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RESUME 
Ce projet presente un modele de performance dynamique d'une application de 

communication a acces multiple et division de code a large bande (WCDMA - « wide

band code division multiple access ») programmed sur un reseau sur puce a processeurs 

multiples (MPSoC - « multiple processor system on chip »). Nous developpons une 

strategic de modelisation dynamique pour evaluer le temps d'execution des designs 

MPSoC basee sur des modeles a haut niveau des applications et de l'architecture. De tels 

modeles permettent de s'assurer que la plate-forme multi-noyaux est exploitee a son 

maximum et que les strategies d'assignation et d'ordonnancement peuvent etre validees. 

Nous nous sommes concentres sur le decodeur Turbo, qui est une partie de cette 

application comportant un nombre important des calculs et qui presente une variabilite 

de temps de traitement significative. Dans un systeme temps-reel, il est tres important 

que les taches respectent leurs delais limites. En raison de la variabilite du temps 

d'execution des taches, la plupart des algorithmes d'ordonnancement utilises dans les 

systemes temps-reel sont bases sur le pire cas du temps d'execution de 1'application 

choisie (WCET - «worst-case execution time »). Le probleme d'une methode de 

conception basee sur le WCET est le suivant: l'analyse d'ordonnancement basee sur les 

WCET mene a un faible taux d'utilisation des processeurs. Dans le cadre de ce projet, 

nous proposons quelques methodes d'ordonnancement flexibles appliquees au decodage 

Turbo qui sont tres avantageuses en comparaison de la methode d'ordonnancement du 

WCET. Les methodes proposees sont inspirees des methodes d'ordonnancement qui 

traitent de calculs flexibles. Un modele de performance de cette application nous a 

permis d'implementer et valider quelques methodes d'ordonnancement plus flexibles 

proposees pour l'execution du decodage Turbo et qui sont adaptees a l'effort de 

traitement variable exige par le decodeur. 

Basee le modele de performance propose, l'efficacite des methodes 

d'ordonnancement est demontree. Elle justifie egalement l'utilisation de notre modele 
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devaluation de la performance. Les methodes d'ordonnancement flexibles (FS -

«flexible scheduling») proposees ameliorent substantiellement 1'utilisation des 

ressources lorsque comparee a une methode d'ordonnancement du temps d'execution 

selon le pire cas (WCET). La methode d'ordonnancement « priority-driven gradual », en 

comparaison de la methode WCET, permet d'augmenter le nombre d'utilisateurs de 14 a 

35, tout en maintenant une qualite de service acceptable, refletee dans une degradation 

tres petite de 0.1 dB du gain de decodage. 
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ABSTRACT 
This project presents a dynamic performance model of a Wide band Code 

Division Multiple Access (WCDMA) application mapped on a homogeneous Multi 

Processor System-on-Chip (MPSoC). We develop a dynamic modeling strategy to 

evaluate the performance of MPSoC designs based on high level models of the 

applications and of the architecture. Such model permits ensuring that the multi-core 

platform is well exploited. 

We focus on the Turbo decoder, which is a computationally intensive part of the 

application and which presents significant processing time variability. In a real-time 

system, it is very important that the tasks meet their deadlines. Due to the variability of 

tasks execution time, most scheduling algorithms used in real-time systems are based on 

the Worst Case Execution Time (WCET) of application tasks. The problem of such 

WCET based design is that, the scheduling analysis based on WCETs leads to low 

processor utilization. In this project, some flexible scheduling methods are proposed for 

Turbo decoding tasks which are highly advantageous comparing to the WCET 

scheduling method. The proposed methods are inspired from the scheduling methods 

which deal with flexible computations. A performance model of this application allows 

deriving and validating some proposed flexible scheduling methods for Turbo decoding 

tasks, which are adapted to the variable processing effort required by the decoder. 

Using the proposed performance model, the efficiency of the scheduling methods 

is demonstrated. It also justifies the utilization of our performance evaluation model. 

The proposed flexible scheduling (FS) methods improve the resource utilization 

compared to a Worst Case Execution Time (WCET) scheduling method. In a specific 

benchmark reported in this thesis, the priority-driven gradual scheduling method, which 

is the most efficient FS method among the proposed FS methods, 

allows increasing the number of users from 14 to 35, while keeping an acceptable 
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quality of service, as reflected in a very small degradation of 0.1 dB in the decoding 

gain. 
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CONDENSE EN FRANQAIS 

0.1. Introduction 

Les plates-formes de reseau sur puces a processeurs multiples (MPSoC - « 

multiple processor system on chip ») peuvent fournir une puissance de traitement elevee 

par le partage de la charge sur un reseau des processeurs. De telles architectures sont des 

cibles appropriees pour l'execution d'applications dynamiques qui necessitent une 

quantite considerable de calculs. Les processeurs de traitement de signal numerique 

multi-coeur (DSPs - « Digital Signal Processors ») de haute performance sont de plus en 

plus employes dans les equipements de telecommunication qui traitent les signaux 

sonores, visuels et radio. Puisque ces DSP sont controles par logiciel, lorsque 

suffisamment puissants, ils fournissent plus de flexibilite qu'un circuit integre dedie 

(Application Specific Integrated Circuit - ASIC). Ces considerations ont mene au choix 

d'une plate-forme multi-DSP comme 1'architecture cible dans ce projet. Celle-ci 

s'appelle Vocallo et elle a ete con§ue par la compagnie Octasic Semiconductor. 

L'application cible de ce projet correspond au processus d'acces multiple a 

division de code a large bande (WCDMA - «wide-band code division multiple 

access ») d'une station de base de type « Universel Mobile Telecommunication 

Systems (UMTS) ». Le WCDMA rend possible le partage par differents utilisateurs 

d'une bande spectrale relativement large en l'etalement spectral par codage au lieu de 

tranches de temps exclusives. L'etalement de spectre (« spread spectrum ») est effectue 

en multipliant les flots (« stream ») de donnees de taux inferieur avec une sequence de 

taux plus eleve (connue sous le nom de « chip sequence ». Dans ce projet, nous avons 

l'intention de mettre en application le recepteur d'une station de base UMTS qui exploite 

le WCDMA sur une plate-forme multi-DSP . 

Etant donne les caracteristiques temps reel et dynamiques de l'application cible et 

egalement la complexity de la conception de MPSoC, il est necessaire d'avoir des 
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moyens de valider les capacities (par exemple, le trafic qu'elle peut servir) et la 

performance de la plate-forme avant 1'implementation, permettant ainsi de verifier si 

une architecture MPSoC donnee convient a une application ou de determiner le nombre 

de processeurs requis pour atteindre la performance desiree. Pour ces raisons, nous 

avons developpe une strategic de modelisation dynamique devaluation de la 

performance des MPSoC basee sur des modeles a niveau eleve des applications et de 

l'architecture. A ce niveau de modelisation, l'application est representee comme un 

ensemble de taches devant etre executees, avec les ressources disponibles. L'architecture 

sur laquelle l'application s'executera est representee simplement comme un ensemble de 

ressources de traitement reliees par un tissu de communication pour transferer des 

donnees entre elles. Un aspect exceptionnel de ce modele est que la fonctionnalite est 

completement absente du modele, ce qui accelere la caracterisation et la conception du 

systeme. Une telle modelisation d'execution permet une validation rapide de l'efficacite 

des strategies d'assignation et d'ordonnancement d'une application complexe sur la 

plate-forme cible avant son execution. La strategie de modelisation developpee est 

largement applicable et elle n'est pas limitee a l'application presentee dans ce projet. 

Nous proposons ensuite une methode pour 1'assignation des differentes parties 

de l'application WCDMA sur la plate-forme. Ainsi, nous nous concentrons 

specifiquement sur le processus de decodage Turbo qui est une partie de l'application 

WCDMA demandant une grande puissance de calcul. L'ordonnancement de ce genre de 

processus est etudie en detail. Le processus de decodage Turbo est caracterise par une 

variabilite significative de l'effort de traitement qui rend l'ordonnancement d'un tel 

processus critique. II est bien connu que les systemes temps reel doivent fournir des 

reponses qui sont, non seulement logiquement correctes, mais egalement 

temporellement correctes. Dans un systeme temps reel, il est tres important que les 

taches respectent leurs limites de temps. Dans de tels systemes, un des problemes de 

conception le plus delicat est la variabilite des temps d'execution des taches. En raison 

de cette variabilite, la plupart des algorithmes d'ordonnancement utilises dans les 

systemes temps reel monoprocesseur ou multiprocesseur sont bases sur le temps 
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d'execution du pire cas (WCET - « Worst Case Execution Time ») des taches. Le 

WCET des taches est constant, par consequent, les modeles de systeme en temps reel 

deviennent deterministes done plus facile a comprendre et a mettre en application. Le 

probleme de la conception basee sur le WCET est que, dans des applications temps reel 

avec une variabilite significative du temps d'execution, l'analyse d'ordonnancement 

basee sur le temps d'execution du pire cas mene a une faible utilisation des processeurs. 

Dans ce projet, nous proposons quelques methodes pour l'ordonnancement 

flexible des taches du decodage Turbo qui sont tres avantageuses en comparaison avec 

la methode d'ordonnancement WCET. Les methodes proposees sont inspirees des 

methodes d'ordonnancement qui traitent des calculs flexibles. L'expression de calcul 

flexible se rapporte a une classe importante d'applications congues et implementes pour 

faire un compromis entre la qualite des resultats (services) qu'elles produisent et le 

temps et les ressources qu'elles emploient pour produire ces resultats. Plus 

specifiquement, une application flexible peut reduire ses exigences de temps et de 

ressources aux depens de la qualite de ses resultats tant que l'utilisateur trouve la qualite 

des resultats acceptable. Une application flexible peut degrader graduellement sa qualite 

quand les ressources sont limitees et que les demandes en calculs sont elevees. Les 

methodes d'ordonnancement proposees dans ce projet sont adaptees a la variabilite du 

processus de decodage Turbo et elles ajustent dynamiquement l'effort de traitement 

pendant l'execution tout en gardant une qualite acceptable des resultats. 

0.2 Flot de traitement dans une station de base UMTS 

Dans cette section, nous decrivons brievement les flots de traitement dans une 

station de base WCDMA compris dans la liaison descendante («downlink ») et 

ascendante («uplink»), qui correspondent respectivement aux cotes emetteur et 

recepteur de la station de base [29]. Dans ce projet, le flux de traitement de la liaison 

montante qui correspond au cote recepteur de la station de base est considere. 
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0.2.1. Liaison descendante 
Du cote de la liaison descendante, la station de base UMTS transmet un 

ensemble de canaux physiques communs aux utilisateurs dans la zone de portee de la 

station de base. La figure 2 (page 13) montre le flux de traitement de la station de base 

pour un utilisateur de la liaison descendante. Les donnees d'entree venant de la couche 

du MAC (« Media Access Control ») se composent de differents flots (« streams ») de 

donnees. En premier lieu, le calcul de redondance cyclique (CRC - « Cyclic 

Redundancy Check ») et le codage de correction d'erreurs vers l'avant est ajoute aux 

flots. Ceux-ci sont alors envoyes par un ajusteur de taux (« rate matcher ») qui s'assure 

que le debit des trains est adapte a la couche physique. Les trains sont intercales, 

segmentes dans des fenetres et puis intercalees une autre fois. A la sortie, ils sont 

mappes, etales au taux de chip (le chip est l'unite fondamentale de la transmission 

CDMA) et, finalement, envoyes a l'emetteur radio. 

0.2.2. Liaison montante 

Le flux de traitement de la liaison montante est semblable au flux de la liaison 

descendante mais il inclut beaucoup plus de calculs. La figure 3 (page 14) montre le flux 

de donnees pour le traitement de la liaison montante. Une combinaison par trajets 

multiples est d'abord effectuee, basee sur un filtre de recherche de trajets multiples et un 

recepteur Rake. Le recepteur Rake additionne les trajets multiples et effectue l'etalement 

(« despreading ») du signal d'entree. Ensuite, la trame est desentrelacee et on effectue 

l'ajustement inverse des taux (« reverse rate matching »). Ensuite, la reconstitution des 

trames radio (« radio frame reassembly ») est faite, suivi d'un desentrelaceur different. 

Par la suite, un decodage pour correction d'erreurs est employe pour reconstituer les 

donnees regues qui sont envoyees a la couche de MAC. 
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0.3. L'assignation d'application sur une plate-forme 
multiprocesseur 

Comme mentionne auparavant, nous avons l'intention d'implementer le 

traitement des signaux d'un recepteur de station de base UMTS sur une plate-forme 

multiprocesseur. Dans un recepteur de station de base UMTS, les trames radio arrivent a 

un taux definissant une periode de traitement, ou chaque trame radio regue est une 

concatenation de blocs de transport, ou chacun est associe a un utilisateur donne. 

L'application cible se compose d'un traitement de liaison montante montre dans la 

figure 3 (page 14) qui doit etre applique aux blocs de donnees recues correspondant aux 

utilisateurs de la station de base. 

La figure 27 (page 67) montre un exemple d'application UMTS servant 10 

utilisateurs. Afin de simplifier l'exemple, la liaison montante traitant chaque utilisateur 

est decrite comme comportant trois segments de traitement. Pour implementer 

l'application sur une plate-forme multiprocesseur, les segments de traitement doivent 

etre mappes sur les processeurs. Comme premier exemple de strategie d'assignation, 

nous supposons que les segments de traitement de chaque utilisateur sont assignes a 

differents processeurs. Ainsi, les segments en chaine de chaque utilisateur peuvent etre 

executes en mode pipeline sur differents processeurs. Aussi, nous considerons que 

chaque processeur execute seulement un type de traitement (a savoir un segment) pour 

les multiples utilisateurs. La strategie d'assignation proposee est similaire a la methode 

presentee dans [29]. Un exemple d'une telle strategie d'assignation est illustre a la 

figure 28 (page 67), qui correspond au cas ou l'application de la figure 27 (page 67) est 

implementee sur quatre processeurs. 

0.4. Modelisation de la performance 

Comme mentionne precedemment, nous devons concevoir un modele de 

performance pour estimer le temps d'execution des applications sur la plate-forme avant 

leur execution. Dans ce but, nous proposons une methodologie de modelisation de la 
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performance basee sur un modele Matlab qui inclut les caracteristiques temporelles 

d'execution de 1'application et les primitives de la plate-forme a un niveau eleve. On 

suppose que les caracteristiques temporelles correspondant a l'execution des differentes 

parties de l'application ont ete extraites precedemment (a l'aide, par exemple, d'un 

simulateur de la plate-forme cible) et sont incluses dans le modele de performance. Un 

tel modele Matlab emule le temps d'execution des differentes parties de l'application 

sans aucun test de fonctionnalite. De cette fagon, le modele fournit une evaluation rapide 

du temps d'execution permettant egalement de valider les differentes strategies pour 

l'assignation et l'ordonnancement de l'application sur la plate-forme. Le modele permet 

egalement d'estimer la capacite de la plate-forme a soutenir les trafics demandes et il 

fournit une analyse statistique des services fournis par le systeme. 

0.4.1. Etapes pour creer un modele de performance 

La methodologie proposee pour la modelisation de performance inclut trois 

etapes. A la premiere etape, nous modelisons l'application qu'on desire mapper sur la 

plate-forme cible. Nous savons que l'application doit etre divisee en plusieurs segments 

de traitement et que ces segments doivent etre assignes aux differents processeurs de la 

plate-forme. A cette premiere etape, tous les segments de traitement sont presentes en 

tant que differentes taches. Chacune de ces taches inclut les parametres temporels 

representant l'execution sur le processeur cible du segment de traitement correspondant. 

Egalement, les transmissions de donnees qui devront etre affectees entre les processeurs 

sont modelisees par differentes taches ou sont inclus les parametres temporels qui 

representent les transmissions de donnees correspondantes. De cette fagon, selon la 

strategic d'assignation employee pour assigner les segments de traitement aux 

processeurs, nous creons un modele de l'application mappee comprenant plusieurs 

taches et l'information de dependances entre ces taches. La figure 9 (page 39) montre la 

premiere etape de notre strategic de modelisation appliquee a un exemple simple. 
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A la deuxieme etape, nous modelisons l'architecture de la plate-forme cible 

comme un ensemble d'unites afin de representer les differents processeurs ainsi que la 

partie communication de la plate-forme. Apres, selon la strategic d'assignation, les 

taches creees a la premiere etape sont assignees aux unites creees lors de la premiere 

phase de la deuxieme etape. II est important de mentionner que les taches qui 

represented les transmissions de donnees entre les processeurs sont assignees a l'unite 

qui represente la partie communication de la plate-forme. A la fin de la deuxieme etape, 

le modele cree inclut plusieurs unites representant l'architecture de la plate-forme ou 

chaque unite inclut a son tour plusieurs taches representant les parametres temporels de 

traitement ou des transmissions de donnees. La figure 11 (page 41) montre le modele 

cree a la deuxieme etape de la modelisation pour le raeme exemple que celui dans la 

figure 9 (page 39). Lors de la simulation du modele, les taches sur les differentes unites 

doivent etre executees selon un ordre qui est impose par les relations de precedence 

entre les segments de traitement modelises. Une tache est prete a etre executee lorsque 

l'execution des taches precedentes, sur la chaine de la tache, est terminee. 

A la troisieme etape de la modelisation, nous considerons une autre unite dans le 

modele qui est responsable de controler l'execution des taches sur differentes unites. 

Cette unite supplementaire s'appelle Maitre (« Master ») et elle modelise un autre 

processeur de la plate-forme. Nous supposons que le Maitre inclut un module appele 

Synchroniseur (« Synchronizer ») pour definir les temps ou les differentes taches sont 

pretes a etre executees en verifiant l'etat d'execution de toutes les taches. Le Maitre 

inclut egalement un module qui definit le temps de simulation. Le temps de simulation 

est utilise pour calculer les parametres temporels des taches pendant la simulation. Les 

unites qui incluent les taches s'appellent esclaves (« Slaves ») et elles sont responsables 

d'executer leurs taches respectives. Nous supposons que chaque esclave inclut un 

module appele Ordonnanceur (« Scheduler ») en plus de ses taches. L'Ordonnanceur est 

responsable de choisir une tache entre les taches de l'esclave qui sont pretes pour 

l'execution basee sur sa strategic d'ordonnancement. La tache choisie par 

l'Ordonnanceur est executee par l'esclave. La figure 13 (page 43) demontre le modele 
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de performance cree a l'etape finale de la modelisation pour le meme exemple montre 

dans la figure 9 a la page 39. 

De cette facon, nous creons un modele de performance qui represente une 

description a niveau eleve de l'application ciblee et de l'architecture de la plate-forme. 

Pendant la simulation d'un tel modele, toutes les unites mentionnees (Maitre et esclaves) 

sont simulees. Nous considerons que la simulation est faite en plusieurs etapes. A 

chaque etape de la simulation, l'unite Maitre est premierement simulee alors que les 

Esclaves sont ensuite simules les uns apres les autres. La simulation de l'unite Maitre 

produit les temps ou les taches sont pretes a etre executees. Aussi la Maitre definit le 

temps de simulation a l'etape courante de la simulation. La simulation des unites 

esclaves peut mener a l'execution de quelques taches pretes ainsi qu'une mise a jour de 

plusieurs des parametres temporels concernant des taches. La simulation d'un modele de 

performance peut produire 1'information temporelle de l'execution des taches et 

egalement de l'application entiere. 

0.5. Decodeur Turbo 

Cette section se concentre sur un segment de traitement intensif de WCDMA 

appele le decodeur Turbo qui est caracterise par une variabilite substantielle du temps 

de traitement. Afin d'ameliorer la robustesse de la transmission et de reduire au 

minimum le taux d'erreurs de bloc (BLER - « BLock Error Rate ») de l'application, la 

troisieme generation de UMTS emploie la methode de decodage Turbo. Les 

specifications du procede de decodage Turbo considere dans ce projet sont comme suit. 

Le codeur convolutionnel de l'emetteur est base sur un code convolutionnel parallele 

concatene (« Parallel Concatenated Convolutional Code - PCCC »), et inclut deux 

encodeurs convolutionnels recursifs systematiques identiques de 8 bits ainsi qu'un 

entrelaceur a taux de codage de 1/3 [28, 30]. Le decodeur Turbo a une structure iterative 

basee sur l'algorithme de « Maximum-A-Posteriori (MAP) » [30]. Le decodeur utilise du 

cote de la reception inclut deux modules consecutifs de MAP qui constituent une des 
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iterations exigees par le decodage. Puisqu'une iteration simple implique beaucoup 

d'etapes de traitement, un critere automatique d'arret de decodage (ASDC -

« Automatic Stop Decoding Criterion ») est employe pour terminer le processus de 

decodage des qu'un niveau de fiabilite acceptable du decodage est atteint (selon un 

parametre specifique). Le nombre d'iterations est aussi limite entre 2 et 8. Dans la 

section suivante, la variabilite de traitement d'un processus de decodage Turbo est 

caracterisee et discutee. Puis, utilisant le modele de performance, quelques algorithmes 

d'ordonnancement, a etre utilises par les processeurs qui sont consacres a ce genre de 

traitement sont valides. 

0.5.1. Variabilite de traitement dans le decodeur Turbo 

La variabilite du temps de traitement du decodage Turbo vient du nombre 

variable d'iterations de decodage exigees pour atteindre un niveau de correction d'erreur 

acceptable. Pour etudier la variabilite de traitement du decodage Turbo, nous avons 

utilise un modele complet de Simulink qui a ete developpe par notre equipe pour 

representer exactement le processus entier de codage/decodage Turbo. Dans ce modele, 

le canal de communication a ete represents par un bloc AWGN (« Additive White 

Gaussian Noise »), alors que le codeur et le decodeur ont ete implemented par plusieurs 

fonctions Matlab selon les caracteristiques precedemment mentionnees. 

En simulant ce modele Simulink, nous avons extrait le nombre d'iterations 

efficaces de decodage dans un decodeur Turbo qu'il faut executer selon les signaux 

regus sous differents etats du canal de communication. Etant donne la nature de 

l'algorithme et la maniere dont il a ete code, le temps requis pour effectuer chaque 

iteration de decodage par le processeur cible est constant pour une taille de trame 

donnee. Des resultats typiques pour le nombre d'iterations obtenues sous differents etats 

du canal sont presentes dans la figure 29 (page 69). Les distributions de probability 

observees ressemblent a des distributions de Poisson. Notez que, etant donne que le 

nombre d'iterations est limite entre 2 et 8, la forme de la distribution est biaisee. Le 
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nombre moyen d'iterations a ete egalement estime selon differents etats du canal tel que 

rapporte a la figure 30 (page 70). Cette figure montre une diminution du nombre moyen 

d'iterations de decodage lorsque l'etat de canal s'ameliore, autrement dit que Eb/NO 

augmente. 

0.5.2. Ordonnancement du processus de decodage Turbo 

Comme precedemment explique, dans ce projet, nous etudions l'implementation 

d'un recepteur d'une station de base UMTS sur une plate-forme multiprocesseur. Le flot 

de traitement dans une transmission en liaison montante, qui correspond a notre 

recepteur de station de base UMTS, est presente a la figure 3 (page 14). Base sur la 

strategic d'assignation expliquee a la section 0.3, nous avons suppose que chaque 

processeur de la plate-forme est consacre a l'execution d'un seul type de segment de 

traitement tel que le « Rake », le « Rate matching » ou le decodage Turbo. Le 

traitement de ces segments s'effectue sur les blocs de donnees regues de differents 

utilisateurs. Dans cette section, nous nous concentrons sur les processeurs consacres a 

effectuer le processus de decodage Turbo des blocs re^us et nous discutons des concepts 

d'ordonnancement sur ces processeurs. Afin de simplifier le probleme, nous considerons 

l'ordonnancement du decodage Turbo sur seulement un processeur. 

Nous supposons que toutes les trames regues par le recepteur de la station de 

base UMTS considere ont le meme taux d'arrivee definissant ainsi une periode de 

traitement unique. Pour determiner le nombre de blocs de donnees (nombre 

d'utilisateurs) qui peuvent etre assignes a un processeur au cours de chaque periode de 

traitement, nous devons estimer le temps d'execution des processus correspondants de 

decodage Turbo sur le processeur cible. Nous supposons que le temps d'execution total 

des processus de decodage Turbo assignes ne doit pas depasser la periode de traitement. 

Vu la variabilite de traitement significative du decodage Turbo, nous supposons 

que l'estimation basee sur le pire cas du temps d'execution serait fortement inefficace. 

Afin d'ameliorer l'utilisation des ressources, nous considerons que le temps assigne a 
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chaque processus de decodage Turbo est plus petit que celui du temps d'execution du 

pire cas (WCET) et que nous pouvons par consequent assigner un nombre plus eleve de 

blocs de donnees (nombre d'utilisateurs) a un processeur. Cependant, il est possible que, 

dans certains cas, les processus exigent plus que leurs fenetres temporelles assignees 

nominalement, dues a une degradation du canal qui peut mener a des problemes 

d'ordonnancement. Pour resoudre ces problemes, nous proposons quelques methodes 

flexibles d'ordonnancement qui sont associees aux strategies de controle qui peuvent 

limiter le traitement efficace afin de rencontrer les contraintes temporelles. La 

description des methodes proposees est presentee dans les sections suivantes. 

Pour etudier les methodes d'ordonnancement, nous decrivons un modele de 

performance comprenant une unite Maitre et un esclave bases sur les concepts expliques 

dans la section 0.4. Le Maitre, comprenant le module de synchronisation, correspond a 

un processeur et 1'esclave correspond a un autre processeur de la plate-forme. L'esclave 

est responsable des taches representant les processus de decodage Turbo sur les blocs de 

donnees de differents utilisateurs. La modelisation de performance du decodage Turbo 

n'est pas basee sur le decodage detaille, mais plutot sur les distributions de service 

precedemment rapportees (figure 29 a la page 69) qui ont ete obtenues par le decodage 

detaille. Chaque tache representant le decodage Turbo contient un generateur de 

nombres aleatoires qui modelise les distributions mentionnees. La simulation de chaque 

tache de decodage Turbo fournit le nombre efficace d'iterations de decodage (it_eff) et, 

par consequent, le temps d'execution du processus correspondant au decodage sur le 

processeur cible. 

Mentionnons que, lorsqu'un bloc de donnees est regu par le processeur pour etre 

decode, la tache modelisant le processus est censee etre activee. En d'autres termes, la 

tache devient prete. Aussi, toutes les taches assignees a l'esclave ont la meme periode 

d'activation qui est egale a la periode de traitement. Nous supposons que toutes les 

taches deviennent actives ou pretes en meme temps pour chacune des periodes de 

traitement. 
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0.5.2.1. Ordonnancement « one shot » 

Premierement, nous supposons qu'un certain nombre de taches de decodage 

Turbo sont assignees a 1'esclave. Ainsi, basees sur le nombre de taches assignees a 

l'esclave et sur la periode de traitement, les ressources consacrees pour executer le 

decodage par chaque tache sont determinees. Etant donne 1'allocation des ressources 

pour chaque tache de decodage Turbo, un budget d'iterations de decodage est garanti 

pour le decodage de chaque bloc. Ceci est determine par le systeme sous le nom de « 

Iteration Budget (IB) ». Au cours d'une periode de traitement, l'Ordonnanceur place sur 

l'esclave choisit une tache a etre simulee parmi toutes les taches pretes de l'esclave. 

Cette tache est choisie a tour de role (« round robin »). Apres la simulation de chaque 

tache de decodage Turbo, si le nombre efficace d'iterations de decodage {it_eff) est plus 

grand que son IB, le nombre d'iterations emules de decodage pour le bloc correspondant 

est considere egal a IB. Le bloc auquel l'Ordonnanceur n'a pu assigner son it_effavant la 

fin d'une periode d'activation doit etre considere comme etant partiellement decode. 

Si le budget assigne est egal ou plus grand que it_eff, le nombre d'iterations 

emulees est considere egal au it_ejf correspondant. Un bloc qui peut atteindre son it_eff 

est entierement decode. En effet, si itjeff est inferieur au budget pour une tache, la 

difference est distribute entre les taches non simulees dans la periode de traitement 

courante et est ajoutee a leurs budgets assignes precedemment. Cette redistribution est 

faite aussi uniformement que possible. La figure 31 (page 75) demontre la methode 

d'ordonnancement « one shot » sur un esclave comprenant quatre taches de decodage 

Turbo au cours d'une periode de traitement. Suivant les indications de cette figure, des 

blocs de donnees correspondants aux taches 3 et 4 sont completement traites, tandis que 

le decodage correspondant aux deux autres taches est degrade afin de respecter les 

budgets de ressource assignes. 
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0.5.2.2. Ordonnancement progressif (« gradual ») 

Comme explique pour la methode d'ordonnancement « one shot », au cours de 

chaque periode de traitement, la partie non utilisee du budget de chaque tache simulee 

de decodage Turbo est distribute et ajoutee aux budgets assignes des taches non 

simulees. De cette facon, les IB (« Iteration Budget ») des taches qui sont simulees plus 

tard ont une plus grande possibility d'augmentation comparativement aux taches 

simulees plus tot. En raison de la qualite aleatoire du decodage des blocs, il est possible 

que les taches simulees posterieurement n'emploient pas totalement leur IB accru tandis 

que les taches simulees precedemment auraient eu besoin de plus grands budgets. 

Afin d'optimiser la repartition des ressources aux taches, nous proposons une 

autre methode appelee ordonnancement progressif. Dans cette methode, un IB global est 

assigne a toutes les taches qui est egal au nombre d'iterations de decodage qui pourraient 

etre effectuees par le processeur cible au cours d'une periode de traitement. Dans la 

methode d'ordonnancement progressif, l'Ordonnanceur choisit a tour de role les taches 

pretes pour la simulation. Apres l'emulation d'une iteration de decodage pour chaque 

tache choisie, la simulation de la tache est suspendue (« preempted ») et, par 

consequent, la prochaine tache prete est choisie pour etre simulee de la meme maniere. 

La figure 33 (page 77) presente la methode d'ordonnancement progressive sur un 

esclave comprenant quatre taches de decodage Turbo au cours d'une periode de 

traitement. Suivant les indications de la figure 33 (page 77), la valeur initiale de YIB 

global dans l'exemple montre est egale a 17, ce qui est equivalent a la somme des IB 

initiaux des taches dans l'exemple d'ordonnancement « one shot ». Apres l'emulation 

d'une iteration de decodage de chaque tache, YIB global est decrements par un. La 

simulation des taches qui atteignent leur nombre efficace d'iterations de decodage est 

terminee. La simulation des taches pretes continue de la meme maniere jusqu'a ce que le 

budget global devienne zero. Apres l'arret du a YIB global, la simulation des taches 

pretes qui n'ont pas atteint a leur traitement efficace est arretee. Ceci mene a la 
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degradation du traitement des blocs correspondants. Dans l'exemple montre dans la 

figure 33 (page 77), comme pour l'exemple « one shot », les decodages effectues pour la 

tache 1 et la tache 2 sont degradees. Mais, dans cet exemple, une iteration de plus est 

emulee pour les taches mentionnees comparativement a l'exemple montre dans la figure 

31 (page 75). 

Dans la methode d'ordonnancement progressif, le nombre d'iterations emulees 

pour chacune des taches pretes a chaque moment de la simulation est 

approximativement identique. Ainsi, les blocs correspondants aux taches arretees, done 

qui n'ont pas atteint leur nombre efficace d'iterations, ont presque le meme niveau de 

traitement et par consequent leurs traitements sont degrades de maniere presque 

identique. 

0.5.2.3. Ordonnancement « one shot » par priorite 

Comme explique dans 1'ordonnancement « one shot », les taches simulees plus 

tot ont la possibility de recevoir de plus petits IB, ce qui cause des erreurs residuelles 

plus prononcees en raison de la degradation de traitement emule, en comparaison aux 

taches simulees posterieurement. Puisque les taches pretes sont choisies et simulees dans 

un ordre fixe pour toutes les periodes de traitement, les erreurs residuelles associees aux 

taches simulees plus tot sont plus importantes que pour les taches qui sont simulees plus 

tard. 

De cette fagon, les differences entre les qualites de service fournies pour les 

blocs (utilisateurs) correspondants augmentent en fonction du temps. Afin d'empecher 

l'augmentation de la difference entre les qualites du service de l'utilisateur, nous faisons 

une modification dans la methode d'ordonnancement « one shot ». Dans la methode 

modifiee qui s'appelle ordonnancement « one shot » par priorite, nous assignons des 

priorites aux taches pretes pour determiner leur ordre de simulation au cours de chaque 

periode de traitement. Dans le modele, nous avons considere un parametre appele 

sum_add_err, qui est assigne a chaque tache et qui represente les bits accumules en 
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erreur additionnelle inseree dans le bloc correspondant, du commencement de la 

simulation jusqu'a la periode de traitement courant. 

Dans la methode d'ordonnancement « one shot » par priorite, les budgets (IBs) 

sont assignes aux taches de la meme fa§on que dans la methode « one shot ». La 

methode pour la mise a jour du IB pour chaque tache est egalement la meme que pour 

l'ordonnancement « one shot » comme demontre dans la figure 31 (page 75). Avec cette 

methode, l'ordre pour placer les taches sur les colonnes montrees dans la figure 31 (page 

75) est base sur la priorite des taches. A chaque periode de traitement, les taches pretes 

ayant une valeur plus elevee de sum_add_err se voient assigner une priorite plus basse 

pour la simulation et sont placees sur les colonnes qui sont plus pres de la derniere 

colonne. De cette facon, les taches qui sont caracterisees par des taux d'erreurs 

accumulees plus eleves ont la possibilite de recevoir plus de ressource dans la periode de 

traitement en cours. Ainsi, les qualites de service fournies pour differents utilisateurs 

deviennent plus uniformes comparativement a la methode d'ordonnancement « one shot 

». 

0.5.2.4. Ordonnancement progressif par priorite 

Dans l'ordonnancement progressif, les taches simulees posterieurement dans 

differents niveaux d'iteration ont plus de possibilite de ne pas recevoir de ressource 

lorsque le IB global est termine. Ainsi, plus d'erreurs additionnelles sont associees aux 

blocs decodes plus tard, en raison de la degradation de traitement emulee, 

comparativement aux blocs decodes plus tot. Puisque les taches pretes sont simulees 

dans un ordre fixe pour tous les niveaux d'iteration et toutes les periodes de traitement, 

les erreurs additionnelles associees aux taches simulees posterieurement a differents 

niveaux d'iteration augmentent avec le temps beaucoup plus rapidement que les taches 

qui sont simulees plus tot. De cette fagon, les differences entre les qualites de service 

fournies aux utilisateurs sont augmentees avec le temps. 
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Afin d'empecher l'augmentation des differences entre les qualites de service pour 

chaque utilisateur, nous faisons une modification a la methode d'ordonnancement 

progressif. Dans la nouvelle methode d'ordonnancement modifiee, qui s'appelle 

ordonnancement progressif par priorite, comme pour l'ordonnancement progressif, les 

taches sont simulees graduellement et un IB global est assigne pour limiter le traitement 

emule des taches comme demontre dans la figure 33 (page 77). En plus, comme pour la 

methode « one shot » par priorite, le parametre sum_add_err, est estime et associe a 

chaque tache totalement simulee dans chaque periode de traitement qui definit la priorite 

de la tache dans la periode suivante. 

Autrement dit, dans cette methode, l'ordre de placement des taches sur les 

colonnes montrees dans la figure 33 (page 77) est base sur la priorite des taches. A 

chaque periode de traitement, les taches pretes avec une valeur plus elevee de 

sum_add_err ont une priorite plus elevee pour la simulation et sont placees sur les 

colonnes qui sont plus pres de la premiere colonne. De cette fagon, les taches qui sont 

caracterisees par des taux des bits en erreur accumules plus eleves ont la possibility de 

recevoir plus de ressources dans la periode de traitement courante. Ainsi, les qualites de 

service fournies aux differents utilisateurs deviennent plus uniformes comparativement a 

la methode d'ordonnancement progressif. 

0.5.3. Resultats de simulation 

Nous avons implements le modele de performance explique dans la section 0.4 

comprenant un Maitre et une unite esclave. Les methodes d'ordonnancement proposees 

dans la section precedente sont egalement incluses dans l'unite esclave en tant que 

differentes options pour ordonnancer les taches de decodage Turbo. Le modele a ete 

simule dans differents cas de figure afin de tester les methodes d'ordonnancement 

proposees sous differents etats de canal et charges pour des durees appropriees. La 

simulation du modele a fourai le taux des bits en erreurs (BER) associes aux blocs 

decodes dans chacune des periodes de traitement. Afin de simplifier les resultats, nous 
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avons calcule le BER moyen de toutes les taches correspondantes pendant la simulation 

selon differents cas de charges du systeme et d'etats de canal. Les taches specifiques de 

decodage Turbo correspondent aux blocs de 656 bits de donnees (avant le codage done 

(3*656) +12 =1980 symboles apres codage), et ces trames sont transmises a 64 k 

symboles/s pour des periodes de 40 ms. 

Etant donne la periode des trames re§ues et le pire temps de traitement du 

decodage Turbo sur le processeur cible qui comprend 8 iterations de decodage dans le 

cas de la conception WCET, les processus de decodage Turbo pour 14 utilisateurs 

peuvent etre assignes au processeur. Autrement dit, dans notre modele de performance, 

selon la methode du WCET, nous pouvons assigner 14 taches de decodage Turbo a 

l'esclave sans causer de degradation de traitement. Le cas consistant a assigner 14 

utilisateurs (methode du WCET) est employe comme une reference pour toute 

comparaison avec les methodes d'ordonnancement proposees ou plus d'utilisateurs 

pourront etre assignes. 

0.5.3.1. Ordonnancement « one shot » 

En simulant le modele de performance mentionne suivant la methode 

d'ordonnancement « one shot », le BER moyen de toutes les taches (correspondant aux 

differents utilisateurs) est obtenu selon le nombre d'utilisateurs assignes et l'etat du canal 

et est montre a la figure 35 (page 82). La distance horizontale entre les courbes du BER 

moyen et de la courbe de reference (cas de 14 utilisateurs) pour un BER precis, 

demontre la degradation moyenne du gain de decodage. Base sur la figure 35 (page 82), 

la degradation moyenne du gain de decodage est obtenue pour 3 cas ou different le 

nombre d'utilisateurs pour une valeur de BER de 2*10~5. Ces resultats sont rapportes 

dans le tableau 4 qui demontre qu'avec 29 utilisateurs assignes a un processeur, la 

degradation de gain de decodage est d'approximativement 0.15 dB. Une telle valeur de 

degradation est negligeable et n'exerce aucun effet significatif sur la qualite du service. 
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0.5.3.2. Ordonnancement progressif 

En simulant le modele de performance mentionne suivant l'algorithme 

d'ordonnancement progressif, le BER moyen des utilisateurs est obtenu pour un nombre 

variable d'utilisateurs assignes et pour differents etats de canal et est montre a la figure 

36 (page 84). Base sur les figures 35 et 36 (pages 82 et 84), l'amelioration des BER 

moyen en utilisant la methode d'ordonnancement progressif comparativement a la 

methode d'ordonnancement « one shot» est remarquable. En examinant la figure 36 

(page 84), la degradation moyenne du gain de decodage dans 5 cas de figure avec un 

nombre d'utilisateurs different et une valeur de BER de 2*10"5 est obtenue et presentee 

dans le tableau 5. Ce tableau montre que la degradation moyenne du gain de decodage 

pour les cas de 23 et 29 utilisateurs est zero tandis que nous avions une degradation de 

gain pour le meme nombre d'utilisateurs avec la methode d'ordonnancement « one shot 

». En se basant egalement sur le tableau 5, la degradation moyenne du gain de decodeur 

pour plus d'utilisateurs, tels que 32 et 35, est negligeable. 

0.5.3.3. Ordonnancement « one shot » par priorite et progressif par 

priorite 

En utilisant 1'ordonnancement « one shot » par priorite et puis l'ordonnancement 

progressif par priorite dans notre modele de performance et en simulant ces modeles 

correspondants, le BER moyen des utilisateurs selon le nombre d'utilisateurs assignes et 

l'etat du canal sont obtenus. En observant les resultats, nous nous sommes rendu compte 

que les resultats moyens des BER obtenus en employant la methode « one shot » par 

priorite sont identiques aux resultats correspondants dans le cas de methode « one shot » 

montree a la figure 35 (page 82). La methode progressive par priorite fournit egalement 

les memes resultats de BER moyens que ceux produits par la methode progressive et 

sont affiches a la figure 36 (page 84). 
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Afin de demontrer l'avantage des methodes par priorite a uniformiser les qualites 

de service des utilisateurs, nous avons egalement estime la variance du BER des 

utilisateurs. La variance du BER des utilisateurs selon les differentes methodes 

d'ordonnancement proposees sont presentes dans les figures 37, 38, 39 et 40 (pages 

85,86 et 87). Ces courbes sont parametrees en fonction du nombre d'utilisateurs. Dans 

les figures 39 et 40 (pages 86 et 87), les variances du BER pour les valeurs Eb/NO qui 

sont superieures aux valeurs montrees par les lignes pointillees sont egales a zero. En 

observant les figures 37 et 38 (pages 85 et 86), nous nous rendons compte que la 

methode « one shot » par priorite uniformise les performances des BER des utilisateurs 

en obtenant des variances plus petites comparativement a la methode « one shot ». En 

comparant egalement les figures 39 et 40 (page 86 et 87), on peut prouver que la 

methode d'ordonnancement progressif par priorite rend plus uniforme les performances 

des BER des utilisateurs en fournissant des variances plus petites comparativement a la 

methode progressive. 

Etant donne les resultats affiches pour les BER moyen et la variance des BER, 

nous trouvons que l'ordonnancement progressif par priorite est la methode la plus 

efficace entre les methodes proposees puisqu'elle fournit la meilleure performance pour 

le BER et offre une uniformite de service pour plusieurs utilisateurs. 

0.6. Conclusion 

Dans ce projet, un modele dynamique a ete presente pour evaluer l'execution 

d'une application WCDMA sur une plateforme MPSoC. Plus specifiquement, nous nous 

sommes concentres sur le decodeur Turbo, une partie de l'application demandant un 

grand effort de calcul et presentant une variabilite de traitement substantielle. Notre 

modele nous a permis de deriver et valider quelques methodes flexibles pour 

l'ordonnancement des taches de decodage Turbo, qui sont adaptees a l'effort de 

traitement variable exige pour le decodeur. En employant le modele de performance 
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presente, l'efficacite de ces methodes d'ordonnancement a ete demontree, ce qui a 

egalement justifie l'utilisation de notre modele devaluation de performance. 

Toutes les methodes d'ordonnancement flexibles proposees, une fois comparees 

a la methode d'ordonnancement du temps d'execution du pire cas (WCET), ameliorent 

l'utilisation des processeurs en employant une evaluation plus juste de l'effort de 

decodage et en causant une degradation de traitement acceptable. La difference entre les 

methodes d'ordonnancement flexible proposees etait dans 1'uniformite de la qualite de 

service fournit pour les utilisateurs. La derniere methode d'ordonnancement flexible 

appelee ordonnancement progressif par priorite a fourni la qualite de service la plus 

uniforme pour les utilisateurs. Cette methode, une fois comparee a une methode 

d'ordonnancement du temps d'execution du pire cas (WCET), a permis d'augmenter le 

nombre d'utilisateurs de 14 a 35, alors que la conservation d'une qualite du service 

acceptable se refletait dans une degradation tres petite de moins de 0.1 dB de gain de 

decodage. 
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CHAPTER 1 

INTRODUCTION 
Multi-Processor System-On-Chip (MPSoC) platforms can provide high 

computational performance along with load balancing on a network of processors. Such 

architectures are appropriate targets for the implementation of dynamic and 

computationally intensive applications. High-performance multi-core Digital Signal 

Processors (DSPs) are increasingly used for telecommunication equipments to process 

voice, video, and radio signals. Since DSPs are software-driven, when sufficiently 

powerful, they provide more flexibility than dedicated ASICs. Considering these 

explanations, a multi-DSP platform is chosen as the target architecture in this project. 

The target application in this project is the WCDMA (Wide-band Code Division 

Multiple Access) process on the received data blocks corresponding to different users in 

a Universal Mobile Telecommunication Systems (UMTS) receiver base-station. The 

WCDMA makes possible that different users share a relatively wide spectral band using 

coding instead of time slots. The WCDMA modulator is based on the spread spectrum 

modulation technique which consists in multiplying the lower-rate data stream with a 

higher rate (known as the chip sequence). In this project, we intend to implement a 

UMTS receiver base-station including the corresponding WCDMA processes on a 

multi-DSP platform. 

Considering the real-time and dynamic characteristics of the target application, 

and also the complexity of MPSoC design, it is necessary to have means of validating 

the capacity (e.g. the traffic it can serve) and performance of the platform before 

implementation, either to verify if a proposed MPSoC architecture is suitable for the 

application or to determine the number of processors required to fulfill the requirements. 

For these reasons, we have developed a dynamic modeling strategy for evaluating the 

performance of MPSoC designs based on high level models of the application and of the 
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architecture. At this level of modeling, the application is represented as a set of tasks that 

are to be performed, their resource requirements, such as execution times, release time, 

etc., and the order in which the tasks are to be executed. Also, the architecture upon 

which the application will execute is represented simply as a set of computational 

resources and a communications fabric for transferring data between them. One 

outstanding aspect of this model is that the functionality is retrieved directly from the 

model, which speeds up characterization and system design. Such performance 

modeling allows quick validation of the efficiency of strategies for mapping and 

scheduling a complex application on the target platform before run time. The developed 

modeling strategy can be utilized for any MPSoC design and it is not limited to the 

target application of this project. 

Afterward, we propose a method for mapping the different parts of the WCDMA 

application on the platform. We focus specifically on the Turbo decoding process which 

is a computationally intensive part of the WCDMA application and scheduling of this 

kind of process is investigated in details. The Turbo decoding process is characterized 

by a significant variability of the processing effort which makes the scheduling of such 

process more critical. It is well known that real-time systems must provide responses 

which are not only logically correct, but also temporally correct. In a real-time system, it 

is very important that the tasks meet their deadlines. In such systems, one of the most 

delicate design problems is the variability of tasks execution time. Due to such 

variability, most scheduling algorithms used in uniprocessor or multiprocessor real-time 

systems are based on the Worst Case Execution Time (WCET) of application tasks. The 

WCET of tasks are constant, consequently the real-time system models become 

deterministic, thus easier to understand and implement. The problem of such WCET 

based design is that, in real-time applications with a significant variability of the 

execution time, the scheduling analysis based on WCETs leads to low processor 

utilization. In this project, some flexible scheduling methods are proposed for Turbo 

decoding tasks which are highly advantageous comparing to the WCET scheduling 

method. The proposed methods are inspired from the scheduling methods that deal with 
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flexible computations. The term flexible computation (or application) refers to a wide 

class of applications that are designed and implemented to trade off, at run-time, the 

quality of the results (services) they produce with the amount of time and resources they 

use to produce the results. In particular, a flexible application can reduce its time and 

resources demands at the expense of the quality of its results. For as long as the user 

finds its quality result acceptable, a flexible application can degrade gracefully when 

resources are limited and the demands of competing workloads are high. The proposed 

scheduling methods in this project are adapted to the variability of the Turbo decoding 

process and they dynamically adjust the processing effort during the execution while 

keeping an acceptable quality of results. 

There are several references on performance modeling methods in the literature 

such as [10, 13, 15 and 25]. In this project, similarly to the mentioned references, a 

performance model is structured, which is used to verify the execution time of 

applications on the platform before implementation. The mentioned model has been 

created using the Matlab/Simulink software and it is based on the structure of the target 

application and platform. Unlike the proposed tool in [15], in this project, we consider 

only the performance modeling while the developed environment is not used for design 

purposes. Also, the modeling methods presented in [10, 25] are SystemC-based where, 

in this project, the presented model is developed using the Matlab/Simulink software 

which is the same environment that is used in our project to model and characterize the 

target application. 

Also, research has been published on the mapping and scheduling of Turbo 

decoding on an MPSoC platform such as [6, 8, 18, 19 and 20]. In this project, similarly 

to [6] and [18], scheduling of the Turbo decoding process for several encoded blocks on 

the dedicated processors is studied. However, our scheduling methods allow much more 

flexible degradation by considering dynamic iteration budgets, when compared to the 

decoding degradation presented in [18]. Such processing degradation concept is not 

considered in [6]. Unlike [8], [19] and [20], we consider that the Turbo decoder 
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algorithm consists of only one monolithic task and the Turbo decoding process on each 

coded block is performed solely on one processor. Thus, the Turbo decoding process on 

the individual processors is data independent, which reduces the data communications 

between the processors. By allocating different encoded blocks on the individual 

processors, we also exploit the platform parallelism. 

This project is part of a project called OPERA which is a collaboration between 

Octasic semiconductor, Ecole Polytechnique de Montreal and Ecole de Technologie 

Superieure de Montreal. The objective of the OPERA project is to develop a 

methodology for automatic mapping of a Simulink system-level model of the target 

application to the Vocallo multi-DSP platform (platform designed and fabricated by 

Octasic). Firstly, the target application must be modeled in the Simulink environment, 

using C/C++, Matlab scripts or Simulink library blocks. Thus, using several tools, we 

intend to effectively convert such a high-level Simulink model into low-level code 

executable by the Vocallo DSP cores. Moreover, we will perform resource requirement 

estimations which will let us determine an efficient strategy for mapping the obtained 

low-level code of the application on the platform processors. Besides the mentioned 

conversion process, the developed performance modeling methodology from my project 

allows rapid execution performance verification to validate several mapping and 

scheduling methods without any functional verification. 

The rest of this thesis is organized as follows. Some basic concepts and a literature 

review regarding our project are presented in Chapter 2. We first describe the UMTS 

base-station and the WCDMA processing. Then, we describe the architecture of the 

Vocallo multi-DSP platform which is used as the target hardware in this project. 

Afterward, we present a literature review on performance modeling methods. Also, a 

literature review is presented on mapping system-level models into MPSoC platforms 

which describe the methods to combine system-level models and architecture-level 

descriptions for MPSoC designs. Then, we present some basic concepts on 

multiprocessor scheduling and synchronization. Also, we explain the WCET-based 
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design and the advantages and disadvantages of this method in a real-time system 

implementation. Afterwards, we present some methods for scheduling flexible 

applications which allow trading the quality of results for the amount of processing time 

and the required resources. At the end of Chapter 2, we introduce a literature review on 

the mapping and scheduling of Turbo decoding in an MPSoC platform. 

In Chapter 3, the basic concepts of our proposed performance modelling 

methodology and several steps of providing a performance model are described. The 

proposed performance modelling methodology includes three steps of modelling to 

create a final performance model of a given application and platform. In the first step, 

we model the application which must be mapped to the target platform. The created 

model at this step includes a chain of tasks representing different processing and also the 

data transmissions in the platform. In the second step, we model the architecture of the 

target platform as a set of units to represent different processors and also the 

communication part of the platform. At the end of the second step, the created model 

includes several units that represent the architecture of the platform where each unit 

includes several tasks that represent the timing parameters of the processing or data 

transmission. At the third modelling step, we consider another unit in the model which is 

responsible for managing or synchronizing the tasks execution on different units. 

In Chapter 4, we first discuss the concept of mapping the uplink WCDMA 

processing corresponding to a UMTS base-station receiver on an MPSoC platform. 

Afterward, we focus on the processors of the platform which are dedicated to perform 

the Turbo decoding process. Then, the processing variability of the Turbo decoding is 

discussed and the BER performance of such decoding is characterized. Then, we discuss 

the processor scheduling methods dedicated to this process. We propose four flexible 

scheduling methods which are adapted to the variable characteristics of the Turbo 

decoding. In the proposed flexible methods, the resources assigned to each decoding 

process are variable and some processing degradations may be imposed to the processes 

in order to meet the timing constraints. To investigate the proposed methods, we utilize 
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our developed performance modelling methodology and we create a performance model 

including the developed flexible scheduling methods and the tasks representing the 

Turbo decoding processes. Simulating such a model provides the BER performance 

results for the decoded blocks for the different scheduling methods. Comparing the 

obtained results with a Worst Case Execution Time (WCET) design shows the 

advantage of the proposed flexible scheduling methods in terms of improved processor 

utilization. Finally, we present the elapsed simulation times in two cases of functional 

and performance modelling of Turbo decoding. 

In Chapter 5, a conclusion is given on the presented thesis and we summarize the 

whole work and the obtained results. We present briefly the advantage of all proposed 

scheduling methods compared to a WCET scheduling method to improve the processors 

utilization, by indicating the significant increase in number of supported users and the 

negligible amount of decoding degradations. Then, we present the advantage of utilizing 

our developed performance model by indicating the ratio of simulation times in two 

cases of functional and performance modeling. Finally, we present the future work of 

this project. 
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CHAPTER 2 

BASIC CONCEPTS AND LITERATURE REVIEW 

2.1. Universal Mobile Telecommunication System 
(UMTS) 

In this section, some basic concepts of the third generation mobile 

communication systems, called Universal Mobile Telecommunication System (UMTS), 

and the involved processing are introduced. These third generation systems are designed 

for multimedia communications to provide person-to-person communications with high 

quality images and video, while access to information and services on public and private 

networks can be enhanced by high data rates and new flexible communication 

capabilities. The access scheme for UMTS is Direct-Sequence Code-Division Multiple-

Access (DS-CDMA). The information is spread over a band of approximately 5 MHz. 

This wide bandwidth has given rise to the name Wideband CDMA or WCDMA. This 

scheme supports two different modes namely: 

1- Frequency Division Duplex (FDD): The uplink and downlink transmissions 

employ two separated frequency bands for this duplex method. A pair of 

frequency bands with specified separation is assigned for each connection. 

2- Time Division Duplex (TDD): The Uplink and downlink transmissions are 

carried over the same frequency band using synchronized time intervals. 

Therefore, time slots in a physical channel are divided into transmission and 

reception parts. 

In the conventional UMTS terminology, the downlink transmission refers to the 

transmission from a radio base station to one user and the uplink transmission refers to 

the transmission from a user to the base station. 
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WCDMA allows different users to share a relatively wide spectral band using 

coding instead of time slots. The WCDMA modulator is based on the spread-spectrum 

modulation technique which consists in multiplying the lower rate data stream with a 

higher rate one (known as the chip sequence). The baseband data spectrum is spread 

according to a processing gain which is called the spreading factor (SF). In this way, 

each user is allocated a spreading sequence used to transmit its narrowband data signal 

over the broader spectral band. Each user is differentiated from other users by the given 

spreading sequence which preferably should be orthogonal to the other spreading 

sequences in use. The narrow-band signal can be recovered at the receiver using the 

same mechanism. 

WCDMA is the main third generation air interface in the world and is deployed 

in many countries. The specification of WCDMA has been created in the 3rd Generation 

Partnership Project (3GPP), which is a joint project of standardisation bodies from 

Europe, Japan, Korea, the USA, and China. In the rest of this section, we provide a 

description of layer 1 (also called the physical layer) of the radio access network of 

WCDMA systems operating in the FDD mode [11]. 

2.1.1. WCDMA Physical layer 

The physical layer, Medium Access Control (MAC) layer, and Radio Resource 

Control (RRC) layer, which are called respectively layer 1, 2 and 3, are three principal 

layers of a radio interface [27]. The physical layer is a fundamental layer upon which all 

higher layers are based. It provides the physical signals to transmit the data. This layer 

assures the appropriate preparation of data for transmission by applying the coding and 

modulating operations. Since implementing the operations in the physical layer is the 

case study of this project, we briefly describe the channel structure in this layer. 

WCDMA defines several physical channels in both the downlink and the uplink placed 

on the physical layer: 
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• The Dedicated Physical Data Channel (DPDCH) is used to carry dedicated data 

generated at layer 2 and above. 

• The Dedicated Physical Control Channel (DPCCH) carries layer 1 control 

information. 

Each connection is allocated one DPCCH and zero, one, or several DPDCHs. In 

addition, there are some common physical channels defined as: 

• Primary and secondary Common Control Physical Channels (CCPCH) to carry 

downlink common channels. 

• Synchronization Channels (SCH) for cell search. 

• Physical Random Access Channel (PRACH) to carry the RACH (Random 

Access Channel). The RACH is used in wireless access terminals such as mobile 

phones when it needs to get the attention of a base station in order to initially 

synchronize its transmission with the base station. 

2.1.2. Frame structure for uplink DPDCH/DPCCH 

Communications between a base station and users require a time reference in 

order to synchronize the physical connection. In a WCDMA air interface, time is divided 

into radio frames of 10 ms (38400 chips) which are numbered from 0 to 4095. It is 

mentioned that a chip is a pulse of a Direct-Sequence Spread Spectrum (DSSS) code, 

such as a pseudo-noise code sequence used in Direct-Sequence Code Division Multiple 

Access channel access techniques. In a binary direct-sequence system, each chip is 

typically a rectangular pulse of +1 or -1 amplitude, which is multiplied by a data 

sequence (similarly +1 or -1 representing the message bits) and by a carrier waveform to 

make the transmitted signal. 

Each radio frame is then subdivided into 15 radio slots (2560 chips). The data 

stream, or DPDCH, is mapped to the radio slots. The data bit stream lengths vary from 
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10 bits, for a Spreading Factor (SF) of 256, up to 640 bits for a SF of 4. The control 

stream, or DPCCH, is also mapped to the radio slot. The associated bit stream length is 

always 10 since the SF is set at 256. Up to 8 bits are reserved for the pilot sequence to be 

used in the channel estimation algorithm. Additional control bits are transported in this 

frame for physical layer purposes. For example, the Transmit Power Control (TPC) bits 

are responsible for controlling the power of the signal to be transmitted. The Transport 

Format Combination Identifier (TFCI) informs the receiver of the current structure of 

the transmitted transport channel. Also, Feedback Information (FBI) bits are to be used 

to support techniques requiring feedback. Fig. 1 shows the frame structure uplink 

DPDCH/DPCCH. [31]. 

DPDCH Data: N bits 
data 

T. = 2560 chips, N = 10* 2k bits k=(1. .6) 
slot ^ t a 

DPCCH Pilot: N bits h"FCI:N bits 
pilot •rcn 

FBI:N bits 
FBI 

TPC:N bits 
TPC 

Tsbt=2560 chips, 10 bits 

Slot #0 Slot # i Slot #14 

1 radio frame: T =10 ms 

Figure 1 Radio frame structure for uplink DPDCH/DPCCH [31 ] 

2.1.3. Processing in a WCDMA/FDD radio base station 

A description is presented on the processing flows performed in both downlink 

and uplink parts of a WCDMA/FDD radio base station which is based on references [29, 

30]. 
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2.1.3.1. Downlink processing flow 

The downlink processing is relatively straight forward. The base station transmits 

a set of downlink physical channels, typically one for each terminal, plus a set of 

common channels. All the common channels are transmitted to all users within the reach 

of the base station. Fig. 2 shows the data flow for downlink user data processing. As 

explained before, incoming data from the media access control (MAC) layer includes 

two different streams. One is the DPDCH for data and the other is the DPCCH. Cyclic 

Redundancy Check (CRC) and forward error correction coding is firstly added to the 

streams. These are then sent through a rate matcher that assures that the data rate of the 

stream matches the requirements of the physical layer. The stream is then interleaved, 

segmented into slots, and interleaved again. Finally, the stream is mapped and spread to 

the chip rate and output to the radio frontend. 

DPDCH 

DPCCH 

CRC16 

CRC12 

Radio frame 

segmentation 

—* 

— • 

—» 

Viterhi/Turbo 

Viterbi 
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— • 

— • 

Rate 

Matching 
—* 

Signaling 

1st 

interleave 

Spreading 
mapping 

To 

Figure 2 Downlink transmission flow [29] 

2.1.3.2. Uplink processing flow 

The uplink processing flow is similar to the downlink flow but involves a much 

higher computation load. Fig. 3 shows the processing flow for the uplink reception. First 

in the flow is the multipath combination, which is based on a multipath search filter and 

a Rake receiver working in cooperation. Since each terminal will experience different 
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multipath propagation conditions, this will require the use of one multipath searcher and 

combiner per terminal in the base station. The Rake receiver will sum the multiple paths 

and de-spread the incoming signal. The recovered stream will then be sent through 

deinterleaving, followed by reverse rate matching. It is then sent through radio frame 

reassembly and a second deinterleaver before the forward-error-correction decoding is 

used to restore the received data, which is then sent to the MAC layer. 
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Figure 3 Uplink transmission flow [29] 

2.1.4. Channel Coding 

The main purpose of channel coding is to introduce redundancy into the 

transmitted data to improve the wireless link performance. Channel codes can be used to 

detect as well as correct errors. The WCDMA systems have provision for both error 

detection and error correction. The channel coding scheme in a WCDMA system is a 

combination of error detection, error correction, along with rate matching, interleaving, 

and transport channels mapping onto/splitting from physical channels [30]. Error 

detection is provided by a Cyclic Redundancy Check (CRC) code while there are two 

alternatives for error correction schemes specified for the WCDMA. The error 

correction schemes are convolutional coding and Turbo coding. For standard services 

that require BER up tolCT3, which is the case for voice applications, convolutional 
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coding is applied. For high-quality services that require BER from 10"3 to 10"6, Turbo 

coding is used. 

2.1.4.1. Turbo coder 

A Turbo coder uses a Parallel Concatenated Convolutional Code (PCCC) which 

is implemented with two identical 8-state Recursive Systematic Convolutional (RSC) 

encoders and with an interleaver [28, 30]. In Fig. 4, the structure of a Turbo encoder 

with coding rate of 1/3 is illustrated. As specified by the UMTS standard, the Turbo 

decoder can encode a data block with a maximum of 5114 bits. The number of bits in a 

data block to be encoded is represented by the parameter K. 

*• xb 

1 constituent encoder 

©— z. 

; Internal % 
interleave!5: 2 constituent encoder 

€ ^ 
OH 

... *\ 

Figure 4 Turbo encoder structure [30] 

The output of the encoder includes three binary streams, namely x, z and z', 

which are multiplexed in time. The resulting stream is organized according to equation 

1. The x stream (or systematic code) corresponds to the original input bit sequence d 

which is associated to the k index. The z and z' streams represent the parities generated 

by the first and second RSC respectively. The input sequence of the second RSC is 

block-interleaved to ensure coding diversity. 
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Encoder output — xl,zx,z\ ,x2 ,z2 ,z ' 2--,xK,ZK,z'K (1) 

Because the convolutional decoder algorithms require the knowledge of the 

initial and final states of the encoder, additional bits must be attached to the message so 

as to recover the transmitted information. This technique is known as Trellis termination 

and permits the decoder to benefit from past and future indications. The initial and final 

states of the RSCs before and after the processing of a block of data are zero. In the Fig. 

4 example, three zero-valued bits are shifted to each RSC to converge towards state zero 

(the switches are in the lower position). Also, the input and output bit termination 

streams of both RSCs must be attached to the end of the encoded information (equation 

1) in accordance to equation 2. 

Termination stream = 

XK+]>ZK+\>XK+2>ZK+2>XK+3>ZK+3>X K+\ ' ^ K+\ >X K+2 ' ^ K+2 ' •* K+i ' 2 K+3 \ ^ t 

Each bit of the encoded information, defined by equations 1 and 2, must be 

formatted into symbols before transmission through the channel. This formatting, known 

as mapping, consists in the transformation of a logical level 1 and 0 into a value of +1 

and -1 respectively. The resulting encoded symbols have the notation defined by 

equation 3. 

Encoded symbols = ul,cl,c\,u2,c2,c'2...,uK,cK,c'K (3) 

Where: 
Uk : symbol mapping of k, the systematic binary sequence 
c* : symbol mapping of '*, the parity sequences generated by the RSC 1 
c' z' 

k : symbol mapping of *, the parity sequences generated by the RSC2 
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2.1.4.2. Turbo decoder 

Fig. 5 illustrates the classic iterative structure based on the Maximum-A-

Posteriori algorithm (MAP) of a Turbo decoder. The decoder is made of two MAP 

decoders, namely MAPI and MAP2, which are dedicated to the processing of the 

received parities (c and c'). Each MAP decoder has three soft-quantized inputs, which 

are the systematic transmitted symbol u, the parity c or c', and the a priori reliability 

information attached to the transmitted symbol u at time k. 

The MAP decoder has a single soft output: the a posteriori, or refined, reliability 

information. This reliability information is known as the extrinsic Log-Likelihood-Ratio 

(LLR). As for the encoder, the function of the interleaver/deinterleaver, *' * , is used to 

introduce statistic diversity between symbols in the c and c' sequences. The properties of 

the interleavers considerably affect the Bit Error Rate (BER) performance of the Turbo 

decoder [2, 23]. 
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Figure 5 Generic Turbo decoder architecture [4] 

A received block of symbols is first demultiplexed to reconstruct both the 

systematic and the parity sequences (u, c and c'). The MAP 1 decoder generates the a 

posteriori LLR, Lel, based on the u and c sequences and the a priori LLR (the 

deinterleaved version of L"2). The L"2 are initialized to zero because they are not 

defined for the first iteration. The MAP 2 decoder then evaluates the associated a 

posteriori LLR, Le2, using the c' parity and the interleaved version of u and L"l. These 

two consecutives MAP processing steps constitute an iteration of the Turbo decoding. A 
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Turbo decoder typically requires between 4 and 8 complete iterations to converge and to 

provide a reliable LLR. The estimation of each bit d is recovered by extracting the sign 

of each element of the LLR sequence Le2. 

The needed number of decoding iterations strongly depends on the channel's 

conditions. Furthermore, if the received symbols are distorted, additional iterations are 

necessary to achieve convergence of the LLR. Because a single iteration involves a large 

amount of processing, various strategies have been developed to terminate the decoding 

procedure as soon as the LLR is reliable. Common termination criteria include a 

threshold based on the LLR energy after a minimum number of iterations or a 

comparison of the MAP decoder 1 and 2 decoded LLR between iterations [5]. 

2.2. The Vocallo architecture [21] 

Very high-performance multi-core Digital Signal Processors (DSPs) are 

increasingly used for telecommunication equipments to process voice, video, and radio 

signals. The current generation of multi-core DSPs has enhanced processing capabilities 

compared to the previous ones. These new DSPs can replace solutions that previously 

could only be implemented using dedicated ASICs or DSP-ASIC combinations. Since 

DSPs are software-driven, when sufficiently powerful, they provide more flexibility than 

dedicated ASICs. 

In this section, we describe briefly the architecture of the Vocallo multi-DSP 

platform which is provided by Octasic Semiconductor Company. Vocallo is a 

multiprocessor solution which is used to implement the voice, video, and data over IP 

applications. This solution is delivered in a 15 core, 1.5GHz, low power DSP, based on 

Octasic's Opus core architecture. Vocallo has a modular and packet-based software 

architecture which allows designers to write their own software to extend or replace the 

original software provided by Octasic. The Opus platform, on which Vocallo is built, 

includes an integrated development environment (IDE) consisting of a standard C 

compiler, a visual editing environment, a profiler and a debugger adjusted for multi-core 



17 

DSPs. The Opus kernel ensures scheduling of modules in a protected-memory and 

property secure environment for blending modules provided by Octasic with user 

modules. The Vocallo solution permits several interfaces to match user requirements. 

The interfaces such as Mil, RMII, GMII, UTOPIA, TDM, and HDLC are supported in 

Vocallo. 

The Opus instruction set includes both traditional DSP functions as well as header 

processing and task management code. For example, in Vocallo, Opus includes 

optimized voice and video instructions to support media applications. Also, Opus is 

implemented with a clock-less architecture to attain new levels of performance per watt. 

The block diagram representing the Vocallo architecture is presented in Fig. 6. The Opus 

architecture includes a distributed kernel that abstracts processes from cores. Since it is a 

homogenous 15-core device, functions are not bound to a specific core or HW 

functionality. Thus, the total performance of the device can be focused on the required 

feature set. Also, the kernel allows application-controlled core affinity to minimize 

memory movement. 
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Figure 6 Block diagram of Vocallo architecture [21] 

2.2.1. Internal architecture 

As previously explained, the Octasic Vocallo device includes an array of DSP 

cores that are referred to as Opus cores. As shown in Fig. 6, the cores are organized in a 

3x5 array and each Opus core includes a 96Kbyte cache memory coupled with a DMA 

device. The DMA performs direct access between any core and the external memory. 

When needed, it is possible to disable the cores in the center column, in which case, their 

cache memory is shared equally between their left and right neighbours (thus adding 

48Kbytes of cache to each of them). 

The Opus processor core is a Digital Signal Processor that supports both fixed-

point and floating-point instructions. Such DSP includes the following elements: 
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- 96 Kbytes cache memory 

16 identical Arithmetic Logic Units (ALUs) which operate in parallel 

64 general-purpose register banks (32-bit registers) 

- Extended ALU subsystem for specialized instructions 

All logic and arithmetic operations are performed using the data registers. The 

cache memory contains both, the data and program memory of the processor. 

2.2.2. External architecture 

The external interface to the mobile DDR memory has the capacity of 32 bits at 

166 MHz. The DDR is shared with the cache memories of the Opus cores and also the 

Input/Output (I/O) interfaces. All the external I/Os are provided by an FPGA. 

2.2.3. Power and Performance Optimizations 

Flexible, adaptable, and field programmable DSPs used in access and 

infrastructure equipments typically consume more power and area than their less nimble 

counterparts such as dedicated ASICs or DSP-ASIC combinations. In modern chips, 

power dissipation is caused by both static and dynamic phenomena (leakage and 

switching operations, respectively). A power crisis arises in CMOS technology in 90nm 

and below. There are various design techniques that can be used to alleviate this power 

crisis. These techniques vary from very simple to extremely complex and offer a wide 

range of possibilities for improvement. Some of these techniques are used in Opus and 

have yielded 4:1 MlPS/power comparative advantage over other leading-edge DSPs in 

real-life signal processing applications. 

2.3. Performance modeling 

We intend to study how an application should be scheduled on a network of 

processors and resources and if such a system meets all the timing requirements. In order 

to speed up the analysis, we do not want to analyze the specific details about the 
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application and also the properties of the system resources. We intend to use a model 

which abstracts away the details on the application and the system resources. Such a 

model allows us to focus on the timing properties and the resource requirements of the 

system components. By describing the algorithms and methods to validate the timing 

constraints of system abstractly, we can better take advantage of their general 

applicability. 

In [15], a modeling and design environment is proposed to allow performance 

modeling of hardware/software systems. One portion of the design environment consists 

of a tool for performance modeling of the application (the software) and the architecture 

it is to execute on (the hardware). In this tool, the computations are characterized by a 

compute time and the send and receive processes are characterized by an amount of data 

to be sent. The architecture upon which the application will execute is represented as a 

set of computational resources and a communications fabric for moving data between 

them. In [10], an integrated performance based modeling tool (PBMT) is presented. In 

this tool, the real-time applications are modeled using task graphs specified as control 

flow and/or data flow. The application model is executed on a variety of SystemC 

architectures for performance analysis. The task graph of an application model is 

described using a graphical editor written in Java. 

A SystemC-based simulation framework is proposed in [13], which enables the 

evaluation of application-to-platform mappings by means of an executable performance 

model. In this framework, the application is first represented as a set of untimed reactive 

SystemC tasks communicating through a unified Transaction Level Modeling (TLM) 

interface. Next, the processing requirements of each individual task are characterized. 

Finally, the concept of a Virtual Processing Unit (VPU) is introduced to capture the 

impact of shared processing elements to the SoC performance. In [25], a framework is 

proposed, called Virtual Processing Components (VPC), which permits task-accurate 

performance simulation of applications mapped onto a real-time multi-processor 

architecture in SystemC. In the VPC framework, the shared hardware resources, like 
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processors, busses, and memories, are modeled as Virtual Processing Components. Also, 

each Virtual Processing Component is configured with a scheduling strategy. 

2.4. Mapping the system level models into MPSoC 
platforms 

In this section, we describe known methods to combine system level models and 

architecture level descriptions for MPSoC designs. In [1], a system level design is 

presented for rapid prototyping of MPSoC starting from a Matlab/Simulink 

specification. In the mentioned paper, an approach is proposed to create a bridge 

between the system level specification and the HW/SW architecture at the 

implementation level. The approach considers system-level specification, multi-level 

validation, algorithm exploration, refinement, and prototyping generation. The presented 

design flow combines different languages and tools, such as Simulink, Colif, and 

Interface generators of Roses, to reach the RTL level. The developed tool fills the gap 

between Simulink (simulation and validation environment of the applications) and the 

architectural representation of applications. 

Reference [22] proposes an integrated methodology for system design and 

performance analysis of MPSoC designs. An analytic approach, based on neural 

networks, is used for high-level software performance estimation which is realized by 

Matlab software. At the functional level, this analytic tool enables performance 

evaluation of the considered processors. Thus, the tool refines hardware and software 

interfaces to provide a bus-functional model. Then, a virtual prototype is generated from 

the bus-functional model, producing a cycle-accurate simulation model. Such work 

combines an analytic approach at the functional level and a simulation-based approach 

at the bus-functional level. 

Reference [24] presents a framework for static, analytical, bottom-up temporal 

and spatial mapping of applications onto MPSoC platforms. The proposed mapping 

framework permits easy performance evaluation and design space exploration of 
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heterogeneous systems on chip. Such mapping of applications to a given heterogeneous 

MPSoC enables not only performance analysis but also refining the system. In the 

mentioned study, the structure of a framework for automatic mapping is outlined and it 

is shown that the mapping problem can be treated as a packing problem which can be 

solved using existing optimization software. 

In [9], a software code generation flow based on Simulink is presented to address 

the problems for software programming on multiprocessor platforms. A functional 

modeling style is proposed to describe data and control dependent target applications, 

and a system architecture modeling style is used to transform the functional model into 

the target architecture. At the system architecture modeling style, the functional model 

is partitioned into a set of multiple communicating threads on multiple CPU subsystems, 

which corresponds to the given target architecture. Both functional and system 

architecture models are described using Simulink. From the system architecture 

Simulink model, a code generator produces multithreaded code, including thread and 

communication primitives to abstract the heterogeneity of the target architecture. Also, 

the multithread code generator applies dataflow based memory optimization techniques, 

considering both data and control dependency. 

In [17], some challenging issues are studied in design space exploration of 

efficient Network-on-Chip (NoC) designs, especially on the application mapping and 

scheduling problems. The research mainly focuses on the static analysis of system 

designs through design space exploration that exploits efficient techniques to solve the 

application mapping and scheduling problems. The optimization targets can be the 

synthesis of application mapping, routing and scheduling, as well as network topology. 

Also, the optimization objectives could be communication latency, application end-to-

end delay, and system power dissipation. Also, runtime system management, by online 

dynamic analysis and scheduling, is studied. 
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In [26], a design flow is presented that goes from Simulink models to prototypes 

of mixed hardware/software implementations of these models. The work includes three 

parts: (1) transformation of a functional model, given in MATLAB/Simulink, into a 

synchronous reactive model of computation (SR MoC), (2) an automatic SystemC code 

generation from Simulink models using the SR MoC, and (3) a semi-automatic 

prototype generator for heterogeneous hardware/software systems implementing the 

iteration scheduling for SR models. The SR model of computation complements the 

modeling front-end of the platform-based design flow. The mentioned paper presents a 

basic mechanism to implement SR models on heterogeneous platforms that can be 

integrated to the design flow. A transformation step from Simulink models to SR models 

permits automatic implementation of mixed hardware/software designs from functional 

Simulink models. 

2.5. Multiprocessor scheduling and synchronization 

In this section application implementations on the multiprocessor platforms and 

some scheduling and synchronization concepts in MPSoC environments are discussed 

based on the reference [16]. If we consider the target application as a set of related tasks, 

task assignment in a multiprocessor environment is one of the problems to be studied. 

Control and data dependencies cause constraints between the tasks, and timing 

constraints of tasks are usually dependent. Most real-time systems with critical timing 

constraints are built statically, that is, tasks are partitioned and statically bound to 

processors. The task assignment problem is concerned with how to partition the system 

of tasks to be assigned to the processors. Another problem is the interprocessor 

synchronization problem. A synchronization protocol must be used to guarantee that 

task precedence constraints on different processors are always satisfied. We consider the 

cases where a multiprocessor system is tightly coupled so that global status and loading 

information on all processors can be updated at a low cost. The system may include a 

central dispatcher/scheduler. When each processor has its own scheduler, the decisions 

and actions of the schedulers of all the processors must be coherent. 
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2.5.1. End-to-End system functions 
The target application may include several system functions where each function 

can be presented by a set of related tasks. The tasks are described by their release time 

and deadline, which are independent except for resource conflicts. The tasks in each 

system function may have some precedence constraints. Here, it is supposed that the 

precedence graph of each system function is a chain. This simplifies the discussion and 

covers a wide range of practical situations. As an example, Fig.7 shows a system 

function including a chain of m tasks. The system functions have arbitrary release times 

and deadlines, and some functions have hard deadlines. Meeting hard deadlines is 

always considered the primary objective. 

The timing constraints extracted from the high-level requirements of the 

applications are end-to-end in nature. They determine the release time and deadline of 

each function as a whole. Formally, the release time of a system function is considered 

as the release time of the first task of the function. Also, the deadline of the function is 

the deadline of its last task. It is not important when the other tasks of the function 

complete as long as the last task completes by the function's deadline. The execution of 

these tasks is constrained only by the dependencies between them and by the fact that 

they must complete sufficiently early to allow the on-time completion of the last task. 

Since the timing constraints of such a function are imposed on the tasks at the two ends 

of the function, they are called end-to-end release time and end-to-end deadline. A 

function that has an end-to-end release time and end-to-end deadline is an end-to-end 

function. 

/fasfc\ > / f 5 i \ >/fas&j w ,/f3c\ 

Figure 7 Example of a system function 
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An end-to-end function in a multiprocessor system may be periodic. An end-to-

end function is periodic with period p. if a chain of m(i) tasks is released every pi units 

of time and the tasks in the chain execute in turn on processors based on the tasks 

assignments. The first task of the end-to-end periodic function is a periodic task with 

period pi. The other tasks of the function may or may not be periodic, depending on the 

method used to synchronize the tasks on different processors. 

2.5.2. Elements of scheduling algorithms for end-to end 
periodic functions 

We now present some elements of scheduling the end-to-end periodic functions 

in a multiprocessor environment. We suppose that each end-to-end periodic function 

requires resources of more than one processor and that each function includes a chain of 

tasks which execute in sequence on different processors. Also, each task needs only 

resources local to the processor on which the task executes. Specifically, a system is 

now considered which includes n processors, Pj for j = 1, 2, ..., n, and m periodic 

functions, Ft for i = 1, 2, ..., m. Each function Fj has m(i) tasks, Tjk, for k= 1, 2, ..., 

m(i). These tasks execute in turn on different processors according to the vector c, of 

function/v, c, = (Vn,Vj2, ..., Vim{!)) where Vjk = P. indicates that the kth task Tjk 

executes on processor Pj. Each vector c is called also the visit sequence of the 

corresponding function F . The mentioned example is shown in Fig. 8. 
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Figure 8 Example of a system including m functions and n processors 

The two basic components of any end-to-end scheduling scheme are (1) 

protocol(s) for synchronizing the execution of tasks on different processors in such a 

way that precedence constraints among tasks are maintained and (2) algorithms for 

scheduling tasks on each processor. 

2.5.3. Interprocessor synchronization protocols 

A protocol that governs when the schedulers on different processors release their 

assigned tasks is called an interprocessor synchronization protocol. A synchronization 

protocol never permits the violation of any precedence constraint among the tasks. There 

are different types of synchronization protocols such as greedy and non-greedy 

protocols. With a greedy protocol, each task is released on its corresponding processor, 

as soon as its immediate predecessor task completes. According to a non-greedy 

synchronization protocol, the scheduler may delay the releases of tasks. The objective is 
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not only to guarantee that precedence constraints are met but also to shape the release-

time pattern of every successor task so that a task behaves like a periodic task if it 

belongs to a periodic function. One approach in the non-greedy synchronization protocol 

is to make all tasks periodic. Different kind of non-greedy protocols have been 

implemented such as the phase-modification protocol, the modified phase-modification 

protocol, and the release-guard protocol. 

2.5.4. Scheduling the tasks on one processor 

In this section, the uniprocessor scheduling algorithms for periodic tasks are 

discussed. There are some well-known priority-driven algorithms for scheduling 

periodic tasks on a processor which are introduced here. A simplifying assumption is 

made that the assigned tasks on the processor are independent. 

A priority-driven scheduler (a scheduler that schedules tasks according to some 

priority-driven algorithm) is an on-line scheduler. It assigns priorities to tasks after they 

are released and places the tasks in a ready task queue in priority order. At each 

scheduling decision time, the scheduler updates the ready task queue and then schedules 

and executes the task at the head of the queue. The priority-driven algorithms for 

scheduling periodic tasks are classified into two types: fixed priority and dynamic 

priority. A fixed-priority algorithm assigns the same priority to all instances of each task. 

In other words, the priority of each periodic task is fixed compared to the other tasks. In 

contrast, a dynamic-priority algorithm assigns different priorities to different instances 

of each task. Thus, the priority of each instance of task with respect to that of the other 

tasks can change. 

A well-known fixed-priority algorithm is the rate-monotonic (RM) algorithm. 

This algorithm assigns priorities to tasks based on their periods: the shorter the period, 

the higher the priority. A well-known dynamic-priority algorithm is the Earliest-

Deadline-First (EDF) algorithm which assigns priorities to individual instances of a task 

based on their absolute deadlines. A criterion which is used to estimate the performance 
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of algorithms used to schedule periodic tasks is the schedulable utilization. The 

schedulable utilization of a scheduling algorithm is defined as follows. 

A scheduling algorithm can feasibly schedule any set of periodic tasks on a 

processor if the total utilization of the tasks is equal to or less than the schedulable 

utilization of the algorithm. Clearly, the higher the schedulable utilization of an 

algorithm is, the better the algorithm. The ratio w, = ei/pi is called the utilization of a 

periodic task Ti where e, and pt are respectively the maximum estimated execution 

time and the period of the task, M, is equal to the fraction of the time a periodic task with 

period /?, and execution time ei uses the processor. The total utilization U of all the 

tasks on the processor is the sum of the utilizations of the individual tasks in it. Since no 

algorithm can feasibly schedule a set of tasks with a total utilization greater than 1, an 

algorithm whose schedulable utilization is equal to 1 is an optimal algorithm which 

provides the total utilization of the resource. 

2.6. Worst Case Execution Time (WCET) based design 

One critical subject in the real-time systems is to insure that the timing deadlines 

for providing the system responses are respected besides providing the logically correct 

results. Therefore one delicate design problem in such systems will be the variability of 

the tasks execution time. Considering such variability, most scheduling algorithms used 

in uniprocessor or multiprocessor real-time systems are based on the worst case 

execution time (WCET) of tasks [12]. Due to such variability, most scheduling 

algorithms used in uniprocessor or multiprocessor real-time systems are based on the 

worst case execution time (WCET) of tasks [12]. The WCET of tasks are constant, 

consequently the real-time system models become deterministic, thus easier to 

understand and implement. All analytical methods used by real-time application 

designers produce only estimates of the WCETs. The actual execution times usually 

remain unknown, until the tasks complete their execution. The problem of such WCET 

based design is that, in real-time applications with a significant variability of the 
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execution time, the scheduling analysis based on WCETs leads to low processor 

utilization [12]. Considering the significant variability existing in the processing effort 

of the target application and in order to improve the resources utilization, in this project, 

we use more precise execution time estimates for scheduling the application instead of 

WCET estimates. 

2.7. Scheduling flexible applications 

In this section, we describe some flexible computation techniques based on [16]. 

The term flexible computation (application) refers to a wide class of applications that are 

designed and implemented to trade off, at run-time, the quality of the results (services) 

they produce for the amount of time and resources they use. In particular, a flexible 

application can reduce its time and resources demands at the expense of the quality of its 

results. As long as the user finds its result quality acceptable, a flexible application can 

degrade gracefully when resources are limited and the demands of competing workloads 

increase. There are different methods to implement flexible applications with firm 

quality. 

One way to make an application adaptable to change in resource availability and 

competing demands is to structure each task so that it has an optional component. The 

optional component execution is not necessary for the task to produce an acceptable 

result. In contrast, the part of the task that must be completed in time is called 

mandatory. When there are enough resources, the optional component is also executed 

before the task's deadline. If the optional component, or a portion of the optional 

component, is not completed, the result quality of the task degrades. A result with an 

acceptable but degraded quality is an imprecise result. Depending on the characteristics 

of flexible applications, different implementation methods such as sieve, milestone and 

multiple versions can be used. For example, in the multiple-version method, each 

flexible task is considered to have a primary version and one or more alternative 

version(s). Algorithms for scheduling flexible applications have two objectives. The first 
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is to ensure that each task will produce an acceptable result on time. The second 

objective is to maximize the result quality of each flexible application. In references [3, 

7 and 14], some scheduling algorithms are proposed to deal with imprecise computation 

models. 

There are many methods to quantify the quality of result of individual tasks, and 

different quantifications give us different performance criteria. The quality of result of a 

given task is typically measured in terms of the error in the result. The error in a result is 

the distance between the result and the desired, precise result. Many algorithms for 

scheduling flexible applications try to minimize total error, average error, or maximum 

error of all tasks in the system. These performance measures are called static quality 

metrics. Such static metrics are not applicable where the effects in results produced by 

periodic tasks are cumulative. For example, in the case of periodic tasks with mandatory 

and optional components, if the optional component of tasks in a number of consecutive 

periods is not executed, the optional component of a subsequent task may no longer be 

optional. Such periodic tasks are called error-cumulative tasks. In systems that include 

error-cumulative tasks, the scheduling algorithms use the cumulated error of tasks as the 

performance metrics. 

2.8. Mapping and scheduling of Turbo decoding in 
MPSoC platforms 

In this section, we present some studies about mapping and scheduling of Turbo 

decoding process on several processors. In [6], a decode apparatus including an array of 

Turbo decoders is presented to decode a plurality of encoded messages received over a 

noisy transmission link. An analyzer is considered to indicate the received signals 

strength and to measure the carrier-to-noise ratio of the signal. Using a look up table, the 

optimized number of decode iterations for each message is extracted depending on the 

channel condition. One scheduler means is considered for scheduling demodulated 

message packets to each of the plurality of decoder processors, depending upon the 

estimated optimum number of decode operations. Allocation of the message packets to 
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the plurality of decode processors is made to optimize overall utilization of the decode 

processors. 

In [18], a method is presented for scheduling a decoding process of coded data 

blocks transmitted over a communication link on several decoders. According to the 

method, the coded data blocks are stored in a queue if all decoders of iterative parallel 

decoders are unavailable. When any of the decoders is available, the first coded block of 

the queue is moved to the decoder. The presented scheduling method improves the 

resource utilization by automatically adapting the maximum number of decoding 

iterations in the decoders depending on the bit rate received. In this way, the possibility 

of supporting high bit rates with a limited number of decoders is provided by applying 

some degradation of decoding process which is achieved by decreasing the maximum 

number of decoding iterations. 

In [8], [19], and [20], a multiprocessor based Turbo decoder implementation is 

investigated. In these investigations, the Turbo decoder algorithm is considered as a set 

of parallel parts which are mapped to several processors. The implemented algorithm 

parts have data dependencies, which impose data communications between the 

processors. These studies propose hardware architectures adapted to the parallelization 

of the Turbo decoder algorithm for reducing the communication latency between the 

processors during execution. 

2.9. Conclusion 
In this chapter, we presented some basic concepts and literature reviews relating to 

our project where its contents will be referred during the next chapters of this thesis. 

Firstly, we described the UMTS base-station and the WCDMA processing. Thus the 

downlink and uplink WCDMA processing flow which should be applied to the 

respectively transmitted and received data blocks in a UMTS base-station were 

explained. Afterward we introduced the channel coding in the wireless 

telecommunication systems and specifically the Turbo coding/decoding was described 
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which was utilized to provide high-quality services. In this way, we presented a 

description of the target application of this project. 

Then we described the architecture of the Vocallo multi-DSP platform which is 

used in this project. Afterward we presented a literature review of the references [10, 13, 

15 and 25] which described some developed methods of performance modeling. All the 

mentioned references included the concepts such as tasks to represent different parts of a 

target application, some temporal parameters which were assigned to the tasks and also 

individual units to represent different parts of the target platform. In Chapter 3, we will 

present that our proposed methodology of performance modeling utilizes the similar 

concepts mentioned in [10, 13, 15 and 25] but with using different development 

methodology. 

Also we presented a literature view of some references on mapping the system 

level models into MPSoC platforms which was the subject of the main OPERA project. 

The mentioned references described the methods to combine system level models and 

architecture level descriptions for MPSoC designs. Afterward we presented some basic 

concepts on the multiprocessor scheduling and synchronization. For this purpose, we 

introduced the end-to-end system functions and the elements of scheduling algorithms 

for end-to-end periodic functions where each function was represented as a chain of 

tasks. Thus, we introduced some interprocessor synchronization protocols and also the 

methods for scheduling the tasks on each processor. These presented concepts will be 

referred in Chapter 4 to explain our proposed method of mapping and scheduling the 

uplink WCDMA processing on the MPSoC platform. 

Then we explained the WCET based design and the advantage and disadvantage 

of such method in a real-time system implementation was described. Afterward we 

presented some methods for scheduling the flexible applications which allowed to trade 

off the quality of results for the amount of processing time and the required resources. 

Our proposed flexible scheduling methods in Chapter 4 will be inspired from these 

presented methods for scheduling of flexible applications. Afterwards we presented a 

literature review of the references [6, 8, 18 19 and 20] on the mapping and scheduling of 
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Turbo decoding in an MPSoC platform. In Chapter 4, we will propose some methods for 

scheduling the Turbo decoding processes on an MPSoC platform which provide much 

more flexible degradation of the decoding and consequently more utilization of the 

resources compared to [6, 18]. Also unlike to [8, 19 and 20], we will consider that the 

Turbo decoder algorithm consists of only one monolithic task and the Turbo decoding 

process on each coded block is performed totally on one processor. Thus the Turbo 

decoding process on the individual processors will be data independent which reduces 

the data communication between the processors. 
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CHAPTER 3 

PERFORMANCE MODELING 
As mentioned earlier, we strongly need to devise a performance model for 

estimating the execution time of applications on the platform before their 

implementation. For this reason, we propose a performance modelling methodology 

based on a Matlab model which includes the application execution timing characteristics 

and the high level primitives of the platform. It is assumed that the execution timing 

characteristics of different parts of an application have been extracted before (using, for 

example, the simulator of the target platform) and are introduced in the performance 

model. Simulating such Matlab model emulates the execution time of different parts of 

the application which gives the final execution performance without requiring any 

functionality examination. In this way, the model provides rapid estimation of execution 

performance which allows validating the different strategies for mapping and scheduling 

of applications on the platform. Also, the model makes it possible to estimate the 

capacity of the platform to support the requested traffics while providing the statistical 

analysis on the services provided by the system. 

In this chapter, we first describe the proposed performance modelling method 

which is divided into three steps. After that, we describe the functionalities of different 

parts of the proposed performance model in more details. Then, a model example is 

presented and some simulation results for that example are described. These simulation 

results are used to provide more explanations on estimating the timing parameters in a 

performance model. A conclusion is provided for the presented concepts in this chapter. 

3.1. Steps to create a performance model 

The proposed performance modelling methodology includes three steps of 

modelling to create a final performance model of a given application and platform. At 

each modelling step, some software and hardware elements of the system are modelled 
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which allow developing a complete model of the system. In the first step, we model the 

application which needs to be mapped on the target platform. The application must be 

partitioned into several processing segments and these segments should be assigned to 

different processors of the platform. Thus, in the first step of our modelling process, all 

the processing segments are described as individual tasks and each task includes timing 

parameters regarding the execution of the corresponding processing segment on the 

target processor. Also, the data transmission between the processors due to the 

partitioning is modelled by individual tasks that include timing parameters describing 

the corresponding data transmission. In this way, depending on the mapping strategy 

used to assign the processing segments to the processors, we create a model of the 

mapped application that includes several tasks. 

In the second step, we model the architecture of the target platform as a set of 

units to represent different processors and also the communication part of the platform. 

Afterward, depending on the mapping strategy, the tasks created in the first step are 

assigned to these created units. We should mention that the tasks that represent the data 

transmission between the processors are assigned to the unit that represents the 

communication part of the platform. At the end of the second step, the created model 

includes several units that represent the architecture of the platform where each unit 

includes several tasks that represent the timing parameters of the processing or data 

transmission. When the model is simulated, tasks on different units should be executed 

based on an order which is forced by the precedence relations between the modelled 

processing segments. A task is considered ready to be executed when execution of the 

preceding tasks on the corresponding task chain is finished. 

At the third modelling step, we consider another unit in the model which is 

responsible for managing task execution on different units. This supplementary unit is 

called Master and it models another processor of the platform. We suppose that the 

Master includes a module called Synchronizer that analyzes when the different tasks are 

ready for execution by verifying the executing situation of all tasks. Also, the Master 
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includes a module to define the simulation time. Such provided simulation time is 

utilized as a reference to define the timing parameters of the tasks during the simulation. 

The other units which include the tasks are called Slaves and they are responsible of 

executing their corresponding tasks. We suppose that each Slave includes a module 

called Scheduler in addition to its corresponding tasks. The Scheduler is responsible for 

selecting one task between the tasks of the Slave which are ready for execution based on 

its scheduling strategy. The task selected by the scheduler is executed by the Slave. 

In this way, a performance model is created which represent a high-level mixed 

description of the target application and the platform architecture. During simulation of 

such a model, all the mentioned Master and Slave units are simulated. We consider that 

the simulation is done in several simulation stages. At each simulation stage, first, the 

Master unit is simulated then the Slaves are simulated one by one. Simulating the Master 

unit provides the times when the tasks are ready for execution and the simulation time at 

the current stage of simulation is determined. Simulating the Slave units may lead to 

executing some ready tasks and to updating several task timing parameters. In the 

following, more details are provided about the mentioned modelling steps. 

3.1.1. Modelling the Mapped Application on the Multi-
Processor Platform (Modelling Step 1) 

We suppose that different parts of the target application are mapped on a 

multiprocessor platform based on a given mapping strategy. In order to create the 

performance model, we first model the application which needs to be mapped on the 

platform. We suppose that the target application includes a set of processing segments 

that should be mapped to different processors of the platform. Also, we know that, after 

mapping and implementing the application, some data transmission may need to be 

performed between the processors to transmit the data between the dependent processing 

segments executed by different processors. In order to demonstrate the concepts, we 

consider a simple example of a mapped application which is presented in Fig. 9. This 

example corresponds to an application composed of four processing segments that are 
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mapped on the processors number 1, 2, 4, and 5 of the target platform. The data flow in 

the application and in the platform for this example is presented in Fig. 9. 

In order to model the mapped application, each processing segment assigned to a 

processor is modelled as an individual task. Also, each data transmission that must be 

done between two processors or one processor and the input/output subsystem of the 

platform is modelled as a task. Each task includes timing parameters related to the 

execution of the corresponding processing segment on a target processor or the data 

transmission between two parts of the platform. Such a modelling process and the model 

of mapped application for the above mentioned example are also shown in Fig. 9. 

Data Flow in 

Application Level: 

Data Flow in 

platform Level: 

Model or mapped |n1 

application: t-.f* 

Inpiitl Segment 1 
: user l- ; ; 
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— » Segment 2 
' u s e r l ! 
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— » Segment 4 
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—» 
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P1 
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—• Com 
I 

Mapping 
Process 

Modelling 
*~ Process 

P: Processor 
Com: Communication part 

Figure 9 Modelling a mapped application 

The tasks that model the mapped application have precedence relations that 

describe their execution order as shown in Fig. 9. We suppose that the model of the 

mapped application includes a total of m tasks. In order to describe the execution 

precedence of tasks, we use a vector called Dep. This vector includes m elements where 

each element denotes the task that precedes, on the task chain, the task corresponding to 

the position in the vector. Fig. 10 presents an example of the Dep vector which shows 

the vector elements corresponding to the mapped application shown in Fig.9. As an 

example, the third element of the vector in Fig. 10 which corresponds to task3 is equal to 

2. This indicates that task2 immediately precedes task3 in the task chain or, in other 
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words, task3 directly depends on task2. If a task does not depend on any tasks or it is 

activated by an input signal, its corresponding element in the vector is set to the value -1 . 

In the dependency configuration described by the Dep vector, we suppose that each task 

depends directly only on one single task or one single input. 

9 elements 
• * * • 

Dep- [-1 1 2 3 4 5 6 7 8 ] 
/ | ) 

/ \ | 
Taskl Task3 T a s k 9 

Figure 10 Example of vector Dep 

3.1.2. Structuring the model of mapped application 
(Modelling step 2) 

In addition to describing the mapped application in the form of a task set, we 

introduce also the structure of the platform. We model the target platform as a set of 

units where each unit represents one processor or the communication part of the 

platform. Each unit is represented by an individual Matlab piece of code. Thus, based on 

the mapping strategy, we assign the created tasks representing the mapped application to 

these units. In this way, the performance model includes several units where each unit 

contains several tasks. Fig. 11 represents a schema of the performance model for the 

mapped application shown in Fig. 9. As can be seen in this figure, the performance 

model in this example contains five units where unitl represents the communication part 

of the platform and where the other units represent the processors 1, 2, 4 and 5. This 

model does not include a unit corresponding to the processor number 3 because there is 

no assigned processing segment to this processor in that example. The tasks representing 

the data transmission on the platform are assigned to unitl and the other tasks are 

assigned to the units representing the corresponding processors. 
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Unltl (Com) Unit2 (P1) Unit3 <P2) 

Com: Communication part 

P: Processor 

Unit4 (P4) Units (PS) 

Figure 11 Example of the structured model of a mapped application 

Task assignment in the model is described using a vector called tskjunit. The 

number of elements in the vector tsk_unit is equal to the total number of tasks. Each 

element of this vector indicates the assigned unit of the corresponding task, which 

represents a processor or the communication part of the platform. Fig. 12 shows an 

example of the vector tskjunit that presents the elements corresponding to the example 

in Fig. 11. For example, the first element of tskjunit in Fig. 12 determines that taskl is 

mapped to unitl, which represents the communication part of the platform, while the 

fourth element of vector presents that task4 is mapped to the unit 3 representing 

processor number 2. 

9 elements 
•* • 

tsk_unit = [ 1 2 1 3 1 4 1 5 1 ] 
/ i | 

/ • + 
Taskl Task4 Task9 

Figure 12 Describing the structured model of mapped application 
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3.1.3. Creating a Master/Slave Structure (Modelling 
Step 3) 

Up to this point, we created a model that includes several units representing 

different parts of the platform where each unit contains several tasks. During the 

simulation of the target model, the tasks representing the mapped application should be 

executed on different units in a predefined order described by the Dep vector. Also, in 

the model, we consider a module called Synchronizer which verifies the executing 

situation of all tasks on different units and determines when the tasks are ready for 

execution, considering the completion time of the previous tasks on the task chain or 

arriving time of signals on the corresponding inputs. We suppose that the Synchronizer 

module is placed on one modeled unit called Master. The unit dedicated to the 

Synchronizer represents one processor of the platform which synchronizes the execution 

of different application processing segments in the actual implementation. The other 

units of the model containing the tasks are called Slaves. We consider that each Slave 

unit includes a scheduler module which determines the task execution order on the 

Slave. Fig. 13 shows the Master/Slave structured model for the example shown in Fig. 

11, which also presents the interconnections between the different elements of the 

model. In order to generalize the demonstration, the tasks assigned to each Slave in 

Fig. 13, are shown as a task set. 
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9ave1 (Com) Sla^e2(P1) Slave3 (P2) 

Schedulers 

\start 

<4^tej5jD 

Slaved (P4) Sl3ife5(P5) 

Com: Communication, P: Processor 

Figure 13 Performance model block diagram for an example case 

The descriptions of the shown parameters in Fig. 13 are presented as follows: 

Parameters rdy, st, start, and fin'. 

As explained earlier, the application mapped on the platform is modelled as a set 

of tasks. Each task includes timing parameters related to the execution of one part of 

application or to data transmission on the platform. Four timing parameters, called rdy, 

st, start, and fin, are associated with each task. Rdy is determined by the Synchronizer 

and represents the time when the task is ready for execution. If a task precedes another 

task in its task chain, its parameter rdy is defined based on the time when the execution 

of its previous task is finished. Otherwise, if the task is the first task in the task chain and 

it is activated by an input signal, its parameter rdy is defined based on arrival time of the 

corresponding input signal. St represents the earliest time when the task can be executed 

on the corresponding Slave and it is defined based on the time when the task is ready for 

execution and the time when the Slave becomes free. St is defined by Synchronizer and 

it is used to define simulation time which will be explained later in details. Start 

file:///start
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represents the time when the execution of the task begins and is determined by the 

corresponding Slave. Fin represents the time when the execution of the task is 

completed and is also defined by the corresponding Slave. We introduce four vectors 

called rdy, st, start, and fin where each vector has m elements (m is equal to the number 

of tasks). Each element of these four respectively denotes the parameters rdy, st, start, 

and fin for the corresponding task. The values of these vectors are updated during 

simulation. Since st is used internally to the Synchronizer, it is not shown in Fig. 13. 

taskl t a s k 9 

; | 

/tfy=[0.06 0.05 0.04 -1 0.05 -1 -1 -1 -1] 

sf=[0.06 0.05 0.05 -1 0.05 -1 -1 -1 -1] 

start = [ -1 0.05 0.05 -1 -1 -1 -1 -1 -1] 

fin = [ -1 0.06 0.06 -1 -1 -1 -1 -1 -1] 

Figure 14 Example for vectors rdy, st, start, and fin. 

As explained before, the simulation of a performance model is done in several 

stages and, at each simulation stage, first, the Master unit is simulated then the Slaves 

are simulated one by one. Fig. 14 presents a sample for the vectors rdy, st, start, and fin 

taken from one given stage of simulation for the example described in the previous 

sections. The vector rdy in this example shows that taskl, task2, task3, and task5 are 

ready for execution at respectively 0.06, 0.05, 0.04, and 0.05s. The parameter rdy for the 

other tasks is equal to -1 , which shows that the corresponding tasks are not ready for 

execution after this one stage of simulation. As shown by the st vector, the earliest start 

time for execution of taskl, task2 and task5 is equal to their ready time, which means 

that the corresponding Slaves of these tasks are not busy at the moment that the tasks 

become ready. The earliest start time of task3 is equal to 0.05s, which is greater than the 

ready time of this task and corresponds to the time when the corresponding Slave will be 

free. Values of -1 in vector st, indicate that the corresponding tasks are not ready for 

execution. The values in the start vector indicate that only task2 and task3 are executed 
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and the execution of both tasks started at 0.05s. Vector fin indicates that the execution of 

task2 and task3 is finished at 0.06s. (In this example, we suppose that the execution time 

of all tasks is equal to 0.01s) Values of -1 in vectors start and fin indicate that the 

execution of the corresponding tasks are respectively not started and not finished. 

Table 1 summarizes the definition of the presented timing parameters for a task 

estimated during each stage of simulation. Also, all the possible cases of the timing 

parameters during each simulation stage for a task are shown in table 2. 



Table 1 Task timing parameter definition. 

Provided 
by 

Master 

rdy 

St 

Definition 

rdy>0: 
Rdy indicates the time when the task is ready for execution 
considering the execution of its previous task in the task chain or 
arriving time of corresponding input signal. 
rdy=-V. 
Task is not ready for execution. 

sf>0: 
St indicates the earliest time when the task can be executed 
considering its ready time and the time when the corresponding 
Slave is free. 
sfc-1: 
Task is not ready for execution. 

Provided 
by Slave 

start 

fin 

star&O: 
Start indicates the time when the execution of task is started. 
sfarfc-1: 
Execution of task is not started. 

fin>0: 
1- If the task is executed at current stage of simulation, fin indicates 
the time when the current execution of task is completed. 
2- If task is not executed at current stage of simulation, value of fin 
corresponds to the previous execution of task. It means that this 
value of completion time has not yet been used to determine the 
ready time of the next task in the task chain (its dependent task) or 
the task has not any dependent task. 
fin=-1: 
Execution of task is not completed (task is not executed at current 
stage) and the previous execution of task (if there is) has been used 
to determine the ready time of corresponding dependent task. 
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Table 2 Possible cases of timing parameters for a task. 

Provided 
by 

Master 

Provided 
by Slave 

rdy 

St 

start 

fin 

Description 

Casel 

>0 

>rdy 

St 

>start 

Task is 
ready for 
execution 
and it is 

executed. 

Case2 

>0 

>rdy 

-1 

-1 

Task is 
ready for 
execution 
but it is not 
executed. 

Case3 

>0 

>rdy 

-1 

>0 

Task is 
ready for 
execution 

but it is not 
executed. 

(Value of fin 
corresponds 

to the 
previous 

execution of 
task.) 

Case4 

-1 

-1 

-1 

-1 

Task is not 
ready for 
execution 
so it is not 
executed. 

Case5 

-1 

-1 

-1 

>0 

Task is not 
ready for 
execution 
so it is not 
executed. 

(Value of fin 
corresponds 

to the 
previous 

execution of 
task.) 

tjsim is the reference simulation time which is provided by the Master and is 

used by the Slaves to calculate the start time of tasks during simulation. 

load_unit is a vector of n elements where n is equal to the number of Slave units. 

Each element of this vector denotes the completion time of the last executed task on the 

corresponding Slave at the current simulation stage and is provided by the same Slave 

unit. In other words, it represents the time from which the Slaves will not be busy and 

can execute another task. Fig. 15 shows the estimated vector loadjunit for the same 

example and the simulation stage presented in Fig. 14. As explained in the example 

shown in Fig. 14, task2 and task3 are executed at the current simulation stage and their 

completion time is equal to 0.06s. Therefore, the load_unit parameters of the Slaves 

corresponding to task2 and task3 (respectively Slave2 and Slave 1) have been set to 0.06s 

as shown in Fig. 15. This figure shows also that load_unit of Slave3 has been set to 0.05. 

Since task4, which is the only task placed on Slave3, is not executed at this stage, the 

value of loadjunit for Slave3 corresponds to the previous execution of task4. Loadjunit 

for Slave4 and Slave5 is equal to 0, which means that no task is yet executed at those 

Slaves and they have been available from time equal to 0s. 
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5 elements 
•* * 

foad_unit = [0.06 0.06 0.05 0 0 ] 
i I 

Stavel S l a v e 5 

Figure 15 Example of vector load_unit. 

3.2. Detailed description of the performance model 

Simulating a created performance model is supposed to be done in several simulation 

stages. At each simulation stage, the Master unit is first simulated then the Slaves are 

simulated one by one. The model simulation continues until there is no ready task to be 

executed on any Slave after a given number of received data elements at the inputs. Note 

that each simulation of the performance model is set to be done for a given total 

numbers of signals received at the different inputs to the system. In the model, we 

consider a basic part which describes the order for simulating the Master and Slaves and 

defines the simulation halting strategy. The pseudo code of this basic part is shown in 

Fig. 16. In the shown pseudo code, there is a while loop where each instance of this loop 

corresponds to one stage of simulation. 

In the following section, we describe the functionalities of different parts of the 

performance model in more details. 

3.2.1. Master 

The Master unit includes two modules called Synchronizer and Simulation Time 

Estimator which are shown in Fig. 17. Functionalities of these modules are explained in 

more details as follows. 
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Pseudo code of the basic part of model: 

Executing the configuration file which introduces the vectors and variables used in 
the model. 

while (1) 

Simulating the master unit 

(Stopping the simulation of model if there is no ready task in the model.) 
if All tasks have been executed after receiving the given total numbers of input 

signals. 
break 

end 

(Simulating the Slave units) 
for i=1 to Number of Slaves 

Simulating Slave i. 
end 

end 

Figure 16 Pseudo code of the basic part of model 

fin 

Synchronizer 

nfy 
Simulation time 
''<Z. estimator 

rely t sim 

load unit 

Figure 17 Block diagram of the Master. 

The Synchronizer determines the execution ready time of all tasks and updates the 

rdy vector. The Synchronizer firstly determines the ready time of tasks for which their 

execution depends on other tasks. For this purpose, it uses the precedence relation of 

tasks described in the Dep vector. The flowchart representing the functionality of this 
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part of the Synchronizer (parti) is shown in Fig 18. As shown in this figure, the 

Synchronizer verifies the completion time of tasks provided in the previous stage of 

simulation. If the completion time (parameter fin) of a task is greater than zero, the 

Synchronizer finds the dependent task of the current task. (In order to simplify the 

explanation, the verified task that has a completion time greater than zero is called the 

original task.) Thus, the Synchronizer verifies the parameter rdy of the dependent task. If 

the ready time of the dependent task is equal to -1 , the value of ready time is set to the 

completion time of the original task. 

No 

One missed deadline 
is occurred for task j 

No 

Part 2 of synchronizer code -̂ <3> 
Figure 18 Flow chart of the Synchronizer (Part 1) 
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If the ready time of the dependent task is not equal to -1 , it means that the 

dependent task became ready at one of the previous simulation stages and that the 

requested execution has not yet been performed. If the completion time of the original 

task, which should define the ready time of the dependent task, is less than or equal to 

the loadjunit of the corresponding Slave of the dependent task, it means that, when the 

Slave of the dependent task becomes free, there will be two requested executions for the 

dependent task. We suppose that there are data buffering limitations and that the input 

buffer for each task is filled by the next arriving data even if the current data has not 

been used. Thus, because of such a data buffering limitation, the previously determined 

ready time of the dependent task is ignored and it is set to the completion time of the 

original task. Therefore, a missed deadline occurs for the dependent task. 

If the ready time of the dependent task is not equal to -1 but the completion time of 

the original task is greater than load_unit of the corresponding Slave of dependent task, 

it means that, when the Slave of dependent task becomes free, the execution of the 

original task has not been yet completed. Therefore, the previously determined ready 

time of dependent task is kept by the Synchronizer and it is not replaced by completion 

time of the original task. 

Afterward, the Synchronizer determines the ready time of tasks which depend on 

the input signals using the arriving time of data elements at the corresponding inputs. 

We suppose that the input signals are in the form of data frames which are arrived at the 

system inputs periodically. The functionality of this part of the Synchronizer (part2) is 

represented by the flowchart shown in Fig 19. The arrival time of the first frame at each 

input is set to Os. As shown in Fig. 19, the Synchronizer first verifies which tasks depend 

on the input signals. If a task depends on an input signal and if the total number of 

arrived frames at the corresponding input is less than a specified value, it updates the 

ready time of the task. For this purpose, it verifies the previously determined value of 

ready time for the task. If the parameter rdy is equal to -1 , it means that there is no 

request for execution of the activated task in the previous simulation stages that has not 



50 

been done. Therefore, it increments the number of received frames at the corresponding 

input (updates the number of current frame), evaluates the arrival time of the current 

frame and sets the parameter rdy to this evaluated time. 

If the previously determined value of rdy is not equal to -1 , it means that there is a 

request for execution of the task activated in the previous stages of simulation that has 

not yet been done. In this case, if the arrival time of the next frame at the corresponding 

input is equal or less than the load_unit of the corresponding Slave, the Synchronizer 

increments the number of received frames at the corresponding input (updates the 

number of current frame) and sets the parameter rdy to the arrival time of the current 

frame. Because, in this case, when the Slave becomes free (at its loadjunit), the task has 

been requested for execution by the arrival of a new frame while the previous request 

has not been yet done. Considering the data buffering limitation, we suppose that the 

previously buffered data frame is replaced by the newly arrived frame. Thus the 

previous request is ignored and a missed deadline has occurred for the task. Such 

verification for the next arriving frames is repeated and the number of current frame is 

incremented until the arriving time of the next frame is greater than load_unit. This 

repetition is done to ensure that at the time when the Slave becomes free, rdy of the task 

is set to the arriving time of the last received frame. 

If the parameter rdy of the task is not equal to -1 but the arriving time of the next 

frame at corresponding input is greater than the loadjunit of the corresponding Slave of 

the task, the Synchronizer does not increment the current frame number and 

consequently does not update the value of rdy. Because in this case, when the 

corresponding Slave becomes free (at its loadjunit), there is only the previous request of 

execution for the task. 

The pseudo code describing the functionality of the Synchronizer is shown also in 

Fig. 20. 
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Parti of synchronizer code i = 1 

One missed deadline 
is occurred for task j 

Incrementing pointer of arriving 
frame on corresponding input 

Determining rdy(i) based on 
arriving time of current frame 

Incrementing pointer of arriving 
frame on corresponding input 

Determining rdy(i) based on 
arriving time of current frame 

i = i+1 

Yes 

END 

No 

Figure 19 Flow chart of the Synchronizer (Part 2). 

The Simulation Time Estimator determines the current simulation time, t_sim, at 

different stages of the simulation. The different Slave units always compare the ready 

time of their corresponding tasks with this simulation time. If the ready time of a task is 

greater than this reference time, such ready time is considered to belong to the future and 

the task is not considered for execution at current stage of simulation. The simulation 

time is calculated after updating the ready time of the tasks by the Synchronizer. 
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(Determining the ready time of tasks which depend to other tasks) 
for i= 1 to m (m is equal to the number of tasks) 

(Verifying if the completion time of task i has not been used in the previous stage of simulation.) 
if fin(i) > 0 

for j=1 to m 
if ( dep(j) = i ) (Finding the tasks which are dependent to the task i) 

if rdy(j) = -1 (task j with deactivated ready time parameter) 
rdy(j) = fin(i) (Determining the ready time of the dependent task of task i) 
fin(i) = -1 (Deactivating the completion time of task i) 

else (task j with activated ready time parameter) 
(Missed deadline case for task j) 
if completion time of task i is equal or less than the loading time of corresponding Slave for 

task j . 
rdy(j) = fin(i) (Determining the ready time of the dependent task of task i) 
fin(i) = -1 (Deactivating the completion time of task i) 

end if 
end if 

end if 
end for 

end if 
end for 

(Determining the ready time of tasks which depend on input signals) 
for i=1 to m 

if task i is dependent to one input signal and total number of arrived frames at the corresponding 
input is less than a required one. 

if rdy(i) = -1 ( Case of task i with deactivated ready time parameter.) 
Incrementing pointer of arriving frame. 

Determining rdy(i), based on the period and number of current frame arrived at the input signal 
which presents the arrival time of the related frame. 

else (Case of task i with activated ready time parameter.) 

(Missed deadline case for task j) 
while ( Arriving time of the next frame is equal or less than the loading time of corresponding 

Slave) 
Incrementing pointer of arriving frame. 

Ready time of task i is replaced with the arriving time of the current frame. Since the 
previous ready time has not been used, a missed deadline is occurred for the task i. 

end while 
end if 

end if 
end for 

Figure 20 Pseudo code of Synchronizer. 

We explain now the method which is used to determine t_sim. In order to 

calculate t_sim, the Estimator utilizes the recently calculated ready times of tasks and 
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also the loading time of the Slaves (loadjunit). First, it estimates the earliest time that 

the tasks can be executed on their corresponding Slaves, which are called the earliest 

start time of tasks (st). A vector called st with m elements is created by the estimator 

where m is equal to the number of tasks. As explained earlier, each element of st 

represents the earliest start time of the corresponding task. The earliest start time of a 

ready task is estimated using Equation 4. 

st (j) = max (load_unit (tskjunit (j)), rdy (j)) (4) 

In Equation 4, j and loadjunit (tskjunit (j)) are respectively the task number and 

the parameter load_unit of the corresponding Slave. If the ready time of a task is greater 

than the time when its Slave becomes free, it means that the corresponding Slave is busy 

when the task becomes ready for execution and the earliest start time of task is set to the 

loadjunit of the Slave. Otherwise, the earliest start time of a task is set to the task's 

ready time. If a task is not ready for execution, its corresponding st is set to -1. Fig. 21 

shows two examples for estimating the earliest start time. The considered task in these 

examples is task 3 which is placed on Slave2. 

0,04 0.03 
load_unit m f _ _ _ — 4 load.imit (2) j _ _ _ | 

Figure 21 Examples for estimating earliest start time. 
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In the same manner, all elements of vector st corresponding to all tasks are 

estimated. Then, the minimum value between the earliest start times of tasks is 

considered as parameter t_sim. The pseudo code of the simulation time estimator is 

presented in Fig. 22. The reason of providing t_sim is described in more details later. 

(Estimating the earliest start time of tasks) 
for i=1 to m 

if rdy(i) = -1 
st(i) = -1 (Deactivation of earliest start time of task if the task is not ready) 

else if 

(st(i) is considered as maximum between ready time of task and loading time of 
corresponding Slave) 

if rdy(i)> load_unit(tsk_unit(i)) 
st(i)= rdy(i) 

else if 
st(i)= load_unit(tsk_unit(i)) 

end if 

end if 
end for 

(Estimating the simulation time) 
t_sim=1e5 (Initializing t_sim with a large value) 

(Finding the minimum value between the earliest start time of ready tasks) 
for i= 1 to m 

if st(i) ~= -1 & st(i)<t_sim 
t_sim = st(i) 

end if 
end for 

Figure 22 Pseudo code of simulation Time Estimator. 

3.2.2. Slave 

We describe now the functionalities of the Slave units in more details. As 

explained earlier, a timing reference (t_sim) is provided by the Master unit, which 

represents the simulation time of the current simulation stage, and is used by all Slaves. 

Note that, if the parameter loadjunit of a Slave is greater than tjsim (simulation time), it 

means that the corresponding Slave is busy at the current simulation stage and its 
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functionalities are not evaluated at that stage. The block diagram of a Slave unit is 

shown in Fig. 23. As shown in this figure, several functionalities are performed by each 

Slave unit. Firstly, at the Task selection functionality level, a task is selected between the 

tasks that are placed on the Slave to be executed and consequently the execution start 

time (start) of the selected task is provided. Note that only one task can be selected for 

execution at a time. Next, the selected task is launched, which provides the execution 

time (t_exe) of the task. Thus, the absolute execution completion time (fin) of the task is 

estimated. Afterward, the loading time of the Slave (load_unit) is provided. In the 

following, these functionalities are described in more details. 

t stm rtty 

Task selection 

start 

Launching the 
selected task 

r ore 

Estimating 
finishing time 

\fm 

Estimating 
Loading time 

fin [load unit 

Figure 23 Block diagram of a Slave. 

At the Task selection functionality level, the situation of all tasks placed on the 

Slave is verified to select one task to be executed. It is possible that no task is accepted 

to be executed at a given simulation stage. In this case, the other presented 

functionalities of the Slave are not performed. The Task selection step consists of 

selecting a task to be executed among all the admissible tasks. Here, an admissible task 

is a task belonging to the target Slave (task_unit(\) = slave_nb where slave_nb represents 

the Slave number) and that is ready for execution, meaning that all previous tasks (or 
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data) have been executed (or received), and that its ready time does not exceed the actual 

simulation reference time (-1 < rdy(i) < t_sim). In each Slave unit, the corresponding 

assigned tasks with a ready time greater than t_sim are not considered for scheduling. 

These tasks are not ready yet and will be considered in the following simulation stages. 

The necessity of such limitation for accepting tasks is demonstrated by a detailed 

example later. 

It is possible that several tasks are recognized as admissible ones at the Slave. 

Thus, one of these admissible tasks is selected for execution based on a scheduling 

algorithm, which is included in the corresponding scheduler on the Slave. Thus, the start 

time (start) of the selected task is determined, which is equal to the current simulation 

time (t_sim). 

Emulating the launch of selected task 

After selecting a task and determining its execution start time, the launch of the 

task is emulated and its execution time is estimated. Here, we use the term emulate to 

underline the fact that the task is not actually executed. Instead, we just estimate the time 

taken by the corresponding resource to execute this task. The estimated execution time 

of the selected task is presented by the parameter t_exe. 

Estimating the completion time of task 

Afterward, the completion time of the executed task is determined. Since the simulation 

time at the current simulation stage is equal to t_sim, the completion time of the task is 

estimated using Equation 5, where index_run is the executed task number. 

fin (indexjrun) = t_sim + t_exe (5) 

Estimating the loading time of a Slave 

The loading time of the Slave unit (the time from which a Slave is ready to execute 

another task) is equal to the completion time of the executed task as expressed in 
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Equation 6. In this equalion,slave_nb and indexjib respectively denote the Slave 

number and the executed task number. 

loadjunit (slave_nb) = fin (index_run) (6) 

The pseudo code of a Slave is shown in Fig. 24, which represents all the 

functionalities performed by a Slave unit. 

Pseudo code of a Slave unit: 

Assigning the Slave number which is represented by the parameter slave_nb. 

if loading time of Slave is equal or less than t_sim 
(Task selection) 
for i = 1 to m 

(Verifying if the tasks is assigned to the Slave, if the task is ready & if its ready time is 
equal or less than t_sim) 
if tsk_unit (i) = slave_nb & rdy(i) > -1 & rdy(i)<= t_sim 

(Scheduling) 
Verifying some parameters of task based on the corresponding scheduling algorithm 
to select a task for execution. 

end if 
end for 
(After the above loop, one of the admissible tasks on the Slave is selected for execution. 
Index of selected task is presented by the parameter index_run.) 

(Determining the start time of selected task which will be equal to the simulation time) 
start (index_run) = t_sim 
Executing the selected task which results the execution time of task (t_exe). 

(Estimating the completion time of the executed task.) 
fin (index_run) = start(index_run) + t_exe 

(Deactivating the start time and the ready time of executed task.) 
start (index_run) = -1 
rdy (index_run) = -1 

(Loading time estimating of the Slave) 
load_unit (slave_nb) = fin(index_run) 

end if 

Figure 24 Pseudo code of a Slave unit. 
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3.3. One performance model example 
In order to better clarify the described functionalities of the Master and Slave units 

in a performance model, we present an example case, which is shown in Fig. 25. As 

shown in this figure, the considered performance model consists of the Master and two 

Slaves where the Slaves include four tasks with the task dependency information 

described in the shown Dep vector. In addition, we have simulated this model and we 

present the values of some model parameters used during the first fourth stages of 

simulation in Fig. 26. 

As explained before, at each simulation stage, the Master first evaluates the rdy 

vector, and then the vector st is estimated, which leads to defining the simulation time 

(t_sim). Thus, Slave 1 and Slave2 evaluate the timing parameters of their corresponding 

tasks, in order. Each Slave estimates the elements of vectors start and fin (which 

correspond to its assigned tasks), and one element of vector load_unit corresponding to 

the Slave is evaluated. Such estimated model parameters can be observed in Fig. 26, 

which have been defined based on the explained order of simulation. In the presented 

example, taskl and task2 do not depend to any task and they are activated by two 

individual input signals with arriving periods of 0.02s. The first arriving time of the 

input frames is 0s then the first ready times of taskl and task2 are 0s, which are 

presented in the vector rdy in the first stage of simulation as shown in Fig. 26. 

Slavel Slave2 Master 

Dep = [ - 1 - 1 1 2 ] 

Figure 25 Block diagram of a performance model example. 
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Figure 26 Parameter values in a performance model during four simulation stages 

We now explain the estimations done by the Master and Slave units at the fourth 

simulation stage based on the results shown in Fig. 26. At stage 4, the Master first 

defines the ready time of the tasks. Based on Fig. 26, we observe that taskl has been 

executed at stage 3 then its ready time is updated at stage 4 by the next arrival time of 

the corresponding input signal, which is equal to 0.04s. Task2 has been ready from the 

previous stage and it has not been executed. Thus, the ready time of task2 has the same 

value as the one of stage 3, which is equal to 0.02s. Since task3 depends on taskl and 

taskl has been executed at stage 3, the ready time of task3 takes the previously 

estimated completion time of taskl, which is equal to 0.03s. Task4 depends on task2 

which has not been executed at stage 3. Thus, task4 is not ready for execution at stage 4. 

After estimating the elements of vector rdy by the Master, the earliest start time of tasks 

are evaluated considering their ready time and the loading time of corresponding Slave 

units. Thus, the simulation time of the current stage is evaluated which is the minimum 

value between the elements of vector st and is equal to 0.03s. 

After the mentioned evaluation by the Master unit, Slave 1 is simulated. As 

determined by the Master, taskl and task2 on the Slave 1 are ready at stage 4. After the 

limitation process by Slave 1, taskl (with a ready time greater than t_sim) is not 

considered as an admissible task and only task2 is accepted. Thus, task2 is selected and 

executed by Slave 1. The start time of task2 is updated by the value of the simulation 

time, which is equal to 0.03s. Note that the execution time (t_exe) of all tasks in this 
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example is set at 0.01s. Therefore, the completion time of task2 takes the value of 0.04s. 

Consequently, the loading time of Slave 1 is estimated to be equal to the completion time 

of taskl, which is 0.04s. Consequently, Slave2 is simulated while it includes only one 

ready task (task3). Since the ready time of task3 is equal to the simulation time, this task 

is selected and is executed by Slave2, which provides the corresponding start and 

completion time. At the end, the loading time of Slave2 is evaluated. 

We now describe the reason why the Slaves verify if the ready time of their ready 

tasks does not exceed the simulation time. As an example, in the presented performance 

model at stage 4, Slave 1 includes two ready tasks with ready times of 0.04s and 0.02s. If 

Slave 1 does not perform such verification, both tasks will be admitted, which leads to 

selecting one of them while the ready time of taskl exceeds the actual simulation time 

(t_sim - 0.03s) and it is not actually ready at the current simulation time. Therefore, not 

considering such verification can lead to selecting and execute taskl instead of task2, 

which provides the wrong task execution sequence. The simulation results for this 

example, including 25 simulation stages, are presented in appendix 1. 

3.4. Conclusion 

In this chapter, the basic concepts of the proposed performance modelling 

methodology were explained. We presented the three modelling steps needed to create a 

performance model, which allows us to abstract the application and architecture 

properties and to structure a high-level mixed description of the hardware and software. 

The performance model includes several units representing different architecture 

resources where each unit included several tasks representing different processing 

segments of the target application. In addition, the model units were structured in a 

master/Slave form, where the Master unit was responsible for managing the execution of 

tasks and the Slave units were responsible for executing the corresponding tasks. 

Thus, we explained in details the functionalities of the Master and Slave units 

along with different timing parameters included in the performance model. At the end, 
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one example of performance model was demonstrated and the simulation results for this 

example were presented, which illustrated how to estimate the different timing 

parameters during simulation. In this way, we described the technical specification of 

our performance modelling method in details and showed how an actual performance 

model could provide the detailed timing information needed to allow executing an 

application on a target MPSoC platform without performing any functionalities of the 

application. In addition, we showed the manner in which such a model includes the 

mapping and scheduling strategies. 
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CHAPTER 4 

SCHEDULING OF TURBO DECODING 
In this chapter we discuss firstly the concept of mapping the uplink WCDMA 

processing corresponding to a UMTS base-station receiver on an MPSoC platform. We 

propose a mapping strategy to assign the different processing segments of the target 

application on the multiprocessor platform in such a way the WCDMA processing on 

the data blocks of each user is performed on different processors in a pipeline manner. In 

the proposed mapping method, it is supposed that each processor is dedicated to perform 

only one type of processing (such as Rake, Rate matching, Turbo decoding, etc) on the 

data blocks of several users. Since all the data blocks arrive to a UMTS base-station 

periodically, each uplink WCDMA processing which should be performed on the data 

blocks of a user can be considered as a periodic function where each processing segment 

of the function such as Turbo decoding is considered as a task. Also it is supposed that a 

synchronization protocol is included in the system that makes all the tasks be executed 

on the processors periodically. 

Afterward we focus on the processors of the platform which are dedicated to 

perform the Turbo decoding process. Then processing variability of the Turbo decoding 

is discussed and the BER performance of such decoding is characterized. Thus we 

discuss the scheduling methods of Turbo decoding on the processors dedicated to this 

process. We propose some flexible scheduling methods which are adapted to the 

variable characteristics of the Turbo decoding. To investigate the proposed methods, we 

utilize our developed performance modelling methodology and we create a performance 

model including the developed flexible scheduling methods and the tasks representing 

the Turbo decoding processes. These tasks include the discussed characteristics of the 

Turbo decoding. 
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Simulating such a model provides the BER performance results for the decoded 

blocks in the different cases of proposed scheduling methods. Comparing the obtained 

results with a Worst Case Execution Time (WCET) design shows the advantage of the 

proposed flexible scheduling methods to improve the utilization of processors. 

Afterward we describe a method to validate the utilized manner of modelling the Turbo 

decoding process. Finally we present the elapsed simulation times in two cases of 

functional and performance modelling of Turbo decoding. The presented simulation 

times show the advantage of our performance modelling method which allowed rapid 

verification of the different scheduling methods without any functional simulation. 

4.1. Mapping the uplink WCDMA processing on an 
MPSoC platform 

It is mentioned that, in the UMTS receiver base-station, the radio frames arrive at a 

rate defining a processing period, where each radio frame is a concatenation of 

(transport) blocks, where each block is associated to a given user. As described in 

section 2.1, in a UMTS receiver base-station, the uplink WCDMA processing shown in 

Fig. 3, should be applied on the received data blocks. It is supposed that each data block 

corresponds to one individual user. 

In order to simplify the problem, we suppose that the uplink WCDMA processing 

which should be applied on the data blocks of different users, is composed of three 

sequential processing segments. We present now an example of a UMTS receiver base-

station which includes the uplink WCDMA processing on the data blocks of ten 

individual users as shown in Fig. 27. To implement such an application on a multi

processor platform, we need a mapping strategy to assign the different processing 

segments into the processors. As a first mapping strategy example, we suppose that the 

processing segments corresponding to each user are assigned to different processors. 

Thus, the chain segments of each user can be executed in a pipeline fashion on different 

processors. Also, we consider that each processor executes only one type of processing 
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(namely a segment) for multiple users. The proposed mapping strategy is same as the 

method presented in [29]. 

An example of such mapping strategy is illustrated in Fig. 28 which corresponds to 

the case where the application in Fig. 27 is implemented on four processors. Thus based 

on the explained mapping strategy, we suppose that each processor of the platform is 

dedicated to perform only one type of processing segment such as Rake, Rate matching, 

Turbo decoding and etc. on the received data blocks of different users. 

Uplink WCDMA Processing for user 1 

Illpllt 

Segment 1 
Userl 

Uplink W< 

Segment 1 
User 2 

Uplink W 

Segment 1 
User 10 

• - • - ' • » 
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ft 
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User 2 
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Segment 2 
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ft 
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User 2 

ng for user 10 

—» 
Segment 3 

User 10 
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Figure 27 Example of processing on an UMTS receiver base-station. 

Figure 28 Mapping Example. 
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In section 2.5, a case study was presented to implement several periodic end-to-

end functions on a multiprocessor platform where each function was composed of 

several sequential tasks. In that section, it was explained that after assigning the different 

tasks to the processors of the platform, we need a synchronization strategy to manage the 

execution of tasks on the processors in such a way that the precedence relations between 

the tasks were respected. Thus some synchronization strategies such as greedy and non-

greedy protocols were introduced where the non-greedy protocol could make the tasks 

periodic. In our case study, each uplink WCDMA processing which should be 

performed on the data blocks of one user is considered as a periodic end-to-end function 

and consequently each processing segment are considered as a task. After assigning the 

tasks to different processors of our target platform, we suppose that a non-greedy 

synchronization protocol is utilized in the system which makes all the tasks periodic. 

In the following subsections, we focus on the Turbo decoding process and the 

scheduling algorithms on the processors of the platform which are dedicated to perform 

this kind of process are studied. 

4.2. Processing variability of the studied Turbo decoder 

In this section, the processing variability in a Turbo decoder is discussed. The 

studied Turbo decoder in this project includes the specifications presented in section 

2.1.4.1. As explained in that section, the processing variability of Turbo decoding comes 

from the varying number of decoding iterations required to complete the process. In 

order to analyze the methods for scheduling of Turbo decoding which will be presented 

in section 4.4, we need a good estimate of the variability detail of a decoding process. To 

investigate the processing variability of Turbo decoding, we utilized a complete 

Simulink model which has been developed by our team to accurately represent the 

whole Turbo coding/decoding process. In this model, the communication channel has 

been represented by an Additive White Gaussian Noise (AWGN) block, while the coder 

and the decoder have been implemented by several Matlab based functions. By 
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simulating this Simulink model, we extracted the effective required number of decoding 

iterations in a Turbo decoder to be performed on the signals received under different 

channel conditions. 

Typical results for the number of iterations obtained under different channel 

conditions are presented in Fig. 29. The observed probability distributions are similar to 

Poisson distributions. Note that, because the number of iterations is hard limited 

between 2 and 8, the shape of the distribution is distorted (notably the tail). It is 

mentioned that hard limiting the number of iterations between 2 and 8 is forced by our 

studied Turbo decoder based on its structure standard [4]. The average number of 

iterations was also estimated in different channel conditions as reported in Fig. 30. This 

figure shows a decrease in the average number of decoding iterations as the channel 

condition improves, namely when Eb/NO increases. 
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4.3. BER performance of the studied Turbo decoder 

We characterize now the BER performance of our studied Turbo decoder in 

different channel conditions. As explained in the previous subsection, the number of 

decoding iterations performed by the decoder can vary but it is hard limited to the 

maximum value of 8 iterations. Let us call it_eff the number of iterations performed by 

the decoder in a normal condition which has the variability characteristics shown in the 

Fig.29 and Fig.30. As our scheduling strategies may force the decoder to perform fewer 

iterations that it would otherwise, we also need to characterize the impact of reducing 

the number of decoding iterations, in terms of additional errors affecting decoded 

blocks. Let us call it_max_penn the maximum number of decoding iterations permitted 

to the decoder, which can be set to a value between 3 and 8. The itjnaxjperm is a 

parameter introduced in the Turbo decoder that can limit the number of performed 

decoding iterations to a value lower than the effective number of iterations (it_eff). 

We simulated the previously validated Simulink model of Turbo coding/decoding 

process with a sufficient number of frames such that the total number of processed bits is 

set to about 100 times the inverse of the target bit error rate in our simulations for all 

considered sets of operating conditions. The simulations were repeated for each 

considered it_max_perm to different value from 3 to 8. During simulations we estimated 
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the number of bits in error in the decoded blocks. These simulation results are listed in 

Table 3. This table includes the Bit Error rate (BER) results when the effective decoding 

are not limited (it_max_j>erm = &). Also it includes the average number of additional bits 

in error (ave_add_err) in the decoded blocks which are caused by limiting the effective 

decoding in different cases of it_max_perm from 3 to 7 comparing to the case when the 

it_max_perm is set to 8. It is mentioned that the unit of ave_bit_err values shown in 

Table 3 is bit. 

Table 3 Performance parameters of Turbo decoder. 

Eb/NO 

0.76 
0.8S 
0.96 
1.06 
1.16 
1.26 
1.36 
1.46 
1.56 
1.66 

Number 
of 

Frames 
7 
13 
25 i 
52 
123 
337 
1029 
3623 
15151 
99633 

BER 
(it_max_perm=8) 

2.10 e-2 
1.16 e-2 
5.90 e-3 
2.90 e-3 
1.23 e-3 
4.52 e-4 
1.48 e-4 
4.20 e-5 
1.00 e-5 
1.53 e-6 

ave_add_err 
(it_max_perm=7) 

1.59 
4.07 
5.72 
1.85 
-0.45 
1.43 
0.50 
0.09 
0.17 
0.03 

ave_add_err 
(it_max_perm=6) 

2.53 
7.86 
9.19 
2.78 
2.60 
1.34 
0.34 
0.56 
0.27 
0.09 

ave_add_err 
(it_max_perm=5) 

3.66 
9.11 
10.51 
6.04 
458 
2.40 
1.08 
0.96 
0.46 
0.19 

ave_add_err 
(it_max_perm=4) 

8.70 
9.33 
9.25 
8.99 
3.94 
3.67 
1.98 
1.43 
0.85 
0.37 

ave_add_err 
(it_max_perm=7) 

14.14 
13.11 
11.03 
9.07 
5.05 
3.42 
2.10 
1.43 
0.87 
047 

4.4. Proposed methods for scheduling the Turbo decoding 
In this section we focus on the platform processors which are dedicated to perform 

the Turbo decoding process on the received blocks and we discuss the scheduling 

concepts on these processors. In order to simplify the problem, we consider the 

scheduling of Turbo decoding on only one processor. We assume that all received 

frames in the considered UMTS receiver base-station have the same arriving rate 

defining a processing period. To determine the number of data blocks (users) that can be 

assigned to the processor during each processing period, we need to estimate the 

execution time of corresponding Turbo decoding processes on the target processor. We 

suppose that total execution time of all assigned Turbo decoding processes on each 

processor should not exceed the processing period. In this way all the decoding 

processes will be finished by the processor before arriving data blocks of the next 

period. 
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Considering the significant processing variability of Turbo decoding, we expect 

that the worst case estimating of execution time would be highly inefficient. In order to 

improve the resource utilization, we consider that the allocated time to each Turbo 

decoding process is smaller than WCET case and consequently we can assign more 

number of data blocks (users) to the processor. However, it is possible that, in some 

cases, processes require more than their nominal allocated slots due to channel 

degradation which can lead to scheduling problems. To resolve this issue, we propose 

some flexible methods of scheduling which are associated with control strategies that 

can limit the effective processing to meet the timing constraints. Descriptions of the 

proposed methods are presented in the following. 

To investigate the proposed scheduling methods, we utilize our performance 

modelling method explained in chapter two. As mentioned earlier, we intend to focus on 

scheduling of Turbo decoding processes on one processor of the platform. Thus we 

create a performance model including one Master and one Slave unit where the Slave 

represents one processor of platform which is dedicated to Turbo decoding processes 

and the Master including the Synchronizer module corresponds to another processor of 

platform. Based on the number of data blocks (users) assigned to the processor, several 

tasks representing the Turbo decoding processes are included in the Slave. The Turbo 

decoding processes are modelled in the form of different tasks. Performance modelling 

of Turbo decoding is not based on detailed decoding, but rather on the previously 

reported service distributions (Fig. 29) that were obtained by detailed decoding. Each 

task representing Turbo decoding contains a random number generator which models the 

mentioned distributions. Simulating each Turbo decoding task (task representing Turbo 

decoding), provides the effective number of decoding iterations (it_eff) and consequently 

the execution time of corresponding decoding process on the target processor. It is 

mentioned that we have extracted before, the execution time of each decoding iteration 

using an Instruction Set Simulator of the target processor and introduced it in the 

performance model. Execution time of each decoding process is provided by the 
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performance model using execution time of each decoding iteration and effective 

number of iterations. 

It is mentioned that when a data block is received to the processor to be decoded, 

its corresponding task on the Slave is supposed to be activated. In other words, the task 

becomes ready. Thus all tasks assigned to the Slave have the same activation period 

which is equal to the processing period. We suppose that all tasks become activated or 

ready at the same time in all processing periods. 

4.4.1. One shot scheduling 

In the first proposed scheduling method, we suppose that a number of Turbo 

decoding tasks are assigned to the Slave. Then, based on the number of tasks assigned to 

the Slave and the processing period, the dedicated resources to perform the decoding 

emulated by each task are determined. From that point, we make the simplifying 

assumption that channel conditions change slowly and that all blocks of the received 

frames have the same Eb/NO, thus all tasks are given the same resources. Considering 

the allocated resource for each Turbo decoding task, a guaranteed budget of decoding 

iterations available to emulate the decoding of each block is determined by the system 

which is called Iteration Budget (IB). As explained next, this budget may change during 

a processing period for each task and is limited between 3 and 8. 

During a processing period, the scheduler placed on the Slave selects all the ready 

tasks of the Slave in a round robin manner to be simulated. After simulating each Turbo 

decoding task, if the provided effective number of decoding iterations (it_eff) is greater 

than its IB, the number of emulated decoding iterations for the corresponding block is 

considered to be equal to IB. The corresponding block to which the scheduler has not 

allocated its it_eff before the end of a processing period is considered to be partly 

decoded. Due to the iterative nature of Turbo decoding, a partly decoded block probably 

contains some additional errors. The number of additional errors is estimated by using 

Table 3 which has been introduced in the performance model. If the allocated budget is 
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equal or greater than it_eff, the number of emulated iterations is considered equal to the 

corresponding it_eff. A block that can reach its it_eff is fully decoded. 

Indeed if it_eff is less than the budget for a task, the difference is distributed 

between unsimulated tasks in the current processing period and is added to their 

previous allocated budgets. This redistribution is done as uniformly as possible. Fig. 31 

shows the one shot scheduling manner on a Slave including four Turbo decoding tasks 

during one processing period. The task IB values are updated before simulating each 

task as shown in Fig. 31. In this example, in each processing period, there is a total of 17 

decoding iterations as a budget to decode four corresponding data blocks in each period. 

Before simulating the first task, the total number of iterations (17) is distributed over the 

tasks as shown in the second column in Fig. 31. Simulating each task provides the 

corresponding it_eff. Afterwards the IB value of the tasks not yet simulated is updated. 

As shown in Fig.31, data blocks of tasks 3 and 4 are effectively processed while the 

corresponding decoding of 2 other tasks are degraded in order to respect the assigned 

resource budgets. 

Pseudo code of one shot scheduling method for a general case of n Turbo decoding 

tasks on one Slave is presented in Fig. 32. Variable grade shown in this figure is 

considered to distribute not used iteration budgets between the tasks which have not 

been simulated. 
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Figure 31 One shot scheduling example. 

Initializing IB of all tasks 
grade =0 
Task selection (The ready tasks are selected for simulation in a 

round robin manner. We suppose that task i is selected) 

task i is simulated and it_eff (i) is obtained. 
if (it_eff (i) > IB(i)) 

The emulated number of iterations is limited to IB(i) . Thus the 
emulated decoding by task i is degraded from the effective one 
and corresponding additional errors are estimated by using table I. 

else 
grade= IB (i) - it_eff (i) 

end if 
while ( grade ~= 0) 

for j = i+l to n 
if (grade>0) 

IB (j) = IB (j) +1 
grade= grade -1 

end if 
end for 

end while 

Figure 32 Pseudo code of one shot scheduling. 
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4.4.2. Gradual scheduling 
As explained in one shot scheduling method, during each processing period, the 

unused portion of the iteration budget of each simulated Turbo decoding task is 

distributed and added to the previous allocated budgets of not yet simulated tasks. In this 

way the tasks which are simulated later are advantaged with respect to the tasks 

simulated earlier as their IB might be increased. Because of random quality of 

corresponding blocks, it is possible that the later simulated tasks do not use totally their 

increased IBs while the earlier simulated tasks need more iterations. The particular 

scenario occurs in Fig. 31 example, where tasks 1 and 2 are incomplete and would 

requires additional iterations while task 4 does not utilize totally its IB which is 

increased by 1. 

In order to optimize the resource allocation of tasks, another method called gradual 

scheduling is proposed. In this method, a global IB is allocated to all tasks which is 

equal to the number of decoding iterations that could be performed by the target 

processor during one processing period. In the gradual scheduling method, the scheduler 

selects the ready tasks for simulation in a round robin manner. After emulating one 

decoding iteration for each selected task, the task's simulation is preempted and 

consequently the next ready task is selected to be simulated in the same manner. 

Fig. 33 illustrates the gradual scheduling method on a Slave including four Turbo 

decoding tasks during one processing period. As shown in Fig. 33, the initial value of 

global IB is equal to 17 which is equivalent to sum of initial IBs of tasks in the one shot 

scheduling example. After emulating one decoding iteration of each task, the global IB is 

decremented by one. A task is no longer simulated when it reaches its effective number 

of decoding iterations. Simulation of the remaining ready tasks continues in the same 

way until the global budget becomes zero. After termination of global IB, simulation of 

ready tasks which have not reached to their effective processing are stopped which leads 

to the degradation of processing on the corresponding blocks. In Fig. 33, the effective 
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decoding for task 1 and task 2 is degraded, similarly to the one shot example. But now, 

one additional iteration is granted for the mentioned tasks. 

In the gradual scheduling method, the number of emulated iterations for the ready 

tasks at each simulation moment is approximately the same. Thus the corresponding 

blocks of the stopped tasks which have not reached to their effective number of 

iterations, have almost the same processing level and consequently their processing are 

degraded approximately identically. In other words the resource allocating to the tasks 

with degraded processing is nearly uniformed. Another advantage of this method 

comparing to the one shot method is that the global IB is utilized completely in the case 

of processing needs for the ready tasks. 

Pseudo code of gradual scheduling method for a general case of n Turbo decoding 

tasks on one Slave is presented also in Fig. 34. 
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Figure 33 Gradual scheduling example. 
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Initialising the globallB 

Tasks selection. (In this method, instead of selecting one task, 
all ready tasks on the slave are selected.) 

while( globallB ~= 0) 
for i=l to n 

if task i has been selected £ globallB ~= 0 
1- One decoding iteration of task i is emulated. 
2- globallB is decremented by 1. 
3- Simulation of task i is terminated if the task has 

reached to its effective decoding level. 
end if 

end for 
end while 

for i=l to n 
if Simulation of task i has not been terminated 

task i is terminated and its residual errors caused by the 
degradation in the emulated decoding, are estimated by using 
table I. 

end if 
end for 

Figure 34 Pseudo code of gradual scheduling. 

4.4.3. Priority-driven one shot scheduling 
As explained before, the earlier simulated tasks might be allocated smaller IBs 

causing more additional errors, because of the degradation in the emulated processing 

compared to the later simulated tasks. Since the ready tasks are selected and simulated in 

a fixed order in all processing periods, the additional errors associated to the earlier 

simulated tasks are increased over time much more than for the tasks which are 

simulated later. 

In this way the difference between the provided service qualities for the 

corresponding blocks (users) is increased over time. In order to prevent the increase of 

difference between the user's service qualities, we propose a modification in the one 

shot scheduling method. In the modified method, which is called priority-driven one 

shot scheduling, we assign a priority to the ready tasks to determine their order of 
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simulation during each processing period. In the model, we have considered a parameter 

called sum_add_err which is assigned to each task and represents the accumulated 

additional bits in error inserted into the corresponding decoded block from beginning of 

simulation till current processing period. It is mentioned that the additional bits in error 

represent the bits in error provided because of degradation in the effective decoding 

process, which occurs when the resulting it_eff of a task is greater than the 

corresponding IB and that the IB is less than 8, In this case the additional bits in error 

inserted into the corresponding decoded block are estimated to be equal to the 

corresponding ave_add_err extracted from Table 3. Then the corresponding parameter 

sum_add_err for the task is updated. The estimated parameter sum_add_err for each 

task determines its priority for simulation in the next processing period. 

In the priority-driven one shot method, the method of updating the IBs of tasks is 

same as the one shot scheduling as shown in Fig. 31. But in this method, the order of 

placing the tasks on the columns shown in Fig. 31 is defined based on the priority of 

tasks. At each processing period, the ready tasks with the lowest values of sum_add_err 

have the highest priority and are simulated first. In this way the tasks which are 

characterized with higher accumulated bits in error are likely to be allocated more 

resource in the current processing period. Thus the provided quality of service for 

different users becomes more uniform when compared to the one shot scheduling 

method. 

4.4.4. Priority-driven gradual scheduling 

In the gradual scheduling, the tasks simulated later are on average allocated less 

resource than the ones simulated earlier. Thus more additional errors are associated to 

the later decoded blocks because of the degradation in the emulated processing 

compared to the earlier decoded blocks. For example, as shown in Fig. 33, task 1 which 

is simulated earlier is allowed 6 decoding iterations while the number of emulated 

iterations for task 2 is 5. Since the ready tasks are simulated in a fixed order in all 
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iteration levels and all processing periods, the number of additional errors associated to 

the later simulated tasks in different iteration levels is higher than the one associated 

with the tasks which are simulated earlier. In this way the difference between the 

provided service qualities for the corresponding users increases over time. 

In order to prevent the increase of difference between the user's service qualities, 

we propose a modification in the gradual scheduling method. In the new modified 

scheduling method, which is called priority-driven gradual scheduling, we introduce the 

priority based on the sum_add_err parameter (similarly to the priority-driven one shot 

method): the parameter ave_add_err and consequently the parameter sum_add_err, is 

estimated and associated to each totally simulated task in each processing period which 

defines the priority of the task in the next period. Otherwise, as for the gradual 

scheduling, the tasks are simulated gradually and a global IB is assigned to limit the 

emulated processing of tasks as shown in Fig. 33. 

In other words, in this method the order of placing the tasks on the columns shown 

in Fig. 33 is based on the priority of tasks. At each processing period, the ready tasks 

with the highest sum_add_err value have the highest priority for simulation and are 

simulated first. In this way the tasks with more accumulated additional bits in error 

should be allocated more resources in the current processing period. Thus the provided 

quality of service for different users becomes more uniform compared to the gradual 

scheduling method. 

4.5. Simulation results 
As explained earlier, we create a performance model to investigate the proposed 

scheduling methods which includes one Master and one Slave unit. Thus we develop the 

previously proposed scheduling methods and introduce them in the Slave unit as 

different options to schedule the assigned Turbo decoding tasks. Afterward, we simulate 

the model in different cases of proposed scheduling methods under various loads and 

channel conditions for appropriate durations. The simulation of the model provides the 
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BER associated to the decoded blocks in all processing periods. In order to simplify the 

results, we calculate the average BER of all corresponding tasks during the simulation in 

different cases of system loads and channel conditions. The specific Turbo decoding 

tasks correspond to 656 data bits blocks before encoding ((3*656) +12= 1980 symbols 

after encoding)), and frames are transmitted at 64 ksymbol/s over 40 ms periods. 

If we apply the WCET design, considering the period of received frames and the 

worst case processing time of Turbo decoding on the target processor which includes 8 

decoding iterations, we can assign only 14 data blocks (users) to the processor. 

Therefore, in the created performance model, if we assign 14 tasks to the Slave, 8 

iteration budgets can be assigned to each task and no processing degradation is forced to 

the emulated Turbo decoding processes by the system. Thus, case of assigning 14 users 

(WCET design) is used as a reference to be compared with the case of assigning more 

users in different cases of proposed scheduling methods. 

4.5.1. One shot scheduling 

By simulating the mentioned performance model in the case of one shot 

scheduling method, the average BER of all tasks (corresponding to different users) are 

obtained in different cases of number of assigned users and channel conditions which are 

shown in Fig. 35. As shown in this figure, assigning more than 14 users causes an 

increase in the error rate. The horizontal distance between the average BER curves and 

the reference one (case of 14 users) for a given BER, gives the average degradation of 

the decoding gain. Based on Fig. 35, the average degradation of decoding gain is 

obtained for 3 different numbers of users at the BER value of 2*10-5. These results are 

reported in Table 4. Clearly, the average degradation of decoding gain increases with the 

number of users. However, even with 29 users assigned to a processor, the decoding 

gain degradation is only approximately 0.15 dB, which is negligible and does not have 

significant effects on the quality of service. When compared to the WCET strategy, 

which lets a system architect assign only 14 users per processor in the modelled 

conditions, the proposed one shot scheduling method allows assigning twice as many 
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users while providing acceptable quality of service. This advantage of the proposed 

scheduling method is obtained by effectively exploiting the significant variability of 

Turbo decoding process. 

• 14 Users 
-*— 23 Users 
-e— 29 Users 
- A — 32 Users 
- B — 35 Users 

0.7 0.8 0.9 1.1 1.2 1.3 
Eb/NO in dB 

1.5 1.6 1.7 

Figure 35 Average BER in case of one shot scheduling. 
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Table 4 Average decoding gain degradation at a BER of 2* 10"" for one shot 

scheduling. 

Number of users 

Average degradation of decoding gain (dB) 

14 

0 

23 

0.07 

29 

0.15 

4.5.2. Gradual scheduling 
By simulating the mentioned performance model in the case of gradual scheduling 

algorithm, the average BER of users is obtained in different cases of number of assigned 

users and channel conditions which are shown in Fig. 36. Based on Fig. 35 and Fig. 36, 

the gradual scheduling method provides a remarkable improvement of average BER 

over the one shot scheduling method. By using Fig. 36, average degradation of decoder 

gain for 5 different numbers of users (at the BER value of 2e-5) is obtained and gathered 

on Table 5. It is noteworthy that the average degradation of decoder gains with 23 and 

29 users is now zero while it respectively reaches 0.07 and 0.15dB for the same number 

of users with the one shot scheduling method. 

Also based on table 5, the average degradation of decoder gain for more users such 

as 32 and 35 are negligible (<0.10dB). As a comparison, average degradation of 

decoding gain for 35 users with gradual scheduling is by 0.05 dB lower than for 29 users 

with one shot scheduling. This improvement of decoding performance shows the 

efficiency of gradual scheduling method in resource allocation to the tasks compared to 

the one shot scheduling. 

Table 5 Average decoding gain degradation at a BER of 2*10" in case of gradual 

scheduling. 

Number of users 

Average degradation of decoding gain (dB) 

14 

0 

23 

0 

29 

0 

32 

0.03 

35 

0.1 
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Figure 36 Average BER in case of gradual scheduling. 

4.5.3. Priority-driven one shot and priority-driven gradual 
scheduling 

By selecting the priority-driven one shot scheduling and then the priority-driven 

gradual scheduling in the mentioned performance model and simulating the 

corresponding models, the average BER of users in different cases of number of 

assigned users and channel conditions is obtained. By observing the results, we realized 

that the average BER results obtained by using priority-driven one shot method are the 

same as the corresponding results in the case of one shot method shown in Fig. 35. Also 

the priority-driven gradual method provides the same average BER results as provided 

by the gradual method and shown in Fig. 36. 

In order to show the advantage of such priority-driven methods in equalizing the 

service qualities of users, we also estimated the variance BER of users. The BER 

variance of users in different cases of the proposed scheduling methods is presented in 

Fig. 37, Fig. 38, Fig. 39 and Fig. 40. These shown curves are parameterized by the 

number of users. In Fig. 39 and Fig. 40, the BER variance values for the Eb/NO values 

which are greater than the values of the dotted lines are approximately zero. Looking at 

T 1 1 1 1 1 r 

J I I 1 I 1 I L 
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Fig. 37 and Fig. 38, gives a first opportunity to compare the priority-driven and the plain 

one shot scheduling. As one can see, the priority-driven approach uniforms the BER 

performance of users by reducing BER variances with respect to the plain one shot 

method. The same observation can be made for the priority-driven and the plain gradual 

methods by comparing Fig. 39 and Fig. 40. 

Comparisons are even easier to make by looking at Fig. 41, Fig.42 and Fig. 43, 

where the BER variance curves are drawn respectively for 29, 32 and 35 assigned users, 

parameterized by the type of scheduling method. In this way, in each case of mentioned 

number of assigned users, we can clearly observe the difference between the provided 

service uniformity for users in 4 cases of scheduling method. 

Considering the shown results for the average BER and the BER variance, we find 

out the priority-driven gradual scheduling is the most efficient method between the 

proposed ones which provides the best BER performance and service uniformity for 

different users. 
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Figure 37 BER variance in one shot scheduling. 
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Figure 39 BER variance in gradual scheduling. 
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4.6. Validating investigation 

In this section we intend to validate the method that we utilized to model the Turbo 

decoding process and to estimate the residual errors in the decoded blocks. As explained 

in section 4.4, we designed a random generator to emulate the effective number of 
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decoding iterations required in a Turbo decoder, depending on the channel condition. 

We included such random generator in each task representing Turbo decoding in the 

performance model. Also in order to estimate the residual errors in the decoded blocks, 

we extracted some parameters such as BER and ave_add_err as illustrated in Table 3. 

During simulating the performance model, the effective number of decoding in the tasks 

representing Turbo decoding is provided by the corresponding random generators and 

the number of bits in error in the decoded blocks is estimated using Table 3. 

In order to validate the method of modelling the Turbo decoding process, we 

developed a validation strategy. For this reason, we created several decoding tables by 

using the results of simulating the Simulink model (functional model) of Turbo 

coding/decoding process in different channel conditions. Such decoding tables include 

the effective number of decoding iterations and also the number of bits in error at all 

level of iterations till the effective one on different received data blocks for one user. 

Each decoding table corresponds to one channel condition and includes the mentioned 

decoding information for several data blocks. The number of blocks/frames included at 

each decoding table is selected in such a way that it is appropriate for the corresponding 

channel condition. 

Thus, we do some modification in our performance model in such a way that we 

introduce the mentioned decoding tables in the performance model. In this modified 

version of the performance model, each task representing Turbo decoding process 

utilizes the decoding information included in the corresponding decoding table instead 

of using the random generator and the estimated number of bits in error in Table 3. Since 

at each channel condition, the received data blocks corresponding to different users can 

be different, we cannot use the same table for all tasks. Also, since providing the 

decoding tables in some channel conditions is time consuming, creating different 

decoding tables for individual users (up to 35 users in our case study), is not practical. 

Therefore, we did an approximation in our validation method in such a way that at each 

channel condition, each task uses the decoding information corresponding to a different 
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random combination of data blocks in the corresponding decoding table. In this way, at 

each channel condition, different tasks corresponding to different users utilizes the same 

decoding table, but at each time they take the decoding information corresponding to 

different data blocks of the table. 

In this way, we develop the explained validation version of performance model 

including one Master and one Slave unit where the Slave contains several tasks 

corresponding to Turbo decoding process on the received data blocks of several users. 

Similarly to the explained simulations in section 4.5, we simulate this modified version 

of performance model in different cases of channel conditions and number of assigned 

users. We perform the explained simulations in two cases that the scheduling method in 

the Slave unit is set to the one shot scheduling and also gradual scheduling method. 

Therefore we obtain the average Bit Error Rate (BER) of different users as shown in 

figures 44 and 45 which correspond respectively to the cases of one shot scheduling and 

gradual scheduling methods. 

Figure 44 Average BER in case of validation model and one shot scheduling. 



88 

Eb/NO in dB 

Figure 45 Average BER in case of validation model and gradual scheduling. 

Comparing Fig.44 with Fig. 35 and Fig. 45 with Fig. 36 does not show any 

difference between the average BER results in two cases of using performance model 

and validation model. Indeed, there is a little difference between the values of average 

BER in these two cases of modelling, but the difference is such little that it is not 

obvious by comparing the results in the mentioned figures. In this way the utilized 

method of performance modelling of the Turbo decoding process is validated. 

4.7. Elapsed simulation time 

In this section, we intend to compare the elapsed simulation times in two cases of 

performance modelling and functional modelling of the Turbo decoding processes. 

Table 6 illustrates the simulation times in these two cases of modelling in different cases 

of channel conditions. As explained before, in different channel conditions, each Turbo 

decoding process should be simulated for a sufficient number of input data 

blocks/frames. For instance, the total number of processed bits is set to 100 times the 

inverse of the target bit error rate in our simulations for all considered sets of operating 

conditions. The numbers of blocks/frames in different cases of channel conditions are 

illustrated in the second column of Table 6. 
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Table 6 Elapsed simulation times. 

Eh NO 

0.76 
0.86 
0.96 
1.06 
1.16 
1.26 
1.36 
1.46 
1.56 
1.66 

Number of Frames 

7 
13 
25 
52 
123 
337 
1029 
3623 
15151 
99633 

Decoding 
Average 

Elapsed Time 
for one user 

(sec) 
3.56 
5.97 
11.47 
21.49 
50.27 "~l 
141.87 
470.31 
1488.95 
6604.64 
42421.87 

Decoding Average 
Elapsed Time for 35 

users using 
functional model (sec) 

(Tsim func) 
124.50 
209.05 
401.58 
752.08 
1759.36 
4965.37 
16460.98 
52113.37 
231162.38 
1484765.41 

Elapsed Time for scheduling 
35 usere 

using performance model 
(sec) (T_sim_perf) 

0.37 
0.69 
1.35 
2.77 
6.60 1 
17.95 
55.88 
195.05 
791.23 
5346.45 

T_sini_fnnc / T_sim_perf 

332.88 
301.23 
297.51 
271.87 
266.76 
276.64 
294.57 
267.18 
292.16 
277.71 

Using the Simulink functional model of Turbo coding/decoding, we estimate the 

average simulation time for decoding the data blocks of one user for the appropriate 

number of blocks corresponding to the channel condition. These average simulation 

times are presented in the third column of Table 6. Thus we estimate the average 

simulation times for decoding the data blocks of 35 users in different channel conditions 

which are calculated by multiplying the corresponding simulation times for one user by 

the value 35 and are shown in the fourth column of the Table. Afterward, we consider 

the created performance model in section 4.5 which includes the one shot scheduling 

method and 35 tasks representing the Turbo decoding processes. Then we simulate the 

mentioned performance model in different cases of channel condition for appropriate 

number of blocks/frames and obtain the corresponding elapsed simulation times as 

shown in the fifth column of Table 6. 

The Table 6 illustrates also the ratio of the simulation times in two cases of 

functional modelling and performance modelling for decoding the data blocks of 35 

users. We can observe that the simulation times in the case of functional modelling are 

approximately 300 times of the simulation times in case of performance modelling. Such 

ratio of simulation times justifies the utilization of our performance modelling that 

allowed the rapid verification of different methods of scheduling without any functional 

simulation. 
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4.8. Conclusion 
In this chapter, we discussed a mapping strategy to assign the different 

processing segments of the uplink WCMDA processing in a UMTS receiver base-station 

to different processors of a multiprocessor platform. Then we focused on the Turbo 

decoding process which was a high intensive computational part of the uplink WCDMA 

processing and we discussed the scheduling of Turbo decoding on the processors of the 

platform dedicated to this process. Thus, we used our developed performance modelling 

strategy to estimate the efficiency of the proposed scheduling methods. We created a 

performance model including the proposed scheduling methods and the tasks 

representing the Turbo decoding processes on the different data blocks. 

Simulating such model provided the BER performance for the decoded blocks in 

different cases of scheduling methods and for different number of assigned users. The 

provided simulation results showed the advantage of these flexible scheduling methods 

comparing to a WCET design by increasing the number of assigned users in the base-

station. Such flexible methods allowed the system to perform more number of processes 

by degrading gracefully the processing efforts which reflected the negligible service 

quality degradations. 

In this chapter, similarly to [6] and [18], scheduling of Turbo decoding process on 

several encoded blocks in the dedicated processors was studied. However, our 

scheduling methods allowed much more flexible degradation by considering dynamic 

iteration budgets, when compared to the decoding degradation presented in [18]. Such 

processing degradation concept was not considered in [6]. Unlike to [8], [19] and [20], 

we considered that the Turbo decoder algorithm consisted of only one monolithic task 

and the Turbo decoding process on each coded block should performed totally on one 

processor. Thus, the Turbo decoding processes on the individual processors could be 

data independent which would reduce the data communication between the processors. 

Finally, we provided the elapsed simulation times in two cases of functional and 

performance modelling of the Turbo decoding. These results showed the advantage of 
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using such performance modelling strategy to rapid verification of the proposed 

scheduling methods. 
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CHAPTER 5 

CONCLUSION 
In this project we utilized a multi-DSP platform as the target architecture which 

is called Vocallo and is fabricated by Octasic Semiconductor. We chose such a multi-

core DSP platform to provide an appropriate target for implementing our 

telecommunication target application which had a dynamic and computationally 

intensive nature. The target application in this project corresponded to the WCDMA 

(Wide-band Code Division Multiple Access) process on the received data blocks 

corresponding to different users in a Universal Mobile Telecommunication Systems 

UMTS base-station receiver. Considering real-time and dynamic characteristics of target 

application, we derived high-level performance models of the application, using the 

same system-modeling environment (in our case Matlab/Simulink) to allow fast 

performance validation of that application when running on the target platform. Our 

devised performance modeling methodology also allowed validation of the efficiency of 

strategies for mapping and scheduling a complex application on the target platform 

before run time. 

In this project, we focused specifically on a computationally intensive part of the 

WCDMA application which has been characterized by a significant variability of the 

processing effort. We proposed four flexible methods to schedule the Turbo decoding 

process on the processors of the platform which could trade off the quality of the results 

(services) and the required resources to produce the results. We utilized our structured 

performance model to derive and validate the proposed flexible methods for scheduling 

the Turbo decoding tasks. All proposed flexible scheduling (FS) methods in this project, 

when compared to a WCET scheduling method, improved the processors utilization. By 

using the one shot scheduling (first proposed FS method) comparing to the case of 

WCET, we could increase the number of users from 14 to 29 while keeping an 

acceptable quality of service reflected in degradation of 0.15 dB of decoder gain. Using 
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the gradual scheduling (second proposed FS method) allowed us to increase the number 

of users from 14 to 35 while keeping an acceptable quality of service reflected in a very 

small degradation of less than 0.1 dB of decoder gain. The priority-driven one shot 

scheduling (third proposed FS method) comparing to the one shot method provided the 

same results for increasing the number of users and average degradation of service 

quality while resulting the more uniform quality of services for different users. Also, the 

priority-driven gradual scheduling (fourth proposed FS method) compared to the 

gradual method provided the same results for increasing the number of users and 

average degradation of service quality while resulting in a more uniform quality of 

services for different users. Therefore, the priority-driven gradual scheduling is 

recognized as the most efficient method to allocate the resources to different users 

between the proposed FS methods. 

Also, we structured a modified version of our performance model to validate our 

proposed method to model the Turbo decoding processes. Simulating such modified 

performance models and comparing the extracted results with the results of the 

corresponding performance models validated our Turbo decoding modeling method. In 

addition, we estimated the elapsed simulation times in two cases of functional and 

performance modelling for decoding the data blocks of 35 users in different channel 

conditions. We observed that the simulation times in the case of performance modelling 

were approximately 300 times faster in the case of functional modelling. Such ratio of 

simulation times justified the utilization of our performance modelling that allowed the 

rapid verification of different scheduling methods without performing detailed 

functional simulation. 

The future work for this project consists of dynamic characterization of the other 

processing segments of an uplink WCDMA application in addition to the Turbo decoder 

and abstracting their execution time properties on the target processors. Also, data 

transmission between different processing segments of the application should be 

characterized in the form of data volumes and the elapsed time to transmit this data 
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between the processors of the platform. The result of such characterization could be 

introduced in our performance modelling strategy. Thus, different performance models 

could be created based on the developed modelling strategy to describe the different 

implementations of the whole application of an UMTS receiver base-station 

implemented on the target platform which represent all the processing segments of the 

application and all the data transmissions in the platform. Such complete models will 

allow to verify different methods of mapping and scheduling of the whole application on 

the multiprocessor platform and to study the maximum number of users which can be 

assigned to the base-station in different cases of implementations. 
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APPENDIX 1 

Simulation results for the example described in section 3.3. The results 
correspond to 25 simulation stages. 

INITIAL CASE: 
rdy = [-1.000000 -1.000000 -1.000000 -1.000000 ] 
st = [-1.000000 -1.000000 -1.000000 -1.000000 ] 
t_sim = 0.000000 
fin = [-1.000000 -1.000000 -1.000000 -1.000000 ] 
load unit = [0.000000 0.000000 ] 

SIMULATION STAGE 1: 
rdy = [0.000000 0.000000 -1.000000 -1.000000 ] 
st = [0.000000 0.000000 -1.000000 -1.000000 ] 
t_sim = 0.000000 
EXECUTED TASKS: TASK 1 
fin = [0.010000 -1.000000 -1.000000 -1.000000 ] 
load unit = [0.010000 0.000000 ] 

SIMULATION STAGE 2: 
rdy = [0.020000 0.000000 0.010000 -1.000000 ] 
st = [0.020000 0.010000 0.010000 -1.000000 ] 
t_sim = 0.010000 
EXECUTED TASKS: TASK 2 TASK 3 
fin = [-1.000000 0.020000 0.020000 -1.000000 ] 
load unit = [0.020000 0.020000 ] 

SIMULATION STAGE 3: 
rdy = [0.020000 0.020000 -1.000000 0.020000 ] 
st = [0.020000 0.020000 -1.000000 0.020000 ] 
t_sim = 0.020000 
EXECUTED TASKS: TASK 1 TASK 4 
fin = [0.030000 -1.000000 0.020000 0.030000 ] 
load unit = [0.030000 0.030000 ] 

SIMULATION STAGE 4: 
rdy = [0.040000 0.020000 0.030000 -1.000000 ] 
st = [0.040000 0.030000 0.030000 -1.000000 ] 
t_sitn = 0.030000 
EXECUTED TASKS: TASK 2 TASK 3 
fin = [-1.000000 0.040000 0.040000 0.030000 ] 
load unit = [0.040000 0.040000 ] 

SIMULATION STAGE 5: 
rdy = [0.040000 0.040000 -1.000000 0.040000 ] 
st = [0.040000 0.040000 -1.000000 0.040000 ] 
t_sim = 0.040000 
EXECUTED TASKS: TASK 1 TASK 4 
fin = [0.050000 -1.000000 0.040000 0.050000 ] 
load unit = [0.050000 0.050000 ] 



SIMULATION STAGE 6: 
rdy = [0.060000 0.040000 0.050000 -1.000000 ] 
st = [0.060000 0.050000 0.050000 -1.000000 ] 
t_sim = 0.050000 
EXECUTED TASKS: TASK 2 TASK 3 
fin = [-1.000000 0.060000 0.060000 0.050000 ] 
load unit = [0.060000 0.060000 ] 

SIMULATION STAGE 7: 
rdy = [0.060000 0.060000 -1.000000 0.060000 ] 
st = [0.060000 0.060000 -1.000000 0.060000 ] 
t_sim = 0.060000 
EXECUTED TASKS: TASK 1 TASK 4 
fin = [0.070000 -1.000000 0.060000 0.070000 ] 
load unit = [0.070000 0.070000 ] 

SIMULATION STAGE 8: 
rdy = [0.080000 0.060000 0.070000 -1.000000 ] 
st = [0.080000 0.070000 0.070000 -1.000000 ] 
t_sim = 0.070000 
EXECUTED TASKS: TASK 2 TASK 3 
fin = [-1.000000 0.080000 0.080000 0.070000 ] 
load unit = [0.080000 0.080000 ] 

SIMULATION STAGE 9: 
rdy = [0.080000 0.080000 -1.000000 0.080000 ] 
st = [0.080000 0.080000 -1.000000 0.080000 ] 
t_sim = 0.080000 
EXECUTED TASKS: TASK 1 TASK 4 
fin = [0.090000 -1.000000 0.080000 0.090000 ] 
load unit = [0.090000 0.090000 ] 

SIMULATION STAGE 10: 
rdy = [0.100000 0.080000 0.090000 -1.000000 ] 
St = [0.100000 0.090000 0.090000 -1.000000 ] 
t_sim = 0.090000 
EXECUTED TASKS: TASK 2 TASK 3 
fin = [-1.000000 0.100000 0.100000 0.090000 ] 
load unit = [0.100000 0.100000 ] 

SIMULATION STAGE 11: 
rdy = [0.100000 0.100000 -1.000000 0.100000 ] 
st = [0.100000 0.100000 -1.000000 0.100000 ] 
t_sim = 0.100000 
EXECUTED TASKS: TASK 4 
fin = [-1.000000 -1.000000 0.100000 0.110000 ] 
load unit = [0.100000 0.110000 ] 

SIMULATION STAGE 12: 
rdy = [0.100000 0.100000 -1.000000 -1.000000 ] 
st = [0.100000 0.100000 -1.000000 -1.000000 ] 



t_sim = 0.100000 
EXECUTED TASKS: TASK 1 
fin = [0.110000 -1.000000 0.100000 0.110000 ] 
load unit = [0.110000 0.110000 ] 

SIMULATION STAGE 13: 
rdy = [0.120000 0.100000 0.110000 -1.000000 ] 
st = [0.120000 0.110000 0.110000 -1.000000 ] 
t_sim = 0.110000 
EXECUTED TASKS: TASK 2 TASK 3 
fin = [-1.000000 0.120000 0.120000 0.110000 ] 
load unit = [0.120000 0.120000 ] 

SIMULATION STAGE 14: 
rdy = [0.120000 0.120000 -1.000000 0.120000 ] 
st = [0.120000 0.120000 -1.000000 0.120000 ] 
t_sim = 0.120000 
EXECUTED TASKS: TASK 1 TASK 4 
fin = [0.130000 -1.000000 0.120000 0.130000 ] 
load unit = [0.130000 0.130000 ] 

SIMULATION STAGE 15: 
rdy = [0.140000 0.120000 0.130000 -1.000000 ] 
st = [0.140000 0.130000 0.130000 -1.000000 ] 
t_sim = 0.130000 
EXECUTED TASKS: TASK 2 TASK 3 
fin = [-1.000000 0.140000 0.140000 0.130000 ] 
load unit = [0.140000 0.140000 ] 

SIMULATION STAGE 16: 
rdy = [0.140000 0.140000 -1.000000 0.140000 ] 
St = [0.140000 0.140000 -1.000000 0.140000 ] 
t_sim = 0.140000 
EXECUTED TASKS: TASK 1 TASK 4 
fin = [0.150000 -1.000000 0.140000 0.150000 ] 
load unit = [0.150000 0.150000 ] 

SIMULATION STAGE 17: 
rdy = [0.160000 0.140000 0.150000 -1.000000 ] 
st = [0.160000 0.150000 0.150000 -1.000000 ] 
t_sim = 0.150000 
EXECUTED TASKS: TASK 2 TASK 3 
fin = [-1.000000 0.160000 0.160000 0.150000 ] 
load unit = [0.160000 0.160000 ] 

SIMULATION STAGE 18: 
rdy = [0.160000 0.160000 -1.000000 0.160000 ] 
st = [0.160000 0.160000 -1.000000 0.160000 ] 
t_sira = 0.160000 
EXECUTED TASKS: TASK 1 TASK 4 
fin = [0.170000 -1.000000 0.160000 0.170000 ] 
load unit = [0.170000 0.170000 ] 



SIMULATION STAGE 19: 
rdy = [0.180000 0.160000 0.170000 -1.000000 ] 
st = [0.180000 0.170000 0.170000 -1.000000 ] 
t_sim = 0.170000 
EXECUTED TASKS: TASK 2 TASK 3 
fin = [-1.000000 0.180000 0.180000 0.170000 ] 
load unit = [0.180000 0.180000 ] 

SIMULATION STAGE 20: 
rdy = [0.180000 0.180000 -1.000000 0.180000 ] 
St = [0.180000 0.180000 -1.000000 0.180000 ] 
t_sim = 0.180000 
EXECUTED TASKS: TASK 1 TASK 4 
fin = [0.190000 -1.000000 0.180000 0.190000 ] 
load unit = [0.190000 0.190000 ] 

SIMULATION STAGE 21: 
rdy = [0.200000 0.180000 0.190000 -1.000000 ] 
st = [0.200000 0.190000 0.190000 -1.000000 ] 
t_sim = 0.190000 
EXECUTED TASKS: TASK 2 TASK 3 
fin = [-1.000000 0.200000 0.200000 0.190000 ] 
load unit = [0.200000 0.200000 ] 

SIMULATION STAGE 22: 
rdy = [0.200000 0.200000 -1.000000 0.200000 ] 
st = [0.200000 0.200000 -1.000000 0.200000 ] 
t_sim = 0.200000 
EXECUTED TASKS: TASK 1 TASK 4 
fin = [0.210000 -1.000000 0.200000 0.210000 ] 
load unit = [0.210000 0.210000 ] 

SIMULATION STAGE 23: 
rdy = [0.220000 0.200000 0.210000 -1.000000 ] 
st = [0.220000 0.210000 0.210000 -1.000000 ] 
t_sim = 0.210000 
EXECUTED TASKS: TASK 2 TASK 3 
fin = [-1.000000 0.220000 0.220000 0.210000 ] 
load unit = [0.220000 0.220000 ] 

SIMULATION STAGE 24: 
rdy = [0.220000 0.220000 -1.000000 0.220000 ] 
st = [0.220000 0.220000 -1.000000 0.220000 ] 
t_sim = 0.220000 
EXECUTED TASKS: TASK 1 TASK 4 
fin = [0.230000 -1.000000 0.220000 0.230000 ] 
load unit = [0.230000 0.230000 ] 

SIMULATION STAGE 25: 
rdy = [0.240000 0.220000 0.230000 -1.000000 ] 
st = [0.240000 0.230000 0.230000 -1.000000 ] 
t sim = 0.230000 
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EXECUTED TASKS: TASK 2 TASK 3 
fin = [-1.000000 0.240000 0.240000 0.230000 ] 
load unit = [0.240000 0.240000 ] 


