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RESUME 

V I 

Etant donne un ensemble de n points dans l'espace Euclidien, la classification automatique 

selon le critere des moindres carres consiste a partitionner cet ensemble en k classes de sorte 

que la somme des carres des distances de chaque point au centroi'de de sa classe soit mini­

mum. Ceci est un probleme fondamental dans le domaine de la classification automatique 

ayant de nombreuses applications dans diverses disciplines. Plusieurs heuristiques pour ce 

probleme ont ete et continuent a etre proposees. Les methodes exactes de resolution sont 

rares mais une variete d'approches ont ete explorees. 

Le premier chapitre de la these traite de la complexity du probleme, un sujet qui merite 

d'etre clarifie. On remarque un manque de rigueur de la part de certains articles qui 

font des affirmations incorrectes ou non justifiees sur la difficulte du probleme, souvent 

en l'associant avec d'autres problemes de la classification automatique. Recenment, une 

preuve de NP-completude pour le probleme a ete proposee par Drineas, Frieze, Kanan, 

Vempala et Vinay dans Machine Learning, 2004. Cependant, on montre que cette preuve 

n'est pas correcte. Une courte preuve alternative, due a Amit Deshpande et Preyas Popat, 

est done fournie. 

Les trois chapitres suivants de la these etudient trois approaches parmi les plus im-

portantes pour la resolution exacte du probleme. Au Chapitre 2, nous etudions un article 

recent de Sherali et Desai dans le Journal of Global Optimization, 2005. Dans cet article les 

auteurs proposent un algorithme de separation et evaluation base sur une reformulation-

linearisation du probleme, declarant avoir resolu des problemes ayant jusqu'a 1000 points. 

Nous etudions leur algorithme en detail, en reproduisant une partie de leurs experiences 

de calcul. Toutefois, notre implantation a donne des temps de calcul qui se sont reveles 

etre beaucoup plus eleves. En effet, pour deux ensembles de donnees de la litterature, 

seuls des exemples ayant jusqu'a 20 points ont pu etre resolus en moins de 10 heures de 

temps de calcul. Les raisons possibles de cette grande difference sont discutees. On explore 

egalement l'effet d'une regie pour rompre la symetrie due a Plastria {European Journal of 
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Operational Research, 2002) et de l'introduction des inegalites valides appartenant a la 

fermeture convexe en deux dimensions des points qui peuvent appartenir a chaque classe. 

Au Chapitre 3, on etudie l'article de Peng et Xia dans Studies in Fuziness and Soft 

Computing, 2005 sur Pequivalence entre la programmation 0-1 semi-dennie positive et la 

classification automatique selon le critere de la moindre somme des carres. En vue de la 

croissance rapide de l'ensemble de contraintes dans leur modele, les auteurs n'ont fourni 

qu'une esquisse d'un algorithme pour resoudre le probleme de fagon exacte. On a done 

developpe un algorihme de branchement et coupes en suivant leurs lignes directrices mais 

en n'ajoutant que l'ensemble de contraintes violees. L'algorithme obtient des solutions 

exactes avec des temps de calculs comparables a ceux des meilleures methodes exactes 

precedemment trouvees dans la litterature. 

Finalement, le Chapitre 4 est dedie a l'approche par generation de colonnes due a du 

Merle, Hansen, Jaumard et Mladenovic {SIAM Journal on Scientific Computing, 2000) et 

a ses ameliorations. L'etape cruciale est la resolution du probleme auxiliaire qui consiste 

a trouver une colonne avec un cout reduit negatif. Nous proposons une nouvelle maniere 

de resoudre ce probleme auxiliaire, basee sur des arguments geometriques. Ceci ameliore 

grandement Pefficacite de l'algorithme entier et permet la resolution exacte d'exemples 

dans le plan ayant jusqu'a n = 2392 points et k > 2 classes, e'est-a-dire, 10 fois plus 

que precedemment. De plus, des exemples allant jusqu'a 19 dimensions et ayant jusqu'a 

n = 2310 points sont resolus de fagon exacte dans le cas ou beaucoup de classes sont 

utilisees. 
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Minimum sum-of-squares clustering (MSSC) consists in, given a set of n entities associated 

with points in s-dimensional Euclidean space, partitioning this set into k clusters in such 

a way that the sum of squared distances from each entity to the centroid of its cluster 

is minimum. This much studied problem is a basic one in cluster analysis and has ap­

plication in numerous and diverse fields. Many heuristic algorithms for MSSC have been 

and continue to be regularly proposed. Exact solution methods are rare but a variety of 

approaches have been explored. 

The first chapter of the thesis concerns complexity analysis of MSSC, a topic in which 

there seems to have been much confusion. We note indeed that several dozen papers have 

made incorrect or unjustified statements about NP-hardness of MSSC, usually confusing 

it with some other clustering problem. Recently, a proof was proposed by Drineas, Frieze, 

Kanan, Vempala and Vinay in Machine Learning, 2004. Unfortunately, as shown in this 

chapter, this proof is not correct. An alternate short proof, due to Amit Deshpande and 

Preyas Popat, is then provided. 

The next three chapters of the thesis consider three of the main approaches to exact 

solution of MSSC. In chapter 2 we study a recent paper of Sherali and Desai in Journal of 

Global Optimization, 2005. In this paper the authors proposed a reformulation-linearization 

based branch-and-bound algorithm for this problem, claiming to solve instances with up 

to 1000 points. We investigated their method in further detail, reproducing some of their 

computational experiments. However, our computational times turn out to be drastically 

larger. Indeed, for two data sets from the literature only instances with up to 20 points 

could be solved in less than 10 hours of computer time. Possible reasons for this discrepancy 

are discussed. The effect of a symmetry breaking rule due to Plastria (European Journal 

of Operational Research, 2002) and of the introduction of valid inequalities of the convex 

hull of points in two dimensions which may belong to each cluster is also explored. 
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In chapter 3, we study the work of Peng and Xia (Studies in Fuziness and Soft Com­

puting, 2005) on a 0-1 semidefinite programming (0-1 SDP) reformulation of MSSC. In 

view of the rapid increase in size of the set of constraints in their model, the authors only 

sketched an algorithm to exactly solve the problem. We then developed a branch-and-cut 

algorithm following those lines but adding only sets of violated constraints. The algorithm 

obtains exact solutions with computing times comparable with those of the best exact 

method previously found in the literature. 

Finally, Chapter 4 is devoted to the column generation approach of du Merle, Hansen, 

Jaumard and Mladenovic (SIAM Journal on Scientific Computing, 2000) and its improve­

ments. The bottleneck of that algorithm is the resolution of the auxiliary problem of 

finding a column with negative reduced cost. We propose a new way to solve this auxiliary 

problem based on geometric arguments. This greatly improves the efficiency of the whole 

algorithm and leads to exact solution of instances in the plane with up to n = 2392 enti­

ties and k > 2 clusters, i.e., more than 10 times as much as previously done. Moreover, 

instances in up to 19 dimensions and with up to n = 2310 entities could be solved exactly 

when there are many clusters. 
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CONDENSE EN FRANQAIS 

La classification automatique est un outil puissant pour l'analyse de donnees. Etant donne 

un ensemble d'entites, elle consiste a trouver des sous-ensembles, appeles classes, qui sont 

homogenes et/ou bien separes. 

Un des plus importants types de classification automatique est la partition, ou etant 

donne un ensemble O — {01,02, • • • ,on} avec n entites, on cherche a trouver la partition 

Pk = {Ci, C2, • . . , Cfc} de O en k classes telle que 

• Cj^<D j = l,...,k; 

• ch fl ch = 0 3u h = 1, • • •, k et jx ^ 3% et 

. \JC3 = 0. 
i= i 

qui optimise un critere donne. 

Plusieurs criteres ont deja ete utilises dans la litterature pour exprimer l'homogeneite 

et/ou la separation des classes qui doivent etres trouvees (voir e.g. [53]). Un critere cle 

est celui de la moindre somme des carres des distances Euclidiennes de chaque point au 

centre de sa classe. Le probleme de trouver la partition optimale des entites selon ce 

critere est denote par MSSC (a partir de l'anglais Minimum Sum-of-Squares Clustering). 

L'heuristique classique fc-means [79] resout approximativement MSSC. Cet algorithme a ete 

considere par IEEE Computer Society comme le deuxieme plus influent dans la comunnaute 

d'exploitation de donnees [125]. 

Le partitionnement selon le critere de la moindre somme des carres des distances Eu­

clidiennes a plusieurs proprietes. Voici certaines d'entre elles: 

(i) II exprime l'homogeneite et la separation comme explique dans [111], pp. 60-61. 
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(ii) Etant donne les affectations, les centres des classes sont situes a leurs centroides, 

du aux conditions d'optimalite du premier ordre. Ceux-ci sont determines par une 

expression simple. 

(iii) Etant donne les centroides, chaque entite est affectee a son centro'ide le plus pres en 

raison de l'optimalite locale. Ceci n'exige que quelques comparaisons. 

(iv) Les classes obtenues sont spheroi'dales du fait de la minimisation des carres des 

distances. Cette propriety peut etre souhaitable ou non, selon le probleme etudie. 

Une formulation mathematique pour MSSC est donnee par: 

n k 

™w
n E£xyllp<-J/jll2 

2 = 1 J = l 

sujet a 

k 

'Y^Xij = 1 Vi = 1 , . . . ,n 

Xij G {0,1} Vi = l , . . . , n ;V j = l , . . . , fc. 

Les n entites {01,02,..., on} a etre classifiees sont situees aux points Pi = (p[, r = 1 , . . . , s) 

de W pour i = l , . . . , n ; k centres de classes doivent etre situes a des points inconnus 

Dj G Rs pour j = 1 , . . . , k; la norme || • || denote la distance Euclidienne entre les deux 

points de l'argument dans l'espace a s dimensions considere. Les variables de decision xtj 

expriment l'affectation de l'entite ô  a la classe j . On assume que le nombre d'entites n 

est plus grand que k, autrement le probleme est resolu trivialement en situant un centre 

de classe a la position de chaque entite. 

Les proprietes mathematiques du probleme sont abordees dans les livres de Spath [111], 

Mirkin [88] et Kogan [69]. Plusieurs centaines d'articles ont ete ecrits sur des heuristiques 

visant a resoudre MSSC et plusieurs milliers sur des applications dans divers domaines (voir 

e.g. la synthese d'un demi-siecle faite par Steinley [113]). Les principales heuristiques pour 

MSSC comprennent la methode j-means de Hansen et Mladenovic [55], la methode global 

A;-means de Likas, Vlassis and Verbeek [77], qui a ete analysee dans [58] et puis modifiee 
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par Bagirov [6], l'algorithme d'optimisation non-lisse de Bagirov and Yearwood [7], les 

algorithmes d'optimisation lisse attribues a Teboulle et Kogan [116] et Xavier et al. [126], 

les approaches metaheuristiques developpees dans [85, 93, 92, 115, 72, 73], la methode 

de partionnement par generation de colonnes restrictive de Christou [15], et l'heuristique 

D.C. de An, Belgueti et Tao [3]. Une comparison systematique de douze heuristiques pour 

MSSC a ete effectuee par Brusco et Steinley dans [13]. 

Les methodes exactes sont beaucoup moins nombreuses que les heuristiques. Au meilleur 

de notre connaissance, il y a moins d'une douzaine d'articles sur le sujet. En 1973, Diehr 

a declare dans [23] (p. 17) que "Les chercheurs doivent garder a I'esprit que dans la plupart 

des cas les buts de la classification automatique ne justifient pas les temps de calcul neces-

saires pour trouver ou verifier la solution optimale" (traduction libre de l'anglais). Cette 

declaration, cependant, ne prend pas en compte trois faits: 

• Les methodes exactes sont largement utilisees maintenant pour ajuster ou pour de-

couvrir des ecueils dans les methodes heuristiques ou bien pour suggerer des nouvelles 

approches; 

• La performance des ordinateurs s'est beaucoup amelioree au cours des dernieres de-

cennies; 

• La programmation mathematique a beaucoup evolue au cours des trente dernieres 

annees. 

Du point de vue de la programmation mathematique, selon un rapporteur d'un de nos 

articles, "La classification automatique selon le critere de la moindre somme des carres des 

distances est un probleme stimulant d'optimisation globale ." (traduction libre de l'anglais) 

Pour k > 2 en une dimension, MSSC peut etre resolu en temps 0(n3) [111]. Si k et la 

dimension s sont fixes, le probleme peut etre resolu en temps 0(nsk+l) [61], ce qui peut 

etre tres couteux meme pour des exemples dans le plan. 

Plusieurs affirmations incorrectes ont ete enoncees quant au caractere NP-complet du 

probleme pour une dimension Euclidienne s quelconque. Une source frequente de confusion 
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est la lecture trop rapide d'un article de Briicker [11] ou l'auteur prouve la NP-completude 

de plusieurs problemes de la classification automatique, quoique rien ne soit dit a propos 

de MSSC. De plus, une preuve de NP-completude de Garey, Johnson et Witsenhausen [44] 

est applicable seulement au probleme de quantification. Ce dernier est en fait un probleme 

particulier de fc-mediane ou chaque centre de classe est choisi a partir d'un ensemble fini 

de positions. 

Recemment, une preuve de NP-completude pour MSSC avec k = 2 en s dimensions a 

ete donnee par Drineas et al. dans Machine Learning 56, 9-33, 2004. On montre que cette 

preuve est, toutefois, invalide. Une courte preuve alternative, due a Deshpande et Popat 

[20], est fournie via une reduction du probleme de la coupe la plus dense. Plus recemment, 

Mahajan, Nimbhorkar et Varadarajan [80] ont prouve que MSSC est NP-complet pour des 

valeurs k quelconques meme dans le plan. 

L'objectif de cette these est double: d'un cote estimer l'etat de Part concernant les 

methodes exactes pour MSSC et d'autres parts d'ameliorer autant que possible ces meth-

odes. 

Recemment, Sherali et Desai [108] ont propose un algorithme de separation et evaluation 

base sur une reformulation lineaire du probleme. Ce modele est obtenu apres avoir genere 

de nouvelles contraintes via l'emploi de multiplications de contraintes existantes et en 

redefinissant quelques variables. 

Sherali et Desai [108] ont rapporte des resultats de calculs pour des grands exemples 

ayant jusqu'a 1000 points en 8 dimensions. Toutefois, quelques details ont merite d'etre 

investigues. En particulier, les valeurs d'ecart rapportees entre les bornes inferieures et 

superieures semblent etre trop grandes. De ce fait, le nombre de noeuds evalue par la 

methode de separation et devaluation devrait etre eleve, mais demeure modere. De plus, 

les auteurs resolvent un petit exemple pour lequel l'algorithme /c-means donne un resultat 

avec une valeur deux fois plus grande que celle obtenue par l'algorithme de separation et 

d'evaluation, ce qui semble a priori peu probable. 

On a essaye de reproduire de tels resultats sans succes. A cet effet, on a implante 

l'algorithme de Sherali and Desai en suivant autant que possible la description donnee 
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dans leur article. On a considere de petits bases de donnees obtenues en selectionant 

des sous-ensembles de Pensemble de donnees de Fisher avec 150 entites [36]. On a ainsi 

observe que les temps de calculs obtenus par notre implantation pour la resolution d'un 

petit exemple avec 20 entites etait deja assez grands (c'est-a-dire, plus de 6 heures de 

calculs sur un Pentium IV 2 GHz). On a discute avec Sherali et Desai a propos des raisons 

possibles d'une telle difference entre leurs resultats et les notres. Aucune explication n'a 

pu etre donnee puisque " Malheureusement, il [Jitamitra Desai] semble avoir supprime ses 

codes et ses donnees" [106] (traduction libre de l'anglais). L'explication la plus probable 

semble etre que les exemples de tests utilises par Sherali et Desai etaient trop faciles a 

resoudre (c'est-a-dire, les classes etaient tres bien separees). 

Quoique les resultats de Sherali et Desai [108] n'ont pas pu etre reproduits, on a evalue 

l'interet de differentes regies pour eliminer la symmetric dans leur modele. En particulier, 

Plastria a propose dans [100] d'eliminer la symmetrie en n'acceptant que des solutions 

lexicographiques minimales, c'est-a-dire, tel que chaque classe j contient le point d'index 

le plus bas n'appartenant a aucune classe d'index 1 , . . . , j — 1. Selon cette propriete, il 

n'y a qu'une seule fagon d'indexer les classes. Cette regie d'elimination de la symmetrie 

semble etre meilleure que celles proposes dans [108], a la fois en termes de reduction du 

nombre de noeuds ainsi qu'en termes de temps de calculs. 

De plus, on a etudie l'impact de l'ajout des contraintes valides obtenues a partir de 

l'enveloppe convexe de points qui peuvent etre affectes a une classe. Dans [108], les au-

teurs utilisent plutot un hyperrectangle H(Ij) qui inclut l'enveloppe convexe de points qui 

peuvent encore etre affectes a une classe donnee j , denote Ij, pour chaque j = 1 , . . . , k: 

H{Ij) = {y3 : arj <y] < f3],r = 1, . . . ,«}, 

ou, arj = min{p[ : % € Ij} et /?J = max{p[ : i €. Ij}, Vr = 1 , . . . , s. 

Puisque chaque paire de points extremes de l'enveloppe convexe peut definir un demi-

espace dans le plan euclidien, les coordonnees des centroi'des sont confinees a etre dans le 

polyhedre defini par l'intersection de ces demi-espaces. Malheureusement, le nombre de 

contraintes a la sortie est sensible au nombre de points extremes donnes par l'algorithme de 
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Graham [46]. Un nombre O(kn) de contraintes sont necessaires dans le modele quand les 

hyperrectangles sont utilises, tandis que ce nombre augmente a 0(kn2) avec les inegalites 

de l'enveloppe convexe, puisque toutes les entites peuvent etre des points extremes de 

l'enveloppe convexe. Les experiences de calculs realisees pour le cas a deux dimensions ont 

montre que le nombre de noeuds de l'arbre de resolution est reduit. Cependant, une telle 

reduction n'amene pas necessairement une reduction du temp de calcul. En effet, cela est 

du a l'augmentation du nombre de contraintes qui implique que la resolution du modele 

est plus couteuse. 

La tache la plus difficile au moment de developper des methodes exactes pour MSSC 

est celle de calculer de bonnes bornes inferieures dans un temps de calculs raisonable. 

Recemment, Peng and Xia [98] ont utilise des operations matricielles pour modeliser le 

probleme comme un programme 0-1 semi-defini positif (0-1 SDP) de la fagon suivante: 

min Tr(WpW^{I - Z)) 

sujet a 

Ze = e,Tr{Z) = k, 

Z > 0, Z = ZT, Z2 = Z. 

ou Wp e l " x s est la matrice dont la j-eme ligne est le vecteur pi. Ceci peut ensuite etre 

relaxe et donner un probleme SDP convexe ou un programme lineaire. 

En utilisant les resultats de Peng and Xia [98], on propose un algorithme de branchement 

et coupes afin d'exploiter de fagon efficiente les bornes inferieures obtenues a partir de la 

relaxation lineaire du modele 0-1 SDP. Cette relaxation consiste a remplacer les contraintes 

Z = Z2. Peng and Xia [98] prouvent que les inegalites suivantes sont satisfaites par toutes 

les solutions de leur formulation. 

Zij < Za v Z j j 

Zij + Zie < Za + Zjt Vi, j , £ 
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En vue de la croissance rapide de l'ensemble de contraintes dans leur modele, les auteurs 

n'ont fourni qu'une esquisse d'un algorithme pour resoudre le probleme de facon exacte. 

On a done developpe un algorihme de branchement et coupes en suivant leurs lignes direc­

trices, mais en n'ajoutant que l'ensemble de contraintes violees. L'algorithme obtient des 

solutions exactes avec des temps de calculs comparables a ceux des meilleures methodes 

exactes precedemment trouvees dans la litterature, e'est-a-dire, 1'algorithme de generation 

de colonnes propose par du Merle et al. [28] et l'algorithme de separation et devaluation 

repetitive de Brusco [12]. Plus precisement, l'algorithme de branchement et coupes base sur 

la relaxation lineaire du modele 0-1 SDP obtient des solutions exactes pour des exemples 

avec n = 202 entites et k = 9 classes dans le plan en moins de 12 heures. 

Une methode de generation de colonnes pour MSSC a ete proposee par du Merle et 

al. dans [28]. En effet, les problemes de partitionnement dans le domaine de la classifi­

cation automatique peuvent aussi etre formules mathematiquement en considerant toutes 

les classes possibles. Soit une classe Ct pour laquelle 

o-it = < 
1 si l'entite Oj appartient a la classe Ct 

0 sinon, 

et soit yt le centroide des points pi tels que an = 1. Ainsi, le cout ct de la classe Ct peut 

etre ecrit par: 
n 

ct = ^2\\Pi -yt\\2au-
i = i 

Une formulation alternative pour MSSC est done donnee par 

min ] P ctzt 

t£T 

sujet a 

^2aitzt = l Vi = l, . . . ,n 
teT 

J2zt = k 

teT 

zte {0,1} 'iter, 
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ou T = { 1 , . . . , 2™ — 1}. Les variables zt sont egales a 1 si la classe Ct est dans la partition 

optimale et egales 0 sinon. Le premier ensemble de contraintes permet d'assurer que chaque 

entite appartient a une classe, et la contrainte suivante impose que la partition optimale 

contienne exactement k classes. 

Cette formulation correspond a un probleme de partitionnement d'ensembles de grande 

taille avec une contrainte additionelle dont le nombre des variables est exponentiel en termes 

du nombre n d'entites. La methode de generation de colonnes proposee dans [28] travaille 

avec un petit sous-ensemble de colonnes du modele genere iterativement. Elle a resolu pour 

la premiere fois des exemples de taille moyenne (c'est-a-dire, des exemples avec 100-200 

entites), incluant l'ensemble de donnees de Fisher avec 150 entites [36]. Le probleme maitre 

est resolu par la methode de points interieurs (ACCPM, Analytical Center Cutting Plane 

Method) de Goffin, Haurie et Vial [45]. Le probleme auxiliaire dont l'objectif est de trouver 

une colonne avec un cout reduit negatif est exprime comme un programme hyperbolique 

en variables 0-1. Ce probleme est resolu par un algorithme inspire de celui de Dinkelbach 

[24] qui utilise lui meme un algorithme de separation et devaluation pour resoudre des 

problemes d'optimisation de fonctions quadratiques en variables 0-1 sans contraintes. Un 

autre algorithme de separation et devaluation applique au probleme maitre conduit, si 

necessaire, A une solution entiere. Finalement, des heuristiques de recherche a voisinages 

variables (VNS) sont utilisees a la fois au debut pour trouver une bonne solution initiale 

avec des bornes sur les variables duales, ainsi que dans la resolution du probleme auxiliaire 

afin de l'accelerer. La partie la plus couteuse de Talgorithme reside dans la resolution de 

son probleme auxiliaire qui est exprime par: 

n 

7r*=cr+ min Y^(||pi - yv\? - \)vi, 
yveM.s,v€3n t-*1 

i = l 

ou yv qui denote le centro'ide de points pi pour lequels Vi = 1. Si IT* < 0, alors la solution 

optimale v* pour le probleme ci-dessus est ajoutee sous la forme d'une colonne au probleme 

de partitionnement d'ensembles avec sa variable associee. Autrement, le probleme maitre 

relaxe a deja ete resolu. 
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On propose une nouvelle facon de resoudre le probleme auxiliaire basee sur des argu­

ments geometriques. Ce probleme peut etre vu par analogie comme une minimisation de la 

somme de fonctions egales aux distances au carre de chaque centre de classe yv a chacune 

des entites, mais avec une limite pour chacune de ces distances, apres laquelle la fonction 

correspondante n'augmente plus. En effet, etant donne une localisation yv, V{ est egal a 1 

si \\Pi ~ Vv\\2 < Aj, et a 0 sinon. Geometriquement, dans le plan, ceci est equivalent a la 

condition ou Uj = 1 si yv appartient au disque de rayon y/Xi ayant pi comme centre, sinon 

Vi = 0. 

L'adaptation et la complementation d'un algorithme enumeratif de Drezner, Mehrez 

et Wesolowsky [26] permettent la resolution du probleme auxiliaire avant d'effectuer un 

branchement en temps 0(n3). Si un branchement est necessaire, la regie de branchement 

classique de Ryan et Foster [104] est appliquee. 

A plusieurs dimensions, remuneration serait trop longue quoique la propriety de base 

peut encore etre exploitee. Une condition suffisante pour que deux entites ne soient pas 

dans la meme classe est utilisee afin de remplacer des coefficients dans le probleme non-

contraint quadratique en variables 0-1 par des valeurs arbitrairement grandes. Ensuite, 

un algorithme de separation et devaluation est applique dans un schema de suppresion de 

noeuds. A cet effet, un graphe est construit ayant des noeuds associes aux entites et des 

aretes associees a des paires d'entites qui ne sont pas trop eloignees l'une de l'autre, c'est-

a-dire pour lesquelles les hyperspheres de rayon \/A7 et -y/Aj s'intersectent. Recursivement, 

un noeud de degre minimal dans ce graphe est selectionne et le sous-graphe induit par ses 

noeuds adjacents est examine. Le probleme quadratique en variables 0-1 sans contraintes 

associe a ce sous-graphe est resolu et la solution optimale sauvegardee dans le cas ou elle 

est meilleure que la solution courante. 

L'application de ces nouvelles regies a conduit a un progres substantiel. En effet, des 

exemples dans le plan ayant jusqu'a n = 2392 entites et k > 2 ont pu etre resolus en de 

temps de calculs (longs, mais encore) raisonables. De plus, des exemples allant jusqu'a 19 

dimensions et ayant jusqu'a n = 2310 points ont pu etre resolus de fagon exacte dans le 

cas de Putilisation de plusieurs classes. 
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Pour conclure, les approches exactes de resolution de MSSC peuvent etre separees en 

trois families: 

1. celles qui resolvent de petits exemples (n « 25), c'est a dire la programmation 

dynamique non-serielle [119], la programmation concave [127] et la technique de 

reformulation-linearisation [108]. 

2. celles qui resolvent des exemples de taille moyenne (n RS 100 — 200), c'est-a-dire la 

methode de separation et devaluation repetitive [12], la methode de branchement et 

coupes basee sur le modele de programmation semi-definie positive 0-1 [2, 98] et la 

methode de generation de colonnes sans les ameliorations geometriques [28]. 

3. celle qui peut resoudre des problemes de grande taille (n sa 2000), c'est-a-dire la 

methode de generation de colonnes amelioree presentee dans cette these. 

D'une fagon generale, on peut considerer nos resultats comme une preuve de la realisa-

bilite de l'approche par generation de colonnes pour resoudre des problemes appartenant 

au domaine de la classification automatique. II y a plusieurs criteres proposes dans la 

litterature pour exprimer l'homogeneite et/ou la separation des classes. Un projet de 

construction d'un progiciel de generation de colonnes pour la classification automatique, 

impliquant plusieurs professeurs du GERAD ainsi que plusieurs etudiants, est actuelle-

ment en cours d'experimentation. Certainement, le succes du progiciel sur un ou plusieurs 

criteres dependra grandement de deux facteurs: la facilite de resolution du probleme aux-

iliaire et la presence d'un petit ou grand saut de dualite. Plus d'effort algorithmique et 

d'implementation seraient necessaires. Les criteres qui seront etudies sont des criteres 

recemment proposes dans les communautes de Pexploitation de donnees et de la physique: 

e.g. la coupe par ratio [50], la coupe normalisee [109] et la modularite [17]. 

De plus, quoique on ait mis l'accent sur une approche basee sur une methode de points 

interieurs, (c'est-a-dire ACCPM et generation de colonnes) la programmation lineaire sta-

bilisee [29] pourrait encore etre un concurrent en particulier si elle est combinee avec les 

recents travaux de [31, 32] sur le traitement efficace de la degenerescence. 
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INTRODUCTION 

1 

Clustering is a basic chapter in data analysis. It addresses the following problem: given 

a set of entities find subsets, called clusters, which are homogeneous and/or well sepa­

rated (e.g. Hartigan [59]; Jain, Murty and Flynn [62]; Mirkin [87]). Homogeneity means 

that entities in the same cluster must be similar and separation that entities in different 

clusters must differ one from another. 

One of the most used types of clustering is partitioning, where given a set O = 

{o\,02,..., on} of n entities, we look for a partition P^ = {C\, C%,..., C/J of O into k 

clusters such that 

. Cj•.? 0 j = l,...,k; 

• Ch f| Cj2 = 0 ji, j 2 = 1 , . . . , k and ji ± j 2 ; and 

• \JCj = O. 
3 = 1 

Many different criteria are used in the literature to express homogeneity and/or sep­

aration of the clusters to be found (see [53] for a survey). For instance, one may desire 

to maximize the split of a partition, i.e., the minimum dissimilarity between two entities 

assigned to two different clusters [19, 37], or to minimize the diameter, i.e., the largest 

dissimilarity between a pair of entities in the same cluster [52]. Among these criteria, a 

frequently used one is the minimum sum of squared Euclidean distances from each entity 

to the centroid of the cluster to which it belongs. Partitioning n entities into k clusters 

with this criterion is known as minimum sum-of-squares clustering (MSSC). 

For k > 2 and one dimensional data, MSSC can be solved in 0{n3) time [111]. The 

problem is NP-hard in the plane for general values of k [80]. In general dimension, MSSC 

is NP-hard even for k = 2 [1]. If both k and dimension s are fixed, the problem can be 

solved in 0(nsk+1) time [61], which may be very time-consuming even for instances in the 

plane. 
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MSSC has several properties: 

(i) It expresses both homogeneity and separation as explained in Spath's book [111], 

pages 60-61; 

(ii) Given the assignments, the cluster centers are located in their centroids, due to 

first order optimality conditions. These are determined by a simple closed-form 

expression; 

(iii) Given the centroids, each entity is assigned to its closest centroid, due to local opti­

mality. This just requires a few comparisons; 

(iv) Clusters obtained are spheroidal due to minimization of squared Euclidean distances. 

This may be desirable or not, depending on the problem considered. 

A mathematical programming formulation of MSSC is as follows: 

n k 

subject to 

k 

^Xij = 1 Vi = 1, . . . ,n (1) 

Xij 6 {0,1} Vi = 1 , . . . , n; Vj = 1 , . . . , k. 

The n entities {01,02,..., on} to be clustered are at given points pi = {p\,r = 1 , . . . , s) 

of Rs for i = 1 , . . . , n; k cluster centers must be located at unknown points yj G Ms for 

j = l , . . . , fc; the norm || • || denotes the Euclidean distance between the two points in 

its argument in the s-dimensional space under consideration. The decision variables Xy 

express the assignment of the entity Oj to the cluster j . We assume that the number of 

entities n is greater than k, otherwise the problem is trivially solved by locating one cluster 

center at the position of each entity. 

If y is fixed, the condition x^ G {0,1} can be replaced by x^ € [0,1], since in an optimal 

solution for the resulting problem each entity belongs to the cluster with the nearest center. 
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Besides, for a fixed x, first order conditions on the gradient of the objective function require 

that at an optimal solution 

n 

£ x*M - Pi) = °' v * r> le-> yrj =^—> v '̂>r- (2) 
%=i Yl xij 

Hence, the optimal cluster centers are always at the centroids of the clusters. 

Other mathematical properties of MSSC are discussed in the books of Spath [111], 

Mirkin [88] and Kogan [69]. Several hundred papers have been written on heuristics for 

MSSC and several thousand on their applications in many domains (see, for instance, 

Steinley's half century synthesis [113]). The best known heuristic for MSSC is &;-means [38, 

79] (the continuous version of fc-means for space partitioning was previously described by 

Steinhaus in [112]) which was identified by the IEEE Computer Society as the 2nd most 

influential algorithm in the data mining community [125]. Indeed MSSC is sometimes 

called the fc-means problem. This heuristic alternately applies properties (ii) and (iii) 

above until a local optimum is reached. It has been shown by Hansen and Mladenovic [55] 

that while fc-means usually gives good results for small number of clusters its performance 

deteriorates, sometimes drastically, when this number increases. Modifying A;-means by 

adding a jump move of a centroid to an entity location gives a much better heuristic 

called j-means. Finally, combining j-means with a Variable Neighborhood Search (VNS) 

heuristic [56, 57, 89] gives a heuristic which often provides optimal solutions or best known 

ones. 

Other recent heuristics for MSSC include the global fc-means method of Likas, Vlassis 

and Verbeek [77], analyzed in [58] and modified by Bagirov [6], Bagirov and Yearwood's 

nonsmooth optimization algorithm [7], smoothing optimization algorithms due to Teboulle 

and Kogan [116] and Xavier et al. [126], Merz's iterated local search [85], Pacheco's scatter 

search [92], Pacheco and Valencia's hybrids [93], Taillard's decomposition methods [115], 

Laszlo and Mukherjee's genetic algorithms [72, 73], Christou's restricted column generation 

and partitioning method [15], and the D.C. heuristic of An, Belghiti and Tao [3]. A 
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systematic comparison of twelve heuristics for MSSC was made by Brusco and Steinley 

in [13]. 

Exact algorithms for MSSC are much less numerous than heuristics. To the best of 

our knowledge, there are less than a dozen papers published on that topic. In 1973, Diehr 

stated in [23] (p. 17) that "Researchers must keep in mind that in most of cases the goals 

of clustering do not justify the computational time to locate or verify the optimal solution". 

This statement, however, does not take into account three facts: 

• Exact methods are extensively used nowadays to tune or discover pitfalls on existing 

approximate methods as well as to derive new approaches. 

• Computer performance has greatly improved in the last decades. 

• Mathematical programming has evolved a lot in 30 years. 

From the mathematical programming point of view, as pointed out by a referee of one 

of our papers, "Minimum sum-of-squares clustering is a challenging global optimization 

problem". Indeed this thesis will cover quite diverse approaches that can be used to exactly 

solve the problem. 

Early branch-and-bound algorithms are due to Koontz, Narendra and Fukunaga [70] 

and Diehr [22]. Bounds depend on distances between entities assigned to the same cluster 

and a limited look-ahead component. 

A column generation method for MSSC was proposed by du Merle et al. in [28]. 

It solved for the first time medium size benchmark instances (i.e., instances with 100-200 

entities), including Fisher's Iris [36]. The master problem is solved by the ACCPM interior 

point method of Goffin, Haurie, and Vial [45]. The auxiliary problem of finding a column 

with negative reduced cost is expressed as a hyperbolic program in 0-1 variables. It is 

solved by a Dinkelbach-like algorithm [24] which relies on a branch-and-bound algorithm 

for unconstrained quadratic 0-1 optimization. Another branch-and-bound on the master 

problem leads, if needed, to an integer solution. Finally, VNS heuristics are used both 

at the outset to find a good initial solution together with tentative bounds on the dual 
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variables, as well as in the auxiliary problem to accelerate its solution. The bottleneck 

of the algorithm lies in the resolution of its auxiliary problem, and more precisely, in the 

unconstrained quadratic 0-1 optimization problem arising there. 

More recently, Xia and Peng [127] proved that the objective function of MSSC is concave 

in the relaxed feasible domain. In their paper, they propose an adaptation of Tuy's [118] 

cutting plane method to solve it. Approximate results are reported for a version where 

this algorithm is halted before global convergence. Some experiments of ours showed that 

small instances with about 25 entities can be solved exactly with that approach. 

MSSC can also be solved by non-serial dynamic programming as shown by Jensen [63]. 

An improved implementation due to van Os and Meulman [119] allows solutions of in­

stances with about 28 entities. 

Brusco [12] proposed a repetitive branch-and-bound procedure which, after ordering the 

entities, solves by branch-and-bound the problem denned by the k + 1 last ones, then the 

problem with k + 2 last ones, and so on, until the problem with all given entities is solved. 

The bound used at any iteration of one of those iterated branch-and-bound procedures 

comprises two components, i.e., an usual one corresponding to distances between already 

assigned entities and a sophisticated look-ahead one which corresponds to distances in an 

optimal solution for the set of unassigned entities. These much improved bounds led to 

efficient solution of some well-known benchmark instances, including Fisher's 150 Iris [36], 

particularly when the number of cluster is small. Artificially generated examples with 

well-separated clusters and up to n = 220 entities could be solved also. 

The hardest task when devising exact algorithms for MSSC is to compute good lower 

bounds in a reasonable amount of time. Sherali and Desai [108] proposed to obtain such 

bounds by linearizing the model via the reformulation-linearization technique (RLT) [107]. 

They claim to solve instances with up to 1,000 entities by means of a branch-and-bound 

algorithm. Recently, Peng and Xia [98] proved the equivalence of MSSC and a model 

called 0-1 semidefinite programming (0-1 SDP), in which eigenvalues are binary. The 

authors report in [98] values of lower bounds obtained from LP and SDP relaxations of 

this 0-1 SDP MSSC formulation. 
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This thesis consists of four main chapters which are largely independent. Chapter 1 

is dedicated to the computational complexity of MSSC, a topic in which there seems to 

have been much confusion. We show that a recent proof provided by Drineas et al. in [27] 

regarding the complexity of MSSC in general Euclidean dimension is invalid. An alternate 

short proof due to Amit Deshpande and Preyas Popat (our co-authors to a forthcoming 

paper) is then given. Chapter 2 concerns an extensive empirical evaluation of the RLT-

based branch-and-bound algorithm of [108], trying to reproduce the same results obtained 

in that paper without success. In chapter 3, we study the 0-1 SDP MSSC formulation of 

Peng and Xia [98]. On the basis of their work, we propose a branch-and-cut algorithm 

based on cutting with violated triangle inequalities, i.e., if the pairs of entities (oi,Oj) 

and (oi,og) belong to the same cluster, then entities Oj and ô  also belong to the same 

cluster. The resulting algorithm obtains exact solutions for some benchmark data sets 

with computing times comparable with those of the best exact methods previously found 

in the literature [12, 28]. In Chapter 4, the column generation approach of du Merle et al. 

[28] is revisited and an alternate geometric-based approach for the solution of its auxiliary 

problem is proposed. This greatly improves the efficiency of the whole algorithm and leads 

to exact solution of instances with over 2300 entities. 
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CHAPTER 1 : NP-HARDNESS OF EUCLIDEAN 

SUM-OF-SQUARES CLUSTERING 

1.1 Computational complexity 

First of all, it is important to remark that the computational complexity of a clustering 

problem depends on the criterion used. For instance, split maximization is polynomially 

solvable [19] while diameter minimization is NP-hard [11, 52]. 

To the best of our knowledge, the computational complexity of minimum sum-of-squares 

clustering in general Euclidean space for k > 2 was unknown before the present work. 

However, several incorrect statements have been made about this problem being known to 

be NP-hard, many of them without providing a reference [35, 40, 81, 83, 97, 98, 101, 110, 

124, 128] 

Some confusion is also made in [14, 21, 41, 42, 49, 75, 90] by referring to a paper 

of Garey, Johnson and Witsenhausen [44], which provides a NP-hardness proof for the 

quantization problem by a reduction from the exact covering problem by triples, which is 

known to be a NP-complete problem [43]. The quantization problem is defined in [44] as 

follows. 

"A source produces one sample of a random variable X with equiprobable values in 

{ l , 2 , . . . , n } . 

The encoder (quantizer) maps X into a variable Y with values in {1 ,2 , . . . , k}. The 

decoder maps Y into a decision variables Z with values in {1 ,2 , . . . , m}. If X = i and 

Z = j the resulting distortion is d^. All entries in the n x m matrix [dij] are zeros 

or ones. The goal is to find an encoder function, / : X —> Y, and a decoder function, 

g : Y —> Z, such that the average distortion 

1 n 

-^2di9(f(i))) 
i=l 

is as small as possible." 
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However, this is in fact a particular /c-median problem (see e.g. [71] for a survey) where 

each cluster center is taken from a given finite set of fixed potential locations. This problem 

was already known to be NP-hard for k > 2 [66]. 

Other results due to Briicker [11] led to further confusion. This author proved that 

the partitioning problem is NP-hard for many different clustering criteria. In the classical 

book Computers and Intractability of Garey and Johnson [43], this paper is referenced in 

the following way: 

"[MS9] CLUSTERING 

INSTANCE: Finite set X, a distance d(x,y) G ZQ for each pair x,y G X, and two 

positive integers K and B. 

QUESTION: Is there a partition of X into disjoint sets X\, X2, • • •, X^ such that, for 

1 < i < k and all pairs x, y G Xi, d(x, y) < Bl 

Reference: [Briicker, 1978] Transformation from GRAPH 3-COLORABILITY. 

Comment: Remains NP-complete even for fixed K = 3 and all distances in {0,1}. 

Solvable in polynomial time for K = 2. Variants in which we ask that the sum, over 

all Xi, of ma,x{d(x,y) : x, y G Xi} or of ^2X eX. d(x,y) be at most B are similarly 

NP-complete (with the last one NP-complete even for K = 2)." 

The problem described here is minimum diameter partitioning. 

Despite the fact that nothing is mentioned about squared Euclidean distances in [11], 

many papers cited it to state that the MSSC is NP-hard [25, 55, 84, 85, 86, 92, 93, 96, 117, 

131]. 

The papers [34, 64, 99,116, 122] also cite Garey and Johnson's book without mentioning 

Briicker as a reference for MSSC to be NP-hard. This error may be due to the paragraph 

cited above or possibly to another one which refers to minimum sum-of-squares, 

"[SP19] MINIMUM SUM OF SQUARES 

INSTANCE: Finite set A, a size s(a) G Z+ for each a € A, positive integers K < \A\ 

and J. 
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QUESTION: Can A be partitioned into K disjoint sets A\,A2, • • •, AK such that 

i=l \aeAi / 

Clearly, this last problem is different from MSSC. 

Recently, a proof of NP-hardness of MSSC for k = 2 in general dimension s was given by 

Drineas et al. in Machine Learning 56, 9-33, 2004. As shown in the next section the proof 

is, however, invalid. An alternate short proof, due to A. Deshpande and P. Popat [20], 

is given in Section 1.3. Note tha t another longer proof was obtained independently, and 

almost at the same time, by Dasgupta [18]. Moreover, a proof which is essentially the same 

as that of [20] was obtained independently and more recently by Kanade, Nimbhorkar and 

Varadarajan [65]. 

1.2 An incorrect reduction from the fc-section problem 

Drineas et al. [27] propose a NP-hardness proof for the MSSC with k = 2 and general 

dimension by a reduction from the minimum bisection problem, whose objective is to 

partition a graph into two equal-sized parts so as to minimize the number of edges going 

between the two parts. The authors state that a proof for k > 2 is similar via a reduction 

to the minimum /c-section problem. The paper is cited in [4, 8, 16, 91] as giving a proof 

that MSSC is NP-hard. 

The polynomial transformation for performing the reduction from the bisection problem 

is described as follows: 

"Let G = (V,E) be the given graph with n vertices 1,... ,n, with n even. Let d(i) be 

the degree of the i'th vertex. We will map each vertex of the graph to a point with 

|.E| + |V| coordinates. There will be one coordinate for each edge and one coordinate 

for each vertex. The vector X1 for a vertex i is defined as Xl(e) = 1 if e is adjacent to 

i and 0 if e is not adjacent to i; in addition Xl(i) = M and Xl(j) = 0 for all j ^ i." 

file:///aeAi
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Figure 1.1 illustrates an example of such a transformation for a given graph. It can be 

checked in the example that all partitions with non-empty clusters have the same cost 

value regarding the last |V"| coordinates. Correcting an error in the proof presented in [27], 

we will show that this is always true for any MSSC instance constructed by the proposed 

transformation. 

X'= (1,1,0,0,0,0,M,0,0,0>0)T 

X"= (0,1,U,0,0,0,M,0,0,0)T 

Xs = (0,0>0,1,1,0,0,0,M,0,0)T 

X'°= (1,0,0,0,0,1,0,0,0,M,0)T 

X"= (0,0,1,0,1,1,0,0,0,0,M)T 

Figure 1.1: Transformation of a graph into an MSSC instance as defined in [27] 

Let us consider a bipartition of the entities into two clusters P and Q whose cardinalities 

are denoted by p and q, respectively. Regarding the last |V| coordinates of the centroids 

?Q \E\+\y\, we have for i = 1,. . . , |V| 

y'\E\+i ~ 
f : \iieP 

0 : otherwise 

yQ -
-|B|+t -

M 
Q 

0 

f : if .eQ 
otherwise 

Therefore, the sum of squared distances of each entity to its centroid, limited to the 

last |V| coordinates, is equal to 

p(M-f)2 + g(M-f)2 + p(p-l)(0-M)2
 + q ( q _ i ) ( 0 - M ) 2 

= nM2 - 4M2 + M2 (j + J) + 2M2 - M2 (i + j) 

= ( n - 2 ) M 2 . 

In Drineas et al. [27], the authors forget to add the squared distances of the null com­

ponents to the centroids, which are indicated in boldface in the expression. If they are 

not taken into consideration, then the sum-of-squares limited to the last |V| coordinates 

is equal to 

nM2 + M2 (- + -) -AM2, 
\P <lJ 

file:///iieP
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which is minimized whenever p = q = n/2. Thus, if M is made sufficiently large, balanced 

bipartitions have costs strictly smaller than unbalanced ones, since the contribution for the 

cost limited to the first \E\ coordinates is upper bounded. In fact, for p = q, this last value 

is minimized when the solution of MSSC is the balanced bipartition that corresponds to the 

minimum bisection in the original graph (see Drineas et al. [27], page 16). Unfortunately, 

after correcting the expression of the cost regarding the last |V| coordinates, there is no 

dependence on the cardinalities of the clusters. This implies that the proposed reduction 

from minimum bisection is invalid. 

1.3 A new proof by reduction from the densest cut problem 

Nevertheless, there is a similar (valid) reduction that shows that the problem is in fact 

NP-hard. 

Theorem 1.1. MSSC in general dimension is NP-hard for k = 2 

Proof. The reduction is from the densest cut problem, whose objective is to maximize for 

a given graph G = (V,E) the ratio \E(P,Q)\/\P\ • \Q\ over all bipartitions (P,Q) of the 

vertices in G, where E(P, Q) denotes the edge set of the cut. The problem is equivalent 

to the sparsest cut problem on the complement graph, which was shown to be NP-hard 

in [82]. 

Given a graph G with no parallel edges, let us define a |V| by \E\ matrix M as follows. 

An entry (v, e) in M is equal to 0, if edge e £ E is not incident to vertex v € V. Otherwise, 

it is +1 for one endpoint of e and —1 for the other. It does not matter which endpoint 

corresponds to +1 and which to -1 . Thus, each column of M has exactly one entry equal 

to +1 and exactly one entry equal to —1. 

Now, let us suppose that the rows of M are points in IRlEl and compute the value of 

the MSSC criterion for a bipartition into two clusters P and Q, with \P\ = p, \Q\ = q and 

p + q = n. The centroid of cluster P has in its e-th coordinate a value equal to either +\/p 

or —l/p if e 6 E(P, Q), or 0 otherwise. The same holds for the coordinates of the centroid 
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of cluster Q. Then, by computing the total cost of the bipartition, we have that 

2_]cost of P due to the e-th coordinate + cost of Q due to the e-th coordinate 
eeE 

= E ^ + H ) 2 + ( , - i ) i + H ) 2
+ £ 2 

eeE{P,Q) V \ r/ 1 \ H/ eiE{P,Q) 
= (2-±-^)\E(P,Q)\ + 2\E(P,P)\+2\E(Q,Q)\ 

71 

= 2\E\-—\E(P,Q)\, 

by using p + q = n. The MSSC for /c = 2 minimizes the above, which means that it 

maximizes \E(P,Q)\/p • q and hence finds the densest cut in the given graph G. • 
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CHAPTER 2 : EVALUATING A BRANCH-AND-BOUND 

RLT-BASED ALGORITHM FOR MINIMUM 

SUM-OF-SQUARES CLUSTERING 

Recently, Sherali and Desai [108] proposed an exact branch-and-bound RLT-based al­

gorithm for minimum sum-of-squares clustering based on a model obtained with the 

reformulation-linearization technique (RLT) [107]. These authors reported results for large 

instances with up to 1000 points and dimension 8. However, some details in that paper 

deserve further investigation. In particular, reported values of the ratio gaps between the 

lower and upper bounds (obtained by branch-and-bound with the RLT model and by a 

heuristic, respectively) appear to be large, while the number of branch-and-bound nodes 

in the branch-and-bound tree are strikingly moderate. Moreover, the authors solve a small 

example for which the well established fc-means algorithm gives a result with a value twice 

larger than that one obtained by the branch-and-bound algorithm. 

2.1 Reformulation-Linearization Technique for the MSSC 

The RLT method can be used to transform a zero-one mixed-integer quadratic program into 

an equivalent zero-one mixed-integer linear programming problem. In this approach, a tight 

linear programming relaxation, with an outer-approximation to the convex envelope of the 

objective function over the constrained region, is constructed for the problem by generating 

new constraints through the process of employing suitable products of constraints and using 

variable redefinitions. The RLT technique applied to the MSSC together with other valid 

inequalities, as in [108], will next be recalled. 
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First of all, we remark that the objective function of (1) can be manipulated. From the 

KKT conditions expressed in (2), the objective function can be rewritten as 

n k s 

i=l j=l r = l 

n k s n k s 

i = l j = l r = l i = l j=l r = l 

n k s n k s 

= H J2 J2 xiM? - Y. EEp^^r 
i = l j=l r=\ i=l j=l r=l 

Since £?=1 £j=i £*=1 zy(p* )2 = ELi Yfr=M? i s a constant, the MSSC is equiva­

lent to: 

i = l j=l r=\ 

subject to 
n 

J2xij(y
r
j-pl) = 0 Vj = l,...,k,Vr = l,...,s (2.1) 

i = i 

5^Si j = l, Vi = l , . . . , n 

x0- 6 {0,1} Vi = l , . . . , n , V j = l , . . . , fc. 

From equation (2), we notice that for a given solution x, yj is a convex combination 

(with equal weights) of all the points pi, such that Xy = 1. Therefore, constraints can be 

added stating that yj, Vj = 1 , . . . , k must be in the convex hull of all the points pi that can 

be associated to cluster j , denoted Ij. 

For a two-dimensional space, the convex hull can be polynomially calculated in 0(n log n) 

by Graham's algorithm [46]. However, for a higher dimension, it is generally an expensive 

task. In [108], the authors use instead a hyperrectangle H(Ij) that includes the convex 
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hull of the allowed points Ij, for each j = 1 , . . . , k. 

H(Ij) = {yj:a
r
j<yr

j<[3r
J,r = l,...,s}, 

where, eft = min{p[ : i G Ij} and /3J = max{p[ : i 6 Ij}, Vr = 1 , . . . , s. 

Instead of simply imposing these constraints, the product of each of them with both 

Xij and (1 — xij) Vi £ Ij is considered for each j = l,...,k, following the RLT method. 

The resulting constraints are: 

arjXij < yrjXij < (FjXij \/i € Ij Vj,r, 

arj(l - x^) < y]{\ - Xij) < /3J(1 - Xij) Vi G /,- Vj,r. 

Additional constraints can still be included in order to tighten the mathematical for­

mulation of the model. Since n > k, we have that 

n 

1 <^2xij <(n-k + 1), Vj = 1 , . . . , k. 
i=i 

They assert that at least one point must be assigned to each cluster, and therefore, each 

cluster contains at most n — k + 1 points assigned to it. The reformulation of these 

constraints leads to 
n 

1=1 

Although not mentioned in [108], these last constraints are valid only if yTj > 0, Vj,r. 

Thus, the data sets used in the computational experiments must eventually be translated 

in order to satisfy these conditions. 

2.1.1 Deal ing wi th symmetry 

Symmetry in the problem structure can make difficult the resolution via a branch-and-

bound approach. For any given solution to the MSSC, alternative equivalent solutions 

could be obtained by simply re-indexing clusters. This matter was previously studied 
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by Klein and Aronson in [68] where they propose the use of some valid inequalities in 

order to reduce the effects of symmetry. In [108], Sherali and Desai propose two different 

strategies to that purpose, though recognizing that symmetry in the problem structure is 

not completely eliminated by them. 

The first strategy imposes the following constraints: 

xn = l,xij = 0, Vj = 2, ...,k 
n n 

E xij > Yl *ij+i. Vj = 2, ...,k~ 1. 
i=l i = l 

It means that point p\ is assigned to the first cluster. Regarding the other clusters, in­

dexing is required to be performed in nonincreasing order of their size. However, symmetry 

still occurs if there is a solution having different clusters with the same size. 

In the second strategy, a dispersed set of points P = {pix, pi2,..., Pik_1} is built from the 

complete set of points to be clustered. First, a point Pix is arbitrarily chosen and inserted 

in P. Then, among the points outside of P, we select a point pi2 whose distance to p^ 

is maximum. After that, each new point to be included in P is selected if its minimum 

distance to a point in P is maximum among those belonging to the complement of P. 

Then, each point pih, h = 1,... ,k — 1 in P is restricted to belong to one of the first h 

(< k) clusters. Since the points in P are dispersed there is a good chance that they actually 

belong to different clusters. For the instances where this happens, the strategy actually 

eliminates symmetry. However, Figure 2.1 shows a simple case for which the symmetry 

effect still remains. Indeed should both points 1 and 2 be assigned to cluster 1, these 

constraints allow point 3 to belong to cluster 2 or to cluster 3. As reported in [108], the 

second strategy is preferred over the first in the sense that, if it is used, the algorithm has 

better initial gaps and finds optimal solutions more quickly. 
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cluster 1 

cluster 1 

cluster 2 

© 
cluster 2 

cluster 3 cluster 4 

o o 

cluster 3 

© 
cluster 4 

o o 

Figure 2.1: Two symmetric solutions allowed by the second strategy 

The final MIP model is obtained after linearizing the products Xij.y'j by z[,, Vi,j,r, 

following the RLT approach. The model, as given in [108], is: 

max 
x,y,z 

£££^ I'-IJ 

i£lj j€Ji r = l 

subject to 

£4/-£^i = 0 Vj,r 

(%j %ij _^ %ij 2^: Pj %ij 

a^l-XiUKfj-zrjK^l-Xij) 

/ j Xij = * 

£ zy > 1 

!/J<^4<(n-Hl)yJ 

symmetry breaking strategy 1 or 2 

xex 

Vi G Ij Vj, r 

Vi G 2j Vj, r 

Vi 

Vj 

Vj,/c 

where, 
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X = {x binary : Xij = 0 for all (i,j) el ,Xij = 1 for all (i,j) € 7+} 

with I+ = {(i,j) : Xij has been fixed at 1}, I~ = {(i,j) : x^ has been fixed at 0}, and 

V = {(i,j) : x^ is free}. Hence, the sets Ij for each j = 1 , . . . , k are given by 

Ij = {ie{l,...,n}:(i,j)el+ulf}. 

Moreover, for each i €E { 1 , . . . , n}, we define: 

Ji = {j e { i , . . . , k } : ( i , j ) e l + u I s } . 

The RLT model is valid since for any feasible solution of the RLT model, we have that 

z\j = Xijy^ holds true. Hence, the RLT model is an equivalent linear 0-1 mixed integer 

programming (MIP) representation of the original formulation of the MSSC [108]. 

2.2 Branch-and-bound for the MSSC 

When developing a standard branch-and-bound method [123], three elements are essential: 

upper bounds obtained by means of a (usually) linear relaxation, lower bound solutions, 

and a branching rule. 

Accordingly to the RLT theory, the resultant model is supposed to obtain tight upper 

bounds. For the MSSC, upper bounds are computed by using the LP relaxation of the MIP 

model, taking into account the current definitions of the sets Ij and Jj, for each i = 1 , . . . , n 

and j = 1 , . . . , k at each branch-and-bound node of the tree. Lower bounds x on variables x 

can be obtained by a rounding heuristic applied to this LP solution. This heuristic rounds 

the relaxed solution x to the nearest binary one subject to 5Z7-e</ .Xij — l,Vi = 1 , . . . ,n. 

For example, suppose that we have a problem with n = 3 and k = 2 for which x\\ = 0.4, 

x\2 = 0.6, X21 = 0.2, X22 = 0.8, X31 = 1, and X32 = 0. Then, the heuristic will provide as 

lower bound xn = 0, x12 = 1, x21 = 0, x22 = 1, 2I31 = 1, and x32
 = 0- ^ t n e solution x is 

already binary, the LP solution is optimal for the subproblem. 
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The LP solution of a branch-and-bound node can also be used to generate a valid 

inequality involving the incumbent best lower bound. This is done by using the dual values 

of the LP solution and surrogating all constraints in x-variables, except for constraints 

0 < Xij < 1, V(i,j). Then, standard 0-1 logical tests are performed on this inequality to 

possibly fix additional x-variables. 

Exploiting the structure of the inherent generalized upper bounding (GUB) constraints, 

the authors of [108] explore an alternative specially ordered set (SOS) branching strategy. 

For this purpose, 9ij is defined as the total absolute discrepancy in the linearized objective 

terms (z[) relative to the original nonlinear product terms (xij •%)• This is expressed as 

s 

ev = ^2\Pi(zij -XijVrj)-\ 
r = l 

Then, values 0i = X^,ej. % are defined for each i = 1 , . . . , n, computing u € argmax{#j}. 

The branching rule is to partition the set Ju into two children nonempty sets, JUl and JU2, 

as follows. Two subproblem nodes are constructed for the branch-and-bound tree corre­

sponding to the respective imposed branching restrictions 5Z,-e j u %ij = 1 and £\ - e Ju x^ = 

1. In order to obtain the partitions JUl and JU2, the values 9uj, with j E Ju, are sorted 

in nonincreasing order {9Uj1,6uj2,... ,9uji}, where I = \JU\ > 2. Then, a value 7 > 1 is 

defined to be the smallest integer such that Y^l=i @ujc ^ #u/2. Finally, JUl = { j i , . . . , j 7 } 

and J„2 = { j 7 +i , . . . ,ji}. Finally, for each of the children nodes, the sets I+', I~ and V 

are updated, and new convex hull constraints for each cluster are used to strengthen the 

formulation. 

The branch-and-bound algorithm proposed in [108] adopted a depth-first strategy to 

develop the enumeration tree. The algorithm was implemented in C++, and the commer­

cial software CPLEX 8.1.0 was invoked for the purpose of solving the LP relaxations at 

each node. Besides, the optimal basis of the parent nodes were used as an advanced-start 

basis for the children nodes. 
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2.3 An attempt at reproducing computational results 

In order to verify and validate the computational experiments reported in [108] via the 

branch-and-bound described in the previous section, we followed the same algorithmic 

development steps described in that paper. Except for the platform used, a Pentium IV 2 

GHz with 512 MB RAM under Linux in our experiments, the implementations are supposed 

to be equivalent. Our codes were compiled with g++ (option -03) version 3.4.4, and are 

available at ht tp: / /www.gerad.ca/~aloise/publ icat ions.html. For the computational 

experiments reported in this section, the second symmetry breaking strategy presented in 

section 2.1.1 is used in the resolution of the RLT-based MIP model. 

We start by the study of a small illustrative example with three clusters used in the 

referred paper. Table 2.1 provides this data set (which is a subset of 22 points corresponding 

to coordinates of German towns given in [111]) where the points p\,... ,p\o are given by 

their coordinates in Euclidean space. 

Table 2.1: Coordinates of 10 points in the Euclidean space 

Coordinates 
X 

y 

PI 
-57 
28 

V2 
54 
-65 

Pz 
46 
79 

PA 

8 
111 

P5 
-36 
52 

P6 
-22 
-76 

Pi 
34 
129 

P% 
74 
6 

P9 
-6 
-41 

Pio 
21 
45 

The authors report that 27 branch-and-bound nodes were created before the algo­

rithm could reach the optimal solution and prove its optimality. The initial gap ratio was 

UBo/LBo = 1.9236. However, the results obtained by our implementation are different. 

To solve this problem, our branch-and-bound algorithm required 848 nodes beginning with 

an initial gap ratio of 1.23. Recall that the authors must have changed the data set in 

order to validate their model, though such transformation was not described in the paper. 

We performed translations in order to obtain non-negative data. Another transformation, 

suggested by Sherali [105], which could accelerate the algorithm would be to rotate the 

axes in order to find the smallest volume hyperrectangle. 

Comparing with A;-means, the authors report that the ratio between the best solu­

tion obtained by five executions of the heuristic from randomly generated initial solutions 

http://www.gerad.ca/~aloise/publications.html
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(=34404.85) and the optimal solution obtained by the branch-and-bound (=15805.25) is 

2.17. Moreover, calculating the same ratio with the first feasible solution LBQ (=22434.68) 

found at the root node instead of the optimal solution, a value of 1.86 is obtained. 

Computational experiments were carried out with a standard fc-means heuristic imple­

mentation without any enhanced feature. Five different executions were performed 100 

times. The worst of the best solutions obtained by each group of five executions, denoted 

here Zk-means, w a s found to be 20743.133, providing a ratio of 1.312 between the Z^^means 

and the optimal solution. This ratio is 0.925 < 1 with respect to LBQ, while regarding 

the first lower bound value LB'0 obtained by our implementation, this same ratio is equal 

to 0.598. In fact, the overall worst solution obtained for the 500 executions of fc-means 

was 32611.6, the optimal solution was found 67 times (w 13%), and the average value was 

19083.444. Table 2.2 presents the ratios for two benchmark data sets extracted from [111] 

which contains cartesian coordinates for 22 and 59 German towns, and for the classical 

Fisher's Iris [36] with 150 points in four dimensions. We can notice that fc-means always 

obtained better solutions than the first lower bound value obtained by our RLT-based 

branch-and-bound implementation. 

Table 2.2: Relative results of our branch-and-bound implementation versus the fc-means 
algorithm in three benchmark data sets with three and five cluster centers. Results re­
ported in [108] regarding the best solution among five executions of /c-means are shown in 
parenthesis 

Data set 
German22 

German59 

Fisherl50 

Points 
22 
22 
59 
59 
150 
150 

k 
3 
5 
3 
5 
3 
5 

Zk-- m e a n s / o p t i m a l 

1.05 (3.41) 
1.32 (1.80) 
1.16 (7.66) 
1.28 (4.57) 

1.00 
1.23 

Zk- -rneans 
/LB'0 0.33 

0.26 
0.46 
0.25 
0.50 
0.14 

A further investigation also revealed that the solution provided in the paper, i.e. that 

one obtained by fc-means for the small example with 10 points (page 294 of [108]), is not 

a local optimum. Figure 2.2 presents with dashed lines the composition of the clusters 

indicated by the authors as the solution provided by the A;-means heuristic, while bold 

lines illustrate the actual local optimum if the algorithm proceeds. 



22 

-100 

34404.9 

21221 

Figure 2.2: A;-means solution as provided by Sherali and Desai (2005) and &;-means actual 
local optimum. The legends indicate the cost of the two solutions 

Our branch-and-bound implementation was also tested for other data sets. The initial 

data set with 10 points was progressively increased with additional points from the 22 

German towns data set of [111], until it was no more possible to solve the generated instance 

within 10 hours. The same procedure was done to generate data sets from Fisher's [36] 

150 Iris. Table 2.3 shows for each data set the number of nodes as well as the gap between 

the initial upper bound value (UB'0) and lower bound value (LB'Q) at the root node of 

the enumeration, which is calculated as —^-,—Q. Comparing with some results presented 

in [108] for larger instances with 250 and 500 nodes, it is remarkable that a much higher 

amount of branch-and-bound nodes are generated by our algorithm for much smaller data 

sets. 

Finally, computational tests were performed to test the efficacy of solving the RLT 

model directly by the commercial software CPLEX. While in [108] the authors claim that 

their implementation solves the data sets faster than CPLEX 8.1 with default settings, 

Table 2.4 presents opposing results obtained by our implementation, when CPU times in 

seconds are compared with those spent by CPLEX 8.1 and CPLEX 10.1. 
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We also noticed that while in [108] CPLEX 8.1 was able to solve directly a model with 

n = 250, k = 3 and dimension 4 in 263.44 seconds, and another with the same number 

of points and clusters but with dimension 6 in 360.83 seconds, for a small data set with 

20 points, the solver already takes 150.14 seconds according to our experiments. It is 

important to remark that the hardness of a MSSC instance is not directly measured by the 

values of n, k, and s. It also depends on the distribution of points. To illustrate, consider 

an example of MSSC with n entities divided into k clusters all points of which are each 

time within a unit diameter ball in Rs. Assume these balls are pairwise at least n + 1 units 

apart. Then the simplest branch-and-bound algorithm will quickly find this partition and 

confirm its optimality without branching as any misclassification more than doubles the 

objective function value. Indeed, the contribution to the bound of the cluster containing 
2 

both misclassified points is then at least ^ ^ > n, while the optimal solution has a value 

less than n. Note that n, k and s can be arbitrarily large. 

2.4 Breaking symmetry and convex hull inequalities 

In this section, the effects of a symmetry breaking rule due to [100] are investigated. In that 

paper, the permutation symmetry is broken by accepting only lexicographically minimal 

solutions, i.e., each cluster j contains the lowest indexed point which does not belong to any 

of the previous clusters 1 , . . . , j — 1. Following this property, there is only one way to index 

the clusters, and therefore, symmetry is broken. To illustrate, among all the equivalent 

numbering of a clustering of the set P = {a, 6, c, d} into the three sets {a}, {b, d} and {c}, 

i.e., 

Cluster 1 Cluster 2 Cluster 3 

{b,d} 

{b,d} 

{a} 

{a} 

{c} 

{c} 

{a} 

{c} 
{b,d} 

{c} 

{b,d} 

{a} 

{c} 

{a} 

W 
{b,d} 

{a} 

{b,d}, 
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only the third one is accepted. 

Below, the steps leading to the full formulation of the desired property as a set of linear 

inequality constraints are presented. 

The first point p\ must be assigned to the first cluster, which means that 

x n = 1. 

For the second one, if point p^ is not in cluster 1, then it must be in cluster 2. 

(1 - X 2 2 ) < x2\. 

Generalizing, if points P2, • • • ,pc-i
 a r e in cluster 1 and the point pc is not (c > 3) then pc 

must be assigned to cluster 2. 

c - l 

(1 - xc2) < ^ ( 1 - xa) + xcX. 
i=2 

For cluster j = 3 , . . . , k — 1, the smallest indexed point which is in none of the clusters 

1 , . . . ,j — 1 is forced to belong to cluster j . In other words, if for all i = 2 , . . . , c — 1, point 

Pi belongs to some cluster £ < j and point pc does not, then pc must be in cluster j . For 

each cluster j , this is expressed by the constraints 

c - i / i - i \ j - i 

(1 - xcj) < ^2 ( ! ~ YlXii ) + ^2 Xc£ Vc = •?'' • • •'n-

Note that no variable xij is needed for i < j , since the lexicographic order guarantees that 

no point is ever assigned to a cluster with a higher number than the point itself. Moreover, 

the last cluster k does not need to be considered because it will automatically contain all 

remaining points that do not belong to any of the lower indexed clusters. Therefore, the 

symmetry breaking rule proposed by [100] requires 0{kn) additional constraints to any 

MSSC instance. 
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As we can notice, the constraints are sensitive to the initial indexing of the points. In 

order to analyze the effect of this indexing, we tested the symmetry breaking rule with 

three different types of ordering for the points. 

In the first ordering, denoted Symm3_F, the points are selected in the same way as 

described in section 2.1.1 for the second strategy devised by [108]. The second ordering, 

called Symm3_R, uses the ordering that comes in the data set, which can be considered 

as a random one. The third one, is similar to the first, but instead of selecting points 

whose minimum distance to a point already selected is maximum, a point is selected if its 

maximum distance to a point already selected is minimum among those yet to be selected. 

This last ordering is denoted Symm3_C. 

The strategies conceived to deal with symmetry were computationally tested for some 

of the data sets described above, the results being reported in Table 2.5. The labels Symml 

and Symm2 refer, respectively, to the first and second strategies devised by [108]. 

These computational experiments confirm that the second strategy Symm2 has a better 

performance than Symml. Regarding the symmetry breaking rule based on [100], the best 

results were obtained by the versions that ordered the points by dispersion (Symm3_F) and 

randomly (Symm3_R), except for the data set with 14 points generated from the Fisher's 

150 Iris. The reasons for such difference in performance caused by the different orderings 

must be further investigated. Also, Symm3_F always presented a better performance 

than Symm2 for the tested data sets, though the initial upper bounds have the same 

value. In fact, if the points are ordered by dispersion as explained above, the effect at 

the root node with the two strategies tends to be similar, since the affected points, i.e. 

Pih, h — 1 , . . . , k — 1, are really supposed to belong to different clusters. If this happens, 

both strategies imply the same cluster's indexing. Otherwise, algorithm Symm3_F is 

preferable since its associated breaking rule strategy is more restrictive than that used by 

algorithm Symm2. Table 2.6 shows initial upper bounds obtained by these algorithms for 

different values of k. As the value of k increases, points Pih,h = 1 , . . . , k — 1 are less likely 

to belong each one to a different cluster. 
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Table 2.6: Initial upper bounds UB'0 obtained by algorithms Symm2 and Symm3_F for 
different number of clusters 

Benchmark 
German22 

Fisherl50 

Points 
20 

14 

k 
5 
7 
9 
11 
13 
7 
9 
11 
13 

Symm2 
535057 
534538 
533511 
532010 
530139 
814.85 
514.75 
514.62 
514.42 

Symm3_F 
535055 
534536 
533493 
531949 
530025 
814.84 
514.74 
514.60 
514.38 

We also decided to investigate the effect of the actual convex hull constraints in the 

MIP model of section 2.1.1 for data sets in R2. Recall that constraints for the coordinates 

of each centroid yj, for each j = 1 , . . . , k and r = 1 , . . . , s, were introduced by means of 

hyperrectangles that covered all the entities in the sets Ij. 

Since each pair of consecutive extreme points in conv(P) can define a halfspace in the 

Euclidean space, the coordinates of the centroids are confined to be in the polyhedron 

defined by the intersection of these halfspaces. Unfortunately, the number of constraints 

in the output is sensitive to the number of extreme points provided by Graham's algo­

rithm [46]. While O(kn) constraints are necessary in the model when using the hyperrect­

angles, this number raises to 0(kn2) with the convex hull inequalities, since all the entities 

can be extreme points of the convex hull. Tables 2.7 and 2.8 present comparative results 

in the same data sets generated from the 22 German towns coordinates of [111] for a new 

implementation which includes the convex hull inequalities just described. The resulting 

algorithm (Symm3_F+CH) uses the symmetry breaking rule of [100] with the dispersion 

ordering, and is compared with the implementation of the previous section (Symm3_F). 

There is a clear reduction provided by the convex hull inequalities in the number of 

branch-and-bound nodes solved by the RLT-based branch-and-bound, with average reduc­

tion of approximately 79%. This is partially justified by the initial upper bounds obtained 

at the root of the enumeration tree which are also smaller relatively to the previous imple­

mentation. Moreover, since the convex hull constraints are updated at each branch-and-
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Table 2.7: Comparison in terms of the number of branch-and-bound nodes solved by two 
implementations with (Symm3_F+CH) and without (Symm3_F) the convex hull inequal­
ities 

Benchmark 
German22 

Points 
10 
12 
14 
16 
18 
10 
12 
14 

k 
3 
3 
3 
3 
3 
5 
5 
5 

Symm_3F 
736 

2194 
3866 

15022 
29490 

792 
14834 
32672 

Symm 3F+CH 
161 
593 
995 

4473 
4251 

149 
1765 
4507 

Reduction(%) 
78.1 
72.9 
74.2 
70.2 
85.5 
81.1 
88.1 
86.2 

Table 2.8: Comparison in terms of initial upper bounds obtained by two implementations 
with (Symm3_F+CH) and without (Symm3_F) the convex hull inequalities 

Benchmark 
German22 

Points 
10 
12 
14 
16 
18 
10 
12 
14 

k 
3 
3 
3 
3 
3 
5 
5 
5 

Symm_3F 
257795 
343502 
378659 
445628 
484159 
257965 
343711 
378826 

Symm 3F+CH 
248129 
333573 
368908 
428689 
460801 
248698 
333890 
369307 

Reduction(%) 
3.7 
2.9 
2.6 
3.8 
4.8 
3.5 
2.8 
2.5 

bound node according to the current definition of the sets Ij, the upper bounds at each 

node are also supposed to be better, therefore reducing the number of branch-and-bound 

nodes evaluated. 

However, a large reduction in the number of nodes does not imply the same effect for 

computing times as can be verified in Table 2.9. Indeed, this is due to the augmentation 

on the number of constraints which makes the resolution of the relaxed model more time 

consuming. Note that for the data set with 16 points CPU times are even worse with the 

implementation that uses the convex hull inequalities. 
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Table 2.9: Comparison in terms of CPU times in seconds used by two implementations 
with (Symm3_F+CH) and without (Symm3_F) the convex hull inequalities 

Benchmark 
German22 

Points 
10 
12 
14 
16 
18 
10 
12 
14 

k 
3 
3 
3 
3 
3 
5 
5 
5 

Sy mm 3F 
5.57 

21.00 
43.53 

210.80 
498.27 

10.09 
267.85 
747.78 

Symm_ J F + C H 
3.08 

16.53 
36.10 

332.26 
428.92 

5.33 
121.22 
467.61 

Reduction(%) 
44.7 
21.2 
17.0 

negative 
13.9 
47.1 
54.7 
37.4 

2.5 Concluding remarks 

The first aim of this chapter was to reproduce results of Sherali and Desai [108] in solv­

ing the minimum sum-of-squares clustering problem with a branch-and-bound RLT-based 

algorithm. Following the guidelines presented by the authors in that paper, we tried our 

best to devise an equivalent branch-and-bound implementation. However, results obtained 

were drastically different even for small data sets, and inconsistencies were found with the 

results reported. Indeed, computing times and number of nodes for these small instances 

were larger than those reported in [108] for much larger problems. There can be several 

possible explanations for this: 

(a) Our implementation is not correct; 

(b) Our implementation is not efficient; 

(c) The implementation of [108] is not correct; 

(d) The data sets generated in the examples of [108] are extremely easy to solve; 

(e) The platforms used are very different. 

Regarding (a), we doubt this as the same results were obtained by our branch-and-bound 

implementation and by CPLEX for all instances. Regarding (b), while we followed [108] as 

closely as possible, this cannot be excluded a priori. Indeed computing times of our branch-

and-bound implementation grow much quicker than those of CPLEX. However, the fact 
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remains that computing times of CPLEX are large even for small problems. Regarding 

(c), we note that in view of the fact that there are errors in the solution of the small 

example of [108] this again cannot be excluded a priori. Sherali and Desai [108] report 

similar computing times for CPLEX and the RLT-based branch-and-bound algorithm in 

contrast to our results. Regardless of correctness of the RLT-based branch-and-bound 

implementation of Sherali and Desai [108], the discrepancy between computing times with 

CPLEX remains to be explained. Regarding (d), we note that, as discussed above, it is 

very easy to generate arbitrarily large data sets in any number of dimensions for which 

the MSSC problem can be solved with a very small amount of branching. Regarding (e), 

we have been careful to use in our comparative experiments the same version of CPLEX 

as Sherali and Desai [108], These authors do not mention the computer and compiler 

used. However, we believe that differences in computing platforms cannot explain the vast 

discrepancies observed. 

To find out which is (or are) the true reasons among those listed we asked the authors 

of [108] to provide either a copy of their code or the data sets or a precise description 

of how they are generated (details are not given in their paper). This request could not 

be answered because, as mentioned by Sherali in recent email [106], "Unfortunately, he 

[Jitamitra Desai] appears to have deleted his codes and data sets". 

The second aim of this chapter was to assess the interest of symmetry breaking rules, 

in particular that one of [100]. This last one completely breaks symmetry and appears to 

be better than the two ones of [108], both in terms of reduction in the number of nodes 

and of computing time. 

The third aim of this chapter was to study the impact of adding valid inequalities 

obtained from the convex hull of the points which belong or can be added to each cluster. 

Tests were made in the case of two dimensions. It appears that the number of nodes of 

the branch-and-bound tree is reduced. The overall computing time may be either reduced 

or increased. 
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CHAPTER 3 : A BRANCH-AND-CUT SDP-BASED 

ALGORITHM FOR MINIMUM SUM-OF-SQUARES 

CLUSTERING 

The hardest task while devising exact algorithms for MSSC is to compute good lower 

bounds in a reasonable amount of time. Recently, Peng and Xia [98] used matrix arguments 

to model MSSC as a so-called 0-1 semidefinite programming (0-1 SDP) which can be further 

relaxed to convex SDP or to linear programming. On the basis of their work, we propose 

in this chapter a branch-and-cut algorithm to efficiently exploit the tight lower bounds 

obtained from the linear relaxation of the underlying 0-1 SDP model. 

3.1 Equivalence of MSSC to 0-1 SDP 

In general, SDP refers to the problem of minimizing a linear function over the intersection 

of a polyhedron and the cone of symmetric and positive semidefinite matrices [120]. The 

canonical SDP has the following form: 

{SDP) { 

min Tr(WZ) 

s.t. Tr(BiZ) = bi for i = 1 , . . . , m 

Z^0 

where W and E>i for i = 1 , . . . , m are matrices of coefficients, Tr(-) denotes the trace of a 

matrix, and Z >z 0 means that Z is positive semidefinite. If the latter is replaced by the 

constraint Z2 = Z, then the following problem is obtained 

(0-1 SDP) { 

min Tr{WZ) 

s.t. Tr(BiZ) = bi for i = 1 , . . . , m 

z2 = z,z = zT 
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It is called 0-1 SDP due to the similarity of the constraint Z2 = Z to the obvious constraints 

on binary integer programming variables (see e.g. [10, 39]). Moreover, the eigenvalues of 

matrix Z are equal to 0 or 1. 

From Huygens' theorem (see e.g. [30]), the MSSC objective function in (1) can be 

rewritten as 
n—1 n 

n k k E E XijXtjWPi ~ Pif 
i= i e=i+i 

i=l j=l j=l ' -71 

Then, by rearranging it, the MSSC cost function can be expressed by 

^ x^n—l v-*n ii „ i|2™ „ n k ,, ^-^n n2 

y ^ E i= i E<=i+i llPi -P<ll ^ijg<j _ v^l l n2 ^\\T,i=ixijPi\\ 
j=i Z^i=i xi? i = 1 J = 1 Z^j=i ^ j 

= Tr{WpWj)-J2^lXfif, 
j=i 2-(i=i x i i 

where Wv e M"xs is the matrix whose i-th row is the vector p,. Note that the same matrix 

arguments were used by Zha et al. [130] and Steinley [114] in order to look for orthonormal 

matrices which optimize the second term of the expression. 

In [98], maximization of the second term is shown to be equivalent to maximizing a 0-1 

SDP problem. Their development starts by considering a feasible assignment matrix X, 

and then, defining a matrix Z = X{XTX)~lXT. Note that Z is a matrix that satisfies 

Z2 = Z and Z = ZT with nonnegative elements. 

Thus, the objective function can be rewritten as Tr{WpWj{I - Z)) = Tr{WpWj) -

Tr(WpWpZ). The constraint E j = i x i j = 1 c a n De written as Xek = e", which implies 

that 

Zen = ZXek = Xek = en. 

Moreover, the trace of Z is equal to k, the number of clusters, i.e., 

Tr(Z) = k. 
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Thus, the following 0-1 SDP model for the MSSC is obtained 

min Tr{WpWj(I-Z)) 

subject to (3.1) 

Ze = e,Tr(Z) = k, 

Z > 0, Z = ZT, Z2 = Z. 

Peng and Xia [98] proved that any feasible solution Z for this 0-1 SDP model is necessarily 

associated to a feasible MSSC assignment matrix X. Therefore, an equivalence relation 

among the MSSC formulations (1) and (3.1) is established. Regarding complexity, the 0-1 

SDP model is linear except for the constraint Z2 = Z. 

3.1.1 Valid inequalities for the 0-1 S D P formulation 

Peng and Xia [98] also derived valid inequalities for (3.1) from a property of semidefinite 

positive matrices. Suppose Z a feasible solution for (3.1). Since Z is semidefinite positive, 

it follows that there exists an index i\ € 1 , . . . , n such that 

Zjjj j = m a x Zij > 0. 
hi 

Since Z2 = Z, then YljeiS^hj)2 = Zhh> where X\ = {j : Z^j > 0}. This implies that 

E ll 7 n 

From the choice of i\ and the constraint Y^l=i ^hj — ^jeZi ^hj = 1> P e n g a n d Xia [98] 

concluded that 

Zilj = Zixix, Vj e X\. 

If the respective columns and lines associated to the index set Z\ are eliminated, the 

remaining matrix is still semidefinite positive with the same aforementioned properties. 
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Therefore, if the process is repeated, the following valid inequalities are obtained 

Zif)i = Zhi0' Vj € 27 ,̂ /3 = 1, . . . , k. 

3.2 A branch-and-cut algorithm for the 0-1 SDP formulation 

Peng and Xia [98] have proposed an LP relaxation for the MSSC 0-1 SDP formulation by 

removing the constraint that Z2 = Z. Then, valid inequalities are used to strengthen the 

model based on the fact that if the pairs of entities (oi,Oj) and (oi,oi) belong to the same 

cluster, then Oj and 0£ also belong to the same cluster. From the definition of Z, these 

relationships imply that 

Zij = Zj£ — Ztf = Za = Zjj — Zj>g. 

In their paper, such inequalities are partially characterized by the following ones 

Z^ < Zn Vi,j (pair inequalities) 

Z^ + Zi£ < Zu + Zj£ Vi,j,£ (triangular inequalities). 

This partial polyhedron characterization was inspired by the work of Lisser and Rendl [78] 

for graph partitioning. Thus, the resulting LP relaxed model is expressed by 

min Tr{WpW^{I - Z)) 

subject to 

Ze = e,Tr(Z) = k, (3.2) 

Z>0 

Zij < Za vl, J 

Z^ + Zie < Zu + Zje Vi, j , £ 



36 

The authors report some results on benchmark instances for which the lower bounds 

provided by this LP relaxation are very close to the optimal values. However, they claim 

that its resolution is unpractical for large-sized data due to the huge amount 0(n3) of trian­

gular inequalities. We propose here to tackle this limitation via a cutting plane procedure 

which adds triangular inequalities only if they are violated. 

Although the focus of Peng and Xia [98] is not on exact methods, the authors suggest 

a simple branching scheme. Suppose that for the optimal solution of the LP relaxation 

ZR there are indices i,j such that ZRAZR — Z^) ^ 0, then one can produce a branch 

with Za = Zij and another one with Zij = 0. With this branching scheme, the number of 
2 

different branches is limited to at most 2n . 

Regarding variable selection, we propose to choose indices i,j as the argmajq ,• min{Z^, 

ZR — Z?j}. The reason behind this selection is to choose indices i and j with the least 

tendency to assign Oi and Oj to the same cluster, or to different ones. Consequently, it is 

expected to have, in both branches, a considerable impact on the LP relaxation. 

Algorithm 1 summarizes the whole branch-and-cut method. In Line 1, the list L of 

unsolved problems is initialized with the 0-1 SDP model (3.1). List L is implemented with 

a stack data structure so that a depth-first search is performed while exploring the enumer­

ation tree. In Line 3, the best current solution s* is initialized by variable neighborhood 

search (VNS) [89, 55] which is allowed to execute for one minute of CPU time. 

Lines 4-23 consist of the main loop of the branch-and-cut method which is repeated 

until the tree is completely explored. In Lines 5-6, a problem P is removed from L, and 

its relaxation PR as in (3.2) is considered for being solved without its 0(n3) triangular 

constraints. In the loop of Lines 7-10, the relaxed problem PR is solved via cutting planes 

until there are no longer triangular inequalities which are violated. Limited computational 

experiments showed that adding the 3000 most violated cuts is a good choice for the 

number of cutting planes added in Line 9. Thus, the LP relaxation is kept fairly small as 

compared to the full set of constraints. 

If PR is feasible in Line 11, then due to equivalence between (1) and (3.1), a feasible 

solution s is obtained to (1) from ZR in Line 13. If cost(s) is better than cost(s*) then 
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the latter is updated, where function cost(-) returns the cost of a solution to either for­

mulation (1) or (3.1). Branching is performed whenever the lower bound ZR is smaller 

than the current upper bound cost(s*) in Line 18. Consequently, problem P is split into 

two subproblems in Line 20 according to variables selected by the rule of Line 19. These 

subproblems are added to L in Line 20. Finally, the optimal solution s* is returned in 

Line 24 when L is empty. 

l Algorithm: BC-SDP-MSSC 
2 Let L be a list of unsolved problems. Initialize L with (3.1); 
3 Solution s* is initialized by VNS ; 
4 repeat 
5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

Select a problem P from L and remove it from L; 
Consider the linear relaxation PR of P as in (3.2) without the triangular 
inequalities; 
repeat 

Solve PR. Let ZR be an optimal solution if one exists; 
Look for violated triangular inequalities and add them to PR; 

until there are no violated triangular inequalities ; 
if PR is feasible then 

if ZR is feasible for P then 
Obtain a feasible solution s to (1) from ZR; 
if cost(s) < cost(s*) then 
| s* <— s; 

end 
end 
if cost{ZR) < cost(s*) then 

Calculate (i,j) € argmaXj j mm{ZR,ZR — ZR}\ 
Branch P into two subproblems by means of cuts Zij = 0 and 
Za — Zu = 0 and add them to L; 

end 
end 

23 until L = 0 ; 
24 return s*; 

Algorithm 1: Branch-and-cut SDP-based algorithm for MSSC 

3.3 Computational experiments 

In this section we report on the computational experiences with our SDP-based branch-

and-cut algorithm for MSSC. Results were obtained using an AMD 2 GHz architecture 
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with g++ (Option -03) C compiler. Package CPLEX 10.0 is called to solve with dual 

simplex the LP relaxations of the problems generated. 

In order to better evaluate the cutting plane procedure (Lines 7-10) of the proposed 

BC-SDP-MSSC algorithm, three distinct versions of the program were devised: 

1. BC-tri adds all pair inequalities a priori and exploits the triangular inequalities cuts 

as cutting planes. 

2. BC-all exploits both pair inequalities and triangular inequalities as cutting planes. 

3. BC-hpair adds a half of the pair inequalities a priori and exploits the remaining ones 

as well as the triangular inequalities as cutting planes. 

Comparisons were made using some standard problems from the cluster analysis litera­

ture (i. Ruspini's 75 points in the Euclidean plane [103], ii. Spath's 89 Bavarian postal codes 

in three dimensions [111], iii. the synthetic HATCO data set published in [51] consisting 

of 100 objects in seven dimensions, iv. Fisher's 150 iris problem in four dimensions [36], 

and v. Grotschel and Holland's 202 European cities coordinates [47]). To the best of our 

knowledge, problems (iii) and (v) were never reported to be solved exactly in the literature. 

In all tables presented here, the first column gives values of k and the second column 

gives the optimal objective function values. More information is provided when available. 

Peng and Xia [98] report CPU times used for solving LP relaxation (3.2) with all its 0(n3) 

triangular inequalities for data sets (i), with k = 2 , . . . , 5, and (ii), with k = 2 , . . . , 9. 

Thus, the third column of Tables 3.1 and 3.2 present those computing times, which were 

obtained with an IBM RS-6000 workstation and CPLEX 7.1 with AMPL interface. Re­

maining columns are associated to CPU times of exact methods, i.e, the column generation 

algorithm (CGA) of du Merle et al. [28] obtained with a SUN ULTRA 200 MHz station, 

the repetitive branch-and-bound algorithm (RBBA) of Brusco [12], and the three versions 

of BC-SDP-MSSC. Moreover, a last column is included in the tables to present gap values 

between upper and lower bounds obtained by the solution of (3.2) at the root node, de­

noted UB° and LB0 respectively, which are calculated as (UB° - LB°)/LB°. The letter 
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T indicates that no initial gap exists, i.e., the problem is already solved by our approach at 

the root node, without branching. Otherwise, the number of nodes of the branch-and-cut 

tree is given in parenthesis. 

Table 3.1: Results for Ruspini's data set 

k Opt. sol. CPU times (seconds) 
LP relax. CGA RBBA BC-tri BC-all BC-hpair 

% gap 

2 
3 
4 
5 
6 
7 
8 
9 
10 
20 
30 

89337.8 
51063.4 
12881.0 
10126.7 
8575.4 
7126.2 
6149.6 
5181.6 
4446.3 
1721.2 
741.8 

27.81 
66.58 

7.22 
9.47 

12.33 
16.50 
7.30 
14.43 
25.45 
30.19 
43.11 
31.26 
27.62 

0.05 
2.10 

136.29 
1699.75 
> 12h 
> 12h 
> 12h 
> 12h 
> 12h 
> 12h 
> 12h 

3.54 
8.79 
0.69 
0.78 
1.97 
1.20 
8.24 
2.90 
2.08 
0.31 
0.17 

14.33 
15.10 
2.83 
2.91 
3.46 
2.22 
12.67 
4.54 
3.88 
0.41 
0.16 

3.56 
8.34 
0.48 
0.60 
1.03 
0.98 
7.27 
2.87 
2.39 
0.28 
0.14 

0.5 
0.3 
0.2 

(7) 
(3) 
(3) 

Table 3.2: Results for Spath's data set 

k Opt. sol. CPU times (seconds) 
LP relax. CGA RBBA BC-tri BC-all BC-hpair 

% gap 

2 
3 
4 
5 
6 
7 
8 
9 
10 
20 
30 

6.02546 1011 

2.94506 1011 

1.04474 1011 

5.97615 1010 

3.59085 1010 

2.19832 1010 

1.33854 1010 

8.42375 109 

6.44647 109 

7.48215 108 

1.71392 108 

283.26 
418.07 
99.54 
60.67 
52.55 
61.78 
26.91 
18.04 

19.92 
1479.75 
70.49 
39.59 
87.61 
106.55 
76.86 
75.58 
84.33 

603.33 
> 12h 
> 12h 
> 12h 
> 12h 
> 12h 
> 12h 
> 12h 
> 12h 
> 12h 
> 12h 

9.96 
27.33 
31.81 
18.23 
17.88 
38.85 
10.11 
8.84 
8.02 
0.98 
0.31 

150.36 
136.50 
96.61 
53.28 
47.00 
52.35 
18.41 
12.36 
10.46 
0.99 
0.34 

10.78 
27.58 
26.31 
10.07 
13.13 
25.06 
9.04 
5.51 
4.26 
0.74 
0.26 
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Table 3.3: Results for Fisher's data set 

k 

2 
3 
4 
5 
6 
7 
8 
9 
10 
20 
30 

Opt. sol. -

152.3479 
78.8514 
57.2284 
46.4461 
39.0399 
34.2982 
29.9889 
27.7860 
25.8340 
14.2208 
9.5552 

k 

2 
3 
4 
5 
6 
7 
8 
9 
10 
20 
30 

Opt 

CPU times (seconds) 
CGA RBBA 

18697.59 
497.55 

0.05 
2.10 

505.49 136.29 
350.25 1699.75 
584.04 > 
427.04 > 
695.37 > 
855.23 > 
628.92 > 

> 
> 

12h 

BC-tri 
166.82 
512.85 
301.12 
152.18 
141.88 

12h 1061.16 
12h 
12h 
12h 
12h 
12h 

89.92 
92.19 
76.47 

155.75 
175.87 

o/„ 
BC-all BC-hpair 

549.28 
454.70 
299.40 
237.36 
163.32 
847.93 
123.18 
88.78 
73.07 

104.91 
145.24 

169.44 
283.24 
240.19 
145.54 
147.51 
742.83 0.0 
108.73 
70.04 
59.66 
87.06 0.0 

155.52 0.1 

Table 3.4: Results for HATCO's data set 

. sol. 

600.108 
506.962 
426.602 
383.831 
344.534 
313.582 
288.601 
264.599 
241.128 
114.032 
62.992 

RBBA 
0.80 

> 12h 
> 12h 
> 12h 
> 12h 
> 12h 
> 12h 
> 12h 
> 12h 
> 12h 
> 12h 

CPU times (seconds) 
BC-tri BC-all BC-hpair 
108.79 
158.15 
85.39 
61.46 

188.49 
246.91 
377.88 
421.22 
315.99 

5.00 
2.51 

101.88 
146.19 
88.54 
80.33 

151.39 
191.20 
378.52 
381.70 
284.10 

6.07 
2.72 

69.68 
141.52 
68.00 
52.56 

145.03 
181.13 
286.67 
314.30 
217.74 

4.15 
2.35 

- % gap 

i 
i 
i 
i 

0.0 (3) 
0.1 (5) 
0.5 (11) 
0.6 (13) 
0.4 (15) 
0.0 (3) 
0.0 (5) 

gap 

! ( 7 ) 

\s) 
(23) 

Tables 1-4 suggest the following conclusions: 

• For data sets (i) and (ii), branch-and-cut algorithms are able to prove optimality of 

model (3.1) in less computing time than solving only its LP relaxation given by (3.2) 

with all 0(n3) triangular constraints. This shows the efficiency of the cutting-plane 

approach. 

• Algorithm BC-all is in most of cases outperformed by either BC-tri or BC-hpair. 

Mainly for small k, a large amount of pair inequalities are active at the LP optimal 

solution, and therefore, exploiting all of them as cutting planes is not a worthwhile 

strategy. 
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• Algorithm RBBA is particularly efficient for small values of k, while its performance 

quickly deteriorates as k increases. This is due to the fact that the number of branches 

in RBBA is 0{kn). 

• Except for one case in data sets (i-iii), algorithms BC-tri and BC-hpair always proved 

optimality in smaller CPU times than those obtained by the column generation 

algorithm of [28]. This comparison is not completely fair since their results were 

obtained in an older computing architecture. If a straightforward scale factor of 10 

(2 GHz = 10 • 200 MHz) is used for the column generation algorithm of [28], then it 

performs better than our branch-and-cut algorithms in 14 out of 27 instances. 

• Relaxation (3.2) provides very good bounds for MSSC since initial gap values are 

never larger than 0.6%. Moreover, more than 65% of the tested data sets are exactly 

solved after considering only the root node of the enumeration. This may be due to 

the inclusion of the triangle inequalities in the formulation of the problem. Grotschel 

and Wakabayashi [48] used triangular inequalities within a branch-and-cut algorithm 

for partitioning with the sum-of-cliques criterion. Such constraints appear to suffice 

in almost all of their computational tests too. 

• Computing times of the branch-and-cut algorithms does not increase as the number of 

clusters k increases. In fact, there is no evident relationship between the complexity 

of solving (3.1) and the value of k. However, performance seems to improve for large 

values of k, as shown by the results for data sets (i), (ii) and (iv). 

The tests also assessed the quality of the solutions obtained by VNS for MSSC since 

all initial upper bounds proved to be optimal. 

Table 3.5 present results for Grotschel and Holland's 202 European cities coordinates [47] 

whose value of n is the largest among data sets (i-v). Results show that BC-hpair is able 

to determine proved minimum sum-of-squares partitions when k is large, while their per­

formance deteriorates as the value of k decreases. In our tests, the algorithms were not 

able to solve instances with k < 8 in less than 12 hours. 



Table 3.5: Results for Grotschel and Holland's da ta set 

, ~. , , CPU times (seconds) m k Opt. sol. _ _ , v . '— % gap 
BC-hpair 

" 9 4376.1937 48885.38 0.2 (9) 
10 3794.4880 23680.84 0.0 (7) 
20 1523.5086 3839.77 0.1 (13) 
30 799.3109 1060.77 0.0 (13) 

Finally, note that our branch-and-cut algorithm based on solving LP relaxations of the 

0-1 SDP formulation proposed in [98] can be extended to other related clustering problems 

(e.g. normalized fc-cut minimization, balanced clustering; see [97] for details). 
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CHAPTER 4 : AN IMPROVED COLUMN GENERATION 

ALGORITHM FOR MINIMUM SUM-OF-SQUARES 

CLUSTERING 

A column generation algorithm for MSSC was given in du Merle et al. [28]. The bottleneck 

of that algorithm is the resolution of the auxiliary problem of finding a column with negative 

reduced cost. We propose in this chapter a new way to solve this auxiliary problem based 

on geometric arguments. 

4.1 Column generation algorithm revisited 

Partitioning problems in cluster analysis can be mathematically formulated by considering 

all possible clusters. Let us consider any cluster Ct for which 

1 if entity Oj belongs to cluster Ct 

0 otherwise, 

and let us denote by yt the centroid of points pi such that an = 1. Thus, the cost ct of 

cluster Ct can be written as 
n 

ct = ^\\Vi-yt\\2ait-

a>u = 
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An alternative formulation for MSSC is then given by 

min ^ ctzt 
teT 

subject to 

J2aitzt = l Vi = l , . . . ,n (4.1) 
teT 

J2zt = k 

teT 

zte{0,i} V i e T , 

where T = { l , . . . , 2 n — 1}. The zt variables are equal to 1 if cluster Ct is in the optimal 

partition and to 0 otherwise. The first set of constraints state that each entity belongs 

to one cluster, and the following constraint expresses that the optimal partition contains 

exactly k clusters. Without loss of generality, they can be replaced by 

a-itZt > 1) Vi = 1 , . . . , n, and VJ zt < k, 
teT teT 

because (i) a covering of O which is not a partition cannot be optimal, and (ii) any partition 

with less than k clusters has objective value greater or equal to the optimal partition with 

k clusters. 

This is a large set partitioning problem with a side constraint, for which the number 

of variables is exponential in the number n of entities. Therefore, it cannot be explicitly 

written and solved in a straightforward way unless n is small. The column generation 

method proposed in [28] works with a reasonably small subset T" C T of the columns in 

(4.1), i.e., with a restricted master problem. The method is combined with branch-and-

bound in order to solve exactly (4.1) for medium size (about 100-200 entities) to fairly 

large instances (1000 entities or more). 

Problem (4.1) is solved iteratively, augmenting the number of columns in the restricted 

master problem until optimality is proved with the columns at hand. Entering columns 

are found by solving an auxiliary problem, i.e., finding the list of entities of a cluster whose 

E 
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associated variable in (4.1) has negative reduced cost. Since a standard column generation 

method for solving the linear relaxation of the formulation (4.1) suffers from very slow 

convergence due to high degeneracy, two strategies for stabilizing column generation [29] 

were used and compared in [28]. That one for which the linear relaxation is solved by 

an interior-point algorithm, i.e., the weighted version of the analytic center cutting plane 

method (ACCPM) of Goffin, Haurie, and Vial [45], was found to be the best. 

Once the linear relaxation of the problem is solved, the integrality of the obtained 

solution is checked (and often found to hold for small to medium size problems with few 

clusters). Then, if the solution is not integer, branching is needed. The branching rule 

used in [28] is the standard one, due to Ryan and Foster [104], i.e., branching by imposing 

in one hand that two entities belong to the same cluster and on the other hand that at 

most one of these entities belongs to any given cluster. 

4.1.1 Auxil iary problem 

The biggest obstacle for an efficient exact resolution of the MSSC via column generation 

is the difficulty of the auxiliary problem. The dual of the formulation (4.1) is expressed by 

n 

max ka + \^ \ 
i = l 

subject to 
n 

-a + J2ait^i<ct V t € T (4.2) 
i=i 

A i > 0 Vt = l , . . . , n 

a>0, 

where the Aj for i = 1 , . . . , n and a are dual variables associated with the covering con­

straints and with the side constraint. 

Problem (4.2) is solved using a cutting plane method, starting with a relaxation and 

adding constraints as necessary. In the classical cutting plane method by Kelley [67], cuts 
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are generated at an extreme point of the relaxed dual formulation. However, Kelley's 

method is known to slow down considerably in the presence of degeneracy [29]. ACCPM 

tackles this shortcoming by generating cuts at an analytic center of the current dual feasible 

region (cf. [33]). In both cases, given dual values A, a, a violated cut is searched to be 

added to the relaxed dual problem. The violation itt of a constraint is given by 

n 

7Tt = Ct + a - y^XjClit. 

i=l 

Since we are interested in finding violated constraints, 7rt < 0. The auxiliary problem is 

then given by TT* = mint -nt. Although the enumeration of -Kt for all £ € T is too expensive, 

the value of n* can be found by solving 

n 
7 r * = C 7 + m i n „ T2(\\Pi -Vvf- Xi)vi- (4-3) 

i=l 

with yv denoting the centroid of points Pi for which Vi = 1. If ir* < 0, then the optimal 

solution v* to (4.3) is added as a cut to the relaxed dual problem (in the primal, this is 

equivalent to adding a column to the restricted master problem together with its associ­

ated primal variable). Otherwise, problem (4.2) (or equivalently, problem (4.1)) is solved 

optimally. 

From Huygens' theorem (e.g., Edwards and Cavalli-Sforza [30]), which states that the 

sum of squared distances from all entities of a given cluster to its centroid is equal to the 

sum of squared distances between pairs of entities of this cluster divided by its cardinality, 

problem (4.3) can be expressed by 

n— 1 n 

£ E \\Pi -PjfviVj 
* , i= l j=i+l v-̂ v . 

•K = a + mm > A^j 
L Vi i=l 
i=i 

n— 1 n n 
£ £ {\\Pi - Pj\\2 ~\~ ^j)ViVj - E \ v i 
i—l ?=i+l i= l , . .. 

= (7+mm . 4.4) 
j= i 
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It is a hyperbolic (or fractional) program in 0-1 variables with quadratic numerator and 

linear denominator. This problem is solved in [28] by an adaptation to binary variables of 

Dinkelbach's algorithm [24]. This algorithm begins with a tentative value for (4.4) then 

reduces the problem to unconstrained quadratic 0-1 optimization by multiplying both sizes 

by the denominator and regrouping terms. If a positive value is obtained for the optimal 

solution of this last problem its corresponding value in (4.4) is computed and the procedure 

iterated. Its most expensive step is the resolution of a sequence of unconstrained quadratic 

0-1 programs, which are solved in [28] by a VNS heuristic until optimality must be checked 

by a branch-and-bound algorithm. 

4.2 A geometric approach 

The auxiliary problem (4.3) can be viewed as minimizing the sum of functions equal to 

squared distances from the cluster center yv to each of the entities, but with a limit on 

each of the distances, after which the corresponding function does not increase anymore. 

Clearly, for a given location yVt vi is equal to 1 if \\pi — yv\\
2 < Aj, and to 0 otherwise. 

Geometrically, in the plane, this is equivalent to the condition that v\ = 1 if yv belongs to 

a disc with radius y/Xi centered at pi, and 0 otherwise. 

A branch-and-bound algorithm based on the vector v would consider implicitly all 2n 

subproblems generated by branching on binary variables v% for i = 1 , . . . , n, while adding 

constraints ||pj — y„||2 < ^i and ||pj — yv\\
2 > Aj to the resulting subproblems. However, 

the resulting problems pertain to D.C. programming and are difficult to solve. Another 

possibility is to focus on components V{ of v which are equal to 1. We then consider 

subproblems of the following type: 

min Y] \\pi - yf 

subject to (4.5) 

\\pt - y \ \ 2 < Ai vi e s, 
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where 5 C { l , 2 , . . . , n } is a non-empty set. Subproblems of type (4.5) are convex pro­

gramming problems. Proposition 1 shows that an optimal solution for (4.3) is guaranteed 

to be an optimal solution to a subproblem of type (4.5). 

Proposition 4.1. Let (y*,v*) be the optimal solution to (4-3). Then, y* is the optimal 

solution to a subproblem of type (4-5) with a set S for which \\pi — y*||2 > A, for all i £ S. 

Proof. Define S* as the index set of all points pi such that \\p% — yl\\2 < \ . Thus, for i g S*, 

\\pi — y*||2 > Aj. Now let y' be the optimal solution for (4.5) with S* and suppose that y* 

is not the optimal solution for it. Since, \\pi — y*\\2 > min{||pi — y'\\2, Aj} for all i £ S*, 

the cost of (y',v*) is smaller than that of (y*,v*) in (4.3), which is a contradiction. • 

The auxiliary problem (4.3) still has another very important property which states that 

at optimal solution (v*,v*), y* is at the centroid of points pi for which v* = 1. Given a 

subproblem of type (4.5) with index set S, this implies that if the centroid of the points 

Pi such that i € S is not a feasible solution, then we conclude that the subproblem does 

not contain the optimal solution to (4.3). In the plane, it amounts to say that the centroid 

must belong to the intersection of all discs with index i € S (which includes the particular 

case where S is a singleton). 

Let us define A as the set of discs whose boundaries intersect at least one other boundary 

of a disc in two points, and B as the set of discs that do not belong to A. They include 

isolated discs and nested discs (i.e., discs that contain other discs in their interior and discs 

that are entirely contained into other ones). An useful result is shown by the following 

proposition: 

Proposition 4.2. The number T of distinct regions which are intersection of discs \\pi — 

y\\2 < Xi is bounded by 2n(n — 1). 

Proof. The total number of points of intersection among discs in A is at most |v4.|(|A| — 1). 

Since each one of them can be associated with at most 4 different regions, and as each 
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of these regions contains at least two of these points, the number of regions TA which are 

delimited by discs in A is bounded by 2|vl|(|A| — 1). 

Each one of the discs in B can delimit at most one region. Consequently, the number 

of regions TB delimited by discs in B is equal to \B\. 

Thus, 

T = rA + rB < 2\A\(\A\ - 1) + \B\ 

< 2(\A\ + \B\)(\A\ + \B\-1) 

< 2n(n - 1) 

• 

Proposition 2 implies that the number of subproblems of type (4.5) that need to be 

solved in order to obtain an optimal solution to (4.3) is polynomially bounded. 

An algorithm was proposed in [26] for a similar problem in location theory, i.e., the 

1-center Weber problem with limited distances. The only difference between this problem 

and (4.3) lies in the fact that Euclidean distances are used instead of squared ones. The 

algorithm proceeds by considering all intersection points between discs in the plane, and 

then solves, for each one of these points, the subproblems of type (4.5) corresponding to 

the four possible regions which are adjacent to the point. For instance, suppose that p 

is an intersection point between discs centered at points pi and pj, then the four possible 

non-empty index sets corresponding to regions for which p can be a vertex are formed by: 

Sa = {i : \\pt ~ P\\2 <\i,t? i,j}; Sb = {i} U Sa; Sc = {j} U Sa; and Sd = {i,j} U Sa . 

It appears that the algorithm of [26] implicitly assumes that regions delimited by discs 

in B either do not exist or can be discarded for evaluation. However, this is not true 

either for the 1-center Weber problem with limited distances or for (4.3), which makes the 

algorithm proposed in [26] incomplete. 

Figure 4.1 exhibits an auxiliary problem configuration which appears after 11 iterations 

of our column generation algorithm while clustering the 10 points described at the top of 
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Figure 2.2 into 3 clusters. The shaded region (2) in the figure corresponds to the optimal 

solution of the auxiliary problem while region (1) is the solution provided if the algorithm 

of [26] is used instead. 

VA 

PI 
690 
166 

382.78 

P2 

190 
887 

360.47 

P3 

823 
695 

203.34 

P4 

73 
125 

379.22 

P5 
782 
979 

208.24 

P6 

338 
894 

168.79 

Pi 
287 
340 

211.61 

Ps 
410 
263 

198.70 

P9 
769 
768 

138.14 

Pio 
962 
831 

332.88 

Figure 4.1: Configuration of convex regions experimentally obtained 

Algorithm 1 below is the new algorithm obtained after adapting and completing the 

algorithm of [26] in order to consider sets S corresponding to regions delimited by discs of 

B. This algorithm requires 0(n3) time since there are 0{n2) possible intersection points 

and step 6 takes 0(n) time per subproblem. Additional operations due to steps 9-13 are 

performed in 0(n2) time. 

The following simple condition holds if two discs associated to points pi and pj intersect 

\\Pi -Pj\\ < y/\ + \/Aj, 
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1 Algorithm 1 
2 Enumerate all intersection points of pairs of discs in the plane as well as all 

the points whose associated disc does not intersect any other one. Let L\ 
and L,2 be the corresponding lists; 

3 for each point p € L\ defined by the intersection of discs centered at points 
Pi and pj do 

Find the set 5 of all k such that k / i, j and \\pk — p\\2 < A&; 
Consider four sets: S, S U {i}, S U {j}, and S U {i, j}; 
Solve subproblems of type (4.5) defined by each of these sets; 
Update the best solution if an improving one is found; 

8 end 
9 for each point q £ L2 do 

10 Find the set S' composed by q and the indices of all points associated to 
discs containing that associated to q; 

11 Solve subproblems of type (4.5) defined by each 5'; 
12 Update the best solution if an improving one is found; 
13 end 
14 return best solution found 

one disc being contained in the other if 

\\pi -Pj\\ < \V\- \ A 

Based on these conditions, an acceleration procedure for Algorithm 1 is to build for 

each point pi, i = 1 , . . . , n a list of non-decreasing distances to any other point. In step 2 

of Algorithm 1, each point pi is tested in turn with all other points pj for j = 1 , . . . , n, 

such that j > i, in order to know if their respective discs intersect. Indeed these points 

can be considered in the order given by the sorted list of pi and the search for intersections 

halted as soon as 

maxi 

where Am a x = max{Aj} for i = i + 1 , . . . , n. Note that exactly the same test can be used 

in order to speed up step 4 of the algorithm. 
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4.2.1 Branching 

The classical branching rule is applied whenever branching is needed to solve (4.1). It 

consists on finding two rows ii,i2 such that there are two columns t\ and t2 with fractional 

values at the optimum and such that a^n = a,i2tl — 1 and a;lt2 = l,aj2t2 = 0. Then, 

constraints are introduced in the auxiliary problem of both subproblems in the form (i) 

Vix = vi2 for one branch, and (ii) v^ + V{2 < 1 for the other one. Problem (4.3) in the 

presence of branching constraints can be expressed as 

n 

yvm
s,v<EBn - ^ ^ x " 

i=l 

subject to (4.6) 

Vi = Vj V(i,j)eli 

Vi + Vj<l V{i,j)el2 

where I\,I2 are the index sets of pairs of entities involved in constraints of form (i) and 

(ii), respectively. 

Algorithm 1 is not able to solve problem (4.6), since optimal solutions may now be 

associated to index sets which do not correspond directly to a region in the plane. In fact, 

Proposition 1 is no longer valid in the presence of branching constraints. A very simple 

example consists of two points pi,Pj whose discs of radius y/Xi and y/\~j do not intersect 

while a constraint states that points pi and pj must be together. In this case, none of the 

index sets S scanned by Algorithm 1 is able to provide a feasible solution to the problem. 

Fortunately, Proposition 3 below shows that Algorithm 1 can be slightly modified in 

order to solve problem (4.6) exactly. Let us first define three index sets associated with 

any vector yv 

• Si(yv) is the index set of points pj for which \\pi~ yv\\
2 < A;, and for which (i,j) G I\ 

or (i,j) € h with j € Si(yv) U S2(yv); 

• S2{yv) is the index set of points pj for which ||pi — 2/^||2 > Aj, and for which (i,j) G I\ 

with j e Si(yv); 

file:////pi~


53 

• S3(yv) is the index set of points Pi for which \\pi — yv\\
2 < Aj, and such that i ^ Si(yv). 

Proposition 4.3. Let (y%,v*) be the optimal solution of (4-6) and let v* = (v* \ i € 

Si(y*) U 62(2/^)). Then, (y%,v*) is the optimal solution of a subproblem given by 

min Yl \\Pi ~ y\\2yi + H \\Pi ~ V^ 
ieS1US2 i€5 3 

subject to 

\\pi - y \ \ \ < Aj 

\\Pi - y\\2 < Ai 

^ e { 0 , l } 

y e R s 

with sets Si, S2, S3 C { 1 , . . . , n} and where X is the polyhedron of branching constraints. 

Proof. From the definition of Si{y*), S2(y*) and S3(y*), \\pi - y*\\ > Aj for all i £ Si(y*)l> 

S2(y*)uS3(y*). 

Now let (y(,,v') be the optimal solution to (4.7) regarding Si = Si(y*), S2 = S2(y*) 

and S3 = ^ (y*) , and suppose that the optimal solution of (4.6) (y*,v*) is not optimal for 

(4.7). Then, we can construct v' as: 

. v'i = v'iyieSiUS2; 

. ^ = l , V i e 5 3 ; 

• v[ = 0, otherwise; 

such that the cost of (y'v,v') is smaller than that of (y*,v*) in (4.6), which is a contradiction. 

• 

The importance of Proposition 3 lies in the fact that, given the optimal y*, the optimal 

subproblem of type (4.7) with sets Si = Si(y*),S2 = S2(y*) and S3 = S^y*) is by 

V i e Si 

Vi e S3 (4.7) 

V e Si u S2 
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definition associated to the region in the plane originated from the intersection of discs 

\\Pi ~~ Vv\\2 — ^i- This fact implies that the number of subproblems of type (4.7) which 

need to be considered in order to solve (4.6) is polynomially bounded. However, (4.7) is a 

problem with binary variables for which an enumeration method of resolution is needed. 

Algorithm 1 can be modified to solve subproblems of type (4.7). For each region in the 

plane, sets Si, S2 and S3 are determined to form a subproblem of type (4.7) (remark that 

any location y in a given region of the plane defines the same sets Si(y), S2^y) and 53(1/)). 

Then, the subproblem is solved by a branch-and-bound procedure. Note that whenever 

Si,S2 = 0, subproblem (4.7) turns out to be equivalent to subproblem (4.5), and therefore, 

enumeration is not needed. 

Decisions in the branch-and-bound algorithm are made by presence-absence dichotomy 

on variables vi, for Vi € Si U52- Lower bounds are calculated in each node as the difference 

of two values: 

1. the cost of the node solution, which is calculated with respect to the centroid of 

points pi for which decision Vi = 1 is fixed; 

2. the sum of the prices Aj of the free variables Uj. 

When (4.6) contains a few branching constraints, sets Si and S2 have small cardinality 

by definition. So, the given branch-and-bound method to solve (4.7) performs very well in 

practice. 

R E M A R K : In the presence of a larger number of branching rules, solving (4.7) becomes 

a more difficult task. To this purpose, we note that (4.7) can be reformulated exactly (in 

the sense of [76]) by introducing parameters: 

Mi > max \\pi - pj ||2 Vi e Si U S2, 
i 

decision variables: 

Wi€[0,Mi] V i e S i U S 2 , 
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and constraints: 

\\Pi ~ yf < W + (1 - Vi)Mi Vi € Si U S2 

to (4.7). We then replace constraints \\pi — y\\2vi < Aj Vi € Si by 

| |P i -2 / | | 2 <A i + ( l - ^ ) M , Vie Si, 

and the terms \\pi — y\\2Vi for i G Si U S2 in the objective function by Wj. We thus obtain 

the reformulated problem: 

min J^ uji + Y^ \\Pi ~ yf 
ieSiUS2 ies3 

subject to 

| |Pi-S/ | | 2<Ai + ( l - i ;OMi Vie Si 

\\Pi - y\? < wi + (1 - Vi)Mi VieSiUS2 

\\Pi ~y\\2< Ai Vi G S3 (4.8) 

^ G { 0 , 1 } VieSiUS2 

veX 

yeRs 

coi € [0, Mi] VieSiU S2 

which is a convex MINLP, for which there exist practically efficient algorithms (e.g. [9, 74]). 

We also remark that its continuous relaxation is a continuous NLP which can be solved in 

polynomial time [121]. 

Finally, note that Algorithm 1 can be used without modifications to provide approxi­

mate solutions to (4.6). This can be done up to the moment that the exact resolution of 

(4.6) is required to prove that (4.1) was in fact optimally solved. 
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4.3 Generalization to the Euclidean space 

Let us consider a graph G — (N, E) for which there is a node n, G iV corresponding to 

each point pi, for i = 1 , . . . , n. Besides, an edge e^ exists in G if and only if 

\\Pi -Pj\\ < VAi + ^Xj, 

i.e., eij G E if and only if the hyperspheres centered at pi and pj with radius \/Xi and \/Aj 

intersect. 

The following result allows us to generalize the geometric approach in the plane by 

considering the intersection graph of hyperspheres centered at the points pi, for i = 1 , . . . , n. 

Proposition 4.4. / / a solution (y*,v*) is optimal to (4-3) then the elements of the set 

N* = {rii\v* = 1} form a clique in G. 

Proof. Let us suppose that (y*, v*) is the optimal solution of (4.3) and that the elements of 

N* do not form a clique in G. Hence, there are two nodes rn, nj in N* for which e^ ^ E, 

i.e., the hyperspheres centered at p^ and pj with radius \J~X~i and yfXj do not intersect. In 

such a case, y* is certainly located outside at least one of these hyperspheres. Suppose 

\\Pi ~ Vv\\ > \/Ai, then a reduction in the cost of the solution is obtained by setting v* = 0, 

which contradicts the optimality of (y*,v*). • 

The number of distinct regions resulting from the intersection of hyperspheres is not 

polynomially bounded in n only. However, Proposition 4 allows to better exploit (4.4) 

above. Indeed it can be written as 

ra—1 n n 

£ E (4 - A* - Xi)ViVi ~ E XiVi 
1=1 7=1+1 1=1 

a + mm . 
Vie{o,i} n T,Vi 

file:///J~X~i
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where d^ represents the Euclidean distance between the entities associated to variables vt 

and Vj. Coefficients df, — \ — Xj of the product v\Vj can be made arbitrarily large in (4.4) 

if dij > y/\i + y/\~j due to Preposition 4, since Vi = Vj = 1 does not occur in the optimal 

solution. 

4.3.1 Branching 

As proposed in [28], branching constraints of type V{ — Vj can be added to the auxiliary 

problem (4.4) by reducing by one the number of its variables and updating coefficients 

accordingly. In the case of branching constraints of type v^ + VJ < 1, it suffices to set 

coefficient d?- — Aj — Xj to an arbitrary large value. Thus, the auxiliary problem is expressed 

by 

n' — l n' n! 

T, Y, (dh/~ wj'h' - Wi'Xj^Vi'Vj, - Yl (vJi'Xi> -d-l^Vi' 

(7+ mm , (4.9) 
vt,e{o,i} «; 

L wi'vi' 
i'=l 

where Wi' is the number of variables merged in variable vy. Note that the form of the 

auxiliary problem is not changed. It is still a fractional program in 0-1 variables with 

quadratic numerator and linear denominator. 

An observation must be made when setting coefficients based on the intersection graph 

of hyperspheres in the presence of branching constraints of type Vi = Vj. Suppose entities 

Oi and Oj for which there is a constraint stating that Vi = Vj. Consequently, variables v$ 

and Vj are merged together in a single variable vy of (4.9). Let us consider now v^ the 

variable associated to entity o^, then coefficient df,k, — Aj/ — 2A/-' is set to an arbitrary large 

value in (4.9) only if 

dik > v Aj + v Afc and djk > \/Xj + y A&, 

i.e., only if 

di'k > v \ + v ^ i + 2yA/c. 
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This can be generalized to any pair of variables Vi>,Vji. Let us consider //$/ and \xy the 

index set of variables merged at variables vy and l y , respectively. Thus, if 

di'ji > Wj> 2_, V A + wi' 2_/ V^. 
iefit, 

then d?, •, — Wj>Xi> — w^Xy can be set to an arbitrary large value in (4.9). 

4.3.2 Solving by cliques 

Moreover, Proposition 4 permits to exactly solve the auxiliary problem by directly search­

ing for cliques in G. Algorithm 2 presents the steps to compute the optimal solution to 

(4.9) from the intersection graph of hyperspheres G = (N, E). 

1 Algor i thm 2 
2 while G is not empty do 
3 Find a vertex n» with smallest degree in G; 
4 Consider Gl = (Nl,El) the subgraph composed by n, and its adjacent 

vertices; 
5 Solve (4.9) for variables ve such that ne € Gl; 
6 Save the clique obtained if it is the best found so far; 
7 Remove rij and its adjacent edges from G; 
8 end 
9 r e t u r n best clique found 

Clearly, Algorithm 2 is more efficient for sparse graphs G than for dense ones as sub-

problems (4.9) solved in (c) tend to have less variables Indeed, the sparsity of G depends 

on the dual values A, which tends to decrease with the number of clusters. This is due to 

the fact that when k is large, entities are likely to be close to their second-closest centroids 

in the optimal solution. Consequently, a second copy of an entity has little impact on the 

objective function value which means that the values A of the dual variables are small. 

4.4 Computational results 

Computational experiments were performed on a AMD 64 bits platform with a 2 GHz 

clock and 10 Gigabytes of RAM memory. The algorithms were implemented in C + + and 
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compiled by gcc 3.4. Unconstrained 0-1 quadratic programs are solved by a specialized 

algorithm proposed in [54] which was observed to perform better than CPLEX 10.1 for 

that purpose. Eleven real-world data sets were used in our numerical experiments. They 

are briefly listed in Table 4.1 together with references to where more information about 

them can be found. 

Table 4.1: List of data sets 

Data sets n s 
Ruspini's data [103] 
Grotschel and Holland's 202 cities coordinates [47] 
Grotschel and Holland's 666 cities coordinates [47] 
Reinelt's hole-drilling data [102] 
Padberg and Rinaldi's hole-drilling data [94] 
Fisher's Iris [5] 
Glass identification [5] 
Body measurements1 [60] 
Telugu Indian vowel sounds [95] 
Concrete compressive strength [5, 129] 
Image segmentation [5] 

75 
202 
666 
1060 
2392 
150 
214 
507 
871 
1030 
2310 

2 
2 
2 
2 
2 
4 
9 
5 
3 
8 
19 

the attributes used are: weight, height, chest girth, waist girth and hip girth 

For all experiments reported here, initial upper bound solutions are obtained by j -

means [55]. They are used to add initial cuts to (4.2), as well as to estimate initial dual 

bounds which may be adjusted throughout execution if necessary. Lower and upper bounds 

for dual variables A can be estimated from any given upper bound solution UB. For each 

dual variable Aj, for i = 1 , . . . , n, a lower bound value Ibi is estimated by calculating the 

cost variation in UB caused by omitting entity Oj from its associated cluster in UB. The 

estimation of an upper bound value ubi is done by calculating the cost variation in UB 

caused by assigning entity 0{ to its second-closest centroid. These estimations are exact 

whenever UB is the optimal solution and no integrality gap exists (cf. [28]). 

4.4.1 Results in the plane 

In this subsection we compare the column generation of [28], denoted accpm-vns-qp, with 

two improved ones, i.e., (i) accpm-al which uses Algorithm 1 to exactly solve all auxiliary 

problems, and (ii) accpm-vns-al which uses heuristic VNS to provide approximate solutions 
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to auxiliary problems until optimality must be proved by Algorithm 1. The VNS heuristic 

used by algorithms accpm-vns-qp and accpm-vns-al is set to run for one iteration, i.e., it 

reaches the largest neighborhood only once. Note that it is not worthwhile to use VNS for 

many iterations since Algorithm 1 is polynomially bounded in 0(n3). 

The results are also compared to those of two other methods proposed in the literature, 

i.e., the repetitive branch-and-bound algorithm (rbba) of Brusco [12] and the best branch-

and-cut SDP-based algorithm (bb-sdp) of [2]. 

Tables 2-7 show results for data sets in the plane. They present in the first column the 

number k of clusters, and optimal solution values /o p t are reported in the second column. 

The values associated to each algorithm refer to their respective CPU times (in seconds) 

spent on solving exactly the instance. Finally, a last column is included to present gap 

values between upper and lower bounds obtained at the root node, denoted UB° and LB0 

respectively, which are calculated as (UB° — LB°)/LB°. The letter 'i' indicates that no 

initial gap exists, i.e., the problem is already solved by the accpm algorithms at the root 

node, without branching. Otherwise, the number of branch-and-bound nodes is given in 

parenthesis. 

Table 4.2 shows that all methods perform well or very well for Ruspini's data set with 

n = 75 entities. Algorithm rbba is particularly efficient for small values of k, while its 

performance quickly deteriorates as k increases. This is due to the fact that the number of 

branches in RBBA is 0(kn). For k > 5, algorithms accpm-al and accpm-vns-al are always 

faster than the other methods. 

Table 4.2: Results for Ruspini data set with 75 entities 

k 
2 
3 
4 
5 
6 
7 
8 
9 
10 

J opt 

0.893378e+05 
0.510634e+05 
0.128810e+05 
0.101267e+05 
0.857541e+04 
0.712620e+04 
0.614964e+04 
0.518165e+04 
0.444628e+04 

rbba 
0.01 
0.28 
0.01 
0.17 

21.97 
181.90 

2921.93 
> lh 
> lh 

bb-sdp 
3.56 
8.34 
0.48 
0.57 
1.03 
0.98 
7.27 
2.87 
2.39 

accpm-vns-qp 
0.55 
0.57 
0.53 
0.59 
0.91 
1.12 
1.04 
1.20 
1.17 

accpm-vns-al 
0.24 
0.20 
0.14 
0.16 
0.27 
0.28 
0.44 
0.30 
0.26 

accpm-al 
0.39 
0.42 
0.07 
0.10 
0.18 
0.18 
0.23 
0.17 
0.12 

gap(%) 

0.01(3) 
i 
i 



61 

Table 4.3 presents results obtained in less than 12 hours of CPU time for the Grotschel 

and Holand's data set with n = 202. Algorithm rbba is not able to solve even the problem 

with k = 2 clusters in less than 12 hours. So, we do not refer to its results in the subsequent 

tables. As empirically observed in [2], the performance of algorithm bb-sdp improves as 

k increases, in contrast with algorithm rbba. It is unable to solve problems for k < 8 in 

less than 12 hours. It also appears that it is better to approximately solve the auxiliary 

problems by VNS up to k = 15. For k > 20, the sparsity of the discs in the plane, which 

is implied by small dual values, makes Algorithm 1 more efficient than VNS to solve the 

auxiliary problems. So, algorithm accpm-al performs better than accpm-vns-al for these 

values of k. The sparsity effect also appears to be advantageous to the unconstrained 

0-1 quadratic programming solver since the algorithm is faster for instances with larger 

number of clusters. 

Table 4.3: Results for Grotschel and Holland's data set with 202 entities 

k 
2 
3 
4 
5 
6 
7 
8 
9 
10 
15 
20 
25 
30 

J opt 

0.234374e+05 
0.153274e+05 
0.114556e+05 
0.889490e+04 
0.676488e+04 
0.581757e+04 
0.500610e+04 
0.437619e+04 
0.379249e+04 
0.232008e+04 
0.152351e+04 
0.108556e+04 
0.79931 le+03 

bb-sdp 
> 12h 
> 12h 
> 12h 
> 12h 
> 12h 
> 12h 
> 12h 

48885.38 
23680.84 
39756.23 
3839.77 
1915.05 
1060.77 

accpm-vns-qp 
> 12h 
> 12h 
> 12h 
> 12h 
> 12h 
> 12h 

1526.63 
1334.06 
496.85 
41.49 
59.90 
33.95 
27.03 

accpm-vns-al 
19.85 
19.64 
21.87 
15.62 
26.33 
33.79 
48.80 
33.79 
16.42 
18.43 
18.87 
18.24 
17.78 

accpm-al 
61.54 
79.65 
82.89 
63.95 
69.97 
85.56 
65.56 
47.87 
35.84 
30.71 
17.75 
11.05 
5.96 

gap(%) 

Regarding the results for the Grotschel and Holland's data set with n = 666 entities 

presented in Table 4.4, a CPU time limit of 1 day was established, which proved not to be 

enough for algorithms bb-sdp and accpm-vns-qp. Therefore, the results of these algorithms 

will not be reported from now on since they demand too much time to exactly solve 

instances of the largest data sets. Table 4.4 shows that algorithm accpm-al is faster than 

accpm-vns-al from k > 4. 
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Table 4.4: Results for Grotschel and Holland's data set with 666 entities 

k 
2 
3 
4 
5 
6 
7 
8 
9 
10 
20 
50 

Jopt 

1.754012e + 06 
0.772707e + 06 
0.613995e + 06 
0.485088e + 06 
0.382676e + 06 
0.323283e + 06 
0.285925e + 06 
0.250989e + 06 
0.224183e + 06 
0.106276e + 06 
0.351795e + 05 

accpm-vns-al 
1179.68 
1525.10 
3585.39 
3277.55 
3162.39 
3082.65 
4314.00 
4134.31 
3131.41 
10504.30 
6161.84 

accpm-al 
2723.48 
1758.92 
3290.45 
2410.83 
1909.23 
1909.49 
2469.90 
2162.06 
2108.38 
4819.84 
447.48 

gap(%) 
i 
i 
i 
i 
i 
i 
i 
i 
i 

0.00(3) 
i 

The results in Table 4.5 show that accpm-al is faster than accpm-vns-al from k > 7. 

The algorithms appear to be scalable for larger values of k due to increasing sparsity of 

discs in the auxiliary problems. It is worthwhile to mention that some of the state-of-art 

heuristics proposed in [15, 55, 72, 73, 92, 115] did not report the optimal solutions found 

here for the Reinelt's drilling data set with n — 1060 entities and k = 120,150. To the best 

of our knowledge, this is the first time that such solutions are reported in the literature. 

Table 4.5: Results for Reinelt's drilling data set with 1060 entities 

k 
2 
3 
4 
5 
6 
7 
8 
9 
10 
100 
110 
120 
130 
140 
150 
200 

J opt 
0.983195e+10 
0.670578e+10 
0.475197e+10 
0.379100e+10 
0.317701e+10 
0.270386e+10 
0.226315e+10 
0.198104e+10 
0.175484e+10 
0.963178e + 08 
0.848396e + 08 
0.755366e + 08 
0.675542e + 08 
0.611196e + 08 
0.559082e + 08 
0.361572e + 08 

accpm-vns-al 
7417.92 
17897.19 
13429.61 
15966.45 
15128.71 
39966.71 
24863.21 
21810.90 
349793.97 
17017.10 
14930.74 
8165.25 
8296.29 
13886.32 
4998.90 
4234.54 

accpm-al 
13657.78 
30016.73 
26921.27 
26049.23 
19970.91 
22289.93 
19942.57 
16438.40 
56625.07 
496.85 
373.54 
393.21 
301.77 
299.75 
292.37 
229.74 

gap(%) 
i 
i 
i 
i 
i 
i 
i 
i 

0.01(3) 
i 
i 
i 
i 
i 
i 
i 
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Finally, algorithms accpm-vns-al and accpm-al were tested for Padberg and Rinaldi's 

data set with n = 2392 entities. From the geometric interpretation of the auxiliary problem 

corroborated by the results presented in the previous tables, we concluded that algorithm 

accpm-vns-al is the most efficient one for instances with a small number of clusters. There­

fore, Table 4.6 presents only the results of accpm-vns-al for 2 < k < 10. Note that these 

instances require a lot of computing time to be exactly solved (e.g. more than one week 

was necessary to solve the instance with k — 9). 

Table 4.6: Results for Padberg and Rinaldi's data set with 2392 entities for 2 < k < 10 

k 
2 
3 
4 
5 
6 
7 
8 
9 
10 

Jopt 
0.296723e+ll 
0.212012e+ll 
0.141184e+ll 
0.115842e+ll 
0.948900e + 10 
0.818180e+10 
0.701338e+10 
0.614600e+10 
0.532491e+10 

accpm-vns-al 
180581.30 
393564.16 
298724.00 
416314.64 
218403.68 
565361.77 
482525.96 
663595.15 
478613.29 

gaP(%) 

Table 4.7 presents the results obtained by algorithm accpm-al for the Padberg and 

Rinaldi's data set with n = 2392 entities using large values of k. For these instances, 

approximately 3-5% of the total computing time is spent solving the auxiliary problems, 

revealing that at this point (« 2000 entities) the resolution of the restricted master problem 

by ACCPM is the most expensive step of the algorithm. Note that the largest CPU time 

reported in Table 4.7 is of approximately 29 hours for k = 150. 

Table 4.7: Results for Padberg and Rinaldi's data set with 2392 entities for large values of 
k 

k 
100 
150 
200 
250 
300 
350 
400 

J opt 

0.404498e + 09 
0.245685e + 09 
0.175431e + 09 
0.132352e + 09 
0.101568e + 09 
0.804783e + 08 
0.657989e + 08 

accpm-al 
21528.56 
105852.43 
18918.16 
16460.46 
35939.04 
8131.32 
9336.05 

gap(%) 
i 

0.01(7) 
i 
i 

0.00(3) 
i 
i 



64 

4.4.2 Results in general Euclidean space 

Two other algorithms were implemented in order to check the computational effect of the 

geometric arguments in general Euclidean space. They are: (i) accpm-vns-qp+, which 

is similar to accpm-vns-qp proposed in [28] except that some coefficients are modified 

to arbitrarily large values in the auxiliary problem following the geometrical arguments 

presented in Section 4.3, and (ii) accpm-vns-a2, which uses one iteration of VNS to obtain 

approximate solutions to auxiliary problems until optimality is certified by Algorithm 2. 

Table 4.8 shows CPU times spent by the different algorithms in order to solve exactly 

instances of the Fisher's Iris data set with n = 150 entities in s = 4 dimensions. The results 

shows that again rbba is very efficient for small number of clusters, though its performance 

deteriorates very fast as k increases. Moreover, except for k = 2, algorithm accpm-vns-qp+ 

performs better than accpm-vns-qp. Finally, since the auxiliary problems are small for this 

data set (n = 150), Algorithm 2 is not very advantageous for solving them. In fact, for 

the instance with k = 2, algorithm accpm-vns-a2 is much less efficient than the others. 

Table 4.8: Results for Fisher's Iris with 150 entities in 4 dimensions 

k 
2 
3 
4 
5 
6 
7 
8 
9 
10 

J opt 

0.152348e+03 
0.788514e+02 
0.572285e+02 
0.464462e+02 
0.390400e+02 
0.342982e+02 
0.299889e+02 
0.277861e+02 
0.25834e+02 

rbba 
0.05 
2.10 

136.29 
1699.75 

> 12h 
> 12h 
> 12h 
> 12h 
> 12h 

bb-sdp 
169.44 
283.24 
240.19 
145.54 
147.51 
742.83 
108.73 
70.04 
59.66 

accpm-vns-qp 
251.04 

83.09 
138.85 
42.00 
15.50 
10.50 
7.82 
6.44 
8.51 

accpm-vns-qp+ 
486.62 

19.88 
32.71 
6.52 

11.70 
7.83 
6.41 
6.11 
8.38 

accpm-vns-a2 
1958.06 

19.55 
17.22 
8.80 

10.47 
6.65 
6.74 
7.48 
9.03 

gap(%) 

L 

L 

i 

The results in Table 4.9 give CPU times spent on solving exactly instances of the Glass 

identification data set with n = 214 in s = 9 dimensions. We notice that instances with 

k < 10 cannot be solved in less than 1 day of computation. In particular, algorithm rbba 

takes more than 1 day to solve even its most favorable case with k — 2. Therefore, the 

next tables will not refer to its results. Likewise, results of algorithm bb-sdp will not be 

reported in the following tables since it is clearly outperformed by ACCPM algorithms. 
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Table 4.9: Results for the Glass identification data set with 214 entities in 9 dimensions 

k 
15 
20 
25 
30 
35 
40 
45 
50 

Jopt 

0.155766e+03 
0.114646e+03 
0.842515e+02 
0.632478e+02 
0.492386e+02 
0.394983e+02 
0.320395e+02 
0.267675e+02 

bb-sdp 
> 1 day 
> 1 day 
> 1 day 

49831.18 
25629.86 

6272.84 
17437.27 
10032.09 

accpm-vns-qp 
> 1 day 
> 1 day 
> 1 day 

269.36 
22.60 
27.87 
43.27 
21.69 

accpm-vns-qp+ 
37714.82 
30065.43 
24568.26 

52.80 
16.33 
16.85 
29.37 
20.51 

accpm-vns-a2 
7983.52 

13365.79 
19011.65 

39.50 
18.87 
18.32 
32.21 
21.46 

gap(%) 
i 

0.02(3) 
0.00(3) 

i 
i 
i 

0.00(3) 
i 

From the results on Table 4.9, algorithm accpm-vns-qp+ outperforms accpm-vns-qp in all 

tested instances. Since this is also true for the computational experiments on the other 

data sets, we will not report the results of accpm-vns-qp from now on. This fact confirms 

the benefits derived from the geometric interpretation of the auxiliary problem. Moreover, 

algorithm accpm-vns-a2 was more efficient than accpm-vns-qp+ for the instances with the 

most difficult auxiliary problems (i.e., 15 < k < 30), showing that solving (4.9) by isolating 

cliques is a good strategy in these cases. 

Taking into account the increasing computing times spent by VNS as the value of n 

increases, one may ask if it would not be better to solve exactly the auxiliary problems 

at each iteration of ACCPM. In order to answer this question, two other algorithms are 

considered for comparison in Tables 4.10, 4.11, 4.12. They differ only in the way that 

auxiliary problems are dealt with. While accpm-qp+ always uses Dinkelbach's algorithm 

to solve the auxiliary problems, accpm-a2 uses Algorithm 2 instead, i.e., using Dinkelbach's 

algorithm on each clique. 

Table 4.10: Results for the Body measurements data set with 507 entities in 5 dimensions 

k 
30 
40 
50 
60 
70 
80 

J opt 

0.195299e+05 
0.162318e+05 
0.139547e+05 
0.121826e+05 
0.107869e+05 
0.964873e+04 

accpm-vns-qp+ 
79819.81 
3981.92 

26991.10 
2847.94 
2606.16 
5565.30 

accpm-qp+ 
> 2 days 
25196.16 
> 2 days 

3284.43 
2421.93 
5026.03 

accpm-vns-a2 
12433.74 
3954.62 

22945.66 
2242.53 
2534.06 
6191.68 

accpm-a2 
> 2 days 
13396.05 
67178.35 

1860.72 
1329.71 
2705.14 

gap(%) 
0.00(3) 
0.00(3) 

0.04(11) 
0.00(3) 
0.00(3) 
0.01(5) 
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From Table 4.10, we notice that the algorithms that solve auxiliary problems by cliques 

(i.e., accpm-vns-a2 and accpm-a2) perform usually better than their counterparts that solve 

the auxiliary problems by considering the whole intersection graph of hyperspheres (accpm-

vns-qp+ and accpm-qp+, respectively). In particular accpm-a2 is the best algorithm from 

k > 60. The same conclusions can be extended to Tables 4.11 and 4.12, except that for 

these larger data sets accpm-a2 is very often the best algorithm for the instances that can 

be exactly solved within a CPU time limit of 2 days. 

Table 4.11: Results for the Telugu Indian vowel sounds data set with 871 entities in 3 
dimensions 

A; 
40 
50 
60 
70 
80 
90 
100 

Jopt 

0.636653e+07 
0.524020e+07 
0.442262e+07 
0.375286e+07 
0.324801e+07 
0.285069e+07 
0.251058e+07 

accpm-vns-qp+ 
26059.64 
5070.60 

> 2 days 
7439.66 
2538.37 
2227.94 
5717.78 

accpm-qp+ 
83537.53 
14304.07 
> 2 days 

8853.31 
2320.29 
1929.68 
1606.62 

accpm-vns-a2 
10232.80 
4314.11 

> 2 days 
6524.48 
2389.09 
1980.14 
5054.39 

accpm-a2 
8209.48 
2450.54 

107905.07 
1726.57 
323.95 
282.73 
195.53 

gap(%) 
i 
i 

0.10(21) 
0.00(3) 

i 
i 

0.00(3) 

Table 4.12: Results for the Concrete compressive strength data set with 1030 entities in 9 
dimensions 

k 
60 
70 
80 
90 
100 
110 
120 

Jopt 

0.288107e+07 
0.247893e+07 
0.215791e+07 
0.189364e+07 
0.168778e+07 
0.151334e+07 
0.136737e+07 

accpm-vns-qp+ 
> 2 days 
32524.80 

5622.55 
> 2 days 

3330.97 
2950.36 
3883.50 

accpm-qp+ 
> 2 days 
33373.40 

7538.82 
> 2 days 

3530.60 
2465.40 
2754.42 

accpm-vns-a2 
93018.98 

8671.61 
5717.15 

64518.66 
3773.60 
2714.67 
3835.67 

accpm-a2 
114291.96 

2825.70 
1405.62 

88849.78 
380.75 
301.46 
310.24 

gap(%) 
i 
i 
i 

0.01(7) 
i 
i 
i 

We have still obtained results for a larger data set consisting of 2310 entities in 19 

dimensions taken from [5] by means of algorithm accpm-a2. The results presented in 

Table 4.13 shows that instances with a ratio of n/k RS 10 can be exactly solved in a 

reasonable amount of time by the column generation algorithm, which is a new record for 

benchmark data sets of this magnitude (n = 2310) and this dimension (s = 19). 
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Table 4.13: Results for the Image segmentation data set with 2310 entities in 19 dimensions 

k 
230 
250 
300 
350 
400 
450 
500 

J opt 

0.463938e+06 
0.421018e+06 
0.338072e+06 
0.276957e+06 
0.230310e+06 
0.195101e+06 
0.157153e+06 

accpm-a2 
16717.39 
10864.30 
25693.02 

7036.09 
99554.55 
66655.32 
36772.86 

gap(%) 
i 
i 

0.00(3) 
i 

0.00(11) 
0.00(7) 
0.01(5) 

4.4.3 Comparison of approaches in the plane and in general Euclidean 

space 

Finally, we compare our approach in the plane with that tailored for problems in general 

Euclidean space. Since the superiority of the approach in the plane for a small number of 

clusters is obvious, we decided to focus this comparison on instances with large values of k. 

The best algorithm regarding each one of the approaches is then selected for comparison, 

i.e., accpm-al from the class of algorithms which tackles exclusively instances in the plane 

and accpm-a2 from the class of algorithm dealing with instances in general Euclidean space. 

In the graph of Figure 4.2, we plot the percentage of CPU time spent by algorithm 

accpm-a2 in excess of the CPU time spent by algorithm accpm-al when solving different 

instances of the Reinelt's planar data set with 1060 entities. 

From the graph, we notice that accpm-al tends to be increasingly better than accpm-a2 

as k augments, though the computing times are smaller for instances with a large number 

of clusters. 

4.5 Conclusions 

MSSC is a central problem in cluster analysis. Numerous heuristics as well as a variety of 

exact algorithms have been proposed for its solution. These last ones include the column 

generation algorithm of du Merle et al. [28] which is the point of departure of this chapter. 

The bottleneck step of that algorithm appeared within the auxiliary problem and was 
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Figure 4.2: Percentage of CPU time spent by algorithm accpm-a2 in excess of the CPU 
time spent by algorithm accpm-al for instances of the Reinelt's planar data set with 1060 
entities 

the solution of unconstrained 0-1 quadratic programs. Based on geometric reasoning, 

a different and more efficient way of solving this auxiliary problem is proposed in this 

chapter. It exploits systematically the property that far apart points will not belong to 

the same cluster. This property is made precise by proving that it is the case when their 

mutual distance exceeds the sum of square roots of the corresponding dual variables at the 

current iteration. Geometrically, solutions in the plane correspond to a quadratic number 

of regions which are determined by a 0(n2) algorithm. This leads to solution of the 

auxiliary problem in 0(n3), at least when there is little branching in the master problem 

which appears to be most often the case. Finding all similar regions in a higher dimensional 

space would be time consuming. However, the way to solve the auxiliary problem can still 

be improved by replacing by a large value coefficients in the unconstrained 0-1 quadratic 

programs corresponding to far apart entities. This has led to substantially increase the size 

of instances solved exactly. In the plane, instances with n up to 2392 entities and k > 2 

have been solved exactly, most of them for the first time. The increase in the size of the 

instances exactly solved has thus been multiplied by more than 10. In general Euclidean 

space problems with up to n = 2310 and k = 230 clusters in 19 dimensions have been 
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solved. However, it appears that the number of entities per cluster should be small, i.e. 

n/k roughly equal to 10, in order to solve such instances in reasonable time. 
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MSSC consists in, given a set of n entities associated with points in s-dimensional Euclidean 

space, partitioning this set into clusters in such a way that the sum of squared distances 

from each entity to the centroid of its cluster is minimum. This much studied problem is 

a basic one in cluster analysis and has applications in numerous and diverse fields. 

Many heuristics algorithms for MSSC have been and continue to be regularly proposed. 

Exact solution methods are rare but a variety of approaches have been explored. 

The aim of this thesis is twofold: on the one hand to assess the state of the art concerning 

exact solution methods for MSSC and on the other hand to improve as much as possible 

these methods. 

A first chapter concerns complexity analysis of MSSC, a topic in which there seems to 

have been much confusion. We note indeed that several dozen paper have made incorrect 

or unjustified statements about NP-hardness of MSSC, usually confusing it with some 

other clustering problem. Recently, a proof was proposed by Drineas et al. in Machine 

Learning, 2004 [27]. Unfortunately, as shown in that chapter, this proof is not correct. We 

next provide, with A. Deshpande and P. Popat, a new proof of NP-hardness of MSSC in 

general Euclidean space, exploiting a reduction from the densest cut problem. 

The remaining three chapters consider several of the main approaches to exact solution 

of MSSC. 

In chapter 2 we study a recent paper of Sherali and Desai in Journal of Global Opti­

mization, 2005 [108]. In this paper, they apply the reformulation-linearization technique 

(RLT) of Sherali and Adams [107] in order to get precise bounds for a branch-and-bound 

algorithm. These authors claim to have solved large instances, i.e., problems with up 

n = 1,000 entities in s = 8 dimensions. We attempted to reproduce these results without 

success. To that effect we wrote an implementation of the Sherali and Desai algorithm 

following as closely as possible the description given in their paper. Moreover, we used 

CPLEX to solve their basic model directly. We then considered small instances of MSSC 
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obtained by selecting a subset of the 150 Fisher's Iris data [36]. We observed that comput­

ing times spent for solution with our implementation were already large (i.e., more than 6 

hours on a Pentium IV 2 GHz) for a data set with only 20 entities. We discussed by email 

with both Sherali and Desai possible causes for this vast discrepancy between their results 

and ours. "Unfortunately, he [Jitamitra Desai] appears to have deleted his codes and data 

sets" [106]. The most likely explanation seems to be that the test problems used by Sherali 

and Desai were very easy to solve (i.e., that the clusters were very well separated). 

In chapter 3, we studied the work of Peng and Xia [98] on a 0-1 semidefinite program­

ming (0-1 SDP) reformulation of MSSC. Instead of directly applying SDP, these authors 

consider a formulation in which the constraint Z >z 0 is replaced by idempotency Z = Z2 

and symmetry Z = ZT. In this model, all eigenvalues of Z are equal to either 0 or 1. On 

this basis, Xia and Peng provided a reformulation of MSSC. They then proved important 

properties of the relaxation obtained by relaxing the constraints Z ~ Z2. Namely, they 

proved that the following inequalities would be satisfied in any solution of their formulation: 

Zij < Za Vi,j (pair inequalities) 

Zij + Ztf < Zu + Zjg Vi,j,t (triangular inequalities). 

However, in view of the rapid increase in size of this set of constraints, Peng and Xia 

[98] only sketched an algorithm. We developed a branch-and-cut algorithm following those 

lines but adding only sets of violated constraints. Computational experiments showed that 

this algorithm was competitive with the previously best ones, i.e., the column generation 

algorithm of du Merle et al. [28] and repetitive branch-and-bound of Brusco [12]. Specifi­

cally, the 0-1 SDP branch-and-cut algorithm can solve instances with n = 202 and k = 9 

in the plane in less than 12 hours. 

Chapter 4 is devoted to the column generation approach of du Merle et al. [28] and 

its improvements. This algorithm exploits the ACCPM (Analytical Center Cutting Plane 

Method) of Goffin, Haurie and Vial [45] to solve the master problem. The auxiliary problem 

turns out to be a hyperbolic program in 0-1 variables which can be reduced to a sequence 
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of unconstrained 0-1 quadratic problems. These last ones are the bottleneck of the whole 

procedure. Despite some progress, it is still difficult to solve such problems with 100% dense 

matrices and more than 200 entities. Therefore, we propose a different approach to the 

solution of the auxiliary problem. Essentially, it makes precise and exploits systematically 

the property that two far apart entities cannot belong both to the same cluster. It is based 

on geometric arguments and an analogy with the 1-center Weber problem with maximum 

distances introduced by Drezner, Mehrez and Wesolowsky [26]. In the plane, the auxiliary 

problem consists in minimizing the sum for all entities of functions centered at each entity 

position pi and equal to the squared distance from each pi with, however, a limit of y/Xi 

on the distance (where Aj is the corresponding dual variable in the current solution of the 

master problem) after which the functions remain constant. Adapting and completing an 

enumerative algorithm of Drezner et al. [26] solves the auxiliary problem before branching 

in 0(n3) time. If branching is needed, which appears to be very rarely the case, the 

classical branching rule of Ryan and Foster [104] can be used. 

In higher dimensions, the enumeration would become too cumbersome but the basic 

property can still be exploited: a sufficient condition for two entities not to belong to the 

same cluster is used to replace coefficients in the unconstrained quadratic 0-1 problem by 

arbitrarily large values. Then, a branch-and-bound algorithm is applied within a vertex 

removal scheme. To this effect, a graph is constructed with nodes associated to the entities 

and edges associated to pairs of entities which do not have an arbitrarily large coefficient, 

i.e., for which the hyperspheres of radius \/X~l and y/\~j do intersect. Recursively, a vertex 

of minimum degree in this graph is selected and the subgraph induced by its closed neigh­

borhood considered. The unconstrained 0-1 quadratic problem associated to this subgraph 

is solved and the optimal solution kept if it is better than the incumbent one. 

Application of these new rules led to very substantial progress: indeed instances in the 

plane with up to n = 2392 entities and k > 2 clusters could be solved in (large but still) 

reasonable time. Moreover, instances in up to 19 dimensions and with up to n = 2310 

entities could be solved exactly when there are many clusters. 

To conclude, exact approaches to resolution of MSSC can be divided into three families: 
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1. those which solve small instances (n RJ 25), i.e., non-serial dynamic programming 

[119], concave programming [127] and RLT [108]. 

2. those which solve medium size instances (n % 100 — 200), i.e., repetitive branch-and-

bound [12], 0-1 SDP-based branch-and-cut [2, 98], and column generation without 

geometric enhancements [28]. 

3. those which can solve fairly large instances (n RJ 2000), i.e., the improved column 

generation approach presented in this thesis. 

Taking a larger view we can consider these results as a feasibility proof for exact solution 

of clustering problems by column generation. There are many criteria proposed in the 

literature to express homogeneity and/or separation of the clusters. A project for building 

a column generation package for clustering, involving several professors at GERAD as 

well as many students, is currently in the experimental stage. Clearly, success of the 

package on one or another criterion will depend largely on two factors: easy of resolution 

of the auxiliary problem and presence of a small or large gap. More algorithmic and 

computational work is needed here. Several likely candidates are recently proposed criteria 

in the data mining and physics communities: e.g. ratio cut [50], normalized cut [109], and 

modularity [17]. 

Also, while we have focused on an interior point based approach, i.e., ACCPM and col­

umn generation, stabilized linear programming [29] might still be a competitor particularly 

if combined with the recent work of [31, 32] on efficient treatment of degeneracy. 
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