
UNIVERSITE DE MONTREAL

EXACT ALGORITHMS FOR MINIMUM SUM-OF-SQUARES CLUSTERING

DANIEL ALOISE

DEPARTEMENT DE MATHEMATIQUES ET DE GENIE INDUSTRIEL

ECOLE POLYTECHNIQUE DE MONTREAL

THESE PRESENTEE EN VUE DE L'OBTENTION

DU DIPLOME DE PHILOSOPHIAE DOCTOR (Ph.D.)

(MATHEMATIQUES DE LTNGENIEUR)

JUIN 2009

©Daniel Aloise, 2009.

1*1 Library and Archives
Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A 0N4
Canada

Bibliotheque et
Archives Canada

Direction du
Patrimoine de I'edition

395, rue Wellington
Ottawa ON MAOISM
Canada

Your file Votre reference
ISBN: 978-0-494-53792-3
Our file Notre reference
ISBN: 978-0-494-53792-3

NOTICE: AVIS:

The author has granted a non­
exclusive license allowing Library and
Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non­
commercial purposes, in microform,
paper, electronic and/or any other
formats.

L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par I'lnternet, preter,
distribuer et vendre des theses partout dans le
monde, a des fins commerciales ou autres, sur
support microforme, papier, electronique et/ou
autres formats.

The author retains copyright
ownership and moral rights in this
thesis. Neither the thesis nor
substantial extracts from it may be
printed or otherwise reproduced
without the author's permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these. Ni
la these ni des extraits substantiels de celle-ci
ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting forms
may have been removed from this
thesis.

Conformement a la loi canadienne sur la
protection de la vie privee, quelques
formulaires secondaires ont ete enleves de
cette these.

While these forms may be included
in the document page count, their
removal does not represent any loss
of content from the thesis.

Bien que ces formulaires aient inclus dans
la pagination, il n'y aura aucun contenu
manquant.

1*1

Canada

UNIVERSITE DE MONTREAL

ECOLE POLYTECHNIQUE DE MONTREAL

Cette these intitulee:

EXACTS ALGORITHMS FOR MINIMUM SUM-OF-SQUARES CLUSTERING

presentee par: ALOISE Daniel

en vue de l'obtention du diplome de: Philosophiae Doctor

a ete dument acceptee par le jury d'examen constitue de:

M. AUDET Charles, Ph.D., president

M. ROUSSEAU Louis-Martin, Ph.D., membre et directeur de recherche

M. HANSEN Pierre, D. Agr., membre et codirecteur de recherche

M. CAPOROSSI Gilles, Ph.D., membre

M. BRUSCO Michael J., Ph.D., membre externe

IV

a Caroline et a nos reves

V

ACKNOWLEDGEMENTS

My first words are dedicated to Professor Pierre Hansen from whom I learned that beauty

will always be out there, either in the progress of science or in a Chagall's painting. More

than just a pleasure, I feel honored to have worked with him these last four years. I will

never know how to thank him properly. I was also privileged to receive scientific advice

and to benefit from the contribution of Professor Louis-Martin Rousseau. Additionally, I

would like to thank Professors Charles Audet and Michael J. Brusco whose comments have

helped improving this thesis.

I thank the Brazilian people for conceiving my Ph.D. scholarship, as well as the CAPES

agency for providing the necessary support that allowed me to focus only on my studies.

I am also grateful to the staff of the Groupe d'Etudes et de Recherche en Analyse des

Decisions (GERAD) and to that of the Ecole Polytechnique de Montreal for providing an

excellent work environment during these four years.

I thank my Quebecer friends Simon Blanchard, Simon Boivin, Julie Paquette and Marie-

Eve Rancourt, who presented to me a country full of colors and full of life. I wish to thank

as well as "los amigos" Gerardo Berbeglia and Claudio Contardo.

I also use this opportunity to thank Alysson Costa, Patricia Hammes, Gisela Lima and

Rafael Silveira for making my life happier here in Montreal. If I could, I would take all of

them back to Brazil in my luggage.

I also thank my dear parents, grandparents as well as my brother for their counsels and

for being there overseas when I called home.

Finally, I must thank the most important person in my life: Caroline, who was a

fundamental element for this accomplishment. I will always be grateful of her support,

friendship and love.

RESUME

V I

Etant donne un ensemble de n points dans l'espace Euclidien, la classification automatique

selon le critere des moindres carres consiste a partitionner cet ensemble en k classes de sorte

que la somme des carres des distances de chaque point au centroi'de de sa classe soit mini­

mum. Ceci est un probleme fondamental dans le domaine de la classification automatique

ayant de nombreuses applications dans diverses disciplines. Plusieurs heuristiques pour ce

probleme ont ete et continuent a etre proposees. Les methodes exactes de resolution sont

rares mais une variete d'approches ont ete explorees.

Le premier chapitre de la these traite de la complexity du probleme, un sujet qui merite

d'etre clarifie. On remarque un manque de rigueur de la part de certains articles qui

font des affirmations incorrectes ou non justifiees sur la difficulte du probleme, souvent

en l'associant avec d'autres problemes de la classification automatique. Recenment, une

preuve de NP-completude pour le probleme a ete proposee par Drineas, Frieze, Kanan,

Vempala et Vinay dans Machine Learning, 2004. Cependant, on montre que cette preuve

n'est pas correcte. Une courte preuve alternative, due a Amit Deshpande et Preyas Popat,

est done fournie.

Les trois chapitres suivants de la these etudient trois approaches parmi les plus im-

portantes pour la resolution exacte du probleme. Au Chapitre 2, nous etudions un article

recent de Sherali et Desai dans le Journal of Global Optimization, 2005. Dans cet article les

auteurs proposent un algorithme de separation et evaluation base sur une reformulation-

linearisation du probleme, declarant avoir resolu des problemes ayant jusqu'a 1000 points.

Nous etudions leur algorithme en detail, en reproduisant une partie de leurs experiences

de calcul. Toutefois, notre implantation a donne des temps de calcul qui se sont reveles

etre beaucoup plus eleves. En effet, pour deux ensembles de donnees de la litterature,

seuls des exemples ayant jusqu'a 20 points ont pu etre resolus en moins de 10 heures de

temps de calcul. Les raisons possibles de cette grande difference sont discutees. On explore

egalement l'effet d'une regie pour rompre la symetrie due a Plastria {European Journal of

Vl l

Operational Research, 2002) et de l'introduction des inegalites valides appartenant a la

fermeture convexe en deux dimensions des points qui peuvent appartenir a chaque classe.

Au Chapitre 3, on etudie l'article de Peng et Xia dans Studies in Fuziness and Soft

Computing, 2005 sur Pequivalence entre la programmation 0-1 semi-dennie positive et la

classification automatique selon le critere de la moindre somme des carres. En vue de la

croissance rapide de l'ensemble de contraintes dans leur modele, les auteurs n'ont fourni

qu'une esquisse d'un algorithme pour resoudre le probleme de fagon exacte. On a done

developpe un algorihme de branchement et coupes en suivant leurs lignes directrices mais

en n'ajoutant que l'ensemble de contraintes violees. L'algorithme obtient des solutions

exactes avec des temps de calculs comparables a ceux des meilleures methodes exactes

precedemment trouvees dans la litterature.

Finalement, le Chapitre 4 est dedie a l'approche par generation de colonnes due a du

Merle, Hansen, Jaumard et Mladenovic {SIAM Journal on Scientific Computing, 2000) et

a ses ameliorations. L'etape cruciale est la resolution du probleme auxiliaire qui consiste

a trouver une colonne avec un cout reduit negatif. Nous proposons une nouvelle maniere

de resoudre ce probleme auxiliaire, basee sur des arguments geometriques. Ceci ameliore

grandement Pefficacite de l'algorithme entier et permet la resolution exacte d'exemples

dans le plan ayant jusqu'a n = 2392 points et k > 2 classes, e'est-a-dire, 10 fois plus

que precedemment. De plus, des exemples allant jusqu'a 19 dimensions et ayant jusqu'a

n = 2310 points sont resolus de fagon exacte dans le cas ou beaucoup de classes sont

utilisees.

ABSTRACT

Vl l l

Minimum sum-of-squares clustering (MSSC) consists in, given a set of n entities associated

with points in s-dimensional Euclidean space, partitioning this set into k clusters in such

a way that the sum of squared distances from each entity to the centroid of its cluster

is minimum. This much studied problem is a basic one in cluster analysis and has ap­

plication in numerous and diverse fields. Many heuristic algorithms for MSSC have been

and continue to be regularly proposed. Exact solution methods are rare but a variety of

approaches have been explored.

The first chapter of the thesis concerns complexity analysis of MSSC, a topic in which

there seems to have been much confusion. We note indeed that several dozen papers have

made incorrect or unjustified statements about NP-hardness of MSSC, usually confusing

it with some other clustering problem. Recently, a proof was proposed by Drineas, Frieze,

Kanan, Vempala and Vinay in Machine Learning, 2004. Unfortunately, as shown in this

chapter, this proof is not correct. An alternate short proof, due to Amit Deshpande and

Preyas Popat, is then provided.

The next three chapters of the thesis consider three of the main approaches to exact

solution of MSSC. In chapter 2 we study a recent paper of Sherali and Desai in Journal of

Global Optimization, 2005. In this paper the authors proposed a reformulation-linearization

based branch-and-bound algorithm for this problem, claiming to solve instances with up

to 1000 points. We investigated their method in further detail, reproducing some of their

computational experiments. However, our computational times turn out to be drastically

larger. Indeed, for two data sets from the literature only instances with up to 20 points

could be solved in less than 10 hours of computer time. Possible reasons for this discrepancy

are discussed. The effect of a symmetry breaking rule due to Plastria (European Journal

of Operational Research, 2002) and of the introduction of valid inequalities of the convex

hull of points in two dimensions which may belong to each cluster is also explored.

IX

In chapter 3, we study the work of Peng and Xia (Studies in Fuziness and Soft Com­

puting, 2005) on a 0-1 semidefinite programming (0-1 SDP) reformulation of MSSC. In

view of the rapid increase in size of the set of constraints in their model, the authors only

sketched an algorithm to exactly solve the problem. We then developed a branch-and-cut

algorithm following those lines but adding only sets of violated constraints. The algorithm

obtains exact solutions with computing times comparable with those of the best exact

method previously found in the literature.

Finally, Chapter 4 is devoted to the column generation approach of du Merle, Hansen,

Jaumard and Mladenovic (SIAM Journal on Scientific Computing, 2000) and its improve­

ments. The bottleneck of that algorithm is the resolution of the auxiliary problem of

finding a column with negative reduced cost. We propose a new way to solve this auxiliary

problem based on geometric arguments. This greatly improves the efficiency of the whole

algorithm and leads to exact solution of instances in the plane with up to n = 2392 enti­

ties and k > 2 clusters, i.e., more than 10 times as much as previously done. Moreover,

instances in up to 19 dimensions and with up to n = 2310 entities could be solved exactly

when there are many clusters.

X

CONDENSE EN FRANQAIS

La classification automatique est un outil puissant pour l'analyse de donnees. Etant donne

un ensemble d'entites, elle consiste a trouver des sous-ensembles, appeles classes, qui sont

homogenes et/ou bien separes.

Un des plus importants types de classification automatique est la partition, ou etant

donne un ensemble O — {01,02, • • • ,on} avec n entites, on cherche a trouver la partition

Pk = {Ci, C2, • . . , Cfc} de O en k classes telle que

• Cj^<D j = l,...,k;

• ch fl ch = 0 3u h = 1, • • •, k et jx ^ 3% et

. \JC3 = 0.
i= i

qui optimise un critere donne.

Plusieurs criteres ont deja ete utilises dans la litterature pour exprimer l'homogeneite

et/ou la separation des classes qui doivent etres trouvees (voir e.g. [53]). Un critere cle

est celui de la moindre somme des carres des distances Euclidiennes de chaque point au

centre de sa classe. Le probleme de trouver la partition optimale des entites selon ce

critere est denote par MSSC (a partir de l'anglais Minimum Sum-of-Squares Clustering).

L'heuristique classique fc-means [79] resout approximativement MSSC. Cet algorithme a ete

considere par IEEE Computer Society comme le deuxieme plus influent dans la comunnaute

d'exploitation de donnees [125].

Le partitionnement selon le critere de la moindre somme des carres des distances Eu­

clidiennes a plusieurs proprietes. Voici certaines d'entre elles:

(i) II exprime l'homogeneite et la separation comme explique dans [111], pp. 60-61.

XI

(ii) Etant donne les affectations, les centres des classes sont situes a leurs centroides,

du aux conditions d'optimalite du premier ordre. Ceux-ci sont determines par une

expression simple.

(iii) Etant donne les centroides, chaque entite est affectee a son centro'ide le plus pres en

raison de l'optimalite locale. Ceci n'exige que quelques comparaisons.

(iv) Les classes obtenues sont spheroi'dales du fait de la minimisation des carres des

distances. Cette propriety peut etre souhaitable ou non, selon le probleme etudie.

Une formulation mathematique pour MSSC est donnee par:

n k

™w
n E£xyllp<-J/jll2

2 = 1 J = l

sujet a

k

'Y^Xij = 1 Vi = 1 , . . . ,n

Xij G {0,1} Vi = l , . . . , n ;V j = l , . . . , fc.

Les n entites {01,02,..., on} a etre classifiees sont situees aux points Pi = (p[, r = 1 , . . . , s)

de W pour i = l , . . . , n ; k centres de classes doivent etre situes a des points inconnus

Dj G Rs pour j = 1 , . . . , k; la norme || • || denote la distance Euclidienne entre les deux

points de l'argument dans l'espace a s dimensions considere. Les variables de decision xtj

expriment l'affectation de l'entite ô a la classe j . On assume que le nombre d'entites n

est plus grand que k, autrement le probleme est resolu trivialement en situant un centre

de classe a la position de chaque entite.

Les proprietes mathematiques du probleme sont abordees dans les livres de Spath [111],

Mirkin [88] et Kogan [69]. Plusieurs centaines d'articles ont ete ecrits sur des heuristiques

visant a resoudre MSSC et plusieurs milliers sur des applications dans divers domaines (voir

e.g. la synthese d'un demi-siecle faite par Steinley [113]). Les principales heuristiques pour

MSSC comprennent la methode j-means de Hansen et Mladenovic [55], la methode global

A;-means de Likas, Vlassis and Verbeek [77], qui a ete analysee dans [58] et puis modifiee

Xl l

par Bagirov [6], l'algorithme d'optimisation non-lisse de Bagirov and Yearwood [7], les

algorithmes d'optimisation lisse attribues a Teboulle et Kogan [116] et Xavier et al. [126],

les approaches metaheuristiques developpees dans [85, 93, 92, 115, 72, 73], la methode

de partionnement par generation de colonnes restrictive de Christou [15], et l'heuristique

D.C. de An, Belgueti et Tao [3]. Une comparison systematique de douze heuristiques pour

MSSC a ete effectuee par Brusco et Steinley dans [13].

Les methodes exactes sont beaucoup moins nombreuses que les heuristiques. Au meilleur

de notre connaissance, il y a moins d'une douzaine d'articles sur le sujet. En 1973, Diehr

a declare dans [23] (p. 17) que "Les chercheurs doivent garder a I'esprit que dans la plupart

des cas les buts de la classification automatique ne justifient pas les temps de calcul neces-

saires pour trouver ou verifier la solution optimale" (traduction libre de l'anglais). Cette

declaration, cependant, ne prend pas en compte trois faits:

• Les methodes exactes sont largement utilisees maintenant pour ajuster ou pour de-

couvrir des ecueils dans les methodes heuristiques ou bien pour suggerer des nouvelles

approches;

• La performance des ordinateurs s'est beaucoup amelioree au cours des dernieres de-

cennies;

• La programmation mathematique a beaucoup evolue au cours des trente dernieres

annees.

Du point de vue de la programmation mathematique, selon un rapporteur d'un de nos

articles, "La classification automatique selon le critere de la moindre somme des carres des

distances est un probleme stimulant d'optimisation globale ." (traduction libre de l'anglais)

Pour k > 2 en une dimension, MSSC peut etre resolu en temps 0(n3) [111]. Si k et la

dimension s sont fixes, le probleme peut etre resolu en temps 0(nsk+l) [61], ce qui peut

etre tres couteux meme pour des exemples dans le plan.

Plusieurs affirmations incorrectes ont ete enoncees quant au caractere NP-complet du

probleme pour une dimension Euclidienne s quelconque. Une source frequente de confusion

Xlll

est la lecture trop rapide d'un article de Briicker [11] ou l'auteur prouve la NP-completude

de plusieurs problemes de la classification automatique, quoique rien ne soit dit a propos

de MSSC. De plus, une preuve de NP-completude de Garey, Johnson et Witsenhausen [44]

est applicable seulement au probleme de quantification. Ce dernier est en fait un probleme

particulier de fc-mediane ou chaque centre de classe est choisi a partir d'un ensemble fini

de positions.

Recemment, une preuve de NP-completude pour MSSC avec k = 2 en s dimensions a

ete donnee par Drineas et al. dans Machine Learning 56, 9-33, 2004. On montre que cette

preuve est, toutefois, invalide. Une courte preuve alternative, due a Deshpande et Popat

[20], est fournie via une reduction du probleme de la coupe la plus dense. Plus recemment,

Mahajan, Nimbhorkar et Varadarajan [80] ont prouve que MSSC est NP-complet pour des

valeurs k quelconques meme dans le plan.

L'objectif de cette these est double: d'un cote estimer l'etat de Part concernant les

methodes exactes pour MSSC et d'autres parts d'ameliorer autant que possible ces meth-

odes.

Recemment, Sherali et Desai [108] ont propose un algorithme de separation et evaluation

base sur une reformulation lineaire du probleme. Ce modele est obtenu apres avoir genere

de nouvelles contraintes via l'emploi de multiplications de contraintes existantes et en

redefinissant quelques variables.

Sherali et Desai [108] ont rapporte des resultats de calculs pour des grands exemples

ayant jusqu'a 1000 points en 8 dimensions. Toutefois, quelques details ont merite d'etre

investigues. En particulier, les valeurs d'ecart rapportees entre les bornes inferieures et

superieures semblent etre trop grandes. De ce fait, le nombre de noeuds evalue par la

methode de separation et devaluation devrait etre eleve, mais demeure modere. De plus,

les auteurs resolvent un petit exemple pour lequel l'algorithme /c-means donne un resultat

avec une valeur deux fois plus grande que celle obtenue par l'algorithme de separation et

d'evaluation, ce qui semble a priori peu probable.

On a essaye de reproduire de tels resultats sans succes. A cet effet, on a implante

l'algorithme de Sherali and Desai en suivant autant que possible la description donnee

XIV

dans leur article. On a considere de petits bases de donnees obtenues en selectionant

des sous-ensembles de Pensemble de donnees de Fisher avec 150 entites [36]. On a ainsi

observe que les temps de calculs obtenus par notre implantation pour la resolution d'un

petit exemple avec 20 entites etait deja assez grands (c'est-a-dire, plus de 6 heures de

calculs sur un Pentium IV 2 GHz). On a discute avec Sherali et Desai a propos des raisons

possibles d'une telle difference entre leurs resultats et les notres. Aucune explication n'a

pu etre donnee puisque " Malheureusement, il [Jitamitra Desai] semble avoir supprime ses

codes et ses donnees" [106] (traduction libre de l'anglais). L'explication la plus probable

semble etre que les exemples de tests utilises par Sherali et Desai etaient trop faciles a

resoudre (c'est-a-dire, les classes etaient tres bien separees).

Quoique les resultats de Sherali et Desai [108] n'ont pas pu etre reproduits, on a evalue

l'interet de differentes regies pour eliminer la symmetric dans leur modele. En particulier,

Plastria a propose dans [100] d'eliminer la symmetrie en n'acceptant que des solutions

lexicographiques minimales, c'est-a-dire, tel que chaque classe j contient le point d'index

le plus bas n'appartenant a aucune classe d'index 1 , . . . , j — 1. Selon cette propriete, il

n'y a qu'une seule fagon d'indexer les classes. Cette regie d'elimination de la symmetrie

semble etre meilleure que celles proposes dans [108], a la fois en termes de reduction du

nombre de noeuds ainsi qu'en termes de temps de calculs.

De plus, on a etudie l'impact de l'ajout des contraintes valides obtenues a partir de

l'enveloppe convexe de points qui peuvent etre affectes a une classe. Dans [108], les au-

teurs utilisent plutot un hyperrectangle H(Ij) qui inclut l'enveloppe convexe de points qui

peuvent encore etre affectes a une classe donnee j , denote Ij, pour chaque j = 1 , . . . , k:

H{Ij) = {y3 : arj <y] < f3],r = 1, . . . ,«},

ou, arj = min{p[: % € Ij} et /?J = max{p[: i €. Ij}, Vr = 1 , . . . , s.

Puisque chaque paire de points extremes de l'enveloppe convexe peut definir un demi-

espace dans le plan euclidien, les coordonnees des centroi'des sont confinees a etre dans le

polyhedre defini par l'intersection de ces demi-espaces. Malheureusement, le nombre de

contraintes a la sortie est sensible au nombre de points extremes donnes par l'algorithme de

XV

Graham [46]. Un nombre O(kn) de contraintes sont necessaires dans le modele quand les

hyperrectangles sont utilises, tandis que ce nombre augmente a 0(kn2) avec les inegalites

de l'enveloppe convexe, puisque toutes les entites peuvent etre des points extremes de

l'enveloppe convexe. Les experiences de calculs realisees pour le cas a deux dimensions ont

montre que le nombre de noeuds de l'arbre de resolution est reduit. Cependant, une telle

reduction n'amene pas necessairement une reduction du temp de calcul. En effet, cela est

du a l'augmentation du nombre de contraintes qui implique que la resolution du modele

est plus couteuse.

La tache la plus difficile au moment de developper des methodes exactes pour MSSC

est celle de calculer de bonnes bornes inferieures dans un temps de calculs raisonable.

Recemment, Peng and Xia [98] ont utilise des operations matricielles pour modeliser le

probleme comme un programme 0-1 semi-defini positif (0-1 SDP) de la fagon suivante:

min Tr(WpW^{I - Z))

sujet a

Ze = e,Tr{Z) = k,

Z > 0, Z = ZT, Z2 = Z.

ou Wp e l " x s est la matrice dont la j-eme ligne est le vecteur pi. Ceci peut ensuite etre

relaxe et donner un probleme SDP convexe ou un programme lineaire.

En utilisant les resultats de Peng and Xia [98], on propose un algorithme de branchement

et coupes afin d'exploiter de fagon efficiente les bornes inferieures obtenues a partir de la

relaxation lineaire du modele 0-1 SDP. Cette relaxation consiste a remplacer les contraintes

Z = Z2. Peng and Xia [98] prouvent que les inegalites suivantes sont satisfaites par toutes

les solutions de leur formulation.

Zij < Za v Z j j

Zij + Zie < Za + Zjt Vi, j , £

XVI

En vue de la croissance rapide de l'ensemble de contraintes dans leur modele, les auteurs

n'ont fourni qu'une esquisse d'un algorithme pour resoudre le probleme de facon exacte.

On a done developpe un algorihme de branchement et coupes en suivant leurs lignes direc­

trices, mais en n'ajoutant que l'ensemble de contraintes violees. L'algorithme obtient des

solutions exactes avec des temps de calculs comparables a ceux des meilleures methodes

exactes precedemment trouvees dans la litterature, e'est-a-dire, 1'algorithme de generation

de colonnes propose par du Merle et al. [28] et l'algorithme de separation et devaluation

repetitive de Brusco [12]. Plus precisement, l'algorithme de branchement et coupes base sur

la relaxation lineaire du modele 0-1 SDP obtient des solutions exactes pour des exemples

avec n = 202 entites et k = 9 classes dans le plan en moins de 12 heures.

Une methode de generation de colonnes pour MSSC a ete proposee par du Merle et

al. dans [28]. En effet, les problemes de partitionnement dans le domaine de la classifi­

cation automatique peuvent aussi etre formules mathematiquement en considerant toutes

les classes possibles. Soit une classe Ct pour laquelle

o-it = <
1 si l'entite Oj appartient a la classe Ct

0 sinon,

et soit yt le centroide des points pi tels que an = 1. Ainsi, le cout ct de la classe Ct peut

etre ecrit par:
n

ct = ^2\\Pi -yt\\2au-
i = i

Une formulation alternative pour MSSC est done donnee par

min] P ctzt

t£T

sujet a

^2aitzt = l Vi = l, . . . ,n
teT

J2zt = k

teT

zte {0,1} 'iter,

XV11

ou T = { 1 , . . . , 2™ — 1}. Les variables zt sont egales a 1 si la classe Ct est dans la partition

optimale et egales 0 sinon. Le premier ensemble de contraintes permet d'assurer que chaque

entite appartient a une classe, et la contrainte suivante impose que la partition optimale

contienne exactement k classes.

Cette formulation correspond a un probleme de partitionnement d'ensembles de grande

taille avec une contrainte additionelle dont le nombre des variables est exponentiel en termes

du nombre n d'entites. La methode de generation de colonnes proposee dans [28] travaille

avec un petit sous-ensemble de colonnes du modele genere iterativement. Elle a resolu pour

la premiere fois des exemples de taille moyenne (c'est-a-dire, des exemples avec 100-200

entites), incluant l'ensemble de donnees de Fisher avec 150 entites [36]. Le probleme maitre

est resolu par la methode de points interieurs (ACCPM, Analytical Center Cutting Plane

Method) de Goffin, Haurie et Vial [45]. Le probleme auxiliaire dont l'objectif est de trouver

une colonne avec un cout reduit negatif est exprime comme un programme hyperbolique

en variables 0-1. Ce probleme est resolu par un algorithme inspire de celui de Dinkelbach

[24] qui utilise lui meme un algorithme de separation et devaluation pour resoudre des

problemes d'optimisation de fonctions quadratiques en variables 0-1 sans contraintes. Un

autre algorithme de separation et devaluation applique au probleme maitre conduit, si

necessaire, A une solution entiere. Finalement, des heuristiques de recherche a voisinages

variables (VNS) sont utilisees a la fois au debut pour trouver une bonne solution initiale

avec des bornes sur les variables duales, ainsi que dans la resolution du probleme auxiliaire

afin de l'accelerer. La partie la plus couteuse de Talgorithme reside dans la resolution de

son probleme auxiliaire qui est exprime par:

n

7r*=cr+ min Y^(||pi - yv\? - \)vi,
yveM.s,v€3n t-*1

i = l

ou yv qui denote le centro'ide de points pi pour lequels Vi = 1. Si IT* < 0, alors la solution

optimale v* pour le probleme ci-dessus est ajoutee sous la forme d'une colonne au probleme

de partitionnement d'ensembles avec sa variable associee. Autrement, le probleme maitre

relaxe a deja ete resolu.

XV111

On propose une nouvelle facon de resoudre le probleme auxiliaire basee sur des argu­

ments geometriques. Ce probleme peut etre vu par analogie comme une minimisation de la

somme de fonctions egales aux distances au carre de chaque centre de classe yv a chacune

des entites, mais avec une limite pour chacune de ces distances, apres laquelle la fonction

correspondante n'augmente plus. En effet, etant donne une localisation yv, V{ est egal a 1

si \\Pi ~ Vv\\2 < Aj, et a 0 sinon. Geometriquement, dans le plan, ceci est equivalent a la

condition ou Uj = 1 si yv appartient au disque de rayon y/Xi ayant pi comme centre, sinon

Vi = 0.

L'adaptation et la complementation d'un algorithme enumeratif de Drezner, Mehrez

et Wesolowsky [26] permettent la resolution du probleme auxiliaire avant d'effectuer un

branchement en temps 0(n3). Si un branchement est necessaire, la regie de branchement

classique de Ryan et Foster [104] est appliquee.

A plusieurs dimensions, remuneration serait trop longue quoique la propriety de base

peut encore etre exploitee. Une condition suffisante pour que deux entites ne soient pas

dans la meme classe est utilisee afin de remplacer des coefficients dans le probleme non-

contraint quadratique en variables 0-1 par des valeurs arbitrairement grandes. Ensuite,

un algorithme de separation et devaluation est applique dans un schema de suppresion de

noeuds. A cet effet, un graphe est construit ayant des noeuds associes aux entites et des

aretes associees a des paires d'entites qui ne sont pas trop eloignees l'une de l'autre, c'est-

a-dire pour lesquelles les hyperspheres de rayon \/A7 et -y/Aj s'intersectent. Recursivement,

un noeud de degre minimal dans ce graphe est selectionne et le sous-graphe induit par ses

noeuds adjacents est examine. Le probleme quadratique en variables 0-1 sans contraintes

associe a ce sous-graphe est resolu et la solution optimale sauvegardee dans le cas ou elle

est meilleure que la solution courante.

L'application de ces nouvelles regies a conduit a un progres substantiel. En effet, des

exemples dans le plan ayant jusqu'a n = 2392 entites et k > 2 ont pu etre resolus en de

temps de calculs (longs, mais encore) raisonables. De plus, des exemples allant jusqu'a 19

dimensions et ayant jusqu'a n = 2310 points ont pu etre resolus de fagon exacte dans le

cas de Putilisation de plusieurs classes.

XIX

Pour conclure, les approches exactes de resolution de MSSC peuvent etre separees en

trois families:

1. celles qui resolvent de petits exemples (n « 25), c'est a dire la programmation

dynamique non-serielle [119], la programmation concave [127] et la technique de

reformulation-linearisation [108].

2. celles qui resolvent des exemples de taille moyenne (n RS 100 — 200), c'est-a-dire la

methode de separation et devaluation repetitive [12], la methode de branchement et

coupes basee sur le modele de programmation semi-definie positive 0-1 [2, 98] et la

methode de generation de colonnes sans les ameliorations geometriques [28].

3. celle qui peut resoudre des problemes de grande taille (n sa 2000), c'est-a-dire la

methode de generation de colonnes amelioree presentee dans cette these.

D'une fagon generale, on peut considerer nos resultats comme une preuve de la realisa-

bilite de l'approche par generation de colonnes pour resoudre des problemes appartenant

au domaine de la classification automatique. II y a plusieurs criteres proposes dans la

litterature pour exprimer l'homogeneite et/ou la separation des classes. Un projet de

construction d'un progiciel de generation de colonnes pour la classification automatique,

impliquant plusieurs professeurs du GERAD ainsi que plusieurs etudiants, est actuelle-

ment en cours d'experimentation. Certainement, le succes du progiciel sur un ou plusieurs

criteres dependra grandement de deux facteurs: la facilite de resolution du probleme aux-

iliaire et la presence d'un petit ou grand saut de dualite. Plus d'effort algorithmique et

d'implementation seraient necessaires. Les criteres qui seront etudies sont des criteres

recemment proposes dans les communautes de Pexploitation de donnees et de la physique:

e.g. la coupe par ratio [50], la coupe normalisee [109] et la modularite [17].

De plus, quoique on ait mis l'accent sur une approche basee sur une methode de points

interieurs, (c'est-a-dire ACCPM et generation de colonnes) la programmation lineaire sta-

bilisee [29] pourrait encore etre un concurrent en particulier si elle est combinee avec les

recents travaux de [31, 32] sur le traitement efficace de la degenerescence.

XX

TABLE OF CONTENTS

ACKNOWLEDGEMENTS v

RESUME vi

ABSTRACT viii

CONDENSE EN FRANQAIS x

TABLE OF CONTENTS xxi

LIST OF TABLES xxiii

LIST OF FIGURES xxiv

INTRODUCTION 1

CHAPITRE 1 : NP-HARDNESS OF EUCLIDEAN SUM-OF-SQUARES

CLUSTERING 7

1.1 Computational complexity 7

1.2 An incorrect reduction from the fc-section problem 9

1.3 A new proof by reduction from the densest cut problem 11

CHAPITRE 2 : EVALUATING A BRANCH-AND-BOUND RLT-BASED

ALGORITHM FOR MINIMUM SUM-OF-SQUARES CLUS­

TERING 13

2.1 Reformulation-Linearization Technique for the MSSC 13

2.1.1 Dealing with symmetry 15

2.2 Branch-and-bound for the MSSC 18

2.3 An attempt at reproducing computational results 20

2.4 Breaking symmetry and convex hull inequalities 24

XXI

2.5 Concluding remarks 30

CHAPITRE 3 : A BRANCH-AND-CUT SDP-BASED ALGORITHM FOR

MINIMUM SUM-OF-SQUARES CLUSTERING 32

3.1 Equivalence of MSSC to 0-1 SDP 32

3.1.1 Valid inequalities for the 0-1 SDP formulation 34

3.2 A branch-and-cut algorithm for the 0-1 SDP formulation 35

3.3 Computational experiments 37

CHAPITRE 4 : AN IMPROVED COLUMN GENERATION ALGORITHM

FOR MINIMUM SUM-OF-SQUARES CLUSTERING . 43

4.1 Column generation algorithm revisited 43

4.1.1 Auxiliary problem 45

4.2 A geometric approach 47

4.2.1 Branching 52

4.3 Generalization to the Euclidean space 56

4.3.1 Branching 57

4.3.2 Solving by cliques 58

4.4 Computational results 58

4.4.1 Results in the plane 59

4.4.2 Results in general Euclidean space 64

4.4.3 Comparison of approaches in the plane and in general Euclidean space 67

4.5 Conclusions 67

CONCLUSION 70

BIBLIOGRAPHY 74

XXII

LIST OF TABLES

Table 2.1 Coordinates of 10 points in the Euclidean space 20

Table 2.2 Relative results of our branch-and-bound implementation versus the

fc-means algorithm in three benchmark data sets with three and five

cluster centers 21

Table 2.3 Results on data sets generated from 22 German towns coordinates

presented in [111] and from the Fisher's 150 Iris presented in [36] . . 23

Table 2.4 CPU times in seconds obtained by our implementation and by the

commercial softwares CPLEX 8.1 and CPLEX 10.1 with default set­

tings 23

Table 2.5 Results obtained for different symmetry breaking rules for the Ger­

man towns data sets with three cluster centers 27

Table 2.6 Initial upper bounds UB'Q obtained by algorithms Symm2 and Symm3_F

for different number of clusters 28

Table 2.7 Comparison in terms of the number of branch-and-bound nodes solved

by two implementations with (Symm3_F+CH) and without (Symm3_F)

the convex hull inequalities 29

Table 2.8 Comparison in terms of initial upper bounds obtained by two im­

plementations with (Symm3_F+CH) and without (Symm3_F) the

convex hull inequalities 29

Table 2.9 Comparison in terms of CPU times in seconds used by two implemen­

tations with (Symm3_F+CH) and without (Symm3_F) the convex

hull inequalities 30

Table 3.1 Results for Ruspini's data set 39

Table 3.2 Results for Spath's data set 39

xxiii

Table 3.3 Results for Fisher's data set 40

Table 3.4 Results for HATCO's data set 40

Table 3.5 Results for Grotschel and Holland's data set 42

Table 4.1 List of data sets 59

Table 4.2 Results for Ruspini data set with 75 entities 60

Table 4.3 Results for Grotschel and Holland's data set with 202 entities 61

Table 4.4 Results for Grotschel and Holland's data set with 666 entities 62

Table 4.5 Results for Reinelt's drilling data set with 1060 entities 62

Table 4.6 Results for Padberg and Rinaldi's data set with 2392 entities for

2 < k < 10 63

Table 4.7 Results for Padberg and Rinaldi's data set with 2392 entities for

large values of A; 63

Table 4.8 Results for Fisher's Iris with 150 entities in 4 dimensions 64

Table 4.9 Results for the Glass identification data set with 214 entities in 9

dimensions 65

Table 4.10 Results for the Body measurements data set with 507 entities in 5

dimensions 65

Table 4.11 Results for the Telugu Indian vowel sounds data set with 871 entities

in 3 dimensions 66

Table 4.12 Results for the Concrete compressive strength data set with 1030

entities in 9 dimensions 66

Table 4.13 Results for the Image segmentation data set with 2310 entities in 19

dimensions 67

LIST OF FIGURES

Figure 1.1 Transformation of a graph into an MSSC instance as defined in [27] 10

Figure 2.1 Two symmetric solutions allowed by the second strategy 17

Figure 2.2 /c-means solution as provided by Sherali and Desai (2005) and k-

means actual local optimum 22

Figure 4.1 Configuration of convex regions experimentally obtained 50

Figure 4.2 Percentage of CPU time spent by algorithm accpm-a2 in excess of

the CPU time spent by algorithm accpm-al for instances of the

Reinelt's planar data set with 1060 entities 68

INTRODUCTION

1

Clustering is a basic chapter in data analysis. It addresses the following problem: given

a set of entities find subsets, called clusters, which are homogeneous and/or well sepa­

rated (e.g. Hartigan [59]; Jain, Murty and Flynn [62]; Mirkin [87]). Homogeneity means

that entities in the same cluster must be similar and separation that entities in different

clusters must differ one from another.

One of the most used types of clustering is partitioning, where given a set O =

{o\,02,..., on} of n entities, we look for a partition P^ = {C\, C%,..., C/J of O into k

clusters such that

. Cj•.? 0 j = l,...,k;

• Ch f| Cj2 = 0 ji, j 2 = 1 , . . . , k and ji ± j 2 ; and

• \JCj = O.
3 = 1

Many different criteria are used in the literature to express homogeneity and/or sep­

aration of the clusters to be found (see [53] for a survey). For instance, one may desire

to maximize the split of a partition, i.e., the minimum dissimilarity between two entities

assigned to two different clusters [19, 37], or to minimize the diameter, i.e., the largest

dissimilarity between a pair of entities in the same cluster [52]. Among these criteria, a

frequently used one is the minimum sum of squared Euclidean distances from each entity

to the centroid of the cluster to which it belongs. Partitioning n entities into k clusters

with this criterion is known as minimum sum-of-squares clustering (MSSC).

For k > 2 and one dimensional data, MSSC can be solved in 0{n3) time [111]. The

problem is NP-hard in the plane for general values of k [80]. In general dimension, MSSC

is NP-hard even for k = 2 [1]. If both k and dimension s are fixed, the problem can be

solved in 0(nsk+1) time [61], which may be very time-consuming even for instances in the

plane.

2

MSSC has several properties:

(i) It expresses both homogeneity and separation as explained in Spath's book [111],

pages 60-61;

(ii) Given the assignments, the cluster centers are located in their centroids, due to

first order optimality conditions. These are determined by a simple closed-form

expression;

(iii) Given the centroids, each entity is assigned to its closest centroid, due to local opti­

mality. This just requires a few comparisons;

(iv) Clusters obtained are spheroidal due to minimization of squared Euclidean distances.

This may be desirable or not, depending on the problem considered.

A mathematical programming formulation of MSSC is as follows:

n k

subject to

k

^Xij = 1 Vi = 1, . . . ,n (1)

Xij 6 {0,1} Vi = 1 , . . . , n; Vj = 1 , . . . , k.

The n entities {01,02,..., on} to be clustered are at given points pi = {p\,r = 1 , . . . , s)

of Rs for i = 1 , . . . , n; k cluster centers must be located at unknown points yj G Ms for

j = l , . . . , fc; the norm || • || denotes the Euclidean distance between the two points in

its argument in the s-dimensional space under consideration. The decision variables Xy

express the assignment of the entity Oj to the cluster j . We assume that the number of

entities n is greater than k, otherwise the problem is trivially solved by locating one cluster

center at the position of each entity.

If y is fixed, the condition x^ G {0,1} can be replaced by x^ € [0,1], since in an optimal

solution for the resulting problem each entity belongs to the cluster with the nearest center.

3

Besides, for a fixed x, first order conditions on the gradient of the objective function require

that at an optimal solution

n

£ x*M - Pi) = °' v * r> le-> yrj =^—> v '̂>r- (2)
%=i Yl xij

Hence, the optimal cluster centers are always at the centroids of the clusters.

Other mathematical properties of MSSC are discussed in the books of Spath [111],

Mirkin [88] and Kogan [69]. Several hundred papers have been written on heuristics for

MSSC and several thousand on their applications in many domains (see, for instance,

Steinley's half century synthesis [113]). The best known heuristic for MSSC is &;-means [38,

79] (the continuous version of fc-means for space partitioning was previously described by

Steinhaus in [112]) which was identified by the IEEE Computer Society as the 2nd most

influential algorithm in the data mining community [125]. Indeed MSSC is sometimes

called the fc-means problem. This heuristic alternately applies properties (ii) and (iii)

above until a local optimum is reached. It has been shown by Hansen and Mladenovic [55]

that while fc-means usually gives good results for small number of clusters its performance

deteriorates, sometimes drastically, when this number increases. Modifying A;-means by

adding a jump move of a centroid to an entity location gives a much better heuristic

called j-means. Finally, combining j-means with a Variable Neighborhood Search (VNS)

heuristic [56, 57, 89] gives a heuristic which often provides optimal solutions or best known

ones.

Other recent heuristics for MSSC include the global fc-means method of Likas, Vlassis

and Verbeek [77], analyzed in [58] and modified by Bagirov [6], Bagirov and Yearwood's

nonsmooth optimization algorithm [7], smoothing optimization algorithms due to Teboulle

and Kogan [116] and Xavier et al. [126], Merz's iterated local search [85], Pacheco's scatter

search [92], Pacheco and Valencia's hybrids [93], Taillard's decomposition methods [115],

Laszlo and Mukherjee's genetic algorithms [72, 73], Christou's restricted column generation

and partitioning method [15], and the D.C. heuristic of An, Belghiti and Tao [3]. A

4

systematic comparison of twelve heuristics for MSSC was made by Brusco and Steinley

in [13].

Exact algorithms for MSSC are much less numerous than heuristics. To the best of

our knowledge, there are less than a dozen papers published on that topic. In 1973, Diehr

stated in [23] (p. 17) that "Researchers must keep in mind that in most of cases the goals

of clustering do not justify the computational time to locate or verify the optimal solution".

This statement, however, does not take into account three facts:

• Exact methods are extensively used nowadays to tune or discover pitfalls on existing

approximate methods as well as to derive new approaches.

• Computer performance has greatly improved in the last decades.

• Mathematical programming has evolved a lot in 30 years.

From the mathematical programming point of view, as pointed out by a referee of one

of our papers, "Minimum sum-of-squares clustering is a challenging global optimization

problem". Indeed this thesis will cover quite diverse approaches that can be used to exactly

solve the problem.

Early branch-and-bound algorithms are due to Koontz, Narendra and Fukunaga [70]

and Diehr [22]. Bounds depend on distances between entities assigned to the same cluster

and a limited look-ahead component.

A column generation method for MSSC was proposed by du Merle et al. in [28].

It solved for the first time medium size benchmark instances (i.e., instances with 100-200

entities), including Fisher's Iris [36]. The master problem is solved by the ACCPM interior

point method of Goffin, Haurie, and Vial [45]. The auxiliary problem of finding a column

with negative reduced cost is expressed as a hyperbolic program in 0-1 variables. It is

solved by a Dinkelbach-like algorithm [24] which relies on a branch-and-bound algorithm

for unconstrained quadratic 0-1 optimization. Another branch-and-bound on the master

problem leads, if needed, to an integer solution. Finally, VNS heuristics are used both

at the outset to find a good initial solution together with tentative bounds on the dual

5

variables, as well as in the auxiliary problem to accelerate its solution. The bottleneck

of the algorithm lies in the resolution of its auxiliary problem, and more precisely, in the

unconstrained quadratic 0-1 optimization problem arising there.

More recently, Xia and Peng [127] proved that the objective function of MSSC is concave

in the relaxed feasible domain. In their paper, they propose an adaptation of Tuy's [118]

cutting plane method to solve it. Approximate results are reported for a version where

this algorithm is halted before global convergence. Some experiments of ours showed that

small instances with about 25 entities can be solved exactly with that approach.

MSSC can also be solved by non-serial dynamic programming as shown by Jensen [63].

An improved implementation due to van Os and Meulman [119] allows solutions of in­

stances with about 28 entities.

Brusco [12] proposed a repetitive branch-and-bound procedure which, after ordering the

entities, solves by branch-and-bound the problem denned by the k + 1 last ones, then the

problem with k + 2 last ones, and so on, until the problem with all given entities is solved.

The bound used at any iteration of one of those iterated branch-and-bound procedures

comprises two components, i.e., an usual one corresponding to distances between already

assigned entities and a sophisticated look-ahead one which corresponds to distances in an

optimal solution for the set of unassigned entities. These much improved bounds led to

efficient solution of some well-known benchmark instances, including Fisher's 150 Iris [36],

particularly when the number of cluster is small. Artificially generated examples with

well-separated clusters and up to n = 220 entities could be solved also.

The hardest task when devising exact algorithms for MSSC is to compute good lower

bounds in a reasonable amount of time. Sherali and Desai [108] proposed to obtain such

bounds by linearizing the model via the reformulation-linearization technique (RLT) [107].

They claim to solve instances with up to 1,000 entities by means of a branch-and-bound

algorithm. Recently, Peng and Xia [98] proved the equivalence of MSSC and a model

called 0-1 semidefinite programming (0-1 SDP), in which eigenvalues are binary. The

authors report in [98] values of lower bounds obtained from LP and SDP relaxations of

this 0-1 SDP MSSC formulation.

6

This thesis consists of four main chapters which are largely independent. Chapter 1

is dedicated to the computational complexity of MSSC, a topic in which there seems to

have been much confusion. We show that a recent proof provided by Drineas et al. in [27]

regarding the complexity of MSSC in general Euclidean dimension is invalid. An alternate

short proof due to Amit Deshpande and Preyas Popat (our co-authors to a forthcoming

paper) is then given. Chapter 2 concerns an extensive empirical evaluation of the RLT-

based branch-and-bound algorithm of [108], trying to reproduce the same results obtained

in that paper without success. In chapter 3, we study the 0-1 SDP MSSC formulation of

Peng and Xia [98]. On the basis of their work, we propose a branch-and-cut algorithm

based on cutting with violated triangle inequalities, i.e., if the pairs of entities (oi,Oj)

and (oi,og) belong to the same cluster, then entities Oj and ô also belong to the same

cluster. The resulting algorithm obtains exact solutions for some benchmark data sets

with computing times comparable with those of the best exact methods previously found

in the literature [12, 28]. In Chapter 4, the column generation approach of du Merle et al.

[28] is revisited and an alternate geometric-based approach for the solution of its auxiliary

problem is proposed. This greatly improves the efficiency of the whole algorithm and leads

to exact solution of instances with over 2300 entities.

7

CHAPTER 1 : NP-HARDNESS OF EUCLIDEAN

SUM-OF-SQUARES CLUSTERING

1.1 Computational complexity

First of all, it is important to remark that the computational complexity of a clustering

problem depends on the criterion used. For instance, split maximization is polynomially

solvable [19] while diameter minimization is NP-hard [11, 52].

To the best of our knowledge, the computational complexity of minimum sum-of-squares

clustering in general Euclidean space for k > 2 was unknown before the present work.

However, several incorrect statements have been made about this problem being known to

be NP-hard, many of them without providing a reference [35, 40, 81, 83, 97, 98, 101, 110,

124, 128]

Some confusion is also made in [14, 21, 41, 42, 49, 75, 90] by referring to a paper

of Garey, Johnson and Witsenhausen [44], which provides a NP-hardness proof for the

quantization problem by a reduction from the exact covering problem by triples, which is

known to be a NP-complete problem [43]. The quantization problem is defined in [44] as

follows.

"A source produces one sample of a random variable X with equiprobable values in

{ l , 2 , . . . , n } .

The encoder (quantizer) maps X into a variable Y with values in {1 ,2 , . . . , k}. The

decoder maps Y into a decision variables Z with values in {1 ,2 , . . . , m}. If X = i and

Z = j the resulting distortion is d^. All entries in the n x m matrix [dij] are zeros

or ones. The goal is to find an encoder function, / : X —> Y, and a decoder function,

g : Y —> Z, such that the average distortion

1 n

-^2di9(f(i)))
i=l

is as small as possible."

8

However, this is in fact a particular /c-median problem (see e.g. [71] for a survey) where

each cluster center is taken from a given finite set of fixed potential locations. This problem

was already known to be NP-hard for k > 2 [66].

Other results due to Briicker [11] led to further confusion. This author proved that

the partitioning problem is NP-hard for many different clustering criteria. In the classical

book Computers and Intractability of Garey and Johnson [43], this paper is referenced in

the following way:

"[MS9] CLUSTERING

INSTANCE: Finite set X, a distance d(x,y) G ZQ for each pair x,y G X, and two

positive integers K and B.

QUESTION: Is there a partition of X into disjoint sets X\, X2, • • •, X^ such that, for

1 < i < k and all pairs x, y G Xi, d(x, y) < Bl

Reference: [Briicker, 1978] Transformation from GRAPH 3-COLORABILITY.

Comment: Remains NP-complete even for fixed K = 3 and all distances in {0,1}.

Solvable in polynomial time for K = 2. Variants in which we ask that the sum, over

all Xi, of ma,x{d(x,y) : x, y G Xi} or of ^2X eX. d(x,y) be at most B are similarly

NP-complete (with the last one NP-complete even for K = 2)."

The problem described here is minimum diameter partitioning.

Despite the fact that nothing is mentioned about squared Euclidean distances in [11],

many papers cited it to state that the MSSC is NP-hard [25, 55, 84, 85, 86, 92, 93, 96, 117,

131].

The papers [34, 64, 99,116, 122] also cite Garey and Johnson's book without mentioning

Briicker as a reference for MSSC to be NP-hard. This error may be due to the paragraph

cited above or possibly to another one which refers to minimum sum-of-squares,

"[SP19] MINIMUM SUM OF SQUARES

INSTANCE: Finite set A, a size s(a) G Z+ for each a € A, positive integers K < \A\

and J.

9

QUESTION: Can A be partitioned into K disjoint sets A\,A2, • • •, AK such that

i=l \aeAi /

Clearly, this last problem is different from MSSC.

Recently, a proof of NP-hardness of MSSC for k = 2 in general dimension s was given by

Drineas et al. in Machine Learning 56, 9-33, 2004. As shown in the next section the proof

is, however, invalid. An alternate short proof, due to A. Deshpande and P. Popat [20],

is given in Section 1.3. Note tha t another longer proof was obtained independently, and

almost at the same time, by Dasgupta [18]. Moreover, a proof which is essentially the same

as that of [20] was obtained independently and more recently by Kanade, Nimbhorkar and

Varadarajan [65].

1.2 An incorrect reduction from the fc-section problem

Drineas et al. [27] propose a NP-hardness proof for the MSSC with k = 2 and general

dimension by a reduction from the minimum bisection problem, whose objective is to

partition a graph into two equal-sized parts so as to minimize the number of edges going

between the two parts. The authors state that a proof for k > 2 is similar via a reduction

to the minimum /c-section problem. The paper is cited in [4, 8, 16, 91] as giving a proof

that MSSC is NP-hard.

The polynomial transformation for performing the reduction from the bisection problem

is described as follows:

"Let G = (V,E) be the given graph with n vertices 1,... ,n, with n even. Let d(i) be

the degree of the i'th vertex. We will map each vertex of the graph to a point with

|.E| + |V| coordinates. There will be one coordinate for each edge and one coordinate

for each vertex. The vector X1 for a vertex i is defined as Xl(e) = 1 if e is adjacent to

i and 0 if e is not adjacent to i; in addition Xl(i) = M and Xl(j) = 0 for all j ^ i."

file:///aeAi

10

Figure 1.1 illustrates an example of such a transformation for a given graph. It can be

checked in the example that all partitions with non-empty clusters have the same cost

value regarding the last |V"| coordinates. Correcting an error in the proof presented in [27],

we will show that this is always true for any MSSC instance constructed by the proposed

transformation.

X'= (1,1,0,0,0,0,M,0,0,0>0)T

X"= (0,1,U,0,0,0,M,0,0,0)T

Xs = (0,0>0,1,1,0,0,0,M,0,0)T

X'°= (1,0,0,0,0,1,0,0,0,M,0)T

X"= (0,0,1,0,1,1,0,0,0,0,M)T

Figure 1.1: Transformation of a graph into an MSSC instance as defined in [27]

Let us consider a bipartition of the entities into two clusters P and Q whose cardinalities

are denoted by p and q, respectively. Regarding the last |V| coordinates of the centroids

?Q \E\+\y\, we have for i = 1,. . . , |V|

y'\E\+i ~
f : \iieP

0 : otherwise

yQ -
-|B|+t -

M
Q

0

f : if .eQ
otherwise

Therefore, the sum of squared distances of each entity to its centroid, limited to the

last |V| coordinates, is equal to

p(M-f)2 + g(M-f)2 + p(p-l)(0-M)2
 + q (q _ i) (0 - M) 2

= nM2 - 4M2 + M2 (j + J) + 2M2 - M2 (i + j)

= (n - 2) M 2 .

In Drineas et al. [27], the authors forget to add the squared distances of the null com­

ponents to the centroids, which are indicated in boldface in the expression. If they are

not taken into consideration, then the sum-of-squares limited to the last |V| coordinates

is equal to

nM2 + M2 (- + -) -AM2,
\P <lJ

file:///iieP

11

which is minimized whenever p = q = n/2. Thus, if M is made sufficiently large, balanced

bipartitions have costs strictly smaller than unbalanced ones, since the contribution for the

cost limited to the first \E\ coordinates is upper bounded. In fact, for p = q, this last value

is minimized when the solution of MSSC is the balanced bipartition that corresponds to the

minimum bisection in the original graph (see Drineas et al. [27], page 16). Unfortunately,

after correcting the expression of the cost regarding the last |V| coordinates, there is no

dependence on the cardinalities of the clusters. This implies that the proposed reduction

from minimum bisection is invalid.

1.3 A new proof by reduction from the densest cut problem

Nevertheless, there is a similar (valid) reduction that shows that the problem is in fact

NP-hard.

Theorem 1.1. MSSC in general dimension is NP-hard for k = 2

Proof. The reduction is from the densest cut problem, whose objective is to maximize for

a given graph G = (V,E) the ratio \E(P,Q)\/\P\ • \Q\ over all bipartitions (P,Q) of the

vertices in G, where E(P, Q) denotes the edge set of the cut. The problem is equivalent

to the sparsest cut problem on the complement graph, which was shown to be NP-hard

in [82].

Given a graph G with no parallel edges, let us define a |V| by \E\ matrix M as follows.

An entry (v, e) in M is equal to 0, if edge e £ E is not incident to vertex v € V. Otherwise,

it is +1 for one endpoint of e and —1 for the other. It does not matter which endpoint

corresponds to +1 and which to -1 . Thus, each column of M has exactly one entry equal

to +1 and exactly one entry equal to —1.

Now, let us suppose that the rows of M are points in IRlEl and compute the value of

the MSSC criterion for a bipartition into two clusters P and Q, with \P\ = p, \Q\ = q and

p + q = n. The centroid of cluster P has in its e-th coordinate a value equal to either +\/p

or —l/p if e 6 E(P, Q), or 0 otherwise. The same holds for the coordinates of the centroid

12

of cluster Q. Then, by computing the total cost of the bipartition, we have that

2_]cost of P due to the e-th coordinate + cost of Q due to the e-th coordinate
eeE

= E ^ + H) 2 + (, - i) i + H) 2
+ £ 2

eeE{P,Q) V \ r/ 1 \ H/ eiE{P,Q)
= (2-±-^)\E(P,Q)\ + 2\E(P,P)\+2\E(Q,Q)\

71

= 2\E\-—\E(P,Q)\,

by using p + q = n. The MSSC for /c = 2 minimizes the above, which means that it

maximizes \E(P,Q)\/p • q and hence finds the densest cut in the given graph G. •

13

CHAPTER 2 : EVALUATING A BRANCH-AND-BOUND

RLT-BASED ALGORITHM FOR MINIMUM

SUM-OF-SQUARES CLUSTERING

Recently, Sherali and Desai [108] proposed an exact branch-and-bound RLT-based al­

gorithm for minimum sum-of-squares clustering based on a model obtained with the

reformulation-linearization technique (RLT) [107]. These authors reported results for large

instances with up to 1000 points and dimension 8. However, some details in that paper

deserve further investigation. In particular, reported values of the ratio gaps between the

lower and upper bounds (obtained by branch-and-bound with the RLT model and by a

heuristic, respectively) appear to be large, while the number of branch-and-bound nodes

in the branch-and-bound tree are strikingly moderate. Moreover, the authors solve a small

example for which the well established fc-means algorithm gives a result with a value twice

larger than that one obtained by the branch-and-bound algorithm.

2.1 Reformulation-Linearization Technique for the MSSC

The RLT method can be used to transform a zero-one mixed-integer quadratic program into

an equivalent zero-one mixed-integer linear programming problem. In this approach, a tight

linear programming relaxation, with an outer-approximation to the convex envelope of the

objective function over the constrained region, is constructed for the problem by generating

new constraints through the process of employing suitable products of constraints and using

variable redefinitions. The RLT technique applied to the MSSC together with other valid

inequalities, as in [108], will next be recalled.

14

First of all, we remark that the objective function of (1) can be manipulated. From the

KKT conditions expressed in (2), the objective function can be rewritten as

n k s

i=l j=l r = l

n k s n k s

i = l j = l r = l i = l j=l r = l

n k s n k s

= H J2 J2 xiM? - Y. EEp^^r
i = l j=l r=\ i=l j=l r=l

Since £?=1 £j=i £*=1 zy(p*)2 = ELi Yfr=M? i s a constant, the MSSC is equiva­

lent to:

i = l j=l r=\

subject to
n

J2xij(y
r
j-pl) = 0 Vj = l,...,k,Vr = l,...,s (2.1)

i = i

5^Si j = l, Vi = l , . . . , n

x0- 6 {0,1} Vi = l , . . . , n , V j = l , . . . , fc.

From equation (2), we notice that for a given solution x, yj is a convex combination

(with equal weights) of all the points pi, such that Xy = 1. Therefore, constraints can be

added stating that yj, Vj = 1 , . . . , k must be in the convex hull of all the points pi that can

be associated to cluster j , denoted Ij.

For a two-dimensional space, the convex hull can be polynomially calculated in 0(n log n)

by Graham's algorithm [46]. However, for a higher dimension, it is generally an expensive

task. In [108], the authors use instead a hyperrectangle H(Ij) that includes the convex

15

hull of the allowed points Ij, for each j = 1 , . . . , k.

H(Ij) = {yj:a
r
j<yr

j<[3r
J,r = l,...,s},

where, eft = min{p[: i G Ij} and /3J = max{p[: i 6 Ij}, Vr = 1 , . . . , s.

Instead of simply imposing these constraints, the product of each of them with both

Xij and (1 — xij) Vi £ Ij is considered for each j = l,...,k, following the RLT method.

The resulting constraints are:

arjXij < yrjXij < (FjXij \/i € Ij Vj,r,

arj(l - x^) < y]{\ - Xij) < /3J(1 - Xij) Vi G /,- Vj,r.

Additional constraints can still be included in order to tighten the mathematical for­

mulation of the model. Since n > k, we have that

n

1 <^2xij <(n-k + 1), Vj = 1 , . . . , k.
i=i

They assert that at least one point must be assigned to each cluster, and therefore, each

cluster contains at most n — k + 1 points assigned to it. The reformulation of these

constraints leads to
n

1=1

Although not mentioned in [108], these last constraints are valid only if yTj > 0, Vj,r.

Thus, the data sets used in the computational experiments must eventually be translated

in order to satisfy these conditions.

2.1.1 Deal ing wi th symmetry

Symmetry in the problem structure can make difficult the resolution via a branch-and-

bound approach. For any given solution to the MSSC, alternative equivalent solutions

could be obtained by simply re-indexing clusters. This matter was previously studied

16

by Klein and Aronson in [68] where they propose the use of some valid inequalities in

order to reduce the effects of symmetry. In [108], Sherali and Desai propose two different

strategies to that purpose, though recognizing that symmetry in the problem structure is

not completely eliminated by them.

The first strategy imposes the following constraints:

xn = l,xij = 0, Vj = 2, ...,k
n n

E xij > Yl *ij+i. Vj = 2, ...,k~ 1.
i=l i = l

It means that point p\ is assigned to the first cluster. Regarding the other clusters, in­

dexing is required to be performed in nonincreasing order of their size. However, symmetry

still occurs if there is a solution having different clusters with the same size.

In the second strategy, a dispersed set of points P = {pix, pi2,..., Pik_1} is built from the

complete set of points to be clustered. First, a point Pix is arbitrarily chosen and inserted

in P. Then, among the points outside of P, we select a point pi2 whose distance to p^

is maximum. After that, each new point to be included in P is selected if its minimum

distance to a point in P is maximum among those belonging to the complement of P.

Then, each point pih, h = 1,... ,k — 1 in P is restricted to belong to one of the first h

(< k) clusters. Since the points in P are dispersed there is a good chance that they actually

belong to different clusters. For the instances where this happens, the strategy actually

eliminates symmetry. However, Figure 2.1 shows a simple case for which the symmetry

effect still remains. Indeed should both points 1 and 2 be assigned to cluster 1, these

constraints allow point 3 to belong to cluster 2 or to cluster 3. As reported in [108], the

second strategy is preferred over the first in the sense that, if it is used, the algorithm has

better initial gaps and finds optimal solutions more quickly.

17

cluster 1

cluster 1

cluster 2

©
cluster 2

cluster 3 cluster 4

o o

cluster 3

©
cluster 4

o o

Figure 2.1: Two symmetric solutions allowed by the second strategy

The final MIP model is obtained after linearizing the products Xij.y'j by z[,, Vi,j,r,

following the RLT approach. The model, as given in [108], is:

max
x,y,z

£££^ I'-IJ

i£lj j€Ji r = l

subject to

£4/-£^i = 0 Vj,r

(%j %ij _^ %ij 2^: Pj %ij

a^l-XiUKfj-zrjK^l-Xij)

/ j Xij = *

£ zy > 1

!/J<^4<(n-Hl)yJ

symmetry breaking strategy 1 or 2

xex

Vi G Ij Vj, r

Vi G 2j Vj, r

Vi

Vj

Vj,/c

where,

18

X = {x binary : Xij = 0 for all (i,j) el ,Xij = 1 for all (i,j) € 7+}

with I+ = {(i,j) : Xij has been fixed at 1}, I~ = {(i,j) : x^ has been fixed at 0}, and

V = {(i,j) : x^ is free}. Hence, the sets Ij for each j = 1 , . . . , k are given by

Ij = {ie{l,...,n}:(i,j)el+ulf}.

Moreover, for each i €E { 1 , . . . , n}, we define:

Ji = {j e { i , . . . , k } : (i , j) e l + u I s } .

The RLT model is valid since for any feasible solution of the RLT model, we have that

z\j = Xijy^ holds true. Hence, the RLT model is an equivalent linear 0-1 mixed integer

programming (MIP) representation of the original formulation of the MSSC [108].

2.2 Branch-and-bound for the MSSC

When developing a standard branch-and-bound method [123], three elements are essential:

upper bounds obtained by means of a (usually) linear relaxation, lower bound solutions,

and a branching rule.

Accordingly to the RLT theory, the resultant model is supposed to obtain tight upper

bounds. For the MSSC, upper bounds are computed by using the LP relaxation of the MIP

model, taking into account the current definitions of the sets Ij and Jj, for each i = 1 , . . . , n

and j = 1 , . . . , k at each branch-and-bound node of the tree. Lower bounds x on variables x

can be obtained by a rounding heuristic applied to this LP solution. This heuristic rounds

the relaxed solution x to the nearest binary one subject to 5Z7-e</ .Xij — l,Vi = 1 , . . . ,n.

For example, suppose that we have a problem with n = 3 and k = 2 for which x\\ = 0.4,

x\2 = 0.6, X21 = 0.2, X22 = 0.8, X31 = 1, and X32 = 0. Then, the heuristic will provide as

lower bound xn = 0, x12 = 1, x21 = 0, x22 = 1, 2I31 = 1, and x32
 = 0- ^ t n e solution x is

already binary, the LP solution is optimal for the subproblem.

19

The LP solution of a branch-and-bound node can also be used to generate a valid

inequality involving the incumbent best lower bound. This is done by using the dual values

of the LP solution and surrogating all constraints in x-variables, except for constraints

0 < Xij < 1, V(i,j). Then, standard 0-1 logical tests are performed on this inequality to

possibly fix additional x-variables.

Exploiting the structure of the inherent generalized upper bounding (GUB) constraints,

the authors of [108] explore an alternative specially ordered set (SOS) branching strategy.

For this purpose, 9ij is defined as the total absolute discrepancy in the linearized objective

terms (z[) relative to the original nonlinear product terms (xij •%)• This is expressed as

s

ev = ^2\Pi(zij -XijVrj)-\
r = l

Then, values 0i = X^,ej. % are defined for each i = 1 , . . . , n, computing u € argmax{#j}.

The branching rule is to partition the set Ju into two children nonempty sets, JUl and JU2,

as follows. Two subproblem nodes are constructed for the branch-and-bound tree corre­

sponding to the respective imposed branching restrictions 5Z,-e j u %ij = 1 and £\ - e Ju x^ =

1. In order to obtain the partitions JUl and JU2, the values 9uj, with j E Ju, are sorted

in nonincreasing order {9Uj1,6uj2,... ,9uji}, where I = \JU\ > 2. Then, a value 7 > 1 is

defined to be the smallest integer such that Y^l=i @ujc ^ #u/2. Finally, JUl = { j i , . . . , j 7 }

and J„2 = { j 7 +i , . . . ,ji}. Finally, for each of the children nodes, the sets I+', I~ and V

are updated, and new convex hull constraints for each cluster are used to strengthen the

formulation.

The branch-and-bound algorithm proposed in [108] adopted a depth-first strategy to

develop the enumeration tree. The algorithm was implemented in C++, and the commer­

cial software CPLEX 8.1.0 was invoked for the purpose of solving the LP relaxations at

each node. Besides, the optimal basis of the parent nodes were used as an advanced-start

basis for the children nodes.

20

2.3 An attempt at reproducing computational results

In order to verify and validate the computational experiments reported in [108] via the

branch-and-bound described in the previous section, we followed the same algorithmic

development steps described in that paper. Except for the platform used, a Pentium IV 2

GHz with 512 MB RAM under Linux in our experiments, the implementations are supposed

to be equivalent. Our codes were compiled with g++ (option -03) version 3.4.4, and are

available at ht tp: / /www.gerad.ca/~aloise/publ icat ions.html. For the computational

experiments reported in this section, the second symmetry breaking strategy presented in

section 2.1.1 is used in the resolution of the RLT-based MIP model.

We start by the study of a small illustrative example with three clusters used in the

referred paper. Table 2.1 provides this data set (which is a subset of 22 points corresponding

to coordinates of German towns given in [111]) where the points p\,... ,p\o are given by

their coordinates in Euclidean space.

Table 2.1: Coordinates of 10 points in the Euclidean space

Coordinates
X

y

PI
-57
28

V2
54
-65

Pz
46
79

PA

8
111

P5
-36
52

P6
-22
-76

Pi
34
129

P%
74
6

P9
-6
-41

Pio
21
45

The authors report that 27 branch-and-bound nodes were created before the algo­

rithm could reach the optimal solution and prove its optimality. The initial gap ratio was

UBo/LBo = 1.9236. However, the results obtained by our implementation are different.

To solve this problem, our branch-and-bound algorithm required 848 nodes beginning with

an initial gap ratio of 1.23. Recall that the authors must have changed the data set in

order to validate their model, though such transformation was not described in the paper.

We performed translations in order to obtain non-negative data. Another transformation,

suggested by Sherali [105], which could accelerate the algorithm would be to rotate the

axes in order to find the smallest volume hyperrectangle.

Comparing with A;-means, the authors report that the ratio between the best solu­

tion obtained by five executions of the heuristic from randomly generated initial solutions

http://www.gerad.ca/~aloise/publications.html

21

(=34404.85) and the optimal solution obtained by the branch-and-bound (=15805.25) is

2.17. Moreover, calculating the same ratio with the first feasible solution LBQ (=22434.68)

found at the root node instead of the optimal solution, a value of 1.86 is obtained.

Computational experiments were carried out with a standard fc-means heuristic imple­

mentation without any enhanced feature. Five different executions were performed 100

times. The worst of the best solutions obtained by each group of five executions, denoted

here Zk-means, w a s found to be 20743.133, providing a ratio of 1.312 between the Z^^means

and the optimal solution. This ratio is 0.925 < 1 with respect to LBQ, while regarding

the first lower bound value LB'0 obtained by our implementation, this same ratio is equal

to 0.598. In fact, the overall worst solution obtained for the 500 executions of fc-means

was 32611.6, the optimal solution was found 67 times (w 13%), and the average value was

19083.444. Table 2.2 presents the ratios for two benchmark data sets extracted from [111]

which contains cartesian coordinates for 22 and 59 German towns, and for the classical

Fisher's Iris [36] with 150 points in four dimensions. We can notice that fc-means always

obtained better solutions than the first lower bound value obtained by our RLT-based

branch-and-bound implementation.

Table 2.2: Relative results of our branch-and-bound implementation versus the fc-means
algorithm in three benchmark data sets with three and five cluster centers. Results re­
ported in [108] regarding the best solution among five executions of /c-means are shown in
parenthesis

Data set
German22

German59

Fisherl50

Points
22
22
59
59
150
150

k
3
5
3
5
3
5

Zk-- m e a n s / o p t i m a l

1.05 (3.41)
1.32 (1.80)
1.16 (7.66)
1.28 (4.57)

1.00
1.23

Zk- -rneans
/LB'0 0.33

0.26
0.46
0.25
0.50
0.14

A further investigation also revealed that the solution provided in the paper, i.e. that

one obtained by fc-means for the small example with 10 points (page 294 of [108]), is not

a local optimum. Figure 2.2 presents with dashed lines the composition of the clusters

indicated by the authors as the solution provided by the A;-means heuristic, while bold

lines illustrate the actual local optimum if the algorithm proceeds.

22

-100

34404.9

21221

Figure 2.2: A;-means solution as provided by Sherali and Desai (2005) and &;-means actual
local optimum. The legends indicate the cost of the two solutions

Our branch-and-bound implementation was also tested for other data sets. The initial

data set with 10 points was progressively increased with additional points from the 22

German towns data set of [111], until it was no more possible to solve the generated instance

within 10 hours. The same procedure was done to generate data sets from Fisher's [36]

150 Iris. Table 2.3 shows for each data set the number of nodes as well as the gap between

the initial upper bound value (UB'0) and lower bound value (LB'Q) at the root node of

the enumeration, which is calculated as —^-,—Q. Comparing with some results presented

in [108] for larger instances with 250 and 500 nodes, it is remarkable that a much higher

amount of branch-and-bound nodes are generated by our algorithm for much smaller data

sets.

Finally, computational tests were performed to test the efficacy of solving the RLT

model directly by the commercial software CPLEX. While in [108] the authors claim that

their implementation solves the data sets faster than CPLEX 8.1 with default settings,

Table 2.4 presents opposing results obtained by our implementation, when CPU times in

seconds are compared with those spent by CPLEX 8.1 and CPLEX 10.1.

C
O

C

N

T
3

CD

+
J

C
I

CD

co
CD

(H

&

en
CD

+

J
cc3

a
T

3
S

H

o

o
 o

CO

fl &

o

4
^

a a B

J-t
1)

O

C
N

C

M

a o

<h

-3
CD

+

J
03

CD

CD

bO

CO

+
J

Q
J

CO

a
-t-2
cS

X

)

o

CO

+
^

i—
i

3
C

O

C
D

PJ
C

O

C
M

r
^

3 c3
H

C
O

C

O

1
'

_g

T
3

C
D

£ CD

CO

CD

S
H

_co
'in
h

H

o
 L
O

I-H

CD

~
JH

CD

4

3
C

O

£ CD

4
3

+
^

a o

M
H

T
d

T
—

(

T
—

1

1
1

=#=
 O

l
0

0
W

N

lO

O

0

0
T

f
L

O

^
t

1
-

*
L

O

H

H
C

q
N

N
M

O

0
0

C
M

C

O

0
0

C
O

LO

C

M

"
*

O

C
O

r-

O
l

C
I

C
O

C

N

L
O

L

O

O

O

i-H

C
O

i-H

co

co

co

co
 co

 co
 co

O
l

N

f
C

O

0
0

O

T-H

i—
I

i-H

i-H

i-H

C
N

O

C
O

C

O

C
O

i-H

i-H

o

o

co

-*
C

O

C
O

C

M

C
O

C
M

C

O

LO

C
O

C

O

I
s-

o

o

o

o

o

o

C
O

O

-

*
C

N

0
0

C
M

O

l
C

O

C
O

C

O

H

O

i-H

LO

C
O

O

C

O

t--
H

ffl

O
l

N

O

H
I

D

7
f

co

C
O

C

O

C
O

C

O

C
O

C

O

O

C
M

^

C
O

0

0
O

T—

I
T

-H

1
1

I—
I

1
1

C
N

i-l
C

N

C
O

o
d

d

i—
I

L
O

t

-
L

O

co
 co

i-H

"

*

C
J

!-l
CD

a a o
 o

CD

4
3

H
-J

>>
4

0

T
3

a a a o

+
^
a

+
^
a CD
a CD
"3,
a

*̂
H

S

-l
J3
o

£ CD

d

'3
4

0
o

C

O

P
I

o
 C

J
C

D

CO

_S3

C
O

C

D

.a
+

2

P

O
H

u
 T

f

C
M

JD

 Tab

CO

bC

S3
+

J
-t^
CD

CO

+
^

3 cS
u-Z

CD

T

3

4
2

+
J

'%

1—
1

o

T—
1

X

P
H

u

1
3
S3
o3

i—
i

C
O

X

w

h
j

cu
o CO

CD

i-H

c3

o

C
O

•
^

"*
o

oo
o

i-H

O
l

CN
 co

t-~

CN

L
O

T

—
1

0
0

0
0

0
0

IV

r—
i

C
O

CM
 co
o co
T

—
*

i-H

O
l

C
O

o

i-H

0
0

o

o
o

C
N

C

O

o
o

C
N

O

l

O
l

C
O

c
o

C
N

0
0

o

o
o

O
l

C
O

C

M

C
M

co
C

O

co
i—

\

1—
1

0
0

H
o

cq

N

H

oo

H

IN

H

0
0

lO

ID

!D

•
*

lO

l6
C

N

N

C
N

C

O

C
N

C

O

O
l

C
N

L

O

O

co

co
 co

co

 co
 co

O

C
N

^

C
O

0

0
O

C
N

C

N

E

i_
cy

C
M

O

0

0
C

O

0
0

O

C
M

L

O

C
O

H

lO

M

C

O

C
M

C
N

t

-
•

*
0

0
-

*
O

l
L

O

C
O

C

O

O

O

IV

O

T-H

C
O

•

*
-

*
L

O

I-H
C

O

0
0

i-H

C
O

C

M

C
O

0

0
-st<

^

t
1

I
O

M
O

N

H

t—

C
M

O

H

lO

lO

0
0

T
ji

L
O

C

O

O

O
O

O

l
C

O

O
l

O
l

C
M

IV

L

O

O
l

C
M

C

O

O

C
M

L

O

^
P

O

l
C

M

i-H

C
N

C
O

C

O

C
O

C

O

C
O

C

O

O

M

^
f

C
O

C

O

O

T—
I

r-i
r-H

I—

I
i—

I
(N

O
l

^
^

"*
C

O

O
l

i-H

C
N

C

O

C
M

C

O

L
O

C

O

0
0

C
M

C

O

L
O

L6
d

C

M

rt<

co
 co

T

f
oo

C

M
 ^t;

-*
o

i
tv

C
O

O

l
C

O

"tf
C

M

0
0

24

We also noticed that while in [108] CPLEX 8.1 was able to solve directly a model with

n = 250, k = 3 and dimension 4 in 263.44 seconds, and another with the same number

of points and clusters but with dimension 6 in 360.83 seconds, for a small data set with

20 points, the solver already takes 150.14 seconds according to our experiments. It is

important to remark that the hardness of a MSSC instance is not directly measured by the

values of n, k, and s. It also depends on the distribution of points. To illustrate, consider

an example of MSSC with n entities divided into k clusters all points of which are each

time within a unit diameter ball in Rs. Assume these balls are pairwise at least n + 1 units

apart. Then the simplest branch-and-bound algorithm will quickly find this partition and

confirm its optimality without branching as any misclassification more than doubles the

objective function value. Indeed, the contribution to the bound of the cluster containing
2

both misclassified points is then at least ^ ^ > n, while the optimal solution has a value

less than n. Note that n, k and s can be arbitrarily large.

2.4 Breaking symmetry and convex hull inequalities

In this section, the effects of a symmetry breaking rule due to [100] are investigated. In that

paper, the permutation symmetry is broken by accepting only lexicographically minimal

solutions, i.e., each cluster j contains the lowest indexed point which does not belong to any

of the previous clusters 1 , . . . , j — 1. Following this property, there is only one way to index

the clusters, and therefore, symmetry is broken. To illustrate, among all the equivalent

numbering of a clustering of the set P = {a, 6, c, d} into the three sets {a}, {b, d} and {c},

i.e.,

Cluster 1 Cluster 2 Cluster 3

{b,d}

{b,d}

{a}

{a}

{c}

{c}

{a}

{c}
{b,d}

{c}

{b,d}

{a}

{c}

{a}

W
{b,d}

{a}

{b,d},

25

only the third one is accepted.

Below, the steps leading to the full formulation of the desired property as a set of linear

inequality constraints are presented.

The first point p\ must be assigned to the first cluster, which means that

x n = 1.

For the second one, if point p^ is not in cluster 1, then it must be in cluster 2.

(1 - X 2 2) < x2\.

Generalizing, if points P2, • • • ,pc-i
 a r e in cluster 1 and the point pc is not (c > 3) then pc

must be assigned to cluster 2.

c - l

(1 - xc2) < ^ (1 - xa) + xcX.
i=2

For cluster j = 3 , . . . , k — 1, the smallest indexed point which is in none of the clusters

1 , . . . ,j — 1 is forced to belong to cluster j . In other words, if for all i = 2 , . . . , c — 1, point

Pi belongs to some cluster £ < j and point pc does not, then pc must be in cluster j . For

each cluster j , this is expressed by the constraints

c - i / i - i \ j - i

(1 - xcj) < ^2 (! ~ YlXii) + ^2 Xc£ Vc = •?'' • • •'n-

Note that no variable xij is needed for i < j , since the lexicographic order guarantees that

no point is ever assigned to a cluster with a higher number than the point itself. Moreover,

the last cluster k does not need to be considered because it will automatically contain all

remaining points that do not belong to any of the lower indexed clusters. Therefore, the

symmetry breaking rule proposed by [100] requires 0{kn) additional constraints to any

MSSC instance.

26

As we can notice, the constraints are sensitive to the initial indexing of the points. In

order to analyze the effect of this indexing, we tested the symmetry breaking rule with

three different types of ordering for the points.

In the first ordering, denoted Symm3_F, the points are selected in the same way as

described in section 2.1.1 for the second strategy devised by [108]. The second ordering,

called Symm3_R, uses the ordering that comes in the data set, which can be considered

as a random one. The third one, is similar to the first, but instead of selecting points

whose minimum distance to a point already selected is maximum, a point is selected if its

maximum distance to a point already selected is minimum among those yet to be selected.

This last ordering is denoted Symm3_C.

The strategies conceived to deal with symmetry were computationally tested for some

of the data sets described above, the results being reported in Table 2.5. The labels Symml

and Symm2 refer, respectively, to the first and second strategies devised by [108].

These computational experiments confirm that the second strategy Symm2 has a better

performance than Symml. Regarding the symmetry breaking rule based on [100], the best

results were obtained by the versions that ordered the points by dispersion (Symm3_F) and

randomly (Symm3_R), except for the data set with 14 points generated from the Fisher's

150 Iris. The reasons for such difference in performance caused by the different orderings

must be further investigated. Also, Symm3_F always presented a better performance

than Symm2 for the tested data sets, though the initial upper bounds have the same

value. In fact, if the points are ordered by dispersion as explained above, the effect at

the root node with the two strategies tends to be similar, since the affected points, i.e.

Pih, h — 1 , . . . , k — 1, are really supposed to belong to different clusters. If this happens,

both strategies imply the same cluster's indexing. Otherwise, algorithm Symm3_F is

preferable since its associated breaking rule strategy is more restrictive than that used by

algorithm Symm2. Table 2.6 shows initial upper bounds obtained by these algorithms for

different values of k. As the value of k increases, points Pih,h = 1 , . . . , k — 1 are less likely

to belong each one to a different cluster.

T
ab

le

2.
5:

R

es
u

lt
s

o
b

ta
in

ed

fo
r

th
e

di
ff

er
en

t
sy

m
m

et
ry

b

re
ak

in
g

st
ra

te
g

ie
s

fo
r

d
at

a
se

ts
 g

en
er

at
ed

fr

om

th
e

22
 G

er
m

an

to
w

ns

co
o

rd
in

at
es

an

d
fr

om

th
e

F
is

h
er

's

15
0

Ir
is

.
T

h
e

C
P

U

ti
m

es
 a

re
 g

iv
en

 i
n

se
co

n
d

s.

T
h

e
sy

m
bo

l
"-

"
is

 u
se

d
to

 r
ep

re
se

n
t

th
at

th

e
al

g
o

ri
th

m
 w

as
 n

o
t

ab
le

 t
o

so
lv

e
th

e
in

st
an

ce
 w

it
h

in
 1

0
h

o
u

rs
 o

f
co

m
p

u
ti

n
g

ti
m

e

B
e
n
c
h
m
a
r
k

G
e
r
m
a
n
2
2

Fi
sh
er
l5
0

B
e
n
c
h
m
a
r
k

Ge
rm
ar
 i2
2

Fi
sh
er
l5
0

Po
in
ts

10

12

14

16

18

20

10

12

14

k 3

3

3

3

3

3

5

5

5

Po
in
ts

10

12

14

16

18

20

10

12

14

C
P
U
ti
me

5.
57

21
.0
0

43
.5
3

21
0.
80

49
8.
27

12
73
0.
51

21
.0
6

36
5.
14

53
75
.0
3

k 3

3

3

3

3

3

5

5

5

S
y
m
m
l

C
P
U

ti
me

#
 o
f
no
de
s

7.
86

36
.6
7

93
.8
3

29
3.
40

65
5.
74

37
51
9.
50

14
0.
25

45
68
.1
1

S
y
m
m
3
_
F

of
 n
od
es

73
6

21
94

38
66

15
02
2

29
49
0

28
95
70

67
4

96
38

98
81
8

-

U
B

' Q

25
77
95

34
35
02

37
86
59

44
56
28

48
41
59

53
51
52

36
9.
25

45
1.
78

51
4.
86

10
38

37
54

76
48

18
95
2

36
61
6

50
33
62

41
18

98
78
0 -

U
B

' 0
25
89
56

34
58
30

37
97
76

44
90
54

48
76
44

53
84
40

36
9.
69

45
2.
15

51
5.
19

S
y
m
m
2

C
P
U

ti
me

#
 o
f
no
de
s

6.
11

24
.2
6

65
.1
2

22
5.
87

56
2.
51

14
09
7.
68

34
.8
5

49
9.
23

82
67
.4
4

S
y
m
m
3

R

C
P
U

ti
me

#
 o
f
no
de
s

4.
53

19
.0
9

50
.6
4

18
8.
66

60
8.
02

16
08
5.
13

37
.2
5

63
9.
07

85
25
.1
5

62
6

20
80

45
44

13
66
4

34
75
2

33
12
30

11
28

15
85
6

13
85
02

U
B

' Q

25
77
95

34
48
38

37
86
49

44
73
20

48
60
02

53
68
86

36
9.
68

45
2.
14

51
5.
18

84
8

26
30

57
58

15
92
2

30
94
6

31
03
08

12
08

13
71
6

14
65
52

U
B

' 0
25
77
95

34
35
02

37
86
59

44
56
28

48
41
59

53
51
52

36
9.
25

45
1.
78

51
4.
86

S
y
m
m
3
_
C

C
P
U

ti
me

#
 o
f
no
de
s

5.
49

36
.5
3

13
6.
77

54
0.
73

34
41
.0
3

30
50
4.
15

40
.7
8

43
4.
67

40
32
.0
1

75
6

40
60

12
09
0

35
06
6

13
35
34

46
30
90

12
68

10
02
8

68
98
2

U
B

' Q

25
83
77

34
55
47

37
94
75

44
88
89

48
76
43

53
84
40

36
9.
42

45
1.
88

51
4.
86

28

Table 2.6: Initial upper bounds UB'0 obtained by algorithms Symm2 and Symm3_F for
different number of clusters

Benchmark
German22

Fisherl50

Points
20

14

k
5
7
9
11
13
7
9
11
13

Symm2
535057
534538
533511
532010
530139
814.85
514.75
514.62
514.42

Symm3_F
535055
534536
533493
531949
530025
814.84
514.74
514.60
514.38

We also decided to investigate the effect of the actual convex hull constraints in the

MIP model of section 2.1.1 for data sets in R2. Recall that constraints for the coordinates

of each centroid yj, for each j = 1 , . . . , k and r = 1 , . . . , s, were introduced by means of

hyperrectangles that covered all the entities in the sets Ij.

Since each pair of consecutive extreme points in conv(P) can define a halfspace in the

Euclidean space, the coordinates of the centroids are confined to be in the polyhedron

defined by the intersection of these halfspaces. Unfortunately, the number of constraints

in the output is sensitive to the number of extreme points provided by Graham's algo­

rithm [46]. While O(kn) constraints are necessary in the model when using the hyperrect­

angles, this number raises to 0(kn2) with the convex hull inequalities, since all the entities

can be extreme points of the convex hull. Tables 2.7 and 2.8 present comparative results

in the same data sets generated from the 22 German towns coordinates of [111] for a new

implementation which includes the convex hull inequalities just described. The resulting

algorithm (Symm3_F+CH) uses the symmetry breaking rule of [100] with the dispersion

ordering, and is compared with the implementation of the previous section (Symm3_F).

There is a clear reduction provided by the convex hull inequalities in the number of

branch-and-bound nodes solved by the RLT-based branch-and-bound, with average reduc­

tion of approximately 79%. This is partially justified by the initial upper bounds obtained

at the root of the enumeration tree which are also smaller relatively to the previous imple­

mentation. Moreover, since the convex hull constraints are updated at each branch-and-

29

Table 2.7: Comparison in terms of the number of branch-and-bound nodes solved by two
implementations with (Symm3_F+CH) and without (Symm3_F) the convex hull inequal­
ities

Benchmark
German22

Points
10
12
14
16
18
10
12
14

k
3
3
3
3
3
5
5
5

Symm_3F
736

2194
3866

15022
29490

792
14834
32672

Symm 3F+CH
161
593
995

4473
4251

149
1765
4507

Reduction(%)
78.1
72.9
74.2
70.2
85.5
81.1
88.1
86.2

Table 2.8: Comparison in terms of initial upper bounds obtained by two implementations
with (Symm3_F+CH) and without (Symm3_F) the convex hull inequalities

Benchmark
German22

Points
10
12
14
16
18
10
12
14

k
3
3
3
3
3
5
5
5

Symm_3F
257795
343502
378659
445628
484159
257965
343711
378826

Symm 3F+CH
248129
333573
368908
428689
460801
248698
333890
369307

Reduction(%)
3.7
2.9
2.6
3.8
4.8
3.5
2.8
2.5

bound node according to the current definition of the sets Ij, the upper bounds at each

node are also supposed to be better, therefore reducing the number of branch-and-bound

nodes evaluated.

However, a large reduction in the number of nodes does not imply the same effect for

computing times as can be verified in Table 2.9. Indeed, this is due to the augmentation

on the number of constraints which makes the resolution of the relaxed model more time

consuming. Note that for the data set with 16 points CPU times are even worse with the

implementation that uses the convex hull inequalities.

30

Table 2.9: Comparison in terms of CPU times in seconds used by two implementations
with (Symm3_F+CH) and without (Symm3_F) the convex hull inequalities

Benchmark
German22

Points
10
12
14
16
18
10
12
14

k
3
3
3
3
3
5
5
5

Sy mm 3F
5.57

21.00
43.53

210.80
498.27

10.09
267.85
747.78

Symm_ J F + C H
3.08

16.53
36.10

332.26
428.92

5.33
121.22
467.61

Reduction(%)
44.7
21.2
17.0

negative
13.9
47.1
54.7
37.4

2.5 Concluding remarks

The first aim of this chapter was to reproduce results of Sherali and Desai [108] in solv­

ing the minimum sum-of-squares clustering problem with a branch-and-bound RLT-based

algorithm. Following the guidelines presented by the authors in that paper, we tried our

best to devise an equivalent branch-and-bound implementation. However, results obtained

were drastically different even for small data sets, and inconsistencies were found with the

results reported. Indeed, computing times and number of nodes for these small instances

were larger than those reported in [108] for much larger problems. There can be several

possible explanations for this:

(a) Our implementation is not correct;

(b) Our implementation is not efficient;

(c) The implementation of [108] is not correct;

(d) The data sets generated in the examples of [108] are extremely easy to solve;

(e) The platforms used are very different.

Regarding (a), we doubt this as the same results were obtained by our branch-and-bound

implementation and by CPLEX for all instances. Regarding (b), while we followed [108] as

closely as possible, this cannot be excluded a priori. Indeed computing times of our branch-

and-bound implementation grow much quicker than those of CPLEX. However, the fact

31

remains that computing times of CPLEX are large even for small problems. Regarding

(c), we note that in view of the fact that there are errors in the solution of the small

example of [108] this again cannot be excluded a priori. Sherali and Desai [108] report

similar computing times for CPLEX and the RLT-based branch-and-bound algorithm in

contrast to our results. Regardless of correctness of the RLT-based branch-and-bound

implementation of Sherali and Desai [108], the discrepancy between computing times with

CPLEX remains to be explained. Regarding (d), we note that, as discussed above, it is

very easy to generate arbitrarily large data sets in any number of dimensions for which

the MSSC problem can be solved with a very small amount of branching. Regarding (e),

we have been careful to use in our comparative experiments the same version of CPLEX

as Sherali and Desai [108], These authors do not mention the computer and compiler

used. However, we believe that differences in computing platforms cannot explain the vast

discrepancies observed.

To find out which is (or are) the true reasons among those listed we asked the authors

of [108] to provide either a copy of their code or the data sets or a precise description

of how they are generated (details are not given in their paper). This request could not

be answered because, as mentioned by Sherali in recent email [106], "Unfortunately, he

[Jitamitra Desai] appears to have deleted his codes and data sets".

The second aim of this chapter was to assess the interest of symmetry breaking rules,

in particular that one of [100]. This last one completely breaks symmetry and appears to

be better than the two ones of [108], both in terms of reduction in the number of nodes

and of computing time.

The third aim of this chapter was to study the impact of adding valid inequalities

obtained from the convex hull of the points which belong or can be added to each cluster.

Tests were made in the case of two dimensions. It appears that the number of nodes of

the branch-and-bound tree is reduced. The overall computing time may be either reduced

or increased.

32

CHAPTER 3 : A BRANCH-AND-CUT SDP-BASED

ALGORITHM FOR MINIMUM SUM-OF-SQUARES

CLUSTERING

The hardest task while devising exact algorithms for MSSC is to compute good lower

bounds in a reasonable amount of time. Recently, Peng and Xia [98] used matrix arguments

to model MSSC as a so-called 0-1 semidefinite programming (0-1 SDP) which can be further

relaxed to convex SDP or to linear programming. On the basis of their work, we propose

in this chapter a branch-and-cut algorithm to efficiently exploit the tight lower bounds

obtained from the linear relaxation of the underlying 0-1 SDP model.

3.1 Equivalence of MSSC to 0-1 SDP

In general, SDP refers to the problem of minimizing a linear function over the intersection

of a polyhedron and the cone of symmetric and positive semidefinite matrices [120]. The

canonical SDP has the following form:

{SDP) {

min Tr(WZ)

s.t. Tr(BiZ) = bi for i = 1 , . . . , m

Z^0

where W and E>i for i = 1 , . . . , m are matrices of coefficients, Tr(-) denotes the trace of a

matrix, and Z >z 0 means that Z is positive semidefinite. If the latter is replaced by the

constraint Z2 = Z, then the following problem is obtained

(0-1 SDP) {

min Tr{WZ)

s.t. Tr(BiZ) = bi for i = 1 , . . . , m

z2 = z,z = zT

33

It is called 0-1 SDP due to the similarity of the constraint Z2 = Z to the obvious constraints

on binary integer programming variables (see e.g. [10, 39]). Moreover, the eigenvalues of

matrix Z are equal to 0 or 1.

From Huygens' theorem (see e.g. [30]), the MSSC objective function in (1) can be

rewritten as
n—1 n

n k k E E XijXtjWPi ~ Pif
i= i e=i+i

i=l j=l j=l ' -71

Then, by rearranging it, the MSSC cost function can be expressed by

^ x^n—l v-*n ii „ i|2™ „ n k ,, ^-^n n2

y ^ E i= i E<=i+i llPi -P<ll ^ijg<j _ v^l l n2 ^\\T,i=ixijPi\\
j=i Z^i=i xi? i = 1 J = 1 Z^j=i ^ j

= Tr{WpWj)-J2^lXfif,
j=i 2-(i=i x i i

where Wv e M"xs is the matrix whose i-th row is the vector p,. Note that the same matrix

arguments were used by Zha et al. [130] and Steinley [114] in order to look for orthonormal

matrices which optimize the second term of the expression.

In [98], maximization of the second term is shown to be equivalent to maximizing a 0-1

SDP problem. Their development starts by considering a feasible assignment matrix X,

and then, defining a matrix Z = X{XTX)~lXT. Note that Z is a matrix that satisfies

Z2 = Z and Z = ZT with nonnegative elements.

Thus, the objective function can be rewritten as Tr{WpWj{I - Z)) = Tr{WpWj) -

Tr(WpWpZ). The constraint E j = i x i j = 1 c a n De written as Xek = e", which implies

that

Zen = ZXek = Xek = en.

Moreover, the trace of Z is equal to k, the number of clusters, i.e.,

Tr(Z) = k.

34

Thus, the following 0-1 SDP model for the MSSC is obtained

min Tr{WpWj(I-Z))

subject to (3.1)

Ze = e,Tr(Z) = k,

Z > 0, Z = ZT, Z2 = Z.

Peng and Xia [98] proved that any feasible solution Z for this 0-1 SDP model is necessarily

associated to a feasible MSSC assignment matrix X. Therefore, an equivalence relation

among the MSSC formulations (1) and (3.1) is established. Regarding complexity, the 0-1

SDP model is linear except for the constraint Z2 = Z.

3.1.1 Valid inequalities for the 0-1 S D P formulation

Peng and Xia [98] also derived valid inequalities for (3.1) from a property of semidefinite

positive matrices. Suppose Z a feasible solution for (3.1). Since Z is semidefinite positive,

it follows that there exists an index i\ € 1 , . . . , n such that

Zjjj j = m a x Zij > 0.
hi

Since Z2 = Z, then YljeiS^hj)2 = Zhh> where X\ = {j : Z^j > 0}. This implies that

E ll 7 n

From the choice of i\ and the constraint Y^l=i ^hj — ^jeZi ^hj = 1> P e n g a n d Xia [98]

concluded that

Zilj = Zixix, Vj e X\.

If the respective columns and lines associated to the index set Z\ are eliminated, the

remaining matrix is still semidefinite positive with the same aforementioned properties.

35

Therefore, if the process is repeated, the following valid inequalities are obtained

Zif)i = Zhi0' Vj € 27 ,̂ /3 = 1, . . . , k.

3.2 A branch-and-cut algorithm for the 0-1 SDP formulation

Peng and Xia [98] have proposed an LP relaxation for the MSSC 0-1 SDP formulation by

removing the constraint that Z2 = Z. Then, valid inequalities are used to strengthen the

model based on the fact that if the pairs of entities (oi,Oj) and (oi,oi) belong to the same

cluster, then Oj and 0£ also belong to the same cluster. From the definition of Z, these

relationships imply that

Zij = Zj£ — Ztf = Za = Zjj — Zj>g.

In their paper, such inequalities are partially characterized by the following ones

Z^ < Zn Vi,j (pair inequalities)

Z^ + Zi£ < Zu + Zj£ Vi,j,£ (triangular inequalities).

This partial polyhedron characterization was inspired by the work of Lisser and Rendl [78]

for graph partitioning. Thus, the resulting LP relaxed model is expressed by

min Tr{WpW^{I - Z))

subject to

Ze = e,Tr(Z) = k, (3.2)

Z>0

Zij < Za vl, J

Z^ + Zie < Zu + Zje Vi, j , £

36

The authors report some results on benchmark instances for which the lower bounds

provided by this LP relaxation are very close to the optimal values. However, they claim

that its resolution is unpractical for large-sized data due to the huge amount 0(n3) of trian­

gular inequalities. We propose here to tackle this limitation via a cutting plane procedure

which adds triangular inequalities only if they are violated.

Although the focus of Peng and Xia [98] is not on exact methods, the authors suggest

a simple branching scheme. Suppose that for the optimal solution of the LP relaxation

ZR there are indices i,j such that ZRAZR — Z^) ^ 0, then one can produce a branch

with Za = Zij and another one with Zij = 0. With this branching scheme, the number of
2

different branches is limited to at most 2n .

Regarding variable selection, we propose to choose indices i,j as the argmajq ,• min{Z^,

ZR — Z?j}. The reason behind this selection is to choose indices i and j with the least

tendency to assign Oi and Oj to the same cluster, or to different ones. Consequently, it is

expected to have, in both branches, a considerable impact on the LP relaxation.

Algorithm 1 summarizes the whole branch-and-cut method. In Line 1, the list L of

unsolved problems is initialized with the 0-1 SDP model (3.1). List L is implemented with

a stack data structure so that a depth-first search is performed while exploring the enumer­

ation tree. In Line 3, the best current solution s* is initialized by variable neighborhood

search (VNS) [89, 55] which is allowed to execute for one minute of CPU time.

Lines 4-23 consist of the main loop of the branch-and-cut method which is repeated

until the tree is completely explored. In Lines 5-6, a problem P is removed from L, and

its relaxation PR as in (3.2) is considered for being solved without its 0(n3) triangular

constraints. In the loop of Lines 7-10, the relaxed problem PR is solved via cutting planes

until there are no longer triangular inequalities which are violated. Limited computational

experiments showed that adding the 3000 most violated cuts is a good choice for the

number of cutting planes added in Line 9. Thus, the LP relaxation is kept fairly small as

compared to the full set of constraints.

If PR is feasible in Line 11, then due to equivalence between (1) and (3.1), a feasible

solution s is obtained to (1) from ZR in Line 13. If cost(s) is better than cost(s*) then

37

the latter is updated, where function cost(-) returns the cost of a solution to either for­

mulation (1) or (3.1). Branching is performed whenever the lower bound ZR is smaller

than the current upper bound cost(s*) in Line 18. Consequently, problem P is split into

two subproblems in Line 20 according to variables selected by the rule of Line 19. These

subproblems are added to L in Line 20. Finally, the optimal solution s* is returned in

Line 24 when L is empty.

l Algorithm: BC-SDP-MSSC
2 Let L be a list of unsolved problems. Initialize L with (3.1);
3 Solution s* is initialized by VNS ;
4 repeat
5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

Select a problem P from L and remove it from L;
Consider the linear relaxation PR of P as in (3.2) without the triangular
inequalities;
repeat

Solve PR. Let ZR be an optimal solution if one exists;
Look for violated triangular inequalities and add them to PR;

until there are no violated triangular inequalities ;
if PR is feasible then

if ZR is feasible for P then
Obtain a feasible solution s to (1) from ZR;
if cost(s) < cost(s*) then
| s* <— s;

end
end
if cost{ZR) < cost(s*) then

Calculate (i,j) € argmaXj j mm{ZR,ZR — ZR}\
Branch P into two subproblems by means of cuts Zij = 0 and
Za — Zu = 0 and add them to L;

end
end

23 until L = 0 ;
24 return s*;

Algorithm 1: Branch-and-cut SDP-based algorithm for MSSC

3.3 Computational experiments

In this section we report on the computational experiences with our SDP-based branch-

and-cut algorithm for MSSC. Results were obtained using an AMD 2 GHz architecture

38

with g++ (Option -03) C compiler. Package CPLEX 10.0 is called to solve with dual

simplex the LP relaxations of the problems generated.

In order to better evaluate the cutting plane procedure (Lines 7-10) of the proposed

BC-SDP-MSSC algorithm, three distinct versions of the program were devised:

1. BC-tri adds all pair inequalities a priori and exploits the triangular inequalities cuts

as cutting planes.

2. BC-all exploits both pair inequalities and triangular inequalities as cutting planes.

3. BC-hpair adds a half of the pair inequalities a priori and exploits the remaining ones

as well as the triangular inequalities as cutting planes.

Comparisons were made using some standard problems from the cluster analysis litera­

ture (i. Ruspini's 75 points in the Euclidean plane [103], ii. Spath's 89 Bavarian postal codes

in three dimensions [111], iii. the synthetic HATCO data set published in [51] consisting

of 100 objects in seven dimensions, iv. Fisher's 150 iris problem in four dimensions [36],

and v. Grotschel and Holland's 202 European cities coordinates [47]). To the best of our

knowledge, problems (iii) and (v) were never reported to be solved exactly in the literature.

In all tables presented here, the first column gives values of k and the second column

gives the optimal objective function values. More information is provided when available.

Peng and Xia [98] report CPU times used for solving LP relaxation (3.2) with all its 0(n3)

triangular inequalities for data sets (i), with k = 2 , . . . , 5, and (ii), with k = 2 , . . . , 9.

Thus, the third column of Tables 3.1 and 3.2 present those computing times, which were

obtained with an IBM RS-6000 workstation and CPLEX 7.1 with AMPL interface. Re­

maining columns are associated to CPU times of exact methods, i.e, the column generation

algorithm (CGA) of du Merle et al. [28] obtained with a SUN ULTRA 200 MHz station,

the repetitive branch-and-bound algorithm (RBBA) of Brusco [12], and the three versions

of BC-SDP-MSSC. Moreover, a last column is included in the tables to present gap values

between upper and lower bounds obtained by the solution of (3.2) at the root node, de­

noted UB° and LB0 respectively, which are calculated as (UB° - LB°)/LB°. The letter

39

T indicates that no initial gap exists, i.e., the problem is already solved by our approach at

the root node, without branching. Otherwise, the number of nodes of the branch-and-cut

tree is given in parenthesis.

Table 3.1: Results for Ruspini's data set

k Opt. sol. CPU times (seconds)
LP relax. CGA RBBA BC-tri BC-all BC-hpair

% gap

2
3
4
5
6
7
8
9
10
20
30

89337.8
51063.4
12881.0
10126.7
8575.4
7126.2
6149.6
5181.6
4446.3
1721.2
741.8

27.81
66.58

7.22
9.47

12.33
16.50
7.30
14.43
25.45
30.19
43.11
31.26
27.62

0.05
2.10

136.29
1699.75
> 12h
> 12h
> 12h
> 12h
> 12h
> 12h
> 12h

3.54
8.79
0.69
0.78
1.97
1.20
8.24
2.90
2.08
0.31
0.17

14.33
15.10
2.83
2.91
3.46
2.22
12.67
4.54
3.88
0.41
0.16

3.56
8.34
0.48
0.60
1.03
0.98
7.27
2.87
2.39
0.28
0.14

0.5
0.3
0.2

(7)
(3)
(3)

Table 3.2: Results for Spath's data set

k Opt. sol. CPU times (seconds)
LP relax. CGA RBBA BC-tri BC-all BC-hpair

% gap

2
3
4
5
6
7
8
9
10
20
30

6.02546 1011

2.94506 1011

1.04474 1011

5.97615 1010

3.59085 1010

2.19832 1010

1.33854 1010

8.42375 109

6.44647 109

7.48215 108

1.71392 108

283.26
418.07
99.54
60.67
52.55
61.78
26.91
18.04

19.92
1479.75
70.49
39.59
87.61
106.55
76.86
75.58
84.33

603.33
> 12h
> 12h
> 12h
> 12h
> 12h
> 12h
> 12h
> 12h
> 12h
> 12h

9.96
27.33
31.81
18.23
17.88
38.85
10.11
8.84
8.02
0.98
0.31

150.36
136.50
96.61
53.28
47.00
52.35
18.41
12.36
10.46
0.99
0.34

10.78
27.58
26.31
10.07
13.13
25.06
9.04
5.51
4.26
0.74
0.26

40

Table 3.3: Results for Fisher's data set

k

2
3
4
5
6
7
8
9
10
20
30

Opt. sol. -

152.3479
78.8514
57.2284
46.4461
39.0399
34.2982
29.9889
27.7860
25.8340
14.2208
9.5552

k

2
3
4
5
6
7
8
9
10
20
30

Opt

CPU times (seconds)
CGA RBBA

18697.59
497.55

0.05
2.10

505.49 136.29
350.25 1699.75
584.04 >
427.04 >
695.37 >
855.23 >
628.92 >

>
>

12h

BC-tri
166.82
512.85
301.12
152.18
141.88

12h 1061.16
12h
12h
12h
12h
12h

89.92
92.19
76.47

155.75
175.87

o/„
BC-all BC-hpair

549.28
454.70
299.40
237.36
163.32
847.93
123.18
88.78
73.07

104.91
145.24

169.44
283.24
240.19
145.54
147.51
742.83 0.0
108.73
70.04
59.66
87.06 0.0

155.52 0.1

Table 3.4: Results for HATCO's data set

. sol.

600.108
506.962
426.602
383.831
344.534
313.582
288.601
264.599
241.128
114.032
62.992

RBBA
0.80

> 12h
> 12h
> 12h
> 12h
> 12h
> 12h
> 12h
> 12h
> 12h
> 12h

CPU times (seconds)
BC-tri BC-all BC-hpair
108.79
158.15
85.39
61.46

188.49
246.91
377.88
421.22
315.99

5.00
2.51

101.88
146.19
88.54
80.33

151.39
191.20
378.52
381.70
284.10

6.07
2.72

69.68
141.52
68.00
52.56

145.03
181.13
286.67
314.30
217.74

4.15
2.35

- % gap

i
i
i
i

0.0 (3)
0.1 (5)
0.5 (11)
0.6 (13)
0.4 (15)
0.0 (3)
0.0 (5)

gap

! (7)

\s)
(23)

Tables 1-4 suggest the following conclusions:

• For data sets (i) and (ii), branch-and-cut algorithms are able to prove optimality of

model (3.1) in less computing time than solving only its LP relaxation given by (3.2)

with all 0(n3) triangular constraints. This shows the efficiency of the cutting-plane

approach.

• Algorithm BC-all is in most of cases outperformed by either BC-tri or BC-hpair.

Mainly for small k, a large amount of pair inequalities are active at the LP optimal

solution, and therefore, exploiting all of them as cutting planes is not a worthwhile

strategy.

41

• Algorithm RBBA is particularly efficient for small values of k, while its performance

quickly deteriorates as k increases. This is due to the fact that the number of branches

in RBBA is 0{kn).

• Except for one case in data sets (i-iii), algorithms BC-tri and BC-hpair always proved

optimality in smaller CPU times than those obtained by the column generation

algorithm of [28]. This comparison is not completely fair since their results were

obtained in an older computing architecture. If a straightforward scale factor of 10

(2 GHz = 10 • 200 MHz) is used for the column generation algorithm of [28], then it

performs better than our branch-and-cut algorithms in 14 out of 27 instances.

• Relaxation (3.2) provides very good bounds for MSSC since initial gap values are

never larger than 0.6%. Moreover, more than 65% of the tested data sets are exactly

solved after considering only the root node of the enumeration. This may be due to

the inclusion of the triangle inequalities in the formulation of the problem. Grotschel

and Wakabayashi [48] used triangular inequalities within a branch-and-cut algorithm

for partitioning with the sum-of-cliques criterion. Such constraints appear to suffice

in almost all of their computational tests too.

• Computing times of the branch-and-cut algorithms does not increase as the number of

clusters k increases. In fact, there is no evident relationship between the complexity

of solving (3.1) and the value of k. However, performance seems to improve for large

values of k, as shown by the results for data sets (i), (ii) and (iv).

The tests also assessed the quality of the solutions obtained by VNS for MSSC since

all initial upper bounds proved to be optimal.

Table 3.5 present results for Grotschel and Holland's 202 European cities coordinates [47]

whose value of n is the largest among data sets (i-v). Results show that BC-hpair is able

to determine proved minimum sum-of-squares partitions when k is large, while their per­

formance deteriorates as the value of k decreases. In our tests, the algorithms were not

able to solve instances with k < 8 in less than 12 hours.

Table 3.5: Results for Grotschel and Holland's da ta set

, ~. , , CPU times (seconds) m k Opt. sol. _ _ , v . '— % gap
BC-hpair

" 9 4376.1937 48885.38 0.2 (9)
10 3794.4880 23680.84 0.0 (7)
20 1523.5086 3839.77 0.1 (13)
30 799.3109 1060.77 0.0 (13)

Finally, note that our branch-and-cut algorithm based on solving LP relaxations of the

0-1 SDP formulation proposed in [98] can be extended to other related clustering problems

(e.g. normalized fc-cut minimization, balanced clustering; see [97] for details).

43

CHAPTER 4 : AN IMPROVED COLUMN GENERATION

ALGORITHM FOR MINIMUM SUM-OF-SQUARES

CLUSTERING

A column generation algorithm for MSSC was given in du Merle et al. [28]. The bottleneck

of that algorithm is the resolution of the auxiliary problem of finding a column with negative

reduced cost. We propose in this chapter a new way to solve this auxiliary problem based

on geometric arguments.

4.1 Column generation algorithm revisited

Partitioning problems in cluster analysis can be mathematically formulated by considering

all possible clusters. Let us consider any cluster Ct for which

1 if entity Oj belongs to cluster Ct

0 otherwise,

and let us denote by yt the centroid of points pi such that an = 1. Thus, the cost ct of

cluster Ct can be written as
n

ct = ^\\Vi-yt\\2ait-

a>u =

44

An alternative formulation for MSSC is then given by

min ^ ctzt
teT

subject to

J2aitzt = l Vi = l , . . . ,n (4.1)
teT

J2zt = k

teT

zte{0,i} V i e T ,

where T = { l , . . . , 2 n — 1}. The zt variables are equal to 1 if cluster Ct is in the optimal

partition and to 0 otherwise. The first set of constraints state that each entity belongs

to one cluster, and the following constraint expresses that the optimal partition contains

exactly k clusters. Without loss of generality, they can be replaced by

a-itZt > 1) Vi = 1 , . . . , n, and VJ zt < k,
teT teT

because (i) a covering of O which is not a partition cannot be optimal, and (ii) any partition

with less than k clusters has objective value greater or equal to the optimal partition with

k clusters.

This is a large set partitioning problem with a side constraint, for which the number

of variables is exponential in the number n of entities. Therefore, it cannot be explicitly

written and solved in a straightforward way unless n is small. The column generation

method proposed in [28] works with a reasonably small subset T" C T of the columns in

(4.1), i.e., with a restricted master problem. The method is combined with branch-and-

bound in order to solve exactly (4.1) for medium size (about 100-200 entities) to fairly

large instances (1000 entities or more).

Problem (4.1) is solved iteratively, augmenting the number of columns in the restricted

master problem until optimality is proved with the columns at hand. Entering columns

are found by solving an auxiliary problem, i.e., finding the list of entities of a cluster whose

E

45

associated variable in (4.1) has negative reduced cost. Since a standard column generation

method for solving the linear relaxation of the formulation (4.1) suffers from very slow

convergence due to high degeneracy, two strategies for stabilizing column generation [29]

were used and compared in [28]. That one for which the linear relaxation is solved by

an interior-point algorithm, i.e., the weighted version of the analytic center cutting plane

method (ACCPM) of Goffin, Haurie, and Vial [45], was found to be the best.

Once the linear relaxation of the problem is solved, the integrality of the obtained

solution is checked (and often found to hold for small to medium size problems with few

clusters). Then, if the solution is not integer, branching is needed. The branching rule

used in [28] is the standard one, due to Ryan and Foster [104], i.e., branching by imposing

in one hand that two entities belong to the same cluster and on the other hand that at

most one of these entities belongs to any given cluster.

4.1.1 Auxil iary problem

The biggest obstacle for an efficient exact resolution of the MSSC via column generation

is the difficulty of the auxiliary problem. The dual of the formulation (4.1) is expressed by

n

max ka + \^ \
i = l

subject to
n

-a + J2ait^i<ct V t € T (4.2)
i=i

A i > 0 Vt = l , . . . , n

a>0,

where the Aj for i = 1 , . . . , n and a are dual variables associated with the covering con­

straints and with the side constraint.

Problem (4.2) is solved using a cutting plane method, starting with a relaxation and

adding constraints as necessary. In the classical cutting plane method by Kelley [67], cuts

46

are generated at an extreme point of the relaxed dual formulation. However, Kelley's

method is known to slow down considerably in the presence of degeneracy [29]. ACCPM

tackles this shortcoming by generating cuts at an analytic center of the current dual feasible

region (cf. [33]). In both cases, given dual values A, a, a violated cut is searched to be

added to the relaxed dual problem. The violation itt of a constraint is given by

n

7Tt = Ct + a - y^XjClit.

i=l

Since we are interested in finding violated constraints, 7rt < 0. The auxiliary problem is

then given by TT* = mint -nt. Although the enumeration of -Kt for all £ € T is too expensive,

the value of n* can be found by solving

n
7 r * = C 7 + m i n „ T2(\\Pi -Vvf- Xi)vi- (4-3)

i=l

with yv denoting the centroid of points Pi for which Vi = 1. If ir* < 0, then the optimal

solution v* to (4.3) is added as a cut to the relaxed dual problem (in the primal, this is

equivalent to adding a column to the restricted master problem together with its associ­

ated primal variable). Otherwise, problem (4.2) (or equivalently, problem (4.1)) is solved

optimally.

From Huygens' theorem (e.g., Edwards and Cavalli-Sforza [30]), which states that the

sum of squared distances from all entities of a given cluster to its centroid is equal to the

sum of squared distances between pairs of entities of this cluster divided by its cardinality,

problem (4.3) can be expressed by

n— 1 n

£ E \\Pi -PjfviVj
* , i= l j=i+l v-̂ v .

•K = a + mm > A^j
L Vi i=l
i=i

n— 1 n n
£ £ {\\Pi - Pj\\2 ~\~ ^j)ViVj - E \ v i
i—l ?=i+l i= l , . ..

= (7+mm . 4.4)
j= i

47

It is a hyperbolic (or fractional) program in 0-1 variables with quadratic numerator and

linear denominator. This problem is solved in [28] by an adaptation to binary variables of

Dinkelbach's algorithm [24]. This algorithm begins with a tentative value for (4.4) then

reduces the problem to unconstrained quadratic 0-1 optimization by multiplying both sizes

by the denominator and regrouping terms. If a positive value is obtained for the optimal

solution of this last problem its corresponding value in (4.4) is computed and the procedure

iterated. Its most expensive step is the resolution of a sequence of unconstrained quadratic

0-1 programs, which are solved in [28] by a VNS heuristic until optimality must be checked

by a branch-and-bound algorithm.

4.2 A geometric approach

The auxiliary problem (4.3) can be viewed as minimizing the sum of functions equal to

squared distances from the cluster center yv to each of the entities, but with a limit on

each of the distances, after which the corresponding function does not increase anymore.

Clearly, for a given location yVt vi is equal to 1 if \\pi — yv\\
2 < Aj, and to 0 otherwise.

Geometrically, in the plane, this is equivalent to the condition that v\ = 1 if yv belongs to

a disc with radius y/Xi centered at pi, and 0 otherwise.

A branch-and-bound algorithm based on the vector v would consider implicitly all 2n

subproblems generated by branching on binary variables v% for i = 1 , . . . , n, while adding

constraints ||pj — y„||2 < ^i and ||pj — yv\\
2 > Aj to the resulting subproblems. However,

the resulting problems pertain to D.C. programming and are difficult to solve. Another

possibility is to focus on components V{ of v which are equal to 1. We then consider

subproblems of the following type:

min Y] \\pi - yf

subject to (4.5)

\\pt - y \ \ 2 < Ai vi e s,

48

where 5 C { l , 2 , . . . , n } is a non-empty set. Subproblems of type (4.5) are convex pro­

gramming problems. Proposition 1 shows that an optimal solution for (4.3) is guaranteed

to be an optimal solution to a subproblem of type (4.5).

Proposition 4.1. Let (y*,v*) be the optimal solution to (4-3). Then, y* is the optimal

solution to a subproblem of type (4-5) with a set S for which \\pi — y*||2 > A, for all i £ S.

Proof. Define S* as the index set of all points pi such that \\p% — yl\\2 < \ . Thus, for i g S*,

\\pi — y*||2 > Aj. Now let y' be the optimal solution for (4.5) with S* and suppose that y*

is not the optimal solution for it. Since, \\pi — y*\\2 > min{||pi — y'\\2, Aj} for all i £ S*,

the cost of (y',v*) is smaller than that of (y*,v*) in (4.3), which is a contradiction. •

The auxiliary problem (4.3) still has another very important property which states that

at optimal solution (v*,v*), y* is at the centroid of points pi for which v* = 1. Given a

subproblem of type (4.5) with index set S, this implies that if the centroid of the points

Pi such that i € S is not a feasible solution, then we conclude that the subproblem does

not contain the optimal solution to (4.3). In the plane, it amounts to say that the centroid

must belong to the intersection of all discs with index i € S (which includes the particular

case where S is a singleton).

Let us define A as the set of discs whose boundaries intersect at least one other boundary

of a disc in two points, and B as the set of discs that do not belong to A. They include

isolated discs and nested discs (i.e., discs that contain other discs in their interior and discs

that are entirely contained into other ones). An useful result is shown by the following

proposition:

Proposition 4.2. The number T of distinct regions which are intersection of discs \\pi —

y\\2 < Xi is bounded by 2n(n — 1).

Proof. The total number of points of intersection among discs in A is at most |v4.|(|A| — 1).

Since each one of them can be associated with at most 4 different regions, and as each

49

of these regions contains at least two of these points, the number of regions TA which are

delimited by discs in A is bounded by 2|vl|(|A| — 1).

Each one of the discs in B can delimit at most one region. Consequently, the number

of regions TB delimited by discs in B is equal to \B\.

Thus,

T = rA + rB < 2\A\(\A\ - 1) + \B\

< 2(\A\ + \B\)(\A\ + \B\-1)

< 2n(n - 1)

•

Proposition 2 implies that the number of subproblems of type (4.5) that need to be

solved in order to obtain an optimal solution to (4.3) is polynomially bounded.

An algorithm was proposed in [26] for a similar problem in location theory, i.e., the

1-center Weber problem with limited distances. The only difference between this problem

and (4.3) lies in the fact that Euclidean distances are used instead of squared ones. The

algorithm proceeds by considering all intersection points between discs in the plane, and

then solves, for each one of these points, the subproblems of type (4.5) corresponding to

the four possible regions which are adjacent to the point. For instance, suppose that p

is an intersection point between discs centered at points pi and pj, then the four possible

non-empty index sets corresponding to regions for which p can be a vertex are formed by:

Sa = {i : \\pt ~ P\\2 <\i,t? i,j}; Sb = {i} U Sa; Sc = {j} U Sa; and Sd = {i,j} U Sa .

It appears that the algorithm of [26] implicitly assumes that regions delimited by discs

in B either do not exist or can be discarded for evaluation. However, this is not true

either for the 1-center Weber problem with limited distances or for (4.3), which makes the

algorithm proposed in [26] incomplete.

Figure 4.1 exhibits an auxiliary problem configuration which appears after 11 iterations

of our column generation algorithm while clustering the 10 points described at the top of

50

Figure 2.2 into 3 clusters. The shaded region (2) in the figure corresponds to the optimal

solution of the auxiliary problem while region (1) is the solution provided if the algorithm

of [26] is used instead.

VA

PI
690
166

382.78

P2

190
887

360.47

P3

823
695

203.34

P4

73
125

379.22

P5
782
979

208.24

P6

338
894

168.79

Pi
287
340

211.61

Ps
410
263

198.70

P9
769
768

138.14

Pio
962
831

332.88

Figure 4.1: Configuration of convex regions experimentally obtained

Algorithm 1 below is the new algorithm obtained after adapting and completing the

algorithm of [26] in order to consider sets S corresponding to regions delimited by discs of

B. This algorithm requires 0(n3) time since there are 0{n2) possible intersection points

and step 6 takes 0(n) time per subproblem. Additional operations due to steps 9-13 are

performed in 0(n2) time.

The following simple condition holds if two discs associated to points pi and pj intersect

\\Pi -Pj\\ < y/\ + \/Aj,

51

1 Algorithm 1
2 Enumerate all intersection points of pairs of discs in the plane as well as all

the points whose associated disc does not intersect any other one. Let L\
and L,2 be the corresponding lists;

3 for each point p € L\ defined by the intersection of discs centered at points
Pi and pj do

Find the set 5 of all k such that k / i, j and \\pk — p\\2 < A&;
Consider four sets: S, S U {i}, S U {j}, and S U {i, j};
Solve subproblems of type (4.5) defined by each of these sets;
Update the best solution if an improving one is found;

8 end
9 for each point q £ L2 do

10 Find the set S' composed by q and the indices of all points associated to
discs containing that associated to q;

11 Solve subproblems of type (4.5) defined by each 5';
12 Update the best solution if an improving one is found;
13 end
14 return best solution found

one disc being contained in the other if

\\pi -Pj\\ < \V\- \ A

Based on these conditions, an acceleration procedure for Algorithm 1 is to build for

each point pi, i = 1 , . . . , n a list of non-decreasing distances to any other point. In step 2

of Algorithm 1, each point pi is tested in turn with all other points pj for j = 1 , . . . , n,

such that j > i, in order to know if their respective discs intersect. Indeed these points

can be considered in the order given by the sorted list of pi and the search for intersections

halted as soon as

maxi

where Am a x = max{Aj} for i = i + 1 , . . . , n. Note that exactly the same test can be used

in order to speed up step 4 of the algorithm.

52

4.2.1 Branching

The classical branching rule is applied whenever branching is needed to solve (4.1). It

consists on finding two rows ii,i2 such that there are two columns t\ and t2 with fractional

values at the optimum and such that a^n = a,i2tl — 1 and a;lt2 = l,aj2t2 = 0. Then,

constraints are introduced in the auxiliary problem of both subproblems in the form (i)

Vix = vi2 for one branch, and (ii) v^ + V{2 < 1 for the other one. Problem (4.3) in the

presence of branching constraints can be expressed as

n

yvm
s,v<EBn - ^ ^ x "

i=l

subject to (4.6)

Vi = Vj V(i,j)eli

Vi + Vj<l V{i,j)el2

where I\,I2 are the index sets of pairs of entities involved in constraints of form (i) and

(ii), respectively.

Algorithm 1 is not able to solve problem (4.6), since optimal solutions may now be

associated to index sets which do not correspond directly to a region in the plane. In fact,

Proposition 1 is no longer valid in the presence of branching constraints. A very simple

example consists of two points pi,Pj whose discs of radius y/Xi and y/\~j do not intersect

while a constraint states that points pi and pj must be together. In this case, none of the

index sets S scanned by Algorithm 1 is able to provide a feasible solution to the problem.

Fortunately, Proposition 3 below shows that Algorithm 1 can be slightly modified in

order to solve problem (4.6) exactly. Let us first define three index sets associated with

any vector yv

• Si(yv) is the index set of points pj for which \\pi~ yv\\
2 < A;, and for which (i,j) G I\

or (i,j) € h with j € Si(yv) U S2(yv);

• S2{yv) is the index set of points pj for which ||pi — 2/^||2 > Aj, and for which (i,j) G I\

with j e Si(yv);

file:////pi~

53

• S3(yv) is the index set of points Pi for which \\pi — yv\\
2 < Aj, and such that i ^ Si(yv).

Proposition 4.3. Let (y%,v*) be the optimal solution of (4-6) and let v* = (v* \ i €

Si(y*) U 62(2/^)). Then, (y%,v*) is the optimal solution of a subproblem given by

min Yl \\Pi ~ y\\2yi + H \\Pi ~ V^
ieS1US2 i€5 3

subject to

\\pi - y \ \ \ < Aj

\\Pi - y\\2 < Ai

^ e { 0 , l }

y e R s

with sets Si, S2, S3 C { 1 , . . . , n} and where X is the polyhedron of branching constraints.

Proof. From the definition of Si{y*), S2(y*) and S3(y*), \\pi - y*\\ > Aj for all i £ Si(y*)l>

S2(y*)uS3(y*).

Now let (y(,,v') be the optimal solution to (4.7) regarding Si = Si(y*), S2 = S2(y*)

and S3 = ^ (y*) , and suppose that the optimal solution of (4.6) (y*,v*) is not optimal for

(4.7). Then, we can construct v' as:

. v'i = v'iyieSiUS2;

. ^ = l , V i e 5 3 ;

• v[= 0, otherwise;

such that the cost of (y'v,v') is smaller than that of (y*,v*) in (4.6), which is a contradiction.

•

The importance of Proposition 3 lies in the fact that, given the optimal y*, the optimal

subproblem of type (4.7) with sets Si = Si(y*),S2 = S2(y*) and S3 = S^y*) is by

V i e Si

Vi e S3 (4.7)

V e Si u S2

54

definition associated to the region in the plane originated from the intersection of discs

\\Pi ~~ Vv\\2 — ^i- This fact implies that the number of subproblems of type (4.7) which

need to be considered in order to solve (4.6) is polynomially bounded. However, (4.7) is a

problem with binary variables for which an enumeration method of resolution is needed.

Algorithm 1 can be modified to solve subproblems of type (4.7). For each region in the

plane, sets Si, S2 and S3 are determined to form a subproblem of type (4.7) (remark that

any location y in a given region of the plane defines the same sets Si(y), S2^y) and 53(1/)).

Then, the subproblem is solved by a branch-and-bound procedure. Note that whenever

Si,S2 = 0, subproblem (4.7) turns out to be equivalent to subproblem (4.5), and therefore,

enumeration is not needed.

Decisions in the branch-and-bound algorithm are made by presence-absence dichotomy

on variables vi, for Vi € Si U52- Lower bounds are calculated in each node as the difference

of two values:

1. the cost of the node solution, which is calculated with respect to the centroid of

points pi for which decision Vi = 1 is fixed;

2. the sum of the prices Aj of the free variables Uj.

When (4.6) contains a few branching constraints, sets Si and S2 have small cardinality

by definition. So, the given branch-and-bound method to solve (4.7) performs very well in

practice.

R E M A R K : In the presence of a larger number of branching rules, solving (4.7) becomes

a more difficult task. To this purpose, we note that (4.7) can be reformulated exactly (in

the sense of [76]) by introducing parameters:

Mi > max \\pi - pj ||2 Vi e Si U S2,
i

decision variables:

Wi€[0,Mi] V i e S i U S 2 ,

55

and constraints:

\\Pi ~ yf < W + (1 - Vi)Mi Vi € Si U S2

to (4.7). We then replace constraints \\pi — y\\2vi < Aj Vi € Si by

| |P i -2 / | | 2 <A i + (l - ^) M , Vie Si,

and the terms \\pi — y\\2Vi for i G Si U S2 in the objective function by Wj. We thus obtain

the reformulated problem:

min J^ uji + Y^ \\Pi ~ yf
ieSiUS2 ies3

subject to

| |Pi-S/ | | 2<Ai + (l - i ;OMi Vie Si

\\Pi - y\? < wi + (1 - Vi)Mi VieSiUS2

\\Pi ~y\\2< Ai Vi G S3 (4.8)

^ G { 0 , 1 } VieSiUS2

veX

yeRs

coi € [0, Mi] VieSiU S2

which is a convex MINLP, for which there exist practically efficient algorithms (e.g. [9, 74]).

We also remark that its continuous relaxation is a continuous NLP which can be solved in

polynomial time [121].

Finally, note that Algorithm 1 can be used without modifications to provide approxi­

mate solutions to (4.6). This can be done up to the moment that the exact resolution of

(4.6) is required to prove that (4.1) was in fact optimally solved.

56

4.3 Generalization to the Euclidean space

Let us consider a graph G — (N, E) for which there is a node n, G iV corresponding to

each point pi, for i = 1 , . . . , n. Besides, an edge e^ exists in G if and only if

\\Pi -Pj\\ < VAi + ^Xj,

i.e., eij G E if and only if the hyperspheres centered at pi and pj with radius \/Xi and \/Aj

intersect.

The following result allows us to generalize the geometric approach in the plane by

considering the intersection graph of hyperspheres centered at the points pi, for i = 1 , . . . , n.

Proposition 4.4. / / a solution (y*,v*) is optimal to (4-3) then the elements of the set

N* = {rii\v* = 1} form a clique in G.

Proof. Let us suppose that (y*, v*) is the optimal solution of (4.3) and that the elements of

N* do not form a clique in G. Hence, there are two nodes rn, nj in N* for which e^ ^ E,

i.e., the hyperspheres centered at p^ and pj with radius \J~X~i and yfXj do not intersect. In

such a case, y* is certainly located outside at least one of these hyperspheres. Suppose

\\Pi ~ Vv\\ > \/Ai, then a reduction in the cost of the solution is obtained by setting v* = 0,

which contradicts the optimality of (y*,v*). •

The number of distinct regions resulting from the intersection of hyperspheres is not

polynomially bounded in n only. However, Proposition 4 allows to better exploit (4.4)

above. Indeed it can be written as

ra—1 n n

£ E (4 - A* - Xi)ViVi ~ E XiVi
1=1 7=1+1 1=1

a + mm .
Vie{o,i} n T,Vi

file:///J~X~i

57

where d^ represents the Euclidean distance between the entities associated to variables vt

and Vj. Coefficients df, — \ — Xj of the product v\Vj can be made arbitrarily large in (4.4)

if dij > y/\i + y/\~j due to Preposition 4, since Vi = Vj = 1 does not occur in the optimal

solution.

4.3.1 Branching

As proposed in [28], branching constraints of type V{ — Vj can be added to the auxiliary

problem (4.4) by reducing by one the number of its variables and updating coefficients

accordingly. In the case of branching constraints of type v^ + VJ < 1, it suffices to set

coefficient d?- — Aj — Xj to an arbitrary large value. Thus, the auxiliary problem is expressed

by

n' — l n' n!

T, Y, (dh/~ wj'h' - Wi'Xj^Vi'Vj, - Yl (vJi'Xi> -d-l^Vi'

(7+ mm , (4.9)
vt,e{o,i} «;

L wi'vi'
i'=l

where Wi' is the number of variables merged in variable vy. Note that the form of the

auxiliary problem is not changed. It is still a fractional program in 0-1 variables with

quadratic numerator and linear denominator.

An observation must be made when setting coefficients based on the intersection graph

of hyperspheres in the presence of branching constraints of type Vi = Vj. Suppose entities

Oi and Oj for which there is a constraint stating that Vi = Vj. Consequently, variables v$

and Vj are merged together in a single variable vy of (4.9). Let us consider now v^ the

variable associated to entity o^, then coefficient df,k, — Aj/ — 2A/-' is set to an arbitrary large

value in (4.9) only if

dik > v Aj + v Afc and djk > \/Xj + y A&,

i.e., only if

di'k > v \ + v ^ i + 2yA/c.

58

This can be generalized to any pair of variables Vi>,Vji. Let us consider //$/ and \xy the

index set of variables merged at variables vy and l y , respectively. Thus, if

di'ji > Wj> 2_, V A + wi' 2_/ V^.
iefit,

then d?, •, — Wj>Xi> — w^Xy can be set to an arbitrary large value in (4.9).

4.3.2 Solving by cliques

Moreover, Proposition 4 permits to exactly solve the auxiliary problem by directly search­

ing for cliques in G. Algorithm 2 presents the steps to compute the optimal solution to

(4.9) from the intersection graph of hyperspheres G = (N, E).

1 Algor i thm 2
2 while G is not empty do
3 Find a vertex n» with smallest degree in G;
4 Consider Gl = (Nl,El) the subgraph composed by n, and its adjacent

vertices;
5 Solve (4.9) for variables ve such that ne € Gl;
6 Save the clique obtained if it is the best found so far;
7 Remove rij and its adjacent edges from G;
8 end
9 r e t u r n best clique found

Clearly, Algorithm 2 is more efficient for sparse graphs G than for dense ones as sub-

problems (4.9) solved in (c) tend to have less variables Indeed, the sparsity of G depends

on the dual values A, which tends to decrease with the number of clusters. This is due to

the fact that when k is large, entities are likely to be close to their second-closest centroids

in the optimal solution. Consequently, a second copy of an entity has little impact on the

objective function value which means that the values A of the dual variables are small.

4.4 Computational results

Computational experiments were performed on a AMD 64 bits platform with a 2 GHz

clock and 10 Gigabytes of RAM memory. The algorithms were implemented in C + + and

59

compiled by gcc 3.4. Unconstrained 0-1 quadratic programs are solved by a specialized

algorithm proposed in [54] which was observed to perform better than CPLEX 10.1 for

that purpose. Eleven real-world data sets were used in our numerical experiments. They

are briefly listed in Table 4.1 together with references to where more information about

them can be found.

Table 4.1: List of data sets

Data sets n s
Ruspini's data [103]
Grotschel and Holland's 202 cities coordinates [47]
Grotschel and Holland's 666 cities coordinates [47]
Reinelt's hole-drilling data [102]
Padberg and Rinaldi's hole-drilling data [94]
Fisher's Iris [5]
Glass identification [5]
Body measurements1 [60]
Telugu Indian vowel sounds [95]
Concrete compressive strength [5, 129]
Image segmentation [5]

75
202
666
1060
2392
150
214
507
871
1030
2310

2
2
2
2
2
4
9
5
3
8
19

the attributes used are: weight, height, chest girth, waist girth and hip girth

For all experiments reported here, initial upper bound solutions are obtained by j -

means [55]. They are used to add initial cuts to (4.2), as well as to estimate initial dual

bounds which may be adjusted throughout execution if necessary. Lower and upper bounds

for dual variables A can be estimated from any given upper bound solution UB. For each

dual variable Aj, for i = 1 , . . . , n, a lower bound value Ibi is estimated by calculating the

cost variation in UB caused by omitting entity Oj from its associated cluster in UB. The

estimation of an upper bound value ubi is done by calculating the cost variation in UB

caused by assigning entity 0{ to its second-closest centroid. These estimations are exact

whenever UB is the optimal solution and no integrality gap exists (cf. [28]).

4.4.1 Results in the plane

In this subsection we compare the column generation of [28], denoted accpm-vns-qp, with

two improved ones, i.e., (i) accpm-al which uses Algorithm 1 to exactly solve all auxiliary

problems, and (ii) accpm-vns-al which uses heuristic VNS to provide approximate solutions

60

to auxiliary problems until optimality must be proved by Algorithm 1. The VNS heuristic

used by algorithms accpm-vns-qp and accpm-vns-al is set to run for one iteration, i.e., it

reaches the largest neighborhood only once. Note that it is not worthwhile to use VNS for

many iterations since Algorithm 1 is polynomially bounded in 0(n3).

The results are also compared to those of two other methods proposed in the literature,

i.e., the repetitive branch-and-bound algorithm (rbba) of Brusco [12] and the best branch-

and-cut SDP-based algorithm (bb-sdp) of [2].

Tables 2-7 show results for data sets in the plane. They present in the first column the

number k of clusters, and optimal solution values /o p t are reported in the second column.

The values associated to each algorithm refer to their respective CPU times (in seconds)

spent on solving exactly the instance. Finally, a last column is included to present gap

values between upper and lower bounds obtained at the root node, denoted UB° and LB0

respectively, which are calculated as (UB° — LB°)/LB°. The letter 'i' indicates that no

initial gap exists, i.e., the problem is already solved by the accpm algorithms at the root

node, without branching. Otherwise, the number of branch-and-bound nodes is given in

parenthesis.

Table 4.2 shows that all methods perform well or very well for Ruspini's data set with

n = 75 entities. Algorithm rbba is particularly efficient for small values of k, while its

performance quickly deteriorates as k increases. This is due to the fact that the number of

branches in RBBA is 0(kn). For k > 5, algorithms accpm-al and accpm-vns-al are always

faster than the other methods.

Table 4.2: Results for Ruspini data set with 75 entities

k
2
3
4
5
6
7
8
9
10

J opt

0.893378e+05
0.510634e+05
0.128810e+05
0.101267e+05
0.857541e+04
0.712620e+04
0.614964e+04
0.518165e+04
0.444628e+04

rbba
0.01
0.28
0.01
0.17

21.97
181.90

2921.93
> lh
> lh

bb-sdp
3.56
8.34
0.48
0.57
1.03
0.98
7.27
2.87
2.39

accpm-vns-qp
0.55
0.57
0.53
0.59
0.91
1.12
1.04
1.20
1.17

accpm-vns-al
0.24
0.20
0.14
0.16
0.27
0.28
0.44
0.30
0.26

accpm-al
0.39
0.42
0.07
0.10
0.18
0.18
0.23
0.17
0.12

gap(%)

0.01(3)
i
i

61

Table 4.3 presents results obtained in less than 12 hours of CPU time for the Grotschel

and Holand's data set with n = 202. Algorithm rbba is not able to solve even the problem

with k = 2 clusters in less than 12 hours. So, we do not refer to its results in the subsequent

tables. As empirically observed in [2], the performance of algorithm bb-sdp improves as

k increases, in contrast with algorithm rbba. It is unable to solve problems for k < 8 in

less than 12 hours. It also appears that it is better to approximately solve the auxiliary

problems by VNS up to k = 15. For k > 20, the sparsity of the discs in the plane, which

is implied by small dual values, makes Algorithm 1 more efficient than VNS to solve the

auxiliary problems. So, algorithm accpm-al performs better than accpm-vns-al for these

values of k. The sparsity effect also appears to be advantageous to the unconstrained

0-1 quadratic programming solver since the algorithm is faster for instances with larger

number of clusters.

Table 4.3: Results for Grotschel and Holland's data set with 202 entities

k
2
3
4
5
6
7
8
9
10
15
20
25
30

J opt

0.234374e+05
0.153274e+05
0.114556e+05
0.889490e+04
0.676488e+04
0.581757e+04
0.500610e+04
0.437619e+04
0.379249e+04
0.232008e+04
0.152351e+04
0.108556e+04
0.79931 le+03

bb-sdp
> 12h
> 12h
> 12h
> 12h
> 12h
> 12h
> 12h

48885.38
23680.84
39756.23
3839.77
1915.05
1060.77

accpm-vns-qp
> 12h
> 12h
> 12h
> 12h
> 12h
> 12h

1526.63
1334.06
496.85
41.49
59.90
33.95
27.03

accpm-vns-al
19.85
19.64
21.87
15.62
26.33
33.79
48.80
33.79
16.42
18.43
18.87
18.24
17.78

accpm-al
61.54
79.65
82.89
63.95
69.97
85.56
65.56
47.87
35.84
30.71
17.75
11.05
5.96

gap(%)

Regarding the results for the Grotschel and Holland's data set with n = 666 entities

presented in Table 4.4, a CPU time limit of 1 day was established, which proved not to be

enough for algorithms bb-sdp and accpm-vns-qp. Therefore, the results of these algorithms

will not be reported from now on since they demand too much time to exactly solve

instances of the largest data sets. Table 4.4 shows that algorithm accpm-al is faster than

accpm-vns-al from k > 4.

62

Table 4.4: Results for Grotschel and Holland's data set with 666 entities

k
2
3
4
5
6
7
8
9
10
20
50

Jopt

1.754012e + 06
0.772707e + 06
0.613995e + 06
0.485088e + 06
0.382676e + 06
0.323283e + 06
0.285925e + 06
0.250989e + 06
0.224183e + 06
0.106276e + 06
0.351795e + 05

accpm-vns-al
1179.68
1525.10
3585.39
3277.55
3162.39
3082.65
4314.00
4134.31
3131.41
10504.30
6161.84

accpm-al
2723.48
1758.92
3290.45
2410.83
1909.23
1909.49
2469.90
2162.06
2108.38
4819.84
447.48

gap(%)
i
i
i
i
i
i
i
i
i

0.00(3)
i

The results in Table 4.5 show that accpm-al is faster than accpm-vns-al from k > 7.

The algorithms appear to be scalable for larger values of k due to increasing sparsity of

discs in the auxiliary problems. It is worthwhile to mention that some of the state-of-art

heuristics proposed in [15, 55, 72, 73, 92, 115] did not report the optimal solutions found

here for the Reinelt's drilling data set with n — 1060 entities and k = 120,150. To the best

of our knowledge, this is the first time that such solutions are reported in the literature.

Table 4.5: Results for Reinelt's drilling data set with 1060 entities

k
2
3
4
5
6
7
8
9
10
100
110
120
130
140
150
200

J opt
0.983195e+10
0.670578e+10
0.475197e+10
0.379100e+10
0.317701e+10
0.270386e+10
0.226315e+10
0.198104e+10
0.175484e+10
0.963178e + 08
0.848396e + 08
0.755366e + 08
0.675542e + 08
0.611196e + 08
0.559082e + 08
0.361572e + 08

accpm-vns-al
7417.92
17897.19
13429.61
15966.45
15128.71
39966.71
24863.21
21810.90
349793.97
17017.10
14930.74
8165.25
8296.29
13886.32
4998.90
4234.54

accpm-al
13657.78
30016.73
26921.27
26049.23
19970.91
22289.93
19942.57
16438.40
56625.07
496.85
373.54
393.21
301.77
299.75
292.37
229.74

gap(%)
i
i
i
i
i
i
i
i

0.01(3)
i
i
i
i
i
i
i

63

Finally, algorithms accpm-vns-al and accpm-al were tested for Padberg and Rinaldi's

data set with n = 2392 entities. From the geometric interpretation of the auxiliary problem

corroborated by the results presented in the previous tables, we concluded that algorithm

accpm-vns-al is the most efficient one for instances with a small number of clusters. There­

fore, Table 4.6 presents only the results of accpm-vns-al for 2 < k < 10. Note that these

instances require a lot of computing time to be exactly solved (e.g. more than one week

was necessary to solve the instance with k — 9).

Table 4.6: Results for Padberg and Rinaldi's data set with 2392 entities for 2 < k < 10

k
2
3
4
5
6
7
8
9
10

Jopt
0.296723e+ll
0.212012e+ll
0.141184e+ll
0.115842e+ll
0.948900e + 10
0.818180e+10
0.701338e+10
0.614600e+10
0.532491e+10

accpm-vns-al
180581.30
393564.16
298724.00
416314.64
218403.68
565361.77
482525.96
663595.15
478613.29

gaP(%)

Table 4.7 presents the results obtained by algorithm accpm-al for the Padberg and

Rinaldi's data set with n = 2392 entities using large values of k. For these instances,

approximately 3-5% of the total computing time is spent solving the auxiliary problems,

revealing that at this point (« 2000 entities) the resolution of the restricted master problem

by ACCPM is the most expensive step of the algorithm. Note that the largest CPU time

reported in Table 4.7 is of approximately 29 hours for k = 150.

Table 4.7: Results for Padberg and Rinaldi's data set with 2392 entities for large values of
k

k
100
150
200
250
300
350
400

J opt

0.404498e + 09
0.245685e + 09
0.175431e + 09
0.132352e + 09
0.101568e + 09
0.804783e + 08
0.657989e + 08

accpm-al
21528.56
105852.43
18918.16
16460.46
35939.04
8131.32
9336.05

gap(%)
i

0.01(7)
i
i

0.00(3)
i
i

64

4.4.2 Results in general Euclidean space

Two other algorithms were implemented in order to check the computational effect of the

geometric arguments in general Euclidean space. They are: (i) accpm-vns-qp+, which

is similar to accpm-vns-qp proposed in [28] except that some coefficients are modified

to arbitrarily large values in the auxiliary problem following the geometrical arguments

presented in Section 4.3, and (ii) accpm-vns-a2, which uses one iteration of VNS to obtain

approximate solutions to auxiliary problems until optimality is certified by Algorithm 2.

Table 4.8 shows CPU times spent by the different algorithms in order to solve exactly

instances of the Fisher's Iris data set with n = 150 entities in s = 4 dimensions. The results

shows that again rbba is very efficient for small number of clusters, though its performance

deteriorates very fast as k increases. Moreover, except for k = 2, algorithm accpm-vns-qp+

performs better than accpm-vns-qp. Finally, since the auxiliary problems are small for this

data set (n = 150), Algorithm 2 is not very advantageous for solving them. In fact, for

the instance with k = 2, algorithm accpm-vns-a2 is much less efficient than the others.

Table 4.8: Results for Fisher's Iris with 150 entities in 4 dimensions

k
2
3
4
5
6
7
8
9
10

J opt

0.152348e+03
0.788514e+02
0.572285e+02
0.464462e+02
0.390400e+02
0.342982e+02
0.299889e+02
0.277861e+02
0.25834e+02

rbba
0.05
2.10

136.29
1699.75

> 12h
> 12h
> 12h
> 12h
> 12h

bb-sdp
169.44
283.24
240.19
145.54
147.51
742.83
108.73
70.04
59.66

accpm-vns-qp
251.04

83.09
138.85
42.00
15.50
10.50
7.82
6.44
8.51

accpm-vns-qp+
486.62

19.88
32.71
6.52

11.70
7.83
6.41
6.11
8.38

accpm-vns-a2
1958.06

19.55
17.22
8.80

10.47
6.65
6.74
7.48
9.03

gap(%)

L

L

i

The results in Table 4.9 give CPU times spent on solving exactly instances of the Glass

identification data set with n = 214 in s = 9 dimensions. We notice that instances with

k < 10 cannot be solved in less than 1 day of computation. In particular, algorithm rbba

takes more than 1 day to solve even its most favorable case with k — 2. Therefore, the

next tables will not refer to its results. Likewise, results of algorithm bb-sdp will not be

reported in the following tables since it is clearly outperformed by ACCPM algorithms.

65

Table 4.9: Results for the Glass identification data set with 214 entities in 9 dimensions

k
15
20
25
30
35
40
45
50

Jopt

0.155766e+03
0.114646e+03
0.842515e+02
0.632478e+02
0.492386e+02
0.394983e+02
0.320395e+02
0.267675e+02

bb-sdp
> 1 day
> 1 day
> 1 day

49831.18
25629.86

6272.84
17437.27
10032.09

accpm-vns-qp
> 1 day
> 1 day
> 1 day

269.36
22.60
27.87
43.27
21.69

accpm-vns-qp+
37714.82
30065.43
24568.26

52.80
16.33
16.85
29.37
20.51

accpm-vns-a2
7983.52

13365.79
19011.65

39.50
18.87
18.32
32.21
21.46

gap(%)
i

0.02(3)
0.00(3)

i
i
i

0.00(3)
i

From the results on Table 4.9, algorithm accpm-vns-qp+ outperforms accpm-vns-qp in all

tested instances. Since this is also true for the computational experiments on the other

data sets, we will not report the results of accpm-vns-qp from now on. This fact confirms

the benefits derived from the geometric interpretation of the auxiliary problem. Moreover,

algorithm accpm-vns-a2 was more efficient than accpm-vns-qp+ for the instances with the

most difficult auxiliary problems (i.e., 15 < k < 30), showing that solving (4.9) by isolating

cliques is a good strategy in these cases.

Taking into account the increasing computing times spent by VNS as the value of n

increases, one may ask if it would not be better to solve exactly the auxiliary problems

at each iteration of ACCPM. In order to answer this question, two other algorithms are

considered for comparison in Tables 4.10, 4.11, 4.12. They differ only in the way that

auxiliary problems are dealt with. While accpm-qp+ always uses Dinkelbach's algorithm

to solve the auxiliary problems, accpm-a2 uses Algorithm 2 instead, i.e., using Dinkelbach's

algorithm on each clique.

Table 4.10: Results for the Body measurements data set with 507 entities in 5 dimensions

k
30
40
50
60
70
80

J opt

0.195299e+05
0.162318e+05
0.139547e+05
0.121826e+05
0.107869e+05
0.964873e+04

accpm-vns-qp+
79819.81
3981.92

26991.10
2847.94
2606.16
5565.30

accpm-qp+
> 2 days
25196.16
> 2 days

3284.43
2421.93
5026.03

accpm-vns-a2
12433.74
3954.62

22945.66
2242.53
2534.06
6191.68

accpm-a2
> 2 days
13396.05
67178.35

1860.72
1329.71
2705.14

gap(%)
0.00(3)
0.00(3)

0.04(11)
0.00(3)
0.00(3)
0.01(5)

66

From Table 4.10, we notice that the algorithms that solve auxiliary problems by cliques

(i.e., accpm-vns-a2 and accpm-a2) perform usually better than their counterparts that solve

the auxiliary problems by considering the whole intersection graph of hyperspheres (accpm-

vns-qp+ and accpm-qp+, respectively). In particular accpm-a2 is the best algorithm from

k > 60. The same conclusions can be extended to Tables 4.11 and 4.12, except that for

these larger data sets accpm-a2 is very often the best algorithm for the instances that can

be exactly solved within a CPU time limit of 2 days.

Table 4.11: Results for the Telugu Indian vowel sounds data set with 871 entities in 3
dimensions

A;
40
50
60
70
80
90
100

Jopt

0.636653e+07
0.524020e+07
0.442262e+07
0.375286e+07
0.324801e+07
0.285069e+07
0.251058e+07

accpm-vns-qp+
26059.64
5070.60

> 2 days
7439.66
2538.37
2227.94
5717.78

accpm-qp+
83537.53
14304.07
> 2 days

8853.31
2320.29
1929.68
1606.62

accpm-vns-a2
10232.80
4314.11

> 2 days
6524.48
2389.09
1980.14
5054.39

accpm-a2
8209.48
2450.54

107905.07
1726.57
323.95
282.73
195.53

gap(%)
i
i

0.10(21)
0.00(3)

i
i

0.00(3)

Table 4.12: Results for the Concrete compressive strength data set with 1030 entities in 9
dimensions

k
60
70
80
90
100
110
120

Jopt

0.288107e+07
0.247893e+07
0.215791e+07
0.189364e+07
0.168778e+07
0.151334e+07
0.136737e+07

accpm-vns-qp+
> 2 days
32524.80

5622.55
> 2 days

3330.97
2950.36
3883.50

accpm-qp+
> 2 days
33373.40

7538.82
> 2 days

3530.60
2465.40
2754.42

accpm-vns-a2
93018.98

8671.61
5717.15

64518.66
3773.60
2714.67
3835.67

accpm-a2
114291.96

2825.70
1405.62

88849.78
380.75
301.46
310.24

gap(%)
i
i
i

0.01(7)
i
i
i

We have still obtained results for a larger data set consisting of 2310 entities in 19

dimensions taken from [5] by means of algorithm accpm-a2. The results presented in

Table 4.13 shows that instances with a ratio of n/k RS 10 can be exactly solved in a

reasonable amount of time by the column generation algorithm, which is a new record for

benchmark data sets of this magnitude (n = 2310) and this dimension (s = 19).

67

Table 4.13: Results for the Image segmentation data set with 2310 entities in 19 dimensions

k
230
250
300
350
400
450
500

J opt

0.463938e+06
0.421018e+06
0.338072e+06
0.276957e+06
0.230310e+06
0.195101e+06
0.157153e+06

accpm-a2
16717.39
10864.30
25693.02

7036.09
99554.55
66655.32
36772.86

gap(%)
i
i

0.00(3)
i

0.00(11)
0.00(7)
0.01(5)

4.4.3 Comparison of approaches in the plane and in general Euclidean

space

Finally, we compare our approach in the plane with that tailored for problems in general

Euclidean space. Since the superiority of the approach in the plane for a small number of

clusters is obvious, we decided to focus this comparison on instances with large values of k.

The best algorithm regarding each one of the approaches is then selected for comparison,

i.e., accpm-al from the class of algorithms which tackles exclusively instances in the plane

and accpm-a2 from the class of algorithm dealing with instances in general Euclidean space.

In the graph of Figure 4.2, we plot the percentage of CPU time spent by algorithm

accpm-a2 in excess of the CPU time spent by algorithm accpm-al when solving different

instances of the Reinelt's planar data set with 1060 entities.

From the graph, we notice that accpm-al tends to be increasingly better than accpm-a2

as k augments, though the computing times are smaller for instances with a large number

of clusters.

4.5 Conclusions

MSSC is a central problem in cluster analysis. Numerous heuristics as well as a variety of

exact algorithms have been proposed for its solution. These last ones include the column

generation algorithm of du Merle et al. [28] which is the point of departure of this chapter.

The bottleneck step of that algorithm appeared within the auxiliary problem and was

68

120 -

100 -

T 8 0 "

c
o

1 60 -

20 >..-""*'

0 I 1 1 1
100 150 200 250 300

k

Figure 4.2: Percentage of CPU time spent by algorithm accpm-a2 in excess of the CPU
time spent by algorithm accpm-al for instances of the Reinelt's planar data set with 1060
entities

the solution of unconstrained 0-1 quadratic programs. Based on geometric reasoning,

a different and more efficient way of solving this auxiliary problem is proposed in this

chapter. It exploits systematically the property that far apart points will not belong to

the same cluster. This property is made precise by proving that it is the case when their

mutual distance exceeds the sum of square roots of the corresponding dual variables at the

current iteration. Geometrically, solutions in the plane correspond to a quadratic number

of regions which are determined by a 0(n2) algorithm. This leads to solution of the

auxiliary problem in 0(n3), at least when there is little branching in the master problem

which appears to be most often the case. Finding all similar regions in a higher dimensional

space would be time consuming. However, the way to solve the auxiliary problem can still

be improved by replacing by a large value coefficients in the unconstrained 0-1 quadratic

programs corresponding to far apart entities. This has led to substantially increase the size

of instances solved exactly. In the plane, instances with n up to 2392 entities and k > 2

have been solved exactly, most of them for the first time. The increase in the size of the

instances exactly solved has thus been multiplied by more than 10. In general Euclidean

space problems with up to n = 2310 and k = 230 clusters in 19 dimensions have been

69

solved. However, it appears that the number of entities per cluster should be small, i.e.

n/k roughly equal to 10, in order to solve such instances in reasonable time.

CONCLUSION

70

MSSC consists in, given a set of n entities associated with points in s-dimensional Euclidean

space, partitioning this set into clusters in such a way that the sum of squared distances

from each entity to the centroid of its cluster is minimum. This much studied problem is

a basic one in cluster analysis and has applications in numerous and diverse fields.

Many heuristics algorithms for MSSC have been and continue to be regularly proposed.

Exact solution methods are rare but a variety of approaches have been explored.

The aim of this thesis is twofold: on the one hand to assess the state of the art concerning

exact solution methods for MSSC and on the other hand to improve as much as possible

these methods.

A first chapter concerns complexity analysis of MSSC, a topic in which there seems to

have been much confusion. We note indeed that several dozen paper have made incorrect

or unjustified statements about NP-hardness of MSSC, usually confusing it with some

other clustering problem. Recently, a proof was proposed by Drineas et al. in Machine

Learning, 2004 [27]. Unfortunately, as shown in that chapter, this proof is not correct. We

next provide, with A. Deshpande and P. Popat, a new proof of NP-hardness of MSSC in

general Euclidean space, exploiting a reduction from the densest cut problem.

The remaining three chapters consider several of the main approaches to exact solution

of MSSC.

In chapter 2 we study a recent paper of Sherali and Desai in Journal of Global Opti­

mization, 2005 [108]. In this paper, they apply the reformulation-linearization technique

(RLT) of Sherali and Adams [107] in order to get precise bounds for a branch-and-bound

algorithm. These authors claim to have solved large instances, i.e., problems with up

n = 1,000 entities in s = 8 dimensions. We attempted to reproduce these results without

success. To that effect we wrote an implementation of the Sherali and Desai algorithm

following as closely as possible the description given in their paper. Moreover, we used

CPLEX to solve their basic model directly. We then considered small instances of MSSC

71

obtained by selecting a subset of the 150 Fisher's Iris data [36]. We observed that comput­

ing times spent for solution with our implementation were already large (i.e., more than 6

hours on a Pentium IV 2 GHz) for a data set with only 20 entities. We discussed by email

with both Sherali and Desai possible causes for this vast discrepancy between their results

and ours. "Unfortunately, he [Jitamitra Desai] appears to have deleted his codes and data

sets" [106]. The most likely explanation seems to be that the test problems used by Sherali

and Desai were very easy to solve (i.e., that the clusters were very well separated).

In chapter 3, we studied the work of Peng and Xia [98] on a 0-1 semidefinite program­

ming (0-1 SDP) reformulation of MSSC. Instead of directly applying SDP, these authors

consider a formulation in which the constraint Z >z 0 is replaced by idempotency Z = Z2

and symmetry Z = ZT. In this model, all eigenvalues of Z are equal to either 0 or 1. On

this basis, Xia and Peng provided a reformulation of MSSC. They then proved important

properties of the relaxation obtained by relaxing the constraints Z ~ Z2. Namely, they

proved that the following inequalities would be satisfied in any solution of their formulation:

Zij < Za Vi,j (pair inequalities)

Zij + Ztf < Zu + Zjg Vi,j,t (triangular inequalities).

However, in view of the rapid increase in size of this set of constraints, Peng and Xia

[98] only sketched an algorithm. We developed a branch-and-cut algorithm following those

lines but adding only sets of violated constraints. Computational experiments showed that

this algorithm was competitive with the previously best ones, i.e., the column generation

algorithm of du Merle et al. [28] and repetitive branch-and-bound of Brusco [12]. Specifi­

cally, the 0-1 SDP branch-and-cut algorithm can solve instances with n = 202 and k = 9

in the plane in less than 12 hours.

Chapter 4 is devoted to the column generation approach of du Merle et al. [28] and

its improvements. This algorithm exploits the ACCPM (Analytical Center Cutting Plane

Method) of Goffin, Haurie and Vial [45] to solve the master problem. The auxiliary problem

turns out to be a hyperbolic program in 0-1 variables which can be reduced to a sequence

72

of unconstrained 0-1 quadratic problems. These last ones are the bottleneck of the whole

procedure. Despite some progress, it is still difficult to solve such problems with 100% dense

matrices and more than 200 entities. Therefore, we propose a different approach to the

solution of the auxiliary problem. Essentially, it makes precise and exploits systematically

the property that two far apart entities cannot belong both to the same cluster. It is based

on geometric arguments and an analogy with the 1-center Weber problem with maximum

distances introduced by Drezner, Mehrez and Wesolowsky [26]. In the plane, the auxiliary

problem consists in minimizing the sum for all entities of functions centered at each entity

position pi and equal to the squared distance from each pi with, however, a limit of y/Xi

on the distance (where Aj is the corresponding dual variable in the current solution of the

master problem) after which the functions remain constant. Adapting and completing an

enumerative algorithm of Drezner et al. [26] solves the auxiliary problem before branching

in 0(n3) time. If branching is needed, which appears to be very rarely the case, the

classical branching rule of Ryan and Foster [104] can be used.

In higher dimensions, the enumeration would become too cumbersome but the basic

property can still be exploited: a sufficient condition for two entities not to belong to the

same cluster is used to replace coefficients in the unconstrained quadratic 0-1 problem by

arbitrarily large values. Then, a branch-and-bound algorithm is applied within a vertex

removal scheme. To this effect, a graph is constructed with nodes associated to the entities

and edges associated to pairs of entities which do not have an arbitrarily large coefficient,

i.e., for which the hyperspheres of radius \/X~l and y/\~j do intersect. Recursively, a vertex

of minimum degree in this graph is selected and the subgraph induced by its closed neigh­

borhood considered. The unconstrained 0-1 quadratic problem associated to this subgraph

is solved and the optimal solution kept if it is better than the incumbent one.

Application of these new rules led to very substantial progress: indeed instances in the

plane with up to n = 2392 entities and k > 2 clusters could be solved in (large but still)

reasonable time. Moreover, instances in up to 19 dimensions and with up to n = 2310

entities could be solved exactly when there are many clusters.

To conclude, exact approaches to resolution of MSSC can be divided into three families:

73

1. those which solve small instances (n RJ 25), i.e., non-serial dynamic programming

[119], concave programming [127] and RLT [108].

2. those which solve medium size instances (n % 100 — 200), i.e., repetitive branch-and-

bound [12], 0-1 SDP-based branch-and-cut [2, 98], and column generation without

geometric enhancements [28].

3. those which can solve fairly large instances (n RJ 2000), i.e., the improved column

generation approach presented in this thesis.

Taking a larger view we can consider these results as a feasibility proof for exact solution

of clustering problems by column generation. There are many criteria proposed in the

literature to express homogeneity and/or separation of the clusters. A project for building

a column generation package for clustering, involving several professors at GERAD as

well as many students, is currently in the experimental stage. Clearly, success of the

package on one or another criterion will depend largely on two factors: easy of resolution

of the auxiliary problem and presence of a small or large gap. More algorithmic and

computational work is needed here. Several likely candidates are recently proposed criteria

in the data mining and physics communities: e.g. ratio cut [50], normalized cut [109], and

modularity [17].

Also, while we have focused on an interior point based approach, i.e., ACCPM and col­

umn generation, stabilized linear programming [29] might still be a competitor particularly

if combined with the recent work of [31, 32] on efficient treatment of degeneracy.

74

BIBLIOGRAPHY

[1] ALOISE, D., DESHPANDE, A., HANSEN, P., and POPAT, P. (2009). NP-hardness of

Euclidean sum-of-squares clustering, Machine Learning, vol. 75, pp. 245-249.

[2] ALOISE, D. and HANSEN, P. (2008). A branch-and-cut SDP-based algorithm algo­

rithm for minimum sum-of-squares clustering, submitted to Pesquisa Operacional.

[3] AN, L., BELGHITI, M., and TAO, P. (2007). A new efficient algorithm based on

DC programming and DCA for clustering, Journal of Global Optimization, vol. 37,

pp. 593-608.

[4] ARTHUR, D. and VASSILVITSKII, S. (2007). K-means++: the advantages of careful

seeding, in 2007 ACM-SIAM Symposium on Discrete Algorithms (SODA'07).

[5] ASUNCION, A. and NEWMAN, D. (2007). UCI machine learning repository,

http://www.ics.uci.edu/~mlearn/MLRepository.html.

[6] BAGIROV, A. (2008). Modified global k-means algorithm for minimum sum-of-

squares clustering problems, Pattern Recognition, vol. 41, pp. 3192-3199.

[7] BAGIROV, A. and YEARWOORD, J. (2006). Hierarchical grouping to optimize an

objective function, European Journal of Operational Research, vol. 170, pp. 578-596.

[8] BERINGER, J. and HULLERMEIER, E. (2006). Online clustering of parallel data

streams, Data & Knowledge Engineering, vol. 58, pp. 180-204.

[9] BONAMI, P. and LEE, J. (June 2007). B0NMIN user's manual, tech. rep., IBM Cor­

poration.

http://www.ics.uci.edu/~mlearn/MLRepository.html

75

[10] BOOLE, G. (1854). An Investigation of the Laws of Thought, on Which are Founded

the Mathematical Theories of Logic and Probabilities. London: Walton and Maberley.

[11] BROCKBR, P. (1978). On the complexity of clustering problems, Lecture Notes in

Economic and Mathematical Systems, vol. 157, pp. 45-54.

[12] BRUSCO, M. (2006). A repetitive branch-and-bound procedure for minimum within-

cluster sum of squares partitioning, Psychometrika, vol. 71, pp. 347-363.

[13] BRUSCO, M. and STEINLEY, D. (2007). A comparison of heuristics procedures

for minimum within-cluster sums of squares partitioning, Psychometrika, vol. 72,

pp. 583-600.

[14] CHEN, H.-L., CHUANG, K.-T., and CHEN, M.-S. (2005). Labeling unclustered

categorical data into clusters based on the important attribute values, in Proceedings

of the Fifth IEEE International Conference on Data Mining (ICDM'05).

[15] CHRISTOU, I. (2009). Exact method-based coordination of cluster ensembles, Athens

Information Technology Technical Report 2055; Provisionally accepted for publica­

tion in IEEE Transactions in Pattern Analysis and Machine Intelligence.

[16] CILIBRASI, R., VAN IERSEL, L., KELK, S., and T R O M P , J. (2005). On the complex­

ity of several haplotyping problems, Lecture Notes in Computer Science, vol. 3692,

pp. 128-139.

[17] CLAUSET, A., NEWMAN, M., and MOORE, C. (2004). Finding community structure

in very large networks, Physics Review E, vol. 70.

[18] DASGUPTA, S. (17 January 2008). The hardness of fc-means clustering, tech. rep.

CS2008-0916, University of California.

76

[19] DELATTRE, M. and HANSEN, P. (1980). Bicriterion cluster analysis, IEEE Transac­

tions on Pattern Analysis and Machine Intelligence, vol. PAMI-2, no. 4, pp. 277-291.

[20] DESHPANDE, A. and POPAT, P. (22 January 2008). Email sent to Ravi Kannan et

al. and transmitted by Nina Mishra to the first and third authors.

[21] DHILLON, I. and MODHA, D. (2002). A data-clustering algorithm on distributed

memory multiprocessors, Lecture Notes in Artificial Intelligence, vol. 1759, pp. 245-

260.

[22] DlEHR, G. (1985). Evaluation of a branch and bound algorithm for clustering, SI AM

Journal Scientific and Statistical Computing, vol. 6, pp. 268-284.

[23] DlEHR, G. (April 1973). Minimum variance partitions and mathematical program­

ming. Paper presented at the National Meetings of the Classification Society, Atlanta,

Georgia.

[24] DlNKELBACH, W. (1967). On nonlinear fractional programming, Management Sci­

ence, vol. 13, pp. 492-498.

[25] DOMINGO-FERRER, J. and MATEO-SANZ, J. M. (2002). Practical data-oriented

microaggregation for statistical disclosure control, IEEE Transactions on Knowledge

and Data Engineering, vol. 14, pp. 189-201.

[26] DREZNER, Z., MEHREZ, A., and WESOLOWSKY, G. (1991). The facility location

problem with limited distances, Transportation Science, vol. 25, pp. 183-187.

[27] DRINEAS, P., FRIEZE, A., KANNAN, R., VEMPALA, S., and VINAY, V. (2004).

Clustering large graphs via the singular value decomposition, Machine Learning,

vol. 56, pp. 9-33.

77

[28] DU MERLE, O., HANSEN, P., JAUMARD, B., and MLADENOVIC, N. (2000). An inte­

rior point algorithm for minimum sum-of-squares clustering, SI AM Journal Scientific

Computing, vol. 21, pp. 1485-1505.

[29] DU MERLE, O., VILLENEUVE, D., DESROSIERS, J., and HANSEN, P. (1999). Sta­

bilized column generation, Discrete Mathematics, vol. 194, pp. 229-237.

[30] EDWARDS, A. and CAVALLI-SFORZA, L. (1965). A method for cluster analysis, Bio­

metrics, vol. 21, pp. 362-375.

[31] ELHALLAOUI, I., METRANE, A., SOUMIS, F., and DESAULNIERS, G. (2008). Multi­

phase dynamic constraint aggregation for set partitioning type problems, to appear

in Mathematical Programming.

[32] ELHALLAOUI, I., VILLENEUVE, D., SOUMIS, F., and DESAULNIERS, G. (2005).

Dynamic aggregation of set-partitioning constraints in column generation, Operations

Research, vol. 53, pp. 632-645.

[33] ELHEDHLI, S. and GOFFIN, J.-L. (2004). The integration of an interior-point cut­

ting plane method within a branch-and-price algorithm, Mathematical Programming,

vol. 100, pp. 267-294.

[34] FASULO, D. (1999). An analysis of recent work on clustering algorithms, tech. rep.

UW-CSE-01-03-02, University of Washington.

[35] FISCHER, B., ROTH, V., and BUHMANN, J. (2004). Clustering with the connectivity

kernel, Advances in Neural Information Processing Systems, vol. 16.

[36] FISHER, R. (1936). The use of multiple measurements in taxonomic problems, Annals

of Eugenics, vol. VII, pp. 179-188.

78

[37] FLOREK, K., LUKASZEWICZ, J., PERKAL, H., STEINHAUS, H., and ZUBRZYCKI,

S. (1951). Sur la liaison et la division des points d'un emsemble fini, Colloquium

Mathematicum, vol. 2, pp. 282-285.

[38] FORGY, E.W. (1965). Cluster analysis of multivariate data: Efficiency vs. inter-

pretability of classifications, Biometrics, vol. 21, pp. 768.

[39] FORTET, R. (1959). L'algebre de boole et ses applications en recherche opera-

tionnelle, Cahiers du Centre d'Etudes de Recherche Operationnelle, vol. 1, pp. 5-36.

[40] FRADKIN, D., MUCHNIK, I., and STRELTSOV, S. (2003). Image compression in

real-time multiprocessor systems using divisive k-means clustering, in International

Conference on Integration of Knowledge Intensive Multi-Agent Systems (KIMA '03),

pp. 506-511.

[41] FRANTI, P. and KIVIJARVI, J. (2000). Randomised local search algorithm for the

clustering problem, Pattern Analysis & Applications, vol. 3, pp. 358-369.

[42] FRANTI, P., VIRMAJOKI, O., and KAUKORANTA, T. (2002). Branch-and-bound

technique for solving optimal clustering, in International Conference on Pattern

Recognition (ICPR'02), pp. 232-235.

[43] GAREY, M. and JOHNSON, D. (1979). Computers and Intractability. New York:

W.H. Freeman and Company.

[44] GAREY, M., JOHNSON, D., and WITSENHAUSEN, H. (1982). The complexity of the

generalized lloyd-max problem, IEEE Transactions on Information Theory, vol. IT-

28, pp. 255-256.

79

[45] GOFFIN, J.-L., HAURIE, A., and VIAL, J .-P. (1992). Decomposition and nondiffer-

entiable optimization with the projective algorithm, Management Science, vol. 38,

pp. 284-302.

[46] GRAHAM, R. (1972). An efficient algorithm for determining the convex hull of a

finite point set, Information Processing Letters, vol. 1, pp. 132-133.

[47] GROTSCHEL, M. and HOLLAND, O. (1991). Solution of large-scale

symmetric traveling salesman problems, Mathematical Programming,

vol. 51, pp. 141-202. Data sets available at [http://www.iwr.uni-

heidelberg.de/groups/comopt/software/TSPLIB95/tsp].

[48] GROTSCHEL, M. and WAKABAYASHI, Y. (1989). A cutting plane algorithm for a

clustering problem, Mathematical Programming, vol. 45, pp. 59-96.

[49] GtJNGOR, Z. and UNLER, A. (2007). /c-harmonic means data clustering with simu­

lated annealing heuristic, Applied Mathematics and Computation, vol. 184, pp. 199-

209.

[50] HAGEN, L. and KAHNG, A. (1992). New spectral methods for ratio cut partitioning

and clustering, IEEE Transactions on Computer-Aided Design of Integrated Circuits

and Systems, vol. 11, pp. 1074-1085.

[51] HAIR, J., ANDERSON, R., TATHAM, R., and BLACK, W. (1998). Multivariate Data

Analysis. New York: Prentice-Hall.

[52] HANSEN, P . and DELATTRE, M. (1978). Complete-link cluster analysis by graph

coloring, Journal of the American Statistical Association, vol. 73, pp. 397-403.

[53] HANSEN, P. and JAUMARD, B. (1997). Cluster analysis and mathematical program­

ming, Mathematical Programming, vol. 79, pp. 191-215.

http://www.iwr.uni-
http://heidelberg.de/groups/comopt/software/TSPLIB95/tsp

80

[54] HANSEN, P., JAUMARD, B., and MEYER, C. (2000). A simple enumerative algorithm

for unconstrained 0 — 1 quadratic programming, Cahier du GERAD G-2000-59.

[55] HANSEN, P. and MLADENOVIC, N. (2001). J-means: a new local search heuristic

for minimum sum of squares clustering, Pattern Recognition, vol. 34, pp. 405-413.

[56] HANSEN, P. and MLADENOVIC, N. (2001). Variable neighborhood search: principles

and applications, European Journal of Operational Research, vol. 130, pp. 449-467.

[57] HANSEN, P., MLADENOVIC, N., and PEREZ, J. (2008). Variable neighborhood

search: methods and applications, to appear in 40R.

[58] HANSEN, P., NEGAI, E., CHEUNG, B., and MLADENOVIC, N. (2005). Analysis

of global A>means, an incremental heuristic for minimum sum-of-squares clustering,

Journal of Classification, vol. 22, pp. 287-310.

[59] HARTIGAN, J. (1975). Clustering Algorithms. New York, Wiley.

[60] HEINZ, G., PETERSON, L., JOHNSON, R., andKERK, C. (2003). Exploring relation­

ships in body dimensions, Journal of Statistics Education, vol. 11. Data set available

at [www.amstat.org/publications/jse/vlln2/datasets.heinz.html].

[61] INABA, M., KATOH, N., and IMAI, H. (1994). Applications of weighted voronoi

diagrams and randomization to variance-based fc-clustering, in Proceedings of the

10th ACM Symposium on Computational Geometry, pp. 332-339.

[62] JAIN, A., MURTY, M., and FLYNN, P. (1999). Data clustering: A review, ACM

Computing Surveys, vol. 31, pp. 264-323.

[63] JENSEN, R. (1969). A dynamic programming algorithm for cluster analysis, Opera­

tions Research, vol. 17, pp. 1034-1057.

http://www.amstat.org/publications/jse/vlln2/datasets.heinz.html

81

[64] JUNG, Y., PARK, H., DU, D.-Z., and DRAKE, B. (2003), A decision criterion for the

optimal number of clusters in hierarchical clustering, Journal of Global Optimization,

vol. 25, pp. 91-111.

[65] KANADE, G., NIMBHORKAR, P., and VARADARAJAN, K. (manuscript of 14 Febru­

ary 2008). On the NP-hardness of the 2-means problem.

[66] KARIV, O. and HAKIMI, S. (1969). An algorithmic approach to network location

problems; part 2. the p-medians, SIAM Journal on Applied Mathematics, vol. 37,

pp. 539-560.

[67] KELLEY, J. (1960). The cutting plane method for solving convex programs, J. SIAM,

vol. 8, pp. 703-712.

[68] KLEIN, G., ARONSON, J.E. (1991). Optmal clustering: A model and method, Naval

Research Logistics, vol. 38, pp. 447-461.

[69] KOGAN, J. (2006). Introduction to Clustering Large and High-Dimensional Data.

New York: Cambridge University Press.

[70] KOONTZ, W., NARENDRA, P., and FUKUNAGA, K. (1975). A branch and bound

clustering algorithm, IEEE Trans. Comput., vol. C-24, pp. 908-915.

[71] LABBE, M., PETTERS, D., and THISSE, J. (1995). Location on networks, in Network

Routing (BALL, M., MAGNANTI, T., MONMA, C., and NEMHAUSER, G., eds.),

pp. 551-624, North-Holland.

[72] LASZLO, M. and MUKHERJEE, S. (2006). A genetic algorithm using hyper-quadtrees

for low-dimensional fc-means clustering, IEEE Transactions on Pattern Analysis and

Machine Intelligence, vol. 28, pp. 533-543.

82

[73] LASZLO, M. and MUKHBRJEE, S. (2007). A genetic algorithm that exchanges neigh­

boring centers for &;-means clustering, Pattern Recognition Letters, vol. 36, pp. 451-

461.

[74] LEYFFER, S. (1999). User manual for MINLP_BB, tech. rep., University of Dundee,

UK.

[75] Li, Y. and CHUNG, S. (2007). Parallel bisecting fc-means with prediction clustering

algorithm, The Journal of Supercomputing, vol. 39, pp. 19-37.

[76] LlBERTl, L. (2009). Reformulations in mathematical programming: Definitions and

systematics, RAIRO-RO, vol. 43, no. 1, pp. 55-86.

[77] LlKAS, A., VLASSIS, N., and VERBEEK, J. (2003). The global &-means clustering

algorithm, Pattern Recognition, vol. 36, pp. 451-461.

[78] LlSSER, A. and RENDL, F. (2003). Graph partitioning using linear and semidefinite

programming, Mathematical Programming, vol. Series B 95, pp. 91-101.

[79] MACQUEEN, J. (1967). Some methods for classification and analysis of multivariate

observations, in Proceedings of 5th Berkeley Symposium on Mathematical Statistics

and Probability, vol. 2, (Berkeley, CA), pp. 281-297.

[80] MAHAJAN, M., NIMBHORKAR, P. , and VARADARAJAN, K. (2009). The planar k-

means problem is NP-hard, Lecture Notes in Computer Science, vol. 5431, pp. 274-

285.

[81] MARZOUK, Y. and GHONIEM, A. (2005). fc-means clustering for optimal partitioning

and dynamic load balancing of parallel hierarchical n-body simulations, Journal of

Computational Physics, vol. 207, pp. 493-528.

83

[82] MATULA, D. and SHAHROKHI, F. (1990). Sparsest cuts and bottlenecks in graphs,

Discrete Applied Mathematics, vol. 27, pp. 113-123.

[83] MEILA, M. (2006). The uniqueness of a good optimum for k-means, ACM Interna­

tional Conference Proceeding Series, vol. 148, pp. 625-632.

[84] MERZ, P. (2003). Analysis of gene expression profiles: an application of memetic

algorithms to the minimum sum-of-squares clustering problem, Biosystems, vol. 72,

pp. 99-109.

[85] MERZ, P. (2003). An iterated local search for minimum sum-of-squares clustering,

Lecture Notes in Computer Science, vol. 2810, pp. 286-296.

[86] MERZ, P. and ZELL, A. (2002). Clustering gene expression profiles with memetic

algorithms, Lecture Notes in Computer Science, vol. 2439, pp. 811-820.

[87] MlRKIN, B. (1996). Mathematical Classification and Clustering. Dordrecht, The

Netherlands: Kluwer.

[88] MIRKIN, B. (2005). Clustering for Data Mining: A Data Recovery Approach. Boca

Raton: Chapman and Hall/CRC.

[89] MLADENOVIC, N. and HANSEN, P. (1997). Variable neighborhood search, Comput­

ers and Operations Research, vol. 24, pp. 1097-1100.

[90] Niu, K., ZHANG, S., and CHEN, J. (2006). An initializing cluster centers algo­

rithm based on pointer ring, in Proceedings of the Sixth International Conference on

Intelligent Systems Design and Applications (ISDA '06).

84

[91] OSTROVSKY, R., RABANI, Y., SCHULMAN, L., and SWAMY, C. (2006). The effec­

tiveness of Lloyd-type methods for the /c-means problem, in Proceedings of the J^lth

Annual IEEE Symposium on Foundations of Computer Science (FOCS'06).

[92] PACHECO, J. (2005). A scatter search approach for the minimum sum-of-squares

clustering problem, Computers & Operations Research, vol. 32, pp. 1325-1335.

[93] PACHECO, J. and VALENCIA, O. (2003). Design of hybrids for the minimum sum-

of-squares clustering problem, Computational Statistics & Data Analysis, vol. 43,

pp. 235-248.

[94] PADBERG, M. and RINALDI, G. (1991). A branch-and-cut algorithm for

the resolution of large-scale symmetric traveling salesman problems, SI AM

Review, vol. 33, pp. 60-100. Data set available at [http://www.iwr.uni-

heidelberg.de/groups/comopt/software/TSPLIB95/tsp].

[95] PAL, S. and MAJUMDER, D. (1977). Fuzzy sets and decision making approaches

in vowel and speaker recognition, IEEE Transactions on Systems, Man, and Cy­

bernetics, vol. 7, pp. 625-629. Data set available at [http://www.isical.ac.in/ sush-

mita/patterns/vowel.dat].

[96] PATERLINI, S. and KRINK, T. (2006). Differential evolution and particle swarm

optimisation in partitional clustering, Computational Statistics and Data Analysis,

vol. 50, pp. 1220-1247.

[97] PENG, J. and W E I , Y. (2007). Approximating fc-means-type clustering via semidef-

inite programming, SIAM Journal on Optimization, vol. 18, pp. 186-205.

[98] PENG, J. and XIA, Y. (2005). A new theoretical framework for k-means-type clus­

tering, Studies in Fuzziness and Soft Computing, vol. 180, pp. 79-96.

http://www.iwr.uni-
http://heidelberg.de/groups/comopt/software/TSPLIB95/tsp
http://www.isical.ac.in/

85

[99] PETROVIC, S. and ALVAREZ, G. (2003). A method for clustering web attacks using

edit distance, CoRR, vol. cs.IR/0304007.

[100] PLASTRIA, F. (2002). Formulating logical implications in combinatorial optimisa­

tion, European Journal of Operational Research, vol. 140, pp. 338-353.

[101] RAMOS, V. and MUGE, F. (2000). Map segmentation for colour cube genetic A;-mean

clustering, Lecture Notes in Computer Science, vol. 1923, pp. 319-323.

[102] REINELT, G. (1991). TSPLIB - a traveling salesman library,

ORSA Journal on Computing, vol. 3, pp. 319-350. [www.iwr.uni-

heidelberg.de/groups/comopt/software/TSPLIB95].

[103] RUSPINI, E. (1970). Numerical method for fuzzy clustering, Information Sciences,

vol. 2, pp. 319-350.

[104] RYAN, D. and FOSTER, B. (1981). An integer programming approach to schedul­

ing, in Computer Scheduling of Public Transport Urban Passenger Vehicle and Crew

Scheduling (WREN, A., ed.), pp. 269-280, North-Holland.

[105] SHERALI, H. (11 March 2008). Personal correspondance sent to Pierre Hansen and

Daniel aloise.

[106] SHERALI, H. (19 November 2007). Personal correspondance sent to Pierre Hansen

and Daniel Aloise.

[107] SHERALI, H. and ADAMS, W. (1999). Reformulation-linearization techniques for

discrete optimization problems, in Handbook of combinatorial optimization 1 (Du,

D. and PARDALOS, P., eds.), pp. 479-532, Kluwer.

http://www.iwr.uni-
http://heidelberg.de/groups/comopt/software/TSPLIB95

86

[108] SHERALI, H. and DBSAI, J. (2005). A global optimization RLT-based approach for

solving the hard clustering problem, Journal of Global Optimization, vol. 32, pp. 281-

306.

[109] SHI, J. and MALIK, J. (2000). Normalized cuts and image segmentation, IEEE

Transactions on Pattern Analysis and Machine Intelligence, vol. 22, pp. 888-905.

[110] SONG, M. and RAJASEKARAN, S. (2005). Fast k-means algorithms with constant

approximation, Lecture Notes in Computer Science, vol. 3827, pp. 1029-1038.

[Ill] SPATH, H. (1980). Cluster analysis algorithm for data reduction and classification of

objects. New York: John Wiley & sons.

[112] STEINHAUS, H. (1956). Sur la division des corps materiels en parties, Bulletin de

I'Academie Polonaise des Sciences, vol. IV, no. 12, pp. 801-804.

[113] STEINLEY, D. (2006). K-means clustering: A half-century synthesis, British Journal

of Mathematical and Statistical Psychology, vol. 59, pp. 1-34.

[114] STEINLEY, D. (2007), Validating clusters with the lower bound for sum-of-squares

error, Psychometrika, vol. 72, pp. 93-106.

[115] TAILLARD, E. (2003). Heuristic methods for large centroid clustering problems, Jour­

nal of Heuristics, vol. 9, pp. 51-73.

[116] TEBOULLE, M. (2007). A unified continuous optimization framework for center-

based clustering methods, Journal of Machine Learning Research, vol. 8, pp. 65-102.

[117] TEN EIKELDER, H. and VAN ERK, A. (2004). Unification of some least squares clus­

tering methods, Journal of Mathematical Modelling and Algorithms, vol. 3, pp. 105-

122.

87

[118] TUY, H. (1964). Concave programming under linear constraints, Soviet Mathematics,

vol. 5, pp. 1437-1440.

[119] VAN Os, B. and MEULMAN, J. (2004). Improving dynamic programming strategies

for partitioning, Journal of Classification, vol. 21, pp. 207-230.

[120] VANDENBERGHE, L. and BOYD, S. (1996). Semidefinite programming, SIAM Re­

view, vol. 38, pp. 49-95.

[121] VAVASIS, S. (1991). Nonlinear Optimization: Complexity Issues. Oxford: Oxford

University Press.

[122] WANG, J. (1999). A linear assignment clustering algorithm based on the least similar

cluster representatives, IEEE Transactions on systems, man, and cybernetics - part

A: systems and humans, vol. 29, pp. 100-104.

[123] WOLSEY, L. (1998). Integer Programming. New York: John Wiley k, sons.

[124] Wu, F.-X., ZHANG, W., and KuSALlK, A. (2003). A genetic k-means clustering

algorithm applied to gene expression data, Lecture Notes in Artificial Intelligence,

vol. 2671, pp. 520-526.

[125] Wu, X., KUMAR, V., QUINLAN, J. R., GHOSH, J., YANG, Q., MOTODA, H.,

MCLACHLAN, G. J., NG, A., Liu, B., YU, P. S., ZHOU, Z.-H., STEINBACH,

M., HAND, D. J., and STEINBERG, D. (2008). Top 10 algorithm in data mining,

Knowledge and Information Systems, vol. 14, pp. 1-37.

[126] XAVIER, A., NEGREIROS, M., MACULAN, N., and MICHELON, P. (2005). The use

of the hyperbolic smoothing clustering method for planning the tasks of sanitary

agents in combating dengue, in Proceedings of IFORS 2005.

88

[127] XlA, Y. and PENG, J. (2005). A cutting algorithm for the minimum sum-of-squared

error clustering, in Proceedings of the fifth SI AM International Data Mining Confer­

ence, pp. 150-160.

[128] Xu, M. and FRANTI, P. (2004). Delta-MSE dissimilarity in suboptimal k-means

clustering, in Proceedings of the 17th International Conference on Pattern Recogni­

tion (ICPR'04).

[129] YEH, I.-C. (1998). Modeling of strength of high performance

concrete using artificial neural networks, Cement and Con­

crete Research, vol. 28, pp. 1797-1808. Data set available at

[http://archive.ics.uci.edu/ml/datasets/Concrete+Compressive+Strength].

[130] ZHA, H., DING, C , G U , M., H E , X., and SIMON, H. (2002). Spectral relaxation

for k-means clustering, in Advances in Neural Information Processing Systems 14

(DIETTERICH, T., BECKER, S., and GHAHRAMANI, Z., eds.), pp. 1057-1064, MIT

Press.

[131] ZHOU, W., ZHOU, C., HUANG, Y., and WANG, Y. (2005). Analysis of gene ex­

pression data: application of quantum-inspired evolutionary algorithm to minimum

sum-of-squares clustering, Lecture Notes in Artificial Intelligence, vol. 3642, pp. 383-

391.

http://archive.ics.uci.edu/ml/datasets/Concrete+Compressive+Strength

