the 

ones observed experimentally. The main discrepancy is attributed to the differences in 

the determination of the numerical mixing time with respect to colorimetric techniques 

used in the experimental rig. 
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Figure 7-13: Mixing time curves of Superblend for co- and counter-rotation modes. 

Figure 7-14 presents the COV evolution for different Re. It is observed that in some 

cases the COV of counter-rotating mode decreases faster at the beginning of each 

experiment. As time evolves, co-rotation mode curve intersects the counter-rotating 

one and finishes earlier. 
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Figure 7-14: Evolution of the coefficient of variation of the tracer concentration (COV) 

for co- and counter-rotation mode: a) Re = 0.1, b) Re = 9, c) Re=520. 

This phenomenon is explained with help of Figure 7-15 and Figure 7-16 that show 

maps of concentration in the vessel at different instants at Re =0.1. For both rotation 
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modes the mixing mechanism can be divided in two stages. In co-rotation mode the 

first step consists in the downward pumping of the tracer close to the Maxblend shaft 

vicinity without much dispersion. In contrast to that, in counter-rotation mode the 

tracer is pumped in the radial direction towards the wall of the vessel passing by the 

vortices zone where the radial flow helps to improve dispersion. It is in this stage 

where the COV of counter-rotation mode is smaller than the one in co-rotation mode. 

The second part of the mixing begins in co-rotation mode when the tracer reaches the 

bottom of the tank. There the tracer is pumped upward close to the wall greatly 

improving its dispersion. On the other hand for counter-rotation mode the process is 

different. As soon as the tracer reaches the wall, it decays close to the wall in a spiral 

fashion. Once on the bottom of the tank, the tracer is circulated upward close to the 

Maxblend shaft. It is during this period that the COV of co-rotation intersects and 

begins to decrease faster than in counter-rotation mode. 
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Figure 7-15. Tracer dispersion mechanism in co-rotation mode for different Re 

numbers: a) Re = 0.1, b) Re = 9, c) Re = 520. 
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Figure 7-16. Tracer dispersion mechanism in counter-rotation mode for different Re 

numbers: a) Re = 0.1, b) Re = 9, c) Re = 520. 
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It is peculiar that the mixing time for counter-rotation mode is not shorter than co-

rotation mode even if counter-rotation creates larger average pumping capacity as 

already shown in Figure 7-8. Figure 7-15 and Figure 7-16 evidence the dispersion 

mechanisms. At Re = 9 and 520 it shows that in counter-rotation mode the bottom of 

the tank region exhibits poor mixing because it remains isolated for the longest period 

of time. The tracer reaches the button of the tank just at the end of the mixing process, 

after moving out of the upper zone and going down close the wall. In co-rotation mode 

such segregation does not exist, the tracer being dispersed with help of recirculation 

zones, below and above the middle of the tank, which are visualized in the transition 

regime. 

7.8. Mixing efficiency 

From the mixing time and power consumption it is possible to compute a mixing 

energy as: 

E m i x =NpxTmxN c (7.23) 

Figure 7-17 presents the obtained mixing energy for both rotation modes in the Re 

range of 0.1 to 520. As expected co-rotation modes requires less energy than counter-

rotation mode in that interval. 
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modes. 

In Figure 7-18 we have plotted the ratio between the average pumping number (Nq) 

and the average shear number (Ns) with respect to the power number Np. The ratio 

gives an idea of the cost of pumping or shearing, the main parameters to successfully 

perform the mixing operation. In laminar regime, the ratios are equal in both rotation 

modes. In transition regime the cost of both variables decreases, co-rotation mode 

being more energy efficient than counter-rotation mode. 
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Nq/Np (pumping cost) b) Ns/Np (shearing cost). 

7.9. Conclusions 

Three-dimensional CFD simulations with unstructured grids comprising 1.4 to 3.8M of 

nodes of the flow in the Superblend coaxial mixer are presented. A parallel finite 

element solver is employed to accelerate the computations. To model the rotation of 

agitators, which rotates at different speeds, a hybrid approach based on the novel finite 
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element sliding mesh and fictitious domain method is used. The simulations allow 

observing the flow patterns induced by the Superblend coaxial mixer as the 

hydrodynamics evolve from deep laminar to transition regime. The flow is 

characterized by the formation of several recirculation zones above and below the 

middle of the tank. For counter-rotation mode several vortices that fluctuate in number 

as agitator move were found over a horizontal cross-section at the middle of tank. This 

phenomenon is not observed in co-rotation mode. Furthermore, the flow patterns in co-

rotation mode show an upward flow at the vessel wall that becomes downward near the 

shaft. The opposite pattern is observed for counter-rotation mode where the fluid 

moves downward close to the wall and upward in the proximity of the shaft. 

From the values of pumping and shearing along the height of the mixer, it is found that 

the average pumping and shearing numbers are higher in counter-rotation mode than in 

co-rotation mode. However, when impeller counter-rotate these variables show a 

heterogeneous distribution along the height of the tank which contrasts with more 

homogenous patterns observed in co-rotation mode. Both shearing and pumping 

numbers show constant values in the laminar regime and an important increase in the 

transition region. Furthermore it is evidenced that the main effect of rotation mode over 

the axial pumping is that in co-rotation mode the main axial flow zone is located at the 

upper part of the vessel, while in counter-rotation mode it is positioned at the lower 

region of the tank. 
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In terms of the energy requirements, it is evidenced that co-rotation mode requires less 

power consumption and exhibits equal or shorter mixing times than counter-rotating 

mode. The larger power consumption required by counter-rotating mode is caused by 

the presence of high shear vortices generated between the two coaxial impellers. It is 

shown that the longer mixing times obtained for the counter-rotation mode are caused 

by the difficulties of the tracer to reach the most important axial flow zone in the mixer 

located below the middle of the tank. Finally, based on the mixing energy concept, it is 

found that the co-rotation mode is more efficient than the counter-rotation mode. The 

energy cost to pump and shear decreases when impellers co-rotate. 
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Chapter 8. General discussion and 

conclusions 

The main objective of this thesis was to develop a finite element algorithm to model the 

transition flow regime using parallel computers. The work was divided in three parts; 

the first two steps were devoted to the development of a numerical methodology able to 

simulate the flow in stirred tanks using parallel computers. The final stage consisted in 

the application of the proposed strategy for the simulation of an agitated tank in the 

laminar and the transition flow regime. 

8.1. Parallel finite element solver 

In the first stage of the thesis, a parallelization strategy based on domain decomposition 

was presented. The distinctive characteristics of the proposed numerical methodology 

are summarized next. 

The parallel algorithm was based on a finite element non-overlapping domain 

decomposition method for the resolution of the Stokes equations. Lagrange multipliers 

were used to enforce continuity at the boundaries between subdomains. The Lagrange 

multiplier space was approximated using Dirac functions. This allowed the imposition 

of the point-wise interface constraint, and therefore eliminating the need to compute the 
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surface integrals at the parallel boundary. The velocity-pressure-Lagrange multiplier 

system of equations was solved simultaneously by a distributed memory parallel ILU 

preconditioned Krylov method which exploits the block structure of the resulting 

global matrix. A penalty function on the interface constraints equations was introduced 

to avoid the locking of the ILU factorization algorithm. 

The second step was to verify the algorithm in terms of speed-up for two benchmark 

cases (pipe and cavity flow). These tests were carried out with discontinuous pressure 

finite element approximations (P1+-P0/P2+-P1) and unstructured tetrahedral grids with 

different mesh sizes. In this step we found that: 

• As the number of partitions increase, the speed-up was not linear due to two 

factors: 

a. The overhead caused by the lack of an ideal balance load 

distribution on the processors. 

b. The increment in the number of conjugate gradient iterations 

required to reach convergence with respect to the number of 

partitions. 

• The speed-up obtained for the pipe flow case was better than the one obtained 

for the cavity flow case. This was attributed to the fact that in the latter, the 

number of iterations showed a considerable increase with respect to the number 

of partitions. 
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To improve the parallel performance, two factors were studied: 

1. the ordering of physical variables (velocity, pressure, Lagrange multipliers) 

2. the partitioning strategy 

From that study, two important findings were identified: 

• There is a specific ordering of the velocity, pressure and Lagrange multiplier 

variables that consistently gives the lower count of iterations to reach 

convergence. 

• The increase in the number of iterations of this particular algorithm can be 

controlled by the use of suitable partitioning strategies where the smoothness of 

the interface and the partition connectivity are key parameters to obtain low 

iteration counts. 

8.2. Parallel sliding mesh technique 

The second stage of the project involved the development of a technique capable to 

take into account the unsteady effects caused by the rotation of the agitators. Sliding 

mesh technique was chosen due its ability to preserve the exact shape of the moving 

boundaries. In view of the fact that the parallel solver and the sliding mesh technique 

are based on domain decomposition methods, it was a good opportunity to re-use the 

knowledge learned in the first stage of this thesis to formulate a sliding mesh technique 

based on Lagrange multipliers. Thus, a parallel sliding mesh algorithm for the finite 
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element simulation of three-dimensional Navier-Stokes equations was developed. As 

expected, the proposed methodology resembles the one utilized for the parallel solver, 

i.e., Lagrange multiplier constraints at the subdomain interfaces and parallel Krylov 

solvers. Nonetheless, extra features needed to be added to the algorithm to deal with the 

mesh motion (Lagrangian acceleration), and the convective and the unsteady terms in 

the Navier-Stokes equations. These features are summarized next. 

• Due to the fact that in the sliding mesh technique one partition moves with 

respect to the other, an arbitrary Lagrangian-Eulerian formulation was used. 

• To handle the convection, a fully nonlinear Newton-Raphson scheme and the 

semi-implicit linearization proposed by TUREK (1996) were employed. 

• To deal with the unsteady term in the Navier-Stokes equations, a second order 

accurate implicit Gear scheme was utilized. 

The method was validated in the case of concentric cylinders and stirred tank flows, 

showing excellent accuracy. Based on the results obtained from numerical experiments 

we found that: 

• The sliding mesh technique, in combination with the Newton-Raphson scheme, 

provides slightly higher accuracy than with the semi-implicit scheme, mainly 

when large time step sizes are employed. However, the semi-implicit scheme 

saves considerable amount of CPU time. 

• The sliding mesh technique is very stable, converging using large time steps, 

due to the implicit properties of the Gear time discretization scheme. As 
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expected, the technique shows a quadratic reduction in the error as the size of 

the time steps decreases. 

• The technique permits to further partition both the sliding and fixed partitions 

into a desired number of partitions, allowing efficient parallelization. 

8.3. Simulation of the hydrodynamics of a stirred tank in the 

transition regime 

Finally, the hydrodynamics and macro-mixing mechanisms of a coaxial mixer 

composed of a large paddle (Maxblend) impeller and a double helical ribbon agitator 

mounted on two independent coaxial shafts was numerically investigated. The 

simulations were based on the resolution of the Navier-Stokes equations using the 

parallel algorithms. To model the rotation of agitators, which rotates at different speeds, 

a hybrid approach based on the novel finite element sliding mesh and fictitious domain 

method was used. The more refined tetrahedral unstructured mesh contained 3.8M 

nodes yielding 13.5M equations. 

The simulations permitted to analyse the flow patterns induced by the Superblend 

coaxial mixer as the hydrodynamics evolved from deep laminar (Re=0.1) to transition 

regime (Re=520). The following conclusions were drawn: 

• As the Reynolds number increases, several recirculation zones above and below 

the middle of the tank are formed. 
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• For counter-rotation mode several vortices that vary in number as the agitators 

move were found over a horizontal cross-section at the middle of the tank. This 

phenomenon is not observed in co-rotation mode. 

• The flow patterns in co-rotation mode show an upward flow at the vessel wall 

that becomes downward near the shaft. The opposite pattern is observed in 

counter-rotation mode where the fluid moves downward close to the wall, and 

upward in the vicinity of the shaft. 

• The average pumping and shearing numbers are higher in counter-rotation 

mode than in co-rotation mode. However, when the impellers counter-rotate 

these variables show a heterogeneous distribution along the height of the tank 

which contrasts with the almost homogenous patterns observed in co-rotation 

mode. 

• Both shearing and pumping numbers show constant values in the laminar 

regime with an important increase in the transition region. This has important 

repercussions on the handling on non-Newtonian fluids where the process 

viscosity depends on the average deformation rate. 

• In co-rotation mode, the main axial flow zone is located at the upper part of the 

vessel, while in counter-rotation mode it is positioned at the lower region of the 

tank. 

• Co-rotation mode requires less power consumption and exhibits equal or shorter 

mixing times than counter-rotating mode. 
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• The larger power consumption required by counter-rotating mode is caused by 

the presence of high shear vortices generated between the two coaxial impellers. 

• The longer mixing times obtained for the counter-rotation mode are caused by 

the difficulties of the tracer to reach the most important axial flow zone in the 

mixer located below the middle of the tank. 

• Co-rotation mode is more efficient than the counter-rotation mode. The energy 

cost to pump and to shear decreases when the impellers co-rotate. 
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Chapter 9. Recommendations for future 

research 

9.1. Parallel algorithms 

The parallel algorithms developed in this thesis open a window of possibilities for 

research in fluid mechanics since they allow using higher number of elements or more 

accurate finite element approximations. CPU time results obtained in this thesis showed 

encouraging results. Several ideas for future research are given next. 

• To verify the parallel solver using massive parallel computing (hundreds or 

thousands of processors) in order to check the limits of the proposed approach. 

Furthermore, to explore the effect of the type of machine (shared or distributed 

memory) on the obtained speed-up. 

• To combine the developed parallel solver with multi-grid techniques in view of 

controlling the increase of iterations with respect to the number of subdomains. 

• To extend the domain decomposition method to allow the use of low order 

continuous pressure finite element approximations such as the MINI element in 

order to solve problems with larger number of elements. 

• To extend the methodology to multi-physics, non-Newtonian and turbulent 

problems in view of reducing the gap between the presented CFD simulations 

and industrial conditions. 
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9.2. Simulation of agitated and the transition flow regime 

As shown in the particular example given in this thesis, the hydrodynamics in the 

transition flow regime are quite different than the laminar ones. Thus, further studies 

are still required. It is still necessary to characterize the transitional flow of coaxial 

mixers in the following scenarios: 

• Different set of speeds between the inner and outer agitators. 

• Include the effect on non-Newtonian rheology. 

• Different scales of mixers to assess scale-up rules. 

• Different combination of agitators. 
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