
UNIVERSITE DE MONTREAL

FLEXIBLE SCHEDULING OF TURBO DECODING

ON A MULTIPROCESSOR PLATFORM

NEGIN SAHRAII

DEPARTEMENT DE GENIE ELECTRIQUE

ECOLE POLYTECHNIQUE DE MONTREAL

MEMOIRE PRESENTE EN VUE DE L'OBTENTION

DU DIPLOME DE MAITRISE ES SCIENCES APPLIQUEES

(GENIE ELECTRIQUE)

April 2009

© Negin Sahraii, 2009.

1*1 Library and Archives
Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A 0N4
Canada

Bibliotheque et
Archives Canada

Direction du
Patrimoine de ['edition

395, rue Wellington
OttawaONK1A0N4
Canada

Your file Votre reference
ISBN: 978-0-494-53925-5
Our file Notre reference
ISBN: 978-0-494-53925-5

NOTICE: AVIS:

The author has granted a non
exclusive license allowing Library and
Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non
commercial purposes, in microform,
paper, electronic and/or any other
formats.

L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par I'lnternet, preter,
distribuer et vendre des theses partout dans le
monde, a des fins commerciales ou autres, sur
support microforme, papier, electronique et/ou
autres formats.

The author retains copyright
ownership and moral rights in this
thesis. Neither the thesis nor
substantial extracts from it may be
printed or otherwise reproduced
without the author's permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these. Ni
la these ni des extraits substantiels de celle-ci
ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting forms
may have been removed from this
thesis.

Conformement a la loi canadienne sur la
protection de la vie privee, quelques
formulaires secondaires ont ete enleves de
cette these.

While these forms may be included
in the document page count, their
removal does not represent any loss
of content from the thesis.

Bien que ces formulaires aient inclus dans
la pagination, il n'y aura aucun contenu
manquant.

1+1

Canada

UNIVERSITE DE MONTREAL

ECOLE POLYTECHNIQUE DE MONTREAL

Ce memoire intitule:

FLEXIBLE SCHEDULING OF TURBO DECODING ON A MULTIPROCESSOR

PLATFORM

presente par : SAHRAII Negin

en vue de l'obtention du diplome de : Maitrise es sciences appliquees

a ete dument accepte par le jury d'examen constitue de :

M. DAVID Jean Pierre, Ph. D., president

M. SAVARIA Yvon, Ph. D., membre et directeur de recherche

M. THIBEAULT Claude, Ph. D., membre et codirecteur

M. LANGLOIS J.M. Pierre, Ph. D., membre

IV

ACKNOWLEDMENTS
I would like to thank my supervisor, Professor Yvon Savaria and my co

supervisor, Professor Claude Thibeault, for their precious time and effort, invaluable

guidance and intellectual support during my graduate study. I have been extremely

lucky to have supervisors who cared so much about my work and encouraged me to

pursue my research objectives.

I must express also my gratitude to Hojat, my husband, for his continued support

and encouragement. Also, completing this work would have been difficult were it not

for the moral support provided by my mother, sister, and brother. Finally, I would like to

thank my friends Parissa and Sandrine for their friendships and sharing their research

experience.

V

RESUME
Ce projet presente un modele de performance dynamique d'une application de

communication a acces multiple et division de code a large bande (WCDMA - « wide

band code division multiple access ») programmed sur un reseau sur puce a processeurs

multiples (MPSoC - « multiple processor system on chip »). Nous developpons une

strategic de modelisation dynamique pour evaluer le temps d'execution des designs

MPSoC basee sur des modeles a haut niveau des applications et de l'architecture. De tels

modeles permettent de s'assurer que la plate-forme multi-noyaux est exploitee a son

maximum et que les strategies d'assignation et d'ordonnancement peuvent etre validees.

Nous nous sommes concentres sur le decodeur Turbo, qui est une partie de cette

application comportant un nombre important des calculs et qui presente une variabilite

de temps de traitement significative. Dans un systeme temps-reel, il est tres important

que les taches respectent leurs delais limites. En raison de la variabilite du temps

d'execution des taches, la plupart des algorithmes d'ordonnancement utilises dans les

systemes temps-reel sont bases sur le pire cas du temps d'execution de 1'application

choisie (WCET - «worst-case execution time »). Le probleme d'une methode de

conception basee sur le WCET est le suivant: l'analyse d'ordonnancement basee sur les

WCET mene a un faible taux d'utilisation des processeurs. Dans le cadre de ce projet,

nous proposons quelques methodes d'ordonnancement flexibles appliquees au decodage

Turbo qui sont tres avantageuses en comparaison de la methode d'ordonnancement du

WCET. Les methodes proposees sont inspirees des methodes d'ordonnancement qui

traitent de calculs flexibles. Un modele de performance de cette application nous a

permis d'implementer et valider quelques methodes d'ordonnancement plus flexibles

proposees pour l'execution du decodage Turbo et qui sont adaptees a l'effort de

traitement variable exige par le decodeur.

Basee le modele de performance propose, l'efficacite des methodes

d'ordonnancement est demontree. Elle justifie egalement l'utilisation de notre modele

VI

devaluation de la performance. Les methodes d'ordonnancement flexibles (FS -

«flexible scheduling») proposees ameliorent substantiellement 1'utilisation des

ressources lorsque comparee a une methode d'ordonnancement du temps d'execution

selon le pire cas (WCET). La methode d'ordonnancement « priority-driven gradual », en

comparaison de la methode WCET, permet d'augmenter le nombre d'utilisateurs de 14 a

35, tout en maintenant une qualite de service acceptable, refletee dans une degradation

tres petite de 0.1 dB du gain de decodage.

Vll

ABSTRACT
This project presents a dynamic performance model of a Wide band Code

Division Multiple Access (WCDMA) application mapped on a homogeneous Multi

Processor System-on-Chip (MPSoC). We develop a dynamic modeling strategy to

evaluate the performance of MPSoC designs based on high level models of the

applications and of the architecture. Such model permits ensuring that the multi-core

platform is well exploited.

We focus on the Turbo decoder, which is a computationally intensive part of the

application and which presents significant processing time variability. In a real-time

system, it is very important that the tasks meet their deadlines. Due to the variability of

tasks execution time, most scheduling algorithms used in real-time systems are based on

the Worst Case Execution Time (WCET) of application tasks. The problem of such

WCET based design is that, the scheduling analysis based on WCETs leads to low

processor utilization. In this project, some flexible scheduling methods are proposed for

Turbo decoding tasks which are highly advantageous comparing to the WCET

scheduling method. The proposed methods are inspired from the scheduling methods

which deal with flexible computations. A performance model of this application allows

deriving and validating some proposed flexible scheduling methods for Turbo decoding

tasks, which are adapted to the variable processing effort required by the decoder.

Using the proposed performance model, the efficiency of the scheduling methods

is demonstrated. It also justifies the utilization of our performance evaluation model.

The proposed flexible scheduling (FS) methods improve the resource utilization

compared to a Worst Case Execution Time (WCET) scheduling method. In a specific

benchmark reported in this thesis, the priority-driven gradual scheduling method, which

is the most efficient FS method among the proposed FS methods,

allows increasing the number of users from 14 to 35, while keeping an acceptable

Vll l

quality of service, as reflected in a very small degradation of 0.1 dB in the decoding

gain.

IX

CONDENSE EN FRANQAIS

0.1. Introduction

Les plates-formes de reseau sur puces a processeurs multiples (MPSoC - «

multiple processor system on chip ») peuvent fournir une puissance de traitement elevee

par le partage de la charge sur un reseau des processeurs. De telles architectures sont des

cibles appropriees pour l'execution d'applications dynamiques qui necessitent une

quantite considerable de calculs. Les processeurs de traitement de signal numerique

multi-coeur (DSPs - « Digital Signal Processors ») de haute performance sont de plus en

plus employes dans les equipements de telecommunication qui traitent les signaux

sonores, visuels et radio. Puisque ces DSP sont controles par logiciel, lorsque

suffisamment puissants, ils fournissent plus de flexibilite qu'un circuit integre dedie

(Application Specific Integrated Circuit - ASIC). Ces considerations ont mene au choix

d'une plate-forme multi-DSP comme 1'architecture cible dans ce projet. Celle-ci

s'appelle Vocallo et elle a ete con§ue par la compagnie Octasic Semiconductor.

L'application cible de ce projet correspond au processus d'acces multiple a

division de code a large bande (WCDMA - «wide-band code division multiple

access ») d'une station de base de type « Universel Mobile Telecommunication

Systems (UMTS) ». Le WCDMA rend possible le partage par differents utilisateurs

d'une bande spectrale relativement large en l'etalement spectral par codage au lieu de

tranches de temps exclusives. L'etalement de spectre (« spread spectrum ») est effectue

en multipliant les flots (« stream ») de donnees de taux inferieur avec une sequence de

taux plus eleve (connue sous le nom de « chip sequence ». Dans ce projet, nous avons

l'intention de mettre en application le recepteur d'une station de base UMTS qui exploite

le WCDMA sur une plate-forme multi-DSP .

Etant donne les caracteristiques temps reel et dynamiques de l'application cible et

egalement la complexity de la conception de MPSoC, il est necessaire d'avoir des

X

moyens de valider les capacities (par exemple, le trafic qu'elle peut servir) et la

performance de la plate-forme avant 1'implementation, permettant ainsi de verifier si

une architecture MPSoC donnee convient a une application ou de determiner le nombre

de processeurs requis pour atteindre la performance desiree. Pour ces raisons, nous

avons developpe une strategic de modelisation dynamique devaluation de la

performance des MPSoC basee sur des modeles a niveau eleve des applications et de

l'architecture. A ce niveau de modelisation, l'application est representee comme un

ensemble de taches devant etre executees, avec les ressources disponibles. L'architecture

sur laquelle l'application s'executera est representee simplement comme un ensemble de

ressources de traitement reliees par un tissu de communication pour transferer des

donnees entre elles. Un aspect exceptionnel de ce modele est que la fonctionnalite est

completement absente du modele, ce qui accelere la caracterisation et la conception du

systeme. Une telle modelisation d'execution permet une validation rapide de l'efficacite

des strategies d'assignation et d'ordonnancement d'une application complexe sur la

plate-forme cible avant son execution. La strategie de modelisation developpee est

largement applicable et elle n'est pas limitee a l'application presentee dans ce projet.

Nous proposons ensuite une methode pour 1'assignation des differentes parties

de l'application WCDMA sur la plate-forme. Ainsi, nous nous concentrons

specifiquement sur le processus de decodage Turbo qui est une partie de l'application

WCDMA demandant une grande puissance de calcul. L'ordonnancement de ce genre de

processus est etudie en detail. Le processus de decodage Turbo est caracterise par une

variabilite significative de l'effort de traitement qui rend l'ordonnancement d'un tel

processus critique. II est bien connu que les systemes temps reel doivent fournir des

reponses qui sont, non seulement logiquement correctes, mais egalement

temporellement correctes. Dans un systeme temps reel, il est tres important que les

taches respectent leurs limites de temps. Dans de tels systemes, un des problemes de

conception le plus delicat est la variabilite des temps d'execution des taches. En raison

de cette variabilite, la plupart des algorithmes d'ordonnancement utilises dans les

systemes temps reel monoprocesseur ou multiprocesseur sont bases sur le temps

XI

d'execution du pire cas (WCET - « Worst Case Execution Time ») des taches. Le

WCET des taches est constant, par consequent, les modeles de systeme en temps reel

deviennent deterministes done plus facile a comprendre et a mettre en application. Le

probleme de la conception basee sur le WCET est que, dans des applications temps reel

avec une variabilite significative du temps d'execution, l'analyse d'ordonnancement

basee sur le temps d'execution du pire cas mene a une faible utilisation des processeurs.

Dans ce projet, nous proposons quelques methodes pour l'ordonnancement

flexible des taches du decodage Turbo qui sont tres avantageuses en comparaison avec

la methode d'ordonnancement WCET. Les methodes proposees sont inspirees des

methodes d'ordonnancement qui traitent des calculs flexibles. L'expression de calcul

flexible se rapporte a une classe importante d'applications congues et implementes pour

faire un compromis entre la qualite des resultats (services) qu'elles produisent et le

temps et les ressources qu'elles emploient pour produire ces resultats. Plus

specifiquement, une application flexible peut reduire ses exigences de temps et de

ressources aux depens de la qualite de ses resultats tant que l'utilisateur trouve la qualite

des resultats acceptable. Une application flexible peut degrader graduellement sa qualite

quand les ressources sont limitees et que les demandes en calculs sont elevees. Les

methodes d'ordonnancement proposees dans ce projet sont adaptees a la variabilite du

processus de decodage Turbo et elles ajustent dynamiquement l'effort de traitement

pendant l'execution tout en gardant une qualite acceptable des resultats.

0.2 Flot de traitement dans une station de base UMTS

Dans cette section, nous decrivons brievement les flots de traitement dans une

station de base WCDMA compris dans la liaison descendante («downlink ») et

ascendante («uplink»), qui correspondent respectivement aux cotes emetteur et

recepteur de la station de base [29]. Dans ce projet, le flux de traitement de la liaison

montante qui correspond au cote recepteur de la station de base est considere.

Xll

0.2.1. Liaison descendante
Du cote de la liaison descendante, la station de base UMTS transmet un

ensemble de canaux physiques communs aux utilisateurs dans la zone de portee de la

station de base. La figure 2 (page 13) montre le flux de traitement de la station de base

pour un utilisateur de la liaison descendante. Les donnees d'entree venant de la couche

du MAC (« Media Access Control ») se composent de differents flots (« streams ») de

donnees. En premier lieu, le calcul de redondance cyclique (CRC - « Cyclic

Redundancy Check ») et le codage de correction d'erreurs vers l'avant est ajoute aux

flots. Ceux-ci sont alors envoyes par un ajusteur de taux (« rate matcher ») qui s'assure

que le debit des trains est adapte a la couche physique. Les trains sont intercales,

segmentes dans des fenetres et puis intercalees une autre fois. A la sortie, ils sont

mappes, etales au taux de chip (le chip est l'unite fondamentale de la transmission

CDMA) et, finalement, envoyes a l'emetteur radio.

0.2.2. Liaison montante

Le flux de traitement de la liaison montante est semblable au flux de la liaison

descendante mais il inclut beaucoup plus de calculs. La figure 3 (page 14) montre le flux

de donnees pour le traitement de la liaison montante. Une combinaison par trajets

multiples est d'abord effectuee, basee sur un filtre de recherche de trajets multiples et un

recepteur Rake. Le recepteur Rake additionne les trajets multiples et effectue l'etalement

(« despreading ») du signal d'entree. Ensuite, la trame est desentrelacee et on effectue

l'ajustement inverse des taux (« reverse rate matching »). Ensuite, la reconstitution des

trames radio (« radio frame reassembly ») est faite, suivi d'un desentrelaceur different.

Par la suite, un decodage pour correction d'erreurs est employe pour reconstituer les

donnees regues qui sont envoyees a la couche de MAC.

Xlll

0.3. L'assignation d'application sur une plate-forme
multiprocesseur

Comme mentionne auparavant, nous avons l'intention d'implementer le

traitement des signaux d'un recepteur de station de base UMTS sur une plate-forme

multiprocesseur. Dans un recepteur de station de base UMTS, les trames radio arrivent a

un taux definissant une periode de traitement, ou chaque trame radio regue est une

concatenation de blocs de transport, ou chacun est associe a un utilisateur donne.

L'application cible se compose d'un traitement de liaison montante montre dans la

figure 3 (page 14) qui doit etre applique aux blocs de donnees recues correspondant aux

utilisateurs de la station de base.

La figure 27 (page 67) montre un exemple d'application UMTS servant 10

utilisateurs. Afin de simplifier l'exemple, la liaison montante traitant chaque utilisateur

est decrite comme comportant trois segments de traitement. Pour implementer

l'application sur une plate-forme multiprocesseur, les segments de traitement doivent

etre mappes sur les processeurs. Comme premier exemple de strategie d'assignation,

nous supposons que les segments de traitement de chaque utilisateur sont assignes a

differents processeurs. Ainsi, les segments en chaine de chaque utilisateur peuvent etre

executes en mode pipeline sur differents processeurs. Aussi, nous considerons que

chaque processeur execute seulement un type de traitement (a savoir un segment) pour

les multiples utilisateurs. La strategie d'assignation proposee est similaire a la methode

presentee dans [29]. Un exemple d'une telle strategie d'assignation est illustre a la

figure 28 (page 67), qui correspond au cas ou l'application de la figure 27 (page 67) est

implementee sur quatre processeurs.

0.4. Modelisation de la performance

Comme mentionne precedemment, nous devons concevoir un modele de

performance pour estimer le temps d'execution des applications sur la plate-forme avant

leur execution. Dans ce but, nous proposons une methodologie de modelisation de la

XIV

performance basee sur un modele Matlab qui inclut les caracteristiques temporelles

d'execution de 1'application et les primitives de la plate-forme a un niveau eleve. On

suppose que les caracteristiques temporelles correspondant a l'execution des differentes

parties de l'application ont ete extraites precedemment (a l'aide, par exemple, d'un

simulateur de la plate-forme cible) et sont incluses dans le modele de performance. Un

tel modele Matlab emule le temps d'execution des differentes parties de l'application

sans aucun test de fonctionnalite. De cette fagon, le modele fournit une evaluation rapide

du temps d'execution permettant egalement de valider les differentes strategies pour

l'assignation et l'ordonnancement de l'application sur la plate-forme. Le modele permet

egalement d'estimer la capacite de la plate-forme a soutenir les trafics demandes et il

fournit une analyse statistique des services fournis par le systeme.

0.4.1. Etapes pour creer un modele de performance

La methodologie proposee pour la modelisation de performance inclut trois

etapes. A la premiere etape, nous modelisons l'application qu'on desire mapper sur la

plate-forme cible. Nous savons que l'application doit etre divisee en plusieurs segments

de traitement et que ces segments doivent etre assignes aux differents processeurs de la

plate-forme. A cette premiere etape, tous les segments de traitement sont presentes en

tant que differentes taches. Chacune de ces taches inclut les parametres temporels

representant l'execution sur le processeur cible du segment de traitement correspondant.

Egalement, les transmissions de donnees qui devront etre affectees entre les processeurs

sont modelisees par differentes taches ou sont inclus les parametres temporels qui

representent les transmissions de donnees correspondantes. De cette fagon, selon la

strategic d'assignation employee pour assigner les segments de traitement aux

processeurs, nous creons un modele de l'application mappee comprenant plusieurs

taches et l'information de dependances entre ces taches. La figure 9 (page 39) montre la

premiere etape de notre strategic de modelisation appliquee a un exemple simple.

XV

A la deuxieme etape, nous modelisons l'architecture de la plate-forme cible

comme un ensemble d'unites afin de representer les differents processeurs ainsi que la

partie communication de la plate-forme. Apres, selon la strategic d'assignation, les

taches creees a la premiere etape sont assignees aux unites creees lors de la premiere

phase de la deuxieme etape. II est important de mentionner que les taches qui

represented les transmissions de donnees entre les processeurs sont assignees a l'unite

qui represente la partie communication de la plate-forme. A la fin de la deuxieme etape,

le modele cree inclut plusieurs unites representant l'architecture de la plate-forme ou

chaque unite inclut a son tour plusieurs taches representant les parametres temporels de

traitement ou des transmissions de donnees. La figure 11 (page 41) montre le modele

cree a la deuxieme etape de la modelisation pour le raeme exemple que celui dans la

figure 9 (page 39). Lors de la simulation du modele, les taches sur les differentes unites

doivent etre executees selon un ordre qui est impose par les relations de precedence

entre les segments de traitement modelises. Une tache est prete a etre executee lorsque

l'execution des taches precedentes, sur la chaine de la tache, est terminee.

A la troisieme etape de la modelisation, nous considerons une autre unite dans le

modele qui est responsable de controler l'execution des taches sur differentes unites.

Cette unite supplementaire s'appelle Maitre (« Master ») et elle modelise un autre

processeur de la plate-forme. Nous supposons que le Maitre inclut un module appele

Synchroniseur (« Synchronizer ») pour definir les temps ou les differentes taches sont

pretes a etre executees en verifiant l'etat d'execution de toutes les taches. Le Maitre

inclut egalement un module qui definit le temps de simulation. Le temps de simulation

est utilise pour calculer les parametres temporels des taches pendant la simulation. Les

unites qui incluent les taches s'appellent esclaves (« Slaves ») et elles sont responsables

d'executer leurs taches respectives. Nous supposons que chaque esclave inclut un

module appele Ordonnanceur (« Scheduler ») en plus de ses taches. L'Ordonnanceur est

responsable de choisir une tache entre les taches de l'esclave qui sont pretes pour

l'execution basee sur sa strategic d'ordonnancement. La tache choisie par

l'Ordonnanceur est executee par l'esclave. La figure 13 (page 43) demontre le modele

XVI

de performance cree a l'etape finale de la modelisation pour le meme exemple montre

dans la figure 9 a la page 39.

De cette facon, nous creons un modele de performance qui represente une

description a niveau eleve de l'application ciblee et de l'architecture de la plate-forme.

Pendant la simulation d'un tel modele, toutes les unites mentionnees (Maitre et esclaves)

sont simulees. Nous considerons que la simulation est faite en plusieurs etapes. A

chaque etape de la simulation, l'unite Maitre est premierement simulee alors que les

Esclaves sont ensuite simules les uns apres les autres. La simulation de l'unite Maitre

produit les temps ou les taches sont pretes a etre executees. Aussi la Maitre definit le

temps de simulation a l'etape courante de la simulation. La simulation des unites

esclaves peut mener a l'execution de quelques taches pretes ainsi qu'une mise a jour de

plusieurs des parametres temporels concernant des taches. La simulation d'un modele de

performance peut produire 1'information temporelle de l'execution des taches et

egalement de l'application entiere.

0.5. Decodeur Turbo

Cette section se concentre sur un segment de traitement intensif de WCDMA

appele le decodeur Turbo qui est caracterise par une variabilite substantielle du temps

de traitement. Afin d'ameliorer la robustesse de la transmission et de reduire au

minimum le taux d'erreurs de bloc (BLER - « BLock Error Rate ») de l'application, la

troisieme generation de UMTS emploie la methode de decodage Turbo. Les

specifications du procede de decodage Turbo considere dans ce projet sont comme suit.

Le codeur convolutionnel de l'emetteur est base sur un code convolutionnel parallele

concatene (« Parallel Concatenated Convolutional Code - PCCC »), et inclut deux

encodeurs convolutionnels recursifs systematiques identiques de 8 bits ainsi qu'un

entrelaceur a taux de codage de 1/3 [28, 30]. Le decodeur Turbo a une structure iterative

basee sur l'algorithme de « Maximum-A-Posteriori (MAP) » [30]. Le decodeur utilise du

cote de la reception inclut deux modules consecutifs de MAP qui constituent une des

XV11

iterations exigees par le decodage. Puisqu'une iteration simple implique beaucoup

d'etapes de traitement, un critere automatique d'arret de decodage (ASDC -

« Automatic Stop Decoding Criterion ») est employe pour terminer le processus de

decodage des qu'un niveau de fiabilite acceptable du decodage est atteint (selon un

parametre specifique). Le nombre d'iterations est aussi limite entre 2 et 8. Dans la

section suivante, la variabilite de traitement d'un processus de decodage Turbo est

caracterisee et discutee. Puis, utilisant le modele de performance, quelques algorithmes

d'ordonnancement, a etre utilises par les processeurs qui sont consacres a ce genre de

traitement sont valides.

0.5.1. Variabilite de traitement dans le decodeur Turbo

La variabilite du temps de traitement du decodage Turbo vient du nombre

variable d'iterations de decodage exigees pour atteindre un niveau de correction d'erreur

acceptable. Pour etudier la variabilite de traitement du decodage Turbo, nous avons

utilise un modele complet de Simulink qui a ete developpe par notre equipe pour

representer exactement le processus entier de codage/decodage Turbo. Dans ce modele,

le canal de communication a ete represents par un bloc AWGN (« Additive White

Gaussian Noise »), alors que le codeur et le decodeur ont ete implemented par plusieurs

fonctions Matlab selon les caracteristiques precedemment mentionnees.

En simulant ce modele Simulink, nous avons extrait le nombre d'iterations

efficaces de decodage dans un decodeur Turbo qu'il faut executer selon les signaux

regus sous differents etats du canal de communication. Etant donne la nature de

l'algorithme et la maniere dont il a ete code, le temps requis pour effectuer chaque

iteration de decodage par le processeur cible est constant pour une taille de trame

donnee. Des resultats typiques pour le nombre d'iterations obtenues sous differents etats

du canal sont presentes dans la figure 29 (page 69). Les distributions de probability

observees ressemblent a des distributions de Poisson. Notez que, etant donne que le

nombre d'iterations est limite entre 2 et 8, la forme de la distribution est biaisee. Le

XV111

nombre moyen d'iterations a ete egalement estime selon differents etats du canal tel que

rapporte a la figure 30 (page 70). Cette figure montre une diminution du nombre moyen

d'iterations de decodage lorsque l'etat de canal s'ameliore, autrement dit que Eb/NO

augmente.

0.5.2. Ordonnancement du processus de decodage Turbo

Comme precedemment explique, dans ce projet, nous etudions l'implementation

d'un recepteur d'une station de base UMTS sur une plate-forme multiprocesseur. Le flot

de traitement dans une transmission en liaison montante, qui correspond a notre

recepteur de station de base UMTS, est presente a la figure 3 (page 14). Base sur la

strategic d'assignation expliquee a la section 0.3, nous avons suppose que chaque

processeur de la plate-forme est consacre a l'execution d'un seul type de segment de

traitement tel que le « Rake », le « Rate matching » ou le decodage Turbo. Le

traitement de ces segments s'effectue sur les blocs de donnees regues de differents

utilisateurs. Dans cette section, nous nous concentrons sur les processeurs consacres a

effectuer le processus de decodage Turbo des blocs re^us et nous discutons des concepts

d'ordonnancement sur ces processeurs. Afin de simplifier le probleme, nous considerons

l'ordonnancement du decodage Turbo sur seulement un processeur.

Nous supposons que toutes les trames regues par le recepteur de la station de

base UMTS considere ont le meme taux d'arrivee definissant ainsi une periode de

traitement unique. Pour determiner le nombre de blocs de donnees (nombre

d'utilisateurs) qui peuvent etre assignes a un processeur au cours de chaque periode de

traitement, nous devons estimer le temps d'execution des processus correspondants de

decodage Turbo sur le processeur cible. Nous supposons que le temps d'execution total

des processus de decodage Turbo assignes ne doit pas depasser la periode de traitement.

Vu la variabilite de traitement significative du decodage Turbo, nous supposons

que l'estimation basee sur le pire cas du temps d'execution serait fortement inefficace.

Afin d'ameliorer l'utilisation des ressources, nous considerons que le temps assigne a

XIX

chaque processus de decodage Turbo est plus petit que celui du temps d'execution du

pire cas (WCET) et que nous pouvons par consequent assigner un nombre plus eleve de

blocs de donnees (nombre d'utilisateurs) a un processeur. Cependant, il est possible que,

dans certains cas, les processus exigent plus que leurs fenetres temporelles assignees

nominalement, dues a une degradation du canal qui peut mener a des problemes

d'ordonnancement. Pour resoudre ces problemes, nous proposons quelques methodes

flexibles d'ordonnancement qui sont associees aux strategies de controle qui peuvent

limiter le traitement efficace afin de rencontrer les contraintes temporelles. La

description des methodes proposees est presentee dans les sections suivantes.

Pour etudier les methodes d'ordonnancement, nous decrivons un modele de

performance comprenant une unite Maitre et un esclave bases sur les concepts expliques

dans la section 0.4. Le Maitre, comprenant le module de synchronisation, correspond a

un processeur et 1'esclave correspond a un autre processeur de la plate-forme. L'esclave

est responsable des taches representant les processus de decodage Turbo sur les blocs de

donnees de differents utilisateurs. La modelisation de performance du decodage Turbo

n'est pas basee sur le decodage detaille, mais plutot sur les distributions de service

precedemment rapportees (figure 29 a la page 69) qui ont ete obtenues par le decodage

detaille. Chaque tache representant le decodage Turbo contient un generateur de

nombres aleatoires qui modelise les distributions mentionnees. La simulation de chaque

tache de decodage Turbo fournit le nombre efficace d'iterations de decodage (it_eff) et,

par consequent, le temps d'execution du processus correspondant au decodage sur le

processeur cible.

Mentionnons que, lorsqu'un bloc de donnees est regu par le processeur pour etre

decode, la tache modelisant le processus est censee etre activee. En d'autres termes, la

tache devient prete. Aussi, toutes les taches assignees a l'esclave ont la meme periode

d'activation qui est egale a la periode de traitement. Nous supposons que toutes les

taches deviennent actives ou pretes en meme temps pour chacune des periodes de

traitement.

XX

0.5.2.1. Ordonnancement « one shot »

Premierement, nous supposons qu'un certain nombre de taches de decodage

Turbo sont assignees a 1'esclave. Ainsi, basees sur le nombre de taches assignees a

l'esclave et sur la periode de traitement, les ressources consacrees pour executer le

decodage par chaque tache sont determinees. Etant donne 1'allocation des ressources

pour chaque tache de decodage Turbo, un budget d'iterations de decodage est garanti

pour le decodage de chaque bloc. Ceci est determine par le systeme sous le nom de «

Iteration Budget (IB) ». Au cours d'une periode de traitement, l'Ordonnanceur place sur

l'esclave choisit une tache a etre simulee parmi toutes les taches pretes de l'esclave.

Cette tache est choisie a tour de role (« round robin »). Apres la simulation de chaque

tache de decodage Turbo, si le nombre efficace d'iterations de decodage {it_eff) est plus

grand que son IB, le nombre d'iterations emules de decodage pour le bloc correspondant

est considere egal a IB. Le bloc auquel l'Ordonnanceur n'a pu assigner son it_effavant la

fin d'une periode d'activation doit etre considere comme etant partiellement decode.

Si le budget assigne est egal ou plus grand que it_eff, le nombre d'iterations

emulees est considere egal au it_ejf correspondant. Un bloc qui peut atteindre son it_eff

est entierement decode. En effet, si itjeff est inferieur au budget pour une tache, la

difference est distribute entre les taches non simulees dans la periode de traitement

courante et est ajoutee a leurs budgets assignes precedemment. Cette redistribution est

faite aussi uniformement que possible. La figure 31 (page 75) demontre la methode

d'ordonnancement « one shot » sur un esclave comprenant quatre taches de decodage

Turbo au cours d'une periode de traitement. Suivant les indications de cette figure, des

blocs de donnees correspondants aux taches 3 et 4 sont completement traites, tandis que

le decodage correspondant aux deux autres taches est degrade afin de respecter les

budgets de ressource assignes.

XXI

0.5.2.2. Ordonnancement progressif (« gradual »)

Comme explique pour la methode d'ordonnancement « one shot », au cours de

chaque periode de traitement, la partie non utilisee du budget de chaque tache simulee

de decodage Turbo est distribute et ajoutee aux budgets assignes des taches non

simulees. De cette facon, les IB (« Iteration Budget ») des taches qui sont simulees plus

tard ont une plus grande possibility d'augmentation comparativement aux taches

simulees plus tot. En raison de la qualite aleatoire du decodage des blocs, il est possible

que les taches simulees posterieurement n'emploient pas totalement leur IB accru tandis

que les taches simulees precedemment auraient eu besoin de plus grands budgets.

Afin d'optimiser la repartition des ressources aux taches, nous proposons une

autre methode appelee ordonnancement progressif. Dans cette methode, un IB global est

assigne a toutes les taches qui est egal au nombre d'iterations de decodage qui pourraient

etre effectuees par le processeur cible au cours d'une periode de traitement. Dans la

methode d'ordonnancement progressif, l'Ordonnanceur choisit a tour de role les taches

pretes pour la simulation. Apres l'emulation d'une iteration de decodage pour chaque

tache choisie, la simulation de la tache est suspendue (« preempted ») et, par

consequent, la prochaine tache prete est choisie pour etre simulee de la meme maniere.

La figure 33 (page 77) presente la methode d'ordonnancement progressive sur un

esclave comprenant quatre taches de decodage Turbo au cours d'une periode de

traitement. Suivant les indications de la figure 33 (page 77), la valeur initiale de YIB

global dans l'exemple montre est egale a 17, ce qui est equivalent a la somme des IB

initiaux des taches dans l'exemple d'ordonnancement « one shot ». Apres l'emulation

d'une iteration de decodage de chaque tache, YIB global est decrements par un. La

simulation des taches qui atteignent leur nombre efficace d'iterations de decodage est

terminee. La simulation des taches pretes continue de la meme maniere jusqu'a ce que le

budget global devienne zero. Apres l'arret du a YIB global, la simulation des taches

pretes qui n'ont pas atteint a leur traitement efficace est arretee. Ceci mene a la

XX11

degradation du traitement des blocs correspondants. Dans l'exemple montre dans la

figure 33 (page 77), comme pour l'exemple « one shot », les decodages effectues pour la

tache 1 et la tache 2 sont degradees. Mais, dans cet exemple, une iteration de plus est

emulee pour les taches mentionnees comparativement a l'exemple montre dans la figure

31 (page 75).

Dans la methode d'ordonnancement progressif, le nombre d'iterations emulees

pour chacune des taches pretes a chaque moment de la simulation est

approximativement identique. Ainsi, les blocs correspondants aux taches arretees, done

qui n'ont pas atteint leur nombre efficace d'iterations, ont presque le meme niveau de

traitement et par consequent leurs traitements sont degrades de maniere presque

identique.

0.5.2.3. Ordonnancement « one shot » par priorite

Comme explique dans 1'ordonnancement « one shot », les taches simulees plus

tot ont la possibility de recevoir de plus petits IB, ce qui cause des erreurs residuelles

plus prononcees en raison de la degradation de traitement emule, en comparaison aux

taches simulees posterieurement. Puisque les taches pretes sont choisies et simulees dans

un ordre fixe pour toutes les periodes de traitement, les erreurs residuelles associees aux

taches simulees plus tot sont plus importantes que pour les taches qui sont simulees plus

tard.

De cette fagon, les differences entre les qualites de service fournies pour les

blocs (utilisateurs) correspondants augmentent en fonction du temps. Afin d'empecher

l'augmentation de la difference entre les qualites du service de l'utilisateur, nous faisons

une modification dans la methode d'ordonnancement « one shot ». Dans la methode

modifiee qui s'appelle ordonnancement « one shot » par priorite, nous assignons des

priorites aux taches pretes pour determiner leur ordre de simulation au cours de chaque

periode de traitement. Dans le modele, nous avons considere un parametre appele

sum_add_err, qui est assigne a chaque tache et qui represente les bits accumules en

XXU1

erreur additionnelle inseree dans le bloc correspondant, du commencement de la

simulation jusqu'a la periode de traitement courant.

Dans la methode d'ordonnancement « one shot » par priorite, les budgets (IBs)

sont assignes aux taches de la meme fa§on que dans la methode « one shot ». La

methode pour la mise a jour du IB pour chaque tache est egalement la meme que pour

l'ordonnancement « one shot » comme demontre dans la figure 31 (page 75). Avec cette

methode, l'ordre pour placer les taches sur les colonnes montrees dans la figure 31 (page

75) est base sur la priorite des taches. A chaque periode de traitement, les taches pretes

ayant une valeur plus elevee de sum_add_err se voient assigner une priorite plus basse

pour la simulation et sont placees sur les colonnes qui sont plus pres de la derniere

colonne. De cette facon, les taches qui sont caracterisees par des taux d'erreurs

accumulees plus eleves ont la possibilite de recevoir plus de ressource dans la periode de

traitement en cours. Ainsi, les qualites de service fournies pour differents utilisateurs

deviennent plus uniformes comparativement a la methode d'ordonnancement « one shot

».

0.5.2.4. Ordonnancement progressif par priorite

Dans l'ordonnancement progressif, les taches simulees posterieurement dans

differents niveaux d'iteration ont plus de possibilite de ne pas recevoir de ressource

lorsque le IB global est termine. Ainsi, plus d'erreurs additionnelles sont associees aux

blocs decodes plus tard, en raison de la degradation de traitement emulee,

comparativement aux blocs decodes plus tot. Puisque les taches pretes sont simulees

dans un ordre fixe pour tous les niveaux d'iteration et toutes les periodes de traitement,

les erreurs additionnelles associees aux taches simulees posterieurement a differents

niveaux d'iteration augmentent avec le temps beaucoup plus rapidement que les taches

qui sont simulees plus tot. De cette fagon, les differences entre les qualites de service

fournies aux utilisateurs sont augmentees avec le temps.

XXIV

Afin d'empecher l'augmentation des differences entre les qualites de service pour

chaque utilisateur, nous faisons une modification a la methode d'ordonnancement

progressif. Dans la nouvelle methode d'ordonnancement modifiee, qui s'appelle

ordonnancement progressif par priorite, comme pour l'ordonnancement progressif, les

taches sont simulees graduellement et un IB global est assigne pour limiter le traitement

emule des taches comme demontre dans la figure 33 (page 77). En plus, comme pour la

methode « one shot » par priorite, le parametre sum_add_err, est estime et associe a

chaque tache totalement simulee dans chaque periode de traitement qui definit la priorite

de la tache dans la periode suivante.

Autrement dit, dans cette methode, l'ordre de placement des taches sur les

colonnes montrees dans la figure 33 (page 77) est base sur la priorite des taches. A

chaque periode de traitement, les taches pretes avec une valeur plus elevee de

sum_add_err ont une priorite plus elevee pour la simulation et sont placees sur les

colonnes qui sont plus pres de la premiere colonne. De cette fagon, les taches qui sont

caracterisees par des taux des bits en erreur accumules plus eleves ont la possibility de

recevoir plus de ressources dans la periode de traitement courante. Ainsi, les qualites de

service fournies aux differents utilisateurs deviennent plus uniformes comparativement a

la methode d'ordonnancement progressif.

0.5.3. Resultats de simulation

Nous avons implements le modele de performance explique dans la section 0.4

comprenant un Maitre et une unite esclave. Les methodes d'ordonnancement proposees

dans la section precedente sont egalement incluses dans l'unite esclave en tant que

differentes options pour ordonnancer les taches de decodage Turbo. Le modele a ete

simule dans differents cas de figure afin de tester les methodes d'ordonnancement

proposees sous differents etats de canal et charges pour des durees appropriees. La

simulation du modele a fourai le taux des bits en erreurs (BER) associes aux blocs

decodes dans chacune des periodes de traitement. Afin de simplifier les resultats, nous

XXV

avons calcule le BER moyen de toutes les taches correspondantes pendant la simulation

selon differents cas de charges du systeme et d'etats de canal. Les taches specifiques de

decodage Turbo correspondent aux blocs de 656 bits de donnees (avant le codage done

(3*656) +12 =1980 symboles apres codage), et ces trames sont transmises a 64 k

symboles/s pour des periodes de 40 ms.

Etant donne la periode des trames re§ues et le pire temps de traitement du

decodage Turbo sur le processeur cible qui comprend 8 iterations de decodage dans le

cas de la conception WCET, les processus de decodage Turbo pour 14 utilisateurs

peuvent etre assignes au processeur. Autrement dit, dans notre modele de performance,

selon la methode du WCET, nous pouvons assigner 14 taches de decodage Turbo a

l'esclave sans causer de degradation de traitement. Le cas consistant a assigner 14

utilisateurs (methode du WCET) est employe comme une reference pour toute

comparaison avec les methodes d'ordonnancement proposees ou plus d'utilisateurs

pourront etre assignes.

0.5.3.1. Ordonnancement « one shot »

En simulant le modele de performance mentionne suivant la methode

d'ordonnancement « one shot », le BER moyen de toutes les taches (correspondant aux

differents utilisateurs) est obtenu selon le nombre d'utilisateurs assignes et l'etat du canal

et est montre a la figure 35 (page 82). La distance horizontale entre les courbes du BER

moyen et de la courbe de reference (cas de 14 utilisateurs) pour un BER precis,

demontre la degradation moyenne du gain de decodage. Base sur la figure 35 (page 82),

la degradation moyenne du gain de decodage est obtenue pour 3 cas ou different le

nombre d'utilisateurs pour une valeur de BER de 2*10~5. Ces resultats sont rapportes

dans le tableau 4 qui demontre qu'avec 29 utilisateurs assignes a un processeur, la

degradation de gain de decodage est d'approximativement 0.15 dB. Une telle valeur de

degradation est negligeable et n'exerce aucun effet significatif sur la qualite du service.

XXVI

0.5.3.2. Ordonnancement progressif

En simulant le modele de performance mentionne suivant l'algorithme

d'ordonnancement progressif, le BER moyen des utilisateurs est obtenu pour un nombre

variable d'utilisateurs assignes et pour differents etats de canal et est montre a la figure

36 (page 84). Base sur les figures 35 et 36 (pages 82 et 84), l'amelioration des BER

moyen en utilisant la methode d'ordonnancement progressif comparativement a la

methode d'ordonnancement « one shot» est remarquable. En examinant la figure 36

(page 84), la degradation moyenne du gain de decodage dans 5 cas de figure avec un

nombre d'utilisateurs different et une valeur de BER de 2*10"5 est obtenue et presentee

dans le tableau 5. Ce tableau montre que la degradation moyenne du gain de decodage

pour les cas de 23 et 29 utilisateurs est zero tandis que nous avions une degradation de

gain pour le meme nombre d'utilisateurs avec la methode d'ordonnancement « one shot

». En se basant egalement sur le tableau 5, la degradation moyenne du gain de decodeur

pour plus d'utilisateurs, tels que 32 et 35, est negligeable.

0.5.3.3. Ordonnancement « one shot » par priorite et progressif par

priorite

En utilisant 1'ordonnancement « one shot » par priorite et puis l'ordonnancement

progressif par priorite dans notre modele de performance et en simulant ces modeles

correspondants, le BER moyen des utilisateurs selon le nombre d'utilisateurs assignes et

l'etat du canal sont obtenus. En observant les resultats, nous nous sommes rendu compte

que les resultats moyens des BER obtenus en employant la methode « one shot » par

priorite sont identiques aux resultats correspondants dans le cas de methode « one shot »

montree a la figure 35 (page 82). La methode progressive par priorite fournit egalement

les memes resultats de BER moyens que ceux produits par la methode progressive et

sont affiches a la figure 36 (page 84).

XXV11

Afin de demontrer l'avantage des methodes par priorite a uniformiser les qualites

de service des utilisateurs, nous avons egalement estime la variance du BER des

utilisateurs. La variance du BER des utilisateurs selon les differentes methodes

d'ordonnancement proposees sont presentes dans les figures 37, 38, 39 et 40 (pages

85,86 et 87). Ces courbes sont parametrees en fonction du nombre d'utilisateurs. Dans

les figures 39 et 40 (pages 86 et 87), les variances du BER pour les valeurs Eb/NO qui

sont superieures aux valeurs montrees par les lignes pointillees sont egales a zero. En

observant les figures 37 et 38 (pages 85 et 86), nous nous rendons compte que la

methode « one shot » par priorite uniformise les performances des BER des utilisateurs

en obtenant des variances plus petites comparativement a la methode « one shot ». En

comparant egalement les figures 39 et 40 (page 86 et 87), on peut prouver que la

methode d'ordonnancement progressif par priorite rend plus uniforme les performances

des BER des utilisateurs en fournissant des variances plus petites comparativement a la

methode progressive.

Etant donne les resultats affiches pour les BER moyen et la variance des BER,

nous trouvons que l'ordonnancement progressif par priorite est la methode la plus

efficace entre les methodes proposees puisqu'elle fournit la meilleure performance pour

le BER et offre une uniformite de service pour plusieurs utilisateurs.

0.6. Conclusion

Dans ce projet, un modele dynamique a ete presente pour evaluer l'execution

d'une application WCDMA sur une plateforme MPSoC. Plus specifiquement, nous nous

sommes concentres sur le decodeur Turbo, une partie de l'application demandant un

grand effort de calcul et presentant une variabilite de traitement substantielle. Notre

modele nous a permis de deriver et valider quelques methodes flexibles pour

l'ordonnancement des taches de decodage Turbo, qui sont adaptees a l'effort de

traitement variable exige pour le decodeur. En employant le modele de performance

XXV111

presente, l'efficacite de ces methodes d'ordonnancement a ete demontree, ce qui a

egalement justifie l'utilisation de notre modele devaluation de performance.

Toutes les methodes d'ordonnancement flexibles proposees, une fois comparees

a la methode d'ordonnancement du temps d'execution du pire cas (WCET), ameliorent

l'utilisation des processeurs en employant une evaluation plus juste de l'effort de

decodage et en causant une degradation de traitement acceptable. La difference entre les

methodes d'ordonnancement flexible proposees etait dans 1'uniformite de la qualite de

service fournit pour les utilisateurs. La derniere methode d'ordonnancement flexible

appelee ordonnancement progressif par priorite a fourni la qualite de service la plus

uniforme pour les utilisateurs. Cette methode, une fois comparee a une methode

d'ordonnancement du temps d'execution du pire cas (WCET), a permis d'augmenter le

nombre d'utilisateurs de 14 a 35, alors que la conservation d'une qualite du service

acceptable se refletait dans une degradation tres petite de moins de 0.1 dB de gain de

decodage.

XXIX

TABLE OF CONTENTS
ACKNOWLEDMENTS iv

RESUME v

ABSTRACT vii

CONDENSE EN FRANCOIS ix

TABLE OF CONTENTS xxix

LIST OF TABLES xxxiii

LIST OF FIGURES xxxiii

LIST OF SIGNS ANDABBREVIATIONS xxxv

CHAPTER 1 INTRODUCTION 1

CHAPTER 2 BASIC CONCEPTS AND LITERATURE REVIEW 7

2.1. Universal Mobile Telecommunication System (UMTS) 7

2.1.1. WCDMA Physical layer 8

2.1.2. Frame structure for uplink DPDCH/DPCCH 9

2.1.3. Processing in a WCDMA/FDD radio base station 10

2.1.3.1. Downlink processing flow 11

2.1.3.2. Uplink processing flow 11

2.1.4. Channel Coding 12

2.1.4.1. Turbo coder 13

2.1.4.2. Turbo decoder 15

2.2. The Vocallo architecture 16

2.2.1. Internal architecture 18

2.2.2. External architecture 19

2.2.3. Power and Performance Optimizations 19

2.3. Performance modeling 19

2.4. Mapping the system level models into MPSoC platforms 21

2.5. Multiprocessor scheduling and synchronization 23

2.5.1. End-to-End system functions 24

XXX

2.5.2. Elements of scheduling algorithms for end-to end periodic functions 25

2.5.3. Interprocessor synchronization protocols 26

2.5.4. Scheduling the tasks on one processor 27

2.6. Worst Case Execution Time (WCET) based design 28

2.7. Scheduling flexible applications 29

2.8. Mapping and scheduling of Turbo decoding in MPSoC platforms 30

2.9. Conclusion 31

CHAPTER 3 PERFORMANCE MODELING 34

3.1. Steps to create a performance model 34

3.1.1. Modelling the Mapped Application on the Multi-Processor Platform

(Modelling Step 1) 36

3.1.2. Structuring the model of mapped application (Modelling step 2) 38

3.1.3. Creating a Master/Slave Structure (Modelling Step 3) 40

3.2. Detailed description of the performance model 46

3.2.1. Master 46

3.2.2. Slave 54

3.3. One performance model example 58

3.4. Conclusion 60

CHAPTER 4 SCHEDULING OF TURBO DECODING 62

4.1. Mapping the uplink WCDMA processing on an MPSoC platform 63

4.2. Processing variability of the studied Turbo decoder 65

4.3. BER performance of the studied Turbo decoder 67

4.4. Proposed methods for scheduling the Turbo decoding 68

4.4.1. One shot scheduling 70

4.4.2. Gradual scheduling 73

4.4.3. Priority-driven one shot scheduling 75

4.4.4. Priority-driven gradual scheduling 76

4.5. Simulation results 77

4.5.1. One shot scheduling 78

xxxi

4.5.2. Gradual scheduling 80

4.5.3. Priority-driven one shot and priority-driven gradual scheduling 81

4.6. Validating investigation 85

4.7. Elapsed simulation time 88

4.8. Conclusion 90

CHAPTER 5 CONCLUSION 92

REFERENCES 95

APPENDIX 1 98

xxxn

LIST OF TABLES

Table 1 Task timing parameter definition 44

Table 2 Possible cases of timing parameters for a task 45

Table 3 Performance parameters of Turbo decoder 68

Table 4 Average decoding gain degradation at a BER of 2*10"5 for one shot

scheduling 80

Table 5 Average decoding gain degradation at a BER of 2*10' in case of gradual

scheduling 80

Table 6 Elapsed simulation times 89

XXX111

LIST OF FIGURES
Figure 1 Radio frame structure for uplink DPDCH/DPCCH [31] 10

Figure 2 Downlink transmission flow [29] 11

Figure 3 Uplink transmission flow [29] 12

Figure 4 Turbo encoder structure [30] 13

Figure 5 Generic Turbo decoder architecture [4] 15

Figure 6 Block diagram of Vocallo architecture [21] 18

Figure 7 Example of a system function 24

Figure 8 Example of a system including m functions and n processors 26

Figure 9 Modelling a mapped application 37

Figure 10 Example of vector Dep 38

Figure 11 Example of the structured model of a mapped application 39

Figure 12 Describing the structured model of mapped application 39

Figure 13 Performance model block diagram for an example case 41

Figure 14 Example for vectors rdy, st, start, and fin 42

Figure 15 Example of vector load_unit 46

Figure 16 Pseudo code of the basic part of model 47

Figure 17 Block diagram of the Master 47

Figure 18 Flow chart of the Synchronizer (Part 1) 48

Figure 19 Flow chart of the Synchronizer (Part 2) 51

Figure 20 Pseudo code of Synchronizer 52

Figure 21 Examples for estimating earliest start time 53

Figure 22 Pseudo code of simulation Time Estimator 54

Figure 23 Block diagram of a Slave 55

Figure 24 Pseudo code of a Slave unit 57

Figure 25 Block diagram of a performance model example 58

Figure 26 Parameter values in a performance model during four simulation stages 59

Figure 27 Example of processing on an UMTS receiver base-station 64

XXXIV

Figure 28 Mapping Example 64

Figure 29 Probability density of the number of iterations 66

Figure 30 Average number of decoding iterations 67

Figure 31 One shot scheduling example 72

Figure 32 Pseudo code of one shot scheduling 72

Figure 33 Gradual scheduling example 74

Figure 34 Pseudo code of gradual scheduling 75

Figure 35 Average BER in case of one shot scheduling 79

Figure 36 Average BER in case of gradual scheduling 81

Figure 37 BER variance in one shot scheduling 82

Figure 38 BER variance in priority-driven one shot scheduling 83

Figure 39 BER variance in gradual scheduling 83

Figure 40 BER variance in priority-driven gradual scheduling 84

Figure 41 BER variance in case of 29 users 84

Figure 42 BER variance in case of 32users 85

Figure 43 BER variance in case of 35 users 85

Figure 44 Average BER in case of validation model and one shot scheduling 87

Figure 45 Average BER in case of validation model and gradual scheduling 88

XXXV

LIST OF SIGNS ANDABBREVIATIONS

ALU

ASIC

ATM

ave_add_err

BER

CDMA

CMOS

Com

CPU

CRC

DDR

Dep

DMA

DPCCH

DPDCH

DS-CDMA

DSP

DSSS

EDF

F

FBI

FDD

fin

FPGA

FS

GMII

GPIO

Arithmetic Logic Unit

Application Specific Integrated Circuit

Asynchronous Transfer Mode

Average number of additional bits in error

Bit Error Rate

Code-Division Multiple-Access

Complementary Metal-Oxide-Semiconductor

Communication part

Central Processing Unit

Cyclic Redundancy Check

Double Data Rate

Vector that describes dependencies between tasks

Direct Memory Access

Dedicated Physical Control Channel

Dedicated Physical Data Channel

Direct-Sequence Code-Division Multiple-Access

Digital Signal Processor

Direct-Sequence Spread Spectrum

Earliest-Deadline-First

Function

Feedback Information

Frequency Division Duplex

Vector that describes the completion time of tasks

Field-Programmable Gate Array

Flexible Scheduling

Gigabit Media Independent Interface

General Purpose Input/Output

XXXVI

HDLC

HW

IB

IDE

it-eff

it_max_perm

LLR

load_un.it

MAC

MAP

Mil

MIPS

MPSoC

NoC

OCT1010

OPERA

P

PBMT

PCCC

RACH

rdy

RM

RMn

PRACH

RRC

RSC

RS232

RTL

SCH

High-Level Data Link Control

Hardware

Iteration Budget

Integrated Development Environment

Effective number of iterations

Maximum permitted number of iterations

Log-Likelihood-Ratio

Vector that describes loading time of processors

Medium Access Control

Maximum-A-Posteriori algorithm

Media Independent Interface

Million Instructions Per Second

Multi-Processor System-on-Chip

Network-on-Chip

Octasic's platform including 15 Opus cores

Octasic Polytechnique ETS Radio Application

Processor

Performance Based Modeling Tool

Parallel Concatenated Convolutional Code

Random Access Channel

Vector that describes ready time of tasks

Rate-Monotonic

Reduced Media Independent Interface

Physical Random Access Channel

Radio Resource Control

Recursive Systematic Convolutional

Recommended Standard 232

Register Transfer Level

Synchronization Channel

http://load_un.it

XXXV11

SF Spreading Factor

SoC System-on-Chip

SPI Serial Peripheral Interface Bus

SR Synchronous Reactive

SR MoC Synchronous Reactive Model of Computation

st Vector that describes the earliest time for tasks' execution

start Vector that describes the execution starting time of tasks

sum_add_err Accumulated additional bits in error

SW Software

T Task

TDD Time Division Duplex

TDM Time-Division Multiplexing

t_exe Execution time of a task

TFCI Transport Format Combination Identifier

TLM Transaction Level Modeling

TPC Transmit Power Control

tskjunit Vector that describes assignment of tasks to processors

t_sim Simulation time

u Utilization of a task

U Total utilization

UMTS Universal Mobile Telecommunication System

Utopia An ATM protocol evolved into System Packet Interface

V Vector

VPC Virtual Processing Components

VPU Virtual Processing Unit

WCDMA Wide-band Code Division Multiple Access

WCET Worst Case Execution Time

3GPP 3rd Generation Partnership Project

1

CHAPTER 1

INTRODUCTION
Multi-Processor System-On-Chip (MPSoC) platforms can provide high

computational performance along with load balancing on a network of processors. Such

architectures are appropriate targets for the implementation of dynamic and

computationally intensive applications. High-performance multi-core Digital Signal

Processors (DSPs) are increasingly used for telecommunication equipments to process

voice, video, and radio signals. Since DSPs are software-driven, when sufficiently

powerful, they provide more flexibility than dedicated ASICs. Considering these

explanations, a multi-DSP platform is chosen as the target architecture in this project.

The target application in this project is the WCDMA (Wide-band Code Division

Multiple Access) process on the received data blocks corresponding to different users in

a Universal Mobile Telecommunication Systems (UMTS) receiver base-station. The

WCDMA makes possible that different users share a relatively wide spectral band using

coding instead of time slots. The WCDMA modulator is based on the spread spectrum

modulation technique which consists in multiplying the lower-rate data stream with a

higher rate (known as the chip sequence). In this project, we intend to implement a

UMTS receiver base-station including the corresponding WCDMA processes on a

multi-DSP platform.

Considering the real-time and dynamic characteristics of the target application,

and also the complexity of MPSoC design, it is necessary to have means of validating

the capacity (e.g. the traffic it can serve) and performance of the platform before

implementation, either to verify if a proposed MPSoC architecture is suitable for the

application or to determine the number of processors required to fulfill the requirements.

For these reasons, we have developed a dynamic modeling strategy for evaluating the

performance of MPSoC designs based on high level models of the application and of the

2

architecture. At this level of modeling, the application is represented as a set of tasks that

are to be performed, their resource requirements, such as execution times, release time,

etc., and the order in which the tasks are to be executed. Also, the architecture upon

which the application will execute is represented simply as a set of computational

resources and a communications fabric for transferring data between them. One

outstanding aspect of this model is that the functionality is retrieved directly from the

model, which speeds up characterization and system design. Such performance

modeling allows quick validation of the efficiency of strategies for mapping and

scheduling a complex application on the target platform before run time. The developed

modeling strategy can be utilized for any MPSoC design and it is not limited to the

target application of this project.

Afterward, we propose a method for mapping the different parts of the WCDMA

application on the platform. We focus specifically on the Turbo decoding process which

is a computationally intensive part of the WCDMA application and scheduling of this

kind of process is investigated in details. The Turbo decoding process is characterized

by a significant variability of the processing effort which makes the scheduling of such

process more critical. It is well known that real-time systems must provide responses

which are not only logically correct, but also temporally correct. In a real-time system, it

is very important that the tasks meet their deadlines. In such systems, one of the most

delicate design problems is the variability of tasks execution time. Due to such

variability, most scheduling algorithms used in uniprocessor or multiprocessor real-time

systems are based on the Worst Case Execution Time (WCET) of application tasks. The

WCET of tasks are constant, consequently the real-time system models become

deterministic, thus easier to understand and implement. The problem of such WCET

based design is that, in real-time applications with a significant variability of the

execution time, the scheduling analysis based on WCETs leads to low processor

utilization. In this project, some flexible scheduling methods are proposed for Turbo

decoding tasks which are highly advantageous comparing to the WCET scheduling

method. The proposed methods are inspired from the scheduling methods that deal with

3

flexible computations. The term flexible computation (or application) refers to a wide

class of applications that are designed and implemented to trade off, at run-time, the

quality of the results (services) they produce with the amount of time and resources they

use to produce the results. In particular, a flexible application can reduce its time and

resources demands at the expense of the quality of its results. For as long as the user

finds its quality result acceptable, a flexible application can degrade gracefully when

resources are limited and the demands of competing workloads are high. The proposed

scheduling methods in this project are adapted to the variability of the Turbo decoding

process and they dynamically adjust the processing effort during the execution while

keeping an acceptable quality of results.

There are several references on performance modeling methods in the literature

such as [10, 13, 15 and 25]. In this project, similarly to the mentioned references, a

performance model is structured, which is used to verify the execution time of

applications on the platform before implementation. The mentioned model has been

created using the Matlab/Simulink software and it is based on the structure of the target

application and platform. Unlike the proposed tool in [15], in this project, we consider

only the performance modeling while the developed environment is not used for design

purposes. Also, the modeling methods presented in [10, 25] are SystemC-based where,

in this project, the presented model is developed using the Matlab/Simulink software

which is the same environment that is used in our project to model and characterize the

target application.

Also, research has been published on the mapping and scheduling of Turbo

decoding on an MPSoC platform such as [6, 8, 18, 19 and 20]. In this project, similarly

to [6] and [18], scheduling of the Turbo decoding process for several encoded blocks on

the dedicated processors is studied. However, our scheduling methods allow much more

flexible degradation by considering dynamic iteration budgets, when compared to the

decoding degradation presented in [18]. Such processing degradation concept is not

considered in [6]. Unlike [8], [19] and [20], we consider that the Turbo decoder

4

algorithm consists of only one monolithic task and the Turbo decoding process on each

coded block is performed solely on one processor. Thus, the Turbo decoding process on

the individual processors is data independent, which reduces the data communications

between the processors. By allocating different encoded blocks on the individual

processors, we also exploit the platform parallelism.

This project is part of a project called OPERA which is a collaboration between

Octasic semiconductor, Ecole Polytechnique de Montreal and Ecole de Technologie

Superieure de Montreal. The objective of the OPERA project is to develop a

methodology for automatic mapping of a Simulink system-level model of the target

application to the Vocallo multi-DSP platform (platform designed and fabricated by

Octasic). Firstly, the target application must be modeled in the Simulink environment,

using C/C++, Matlab scripts or Simulink library blocks. Thus, using several tools, we

intend to effectively convert such a high-level Simulink model into low-level code

executable by the Vocallo DSP cores. Moreover, we will perform resource requirement

estimations which will let us determine an efficient strategy for mapping the obtained

low-level code of the application on the platform processors. Besides the mentioned

conversion process, the developed performance modeling methodology from my project

allows rapid execution performance verification to validate several mapping and

scheduling methods without any functional verification.

The rest of this thesis is organized as follows. Some basic concepts and a literature

review regarding our project are presented in Chapter 2. We first describe the UMTS

base-station and the WCDMA processing. Then, we describe the architecture of the

Vocallo multi-DSP platform which is used as the target hardware in this project.

Afterward, we present a literature review on performance modeling methods. Also, a

literature review is presented on mapping system-level models into MPSoC platforms

which describe the methods to combine system-level models and architecture-level

descriptions for MPSoC designs. Then, we present some basic concepts on

multiprocessor scheduling and synchronization. Also, we explain the WCET-based

5

design and the advantages and disadvantages of this method in a real-time system

implementation. Afterwards, we present some methods for scheduling flexible

applications which allow trading the quality of results for the amount of processing time

and the required resources. At the end of Chapter 2, we introduce a literature review on

the mapping and scheduling of Turbo decoding in an MPSoC platform.

In Chapter 3, the basic concepts of our proposed performance modelling

methodology and several steps of providing a performance model are described. The

proposed performance modelling methodology includes three steps of modelling to

create a final performance model of a given application and platform. In the first step,

we model the application which must be mapped to the target platform. The created

model at this step includes a chain of tasks representing different processing and also the

data transmissions in the platform. In the second step, we model the architecture of the

target platform as a set of units to represent different processors and also the

communication part of the platform. At the end of the second step, the created model

includes several units that represent the architecture of the platform where each unit

includes several tasks that represent the timing parameters of the processing or data

transmission. At the third modelling step, we consider another unit in the model which is

responsible for managing or synchronizing the tasks execution on different units.

In Chapter 4, we first discuss the concept of mapping the uplink WCDMA

processing corresponding to a UMTS base-station receiver on an MPSoC platform.

Afterward, we focus on the processors of the platform which are dedicated to perform

the Turbo decoding process. Then, the processing variability of the Turbo decoding is

discussed and the BER performance of such decoding is characterized. Then, we discuss

the processor scheduling methods dedicated to this process. We propose four flexible

scheduling methods which are adapted to the variable characteristics of the Turbo

decoding. In the proposed flexible methods, the resources assigned to each decoding

process are variable and some processing degradations may be imposed to the processes

in order to meet the timing constraints. To investigate the proposed methods, we utilize

6

our developed performance modelling methodology and we create a performance model

including the developed flexible scheduling methods and the tasks representing the

Turbo decoding processes. Simulating such a model provides the BER performance

results for the decoded blocks for the different scheduling methods. Comparing the

obtained results with a Worst Case Execution Time (WCET) design shows the

advantage of the proposed flexible scheduling methods in terms of improved processor

utilization. Finally, we present the elapsed simulation times in two cases of functional

and performance modelling of Turbo decoding.

In Chapter 5, a conclusion is given on the presented thesis and we summarize the

whole work and the obtained results. We present briefly the advantage of all proposed

scheduling methods compared to a WCET scheduling method to improve the processors

utilization, by indicating the significant increase in number of supported users and the

negligible amount of decoding degradations. Then, we present the advantage of utilizing

our developed performance model by indicating the ratio of simulation times in two

cases of functional and performance modeling. Finally, we present the future work of

this project.

7

CHAPTER 2

BASIC CONCEPTS AND LITERATURE REVIEW

2.1. Universal Mobile Telecommunication System
(UMTS)

In this section, some basic concepts of the third generation mobile

communication systems, called Universal Mobile Telecommunication System (UMTS),

and the involved processing are introduced. These third generation systems are designed

for multimedia communications to provide person-to-person communications with high

quality images and video, while access to information and services on public and private

networks can be enhanced by high data rates and new flexible communication

capabilities. The access scheme for UMTS is Direct-Sequence Code-Division Multiple-

Access (DS-CDMA). The information is spread over a band of approximately 5 MHz.

This wide bandwidth has given rise to the name Wideband CDMA or WCDMA. This

scheme supports two different modes namely:

1- Frequency Division Duplex (FDD): The uplink and downlink transmissions

employ two separated frequency bands for this duplex method. A pair of

frequency bands with specified separation is assigned for each connection.

2- Time Division Duplex (TDD): The Uplink and downlink transmissions are

carried over the same frequency band using synchronized time intervals.

Therefore, time slots in a physical channel are divided into transmission and

reception parts.

In the conventional UMTS terminology, the downlink transmission refers to the

transmission from a radio base station to one user and the uplink transmission refers to

the transmission from a user to the base station.

8

WCDMA allows different users to share a relatively wide spectral band using

coding instead of time slots. The WCDMA modulator is based on the spread-spectrum

modulation technique which consists in multiplying the lower rate data stream with a

higher rate one (known as the chip sequence). The baseband data spectrum is spread

according to a processing gain which is called the spreading factor (SF). In this way,

each user is allocated a spreading sequence used to transmit its narrowband data signal

over the broader spectral band. Each user is differentiated from other users by the given

spreading sequence which preferably should be orthogonal to the other spreading

sequences in use. The narrow-band signal can be recovered at the receiver using the

same mechanism.

WCDMA is the main third generation air interface in the world and is deployed

in many countries. The specification of WCDMA has been created in the 3rd Generation

Partnership Project (3GPP), which is a joint project of standardisation bodies from

Europe, Japan, Korea, the USA, and China. In the rest of this section, we provide a

description of layer 1 (also called the physical layer) of the radio access network of

WCDMA systems operating in the FDD mode [11].

2.1.1. WCDMA Physical layer

The physical layer, Medium Access Control (MAC) layer, and Radio Resource

Control (RRC) layer, which are called respectively layer 1, 2 and 3, are three principal

layers of a radio interface [27]. The physical layer is a fundamental layer upon which all

higher layers are based. It provides the physical signals to transmit the data. This layer

assures the appropriate preparation of data for transmission by applying the coding and

modulating operations. Since implementing the operations in the physical layer is the

case study of this project, we briefly describe the channel structure in this layer.

WCDMA defines several physical channels in both the downlink and the uplink placed

on the physical layer:

9

• The Dedicated Physical Data Channel (DPDCH) is used to carry dedicated data

generated at layer 2 and above.

• The Dedicated Physical Control Channel (DPCCH) carries layer 1 control

information.

Each connection is allocated one DPCCH and zero, one, or several DPDCHs. In

addition, there are some common physical channels defined as:

• Primary and secondary Common Control Physical Channels (CCPCH) to carry

downlink common channels.

• Synchronization Channels (SCH) for cell search.

• Physical Random Access Channel (PRACH) to carry the RACH (Random

Access Channel). The RACH is used in wireless access terminals such as mobile

phones when it needs to get the attention of a base station in order to initially

synchronize its transmission with the base station.

2.1.2. Frame structure for uplink DPDCH/DPCCH

Communications between a base station and users require a time reference in

order to synchronize the physical connection. In a WCDMA air interface, time is divided

into radio frames of 10 ms (38400 chips) which are numbered from 0 to 4095. It is

mentioned that a chip is a pulse of a Direct-Sequence Spread Spectrum (DSSS) code,

such as a pseudo-noise code sequence used in Direct-Sequence Code Division Multiple

Access channel access techniques. In a binary direct-sequence system, each chip is

typically a rectangular pulse of +1 or -1 amplitude, which is multiplied by a data

sequence (similarly +1 or -1 representing the message bits) and by a carrier waveform to

make the transmitted signal.

Each radio frame is then subdivided into 15 radio slots (2560 chips). The data

stream, or DPDCH, is mapped to the radio slots. The data bit stream lengths vary from

10

10 bits, for a Spreading Factor (SF) of 256, up to 640 bits for a SF of 4. The control

stream, or DPCCH, is also mapped to the radio slot. The associated bit stream length is

always 10 since the SF is set at 256. Up to 8 bits are reserved for the pilot sequence to be

used in the channel estimation algorithm. Additional control bits are transported in this

frame for physical layer purposes. For example, the Transmit Power Control (TPC) bits

are responsible for controlling the power of the signal to be transmitted. The Transport

Format Combination Identifier (TFCI) informs the receiver of the current structure of

the transmitted transport channel. Also, Feedback Information (FBI) bits are to be used

to support techniques requiring feedback. Fig. 1 shows the frame structure uplink

DPDCH/DPCCH. [31].

DPDCH Data: N bits
data

T. = 2560 chips, N = 10* 2k bits k=(1. .6)
slot ^ t a

DPCCH Pilot: N bits h"FCI:N bits
pilot •rcn

FBI:N bits
FBI

TPC:N bits
TPC

Tsbt=2560 chips, 10 bits

Slot #0 Slot # i Slot #14

1 radio frame: T =10 ms

Figure 1 Radio frame structure for uplink DPDCH/DPCCH [31]

2.1.3. Processing in a WCDMA/FDD radio base station

A description is presented on the processing flows performed in both downlink

and uplink parts of a WCDMA/FDD radio base station which is based on references [29,

30].

11

2.1.3.1. Downlink processing flow

The downlink processing is relatively straight forward. The base station transmits

a set of downlink physical channels, typically one for each terminal, plus a set of

common channels. All the common channels are transmitted to all users within the reach

of the base station. Fig. 2 shows the data flow for downlink user data processing. As

explained before, incoming data from the media access control (MAC) layer includes

two different streams. One is the DPDCH for data and the other is the DPCCH. Cyclic

Redundancy Check (CRC) and forward error correction coding is firstly added to the

streams. These are then sent through a rate matcher that assures that the data rate of the

stream matches the requirements of the physical layer. The stream is then interleaved,

segmented into slots, and interleaved again. Finally, the stream is mapped and spread to

the chip rate and output to the radio frontend.

DPDCH

DPCCH

CRC16

CRC12

Radio frame

segmentation

—*

— •

—»

Viterhi/Turbo

Viterbi

2nd

interleave

— •

— •

Rate

Matching
—*

Signaling

1st

interleave

Spreading
mapping

To

Figure 2 Downlink transmission flow [29]

2.1.3.2. Uplink processing flow

The uplink processing flow is similar to the downlink flow but involves a much

higher computation load. Fig. 3 shows the processing flow for the uplink reception. First

in the flow is the multipath combination, which is based on a multipath search filter and

a Rake receiver working in cooperation. Since each terminal will experience different

12

multipath propagation conditions, this will require the use of one multipath searcher and

combiner per terminal in the base station. The Rake receiver will sum the multiple paths

and de-spread the incoming signal. The recovered stream will then be sent through

deinterleaving, followed by reverse rate matching. It is then sent through radio frame

reassembly and a second deinterleaver before the forward-error-correction decoding is

used to restore the received data, which is then sent to the MAC layer.

From RF

' >

RftKP

Multipath

search

i •

•
2nd

deiivterleave
— p Rate

matching
— P

Radio frame

reassembly

1 •
1st

deiirter leave

— •

— P

Viteibi Turbo

Vrterbi

CRC16

CRC12

DPDCH

DPCCH

Figure 3 Uplink transmission flow [29]

2.1.4. Channel Coding

The main purpose of channel coding is to introduce redundancy into the

transmitted data to improve the wireless link performance. Channel codes can be used to

detect as well as correct errors. The WCDMA systems have provision for both error

detection and error correction. The channel coding scheme in a WCDMA system is a

combination of error detection, error correction, along with rate matching, interleaving,

and transport channels mapping onto/splitting from physical channels [30]. Error

detection is provided by a Cyclic Redundancy Check (CRC) code while there are two

alternatives for error correction schemes specified for the WCDMA. The error

correction schemes are convolutional coding and Turbo coding. For standard services

that require BER up tolCT3, which is the case for voice applications, convolutional

13

coding is applied. For high-quality services that require BER from 10"3 to 10"6, Turbo

coding is used.

2.1.4.1. Turbo coder

A Turbo coder uses a Parallel Concatenated Convolutional Code (PCCC) which

is implemented with two identical 8-state Recursive Systematic Convolutional (RSC)

encoders and with an interleaver [28, 30]. In Fig. 4, the structure of a Turbo encoder

with coding rate of 1/3 is illustrated. As specified by the UMTS standard, the Turbo

decoder can encode a data block with a maximum of 5114 bits. The number of bits in a

data block to be encoded is represented by the parameter K.

*• xb

1 constituent encoder

©— z.

; Internal %
interleave!5: 2 constituent encoder

€ ^
OH

... *\

Figure 4 Turbo encoder structure [30]

The output of the encoder includes three binary streams, namely x, z and z',

which are multiplexed in time. The resulting stream is organized according to equation

1. The x stream (or systematic code) corresponds to the original input bit sequence d

which is associated to the k index. The z and z' streams represent the parities generated

by the first and second RSC respectively. The input sequence of the second RSC is

block-interleaved to ensure coding diversity.

14

Encoder output — xl,zx,z\ ,x2 ,z2 ,z ' 2--,xK,ZK,z'K (1)

Because the convolutional decoder algorithms require the knowledge of the

initial and final states of the encoder, additional bits must be attached to the message so

as to recover the transmitted information. This technique is known as Trellis termination

and permits the decoder to benefit from past and future indications. The initial and final

states of the RSCs before and after the processing of a block of data are zero. In the Fig.

4 example, three zero-valued bits are shifted to each RSC to converge towards state zero

(the switches are in the lower position). Also, the input and output bit termination

streams of both RSCs must be attached to the end of the encoded information (equation

1) in accordance to equation 2.

Termination stream =

XK+]>ZK+\>XK+2>ZK+2>XK+3>ZK+3>X K+\ ' ^ K+\ >X K+2 ' ^ K+2 ' •* K+i ' 2 K+3 \ ^ t

Each bit of the encoded information, defined by equations 1 and 2, must be

formatted into symbols before transmission through the channel. This formatting, known

as mapping, consists in the transformation of a logical level 1 and 0 into a value of +1

and -1 respectively. The resulting encoded symbols have the notation defined by

equation 3.

Encoded symbols = ul,cl,c\,u2,c2,c'2...,uK,cK,c'K (3)

Where:
Uk : symbol mapping of k, the systematic binary sequence
c* : symbol mapping of '*, the parity sequences generated by the RSC 1
c' z'

k : symbol mapping of *, the parity sequences generated by the RSC2

15

2.1.4.2. Turbo decoder

Fig. 5 illustrates the classic iterative structure based on the Maximum-A-

Posteriori algorithm (MAP) of a Turbo decoder. The decoder is made of two MAP

decoders, namely MAPI and MAP2, which are dedicated to the processing of the

received parities (c and c'). Each MAP decoder has three soft-quantized inputs, which

are the systematic transmitted symbol u, the parity c or c', and the a priori reliability

information attached to the transmitted symbol u at time k.

The MAP decoder has a single soft output: the a posteriori, or refined, reliability

information. This reliability information is known as the extrinsic Log-Likelihood-Ratio

(LLR). As for the encoder, the function of the interleaver/deinterleaver, *' * , is used to

introduce statistic diversity between symbols in the c and c' sequences. The properties of

the interleavers considerably affect the Bit Error Rate (BER) performance of the Turbo

decoder [2, 23].

-
uk

I *
ck *•

L"

MAPI

2

L ' l M n
— — * • I

| L\ MAP 2
Le2M-j=r

• / —'

.Hard
decision

dk

Figure 5 Generic Turbo decoder architecture [4]

A received block of symbols is first demultiplexed to reconstruct both the

systematic and the parity sequences (u, c and c'). The MAP 1 decoder generates the a

posteriori LLR, Lel, based on the u and c sequences and the a priori LLR (the

deinterleaved version of L"2). The L"2 are initialized to zero because they are not

defined for the first iteration. The MAP 2 decoder then evaluates the associated a

posteriori LLR, Le2, using the c' parity and the interleaved version of u and L"l. These

two consecutives MAP processing steps constitute an iteration of the Turbo decoding. A

16

Turbo decoder typically requires between 4 and 8 complete iterations to converge and to

provide a reliable LLR. The estimation of each bit d is recovered by extracting the sign

of each element of the LLR sequence Le2.

The needed number of decoding iterations strongly depends on the channel's

conditions. Furthermore, if the received symbols are distorted, additional iterations are

necessary to achieve convergence of the LLR. Because a single iteration involves a large

amount of processing, various strategies have been developed to terminate the decoding

procedure as soon as the LLR is reliable. Common termination criteria include a

threshold based on the LLR energy after a minimum number of iterations or a

comparison of the MAP decoder 1 and 2 decoded LLR between iterations [5].

2.2. The Vocallo architecture [21]

Very high-performance multi-core Digital Signal Processors (DSPs) are

increasingly used for telecommunication equipments to process voice, video, and radio

signals. The current generation of multi-core DSPs has enhanced processing capabilities

compared to the previous ones. These new DSPs can replace solutions that previously

could only be implemented using dedicated ASICs or DSP-ASIC combinations. Since

DSPs are software-driven, when sufficiently powerful, they provide more flexibility than

dedicated ASICs.

In this section, we describe briefly the architecture of the Vocallo multi-DSP

platform which is provided by Octasic Semiconductor Company. Vocallo is a

multiprocessor solution which is used to implement the voice, video, and data over IP

applications. This solution is delivered in a 15 core, 1.5GHz, low power DSP, based on

Octasic's Opus core architecture. Vocallo has a modular and packet-based software

architecture which allows designers to write their own software to extend or replace the

original software provided by Octasic. The Opus platform, on which Vocallo is built,

includes an integrated development environment (IDE) consisting of a standard C

compiler, a visual editing environment, a profiler and a debugger adjusted for multi-core

17

DSPs. The Opus kernel ensures scheduling of modules in a protected-memory and

property secure environment for blending modules provided by Octasic with user

modules. The Vocallo solution permits several interfaces to match user requirements.

The interfaces such as Mil, RMII, GMII, UTOPIA, TDM, and HDLC are supported in

Vocallo.

The Opus instruction set includes both traditional DSP functions as well as header

processing and task management code. For example, in Vocallo, Opus includes

optimized voice and video instructions to support media applications. Also, Opus is

implemented with a clock-less architecture to attain new levels of performance per watt.

The block diagram representing the Vocallo architecture is presented in Fig. 6. The Opus

architecture includes a distributed kernel that abstracts processes from cores. Since it is a

homogenous 15-core device, functions are not bound to a specific core or HW

functionality. Thus, the total performance of the device can be focused on the required

feature set. Also, the kernel allows application-controlled core affinity to minimize

memory movement.

18

Hra|S»ff

* «T 38E3SEKT3BS. X ' ;

V Controller';:

E s i -^m»s»;^ii»»*«ps r̂ sKSBswrwasrcTr";"̂ .' =>«»,". ress

3 & $ i

S8K?3«aBBC5Sa|K3BlS •—•^sjzir-.- » , |

W&'-Mefnery.;
:.;Costr«ller

0CT1010ID
(I/O Interface Device)

0CT1010 (Processinq Device)

Figure 6 Block diagram of Vocallo architecture [21]

2.2.1. Internal architecture

As previously explained, the Octasic Vocallo device includes an array of DSP

cores that are referred to as Opus cores. As shown in Fig. 6, the cores are organized in a

3x5 array and each Opus core includes a 96Kbyte cache memory coupled with a DMA

device. The DMA performs direct access between any core and the external memory.

When needed, it is possible to disable the cores in the center column, in which case, their

cache memory is shared equally between their left and right neighbours (thus adding

48Kbytes of cache to each of them).

The Opus processor core is a Digital Signal Processor that supports both fixed-

point and floating-point instructions. Such DSP includes the following elements:

19

- 96 Kbytes cache memory

16 identical Arithmetic Logic Units (ALUs) which operate in parallel

64 general-purpose register banks (32-bit registers)

- Extended ALU subsystem for specialized instructions

All logic and arithmetic operations are performed using the data registers. The

cache memory contains both, the data and program memory of the processor.

2.2.2. External architecture

The external interface to the mobile DDR memory has the capacity of 32 bits at

166 MHz. The DDR is shared with the cache memories of the Opus cores and also the

Input/Output (I/O) interfaces. All the external I/Os are provided by an FPGA.

2.2.3. Power and Performance Optimizations

Flexible, adaptable, and field programmable DSPs used in access and

infrastructure equipments typically consume more power and area than their less nimble

counterparts such as dedicated ASICs or DSP-ASIC combinations. In modern chips,

power dissipation is caused by both static and dynamic phenomena (leakage and

switching operations, respectively). A power crisis arises in CMOS technology in 90nm

and below. There are various design techniques that can be used to alleviate this power

crisis. These techniques vary from very simple to extremely complex and offer a wide

range of possibilities for improvement. Some of these techniques are used in Opus and

have yielded 4:1 MlPS/power comparative advantage over other leading-edge DSPs in

real-life signal processing applications.

2.3. Performance modeling

We intend to study how an application should be scheduled on a network of

processors and resources and if such a system meets all the timing requirements. In order

to speed up the analysis, we do not want to analyze the specific details about the

20

application and also the properties of the system resources. We intend to use a model

which abstracts away the details on the application and the system resources. Such a

model allows us to focus on the timing properties and the resource requirements of the

system components. By describing the algorithms and methods to validate the timing

constraints of system abstractly, we can better take advantage of their general

applicability.

In [15], a modeling and design environment is proposed to allow performance

modeling of hardware/software systems. One portion of the design environment consists

of a tool for performance modeling of the application (the software) and the architecture

it is to execute on (the hardware). In this tool, the computations are characterized by a

compute time and the send and receive processes are characterized by an amount of data

to be sent. The architecture upon which the application will execute is represented as a

set of computational resources and a communications fabric for moving data between

them. In [10], an integrated performance based modeling tool (PBMT) is presented. In

this tool, the real-time applications are modeled using task graphs specified as control

flow and/or data flow. The application model is executed on a variety of SystemC

architectures for performance analysis. The task graph of an application model is

described using a graphical editor written in Java.

A SystemC-based simulation framework is proposed in [13], which enables the

evaluation of application-to-platform mappings by means of an executable performance

model. In this framework, the application is first represented as a set of untimed reactive

SystemC tasks communicating through a unified Transaction Level Modeling (TLM)

interface. Next, the processing requirements of each individual task are characterized.

Finally, the concept of a Virtual Processing Unit (VPU) is introduced to capture the

impact of shared processing elements to the SoC performance. In [25], a framework is

proposed, called Virtual Processing Components (VPC), which permits task-accurate

performance simulation of applications mapped onto a real-time multi-processor

architecture in SystemC. In the VPC framework, the shared hardware resources, like

21

processors, busses, and memories, are modeled as Virtual Processing Components. Also,

each Virtual Processing Component is configured with a scheduling strategy.

2.4. Mapping the system level models into MPSoC
platforms

In this section, we describe known methods to combine system level models and

architecture level descriptions for MPSoC designs. In [1], a system level design is

presented for rapid prototyping of MPSoC starting from a Matlab/Simulink

specification. In the mentioned paper, an approach is proposed to create a bridge

between the system level specification and the HW/SW architecture at the

implementation level. The approach considers system-level specification, multi-level

validation, algorithm exploration, refinement, and prototyping generation. The presented

design flow combines different languages and tools, such as Simulink, Colif, and

Interface generators of Roses, to reach the RTL level. The developed tool fills the gap

between Simulink (simulation and validation environment of the applications) and the

architectural representation of applications.

Reference [22] proposes an integrated methodology for system design and

performance analysis of MPSoC designs. An analytic approach, based on neural

networks, is used for high-level software performance estimation which is realized by

Matlab software. At the functional level, this analytic tool enables performance

evaluation of the considered processors. Thus, the tool refines hardware and software

interfaces to provide a bus-functional model. Then, a virtual prototype is generated from

the bus-functional model, producing a cycle-accurate simulation model. Such work

combines an analytic approach at the functional level and a simulation-based approach

at the bus-functional level.

Reference [24] presents a framework for static, analytical, bottom-up temporal

and spatial mapping of applications onto MPSoC platforms. The proposed mapping

framework permits easy performance evaluation and design space exploration of

22

heterogeneous systems on chip. Such mapping of applications to a given heterogeneous

MPSoC enables not only performance analysis but also refining the system. In the

mentioned study, the structure of a framework for automatic mapping is outlined and it

is shown that the mapping problem can be treated as a packing problem which can be

solved using existing optimization software.

In [9], a software code generation flow based on Simulink is presented to address

the problems for software programming on multiprocessor platforms. A functional

modeling style is proposed to describe data and control dependent target applications,

and a system architecture modeling style is used to transform the functional model into

the target architecture. At the system architecture modeling style, the functional model

is partitioned into a set of multiple communicating threads on multiple CPU subsystems,

which corresponds to the given target architecture. Both functional and system

architecture models are described using Simulink. From the system architecture

Simulink model, a code generator produces multithreaded code, including thread and

communication primitives to abstract the heterogeneity of the target architecture. Also,

the multithread code generator applies dataflow based memory optimization techniques,

considering both data and control dependency.

In [17], some challenging issues are studied in design space exploration of

efficient Network-on-Chip (NoC) designs, especially on the application mapping and

scheduling problems. The research mainly focuses on the static analysis of system

designs through design space exploration that exploits efficient techniques to solve the

application mapping and scheduling problems. The optimization targets can be the

synthesis of application mapping, routing and scheduling, as well as network topology.

Also, the optimization objectives could be communication latency, application end-to-

end delay, and system power dissipation. Also, runtime system management, by online

dynamic analysis and scheduling, is studied.

23

In [26], a design flow is presented that goes from Simulink models to prototypes

of mixed hardware/software implementations of these models. The work includes three

parts: (1) transformation of a functional model, given in MATLAB/Simulink, into a

synchronous reactive model of computation (SR MoC), (2) an automatic SystemC code

generation from Simulink models using the SR MoC, and (3) a semi-automatic

prototype generator for heterogeneous hardware/software systems implementing the

iteration scheduling for SR models. The SR model of computation complements the

modeling front-end of the platform-based design flow. The mentioned paper presents a

basic mechanism to implement SR models on heterogeneous platforms that can be

integrated to the design flow. A transformation step from Simulink models to SR models

permits automatic implementation of mixed hardware/software designs from functional

Simulink models.

2.5. Multiprocessor scheduling and synchronization

In this section application implementations on the multiprocessor platforms and

some scheduling and synchronization concepts in MPSoC environments are discussed

based on the reference [16]. If we consider the target application as a set of related tasks,

task assignment in a multiprocessor environment is one of the problems to be studied.

Control and data dependencies cause constraints between the tasks, and timing

constraints of tasks are usually dependent. Most real-time systems with critical timing

constraints are built statically, that is, tasks are partitioned and statically bound to

processors. The task assignment problem is concerned with how to partition the system

of tasks to be assigned to the processors. Another problem is the interprocessor

synchronization problem. A synchronization protocol must be used to guarantee that

task precedence constraints on different processors are always satisfied. We consider the

cases where a multiprocessor system is tightly coupled so that global status and loading

information on all processors can be updated at a low cost. The system may include a

central dispatcher/scheduler. When each processor has its own scheduler, the decisions

and actions of the schedulers of all the processors must be coherent.

24

2.5.1. End-to-End system functions
The target application may include several system functions where each function

can be presented by a set of related tasks. The tasks are described by their release time

and deadline, which are independent except for resource conflicts. The tasks in each

system function may have some precedence constraints. Here, it is supposed that the

precedence graph of each system function is a chain. This simplifies the discussion and

covers a wide range of practical situations. As an example, Fig.7 shows a system

function including a chain of m tasks. The system functions have arbitrary release times

and deadlines, and some functions have hard deadlines. Meeting hard deadlines is

always considered the primary objective.

The timing constraints extracted from the high-level requirements of the

applications are end-to-end in nature. They determine the release time and deadline of

each function as a whole. Formally, the release time of a system function is considered

as the release time of the first task of the function. Also, the deadline of the function is

the deadline of its last task. It is not important when the other tasks of the function

complete as long as the last task completes by the function's deadline. The execution of

these tasks is constrained only by the dependencies between them and by the fact that

they must complete sufficiently early to allow the on-time completion of the last task.

Since the timing constraints of such a function are imposed on the tasks at the two ends

of the function, they are called end-to-end release time and end-to-end deadline. A

function that has an end-to-end release time and end-to-end deadline is an end-to-end

function.

/fasfc\ > / f 5 i \ >/fas&j w ,/f3c\

Figure 7 Example of a system function

25

An end-to-end function in a multiprocessor system may be periodic. An end-to-

end function is periodic with period p. if a chain of m(i) tasks is released every pi units

of time and the tasks in the chain execute in turn on processors based on the tasks

assignments. The first task of the end-to-end periodic function is a periodic task with

period pi. The other tasks of the function may or may not be periodic, depending on the

method used to synchronize the tasks on different processors.

2.5.2. Elements of scheduling algorithms for end-to end
periodic functions

We now present some elements of scheduling the end-to-end periodic functions

in a multiprocessor environment. We suppose that each end-to-end periodic function

requires resources of more than one processor and that each function includes a chain of

tasks which execute in sequence on different processors. Also, each task needs only

resources local to the processor on which the task executes. Specifically, a system is

now considered which includes n processors, Pj for j = 1, 2, ..., n, and m periodic

functions, Ft for i = 1, 2, ..., m. Each function Fj has m(i) tasks, Tjk, for k= 1, 2, ...,

m(i). These tasks execute in turn on different processors according to the vector c, of

function/v, c, = (Vn,Vj2, ..., Vim{!)) where Vjk = P. indicates that the kth task Tjk

executes on processor Pj. Each vector c is called also the visit sequence of the

corresponding function F . The mentioned example is shown in Fig. 8.

26

r

Platform -i

(JiHj^H

Application < i*] '.

I F •

Task assignment

based on visit sequences

Pi Pi

*X^m

- < Q

9̂

Figure 8 Example of a system including m functions and n processors

The two basic components of any end-to-end scheduling scheme are (1)

protocol(s) for synchronizing the execution of tasks on different processors in such a

way that precedence constraints among tasks are maintained and (2) algorithms for

scheduling tasks on each processor.

2.5.3. Interprocessor synchronization protocols

A protocol that governs when the schedulers on different processors release their

assigned tasks is called an interprocessor synchronization protocol. A synchronization

protocol never permits the violation of any precedence constraint among the tasks. There

are different types of synchronization protocols such as greedy and non-greedy

protocols. With a greedy protocol, each task is released on its corresponding processor,

as soon as its immediate predecessor task completes. According to a non-greedy

synchronization protocol, the scheduler may delay the releases of tasks. The objective is

27

not only to guarantee that precedence constraints are met but also to shape the release-

time pattern of every successor task so that a task behaves like a periodic task if it

belongs to a periodic function. One approach in the non-greedy synchronization protocol

is to make all tasks periodic. Different kind of non-greedy protocols have been

implemented such as the phase-modification protocol, the modified phase-modification

protocol, and the release-guard protocol.

2.5.4. Scheduling the tasks on one processor

In this section, the uniprocessor scheduling algorithms for periodic tasks are

discussed. There are some well-known priority-driven algorithms for scheduling

periodic tasks on a processor which are introduced here. A simplifying assumption is

made that the assigned tasks on the processor are independent.

A priority-driven scheduler (a scheduler that schedules tasks according to some

priority-driven algorithm) is an on-line scheduler. It assigns priorities to tasks after they

are released and places the tasks in a ready task queue in priority order. At each

scheduling decision time, the scheduler updates the ready task queue and then schedules

and executes the task at the head of the queue. The priority-driven algorithms for

scheduling periodic tasks are classified into two types: fixed priority and dynamic

priority. A fixed-priority algorithm assigns the same priority to all instances of each task.

In other words, the priority of each periodic task is fixed compared to the other tasks. In

contrast, a dynamic-priority algorithm assigns different priorities to different instances

of each task. Thus, the priority of each instance of task with respect to that of the other

tasks can change.

A well-known fixed-priority algorithm is the rate-monotonic (RM) algorithm.

This algorithm assigns priorities to tasks based on their periods: the shorter the period,

the higher the priority. A well-known dynamic-priority algorithm is the Earliest-

Deadline-First (EDF) algorithm which assigns priorities to individual instances of a task

based on their absolute deadlines. A criterion which is used to estimate the performance

28

of algorithms used to schedule periodic tasks is the schedulable utilization. The

schedulable utilization of a scheduling algorithm is defined as follows.

A scheduling algorithm can feasibly schedule any set of periodic tasks on a

processor if the total utilization of the tasks is equal to or less than the schedulable

utilization of the algorithm. Clearly, the higher the schedulable utilization of an

algorithm is, the better the algorithm. The ratio w, = ei/pi is called the utilization of a

periodic task Ti where e, and pt are respectively the maximum estimated execution

time and the period of the task, M, is equal to the fraction of the time a periodic task with

period /?, and execution time ei uses the processor. The total utilization U of all the

tasks on the processor is the sum of the utilizations of the individual tasks in it. Since no

algorithm can feasibly schedule a set of tasks with a total utilization greater than 1, an

algorithm whose schedulable utilization is equal to 1 is an optimal algorithm which

provides the total utilization of the resource.

2.6. Worst Case Execution Time (WCET) based design

One critical subject in the real-time systems is to insure that the timing deadlines

for providing the system responses are respected besides providing the logically correct

results. Therefore one delicate design problem in such systems will be the variability of

the tasks execution time. Considering such variability, most scheduling algorithms used

in uniprocessor or multiprocessor real-time systems are based on the worst case

execution time (WCET) of tasks [12]. Due to such variability, most scheduling

algorithms used in uniprocessor or multiprocessor real-time systems are based on the

worst case execution time (WCET) of tasks [12]. The WCET of tasks are constant,

consequently the real-time system models become deterministic, thus easier to

understand and implement. All analytical methods used by real-time application

designers produce only estimates of the WCETs. The actual execution times usually

remain unknown, until the tasks complete their execution. The problem of such WCET

based design is that, in real-time applications with a significant variability of the

29

execution time, the scheduling analysis based on WCETs leads to low processor

utilization [12]. Considering the significant variability existing in the processing effort

of the target application and in order to improve the resources utilization, in this project,

we use more precise execution time estimates for scheduling the application instead of

WCET estimates.

2.7. Scheduling flexible applications

In this section, we describe some flexible computation techniques based on [16].

The term flexible computation (application) refers to a wide class of applications that are

designed and implemented to trade off, at run-time, the quality of the results (services)

they produce for the amount of time and resources they use. In particular, a flexible

application can reduce its time and resources demands at the expense of the quality of its

results. As long as the user finds its result quality acceptable, a flexible application can

degrade gracefully when resources are limited and the demands of competing workloads

increase. There are different methods to implement flexible applications with firm

quality.

One way to make an application adaptable to change in resource availability and

competing demands is to structure each task so that it has an optional component. The

optional component execution is not necessary for the task to produce an acceptable

result. In contrast, the part of the task that must be completed in time is called

mandatory. When there are enough resources, the optional component is also executed

before the task's deadline. If the optional component, or a portion of the optional

component, is not completed, the result quality of the task degrades. A result with an

acceptable but degraded quality is an imprecise result. Depending on the characteristics

of flexible applications, different implementation methods such as sieve, milestone and

multiple versions can be used. For example, in the multiple-version method, each

flexible task is considered to have a primary version and one or more alternative

version(s). Algorithms for scheduling flexible applications have two objectives. The first

30

is to ensure that each task will produce an acceptable result on time. The second

objective is to maximize the result quality of each flexible application. In references [3,

7 and 14], some scheduling algorithms are proposed to deal with imprecise computation

models.

There are many methods to quantify the quality of result of individual tasks, and

different quantifications give us different performance criteria. The quality of result of a

given task is typically measured in terms of the error in the result. The error in a result is

the distance between the result and the desired, precise result. Many algorithms for

scheduling flexible applications try to minimize total error, average error, or maximum

error of all tasks in the system. These performance measures are called static quality

metrics. Such static metrics are not applicable where the effects in results produced by

periodic tasks are cumulative. For example, in the case of periodic tasks with mandatory

and optional components, if the optional component of tasks in a number of consecutive

periods is not executed, the optional component of a subsequent task may no longer be

optional. Such periodic tasks are called error-cumulative tasks. In systems that include

error-cumulative tasks, the scheduling algorithms use the cumulated error of tasks as the

performance metrics.

2.8. Mapping and scheduling of Turbo decoding in
MPSoC platforms

In this section, we present some studies about mapping and scheduling of Turbo

decoding process on several processors. In [6], a decode apparatus including an array of

Turbo decoders is presented to decode a plurality of encoded messages received over a

noisy transmission link. An analyzer is considered to indicate the received signals

strength and to measure the carrier-to-noise ratio of the signal. Using a look up table, the

optimized number of decode iterations for each message is extracted depending on the

channel condition. One scheduler means is considered for scheduling demodulated

message packets to each of the plurality of decoder processors, depending upon the

estimated optimum number of decode operations. Allocation of the message packets to

31

the plurality of decode processors is made to optimize overall utilization of the decode

processors.

In [18], a method is presented for scheduling a decoding process of coded data

blocks transmitted over a communication link on several decoders. According to the

method, the coded data blocks are stored in a queue if all decoders of iterative parallel

decoders are unavailable. When any of the decoders is available, the first coded block of

the queue is moved to the decoder. The presented scheduling method improves the

resource utilization by automatically adapting the maximum number of decoding

iterations in the decoders depending on the bit rate received. In this way, the possibility

of supporting high bit rates with a limited number of decoders is provided by applying

some degradation of decoding process which is achieved by decreasing the maximum

number of decoding iterations.

In [8], [19], and [20], a multiprocessor based Turbo decoder implementation is

investigated. In these investigations, the Turbo decoder algorithm is considered as a set

of parallel parts which are mapped to several processors. The implemented algorithm

parts have data dependencies, which impose data communications between the

processors. These studies propose hardware architectures adapted to the parallelization

of the Turbo decoder algorithm for reducing the communication latency between the

processors during execution.

2.9. Conclusion
In this chapter, we presented some basic concepts and literature reviews relating to

our project where its contents will be referred during the next chapters of this thesis.

Firstly, we described the UMTS base-station and the WCDMA processing. Thus the

downlink and uplink WCDMA processing flow which should be applied to the

respectively transmitted and received data blocks in a UMTS base-station were

explained. Afterward we introduced the channel coding in the wireless

telecommunication systems and specifically the Turbo coding/decoding was described

32

which was utilized to provide high-quality services. In this way, we presented a

description of the target application of this project.

Then we described the architecture of the Vocallo multi-DSP platform which is

used in this project. Afterward we presented a literature review of the references [10, 13,

15 and 25] which described some developed methods of performance modeling. All the

mentioned references included the concepts such as tasks to represent different parts of a

target application, some temporal parameters which were assigned to the tasks and also

individual units to represent different parts of the target platform. In Chapter 3, we will

present that our proposed methodology of performance modeling utilizes the similar

concepts mentioned in [10, 13, 15 and 25] but with using different development

methodology.

Also we presented a literature view of some references on mapping the system

level models into MPSoC platforms which was the subject of the main OPERA project.

The mentioned references described the methods to combine system level models and

architecture level descriptions for MPSoC designs. Afterward we presented some basic

concepts on the multiprocessor scheduling and synchronization. For this purpose, we

introduced the end-to-end system functions and the elements of scheduling algorithms

for end-to-end periodic functions where each function was represented as a chain of

tasks. Thus, we introduced some interprocessor synchronization protocols and also the

methods for scheduling the tasks on each processor. These presented concepts will be

referred in Chapter 4 to explain our proposed method of mapping and scheduling the

uplink WCDMA processing on the MPSoC platform.

Then we explained the WCET based design and the advantage and disadvantage

of such method in a real-time system implementation was described. Afterward we

presented some methods for scheduling the flexible applications which allowed to trade

off the quality of results for the amount of processing time and the required resources.

Our proposed flexible scheduling methods in Chapter 4 will be inspired from these

presented methods for scheduling of flexible applications. Afterwards we presented a

literature review of the references [6, 8, 18 19 and 20] on the mapping and scheduling of

33

Turbo decoding in an MPSoC platform. In Chapter 4, we will propose some methods for

scheduling the Turbo decoding processes on an MPSoC platform which provide much

more flexible degradation of the decoding and consequently more utilization of the

resources compared to [6, 18]. Also unlike to [8, 19 and 20], we will consider that the

Turbo decoder algorithm consists of only one monolithic task and the Turbo decoding

process on each coded block is performed totally on one processor. Thus the Turbo

decoding process on the individual processors will be data independent which reduces

the data communication between the processors.

34

CHAPTER 3

PERFORMANCE MODELING
As mentioned earlier, we strongly need to devise a performance model for

estimating the execution time of applications on the platform before their

implementation. For this reason, we propose a performance modelling methodology

based on a Matlab model which includes the application execution timing characteristics

and the high level primitives of the platform. It is assumed that the execution timing

characteristics of different parts of an application have been extracted before (using, for

example, the simulator of the target platform) and are introduced in the performance

model. Simulating such Matlab model emulates the execution time of different parts of

the application which gives the final execution performance without requiring any

functionality examination. In this way, the model provides rapid estimation of execution

performance which allows validating the different strategies for mapping and scheduling

of applications on the platform. Also, the model makes it possible to estimate the

capacity of the platform to support the requested traffics while providing the statistical

analysis on the services provided by the system.

In this chapter, we first describe the proposed performance modelling method

which is divided into three steps. After that, we describe the functionalities of different

parts of the proposed performance model in more details. Then, a model example is

presented and some simulation results for that example are described. These simulation

results are used to provide more explanations on estimating the timing parameters in a

performance model. A conclusion is provided for the presented concepts in this chapter.

3.1. Steps to create a performance model

The proposed performance modelling methodology includes three steps of

modelling to create a final performance model of a given application and platform. At

each modelling step, some software and hardware elements of the system are modelled

35

which allow developing a complete model of the system. In the first step, we model the

application which needs to be mapped on the target platform. The application must be

partitioned into several processing segments and these segments should be assigned to

different processors of the platform. Thus, in the first step of our modelling process, all

the processing segments are described as individual tasks and each task includes timing

parameters regarding the execution of the corresponding processing segment on the

target processor. Also, the data transmission between the processors due to the

partitioning is modelled by individual tasks that include timing parameters describing

the corresponding data transmission. In this way, depending on the mapping strategy

used to assign the processing segments to the processors, we create a model of the

mapped application that includes several tasks.

In the second step, we model the architecture of the target platform as a set of

units to represent different processors and also the communication part of the platform.

Afterward, depending on the mapping strategy, the tasks created in the first step are

assigned to these created units. We should mention that the tasks that represent the data

transmission between the processors are assigned to the unit that represents the

communication part of the platform. At the end of the second step, the created model

includes several units that represent the architecture of the platform where each unit

includes several tasks that represent the timing parameters of the processing or data

transmission. When the model is simulated, tasks on different units should be executed

based on an order which is forced by the precedence relations between the modelled

processing segments. A task is considered ready to be executed when execution of the

preceding tasks on the corresponding task chain is finished.

At the third modelling step, we consider another unit in the model which is

responsible for managing task execution on different units. This supplementary unit is

called Master and it models another processor of the platform. We suppose that the

Master includes a module called Synchronizer that analyzes when the different tasks are

ready for execution by verifying the executing situation of all tasks. Also, the Master

36

includes a module to define the simulation time. Such provided simulation time is

utilized as a reference to define the timing parameters of the tasks during the simulation.

The other units which include the tasks are called Slaves and they are responsible of

executing their corresponding tasks. We suppose that each Slave includes a module

called Scheduler in addition to its corresponding tasks. The Scheduler is responsible for

selecting one task between the tasks of the Slave which are ready for execution based on

its scheduling strategy. The task selected by the scheduler is executed by the Slave.

In this way, a performance model is created which represent a high-level mixed

description of the target application and the platform architecture. During simulation of

such a model, all the mentioned Master and Slave units are simulated. We consider that

the simulation is done in several simulation stages. At each simulation stage, first, the

Master unit is simulated then the Slaves are simulated one by one. Simulating the Master

unit provides the times when the tasks are ready for execution and the simulation time at

the current stage of simulation is determined. Simulating the Slave units may lead to

executing some ready tasks and to updating several task timing parameters. In the

following, more details are provided about the mentioned modelling steps.

3.1.1. Modelling the Mapped Application on the Multi-
Processor Platform (Modelling Step 1)

We suppose that different parts of the target application are mapped on a

multiprocessor platform based on a given mapping strategy. In order to create the

performance model, we first model the application which needs to be mapped on the

platform. We suppose that the target application includes a set of processing segments

that should be mapped to different processors of the platform. Also, we know that, after

mapping and implementing the application, some data transmission may need to be

performed between the processors to transmit the data between the dependent processing

segments executed by different processors. In order to demonstrate the concepts, we

consider a simple example of a mapped application which is presented in Fig. 9. This

example corresponds to an application composed of four processing segments that are

37

mapped on the processors number 1, 2, 4, and 5 of the target platform. The data flow in

the application and in the platform for this example is presented in Fig. 9.

In order to model the mapped application, each processing segment assigned to a

processor is modelled as an individual task. Also, each data transmission that must be

done between two processors or one processor and the input/output subsystem of the

platform is modelled as a task. Each task includes timing parameters related to the

execution of the corresponding processing segment on a target processor or the data

transmission between two parts of the platform. Such a modelling process and the model

of mapped application for the above mentioned example are also shown in Fig. 9.

Data Flow in

Application Level:

Data Flow in

platform Level:

Model or mapped |n1

application: t-.f*

Inpiitl Segment 1
: user l- ; ;

i

— » Segment 2
' u s e r l !

I

— » Segment 3
: "userl

i

— » Segment 4
<:«USerf :r':

1

Oiitpim

Input 1
Com
1

—»
*

P1
I

—• Com
I

Mapping
Process

Modelling
*~ Process

P: Processor
Com: Communication part

Figure 9 Modelling a mapped application

The tasks that model the mapped application have precedence relations that

describe their execution order as shown in Fig. 9. We suppose that the model of the

mapped application includes a total of m tasks. In order to describe the execution

precedence of tasks, we use a vector called Dep. This vector includes m elements where

each element denotes the task that precedes, on the task chain, the task corresponding to

the position in the vector. Fig. 10 presents an example of the Dep vector which shows

the vector elements corresponding to the mapped application shown in Fig.9. As an

example, the third element of the vector in Fig. 10 which corresponds to task3 is equal to

2. This indicates that task2 immediately precedes task3 in the task chain or, in other

38

words, task3 directly depends on task2. If a task does not depend on any tasks or it is

activated by an input signal, its corresponding element in the vector is set to the value -1 .

In the dependency configuration described by the Dep vector, we suppose that each task

depends directly only on one single task or one single input.

9 elements
• * * •

Dep- [-1 1 2 3 4 5 6 7 8]
/ |)

/ \ |
Taskl Task3 T a s k 9

Figure 10 Example of vector Dep

3.1.2. Structuring the model of mapped application
(Modelling step 2)

In addition to describing the mapped application in the form of a task set, we

introduce also the structure of the platform. We model the target platform as a set of

units where each unit represents one processor or the communication part of the

platform. Each unit is represented by an individual Matlab piece of code. Thus, based on

the mapping strategy, we assign the created tasks representing the mapped application to

these units. In this way, the performance model includes several units where each unit

contains several tasks. Fig. 11 represents a schema of the performance model for the

mapped application shown in Fig. 9. As can be seen in this figure, the performance

model in this example contains five units where unitl represents the communication part

of the platform and where the other units represent the processors 1, 2, 4 and 5. This

model does not include a unit corresponding to the processor number 3 because there is

no assigned processing segment to this processor in that example. The tasks representing

the data transmission on the platform are assigned to unitl and the other tasks are

assigned to the units representing the corresponding processors.

39

Unltl (Com) Unit2 (P1) Unit3 <P2)

Com: Communication part

P: Processor

Unit4 (P4) Units (PS)

Figure 11 Example of the structured model of a mapped application

Task assignment in the model is described using a vector called tskjunit. The

number of elements in the vector tsk_unit is equal to the total number of tasks. Each

element of this vector indicates the assigned unit of the corresponding task, which

represents a processor or the communication part of the platform. Fig. 12 shows an

example of the vector tskjunit that presents the elements corresponding to the example

in Fig. 11. For example, the first element of tskjunit in Fig. 12 determines that taskl is

mapped to unitl, which represents the communication part of the platform, while the

fourth element of vector presents that task4 is mapped to the unit 3 representing

processor number 2.

9 elements
•* •

tsk_unit = [1 2 1 3 1 4 1 5 1]
/ i |

/ • +
Taskl Task4 Task9

Figure 12 Describing the structured model of mapped application

40

3.1.3. Creating a Master/Slave Structure (Modelling
Step 3)

Up to this point, we created a model that includes several units representing

different parts of the platform where each unit contains several tasks. During the

simulation of the target model, the tasks representing the mapped application should be

executed on different units in a predefined order described by the Dep vector. Also, in

the model, we consider a module called Synchronizer which verifies the executing

situation of all tasks on different units and determines when the tasks are ready for

execution, considering the completion time of the previous tasks on the task chain or

arriving time of signals on the corresponding inputs. We suppose that the Synchronizer

module is placed on one modeled unit called Master. The unit dedicated to the

Synchronizer represents one processor of the platform which synchronizes the execution

of different application processing segments in the actual implementation. The other

units of the model containing the tasks are called Slaves. We consider that each Slave

unit includes a scheduler module which determines the task execution order on the

Slave. Fig. 13 shows the Master/Slave structured model for the example shown in Fig.

11, which also presents the interconnections between the different elements of the

model. In order to generalize the demonstration, the tasks assigned to each Slave in

Fig. 13, are shown as a task set.

41

9ave1 (Com) Sla^e2(P1) Slave3 (P2)

Schedulers

\start

<4^tej5jD

Slaved (P4) Sl3ife5(P5)

Com: Communication, P: Processor

Figure 13 Performance model block diagram for an example case

The descriptions of the shown parameters in Fig. 13 are presented as follows:

Parameters rdy, st, start, and fin'.

As explained earlier, the application mapped on the platform is modelled as a set

of tasks. Each task includes timing parameters related to the execution of one part of

application or to data transmission on the platform. Four timing parameters, called rdy,

st, start, and fin, are associated with each task. Rdy is determined by the Synchronizer

and represents the time when the task is ready for execution. If a task precedes another

task in its task chain, its parameter rdy is defined based on the time when the execution

of its previous task is finished. Otherwise, if the task is the first task in the task chain and

it is activated by an input signal, its parameter rdy is defined based on arrival time of the

corresponding input signal. St represents the earliest time when the task can be executed

on the corresponding Slave and it is defined based on the time when the task is ready for

execution and the time when the Slave becomes free. St is defined by Synchronizer and

it is used to define simulation time which will be explained later in details. Start

file:///start

42

represents the time when the execution of the task begins and is determined by the

corresponding Slave. Fin represents the time when the execution of the task is

completed and is also defined by the corresponding Slave. We introduce four vectors

called rdy, st, start, and fin where each vector has m elements (m is equal to the number

of tasks). Each element of these four respectively denotes the parameters rdy, st, start,

and fin for the corresponding task. The values of these vectors are updated during

simulation. Since st is used internally to the Synchronizer, it is not shown in Fig. 13.

taskl t a s k 9

; |

/tfy=[0.06 0.05 0.04 -1 0.05 -1 -1 -1 -1]

sf=[0.06 0.05 0.05 -1 0.05 -1 -1 -1 -1]

start = [-1 0.05 0.05 -1 -1 -1 -1 -1 -1]

fin = [-1 0.06 0.06 -1 -1 -1 -1 -1 -1]

Figure 14 Example for vectors rdy, st, start, and fin.

As explained before, the simulation of a performance model is done in several

stages and, at each simulation stage, first, the Master unit is simulated then the Slaves

are simulated one by one. Fig. 14 presents a sample for the vectors rdy, st, start, and fin

taken from one given stage of simulation for the example described in the previous

sections. The vector rdy in this example shows that taskl, task2, task3, and task5 are

ready for execution at respectively 0.06, 0.05, 0.04, and 0.05s. The parameter rdy for the

other tasks is equal to -1 , which shows that the corresponding tasks are not ready for

execution after this one stage of simulation. As shown by the st vector, the earliest start

time for execution of taskl, task2 and task5 is equal to their ready time, which means

that the corresponding Slaves of these tasks are not busy at the moment that the tasks

become ready. The earliest start time of task3 is equal to 0.05s, which is greater than the

ready time of this task and corresponds to the time when the corresponding Slave will be

free. Values of -1 in vector st, indicate that the corresponding tasks are not ready for

execution. The values in the start vector indicate that only task2 and task3 are executed

43

and the execution of both tasks started at 0.05s. Vector fin indicates that the execution of

task2 and task3 is finished at 0.06s. (In this example, we suppose that the execution time

of all tasks is equal to 0.01s) Values of -1 in vectors start and fin indicate that the

execution of the corresponding tasks are respectively not started and not finished.

Table 1 summarizes the definition of the presented timing parameters for a task

estimated during each stage of simulation. Also, all the possible cases of the timing

parameters during each simulation stage for a task are shown in table 2.

Table 1 Task timing parameter definition.

Provided
by

Master

rdy

St

Definition

rdy>0:
Rdy indicates the time when the task is ready for execution
considering the execution of its previous task in the task chain or
arriving time of corresponding input signal.
rdy=-V.
Task is not ready for execution.

sf>0:
St indicates the earliest time when the task can be executed
considering its ready time and the time when the corresponding
Slave is free.
sfc-1:
Task is not ready for execution.

Provided
by Slave

start

fin

star&O:
Start indicates the time when the execution of task is started.
sfarfc-1:
Execution of task is not started.

fin>0:
1- If the task is executed at current stage of simulation, fin indicates
the time when the current execution of task is completed.
2- If task is not executed at current stage of simulation, value of fin
corresponds to the previous execution of task. It means that this
value of completion time has not yet been used to determine the
ready time of the next task in the task chain (its dependent task) or
the task has not any dependent task.
fin=-1:
Execution of task is not completed (task is not executed at current
stage) and the previous execution of task (if there is) has been used
to determine the ready time of corresponding dependent task.

45

Table 2 Possible cases of timing parameters for a task.

Provided
by

Master

Provided
by Slave

rdy

St

start

fin

Description

Casel

>0

>rdy

St

>start

Task is
ready for
execution
and it is

executed.

Case2

>0

>rdy

-1

-1

Task is
ready for
execution
but it is not
executed.

Case3

>0

>rdy

-1

>0

Task is
ready for
execution

but it is not
executed.

(Value of fin
corresponds

to the
previous

execution of
task.)

Case4

-1

-1

-1

-1

Task is not
ready for
execution
so it is not
executed.

Case5

-1

-1

-1

>0

Task is not
ready for
execution
so it is not
executed.

(Value of fin
corresponds

to the
previous

execution of
task.)

tjsim is the reference simulation time which is provided by the Master and is

used by the Slaves to calculate the start time of tasks during simulation.

load_unit is a vector of n elements where n is equal to the number of Slave units.

Each element of this vector denotes the completion time of the last executed task on the

corresponding Slave at the current simulation stage and is provided by the same Slave

unit. In other words, it represents the time from which the Slaves will not be busy and

can execute another task. Fig. 15 shows the estimated vector loadjunit for the same

example and the simulation stage presented in Fig. 14. As explained in the example

shown in Fig. 14, task2 and task3 are executed at the current simulation stage and their

completion time is equal to 0.06s. Therefore, the load_unit parameters of the Slaves

corresponding to task2 and task3 (respectively Slave2 and Slave 1) have been set to 0.06s

as shown in Fig. 15. This figure shows also that load_unit of Slave3 has been set to 0.05.

Since task4, which is the only task placed on Slave3, is not executed at this stage, the

value of loadjunit for Slave3 corresponds to the previous execution of task4. Loadjunit

for Slave4 and Slave5 is equal to 0, which means that no task is yet executed at those

Slaves and they have been available from time equal to 0s.

46

5 elements
•* *

foad_unit = [0.06 0.06 0.05 0 0]
i I

Stavel S l a v e 5

Figure 15 Example of vector load_unit.

3.2. Detailed description of the performance model

Simulating a created performance model is supposed to be done in several simulation

stages. At each simulation stage, the Master unit is first simulated then the Slaves are

simulated one by one. The model simulation continues until there is no ready task to be

executed on any Slave after a given number of received data elements at the inputs. Note

that each simulation of the performance model is set to be done for a given total

numbers of signals received at the different inputs to the system. In the model, we

consider a basic part which describes the order for simulating the Master and Slaves and

defines the simulation halting strategy. The pseudo code of this basic part is shown in

Fig. 16. In the shown pseudo code, there is a while loop where each instance of this loop

corresponds to one stage of simulation.

In the following section, we describe the functionalities of different parts of the

performance model in more details.

3.2.1. Master

The Master unit includes two modules called Synchronizer and Simulation Time

Estimator which are shown in Fig. 17. Functionalities of these modules are explained in

more details as follows.

47

Pseudo code of the basic part of model:

Executing the configuration file which introduces the vectors and variables used in
the model.

while (1)

Simulating the master unit

(Stopping the simulation of model if there is no ready task in the model.)
if All tasks have been executed after receiving the given total numbers of input

signals.
break

end

(Simulating the Slave units)
for i=1 to Number of Slaves

Simulating Slave i.
end

end

Figure 16 Pseudo code of the basic part of model

fin

Synchronizer

nfy
Simulation time
''<Z. estimator

rely t sim

load unit

Figure 17 Block diagram of the Master.

The Synchronizer determines the execution ready time of all tasks and updates the

rdy vector. The Synchronizer firstly determines the ready time of tasks for which their

execution depends on other tasks. For this purpose, it uses the precedence relation of

tasks described in the Dep vector. The flowchart representing the functionality of this

48

part of the Synchronizer (parti) is shown in Fig 18. As shown in this figure, the

Synchronizer verifies the completion time of tasks provided in the previous stage of

simulation. If the completion time (parameter fin) of a task is greater than zero, the

Synchronizer finds the dependent task of the current task. (In order to simplify the

explanation, the verified task that has a completion time greater than zero is called the

original task.) Thus, the Synchronizer verifies the parameter rdy of the dependent task. If

the ready time of the dependent task is equal to -1 , the value of ready time is set to the

completion time of the original task.

No

One missed deadline
is occurred for task j

No

Part 2 of synchronizer code -̂ <3>
Figure 18 Flow chart of the Synchronizer (Part 1)

49

If the ready time of the dependent task is not equal to -1 , it means that the

dependent task became ready at one of the previous simulation stages and that the

requested execution has not yet been performed. If the completion time of the original

task, which should define the ready time of the dependent task, is less than or equal to

the loadjunit of the corresponding Slave of the dependent task, it means that, when the

Slave of the dependent task becomes free, there will be two requested executions for the

dependent task. We suppose that there are data buffering limitations and that the input

buffer for each task is filled by the next arriving data even if the current data has not

been used. Thus, because of such a data buffering limitation, the previously determined

ready time of the dependent task is ignored and it is set to the completion time of the

original task. Therefore, a missed deadline occurs for the dependent task.

If the ready time of the dependent task is not equal to -1 but the completion time of

the original task is greater than load_unit of the corresponding Slave of dependent task,

it means that, when the Slave of dependent task becomes free, the execution of the

original task has not been yet completed. Therefore, the previously determined ready

time of dependent task is kept by the Synchronizer and it is not replaced by completion

time of the original task.

Afterward, the Synchronizer determines the ready time of tasks which depend on

the input signals using the arriving time of data elements at the corresponding inputs.

We suppose that the input signals are in the form of data frames which are arrived at the

system inputs periodically. The functionality of this part of the Synchronizer (part2) is

represented by the flowchart shown in Fig 19. The arrival time of the first frame at each

input is set to Os. As shown in Fig. 19, the Synchronizer first verifies which tasks depend

on the input signals. If a task depends on an input signal and if the total number of

arrived frames at the corresponding input is less than a specified value, it updates the

ready time of the task. For this purpose, it verifies the previously determined value of

ready time for the task. If the parameter rdy is equal to -1 , it means that there is no

request for execution of the activated task in the previous simulation stages that has not

50

been done. Therefore, it increments the number of received frames at the corresponding

input (updates the number of current frame), evaluates the arrival time of the current

frame and sets the parameter rdy to this evaluated time.

If the previously determined value of rdy is not equal to -1 , it means that there is a

request for execution of the task activated in the previous stages of simulation that has

not yet been done. In this case, if the arrival time of the next frame at the corresponding

input is equal or less than the load_unit of the corresponding Slave, the Synchronizer

increments the number of received frames at the corresponding input (updates the

number of current frame) and sets the parameter rdy to the arrival time of the current

frame. Because, in this case, when the Slave becomes free (at its loadjunit), the task has

been requested for execution by the arrival of a new frame while the previous request

has not been yet done. Considering the data buffering limitation, we suppose that the

previously buffered data frame is replaced by the newly arrived frame. Thus the

previous request is ignored and a missed deadline has occurred for the task. Such

verification for the next arriving frames is repeated and the number of current frame is

incremented until the arriving time of the next frame is greater than load_unit. This

repetition is done to ensure that at the time when the Slave becomes free, rdy of the task

is set to the arriving time of the last received frame.

If the parameter rdy of the task is not equal to -1 but the arriving time of the next

frame at corresponding input is greater than the loadjunit of the corresponding Slave of

the task, the Synchronizer does not increment the current frame number and

consequently does not update the value of rdy. Because in this case, when the

corresponding Slave becomes free (at its loadjunit), there is only the previous request of

execution for the task.

The pseudo code describing the functionality of the Synchronizer is shown also in

Fig. 20.

51

Parti of synchronizer code i = 1

One missed deadline
is occurred for task j

Incrementing pointer of arriving
frame on corresponding input

Determining rdy(i) based on
arriving time of current frame

Incrementing pointer of arriving
frame on corresponding input

Determining rdy(i) based on
arriving time of current frame

i = i+1

Yes

END

No

Figure 19 Flow chart of the Synchronizer (Part 2).

The Simulation Time Estimator determines the current simulation time, t_sim, at

different stages of the simulation. The different Slave units always compare the ready

time of their corresponding tasks with this simulation time. If the ready time of a task is

greater than this reference time, such ready time is considered to belong to the future and

the task is not considered for execution at current stage of simulation. The simulation

time is calculated after updating the ready time of the tasks by the Synchronizer.

52

(Determining the ready time of tasks which depend to other tasks)
for i= 1 to m (m is equal to the number of tasks)

(Verifying if the completion time of task i has not been used in the previous stage of simulation.)
if fin(i) > 0

for j=1 to m
if (dep(j) = i) (Finding the tasks which are dependent to the task i)

if rdy(j) = -1 (task j with deactivated ready time parameter)
rdy(j) = fin(i) (Determining the ready time of the dependent task of task i)
fin(i) = -1 (Deactivating the completion time of task i)

else (task j with activated ready time parameter)
(Missed deadline case for task j)
if completion time of task i is equal or less than the loading time of corresponding Slave for

task j .
rdy(j) = fin(i) (Determining the ready time of the dependent task of task i)
fin(i) = -1 (Deactivating the completion time of task i)

end if
end if

end if
end for

end if
end for

(Determining the ready time of tasks which depend on input signals)
for i=1 to m

if task i is dependent to one input signal and total number of arrived frames at the corresponding
input is less than a required one.

if rdy(i) = -1 (Case of task i with deactivated ready time parameter.)
Incrementing pointer of arriving frame.

Determining rdy(i), based on the period and number of current frame arrived at the input signal
which presents the arrival time of the related frame.

else (Case of task i with activated ready time parameter.)

(Missed deadline case for task j)
while (Arriving time of the next frame is equal or less than the loading time of corresponding

Slave)
Incrementing pointer of arriving frame.

Ready time of task i is replaced with the arriving time of the current frame. Since the
previous ready time has not been used, a missed deadline is occurred for the task i.

end while
end if

end if
end for

Figure 20 Pseudo code of Synchronizer.

We explain now the method which is used to determine t_sim. In order to

calculate t_sim, the Estimator utilizes the recently calculated ready times of tasks and

53

also the loading time of the Slaves (loadjunit). First, it estimates the earliest time that

the tasks can be executed on their corresponding Slaves, which are called the earliest

start time of tasks (st). A vector called st with m elements is created by the estimator

where m is equal to the number of tasks. As explained earlier, each element of st

represents the earliest start time of the corresponding task. The earliest start time of a

ready task is estimated using Equation 4.

st (j) = max (load_unit (tskjunit (j)), rdy (j)) (4)

In Equation 4, j and loadjunit (tskjunit (j)) are respectively the task number and

the parameter load_unit of the corresponding Slave. If the ready time of a task is greater

than the time when its Slave becomes free, it means that the corresponding Slave is busy

when the task becomes ready for execution and the earliest start time of task is set to the

loadjunit of the Slave. Otherwise, the earliest start time of a task is set to the task's

ready time. If a task is not ready for execution, its corresponding st is set to -1. Fig. 21

shows two examples for estimating the earliest start time. The considered task in these

examples is task 3 which is placed on Slave2.

0,04 0.03
load_unit m f _ _ _ — 4 load.imit (2) j _ _ _ |

Figure 21 Examples for estimating earliest start time.

54

In the same manner, all elements of vector st corresponding to all tasks are

estimated. Then, the minimum value between the earliest start times of tasks is

considered as parameter t_sim. The pseudo code of the simulation time estimator is

presented in Fig. 22. The reason of providing t_sim is described in more details later.

(Estimating the earliest start time of tasks)
for i=1 to m

if rdy(i) = -1
st(i) = -1 (Deactivation of earliest start time of task if the task is not ready)

else if

(st(i) is considered as maximum between ready time of task and loading time of
corresponding Slave)

if rdy(i)> load_unit(tsk_unit(i))
st(i)= rdy(i)

else if
st(i)= load_unit(tsk_unit(i))

end if

end if
end for

(Estimating the simulation time)
t_sim=1e5 (Initializing t_sim with a large value)

(Finding the minimum value between the earliest start time of ready tasks)
for i= 1 to m

if st(i) ~= -1 & st(i)<t_sim
t_sim = st(i)

end if
end for

Figure 22 Pseudo code of simulation Time Estimator.

3.2.2. Slave

We describe now the functionalities of the Slave units in more details. As

explained earlier, a timing reference (t_sim) is provided by the Master unit, which

represents the simulation time of the current simulation stage, and is used by all Slaves.

Note that, if the parameter loadjunit of a Slave is greater than tjsim (simulation time), it

means that the corresponding Slave is busy at the current simulation stage and its

55

functionalities are not evaluated at that stage. The block diagram of a Slave unit is

shown in Fig. 23. As shown in this figure, several functionalities are performed by each

Slave unit. Firstly, at the Task selection functionality level, a task is selected between the

tasks that are placed on the Slave to be executed and consequently the execution start

time (start) of the selected task is provided. Note that only one task can be selected for

execution at a time. Next, the selected task is launched, which provides the execution

time (t_exe) of the task. Thus, the absolute execution completion time (fin) of the task is

estimated. Afterward, the loading time of the Slave (load_unit) is provided. In the

following, these functionalities are described in more details.

t stm rtty

Task selection

start

Launching the
selected task

r ore

Estimating
finishing time

\fm

Estimating
Loading time

fin [load unit

Figure 23 Block diagram of a Slave.

At the Task selection functionality level, the situation of all tasks placed on the

Slave is verified to select one task to be executed. It is possible that no task is accepted

to be executed at a given simulation stage. In this case, the other presented

functionalities of the Slave are not performed. The Task selection step consists of

selecting a task to be executed among all the admissible tasks. Here, an admissible task

is a task belonging to the target Slave (task_unit(\) = slave_nb where slave_nb represents

the Slave number) and that is ready for execution, meaning that all previous tasks (or

56

data) have been executed (or received), and that its ready time does not exceed the actual

simulation reference time (-1 < rdy(i) < t_sim). In each Slave unit, the corresponding

assigned tasks with a ready time greater than t_sim are not considered for scheduling.

These tasks are not ready yet and will be considered in the following simulation stages.

The necessity of such limitation for accepting tasks is demonstrated by a detailed

example later.

It is possible that several tasks are recognized as admissible ones at the Slave.

Thus, one of these admissible tasks is selected for execution based on a scheduling

algorithm, which is included in the corresponding scheduler on the Slave. Thus, the start

time (start) of the selected task is determined, which is equal to the current simulation

time (t_sim).

Emulating the launch of selected task

After selecting a task and determining its execution start time, the launch of the

task is emulated and its execution time is estimated. Here, we use the term emulate to

underline the fact that the task is not actually executed. Instead, we just estimate the time

taken by the corresponding resource to execute this task. The estimated execution time

of the selected task is presented by the parameter t_exe.

Estimating the completion time of task

Afterward, the completion time of the executed task is determined. Since the simulation

time at the current simulation stage is equal to t_sim, the completion time of the task is

estimated using Equation 5, where index_run is the executed task number.

fin (indexjrun) = t_sim + t_exe (5)

Estimating the loading time of a Slave

The loading time of the Slave unit (the time from which a Slave is ready to execute

another task) is equal to the completion time of the executed task as expressed in

57

Equation 6. In this equalion,slave_nb and indexjib respectively denote the Slave

number and the executed task number.

loadjunit (slave_nb) = fin (index_run) (6)

The pseudo code of a Slave is shown in Fig. 24, which represents all the

functionalities performed by a Slave unit.

Pseudo code of a Slave unit:

Assigning the Slave number which is represented by the parameter slave_nb.

if loading time of Slave is equal or less than t_sim
(Task selection)
for i = 1 to m

(Verifying if the tasks is assigned to the Slave, if the task is ready & if its ready time is
equal or less than t_sim)
if tsk_unit (i) = slave_nb & rdy(i) > -1 & rdy(i)<= t_sim

(Scheduling)
Verifying some parameters of task based on the corresponding scheduling algorithm
to select a task for execution.

end if
end for
(After the above loop, one of the admissible tasks on the Slave is selected for execution.
Index of selected task is presented by the parameter index_run.)

(Determining the start time of selected task which will be equal to the simulation time)
start (index_run) = t_sim
Executing the selected task which results the execution time of task (t_exe).

(Estimating the completion time of the executed task.)
fin (index_run) = start(index_run) + t_exe

(Deactivating the start time and the ready time of executed task.)
start (index_run) = -1
rdy (index_run) = -1

(Loading time estimating of the Slave)
load_unit (slave_nb) = fin(index_run)

end if

Figure 24 Pseudo code of a Slave unit.

58

3.3. One performance model example
In order to better clarify the described functionalities of the Master and Slave units

in a performance model, we present an example case, which is shown in Fig. 25. As

shown in this figure, the considered performance model consists of the Master and two

Slaves where the Slaves include four tasks with the task dependency information

described in the shown Dep vector. In addition, we have simulated this model and we

present the values of some model parameters used during the first fourth stages of

simulation in Fig. 26.

As explained before, at each simulation stage, the Master first evaluates the rdy

vector, and then the vector st is estimated, which leads to defining the simulation time

(t_sim). Thus, Slave 1 and Slave2 evaluate the timing parameters of their corresponding

tasks, in order. Each Slave estimates the elements of vectors start and fin (which

correspond to its assigned tasks), and one element of vector load_unit corresponding to

the Slave is evaluated. Such estimated model parameters can be observed in Fig. 26,

which have been defined based on the explained order of simulation. In the presented

example, taskl and task2 do not depend to any task and they are activated by two

individual input signals with arriving periods of 0.02s. The first arriving time of the

input frames is 0s then the first ready times of taskl and task2 are 0s, which are

presented in the vector rdy in the first stage of simulation as shown in Fig. 26.

Slavel Slave2 Master

Dep = [- 1 - 1 1 2]

Figure 25 Block diagram of a performance model example.

59

Master

Slaves

Initial case

,dy | [-1-1 -1-1]

st L!±±±i!L
t sim 0

Simluation stage 1 \ Simulation stage 2

[0 0 -1 -1] j [0.02 0 0.01 -1]

[0 o -1 -i] ! [0.02 6.01 6.01 -1]

o f 6.01
i

Simulation stage 3 j Simulation stage 4

[0.02 0.02 -1 0.02] j [0.04 0.02 0.03 -1]

[6.02 6.02 -1 6.02] j [6.04 0.03 0.03-1]

start I [-1-1-1-1]! [0 -1 -1-1] i [-1 0.01 0.01 -1] ! [0.02 -1 -1 0.02] ! [-1 0.03 0.03-1]

f i „ ! [-1 -1 -1 -1] | [0.01 -1 -1-1] I [-1 0.02 0.02 -1] i [0.03 -1 0.02 0.03] I [-1 0.04 0.04 0.03]

load unitl P o f ! [0.01 0] ' " ! [6.02 0.02] " "| ' [0.03""o.03] " | " [0.04 "0.04]" "

Executed
tasks

X tasM tasia & task3 tasM StasfcJ task2 4 task3

Figure 26 Parameter values in a performance model during four simulation stages

We now explain the estimations done by the Master and Slave units at the fourth

simulation stage based on the results shown in Fig. 26. At stage 4, the Master first

defines the ready time of the tasks. Based on Fig. 26, we observe that taskl has been

executed at stage 3 then its ready time is updated at stage 4 by the next arrival time of

the corresponding input signal, which is equal to 0.04s. Task2 has been ready from the

previous stage and it has not been executed. Thus, the ready time of task2 has the same

value as the one of stage 3, which is equal to 0.02s. Since task3 depends on taskl and

taskl has been executed at stage 3, the ready time of task3 takes the previously

estimated completion time of taskl, which is equal to 0.03s. Task4 depends on task2

which has not been executed at stage 3. Thus, task4 is not ready for execution at stage 4.

After estimating the elements of vector rdy by the Master, the earliest start time of tasks

are evaluated considering their ready time and the loading time of corresponding Slave

units. Thus, the simulation time of the current stage is evaluated which is the minimum

value between the elements of vector st and is equal to 0.03s.

After the mentioned evaluation by the Master unit, Slave 1 is simulated. As

determined by the Master, taskl and task2 on the Slave 1 are ready at stage 4. After the

limitation process by Slave 1, taskl (with a ready time greater than t_sim) is not

considered as an admissible task and only task2 is accepted. Thus, task2 is selected and

executed by Slave 1. The start time of task2 is updated by the value of the simulation

time, which is equal to 0.03s. Note that the execution time (t_exe) of all tasks in this

60

example is set at 0.01s. Therefore, the completion time of task2 takes the value of 0.04s.

Consequently, the loading time of Slave 1 is estimated to be equal to the completion time

of taskl, which is 0.04s. Consequently, Slave2 is simulated while it includes only one

ready task (task3). Since the ready time of task3 is equal to the simulation time, this task

is selected and is executed by Slave2, which provides the corresponding start and

completion time. At the end, the loading time of Slave2 is evaluated.

We now describe the reason why the Slaves verify if the ready time of their ready

tasks does not exceed the simulation time. As an example, in the presented performance

model at stage 4, Slave 1 includes two ready tasks with ready times of 0.04s and 0.02s. If

Slave 1 does not perform such verification, both tasks will be admitted, which leads to

selecting one of them while the ready time of taskl exceeds the actual simulation time

(t_sim - 0.03s) and it is not actually ready at the current simulation time. Therefore, not

considering such verification can lead to selecting and execute taskl instead of task2,

which provides the wrong task execution sequence. The simulation results for this

example, including 25 simulation stages, are presented in appendix 1.

3.4. Conclusion

In this chapter, the basic concepts of the proposed performance modelling

methodology were explained. We presented the three modelling steps needed to create a

performance model, which allows us to abstract the application and architecture

properties and to structure a high-level mixed description of the hardware and software.

The performance model includes several units representing different architecture

resources where each unit included several tasks representing different processing

segments of the target application. In addition, the model units were structured in a

master/Slave form, where the Master unit was responsible for managing the execution of

tasks and the Slave units were responsible for executing the corresponding tasks.

Thus, we explained in details the functionalities of the Master and Slave units

along with different timing parameters included in the performance model. At the end,

61

one example of performance model was demonstrated and the simulation results for this

example were presented, which illustrated how to estimate the different timing

parameters during simulation. In this way, we described the technical specification of

our performance modelling method in details and showed how an actual performance

model could provide the detailed timing information needed to allow executing an

application on a target MPSoC platform without performing any functionalities of the

application. In addition, we showed the manner in which such a model includes the

mapping and scheduling strategies.

62

CHAPTER 4

SCHEDULING OF TURBO DECODING
In this chapter we discuss firstly the concept of mapping the uplink WCDMA

processing corresponding to a UMTS base-station receiver on an MPSoC platform. We

propose a mapping strategy to assign the different processing segments of the target

application on the multiprocessor platform in such a way the WCDMA processing on

the data blocks of each user is performed on different processors in a pipeline manner. In

the proposed mapping method, it is supposed that each processor is dedicated to perform

only one type of processing (such as Rake, Rate matching, Turbo decoding, etc) on the

data blocks of several users. Since all the data blocks arrive to a UMTS base-station

periodically, each uplink WCDMA processing which should be performed on the data

blocks of a user can be considered as a periodic function where each processing segment

of the function such as Turbo decoding is considered as a task. Also it is supposed that a

synchronization protocol is included in the system that makes all the tasks be executed

on the processors periodically.

Afterward we focus on the processors of the platform which are dedicated to

perform the Turbo decoding process. Then processing variability of the Turbo decoding

is discussed and the BER performance of such decoding is characterized. Thus we

discuss the scheduling methods of Turbo decoding on the processors dedicated to this

process. We propose some flexible scheduling methods which are adapted to the

variable characteristics of the Turbo decoding. To investigate the proposed methods, we

utilize our developed performance modelling methodology and we create a performance

model including the developed flexible scheduling methods and the tasks representing

the Turbo decoding processes. These tasks include the discussed characteristics of the

Turbo decoding.

63

Simulating such a model provides the BER performance results for the decoded

blocks in the different cases of proposed scheduling methods. Comparing the obtained

results with a Worst Case Execution Time (WCET) design shows the advantage of the

proposed flexible scheduling methods to improve the utilization of processors.

Afterward we describe a method to validate the utilized manner of modelling the Turbo

decoding process. Finally we present the elapsed simulation times in two cases of

functional and performance modelling of Turbo decoding. The presented simulation

times show the advantage of our performance modelling method which allowed rapid

verification of the different scheduling methods without any functional simulation.

4.1. Mapping the uplink WCDMA processing on an
MPSoC platform

It is mentioned that, in the UMTS receiver base-station, the radio frames arrive at a

rate defining a processing period, where each radio frame is a concatenation of

(transport) blocks, where each block is associated to a given user. As described in

section 2.1, in a UMTS receiver base-station, the uplink WCDMA processing shown in

Fig. 3, should be applied on the received data blocks. It is supposed that each data block

corresponds to one individual user.

In order to simplify the problem, we suppose that the uplink WCDMA processing

which should be applied on the data blocks of different users, is composed of three

sequential processing segments. We present now an example of a UMTS receiver base-

station which includes the uplink WCDMA processing on the data blocks of ten

individual users as shown in Fig. 27. To implement such an application on a multi

processor platform, we need a mapping strategy to assign the different processing

segments into the processors. As a first mapping strategy example, we suppose that the

processing segments corresponding to each user are assigned to different processors.

Thus, the chain segments of each user can be executed in a pipeline fashion on different

processors. Also, we consider that each processor executes only one type of processing

64

(namely a segment) for multiple users. The proposed mapping strategy is same as the

method presented in [29].

An example of such mapping strategy is illustrated in Fig. 28 which corresponds to

the case where the application in Fig. 27 is implemented on four processors. Thus based

on the explained mapping strategy, we suppose that each processor of the platform is

dedicated to perform only one type of processing segment such as Rake, Rate matching,

Turbo decoding and etc. on the received data blocks of different users.

Uplink WCDMA Processing for user 1

Illpllt

Segment 1
Userl

Uplink W<

Segment 1
User 2

Uplink W

Segment 1
User 10

• - • - ' • »

CDM

m

CDR

»

Segment 2
Userl

ft
Segment 3

Userl

[A Processing for user 2

Segment 2
User 2

[A Processi

Segment 2
User 10

ft
Segment 3

User 2

ng for user 10

—»
Segment 3

User 10

Output

Figure 27 Example of processing on an UMTS receiver base-station.

Figure 28 Mapping Example.

65

In section 2.5, a case study was presented to implement several periodic end-to-

end functions on a multiprocessor platform where each function was composed of

several sequential tasks. In that section, it was explained that after assigning the different

tasks to the processors of the platform, we need a synchronization strategy to manage the

execution of tasks on the processors in such a way that the precedence relations between

the tasks were respected. Thus some synchronization strategies such as greedy and non-

greedy protocols were introduced where the non-greedy protocol could make the tasks

periodic. In our case study, each uplink WCDMA processing which should be

performed on the data blocks of one user is considered as a periodic end-to-end function

and consequently each processing segment are considered as a task. After assigning the

tasks to different processors of our target platform, we suppose that a non-greedy

synchronization protocol is utilized in the system which makes all the tasks periodic.

In the following subsections, we focus on the Turbo decoding process and the

scheduling algorithms on the processors of the platform which are dedicated to perform

this kind of process are studied.

4.2. Processing variability of the studied Turbo decoder

In this section, the processing variability in a Turbo decoder is discussed. The

studied Turbo decoder in this project includes the specifications presented in section

2.1.4.1. As explained in that section, the processing variability of Turbo decoding comes

from the varying number of decoding iterations required to complete the process. In

order to analyze the methods for scheduling of Turbo decoding which will be presented

in section 4.4, we need a good estimate of the variability detail of a decoding process. To

investigate the processing variability of Turbo decoding, we utilized a complete

Simulink model which has been developed by our team to accurately represent the

whole Turbo coding/decoding process. In this model, the communication channel has

been represented by an Additive White Gaussian Noise (AWGN) block, while the coder

and the decoder have been implemented by several Matlab based functions. By

66

simulating this Simulink model, we extracted the effective required number of decoding

iterations in a Turbo decoder to be performed on the signals received under different

channel conditions.

Typical results for the number of iterations obtained under different channel

conditions are presented in Fig. 29. The observed probability distributions are similar to

Poisson distributions. Note that, because the number of iterations is hard limited

between 2 and 8, the shape of the distribution is distorted (notably the tail). It is

mentioned that hard limiting the number of iterations between 2 and 8 is forced by our

studied Turbo decoder based on its structure standard [4]. The average number of

iterations was also estimated in different channel conditions as reported in Fig. 30. This

figure shows a decrease in the average number of decoding iterations as the channel

condition improves, namely when Eb/NO increases.

.fi
5 0.4 St
o
£ 0.3-

/
/
/ /

A
I \

J * \
I ! W

/ . ' V

A &.\ '

• • • " / A ;

-o--Eb/N0=0.7BdB

—t— EWNO=0.9BdB

--D—EWN0=1.1BdB

-v--Eb/N0=1.3BdB

- 0 — Eb/N0=1.66 dB

\ v-. " • B - .

4 5 6

Number of iterations

..a

Figure 29 Probability density of the number of iterations.

67

6 • • -

£ 5.5
o
«
I 5
*o

JS 4.5
E
3
C
» 4
«
5
5 3.5

3
0.8 1 1.2 1.4 16 1.8

Eb/NO

Figure 30 Average number of decoding iterations.

4.3. BER performance of the studied Turbo decoder

We characterize now the BER performance of our studied Turbo decoder in

different channel conditions. As explained in the previous subsection, the number of

decoding iterations performed by the decoder can vary but it is hard limited to the

maximum value of 8 iterations. Let us call it_eff the number of iterations performed by

the decoder in a normal condition which has the variability characteristics shown in the

Fig.29 and Fig.30. As our scheduling strategies may force the decoder to perform fewer

iterations that it would otherwise, we also need to characterize the impact of reducing

the number of decoding iterations, in terms of additional errors affecting decoded

blocks. Let us call it_max_penn the maximum number of decoding iterations permitted

to the decoder, which can be set to a value between 3 and 8. The itjnaxjperm is a

parameter introduced in the Turbo decoder that can limit the number of performed

decoding iterations to a value lower than the effective number of iterations (it_eff).

We simulated the previously validated Simulink model of Turbo coding/decoding

process with a sufficient number of frames such that the total number of processed bits is

set to about 100 times the inverse of the target bit error rate in our simulations for all

considered sets of operating conditions. The simulations were repeated for each

considered it_max_perm to different value from 3 to 8. During simulations we estimated

68

the number of bits in error in the decoded blocks. These simulation results are listed in

Table 3. This table includes the Bit Error rate (BER) results when the effective decoding

are not limited (it_max_j>erm = &). Also it includes the average number of additional bits

in error (ave_add_err) in the decoded blocks which are caused by limiting the effective

decoding in different cases of it_max_perm from 3 to 7 comparing to the case when the

it_max_perm is set to 8. It is mentioned that the unit of ave_bit_err values shown in

Table 3 is bit.

Table 3 Performance parameters of Turbo decoder.

Eb/NO

0.76
0.8S
0.96
1.06
1.16
1.26
1.36
1.46
1.56
1.66

Number
of

Frames
7
13
25 i
52
123
337
1029
3623
15151
99633

BER
(it_max_perm=8)

2.10 e-2
1.16 e-2
5.90 e-3
2.90 e-3
1.23 e-3
4.52 e-4
1.48 e-4
4.20 e-5
1.00 e-5
1.53 e-6

ave_add_err
(it_max_perm=7)

1.59
4.07
5.72
1.85
-0.45
1.43
0.50
0.09
0.17
0.03

ave_add_err
(it_max_perm=6)

2.53
7.86
9.19
2.78
2.60
1.34
0.34
0.56
0.27
0.09

ave_add_err
(it_max_perm=5)

3.66
9.11
10.51
6.04
458
2.40
1.08
0.96
0.46
0.19

ave_add_err
(it_max_perm=4)

8.70
9.33
9.25
8.99
3.94
3.67
1.98
1.43
0.85
0.37

ave_add_err
(it_max_perm=7)

14.14
13.11
11.03
9.07
5.05
3.42
2.10
1.43
0.87
047

4.4. Proposed methods for scheduling the Turbo decoding
In this section we focus on the platform processors which are dedicated to perform

the Turbo decoding process on the received blocks and we discuss the scheduling

concepts on these processors. In order to simplify the problem, we consider the

scheduling of Turbo decoding on only one processor. We assume that all received

frames in the considered UMTS receiver base-station have the same arriving rate

defining a processing period. To determine the number of data blocks (users) that can be

assigned to the processor during each processing period, we need to estimate the

execution time of corresponding Turbo decoding processes on the target processor. We

suppose that total execution time of all assigned Turbo decoding processes on each

processor should not exceed the processing period. In this way all the decoding

processes will be finished by the processor before arriving data blocks of the next

period.

69

Considering the significant processing variability of Turbo decoding, we expect

that the worst case estimating of execution time would be highly inefficient. In order to

improve the resource utilization, we consider that the allocated time to each Turbo

decoding process is smaller than WCET case and consequently we can assign more

number of data blocks (users) to the processor. However, it is possible that, in some

cases, processes require more than their nominal allocated slots due to channel

degradation which can lead to scheduling problems. To resolve this issue, we propose

some flexible methods of scheduling which are associated with control strategies that

can limit the effective processing to meet the timing constraints. Descriptions of the

proposed methods are presented in the following.

To investigate the proposed scheduling methods, we utilize our performance

modelling method explained in chapter two. As mentioned earlier, we intend to focus on

scheduling of Turbo decoding processes on one processor of the platform. Thus we

create a performance model including one Master and one Slave unit where the Slave

represents one processor of platform which is dedicated to Turbo decoding processes

and the Master including the Synchronizer module corresponds to another processor of

platform. Based on the number of data blocks (users) assigned to the processor, several

tasks representing the Turbo decoding processes are included in the Slave. The Turbo

decoding processes are modelled in the form of different tasks. Performance modelling

of Turbo decoding is not based on detailed decoding, but rather on the previously

reported service distributions (Fig. 29) that were obtained by detailed decoding. Each

task representing Turbo decoding contains a random number generator which models the

mentioned distributions. Simulating each Turbo decoding task (task representing Turbo

decoding), provides the effective number of decoding iterations (it_eff) and consequently

the execution time of corresponding decoding process on the target processor. It is

mentioned that we have extracted before, the execution time of each decoding iteration

using an Instruction Set Simulator of the target processor and introduced it in the

performance model. Execution time of each decoding process is provided by the

70

performance model using execution time of each decoding iteration and effective

number of iterations.

It is mentioned that when a data block is received to the processor to be decoded,

its corresponding task on the Slave is supposed to be activated. In other words, the task

becomes ready. Thus all tasks assigned to the Slave have the same activation period

which is equal to the processing period. We suppose that all tasks become activated or

ready at the same time in all processing periods.

4.4.1. One shot scheduling

In the first proposed scheduling method, we suppose that a number of Turbo

decoding tasks are assigned to the Slave. Then, based on the number of tasks assigned to

the Slave and the processing period, the dedicated resources to perform the decoding

emulated by each task are determined. From that point, we make the simplifying

assumption that channel conditions change slowly and that all blocks of the received

frames have the same Eb/NO, thus all tasks are given the same resources. Considering

the allocated resource for each Turbo decoding task, a guaranteed budget of decoding

iterations available to emulate the decoding of each block is determined by the system

which is called Iteration Budget (IB). As explained next, this budget may change during

a processing period for each task and is limited between 3 and 8.

During a processing period, the scheduler placed on the Slave selects all the ready

tasks of the Slave in a round robin manner to be simulated. After simulating each Turbo

decoding task, if the provided effective number of decoding iterations (it_eff) is greater

than its IB, the number of emulated decoding iterations for the corresponding block is

considered to be equal to IB. The corresponding block to which the scheduler has not

allocated its it_eff before the end of a processing period is considered to be partly

decoded. Due to the iterative nature of Turbo decoding, a partly decoded block probably

contains some additional errors. The number of additional errors is estimated by using

Table 3 which has been introduced in the performance model. If the allocated budget is

71

equal or greater than it_eff, the number of emulated iterations is considered equal to the

corresponding it_eff. A block that can reach its it_eff is fully decoded.

Indeed if it_eff is less than the budget for a task, the difference is distributed

between unsimulated tasks in the current processing period and is added to their

previous allocated budgets. This redistribution is done as uniformly as possible. Fig. 31

shows the one shot scheduling manner on a Slave including four Turbo decoding tasks

during one processing period. The task IB values are updated before simulating each

task as shown in Fig. 31. In this example, in each processing period, there is a total of 17

decoding iterations as a budget to decode four corresponding data blocks in each period.

Before simulating the first task, the total number of iterations (17) is distributed over the

tasks as shown in the second column in Fig. 31. Simulating each task provides the

corresponding it_eff. Afterwards the IB value of the tasks not yet simulated is updated.

As shown in Fig.31, data blocks of tasks 3 and 4 are effectively processed while the

corresponding decoding of 2 other tasks are degraded in order to respect the assigned

resource budgets.

Pseudo code of one shot scheduling method for a general case of n Turbo decoding

tasks on one Slave is presented in Fig. 32. Variable grade shown in this figure is

considered to distribute not used iteration budgets between the tasks which have not

been simulated.

" v ^ Task

IteratiorNw
Number ^ s \

1
2
3
4
5
6
7
8

lt_eff

ram
\RO\
IRCTI

IFIWl

1

:
1

:

; /

\ /

K
/ \

7
<T)
4
4
4

2

,.J

/ *
/ ;

*

\ / v A,
/ \

8
0

(4)
4
4

3

,'
/

"' •»/'

3
0
0

< 4)
4

4

,.-.
y' |

*

3
0
0
0

Figure 31 One shot scheduling example.

Initializing IB of all tasks
grade =0
Task selection (The ready tasks are selected for simulation in a

round robin manner. We suppose that task i is selected)

task i is simulated and it_eff (i) is obtained.
if (it_eff (i) > IB(i))

The emulated number of iterations is limited to IB(i) . Thus the
emulated decoding by task i is degraded from the effective one
and corresponding additional errors are estimated by using table I.

else
grade= IB (i) - it_eff (i)

end if
while (grade ~= 0)

for j = i+l to n
if (grade>0)

IB (j) = IB (j) +1
grade= grade -1

end if
end for

end while

Figure 32 Pseudo code of one shot scheduling.

73

4.4.2. Gradual scheduling
As explained in one shot scheduling method, during each processing period, the

unused portion of the iteration budget of each simulated Turbo decoding task is

distributed and added to the previous allocated budgets of not yet simulated tasks. In this

way the tasks which are simulated later are advantaged with respect to the tasks

simulated earlier as their IB might be increased. Because of random quality of

corresponding blocks, it is possible that the later simulated tasks do not use totally their

increased IBs while the earlier simulated tasks need more iterations. The particular

scenario occurs in Fig. 31 example, where tasks 1 and 2 are incomplete and would

requires additional iterations while task 4 does not utilize totally its IB which is

increased by 1.

In order to optimize the resource allocation of tasks, another method called gradual

scheduling is proposed. In this method, a global IB is allocated to all tasks which is

equal to the number of decoding iterations that could be performed by the target

processor during one processing period. In the gradual scheduling method, the scheduler

selects the ready tasks for simulation in a round robin manner. After emulating one

decoding iteration for each selected task, the task's simulation is preempted and

consequently the next ready task is selected to be simulated in the same manner.

Fig. 33 illustrates the gradual scheduling method on a Slave including four Turbo

decoding tasks during one processing period. As shown in Fig. 33, the initial value of

global IB is equal to 17 which is equivalent to sum of initial IBs of tasks in the one shot

scheduling example. After emulating one decoding iteration of each task, the global IB is

decremented by one. A task is no longer simulated when it reaches its effective number

of decoding iterations. Simulation of the remaining ready tasks continues in the same

way until the global budget becomes zero. After termination of global IB, simulation of

ready tasks which have not reached to their effective processing are stopped which leads

to the degradation of processing on the corresponding blocks. In Fig. 33, the effective

74

decoding for task 1 and task 2 is degraded, similarly to the one shot example. But now,

one additional iteration is granted for the mentioned tasks.

In the gradual scheduling method, the number of emulated iterations for the ready

tasks at each simulation moment is approximately the same. Thus the corresponding

blocks of the stopped tasks which have not reached to their effective number of

iterations, have almost the same processing level and consequently their processing are

degraded approximately identically. In other words the resource allocating to the tasks

with degraded processing is nearly uniformed. Another advantage of this method

comparing to the one shot method is that the global IB is utilized completely in the case

of processing needs for the ready tasks.

Pseudo code of gradual scheduling method for a general case of n Turbo decoding

tasks on one Slave is presented also in Fig. 34.

\ Task
., TSsJM umber
Iterations^
Number ^ " N ^

1
2
3
4
5
6

8
lt_eff

1

^ . :

13-
Q»*«v¥'»"

5"*""-'

3 - - "
1 ***«¥£*:

\ /
/ \

7

2

•-1-6

• - 1 - 2 - -

•">^8""««

»"£»•••

•""§""•••••

b\+fT7

8

3

....... J - J S ™ * " * " "

""ttr-
~? ::

„ < - • ' •

!.->-

3

4

5 ^

»4#~iNs

"t.^0****'

S 3 » - * -

3

Figure 33 Gradual scheduling example.

75

Initialising the globallB

Tasks selection. (In this method, instead of selecting one task,
all ready tasks on the slave are selected.)

while(globallB ~= 0)
for i=l to n

if task i has been selected £ globallB ~= 0
1- One decoding iteration of task i is emulated.
2- globallB is decremented by 1.
3- Simulation of task i is terminated if the task has

reached to its effective decoding level.
end if

end for
end while

for i=l to n
if Simulation of task i has not been terminated

task i is terminated and its residual errors caused by the
degradation in the emulated decoding, are estimated by using
table I.

end if
end for

Figure 34 Pseudo code of gradual scheduling.

4.4.3. Priority-driven one shot scheduling
As explained before, the earlier simulated tasks might be allocated smaller IBs

causing more additional errors, because of the degradation in the emulated processing

compared to the later simulated tasks. Since the ready tasks are selected and simulated in

a fixed order in all processing periods, the additional errors associated to the earlier

simulated tasks are increased over time much more than for the tasks which are

simulated later.

In this way the difference between the provided service qualities for the

corresponding blocks (users) is increased over time. In order to prevent the increase of

difference between the user's service qualities, we propose a modification in the one

shot scheduling method. In the modified method, which is called priority-driven one

shot scheduling, we assign a priority to the ready tasks to determine their order of

76

simulation during each processing period. In the model, we have considered a parameter

called sum_add_err which is assigned to each task and represents the accumulated

additional bits in error inserted into the corresponding decoded block from beginning of

simulation till current processing period. It is mentioned that the additional bits in error

represent the bits in error provided because of degradation in the effective decoding

process, which occurs when the resulting it_eff of a task is greater than the

corresponding IB and that the IB is less than 8, In this case the additional bits in error

inserted into the corresponding decoded block are estimated to be equal to the

corresponding ave_add_err extracted from Table 3. Then the corresponding parameter

sum_add_err for the task is updated. The estimated parameter sum_add_err for each

task determines its priority for simulation in the next processing period.

In the priority-driven one shot method, the method of updating the IBs of tasks is

same as the one shot scheduling as shown in Fig. 31. But in this method, the order of

placing the tasks on the columns shown in Fig. 31 is defined based on the priority of

tasks. At each processing period, the ready tasks with the lowest values of sum_add_err

have the highest priority and are simulated first. In this way the tasks which are

characterized with higher accumulated bits in error are likely to be allocated more

resource in the current processing period. Thus the provided quality of service for

different users becomes more uniform when compared to the one shot scheduling

method.

4.4.4. Priority-driven gradual scheduling

In the gradual scheduling, the tasks simulated later are on average allocated less

resource than the ones simulated earlier. Thus more additional errors are associated to

the later decoded blocks because of the degradation in the emulated processing

compared to the earlier decoded blocks. For example, as shown in Fig. 33, task 1 which

is simulated earlier is allowed 6 decoding iterations while the number of emulated

iterations for task 2 is 5. Since the ready tasks are simulated in a fixed order in all

77

iteration levels and all processing periods, the number of additional errors associated to

the later simulated tasks in different iteration levels is higher than the one associated

with the tasks which are simulated earlier. In this way the difference between the

provided service qualities for the corresponding users increases over time.

In order to prevent the increase of difference between the user's service qualities,

we propose a modification in the gradual scheduling method. In the new modified

scheduling method, which is called priority-driven gradual scheduling, we introduce the

priority based on the sum_add_err parameter (similarly to the priority-driven one shot

method): the parameter ave_add_err and consequently the parameter sum_add_err, is

estimated and associated to each totally simulated task in each processing period which

defines the priority of the task in the next period. Otherwise, as for the gradual

scheduling, the tasks are simulated gradually and a global IB is assigned to limit the

emulated processing of tasks as shown in Fig. 33.

In other words, in this method the order of placing the tasks on the columns shown

in Fig. 33 is based on the priority of tasks. At each processing period, the ready tasks

with the highest sum_add_err value have the highest priority for simulation and are

simulated first. In this way the tasks with more accumulated additional bits in error

should be allocated more resources in the current processing period. Thus the provided

quality of service for different users becomes more uniform compared to the gradual

scheduling method.

4.5. Simulation results
As explained earlier, we create a performance model to investigate the proposed

scheduling methods which includes one Master and one Slave unit. Thus we develop the

previously proposed scheduling methods and introduce them in the Slave unit as

different options to schedule the assigned Turbo decoding tasks. Afterward, we simulate

the model in different cases of proposed scheduling methods under various loads and

channel conditions for appropriate durations. The simulation of the model provides the

78

BER associated to the decoded blocks in all processing periods. In order to simplify the

results, we calculate the average BER of all corresponding tasks during the simulation in

different cases of system loads and channel conditions. The specific Turbo decoding

tasks correspond to 656 data bits blocks before encoding ((3*656) +12= 1980 symbols

after encoding)), and frames are transmitted at 64 ksymbol/s over 40 ms periods.

If we apply the WCET design, considering the period of received frames and the

worst case processing time of Turbo decoding on the target processor which includes 8

decoding iterations, we can assign only 14 data blocks (users) to the processor.

Therefore, in the created performance model, if we assign 14 tasks to the Slave, 8

iteration budgets can be assigned to each task and no processing degradation is forced to

the emulated Turbo decoding processes by the system. Thus, case of assigning 14 users

(WCET design) is used as a reference to be compared with the case of assigning more

users in different cases of proposed scheduling methods.

4.5.1. One shot scheduling

By simulating the mentioned performance model in the case of one shot

scheduling method, the average BER of all tasks (corresponding to different users) are

obtained in different cases of number of assigned users and channel conditions which are

shown in Fig. 35. As shown in this figure, assigning more than 14 users causes an

increase in the error rate. The horizontal distance between the average BER curves and

the reference one (case of 14 users) for a given BER, gives the average degradation of

the decoding gain. Based on Fig. 35, the average degradation of decoding gain is

obtained for 3 different numbers of users at the BER value of 2*10-5. These results are

reported in Table 4. Clearly, the average degradation of decoding gain increases with the

number of users. However, even with 29 users assigned to a processor, the decoding

gain degradation is only approximately 0.15 dB, which is negligible and does not have

significant effects on the quality of service. When compared to the WCET strategy,

which lets a system architect assign only 14 users per processor in the modelled

conditions, the proposed one shot scheduling method allows assigning twice as many

79

users while providing acceptable quality of service. This advantage of the proposed

scheduling method is obtained by effectively exploiting the significant variability of

Turbo decoding process.

• 14 Users
-*— 23 Users
-e— 29 Users
- A — 32 Users
- B — 35 Users

0.7 0.8 0.9 1.1 1.2 1.3
Eb/NO in dB

1.5 1.6 1.7

Figure 35 Average BER in case of one shot scheduling.

80

Table 4 Average decoding gain degradation at a BER of 2* 10"" for one shot

scheduling.

Number of users

Average degradation of decoding gain (dB)

14

0

23

0.07

29

0.15

4.5.2. Gradual scheduling
By simulating the mentioned performance model in the case of gradual scheduling

algorithm, the average BER of users is obtained in different cases of number of assigned

users and channel conditions which are shown in Fig. 36. Based on Fig. 35 and Fig. 36,

the gradual scheduling method provides a remarkable improvement of average BER

over the one shot scheduling method. By using Fig. 36, average degradation of decoder

gain for 5 different numbers of users (at the BER value of 2e-5) is obtained and gathered

on Table 5. It is noteworthy that the average degradation of decoder gains with 23 and

29 users is now zero while it respectively reaches 0.07 and 0.15dB for the same number

of users with the one shot scheduling method.

Also based on table 5, the average degradation of decoder gain for more users such

as 32 and 35 are negligible (<0.10dB). As a comparison, average degradation of

decoding gain for 35 users with gradual scheduling is by 0.05 dB lower than for 29 users

with one shot scheduling. This improvement of decoding performance shows the

efficiency of gradual scheduling method in resource allocation to the tasks compared to

the one shot scheduling.

Table 5 Average decoding gain degradation at a BER of 2*10" in case of gradual

scheduling.

Number of users

Average degradation of decoding gain (dB)

14

0

23

0

29

0

32

0.03

35

0.1

81

10"1

10'2

2
I 10"4

<

io-5

'"0.7 0.B 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7

Eb/NO in clE

Figure 36 Average BER in case of gradual scheduling.

4.5.3. Priority-driven one shot and priority-driven gradual
scheduling

By selecting the priority-driven one shot scheduling and then the priority-driven

gradual scheduling in the mentioned performance model and simulating the

corresponding models, the average BER of users in different cases of number of

assigned users and channel conditions is obtained. By observing the results, we realized

that the average BER results obtained by using priority-driven one shot method are the

same as the corresponding results in the case of one shot method shown in Fig. 35. Also

the priority-driven gradual method provides the same average BER results as provided

by the gradual method and shown in Fig. 36.

In order to show the advantage of such priority-driven methods in equalizing the

service qualities of users, we also estimated the variance BER of users. The BER

variance of users in different cases of the proposed scheduling methods is presented in

Fig. 37, Fig. 38, Fig. 39 and Fig. 40. These shown curves are parameterized by the

number of users. In Fig. 39 and Fig. 40, the BER variance values for the Eb/NO values

which are greater than the values of the dotted lines are approximately zero. Looking at

T 1 1 1 1 1 r

J I I 1 I 1 I L

82

Fig. 37 and Fig. 38, gives a first opportunity to compare the priority-driven and the plain

one shot scheduling. As one can see, the priority-driven approach uniforms the BER

performance of users by reducing BER variances with respect to the plain one shot

method. The same observation can be made for the priority-driven and the plain gradual

methods by comparing Fig. 39 and Fig. 40.

Comparisons are even easier to make by looking at Fig. 41, Fig.42 and Fig. 43,

where the BER variance curves are drawn respectively for 29, 32 and 35 assigned users,

parameterized by the type of scheduling method. In this way, in each case of mentioned

number of assigned users, we can clearly observe the difference between the provided

service uniformity for users in 4 cases of scheduling method.

Considering the shown results for the average BER and the BER variance, we find

out the priority-driven gradual scheduling is the most efficient method between the

proposed ones which provides the best BER performance and service uniformity for

different users.

10

io-6

10'8

UJ n-io

2 ID'12

o

1 in 1 4

CD
>

10

10

io"20

0 7 C

T— 1 1

* zo users
u zy users
" oz users
u oD users

i

.8 0.9 1

1 1 1

i i i

1.1 1.2 1.3

Eb/N0 in dB

i

i

1.4

1

1.5 1.6

•

1.

Figure 37 BER variance in one shot scheduling.

83

10

10'6

10*

a:
a IO-,D

*^
o
<•> io - 1 2

o

I 10'H

>

io"'6

io'8

10'

-+— 23 Users
-e— 29 Users
-A— 32 Users
- B — 35 Users

07 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7

Eb/N0 in dB

Figure 38 BER variance in priority-driven one shot scheduling.

0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7

Eb/N0 in dB

Figure 39 BER variance in gradual scheduling.

10

o
« 10" -u

I io'14

>
io''6 -

io"*8 -

10

-1 r~

-*— 23 Users
-e— 29 Users
-&— 32 Users
- B — 35 Users

0.7 0.8 0.9 1.1 1.2 1.3 1.4 1.5 1.B 1.7

Eb/NO in dB

ure 40 BER variance in priority-driven gradual scheduling.

a.
LU

10"

io"6

10"8

10"'

10"'

>
io-'" h

10 h

10

one shot
-s— priority-driven one shot
-&— gradual
-B— priority-driven gradual

0.7 0.8 0.9 1.1 1.2 1.3 1.
Eb/N0 in dB

1.5 1.6 1.7

Figure 41 BER variance in case of 29 users.

85

o> 10
u
c

•= 10

>
10"r

10

-+— one shot
-9— priority-driven one shot
_A— gradual
-B— priority-driven gradual

_ i _

0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7

Eb/N0 in dB

Figure 42 BER variance in case of 32users.

10

10-6

10"8

io-'
a:
Ul <n-io
00

« io",J

u

I io"14

CO

>
Iff"

10'

10
•20

-*— one shot
-©— priority-driven one shot
-&— gradual
-H— priority-driven gradual

0.7 0.8 0.9 1.1 1.2 1.3
Eb/N0 in dB

1.5 1.6 1.7

Figure 43 BER variance in case of 35 users.

4.6. Validating investigation

In this section we intend to validate the method that we utilized to model the Turbo

decoding process and to estimate the residual errors in the decoded blocks. As explained

in section 4.4, we designed a random generator to emulate the effective number of

86

decoding iterations required in a Turbo decoder, depending on the channel condition.

We included such random generator in each task representing Turbo decoding in the

performance model. Also in order to estimate the residual errors in the decoded blocks,

we extracted some parameters such as BER and ave_add_err as illustrated in Table 3.

During simulating the performance model, the effective number of decoding in the tasks

representing Turbo decoding is provided by the corresponding random generators and

the number of bits in error in the decoded blocks is estimated using Table 3.

In order to validate the method of modelling the Turbo decoding process, we

developed a validation strategy. For this reason, we created several decoding tables by

using the results of simulating the Simulink model (functional model) of Turbo

coding/decoding process in different channel conditions. Such decoding tables include

the effective number of decoding iterations and also the number of bits in error at all

level of iterations till the effective one on different received data blocks for one user.

Each decoding table corresponds to one channel condition and includes the mentioned

decoding information for several data blocks. The number of blocks/frames included at

each decoding table is selected in such a way that it is appropriate for the corresponding

channel condition.

Thus, we do some modification in our performance model in such a way that we

introduce the mentioned decoding tables in the performance model. In this modified

version of the performance model, each task representing Turbo decoding process

utilizes the decoding information included in the corresponding decoding table instead

of using the random generator and the estimated number of bits in error in Table 3. Since

at each channel condition, the received data blocks corresponding to different users can

be different, we cannot use the same table for all tasks. Also, since providing the

decoding tables in some channel conditions is time consuming, creating different

decoding tables for individual users (up to 35 users in our case study), is not practical.

Therefore, we did an approximation in our validation method in such a way that at each

channel condition, each task uses the decoding information corresponding to a different

87

random combination of data blocks in the corresponding decoding table. In this way, at

each channel condition, different tasks corresponding to different users utilizes the same

decoding table, but at each time they take the decoding information corresponding to

different data blocks of the table.

In this way, we develop the explained validation version of performance model

including one Master and one Slave unit where the Slave contains several tasks

corresponding to Turbo decoding process on the received data blocks of several users.

Similarly to the explained simulations in section 4.5, we simulate this modified version

of performance model in different cases of channel conditions and number of assigned

users. We perform the explained simulations in two cases that the scheduling method in

the Slave unit is set to the one shot scheduling and also gradual scheduling method.

Therefore we obtain the average Bit Error Rate (BER) of different users as shown in

figures 44 and 45 which correspond respectively to the cases of one shot scheduling and

gradual scheduling methods.

Figure 44 Average BER in case of validation model and one shot scheduling.

88

Eb/NO in dB

Figure 45 Average BER in case of validation model and gradual scheduling.

Comparing Fig.44 with Fig. 35 and Fig. 45 with Fig. 36 does not show any

difference between the average BER results in two cases of using performance model

and validation model. Indeed, there is a little difference between the values of average

BER in these two cases of modelling, but the difference is such little that it is not

obvious by comparing the results in the mentioned figures. In this way the utilized

method of performance modelling of the Turbo decoding process is validated.

4.7. Elapsed simulation time

In this section, we intend to compare the elapsed simulation times in two cases of

performance modelling and functional modelling of the Turbo decoding processes.

Table 6 illustrates the simulation times in these two cases of modelling in different cases

of channel conditions. As explained before, in different channel conditions, each Turbo

decoding process should be simulated for a sufficient number of input data

blocks/frames. For instance, the total number of processed bits is set to 100 times the

inverse of the target bit error rate in our simulations for all considered sets of operating

conditions. The numbers of blocks/frames in different cases of channel conditions are

illustrated in the second column of Table 6.

89

Table 6 Elapsed simulation times.

Eh NO

0.76
0.86
0.96
1.06
1.16
1.26
1.36
1.46
1.56
1.66

Number of Frames

7
13
25
52
123
337
1029
3623
15151
99633

Decoding
Average

Elapsed Time
for one user

(sec)
3.56
5.97
11.47
21.49
50.27 "~l
141.87
470.31
1488.95
6604.64
42421.87

Decoding Average
Elapsed Time for 35

users using
functional model (sec)

(Tsim func)
124.50
209.05
401.58
752.08
1759.36
4965.37
16460.98
52113.37
231162.38
1484765.41

Elapsed Time for scheduling
35 usere

using performance model
(sec) (T_sim_perf)

0.37
0.69
1.35
2.77
6.60 1
17.95
55.88
195.05
791.23
5346.45

T_sini_fnnc / T_sim_perf

332.88
301.23
297.51
271.87
266.76
276.64
294.57
267.18
292.16
277.71

Using the Simulink functional model of Turbo coding/decoding, we estimate the

average simulation time for decoding the data blocks of one user for the appropriate

number of blocks corresponding to the channel condition. These average simulation

times are presented in the third column of Table 6. Thus we estimate the average

simulation times for decoding the data blocks of 35 users in different channel conditions

which are calculated by multiplying the corresponding simulation times for one user by

the value 35 and are shown in the fourth column of the Table. Afterward, we consider

the created performance model in section 4.5 which includes the one shot scheduling

method and 35 tasks representing the Turbo decoding processes. Then we simulate the

mentioned performance model in different cases of channel condition for appropriate

number of blocks/frames and obtain the corresponding elapsed simulation times as

shown in the fifth column of Table 6.

The Table 6 illustrates also the ratio of the simulation times in two cases of

functional modelling and performance modelling for decoding the data blocks of 35

users. We can observe that the simulation times in the case of functional modelling are

approximately 300 times of the simulation times in case of performance modelling. Such

ratio of simulation times justifies the utilization of our performance modelling that

allowed the rapid verification of different methods of scheduling without any functional

simulation.

90

4.8. Conclusion
In this chapter, we discussed a mapping strategy to assign the different

processing segments of the uplink WCMDA processing in a UMTS receiver base-station

to different processors of a multiprocessor platform. Then we focused on the Turbo

decoding process which was a high intensive computational part of the uplink WCDMA

processing and we discussed the scheduling of Turbo decoding on the processors of the

platform dedicated to this process. Thus, we used our developed performance modelling

strategy to estimate the efficiency of the proposed scheduling methods. We created a

performance model including the proposed scheduling methods and the tasks

representing the Turbo decoding processes on the different data blocks.

Simulating such model provided the BER performance for the decoded blocks in

different cases of scheduling methods and for different number of assigned users. The

provided simulation results showed the advantage of these flexible scheduling methods

comparing to a WCET design by increasing the number of assigned users in the base-

station. Such flexible methods allowed the system to perform more number of processes

by degrading gracefully the processing efforts which reflected the negligible service

quality degradations.

In this chapter, similarly to [6] and [18], scheduling of Turbo decoding process on

several encoded blocks in the dedicated processors was studied. However, our

scheduling methods allowed much more flexible degradation by considering dynamic

iteration budgets, when compared to the decoding degradation presented in [18]. Such

processing degradation concept was not considered in [6]. Unlike to [8], [19] and [20],

we considered that the Turbo decoder algorithm consisted of only one monolithic task

and the Turbo decoding process on each coded block should performed totally on one

processor. Thus, the Turbo decoding processes on the individual processors could be

data independent which would reduce the data communication between the processors.

Finally, we provided the elapsed simulation times in two cases of functional and

performance modelling of the Turbo decoding. These results showed the advantage of

91

using such performance modelling strategy to rapid verification of the proposed

scheduling methods.

92

CHAPTER 5

CONCLUSION
In this project we utilized a multi-DSP platform as the target architecture which

is called Vocallo and is fabricated by Octasic Semiconductor. We chose such a multi-

core DSP platform to provide an appropriate target for implementing our

telecommunication target application which had a dynamic and computationally

intensive nature. The target application in this project corresponded to the WCDMA

(Wide-band Code Division Multiple Access) process on the received data blocks

corresponding to different users in a Universal Mobile Telecommunication Systems

UMTS base-station receiver. Considering real-time and dynamic characteristics of target

application, we derived high-level performance models of the application, using the

same system-modeling environment (in our case Matlab/Simulink) to allow fast

performance validation of that application when running on the target platform. Our

devised performance modeling methodology also allowed validation of the efficiency of

strategies for mapping and scheduling a complex application on the target platform

before run time.

In this project, we focused specifically on a computationally intensive part of the

WCDMA application which has been characterized by a significant variability of the

processing effort. We proposed four flexible methods to schedule the Turbo decoding

process on the processors of the platform which could trade off the quality of the results

(services) and the required resources to produce the results. We utilized our structured

performance model to derive and validate the proposed flexible methods for scheduling

the Turbo decoding tasks. All proposed flexible scheduling (FS) methods in this project,

when compared to a WCET scheduling method, improved the processors utilization. By

using the one shot scheduling (first proposed FS method) comparing to the case of

WCET, we could increase the number of users from 14 to 29 while keeping an

acceptable quality of service reflected in degradation of 0.15 dB of decoder gain. Using

93

the gradual scheduling (second proposed FS method) allowed us to increase the number

of users from 14 to 35 while keeping an acceptable quality of service reflected in a very

small degradation of less than 0.1 dB of decoder gain. The priority-driven one shot

scheduling (third proposed FS method) comparing to the one shot method provided the

same results for increasing the number of users and average degradation of service

quality while resulting the more uniform quality of services for different users. Also, the

priority-driven gradual scheduling (fourth proposed FS method) compared to the

gradual method provided the same results for increasing the number of users and

average degradation of service quality while resulting in a more uniform quality of

services for different users. Therefore, the priority-driven gradual scheduling is

recognized as the most efficient method to allocate the resources to different users

between the proposed FS methods.

Also, we structured a modified version of our performance model to validate our

proposed method to model the Turbo decoding processes. Simulating such modified

performance models and comparing the extracted results with the results of the

corresponding performance models validated our Turbo decoding modeling method. In

addition, we estimated the elapsed simulation times in two cases of functional and

performance modelling for decoding the data blocks of 35 users in different channel

conditions. We observed that the simulation times in the case of performance modelling

were approximately 300 times faster in the case of functional modelling. Such ratio of

simulation times justified the utilization of our performance modelling that allowed the

rapid verification of different scheduling methods without performing detailed

functional simulation.

The future work for this project consists of dynamic characterization of the other

processing segments of an uplink WCDMA application in addition to the Turbo decoder

and abstracting their execution time properties on the target processors. Also, data

transmission between different processing segments of the application should be

characterized in the form of data volumes and the elapsed time to transmit this data

94

between the processors of the platform. The result of such characterization could be

introduced in our performance modelling strategy. Thus, different performance models

could be created based on the developed modelling strategy to describe the different

implementations of the whole application of an UMTS receiver base-station

implemented on the target platform which represent all the processing segments of the

application and all the data transmissions in the platform. Such complete models will

allow to verify different methods of mapping and scheduling of the whole application on

the multiprocessor platform and to study the maximum number of users which can be

assigned to the base-station in different cases of implementations.

95

REFERENCES

[1] Atat, Y., Zergainoh, N.-E., Simulink-based MPSoC design: new approach to

bridge the gap between algorithm and architecture design, VLSI. ISVLSI '07.

IEEE Computer Society Annual Symposium on, 2007. pp. 9-14.

[2] Berrou, C , Glavieux, A., Near Optimum Error Correcting Coding and

Decoding: Turbo-Codes, IEEE transactions on Communications, Vol. 44, 1996,

pp. 1261-1271.

[3] Chen, Y. and Xiong, G., Imprecise computation fault tolerant rate-monotonic

scheduling, in Proceedings of the 5T International Conference on Algorithms and

Architectures for parallel Processing (ICA3PP '02), 2002, pp. 293-296.

[4] Cormier S., Implementing a Turbo decoder for UMTS on a Vocallo multi-DSP

device, Technical Report, Ecole de Technologie Superieur, 2007.

[5] Crozier, S., Gracie, K., Hunt, A., Efficient Turbo decoding techniques, In Proc. of

Int. Conf. on Wireless Communications, 1999, pp. 187-195.

[6] Freeman, B. R., Statistically multiplexed Turbo code decoder, United States

Patent, US 6,252,917 Bl, Nortel Networks Limited, June 2001.

[7] Gao, K., Zhang, Y., He, S., and Gao, W., Imprecise computation scheduling on

scalable media stream delivery, in Proceedings of ICICS-PCM 2003, vol. 3.,

2003, pp. 1351-1355.

[8] Gilbert, F. , Thul, M. J., When, N., Communication centric architectures for

Turbo-decoding on embedded multiprocessors, Proceedings of the conference on

Design, Automation and Test in Europe, vol. 1, 2003, 10356p.

[9] Han, S.-L, Chae, S.-L, Brisolara, L., Cairo, L., Reis, R., Guerin, X., Jerraya, A.-

A., Memory-efficient multithreaded code generation from Simulink for

heterogeneous MPSoC, Springer Netherlands, 2007, pp. 249-283.

[10] Hein, J. J. , Aylor, J. H. , Klenke, R. H., Performance-based system

design education, In Proceedings of the IEEE International conference on

Microelectronic Systems Education, 2003, pp. 35- 36.

96

[11] Holma, H., Toskala, A., WCDMA for UMTS: Radio access for third

generation mobile communications, John Wiley & Sons (UK), 2003, 391 p.

[12] Ignat, N., Belanger, N., Savaria, Y. and Nicolescu, G., A MPSoC

Architecture for Real-Time Systems with Significant Execution Time Variability,

Technical Report, Ecole Polytechnique, 2008.

[13] Kempf, T., Doerper, M. , Leupers, R., Ascheid, G., Meyr, H. , Kogel, T.

, Vanthournout, B. , A modular simulation framework for spatial and temporal

task mapping onto multi-processor SoC platforms, Proceedings of Design,

Automation and Test in Europe, vol. 2, 2005, pp. 876- 881.

[14] Kim, K. H., Buyya, R. , and Kim, J., Imprecise computation grid

application model for flexible market-based resource allocation, in Proceedings

of the 6th IEEE International Symposium on Cluster Computing and the Grid

(CCGRID '06), 2006, vol. 1, pp. 5.

[15] Klenke, R. H., Aylor, J. H., A proposed modeling environment to teach

performance modeling and hardware/software codesign to senior

undergraduates, In Proceedings of the IEEE International Conference on

Microelectronic Systems Education, 2003, pp. 27- 28.

[16] Liu, J. W. S., Real-time systems, Prentice Hall, 2000.

[17] Liu, W., Efficient Application Mapping and Scheduling for Networks-on-

Chip, PHD thesis, Hong Kong University of science and technology, 2008.

[18] Malm, P., Method for iterative decoder scheduling, United States Patent,

7213189, ERICSSON TELEFON AB L M (SE), May 2007.

[19] Muller, O., Baghdadi, A., Jezequel, M., ASIP-Based Multiprocessor SoC

Design for Simple and Double Binary Turbo Decoding, Design, Automation and

Test in Europe, vol. 1, 2006, pp. 1-6.

[20] Neeb, C , Thul, M. J., When, N., network-on-chip-centric approach to

interleaving in high throughput channel decoders, IEEE International

Symposium on Circuits and Systems (ISCAS), 2005, pp. 1766-1769.

[21] Octasic Semiconductor Company Website, w w w.octasic.com, 2008.

97

[22] Oyamada, M., Wagner, F., Bonaciu, M., Cesario, W., Jerraya, A.,

software performance estimation in MPSoC design, 12* Asia and South Pacific

Design Automation Conference, 2007, pp. 38-43.

[23] Rekh, S. , Rani, S.S., Shanmugam, A., Optimal choice of interleaver for

Turbo codes, Academic Open Internet Journal, vol.15, part 6, 2005.

[24] Ristau, B., Limberg, T., Fettweis, G., A mapping framework based on

packing for design space exploration of heterogeneous MPSoCs, Journal of

signal processing systems, Springer New York, 2008.

[25] Streubuhr, M., Falk, J., Haubelt, Ch., Teich, J., Dorsch, R., Schlipf, Th.,

Task-accurate performance modeling in systemC for real-time multi-processor

architectures, In Proceedings of Design, Automation and Test in Europe, 2006,

pp. 480-481.

[26] Streubuhr, M., Jantsch, M., Haubelt, C , Teich, J., Schneider, A., Semi-

Automatic Generation of mixed Hardware/Software Prototypes from Simulink

models, Workshop "Methoden und Beschreibungssprachen zur Modellierung und

Verifikation von Schaltungen und Systemen", Freiburg, 2008, pp. 139-148.

[27] Universal Mobile Telecommunications System (UMTS) ; Physical layer -

general description, ETSI. 3GPP TS 25.201 version 6.1.0 Release 6, 2004.

[28] Valentin, M. C , Sun J., The UMTS Turbo Code and an Efficient Decoder

Implementation Suitable for Software-Defined Radio", International Journal of

Wireless Information Networks, Vol. 8, No. 4, 2001.

[29] Wiklund, D., Liu, D., Design, mapping, and simulations of a 3G

WCDMA/FDD basestation using network on chip, Fifth international workshop

on System-on-Chip for Real-Time Applications, 2005, pp. 252- 256.

[30] 3rd Generation Partnership Project; Specification Group Radio Access

Network; Multiplexing and channel coding (FDD) (Release 7), 3GPP T TS

25.212 V7.1.0, 2006.

[31] 3rd Generation Partnership Project, 3GPP web site,

http://www.3gpp.org, 2008.

http://www.3gpp.org

98

APPENDIX 1

Simulation results for the example described in section 3.3. The results
correspond to 25 simulation stages.

INITIAL CASE:
rdy = [-1.000000 -1.000000 -1.000000 -1.000000]
st = [-1.000000 -1.000000 -1.000000 -1.000000]
t_sim = 0.000000
fin = [-1.000000 -1.000000 -1.000000 -1.000000]
load unit = [0.000000 0.000000]

SIMULATION STAGE 1:
rdy = [0.000000 0.000000 -1.000000 -1.000000]
st = [0.000000 0.000000 -1.000000 -1.000000]
t_sim = 0.000000
EXECUTED TASKS: TASK 1
fin = [0.010000 -1.000000 -1.000000 -1.000000]
load unit = [0.010000 0.000000]

SIMULATION STAGE 2:
rdy = [0.020000 0.000000 0.010000 -1.000000]
st = [0.020000 0.010000 0.010000 -1.000000]
t_sim = 0.010000
EXECUTED TASKS: TASK 2 TASK 3
fin = [-1.000000 0.020000 0.020000 -1.000000]
load unit = [0.020000 0.020000]

SIMULATION STAGE 3:
rdy = [0.020000 0.020000 -1.000000 0.020000]
st = [0.020000 0.020000 -1.000000 0.020000]
t_sim = 0.020000
EXECUTED TASKS: TASK 1 TASK 4
fin = [0.030000 -1.000000 0.020000 0.030000]
load unit = [0.030000 0.030000]

SIMULATION STAGE 4:
rdy = [0.040000 0.020000 0.030000 -1.000000]
st = [0.040000 0.030000 0.030000 -1.000000]
t_sitn = 0.030000
EXECUTED TASKS: TASK 2 TASK 3
fin = [-1.000000 0.040000 0.040000 0.030000]
load unit = [0.040000 0.040000]

SIMULATION STAGE 5:
rdy = [0.040000 0.040000 -1.000000 0.040000]
st = [0.040000 0.040000 -1.000000 0.040000]
t_sim = 0.040000
EXECUTED TASKS: TASK 1 TASK 4
fin = [0.050000 -1.000000 0.040000 0.050000]
load unit = [0.050000 0.050000]

SIMULATION STAGE 6:
rdy = [0.060000 0.040000 0.050000 -1.000000]
st = [0.060000 0.050000 0.050000 -1.000000]
t_sim = 0.050000
EXECUTED TASKS: TASK 2 TASK 3
fin = [-1.000000 0.060000 0.060000 0.050000]
load unit = [0.060000 0.060000]

SIMULATION STAGE 7:
rdy = [0.060000 0.060000 -1.000000 0.060000]
st = [0.060000 0.060000 -1.000000 0.060000]
t_sim = 0.060000
EXECUTED TASKS: TASK 1 TASK 4
fin = [0.070000 -1.000000 0.060000 0.070000]
load unit = [0.070000 0.070000]

SIMULATION STAGE 8:
rdy = [0.080000 0.060000 0.070000 -1.000000]
st = [0.080000 0.070000 0.070000 -1.000000]
t_sim = 0.070000
EXECUTED TASKS: TASK 2 TASK 3
fin = [-1.000000 0.080000 0.080000 0.070000]
load unit = [0.080000 0.080000]

SIMULATION STAGE 9:
rdy = [0.080000 0.080000 -1.000000 0.080000]
st = [0.080000 0.080000 -1.000000 0.080000]
t_sim = 0.080000
EXECUTED TASKS: TASK 1 TASK 4
fin = [0.090000 -1.000000 0.080000 0.090000]
load unit = [0.090000 0.090000]

SIMULATION STAGE 10:
rdy = [0.100000 0.080000 0.090000 -1.000000]
St = [0.100000 0.090000 0.090000 -1.000000]
t_sim = 0.090000
EXECUTED TASKS: TASK 2 TASK 3
fin = [-1.000000 0.100000 0.100000 0.090000]
load unit = [0.100000 0.100000]

SIMULATION STAGE 11:
rdy = [0.100000 0.100000 -1.000000 0.100000]
st = [0.100000 0.100000 -1.000000 0.100000]
t_sim = 0.100000
EXECUTED TASKS: TASK 4
fin = [-1.000000 -1.000000 0.100000 0.110000]
load unit = [0.100000 0.110000]

SIMULATION STAGE 12:
rdy = [0.100000 0.100000 -1.000000 -1.000000]
st = [0.100000 0.100000 -1.000000 -1.000000]

t_sim = 0.100000
EXECUTED TASKS: TASK 1
fin = [0.110000 -1.000000 0.100000 0.110000]
load unit = [0.110000 0.110000]

SIMULATION STAGE 13:
rdy = [0.120000 0.100000 0.110000 -1.000000]
st = [0.120000 0.110000 0.110000 -1.000000]
t_sim = 0.110000
EXECUTED TASKS: TASK 2 TASK 3
fin = [-1.000000 0.120000 0.120000 0.110000]
load unit = [0.120000 0.120000]

SIMULATION STAGE 14:
rdy = [0.120000 0.120000 -1.000000 0.120000]
st = [0.120000 0.120000 -1.000000 0.120000]
t_sim = 0.120000
EXECUTED TASKS: TASK 1 TASK 4
fin = [0.130000 -1.000000 0.120000 0.130000]
load unit = [0.130000 0.130000]

SIMULATION STAGE 15:
rdy = [0.140000 0.120000 0.130000 -1.000000]
st = [0.140000 0.130000 0.130000 -1.000000]
t_sim = 0.130000
EXECUTED TASKS: TASK 2 TASK 3
fin = [-1.000000 0.140000 0.140000 0.130000]
load unit = [0.140000 0.140000]

SIMULATION STAGE 16:
rdy = [0.140000 0.140000 -1.000000 0.140000]
St = [0.140000 0.140000 -1.000000 0.140000]
t_sim = 0.140000
EXECUTED TASKS: TASK 1 TASK 4
fin = [0.150000 -1.000000 0.140000 0.150000]
load unit = [0.150000 0.150000]

SIMULATION STAGE 17:
rdy = [0.160000 0.140000 0.150000 -1.000000]
st = [0.160000 0.150000 0.150000 -1.000000]
t_sim = 0.150000
EXECUTED TASKS: TASK 2 TASK 3
fin = [-1.000000 0.160000 0.160000 0.150000]
load unit = [0.160000 0.160000]

SIMULATION STAGE 18:
rdy = [0.160000 0.160000 -1.000000 0.160000]
st = [0.160000 0.160000 -1.000000 0.160000]
t_sira = 0.160000
EXECUTED TASKS: TASK 1 TASK 4
fin = [0.170000 -1.000000 0.160000 0.170000]
load unit = [0.170000 0.170000]

SIMULATION STAGE 19:
rdy = [0.180000 0.160000 0.170000 -1.000000]
st = [0.180000 0.170000 0.170000 -1.000000]
t_sim = 0.170000
EXECUTED TASKS: TASK 2 TASK 3
fin = [-1.000000 0.180000 0.180000 0.170000]
load unit = [0.180000 0.180000]

SIMULATION STAGE 20:
rdy = [0.180000 0.180000 -1.000000 0.180000]
St = [0.180000 0.180000 -1.000000 0.180000]
t_sim = 0.180000
EXECUTED TASKS: TASK 1 TASK 4
fin = [0.190000 -1.000000 0.180000 0.190000]
load unit = [0.190000 0.190000]

SIMULATION STAGE 21:
rdy = [0.200000 0.180000 0.190000 -1.000000]
st = [0.200000 0.190000 0.190000 -1.000000]
t_sim = 0.190000
EXECUTED TASKS: TASK 2 TASK 3
fin = [-1.000000 0.200000 0.200000 0.190000]
load unit = [0.200000 0.200000]

SIMULATION STAGE 22:
rdy = [0.200000 0.200000 -1.000000 0.200000]
st = [0.200000 0.200000 -1.000000 0.200000]
t_sim = 0.200000
EXECUTED TASKS: TASK 1 TASK 4
fin = [0.210000 -1.000000 0.200000 0.210000]
load unit = [0.210000 0.210000]

SIMULATION STAGE 23:
rdy = [0.220000 0.200000 0.210000 -1.000000]
st = [0.220000 0.210000 0.210000 -1.000000]
t_sim = 0.210000
EXECUTED TASKS: TASK 2 TASK 3
fin = [-1.000000 0.220000 0.220000 0.210000]
load unit = [0.220000 0.220000]

SIMULATION STAGE 24:
rdy = [0.220000 0.220000 -1.000000 0.220000]
st = [0.220000 0.220000 -1.000000 0.220000]
t_sim = 0.220000
EXECUTED TASKS: TASK 1 TASK 4
fin = [0.230000 -1.000000 0.220000 0.230000]
load unit = [0.230000 0.230000]

SIMULATION STAGE 25:
rdy = [0.240000 0.220000 0.230000 -1.000000]
st = [0.240000 0.230000 0.230000 -1.000000]
t sim = 0.230000

102

EXECUTED TASKS: TASK 2 TASK 3
fin = [-1.000000 0.240000 0.240000 0.230000]
load unit = [0.240000 0.240000]

