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RESUME 

La maintenance conditionnelle (CBM), est une strategic d'intervention en maintenance 

basee sur l'observation a des intervalles reguliers d'elements indiquant l'etat de 

degradation d'un equipement. Le principal probleme est de prendre les meilleures 

decisions pour effectuer l'inspection de l'equipement, etablir le lien entre les elements 

observes lors de l'inspection et l'etat de degradation effectif de l'equipement et 

d'evaluer la fonction de fiabilite et la duree de vie residuelle comme criteres de decision. 

Plus particulierement, cette these propose une demarche coherente afin: (a) de 

determiner la politique de remplacement optimale ainsi que Pintervalle d'inspection 

optimal des equipements lorsque le processus de deterioration n'est pas directement 

observable (non visible), (b) de determiner la fonction de fiabilite (RF) ainsi que 

Fesperance de vie residuelle (MRL) de tel equipement a chaque periode d'observation 

afin d'evaluer le pouvoir de prediction du modele de remplacement propose, (c) 

d'introduire des methodes d'estimation des parametres du modele dans un contexte ou la 

relation entre les symptomes de degradation (indicateurs) et l'etat reel de l'equipement 

n'est pas deterministe. 

Un modele taux de defaillance proportionnel de Cox (PHM) est utilise pour modeliser le 

taux de defaillance de l'equipement. Un Modele de Markov Cache (HMM) est propose 

pour modeliser la degradation non visible. Nous presentons un politique CBM optimale 

et un intervalle d'inspection optimal, RF et MRL de l'equipement en plus de 

l'estimation des parametres permettant d'adapter le modele en situation reelle, lorsqu'il 
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existe une relation stochastique entre la degradation non visible de Pequipement et la 

valeur de l'indicateur d'inspection. 

La programmation dynamique (DP), le Processus de decision markovien partiellement 

observable (POMDP) et les probabilites appliquees sont utilises afin de resoudre les 

problemes etudies dans cette these. Des exemples numeriques sont donnes pour illustrer 

les modeles proposes. Des simulations ont ete effectuees afin de tester la robustesse et la 

convergence des methodes d'estimation des parametres proposes. 

Mots-cles: Maintenance conditionnelle, Maintenance predictive, Modele taux de 

defaillance proportionnel de Cox, Esperance de vie residuelle, Fonction de fiabilite, 

Processus de decision markovien partiellement observable, Simulation, Programmation 

dynamique, Optimisation stochastique. 
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ABSTRACT 

Condition Based Maintenance (CBM) or predictive maintenance is based on observing 

an indicator of the degradation state of the equipment at different intervals of time in 

order to make an informed decision concerning the maintenance of this equipment. The 

objectives of this thesis are: (a) to determine the optimal replacement policy and optimal 

inspection interval for a piece of equipment when the degradation process is not 

outwardly visible, the indicator does not directly indicate the equipment state, and the 

inspections are costly; (b) to determine the Reliability Function (RF) and the Mean 

Residual Life (MRL) of such equipment at each observation moment; (c) to introduce a 

method for estimating the parameters of the models introduced in previous objectives. 

Throughout this thesis, we assume that the equipment's unobservable degradation state 

transition follows a Markov Chain and we model it by a Hidden Markov Model. Bayes' 

rule is used to determine the probability of being in a certain degradation state at each 

observation moment. Cox's time-dependent Proportional Hazards Model (PHM) is 

considered to model the equipment's failure rate. 

The first part of this thesis introduces a model to find the optimal inspection period for 

Condition Based Maintenance (CBM) of a system when the information obtained from 

the gathered data on the system does not reveal the system's exact degradation state and 

the collection of data is costly. By using dynamic programming, the system's optimal 

replacement policy and its total long run average operating maintenance cost are found. 



vm 

Based on the long run average cost, the optimal inspection interval and the 

corresponding replacement criterion are specified. A numerical example shows the 

behaviour of the CBM model when the inspection is costly, and finds the optimal 

inspection period and the maintenance cost. 

In the second part of this thesis, a model to calculate the Reliability Function (RF) and 

the Mean Residual Life (MRL) of a piece of equipment when its degradation state is not 

directly observable is introduced. At each observation moment, an indicator of the 

underlying unobservable degradation state is observed and the monitoring information is 

collected. The conditional reliability is derived from the PHM and it is used to calculate 

the RF and the MRL. Two examples are presented. The MRL is calculated at all possible 

state probabilities for four observation moments. It is shown that the MRL can be used 

as a supplementary decision tool, in particular when the cost elements of preventive 

replacement are unknown, or when there are criteria other than the cost to respect. 

The third part of this thesis proposes a method to estimate the parameters of the models 

that were introduced in the previous parts. The parameters of the PHM, the Markov 

process transition matrix, and the stochastic matrix of observations/states are estimated 

based on the Maximum Likelihood Estimation (MLE) method. By using a Monte Carlo 

simulation approach, it is shown that the method used gives estimation results that 

converge to the real values of the parameters as the sample size increases. In addition, 

the behavior of the method has been examined when censored data exist. 

Keywords: CBM, predictive maintenance, PHM, MRL, Reliability Function, POMDP, 

Monte Carlo Simulation, Dynamic Programming, Stochastic Optimization. 
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CONDENSE EN FRANQAIS 

Introduction 

Dans cette these, nous nous penchons sur le modele de maintenance preventive 

conditionnelle base sur le modele de taux de defaillance proportionnel (PHM) propose 

par Cox [1972]. Nous supposons que les informations recueillies, 9, lors des inspections 

ne revelent pas l'etat de degradation du systeme. Les information recueillies lors des 

inspections, 0, sont representees par un nombre fini M de valeur possibles 

(# = {l,...,M}). Les informations sont recueillies a intervalle A regulier (ou 

pratiquement regulier). Dans cette etude, Z represente l'etat de degradation de 

l'equipement et servira de variable diagnostique dans le PHM. Les conditions du 

systeme sont done decrites de la facon suivante : 

• L'equipement a un nombre fini et connu d'etats de degradations N. J = \l,...,N) 

represente l'ensemble des etats de degradation possibles. 

• Le changement d'etat de l'equipement suit un processus Markovien cache 

(HMM) ou l'etat de l'equipement n'est pas directement observe. Une matrice de 

transition P entre les differents etats de degradation possibles de l'equipement est 

introduite dans le modele de base du taux de defaillance proportionnel; 

• Les informations collectees lors des inspections de l'equipement sont 

stochastiquement representatives de son etat de degradation. Une matrice Q 

donne les probabilites qjg d'obtenir une certaine information (indicateur) 6 

quand l'equipement est dans l'etat j . Cette matrice est egalement introduite dans 

le modele de base; 
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• La collection d'informations s'effectue lors des inspections periodiques (a 

intervalles fixes A); 

• La defaillance ne fait pas partie des etats de degradation possibles. La defaillance 

pour survenir a tout moment, a n'importe quel etat de degradation, et entraine 

l'arret de l'equipement. La defaillance sera done immediatement remarquee. 

• Le taux de defaillance de l'equipement suit un PHM qui est fonction du temps. 

Le taux de defaillance h(s,Zk) = /?0(5)^(Zlt) est le produit de deux fonctions 

independantes: /z0(.) est une fonction representant uniquement l'age de 

l'equipement et y/() est une fonction representant uniquement l'etat de 

degradation. 

Puisque l'etat de degradation de l'equipement ne peut etre observe, nous avons utilise la 

probabilite conditionnelle n* d'etre a l'etat i a la fin de la periode d'observation k, tel 

qu'introduit par Ghasemi et al. [2007]. n* est donne par: 

nk=\*rf; 0<^-f <1 fori = l,...,7V,^^f = l l , A: = 0,1,2,... (1) 

Avec : 

' [0 \<i<N 

n® signifie que l'equipement sera dans l'etat 1 initialement ou s'il est remplace. Apres 

qu'une observation 0 soit realisee, la probabilite conditionnelle 7tk+x est recalculee. En 

utilisant la formule de Bayes, et sachant que l'observation s'est produite a k+1, alors 

n:k+] (0) est donne par : 



XI 

"T W = H^Piflie YL^Piflje . J = U-, * (2) 

Dans les sections suivantes, nous expliquerons les objectifs de la these, les 

methodologies utilisees et les solutions developpees. 

Premier objectif: Intervalle d'inspection optimal et politique de 
remplacement optimale 

Le premier objectif consiste a determiner, dans le cas ou les inspections represented des 

frais considerables, l'intervalle d'inspection optimal et la politique de remplacement 

optimale. Le cout d'un remplacement preventif est note C, alors que le cout d'un 

remplacement apres defaillance est note K + C ou K, C > 0. Les deux actions, le 

remplacement preventif et le remplacement apres defaillance, sont instantanees. Le cout 

de l'inspection sont representees par C7 et son independants de l'intervalle d'inspection. 

Nous definissons V\k,nk) comme le cout minimum de la maintenance et de 

l'inspection au cours de la periode de renouvellement, tandis que Fequipement est au k-

ieme point d'inspection avec les probabilites conditionnelles Ki
k,i = l,...,n. La periode 

de renouvellement est definie par l'intervalle de temps compris entre deux 

remplacements consecutifs, que ces remplacements soient preventifs ou fassent suite a 

une defaillance. V\k,nk J est donne par: 

F (y t , ^ ) = min{A:C/+C + F(0 ,^ 0 ) ,^ (A: ,^ ,g)} (3) 
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ou kC, + C + V (0,7T° I est cout total au cows de la periode de renouvellement, tandis 

que l'equipement est au k-ieme point d'inspection, si la decision est d'effectuer le 

remplacement preventif. De plus, w(k,7rk,g) est defini de la fa9on suivante: 

W(k,nk ,g) = [kC1 +K + C + v(0,x°)Jl-~R(k,xk ,A)]-gr( i t ,^* ,A) 

M 1_ (4) 
Y,V(k + hxk+i{0))'Pr(0\k,7rk) R(k,xk,A) 

kCj +K + C + V(0,7T0) represente le cout total au cours de la periode de 

renouvellement, tandis que l'equipement est au k-ieme point d'inspection, si la decision 

est de ne pas effectuer de remplacement preventif (ne rien faire). 

+ 

et 
M 

]>>(£ + l,;r*+1(0))Pr(#|£,;r*) 
0=1 

represente le cout minimum estime de la 

maintenance et de 1'inspection, tandis que l'equipement est au k+l-ieme point 

d'inspection. \-R[k,7tk,k\ et R\k,ftk,A) represented respectivement la probability 

de defaillance Durant la k-ieme periode et la probabilite que l'equipement survive 

jusqu'au debut de la periode k+1 quand les probabilites conditionnelles a la periode k 

sont 7Tk,i = l,...,n. r\k,nk,A) est la duree moyenne de sejour de l'equipement a la 

periode k+1 lorsque les probabilites conditionnelles a la k-ieme periode nf ,i = \,...,n 

sont disponibles. g represente le cout moyen par unite donnee de temps (jour, semaine, 

etc.) pour un horizon de duree infini. g inclus seulement le cout de remplacement: les 

couts d'inspection sont exclus. 
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R\k,nk ,A) et r\k,nk ,AJ sont ainsi calcules: 

R(ky,A) = ^R(k,i,A)^ (5) 

z{k,nk,A) = [ 7?(&,/r*,.s) ds (6) 

ou R{k,i,t}= exp - ^ ( 0 IT h0(s)ds) 

Selon ces hypotheses et, en utilisant le modele developpe, la politique de remplacement 

sera exprimee par: 

oo if K \-R{k,Kh,A)1< gr(k,nk,A) 
_ T (7) 

0 if A:[l-/?(jfc,fl-*,A)j£gz-(*,;r\A) 

Cette politique est done fonction de K (le cout de defaillance), i?(^,^r*,Aj (la fiabilite 

conditionnelle a la k-ieme periode) et r(k,7rk,A] (la duree de sejour a la k-ieme 

periode). Afin de determiner la valeur de g*, nous utilisons une methode recursive. En 

remplacant g par g*, la politique optimale de remplacement est obtenue a partir de 

1'equation 7. 

L'intervalle d'inspection optimal est choisi a partir d'un ensemble fini de L possibilites 

(A;;/ = 1,2,...,L). L'intervalle d'inspection optimal est celle qui, parmi les L possibilites, 

_,* * C 
minimise le cout total a long terme G' ou G] =g]+—L. En pratique, apres avoir 

A/ 

determine la valeur de G* et apres avoir choisi le A* (A correspondent a G*), la 

politique de remplacement optimale est determinee en utilisant 1'equation 7. 
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Deuxieme objectif : Fonction de fiabilite et Duree de vie 
residuelle moyenne 

Dans le troisieme chapitre de cette these, nous avons calcule la fonction de fiabilite (RF) 

and la duree de vie residuelle moyenne (MRL) de l'equipement. Le MRL et le RF 

peuvent etre utilise comme outil additionnel d'aide a la decision, en particulier dans le 

cas ou les couts remplacement preventifs sont inconnus, ou dans le cas ou le cout n'est 

pas le seul critere en jeu. En connaissant le MRL et le RF un industriel pourra tirer 

avantage des evenements a venir (par exemple : un arret de production planifie) qui ne 

sont pas normalement pris en compte dans la politique de remplacement a cout optimal, 

afin de faire du remplacement preventif. 

La fiabilite conditionnelle a (k,Zk) , i.e. a la k-ieme periode d'observation lorsque l'etat 

de l'equipement est Zk et que t > A, est ainsi formule : 

R(k,Zk,t) = ?x(T >kb + t\T >kL,Zl,Z2,...,Zk),t> L 

= Pr( r > kA + t\T > kA,Zk),t > A 

Dans le cas d'une observation directe, sous l'hypothese Zk=i, nous avons demontre 

que: 

R(k,i,t) = 

exp i-y/ (/') f h0 (s)ds) 0<t<A 

(9) 
R(k,i,A)Y,PijR(k + l,j,(t-A)) t>A 

7=1 

Dans le cas d'une observation indirecte, nous definissons R\k,nk,t\ comme etant la 

fiabilite conditionnelle de l'equipement a la &-ieme periode d'observation, quand les 
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probabilites conditionnelles a la periode k sont nk ,i-\,...,n. R\k,7ik,t\ est done 

calcule de la facon suivante: 

R(k,xk,t) = 

2 n] exp l-y/ (/) £ +' h0 (s)ds) 0<t<A 

£^/?(*,/,A)2;/7 j , .x/?(^ + l,y,(r-A)) />A 
'=1 7=1 

Dans le cas d'une observation directe, le MRL est defini de la fa9on suivante : 

e(k,i)= J R[k,i,t) dt 

Nous calculons le MRL, ~e\k,nk\, a la ^-ieme periode d'observation, quand les 

probabilites conditionnelles a la periode k sont n*,i = \,...,n. et lorsqu'il peut etre 

represente par; 

e(k,7rk)=^R[k,7rk,t)dt (11) 

Troisieme objectif: Estimation des Parametres 

Tous les modeles mathematiques, incluant les modeles introduits au cours des deux 

premieres sections, sont bases sur un ensemble de parametres devant etre estimes pour 

pouvoir etre appliques en situation reelle. Ces parametres sont estimes a partir de 

l'information disponible sur le systeme a l'etude. Dans le chapitre 4, nous introduisons 

des methodes permettant d'estimer les parametres des modeles mathematiques utilises 

dans cette these. Dans notre cas, afin d'appliquer ces modeles a une situation reelle, nous 

devons estimer les parametres du PHM, les probabilites de la chaine de Markov et les 

probabilites la matrice des etats/indicateurs. 
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Nous avons defini T, la duree de vie de l'equipement, une variable aleatoire positive 

continue et i.i.d. « independent identically distributed». Nous avons egalement defini 

0(s) = Wl,02,...,0k\; s<T;k = l,2,...; kA<s l'historique des valeurs prises par 

l'indicateur jusqu'au temps s, ou A est l'intervalle d'observation. Les valeurs prise par 

l'indicateur jusqu'au temps s, peuvent etre representee par la distribution de probability 

conditionnel de l'etat de l'equipement par x(s} = lftl,ft2,...,ff'\; s<T; k-l,2,...; 

kA < s, ou les element de TT(S) sont calcules a partir des equation 1 et 2 a chaque 

periode d'observation. 

Nous avons demontre que la fonction de survie est exprimee par : 

R(t,0(t)) = 

fl?r(eM\T>(l + l)A,xl) 
1=0 

k-l N f (/+1)A N 

f j ^ ^ / e x p - J h(r,i)dr 
1=0 (=1 /A 

etpuisque f(t,0(t)) = lim+ 

N 

E^exp 
( t 

- J * 
V kA 

(12) 

dR(t,0( 
< ) ) . 

(r,i)dr 
) 

fjpr(0/+1 \T>(l + l)A,n') 
1=0 

At 

Y l N ( (/+,)A 

1=0 1=1 ^ /A 

dt 

l r I 
^^•fexp \ - \h{z,i)dT h(t,i) 

k& J 

(13) 

L'estimation des parametres se fait de deux facons differentes selon que les donnees 

soient censurees ou non. 

Dans le cas de donnees non-censurees, pour un ensemble de n experiences 

independantes, nous assumons que Tr est le temps de defaillance de la r-ieme 
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experience. La vraisemblance de l'ensemble de parametres inconnus Q, peut etre ainsi 

calculee a l'aide des donnees disponibles: 

L{Q) = f{f(Tr,e(Tr);a) (14) 
r=\ 

Dans le cas de donnees censures, nous avons definis un indicateur de censure : 

f 1 s'il y a eu defaillance 
Sr=\ y 

[0 si l'equipement a ete retire 

Cet indicateur de censure indique si la valeur de Tr est: 1) une defaillance ou 2) l'instant 

auquel l'equipement a ete retire du service, i.e. Tr represente une censure. La 

vraisemblance de l'ensemble de parametres inconnus Q, peut etre ainsi calculee a l'aide 

des donnees disponibles: 

L(n) = flf(Tr,0;Qf R(Tr,6;Q.fSr (15) 

Dans les deux cas, avec donnees censures ou non, utilisant une technique d'optimisation 

telle que la « line search method », la valeur maximale de la fonction de vraisemblance 

est obtenue. 

La convergence et la robustesse des methodes d'estimation des parametres introduites 

dans cette these ont ete evaluees a l'aide de simulation de Monte Carlo. Nos resultats 

montrent que les parametres estimes par les methodes introduites convergent vers les 

valeurs reelles lorsque la taille de Fechantillon augmente. Dans le cas de donnees 

censurees, la methode donne d'excellents resultats meme lorsque le taux de censure 

atteint les 50%. 
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Conclusion 

Cette these offre plusieurs outils relatifs a la maintenance conditionnelle. Elle introduit 

une politique de reraplacement optimale de l'equipement ainsi qu'une technique 

permettant de determiner l'intervalle d'inspection optimal. La these offre egalement 

d'utiliser le MRL et le RF comme mesure de la performance future de l'equipement. Le 

MRL et le RF permettent aux industriels de prendre des decisions eclairees relatives a la 

maintenance de l'equipement. Finalement, les methodes d'estimation des parametres des 

differents modeles proposes dans la these permettent 1'application de ces outils en 

situation reelle. De plus, cette these innove en adressant le probleme du choix des 

parametres qui a rarement ete soumis a l'etude jusqu'ici. 

Des travaux additionnels pourraient etre effectues afin d'elargir le champ d'etude de 

cette these et inclure les cas ou rintervalle d'inspection est variable. Dans ce cas, la date 

de la prochaine inspection et la politique de remplacement minimisant les couts devront 

etre determines a chaque inspection. A chaque fois, on devra decider si l'equipement 

doit etre remplace ou s'il demeure en place jusqu'a la prochaine inspection. Si 

l'equipement demeure en place, la date de la prochaine inspection sera determinee a 

l'aide des donnes historiques. Voila pourquoi, dans un tel cas, l'intervalle d'inspection 

est variable tel que mentionne plus haut. 

Des travaux additionnels pourraient egalement etre effectues afin d'introduire une 

politique optimale de remplacement dans le cas ou plusieurs types de reparations 

peuvent etre effectuees (on ne remplace pas systematiquement l'equipement). En 

situation reelle, il est possible d'effectuer differents travaux de reparations auxquels sont 
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associes des covits differents. Chaque reparation modifiera l'etat de degradation de 

l'equipement afin de le ramener a un etat acceptable connu. 

Finalement, rappelons que dans cette these, nous avons fait l'hypothese que le modele de 

Markov est homogene. Le cas contraire (non homogene) pourrait egalement etre une 

piste de recherche interessante. 
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CHAPTER 1 : INTRODUCTION AND LITERATURE REVIEW 

1.1 Introduction 

Depending on the specific industry, maintenance costs can represent between 15 and 40 

percent of the costs of goods produced. For example in food related industries, the 

average maintenance cost represents about 15 percent of the production cost; while in 

iron and steel, pulp and paper and other heavy industries maintenance cost represents up 

to 40 percent of the total production cost [Mobley, 2002]. Since maintenance cost is a 

major part of the total operating costs of manufacturing and production, one of the tools 

of securing the productivity and decreasing the production cost is to have a well 

functioning maintenance system and strategy. The maintenance system has the role of 

looking after the equipment and keeping track of it in order to secure the functional 

requirements of productivity, safety, and quality. Without a performing maintenance 

system money will be lost due to lost production capacity, excessive amount of spare 

parts, and lack of quality, late deliveries and loss of safety. 

Traditionally the maintenance systems are categorized either as preventive or 

corrective. The preventive maintenance aims at preventing the components, the sub­

systems or the equipment from deteriorating or failing by performing repair, overhaul, 

service or component's replacement. The corrective maintenance is performed after 

system or equipment's failure or breakdown. While preventive maintenance is Age 

Based, i.e. the equipment's maintenance is based on its age, since few decades some 
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industries have started to perform maintenance actions in a Condition Based or 

predictive approach. In the latter, the equipment's condition is the key parameter in 

triggering the appropriate maintenance actions. This approach is called Condition Based 

Maintenance (CBM) and/or sometimes referred to as predictive maintenance. Figure 1-1 

depicts a schematic of different types of maintenance systems. The equipment's 

condition may be obtained through different levels of automation, from human visual 

inspection, to on-line highly sophisticated condition monitoring equipment. 

Maintenance 

I 
Preventive Corrective 

Condition Based Age Based 

Figure 1-1: Schematic of different types of maintenance 

1.1.1 Condition Based Maintenance 

Condition Based Maintenance has been defined as "Maintenance actions based on actual 

condition obtained from in-situ, non-invasive tests, operating and condition 

measurement." [Mitchell, 1998] or "CBM is a set of maintenance actions based on real­

time or near-real time assessment of equipment degradation state which is obtained from 

embedded sensors and/or external tests and measurements taken by portable equipment." 

[Butcher, 2000]. In these definitions and many similar ones that can be found in the 
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literature as well as in the internet, the common idea is that the maintenance actions are 

not considered until there is an obvious need. This should increase the availability of 

equipment and decrease maintenance cost, including labor and spare parts costs. 

The purpose of CBM is to eliminate breakdowns and protract the preventive 

maintenance intervals which should result in an increase in the availability of equipment. 

Using CBM technology, the condition monitoring data are analyzed in depth to 

determine whether the equipment is running at a normal operating condition or not. If 

the preset limits for normal condition are exceeded, the maintenance actions are 

performed. With this information, it is easier to plan the maintenance actions more 

effectively [Marcus et ah, 2002]. 

CBM systems may need several components and level of automation in order to give the 

required information to make the right maintenance decision. Some companies may use 

hand-held devices out in the field and then make analysis of the data later in 

laboratories, while others may use more complicated on-line systems that give the 

results right away. In both cases, the way that the companies use the information 

determines whether they are having a CBM strategy or they are just inspecting their 

equipments. When having a CBM program, the results of the analysis are taken into 

account and the maintenance actions are planned accordingly. 

A variety of technologies may be used as part of a CBM program. Since mechanical 

equipment is part of most industries' equipment, vibration monitoring is generally the 
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most used technique in CBM programs. This technique is limited to monitoring the 

mechanical condition. For this reason a CBM program may include one or more of the 

following monitoring and diagnostic techniques: 

• Vibration Monitoring 

• Thermography 

• Tribology 

• Ultrasonic monitoring 

• Other nondestructive testing techniques 

• Process Parameters 

• Visual Inspection 

In the next part, a general description of each of these techniques is provided [Mobley 

2002]. 

Vibration Monitoring 

Since most of the typical industry equipment is mechanical, this technique has the 

widest application. This technique uses the noise or vibration created by mechanical 

equipment to determine its actual condition. The degradation of the mechanical 

condition can be detected using vibration-monitoring techniques. 

Thermography 

Thermal anomalies of equipment, i.e. areas that are hotter or colder than they should be, 

can be used to monitor the conditions of the equipment. Thermography uses 

instrumentation designed to monitor the emission of infrared energy, i.e. temperature, by 
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the equipment to determine its degradation state. Infrared technology is based on the fact 

that; all the objects having a temperature above absolute zero emit energy or radiation. 

Tribology 

Tribology refers to design and operating dynamics of the bearing-lubrication rotor 

support structure of machinery. Several tribology techniques like: lubricating oils 

analysis, spectrographic analysis, and ferrography and wear particle analysis can be used 

for predictive maintenance. For instance, some forms of lubricating oil analysis will 

provide an accurate quantitative breakdown of individual chemical elements, both oil 

additive and contaminates, contained in the oil. A comparison of the amount of trace of 

metals in successive oil samples can indicate wear patterns of oil wetted parts in the 

equipment and will provide indication of impending machine failure. 

Ultrasonic Monitoring 

This predictive maintenance technique uses principles similar to vibration analysis. Both 

monitor the noise generated by machines or equipment to determine their actual 

degradation state. Unlike vibration monitoring, ultrasonic monitoring monitors the 

higher frequencies, i.e. ultrasound, produced by unique dynamics in process systems or 

machines. The normal monitoring range for vibration analysis is from less than 1 Hertz 

to 20,000 Hertz. Ultrasonic techniques monitor the frequency range between 20,000 

Hertz and 100 kHz. This technique is ideal for detecting leaks in valves, steam traps, 

piping and similar process systems. 



6 

Process Parameters 

Machinery that is not operating within acceptable efficiency parameters can severely 

limit the productivity of many types of equipment. As an example of the importance of 

process parameters monitoring, consider a process pump that may be critical to industry 

operation. The pump can be operating at less than 50% efficiency and the predictive 

maintenance program which does not consider the efficiency, will not detect the 

problem. 

Visual Inspection 

Regular visual inspection of the machinery and equipment is a necessary part of any 

predictive maintenance program. In many cases, visual inspection will detect potential 

problems that will be missed using the other predictive maintenance techniques. Routine 

visual inspection of critical equipment will augment the other techniques and insure that 

potential problems are detected before serious damage can occur. 

1.1.2 Proportional Hazard Model 

Introduced by D. R. Cox, the Proportional Hazards Model (PHM) was developed in 

order to take into account the effects of equipment's condition that influences its times-

to-failure. The model has been broadly used in the biomedical field [Leemis 1995] and 

recently there has been an increasing application in reliability engineering [Makis and 

Jardine 1992]. 
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According to the PHM, the failure rate of a piece of equipment is affected not only by its 

operating time, i.e. its age, but also by the degradation state under which it operates. It is 

clear that this factor affects the failure rate of the equipment. Equipment in a better 

degradation state has less chance to fail than a worn one even if they both have the same 

age. The proportional hazards model assumes that the failure rate of a piece of 

equipment is the product of a baseline failure rate, hQ[t), which is a function of the 

equipment's age t only, and a positive function y/{Zt), that is independent of age and 

incorporates the effects of the equipment's degradation state Zt, The failure rate of a 

unit is then given by h[t,Zt) = h0 [t)i//[Zt). Zt is the random variable representing the 

degradation state of the equipment at time t. PHM also assumes that the form of y/{Zt) 

is known and is the exponential form and is given by y/ (Z,) = erZ', where y is the 

degradation state coefficient. 

The Weibull distribution is one of the most commonly used distributions in reliability 

engineering because of the several shapes it can take for different values of its 

parameters. Hence it can model a great range of data and life characteristics. By 

considering a two parameters Weibull distribution to formulate the baseline failure rate, 

the parametric proportional hazard model is introduced. In this case, the baseline failure 

rate is given by: [Cox 1984] 
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where t] and J3 are the scale and shape parameters of the Weibull distribution function, 

respectively. The PHM failure rate then becomes: 

B f t V - 1
 7 

More details about PHM and Weibull distribution are presented later. 

1.1.3 CBM with Indirect Observations 

In many real cases, the degradation state of the equipment is not outwardly visible while 

the failure of the equipment is immediately obvious and causes the equipment to cease 

functioning. This is known as equipment with obvious failures as opposed to silent 

failures, which are not immediately discovered. Ideally, inspection of a piece of 

equipment reveals the degradation state of the equipment with certainty. This type of 

observation system is known as Perfect Observation or Direct Observation as opposed 

to Imperfect Observation, Partially Observed system, or Indirect Observation [Lin et ah, 

2003; 2004, Fernandez-Gaucherand, 1993, Wang and Christer, 2000]. If the 

observations are taken in selected periods rather than all periods, the system is Partly 

Observed in opposed to Completely Observed which is not considered in this thesis. 

In the case of the direct observation, it is assumed that the information collected 

regarding the equipment's condition (indicator) 0, is a direct pointer to the equipment's 

degradation state Z . The indicator is assumed to be in a some-to-one or a one-to-one 

relationship with the degradation state that influences the time-to-failure of the 

equipment. In a some-to-one approach, each possible indicator's value, from a 
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predefined interval, refers to one degradation state. In this approach, there is no indicator 

value that can refer to more than one degradation state. If the condition monitoring 

reading is of value 9i where i = \,2,..., the state will be a certain value Z., where 

j = 1,2,.... In this approach, each indicator value 6i, refers to only one state Z.. At the 

same time, any state Z., may be referred to by several possible values of the indicator in 

a predefined interval [e.g. Makis and Jardine, 1992]. Figure 1-2 demonstrates the some-

to-one characteristic. It can be seen in the figure that any indicator value in the interval 

[<3,Z>), e.g. 6X and/or #3, refers to the same state value Z,. There is no possibility to 

have more than one state referred to by a single indicator value. 

1 

Zi 

0, &, b 0, indicator 

Figure 1-2: Direct observation for equipment with 2 degradation states (some-to-one relationship) 

In the one-to-one approach, each indicator value is assumed to be a direct pointer to and 

only to one degradation state of the equipment, and the indicator's value is used directly 

as the diagnostic covariate in the PHM (e.g. Kumar et ah, 1996). Nevertheless, in both 
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cases, a certain value of the indicator refers to a certain degradation state 

deterministically. 

Realistically, information may contain noise due to errors of measurement, 

interpretations, accuracy of measurement instruments, etc. and may not reveal the exact 

degradation state of the equipment. The information is, however, stochastically 

correlated with the underlying state. In this case, information collected may refer to 

more than one possible state. For example, a certain level of vibration (indicator) 0l, 

may be read while the equipment is in any of two different levels of degradation states 

Z, and Z2. 

Figure 1-3: Indirect or imperfect observation (some-to-some relationship) 

This situation is represented by a probability distribution function or a stochastic matrix. 

In the latter case, the relationship between the collected indicator and the degradation 

state is some-to-some. One collected indicator value may refer to several degradation 

states and vice versa. Figure 1-3 illustrates the stochastic relationship between the 
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indicator and the state in this case. As shown in this figure, the indicator value 9X, may 

refer to either state Z, or state Z2. An indicator value may be a sign of several possible 

degradation states and equipment in certain degradation state may demonstrate different 

indicator values. 

The relationship between the indicator's value and the state is introduced via an 

observation probability matrix or a probability distribution. For example, in Figure 1-4, 

if the state is Z(.;/ = l,2, the probability of observing different values of the indicator 

follows a normal distribution N(JUX.,(TX. J. 

Zi 

N(M,.O*) 

&\ indicator 

Figure 1-4: Probabilistic relationship between the indicator and state 

The latter case, combined with PHM and Markov Process, was originally introduced by 

Ghasemi et ah, [2007] to address the indirect observation problem and to propose a 

solution to the main drawback of the time-dependent PHM, i.e. the inclusion of only the 
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latest condition monitoring information in the model. In this thesis, we consider a some-

to-some indicator-state relationship. 

To demonstrate the impact of not considering all the history of information, consider 

Figure 1-5 which depicts an explanatory example of a piece of equipment that follows a 

time-dependent PHM. In this example, the equipment demonstrated by the bold line has 

been in the state Z = 1 from time zero to time t2. It can be seen that the failure rate of 

the equipment at times tx and t2 are equal to \ and h2, respectively. 

Figurel-5: An explanatory example of a time-dependent PHM without a state change 

Now we consider the case demonstrated in Figure 1-6. From time zero to time /,, the 

equipment state is Z = 0 and right after, from time tx to time t2, the equipment's state is 

Z = 1. According to the PHM, at time t2 while the equipment is at state Z = 1, the 

failure rate of the equipment is again h2 and the fact that the equipment has been in state 

Z = 0 from time zero to time tx, has no effect on the value of the failure rate h2, at time 

t2. Obviously, this is not realistic. 
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Figure 1-6: An explanatory example of a time-dependent PHM with state change 

Conceptually, this drawback may be addressed as shown in Figure 1-7. In this figure, if 

the equipment is in state Z = 0 until time tx, the failure rate at that time is \ . If at that 

time the state changes to Z = 1, then the increase in the failure rate will follow the path 

of the bold line from /?, on the curve of Z = 1. This is equivalent to assuming that the 

equipment was in state Z = 1 from time zero but its age is tx-t. t is demonstrated in 

the figure. Also, after t2-tl, i.e. at age t2, the failure rate will be ti2 and not h2. These 

examples clearly show how the original approach of the time-dependent PHM gives a 

misleading value of the failure rate by ignoring the degradation history. 
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Figure 1-7: Conceptual solution for PHM drawback 

In what follows, the notations and basic definitions and methods used in this thesis are 

explained. 

1.2 Preliminary Notations 

We define a continuous random variable T, as the time-to-failure of the equipment 

which can take any value in [0, oo). 

1.2.1 The Probability and Cumulative Density Functions 

The Probability Density Function (PDF), f(t) , and Cumulative Distribution Function 

(CDF), F(t), of time-to-failure, T, are such that: 

Vv(a<t<b)= \b f{t)dt and F(t) = ?r(T< t)= \'f(s)ds = l-R(t). 

The CDF is used to measure the probability that the equipment in question will fail 
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before the associated time value /, and is also called unreliability where R(t) is the 

Reliability Function (RF). 

1.2.2 Reliability Function (RF) 

When a piece of equipment is subjected to condition monitoring, data concerning one or 

more indicators of the degradation state are collected periodically. The information 

obtained from this data is used to establish a diagnosis of equipment's condition and a 

prognosis for future performance. Two measures of this performance are the failure rate 

(or the hazard function), and the Mean Residual Life (MRL). These two measures are 

calculated from the reliability function. 

In reliability analysis, two reliability functions are of interest. The first is the 

unconditional reliability function given by the probability P(T>t), which is the 

probability that the failure time T, of a piece of equipment that has not yet been put into 

operation, is bigger than a certain time t. The second is the conditional reliability 

function calculated by P(T>t\T>T), which is the probability that the time-to-failure 

T is bigger than t, knowing that the equipment has already survived until time r, 

where r < t. In some reliability analysis, it is assumed that every piece of equipment is 

used in the same environment and under the same conditions. This assumption allows 

the calculation of the MRL and the hazard function prior to the actual use of the 

equipment. In real-life, the environments in which the equipment is performing and the 

conditions of utilization affect the process of degradation. Consequently, the failure rate, 

the conditional reliability, and the residual life of the equipment are affected. Taking this 
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fact into consideration improves the diagnosis of the equipment's degradation state and 

the prognosis for future performance. 

1.2.3 The Failure Rate Function 

The failure rate function enables the determination of the number of failures occurring 

per unit of time. The failure rate function is mathematically calculated as: 

h(t) = 
R(t) 

This gives the instantaneous failure rate. The cumulative of failure rate is called hazard 

function. 

H(t)= ^h(s)ds 

These functions are useful in characterizing the failure behavior of the equipment [Ross 

1997]. 

1.2.4 Mean Life or Mean Time-to-failure (MTTF) 

The mean life function, which provides a measure of the average time of the 

equipment's life, is given by: 

MTTF = f= ftf(t)dt 

This is the expected or average time-to-failure for a piece of equipment with 

instantaneous replacement and is denoted as the MTTF, Mean Time To Failure. The 
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MTTF, even though an index of reliability performance, does not give much information 

on the failure distribution of the equipment in question when dealing with most 

probability distributions. 

1.2.5 Mean Residual Life (MRL) 

In biomedical science, researchers analyze survivorship of patients by MRL. Actuaries 

apply MRL to set the rates and benefits for life insurance [Ghai and Mi, 1999]. In 

general, MRL provides a more descriptive measure of an aging process than the hazard 

rate. The hazard rate takes just the instantaneous present into account while MRL 

considers the whole future [Bradley and Gupta, 2003; Siddiqui and Caglar, 1994]. 

MRL or Remaining Useful Life (RUL) is defined as "the expected time interval between 

the point of gathering the information to the point of future failure based on the history 

of the condition monitoring and the performed preventive actions" [Wang and Zhang, 

2005]. Wang and Christer [2000] consider a similar concept; the Conditional Residual 

Time (CRT), defined as "the time lapse from any time point that monitoring information 

is obtained to the time that it may fail given no other preventive maintenance action". 

Based on the definitions, MRL can be determined by E\T-t\T> t,Z(t)} where T is a 

random variable indicating the equipment's time-to-failure, / is the current observation 

time and Z (?) is the state of the equipment at time t. 

There are two general methods to calculate the targeted equipment's MRL. First; the 



18 

MRL is calculated based on the RF of the equipment. Second, the probability density 

function of the residual life is modeled, and then expected value of the residual life, i.e. 

MRL is evaluated. 

1.2.6 Weibuil Distribution 

The Weibuil distribution is one of the most commonly used distributions in reliability 

engineering because of the several shapes it attains for different values of its parameters. 

Hence it can model a great range of data and life characteristics. The most general 

expression of the Weibuil PDF is given by the three-parameter Weibuil distribution 

expression, or: 

/ ( « ) - * 
fi(>-rv" J ^ e " 

V •n ) 

Where, f{t)>0,t>y, /? > 0, // > 0,-oo< 7 < oo and: 

• TJ = Scale parameter 

• /?= Shape parameter or Slope. 

• y= Location parameter 

Usually, the location parameter is not used, and the value for this parameter is set to 

zero. When this is the case, the PDF expression reduces to that of the two-parameter 

Weibuil distribution. In this thesis, we use the two-parameter Weibuil distribution. 

Figure 1-8 shows the effect of different values of /? value on the Weibuil failure rate. 

As shown by the figure, Weibuil distributions with /?<1 have a failure rate that 

decreases with time, also known as infantile or early-life failures. Weibuil distributions 



19 

with (5 close to or equal to one have a fairly constant failure rate, indicative of useful 

life or random failures. 
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Figure 1-8: Weibull failure rate with 0 < / ? < l , / ? = l and /? > 1 

Weibull distributions with (5 > 1 have a failure rate that increases with time, also known 

as wear-out failures. These include the three sections of the bathtub curve. Figure 1-9 

exhibits an example of a bathtub curve. 

a. 

I 
1 
1 

• Early Life 
(failure rate decreases w/ time) 

Wearout Life •w 
(failure rate increases w/ time) 

Useful Life -
(failure rate approx. constant^ 

Time (hours, miles, cycles, etc.) 
Figure 1-9: An example of a bathtub curve 
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Figure 1-10: Weibull PDF plot with varying the value of f5 while ft > 1 

Increasing the value of /? while fi > 1 and holding rj constant, stretches the PDF while 

moving the mass of PDF to the right. Since the area under a PDF curve is a constant 

value of one, the peak value of the PDF curve will also increase with the increase of f3, 

i.e. the distribution gets stretched-in to the right and its height increases. If ft is 

decreased, while rj is constant, the distribution mass gets pushed in toward the left i.e. 

toward 0, and its height decreases. 

Increasing the value of rj while holding /? constant, has the effect of stretching out the 

PDF. Since the area under a PDF curve is a constant value of one, the peak of the PDF 

curve will also decrease with the increase of rj, i.e. the distribution gets stretched out to 

the right and its height decreases, while maintaining its shape and location. If 7 is 

decreased, while /? is kept the same, the distribution gets pushed in toward the left i.e. 
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toward 0, and its height increases, rj has the same unit as t, such as hours. 

Time fHoyr, Day, Week,,,,) 

Figure 1-11: Weibull PDF plot with varying the value of 7] 

1.2.7 Stochastic Processes 

In many situations, we need to study the interaction of chance with time e.g. the number 

of failures in a certain period of time. To model this we need a family of random 

variables, all defined on the same probability space, {z(/);f>0} where Z{t) 

represents the degradation state of the equipment at time t. {z(t);t > 0J is a continuous 

time stochastic process or random process. For many studies, both theoretical and 

practical, we discretize the time and replace the continuous interval [0,co) with the 

discrete set N or sometimes Nu{0} . We then have a discrete time stochastic process, 

{Zk;k = 0,1,2,...}. Z(t) and Zt, and similarly Z(k) and Zk , are used interchangeably 
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in the literature on this subject. 

For stochastic processes, all the component random variables take values in a given set 

J, called the state space. Typically this will be a subset of N , Nu{0},Z or R . When 

the random variable at time / takes an amount i from the state space, i.e. Z(t) = i, we 

say that the state of the equipment at time t is / .[Ross 1997] 

1.2.8 Markov Process 

In general, a stochastic process has the Markov property, if given the present state; the 

future state is conditionally independent of the past states. Many of the most popular 

stochastic processes used in both practical and theoretical work are supposed to have this 

property. If the states take on value in K., we have a Markov process, if they take 

amount from N or Z , we are dealing with a Markov chain. If we discretize time to be 

{0,1,2,...}, we'll be working with discrete time Markov chains or process. For more 

details see [Ross 1997]. 

The probability that Z(k + l) = j given that Z(k)-i is called the one-step transition 

probability and we write: 

p*jk+l=?r(z(k + \) = j\Z(k) = i) 
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We have stationary transition probabilities, if pff+l is the same for all k i.e. 

pff+1 = Pjj for any k, so the probability of going from / to j in one transition at any 

time is the same. 

We can collect together all the transition probabilities into a matrix P = \pyj called the 

transition probability matrix or sometimes transition matrix for short. [Ross 1997] 

1.2.9 Dynamic Programming 

An approach for solving dynamic optimization problems was pioneered by Richard 

Bellman in the late 1950s. This approach has been applied to problems in both 

continuous and discrete times. It is developed to solve sequential, or multi-stage, 

decision problems; hence, the name dynamic programming. [Bertsekas 1976] Dynamic 

Programming principle is given by Bellman [1957]: 

"An optimal policy has the property that whatever the initial state and the 

initial decisions are, the remaining decisions must constitute an optimal 

policy with regard to the state resulting from the first decision." 

To show general idea of dynamic programming approach, consider the following 

diagram: 
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Figure 1-12: Schematic representation of dynamic programming idea 

Knowing the state of the process at the beginning of a stage (periods), say stage s, we 

make a decision which results in a specific return benefit/cost and changes the state to 

the ending state at the end of the stage. The objective is to maximize/minimize the total 

return over all the stages. The conceptual framework is as follows: 

• We observe a system (a piece of equipment) whose primary state, Z,, is known. 

• We make a decision (action), D,, which makes the system to change its state to a 

state Z2 by the transition function tx i.e. Z2 =/,(Z1,Z)1). The transition's return 

is rx=r\Zx,Dx). 

• We make a second decision, D2, upon which the system changes its state to 

Zi=t2[Z2,D2). The stage's return is r2=r2(Z2,D2). 

This process continues: 

• After a number of iterations the system will be in state Zs and we make the s-th 

decision, Ds, by which the system will change its state to Zs+l =ts(Zs,Ds) and 

the stage returns rs =rs(Zs,Ds). 
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There are finite number of possible states and decisions available. This will ultimately 

result in the fundamental deterministic recursion equations as follows: [Nemhauser 

1966] 

/ , (Z f ) = m a x a M ) . s = l,2,...,S 

in n(7 n\_r*(z*>D*) fors = § 
^ " s)~k(Zs,Ds) + fs4ts(Zs,Ds)) for, = l , . . . ,S- l 

1.2.10 Stochastic Dynamic Programming 

An §-stage stochastic system is similar to an §-stage deterministic system except that at 

each stage there is a random variable, ks, that affects the stage transformation and 

return. 

r,=r,(Zt,D„kt) 

Zs+]=ts{Zs,Ds,ks),s = \,...,S 

The random variables £,,...,&s are assumed to be independently distributed with 

probability distributions /?, (&,),...,ps (ks) respectively. By defining the expected value 

return from stage s through § , fs, and applying probability rules, (e.g. see [Nemhauser 

1966]) fundamental stochastic recursion equations will be as follows: 

fs{Zs) = m^JjPs{ks)Qs{Zs,Ds,ks), 5 = 1,2,...,S 
D- K 

C>(7 ^N Jrs(Zs»£)s»*s) _ fors = § 
W„v„*,) 1ri(zi,JDf>*,) + /^1(/I(Z1,JD1,*J)) for. = l , . . . ,S- l 
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Introduction of uncertainty causes no increase in the amount of the state variables. Since 

Qs is a function of only one random variable ks, some difficulties of optimizing 

functions with several random variables have been eliminated. The optimal decision 

policy, resulting from stochastic multistage optimization, is itself stochastic, except for 

the first optimal decision, D*[Zt). The rest, D\{Z2),...,D*§(Z§), can not be expressed 

deterministically in terms of Zs, until the stochastic elements that precede them are 

revealed. This is not a deficiency of dynamic programming, but a property of stochastic 

multistage system. For more details see [Bertsekas 1976]. 

1.2.11 Markovian Decision Processes 

Markovian Decision Processes (MDP) represent a class of stochastic optimization 

problems. MDP is based on the Markov Process. It is assumed that there are a finite 

number of states at each stage, and a finite number of stages. Each state at stage 

s -1,..., § is denoted by /', i = 1,..., N . As explained above, the probability of transition 

from state / at stage s to state j at stage s +1 is denoted by ptj and is independent 

from s. These probabilities can be represented by transition matrix P: 

f vu ... Plj ... pw^ 

P = Pn ••• Pi) ••• Pm 

Pm ••• PNJ ••• PNN j 

The probability of being in state j at stage s +1, denoted by n^ > is determined from: 
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< 1 = Z < ^ J = I . - . ^ 5 = I , . . . , S 

Corresponding to the transition matrix P, there is a return matrix R 

R = 

(J, 

ra ' 

\J~N\ 

•• rM • 

• • ru • 

• • rNj • 

r ^ 
'IN 

• rm 

• • rNN , 

which gives the return r^ for transition from state / to state j . A decision variable 

ds=k, k = l,...,K, designates the choice of the k -th transition matrix and A>th return 

matrix at 5-th stage, in other words, if the system is in state /, ds=k means that the 

relevant transition probabilities and returns at stage s are the /-th row of the k-th. 

transition and return matrices. The probability of transition is denoted by /?,- - ( ^ ) and 

the return by r{ • (ds). 

This is simply a variation of the multistage stochastic optimization model given in the 

previous section where pj-[^ds) = ts{Zs,Ds,ks) and rjj[ds) = rs[Zs,Ds,ks). The state 

variable, Zs, is presented by / and decision variable, Ds, by ds. The random variable 

ks is hidden in the new notation. We denote the excepted total return from stage s 

through stage S, starting in state /, by fs (/). The stochastic recursion equations will be 

as follows: 
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fM = d^KttPM)[rAd.) + f*U)]> * = l,2,...,S;i = l 
J ' " " ,7=1 

N 

The term ^ / ? i y (c/,)^. (ds) is the expected return from stage s . We denote it by qi [ds), 
7=1 

so: 
JL — 

^ = 1,2,.,., S; i -1,..., N fs(i)= max 
JsK ' ds=l,...,K 

v.W+I.PiWfM 
./=! 

These stochastic recursion equations remain to be solved by the usual computational 

methods used in DP. For more details see [Howard I960]. 

1.2.12 Infinite stage MDP 

Problems containing an infinite number of decisions arise in two fundamental different 

ways. First, is the case where there are a very large number of stages remaining and 

there is regularity in the stage returns and transformations in a way that we expect the 

optimal decision to be independent of the particular stage number. In the second case, 

the horizon is infinite, or the time periods (stage) are very small and negligible in 

comparison with the horizon. In the limit, as the size of the time periods approaches 

zero, we assume that decisions are made continuously. The former is called a discrete 

infinite-stage process and the latter is a continuous infinite-stage decision process. 

Under certain circumstances, the solution to the infinite-stage problem is stated as: 

/(z) = £S/.(zJ = &{™['i(z-A)+/^('.(^.A))] 
= max[r(Z,D) + f(t(Z,D))] 
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For more details see [Howard I960]. 

1.2.13 Maximum Likelihood Estimation 

Parameter estimation is a branch of statistics which deals with estimating the parameters 

of a mathematical model to fit to a set of historical/experimental data. The objective is to 

find the parameters of the system in a way that best describes the available data of the 

equipment. The Maximum Likelihood Estimation (MLE) is considered the most robust 

parameter estimation method with some exceptions. The method was pioneered by 

geneticist and statistician Sir R. A. Fisher between 1912 and 1922. 

Assume that the parameters set Q, of a probability distribution function has to be 

estimated. Also assume that the PDF of the distribution is denoted as fn. We draw a 

sample (jt,,...,x„) of n values from this distribution, and then using fa we compute the 

(multivariate) probability density associated with our observed data, fn (x,,...,x„). 

As a function of Cl with fixed xv...,xn, the likelihood function is: 

The method of maximum likelihood estimates Q by finding the value of Q that 

maximizes L(Q.). This is the maximum likelihood estimator (MLE) of Q: 

D = arg maxZ(Q) 
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Usually, one assumes that the data drawn from a particular distribution are independent, 

identically distributed (i.i.d) with unknown parameters. This simplifies the problem 

because the likelihood can then be written as a product of n probability densities: 

1=1 

and the Logarithm likelihood of n probability densities will be: 

IJL(n) = 2>8/n(*,) 
i=l 

which its maximum can be found by various optimization methods [e.g see Box et ah 

1969, Press ef a/. 2007]. 

1.3 Literature Review 

Under an age replacement policy, a device is replaced or overhauled at failure or at a 

predetermined age. See [McCall 1965] and [Valdez-Flores and Feldman 1989] for some 

examples. Modeling the lifetime of a device whose failure depends upon the effects of 

time and usage has also received a great attention in the past decade. Scott et ah [2003] 

have considered a piece of equipment whose age is measured by two scales e.g. 

automobiles in the parallel scales of calendar time since purchase, and number of miles 

driven. Lawless et ah [1995], Murthy et ah [1995] and also Singpurwalla and Wilson 

[1998], among others, have considered this case. Some literature reviews on 

maintenance optimization in general can be found in [McCall 1965], [Valdez-Flores 

1989] and [Dekker 1996]. 
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A condition-based maintenance policy performs generally better than an age based one, 

e.g. see [Rao 1996] and [Gertsbakh 2000]. Scarf [1997] states that "the increase in the 

use of condition monitoring techniques within industry has been so extensive that it 

perhaps marks the beginning of a new era in maintenance management". Condition-

based maintenance has been addressed in several papers, for some examples see 

[Christer and Wang 1992], [Scarf 1997], and [Wang 2000]. In most of the papers, either 

the critical threshold for replacement, or the inspection interval is a decision variable. In 

[Wang 2000] a renewal theory is used to calculate the cost criterion in terms of both 

these decision variables. Also Dieulle et al. [2003], using a Gamma process, developed a 

model which allows to investigate the joint influence of the critical threshold value and 

the choice of the inspection dates on the total cost of the maintained system. 

In general, many existing models of CBM policies are based on a continuous-time 

discrete-state Markovian deterioration process and focus on determining the states in 

which the equipment should be replaced to get the minimum expected cost. Mostly the 

inspection period and/or the critical states are optimized by applying the Markovian 

decision process. Coolen and Dekker [1995] optimized the interval between successive 

condition measurements (inspections), where measurements are expensive and cannot be 

made continuously. Lam and Yeh [1994] determined an optimal inspection & 

replacement policy such that the mean long-run average cost is minimized. For more 

instances on this approach see: [Mine and Kawai 1975], [Ohnishi et al. 1986], [Tijms 

and Schouten 1984], and [Wijnmalen and Hontelez 1992]. 
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A second group of researches concern with continuous state processes. Hontelez et ah 

[1996] considered a continuous-time, continuous-state deterioration process. In the 

model, it was assumed that the relationship between the state of the equipment and its 

age is more or less known and, additionally, that the state can be observed. Park [1998, 

1998a] considered a piece of equipment failed when it wears beyond a certain 

breakdown threshold and the wear accumulates continuously, but the wear is difficult to 

monitor continuously. Chelbi and Ait-Kadi [1999] addressed the problem of generating 

optimal inspection strategies for equipment with failure which is obvious only through 

inspection. A situation where it is possible to identify one parameter well correlated with 

the equipment deterioration state is considered. Generally, in this group, the aim is either 

to calculate the optimal inspection period while the critical threshold is given or to find 

the optimal threshold when the inspection period is prefixed. For more instances see 

[Hopp and Kuo 1998], [Christer and Wang 1992, 1995], [Barbera et ah 1996], [Wang 

2000], [Wang and Christer 2000], [Christer et ah 1997] and [Aven 1996]. 

The more the information on the equipment is close to its real degradation state, the 

more the policy is efficient [Barros et ah 2002b]. The ideal case, widely studied in the 

literature, is when the information is perfect (direct monitoring), i.e. the state of the 

equipment, like degradation level, is perfectly known, e.g. see [Cho and Parlar 1991]. 

Christer and Wang [1992, 1995] considered particular problems of directly monitored 

systems. Grail et ah [2002] found the optimum threshold and inspection schedule jointly 

for a piece of equipment releasing perfect information. 
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Condition based maintenance decisions in practice are largely based upon measurements 

of the state of the equipment obtained at monitoring moments. These measures can 

likely contain noises, and in general, may not tell directly the exact condition of the 

monitored equipment. They are, however, assumed to be stochastically related with the 

actual state. This type of condition monitoring is called indirect condition monitoring 

which provides imperfect information or partial information in contrast to direct 

monitoring which provides perfect information or complete information. In many 

realistic situations, the observation is imperfect. For instance Rosqvist [2002] formulated 

a stopping time model, using experts' judgments on the residual operating time of the 

equipment. The judgment is based on an indication of the equipment's state which 

releases imperfect information about equipment's state. The objective is to maximize 

expected utility. Experts are asked to provide percentage information on residual 

lifetime of the equipment, given the indicator of the equipment's state. 

There are two general approaches regarding the use of observations' information in 

Condition Based Maintenances. The first approach, considers just the current 

information obtained from the observation. For instance, Christer et ah [1997] presented 

a case study of furnace erosion prediction and replacement. A state space model is used 

to predict the erosion condition of the inductors in an induction furnace in which a 

measure of the conductance ratio is used to indirectly assess the relative state of the 

inductors, and to guide replacement decisions. Campodonico and Singpurwalla [1994] 

used a Bayesian approach considering the vibration of the equipment as the covariant of 

the equipment degradation state. Zilla [1993] considered the number of the defective 
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items as the observable covariant of the equipment degradation state. The history of the 

process at each period contains the number of the defective items for each of the 

previous periods, and the decision made in each previous periods. Christer and Wang 

[1995] addressed the problem of condition monitoring of a component which has 

available wear which is considered as a measure of the state. Supposing that the past 

measurements of the wear are available up to the present, and the component is still 

working, the decision problem is to choose an appropriate time for the next inspection 

based upon the condition information obtained to date. 

The Proportional Hazards Model (PHM) was developed in order to take into account the 

effects of equipment state influencing the times-to-failure of that equipment. The model 

has been broadly used in the biomedical field and recently there has been an increasing 

application in reliability engineering. Kumar and Westburg [1997] used PHM to identify 

the importance of monitored variables and estimate the reliability function using the 

values of monitored variables. Then, the reliability function is used to estimate the 

optimum maintenance time interval or threshold values of monitored variables for the 

equipment. Jardine et al. [1987], and Makis and Jardine [1992] used the Proportional 

Hazard Model to model deterioration behavior of the equipment in condition based 

replacement problems and to find the optimal replacement policy to minimize the 

expected average cost in long-run. Ghasemi et al, 2007 addressed the optimal 

replacement problem of equipments with indirect observations while its unobservable 

degradation state follows a Markov model. They used a Hidden Markov Model to model 
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the degradation state and assumed that the equipment's degradation state follows the 

PHM. 

In presence of condition monitoring systems, practitioners are not only interested in the 

optimal replacement solution but also in optimal inspection interval. In what follows we 

consider the literature review more specifically related to optimal inspection period. 

Lam and Yen [1994] investigated the maintenance policy for a system whose exact 

degree of degradation is known through inspections. Their objective was to find the 

optimal replacement criteria and inspection period that minimizes the long-run average 

cost of the maintenance plan. They assumed that there is a fixed inspection cost M, that 

the mean inspection time is q and the cost rate per unit of time when the system is under 

inspection is m. This results in an average inspection cost equivalent to mq + M. 

Dynamic Programming is used to solve the problem. Christer and Wang [1995] 

considered a system with perfect information where inspections reveal the system's exact 

degradation state. The objective is to determine the next inspection schedule, based on 

the inspections' observations up to date. The next inspection point is selected in a 

manner that minimizes the average maintenance cost per unit time between current and 

the next inspection. A constant predetermined threshold on the degradation state which 

determines the failure is considered and there is a cost related to the inspections. In this 

model, the time between the inspections is not constant and next inspection point is 

always determined at the current inspection point by taking into account the available 

information from condition monitoring system. Possible actions are "inspection and 
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replacement" or "inspection and no replacement". A closed form solution to calculate the 

cost per unit time is given. By minimizing the cost, the optimal inspection date is 

obtained. 

Hontelez et al. [1996] considered a system revealing perfect information with N+ \ 

possible degradation states, where states N and N + l are failure states. State N is 

detected through inspection but state TV" +1 is an obvious failure and is detected as soon 

as it happens. There is a cost associated with the inspections. Applying dynamic 

programming, a control limit rule such as II = [#;px,p2,—,Pn-\\ is obtained. It means 

that at an inspection point; replace if and only if the system is in degradation state /* > 7t 

OR: perform an inspection after pi, if the degradation state is / < n . In this approach 

the inspections will not take place at every inspection period unless there is an evident 

need to do that. 

Chelbi and Ait-Kadi [1999] considered an optimal inspection time with a hidden failure 

being detected through inspection. A pre-defined threshold on the system's degradation 

state is set to identify the failure and associated costs are considered for the inspections, 

repairs and replacements. The average long-run cost of the maintenance plan 

E(AC) = E(C)/E(T), is minimized. E(C) and E(T) present the renewal period's 

expected cost and the renewal period's expected length, respectively. The renewal period 

is the time between two consecutive replacements, whether due to a failure or to a 
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preventive replacement [Cox, 1962]. By minimizing the long-run expected cost over 

renewal period, the optimal inspection period is found. 

Grail et al. [2002] modeled a CBM policy where both the replacement threshold and the 

inspection schedule are decision variables. It is allowed to have irregular inspection 

periods, i.e., the next inspection date is dynamically updated on the basis of the present 

system degradation state revealed by the current inspection. N(>\) threshold values 

0<^Y,...,^N <L, are set in the system degradation state range. L is the predefined 

degradation threshold assumed for the failure and gN is the replacement threshold. At 

any inspection point tk, where the observation value (degradation state) is Zk, if 

^<Zk< %M for some 0 < / < N, then the next inspection will be after N-l period(s). 

Otherwise if J;N <Zk<L then a preventive replacement is performed while Zk>L 

results in a failure replacement. The long-run expected cost per unit of time is minimized 

and the optimal value of the decision variables which are the number of thresholds N, 

and the different thresholds' values £-,/ = 1,..., JV are found. 

The information obtained from condition monitoring is used to establish a diagnosis of 

the equipment's condition and a prognosis for future performance. Two measures of this 

future performance are the Reliability Function (RF), and the Mean Residual Life 

(MRL). Many researchers have studied the mathematical structure of the MRL based on 

reliability analysis without considering information concerning the actual use and the 

state of the equipment. Tang et al. [1999] considered the residual life as a random 
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variable and studied its asymptotic behaviour when the reliability function is represented 

by various discrete and continuous distribution functions. Lim and Park [1995] studied 

the monotonic behaviour of the residual life. They tested the null hypothesis that the 

residual life is not monotone, against the alternative hypothesis that it is indeed 

monotone. Siddiqui and Caglar [1994] treated the residual life as a random variable and 

gave a representation of its distribution function. When the distribution is Gamma or 

Weibull, the authors calculated the mean and the variance of the variable. Bradley and 

Gupta [2003] also studied the asymptotic behaviour of the residual life. 

Researchers that consider the presence of condition monitoring information use two 

main approaches to calculate the MRL; recursive filtering and PHM [Jardine et ah, 

2006]. Recursive filtering is an approach in signal processing that extracts information 

(MRL) based on available signals (indicators), and previously extracted information 

[Byrne, 2005]. Wang and Christer [2000], Wang and Zhang [2005, 2008] and Wang 

[2002], among others, determined the MRL by applying a recursive filtering model. The 

MRL given the condition monitoring history up to date is obtained. The recursive 

filtering technique includes the entire observation history. 

Wang and Christer [2000] assume that the observed condition monitoring indicator is a 

function of the underlying residual life and not vice versa, and use the indicator as the 

covariate. This assumption may not be realistic in many cases. For instance, the wear of 

a rotating shaft (which is reflected in oil particles as the observable indicator) affects its 

residual life, not vice versa. They used a recursive filter in order to calculate the MRL, 

and added to the existing MRL models the possibility of including all past information. 
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[Wang and Christer, 2000] Wang and Zhang [2005] introduced a new methodology that 

uses the difference between two consecutive observed indicators as the covariate and 

uses recursive filtering to determine the MRL. They define the MRL=e(t,Z(t)), as the 

expected time interval between the last inspection, when the most recent information 

was gathered, and the expected time of failure, given that no maintenance action is taken 

in this interval. e(t,Z(t)) is thus equal to E((T-t)\T>t, Z{t)), where Z{t) is the 

covariate (the difference of two consecutive readings of the indicator) at time t. Wang 

and Zhang [2008] modeled the MRL of the asset by considering the expert's judgment 

based on the equipment's observed indicator. In this case, the judgment is assumed to be 

a function of the residual life, which may include some noise. 

The PHM may be more suitable in many cases, like oil analysis, since it assumes that the 

failure rate, and so the MRL, is a function of the degradation state or the observed 

indicator, which is representing the degradation state. But the PHM's drawback is that, it 

uses only the latest information of the condition monitoring system. Kumar and 

Westberg [1996] calculated the MRL using PHM when only the most recent information 

is available. Maguluri and Zhang [1994] are inspired by the PHM and calculate the 

proportional MRL by using the equation e(t \ Z) = exp(—ft Z)e0 (t), where 

e0 (7) = E{T - T | T > r) is the MRL calculated without including the covariate. Z is the 

vector of indicators used as the covariates in the model and J3 is the vector of the 

covariates' coefficients. Sen [2004] calculates the conditional MRL given by 
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oc / 

e(t\z) = je"p'z(Kl){t+M)~'Ka(t))dfi, whereA0(/)= JAQ(u)du, A0(t) is the hazard 
0 0 

function, and A(t\z) = A0(t)e^z is the proportional hazard function. Banjevic and 

Jardine [2006] calculated the joint distribution of time-to-failure and the diagnostic 

covariate z(t) at time t, and the probability of transition between states Ly[T,t) = 

= j\T>T,Z(T) = i), T <t. z(t) is the descritized observed information 

from the indicator into a new state space {0,1,...,JV}, which represents the degradation 

state of the equipment (some-to-one relationship). The conditional reliability is thus 

given by the equation R(t | T,Z(T)) = ^^(rj), z<t, and the MRL is e{t,z{r))-
j 

00 

r 11, z{t))dr. All these models assumed that the information gathered from the 

indicator likely reveals the equipment's exact state, or used the collected information 

directly as a diagnostic covariate that affects the failure rate. Moreover, some of them 

include only the most recently collected information. 

The diagnosis and prognosis processes are based on mathematical models which are in 

turn constructed using several parameters. In order to apply any diagnosis and/or 

prognosis method to a real world problem, the parameters have to be estimated 

considering the historical behaviour of the equipment. Parameter estimation of condition 

monitoring models using PHM has been considered by the researchers in two categories: 

perfect and imperfect observations. Considering perfect observation systems, Jardine et 

m 
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al. [1987] incorporated indicators (diagnostic covariates) affecting the equipment's time-

to-failure into a fully parametric Weibull PHM and estimates the model's parameters 

based on Maximum Likelihood Estimation (MLE). Elsayed et al. [1990] developed 

PHM to estimate thin-oxide dielectric reliability by applying the partial likelihood in the 

analysis. Banjevic et al. [2001] estimated the parameters of a PHM used in analysis of 

equipment following Markovian degradation. A parametric PHM with Weibull baseline 

hazard function was considered and its parameters were estimated by MLE method. The 

method of MLE is also used to estimate the transition probabilities of the Markovian 

process. 

Cox [1972] introduced the conditional likelihood, later called partial likelihood [Cox, 

1975], to estimate the parameters of a semi-parametric PHM, supposing that the base 

line hazard function in the PHM, /^( . ) , is arbitrary and the covariates are time-

dependent. It was assumed that the exponential function incorporated the effect of the 

covariates into the equipment's time-to-failure. For r ' failure time t^ , the probability 

of observing the failure on the equipment that has actually failed given the risk set of 

R\tfr\) is e x p l / Z / J / ^T expl^Z/AJ, where the risk set R(t) is the set of all 

/ /e*(V)) 

equipments that have not yet failed until time t, Z represents the diagnostic covariate of 

the equipment and y is the coefficient which represents a weight factor for the 

covariates. r is the index counter of the sample data of a set of n independently 

observed histories. Consequently, the log partial likelihood function is: 
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M*M)=Ev£l08 
r=\ r=\ 

Z exp(^z(/)) 

Several methods are suggested to estimate the base line hazard function AQ(I). One of 

them is to assume that A0 (/) is zero except at failure points t,^. The estimator of A$ (t) 

is thus given by ^o(^ ) ) : 

Z x
exp(^zw) , where y is the MLE of y [Kay, 

1984]. 

If ties exist and the number of ties is small in comparison to the number of available 

information, then the log partial likelihood is calculated by the following equation 

log(l(r)) = S5 ( r )y-2;iog 
r=\ r=\ 

Z exp(z(//) 
*( 'M) 

d,. 

where dr denotes the number of 

ties for failure time t,s and SV x is the sum of the failed items' covariate at time t, 

[Kalbfleisch and Prentice, 1980]. Also the estimator of A^ {t) is given by: 

M'(')): Z exv{rzi) 
4w) 

Cox [1972] proposes that the covariates of the PHM can be allowed to be time-

dependent, that is to say; their values may vary in equipment's lifetime. In this case the 

equation /z(/,Z(?)) = /^,(/)exp(fZ(/)) indicates the PHM with time-dependent 
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covariates, where y stands for the covariate's coefficients and Z(V) is the time-

dependent covariate at time t. 

In a semi-parametric PHM where there is no assumption about the form of \ (/), y is 

estimated by maximizing partial likelihood that does not depend on ^(t). In a 

parametric function of a certain form, such as Weibull, the model parameters can be 

estimated by full likelihood [Lin et al., 2005]. 

For calculating the full likelihood, the complete covariate realization \lr (t),0 < t < Tr}, 

where Tr is the failure or the censoring time of the r-th equipment, should be known. 

Practically, it is not possible to have the covariate recorded continuously. Instead, it is 

known in discrete times of observations. An approach to deal with this problem is to 

assume that the covariate Zr{t) is constant between the observations. For the time-

dependent PHM, the partial likelihood function that estimates the parameter y is given 

by [Kalbfleisch and Prentice, 1980] as follows: 

L(r) = ±rzr(t(r))-±iog 
;•=! r=\ 

Y exp(yZ,(/(r))) 

It is assumed that the hazard at time t depends only on the current covariate vector. The 

introduced partial likelihood has almost the same form as time-independent covariates, 

except that the covariates are time-dependent now. 
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Banjevic et al. [2001] showed that the likelihood of the set of n independently observed 

histories {Tr,Cr,{Zr(s);s <Tr^, r = 1,2,...,/? is: 

m«Ilh(Tr>Zr(Tr))TlS(TJ>Zj) 
r:C=\ 

where Tr is the failure or censoring time of the r-th experiment, Cr is the censoring 

indicator that indicates whether the equipment has failed or has been censored. It takes 

[0 Censored / . , . . -. 
the following values C =< , and S(t;Z)= S[t;Z(s),s<t) = 

[I Failed v ' 

expj - F/z(V,Z(z-)Wr|, j is the risk set at Tr. If the value of Z at the failure or the 

censoring moment is not known, which might often be the case, the value of the latest 

covariate is used. 

Estimation of the transition matrix of Markov chain can also be obtained by MLE. By 

considering constant observation times, the estimator of transition probability, ptj (k) -

n (k) 
ft(ZM=j\T>(k + l)A,Zk=i) is given by pij(k)= ,J where n^k) is the 

ZjnU\k) 
j 

amount of one-step transitions from state / to state j at k - th observation point, 

k = 1,2,... [Basawa and Rao, 1980]. 

We are considering the imperfect observation system to illustrate the hidden degradation 

process in the model. The model will consist of two separate stochastic processes: a 

Hidden Markov Model with finite state space describing the state transition and an 
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observation process. When the observations are not perfect, some researchers used 

Expectation Maximization (EM) to estimate the parameters. Fernandez-Gaucherand 

[1993] considered a finite state Markov Chain for equipment with partial information. 

He assumed that a maintenance action resets the state of the equipment to a known 

value, and consequently, its future evolution becomes independent of the past. It is 

shown that the parameter estimator converges to the true parameter. 

When the observations are imperfect, the EM method is used to avoid modeling the 

Probability Density Function (PDF) of the observed imperfect information. Lin et al. 

[2003, 2004] considered a CBM problem while the equipment state is partially 

observable and the failure is obvious. Parameters are estimated using a recursive EM 

algorithm. Adjengue and Yacout [2005] used an EM algorithm for estimating the 

parameters of CBM with imperfect information. 

In the next section, we represent the problem statement and the three main objectives of 

this thesis. 

1.4 Problem Statement 

In this thesis we concentrate on a Condition Based Maintenance with indirect 

observations for a piece of equipment which is operating continuously. We consider the 

time-dependent PHM proposed by [Cox, 1972], and we assume that the condition 

monitoring is indirect. Instead, an indirect indicator's value, 6, of the underlying 

degradation state is available at each observation moment. Observations are collected at 
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a constant (or a near constant) interval A. In this study, Z represents the degradation 

state of the equipment which will be used as the diagnostic covariate in the PHM, and 0 

is a value from the set of all the possible indicator values 0 = | l , . . . ,M}. The whole set 

of the indicator values is discretized into a finite set of M possible values. This 

assumption does not limit the scope of this work since its relaxation only entails the 

replacement of the observation probability matrix Q by a continuous probability 

distribution such as the normal distribution as shown in Figure 1-4. The equipment 

condition is described as follows: 

• The equipment has a finite and known number of degradation states N. 

J = {l,...,N} is the set of all possible degradation states; 

• The degradation state transition follows a Markov Chain with unobservable 

states and is modeled by a Hidden Markov Model (HMM). The transition matrix 

is P = \ py J, where ptJ is the probability of going from state i to state j , 

i, j e J during one observation interval, knowing that the equipment does not 

fail before the end of the interval; 

• The value of the indicator is stochastically related to the equipment's state 

through the observation probability matrix Q = qje ,jeJ, 9 e 0 . qje is the 

probability of getting the indicator value 6, while the equipment is in statej; 

• The indicator is collected periodically at a fixed (or a near fixed) interval A; 
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• Failure is not a degradation state. It is a non-working condition of the equipment 

that can happen at any time and while in any degradation state, and is known 

immediately (obvious failure). 

Figure 1-13 depicts the process of degradation and the transition from one degradation 

state to another, and from the degradation state to failure. The circles represent the 

states. State 1 is the best state (new or as new equipment). State N is the worst state, but 

it is not failure and the equipment is still working and fulfilling part of its mission. It 

should be noted that failure can happen at any time and while the equipment is in any 

degradation state. T is a random variable showing the time-to-failure and \-rt is the 

probability of failure before the end of the interval, while the equipment state is i. 

?;=i?(&,«',A), which is calculated for each observation moment k, is the conditional 

reliability of the equipment for a period of time A, while the equipment state is /. The 

equation of R(k,i, A) will be presented later in this thesis. 
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Figure 1-13 : The process of degradation and failure 

At time s = 0, the equipment is always in state 1, which indicates that the equipment is 

in its best state. At fixed interval A, i.e. at s = A,2A,... an indicator of the equipment's 

state is observed. The indicator's value 0, is collected with a probability of qje when 

the equipment is in degradation statej ,j e J,9e&. The transition matrix 

P = \ Pj- i,je J is assumed to be an upper triangular matrix, i.e. px,. =0 for j<i, 

meaning that the degradation state cannot improve by itself, which is the case in most 

practical problems. 

Ghasemi et al, [2007] has addressed the optimal replacement policy of this problem 

while considering costly failure replacements and non-costly pre-fixed inspections. They 

have found the minimum long-run average cost of the replacement and the optimal 

replacement criteria that guarantees this minimum cost. In this thesis we will address 

three other objectives concerning the same problem assumptions. 
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The first objective considers the problem of optimum inspection period. The unrealistic 

assumption of non-costly inspection will be relaxed and corresponding optimal 

replacement policy and long-run average cost will be found. In the CBM modeling, if 

the inspections are non-costly, the optimal inspection period is zero i.e. the best choice is 

to monitor and analyze the system continuously. That's because the higher frequency of 

inspections will provide more frequent information about the system's degradation state 

with no extra cost. Consequently, this will reduce the likelihood of performing 

unnecessary preventive replacements, hence, will result in a more cost effective 

maintenance system. When there is considerable cost for collecting and analyzing the 

observations, an optimal inspection period that minimizes the maintenance and 

inspection cost should be applied. In reality, in many cases, inspections require 

personnel and equipment, and sometimes it is necessary to stop or suspend the 

operations when performing the inspections [Lam and Yen, 1994]. Also some tests for 

analysis and extraction of useful information may be needed which may be destructive; 

therefore some costs are associated to the collection and analysis of the observations. 

The total optimal long-run average cost of the maintenance and inspections leads to 

selection of the optimal inspection period between several possible inspection periods. 

The second objective of this thesis deals with evaluating and modeling the Reliability 

Function (RF) and Mean Residual Life (MRL) of the equipment described earlier. When 

a condition monitoring system is used, the information obtained from the monitoring 

system is used to establish a diagnosis of the equipment's condition and a prognosis of 

the future performance. Two measures of the future performance are the RF and the 
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MRL. We will also show how these two measures are helpful for the reliability and 

maintenance practitioners and will compare the output of these utilities with the results 

of optimal replacement policy introduced by Ghasemi et al. [2007]. 

The third objective of this thesis is to estimate all the parameters of the introduced 

condition monitoring system. In all previous objectives, it is assumed that all the 

parameters of the system are known, but in order to apply any of these methods on a real 

world problem, the parameters have to be estimated by considering the historical 

behaviour of the equipment. Algorithms for data with and without censoring will be 

presented. In this work, while the observations are indirect, we will directly model the 

PDF of the observed information (indicator) and will use the MLE method to estimate 

the model parameters. Also the convergence behaviour and the robustness of the 

introduced methods will be studied by simulation. 

The rest of this thesis is organized as follows: Chapter 2 is a book chapter produced 

based on the results of the first objective of the thesis and published by the American 

Institute of Physics. This work was originally presented as a conference paper at The 

International Conference on Systems Engineering and Engineering Management 2007, 

and received the best paper award of the conference. Later, the authors were invited to 

submit an extended version of the article to be considered for publication as the book 

chapter. Chapter 3 is the second revision of an article submitted to the IEEE 

Transactions on Reliability (TR2008-056) which represents the second objective of the 

thesis. Chapter 4 is an article on the parameter estimation problem, i.e. third objective of 
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this thesis, which has also been submitted to the IEEE Transactions on Reliability 

(TR2008-240). Finally, chapter 5 is the summary, conclusion and future research 

discussions. 
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CHAPTER 2 : 

OPTIMAL INSPECTION PERIOD AND REPLACEMENT POLICY 

FOR CBM WITH IMPERFECT INFORMATION USING PHM 

Alireza Ghasemi, Soumay Yacout, M-Salah Ouali 

CP1007, Current Themes in Engineering Technologies, Edited by: Sio-long Ao, Mahyar 
A. Amouzegar, Su-Shing Chen, AMERICAN INSTITUTE of PHYSICS, ISBN: 978-0-
7354-0526-4, ISSN: 0094-243X 
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2.1 Abstract 

This paper introduces a model to find the optimal inspection period for Condition Based 

Maintenance (CBM) of a system when the information obtained from the gathered data 

on the system does not reveal the system's exact degradation state and the collection of 

data is costly. The proposed model uses the Proportional Hazards Model (PHM) 

introduced by [Cox 1972] to model the failure rate of the system. The PHM takes into 

consideration the system's degradation state as well as its age. Since the acquired 

information is imperfect, the degradation state of the system is not precisely known. 

Bayes' rule is used to estimate the probability of being in any of the possible states. The 

system's degradation process follows a Hidden Markov Model (HMM). By using 

dynamic programming, the system's optimal replacement policy and its total long run 

average operating maintenance cost are found. Based on the long run average cost, the 

optimal inspection interval and the corresponding replacement criterion are specified. A 

numerical example shows the behaviour of the CBM model when the inspection is 

costly, and finds the optimal inspection period and maintenance cost. 

Keywords: Condition Based Maintenance (CBM), Imperfect Information, 

Proportional Hazard Model (PHM), Hidden Markov Model (HMM), Costly 

Inspections. 

PACS: 89.20.Bb, 45.10.Db, 46.15.Cc, 87.55.de 

http://87.55.de
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2.2 Introduction 

For a system subject to a Condition Based Maintenance (CBM) program, inspections are 

performed to obtain information (observation) about the degradation state of the system. 

In this paper, the information acquired during the inspections does not reveal the exact 

degradation state of the system but represents some data which is stochastically related 

to the system's degradation state [Maillart, 2004, Ohnishi et ah, 1986]. This data is used 

to calculate the probability of being in a certain degradation state. The hidden 

degradation state of the system is modeled by a Markov Chain. In CBM studies, several 

models have been used to take into account the system's degradation state. One of these 

models is the Proportional Hazards Model (PHM), introduced by [Cox 1972], which has 

an increasing application in the CBM recently [Lin et ah 2005, Banjevic and Jardin 

2001]. According to the PHM, the system's failure rate (also called hazard rate) is 

calculated based on its age as well as its degradation state. In this paper the PHM is used 

to calculate the optimal replacement policy and long-run average cost for a system with 

imperfect information. The unrealistic assumption of non-costly inspection is relaxed 

and corresponding optimal replacement policy and long-run average cost are found. 

In the CBM modeling, if the inspections are done at no cost, the optimal inspection 

period is zero i.e. the best choice is to monitor and analyze the system continuously. 

That's because the higher frequency of inspections will provide more frequent 

information about the system's degradation state with no extra cost. Consequently, this 

will reduce the likelihood of performing unnecessary preventive replacements, hence, 
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will result in a more cost effective maintenance system. When there is considerable cost 

for collecting and analyzing the inspections' observations, an optimal inspection period 

that minimizes the total maintenance cost which includes the inspections cost should be 

applied. In reality, in many cases, inspections require personnel and equipment, and 

sometimes it is necessary to stop or suspend the operations when performing the 

inspections [Lam and Yen, 1994]. Also some tests for analysis and extraction of useful 

information may be needed which may be destructive; therefore some costs are 

associated to the collection and analysis of the observations. The total optimal long-run 

average cost of the maintenance plan with costly inspections leads to comparison and 

selection of the optimal inspection period between several possible inspection periods. 

The rest of this paper consists of following sections; in imminent section a brief 

literature review of the principle models in replacement optimization is presented. Next 

section deals with the assumptions and the details of the proposed model and the optimal 

solution. Then a numerical example is presented and finally the conclusion and the areas 

of further researches are presented in last section. 

2.3 Literature Review 

Lam and Yen [1994] investigated the maintenance policy for a system whose exact 

degree of degradation is known through inspections. Their objective was to find the 

optimal replacement criteria and inspection period that minimizes the long-run average 

cost of the maintenance plan. They assumed that there is a fixed inspection cost M, that 
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the mean inspection time is q and the cost rate per unit of time when the system is under 

inspection is m. This results in an average inspection cost equivalent to mq + M. 

Dynamic Programming is used to solve the problem. 

Christer and Wang [1995] considered a system with perfect information where 

inspections reveal the system's exact degradation state. The objective is to determine the 

next inspection schedule, based on the inspections' observations up to date. The next 

inspection point is selected in a manner that minimizes the average maintenance cost per 

unit time between current and the next inspection. A constant predetermined threshold 

on the degradation which determines the failure is considered and there is a cost related 

to the inspections. In this model, the time between the inspections is not constant and the 

next inspection point is always determined at the current inspection point by taking into 

account the available information from condition monitoring system. Possible actions 

are "inspection and replacement" or "inspection and no replacement". A closed form 

solution to calculate the cost per unit time is given. By minimizing the cost, the optimal 

inspection date is obtained. 

Hontelez et al. [1996] considered a system revealing perfect information with N + l 

possible degradation states, where states N and N + l are failure states. State N is 

detected through inspection but state N + l is an obvious failure and is detected as soon 

as it happens. There is a cost associated with the inspections. Applying dynamic 

programming, a control limit rule such as n = [?r,pi,p2,...,p^1] is obtained. It means 

that at an inspection point; replace if and only if the system is in degradation state i > n 
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OR: perform an inspection after pt periods if the degradation state is i<n. In this 

approach the inspections will not take place at every inspection period unless there is an 

evident need to do that. 

Chelbi and Ait-Kadi [1999] considered an optimal inspection time with a hidden failure 

being detected through inspection. A pre-defined threshold on the system's degradation 

state is set to identify the failure and associated costs are considered for the inspections, 

repairs and replacements. The average long-run cost of the maintenance plan 

E(AC) = E(C)/E(T), is minimized. E[C) and E(T) represent the renewal period's 

expected cost and the renewal period's expected length, respectively. The renewal period 

is the time between two consecutive replacements, whether due to a failure or to a 

preventive replacement [Cox, 1962]. By minimizing the long-run expected cost over 

renewal period, the optimal inspection period is found. 

Grail et al. [2002] modeled a CBM policy where both the replacement threshold and the 

inspection schedule are decision variables. It is allowed to have irregular inspection 

periods, i.e., the next inspection date is dynamically updated on the basis of the present 

system degradation state revealed by the current inspection. iV(>l) threshold values 

0<%u...,gN <L, are set in the system degradation state range. L is the predefined 

degradation threshold assumed for the failure and %N is the replacement threshold. At 

any inspection point tk, where the observation value (degradation state) is Zk, if 

E,l<Zk< gM for some 0 </ < N, then the next inspection will be after N-l period(s). 
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Otherwise if £>N <Zk <L then a preventive replacement is performed while 

Zk>L results in a failure replacement. The long-run expected cost per unit of time is 

minimized and the optimal value of the decision variables which are the number of 

thresholds N, and the different thresholds' values ^,i = l,...,N are found. 

[Ghasemi et al. 2007] considered a CBM based on imperfect information when there is 

no considerable cost associated with the inspections 

2.4 Problem Formulation 

This paper presents a deteriorating system subject to random failure. While the 

degradation state of the system can be continuous we have discretized the degradation 

state set. The degradation state of the system is illustrated by a finite set of non-negative 

integers, i.e. by state the space S = {1,2,,..., JV}. The circles represent the states. State 1 

indicates the best possible state for the system which means that the system is new or 

like new. The degradation state process{Z(V) = l,2,...,jV}, is a discrete time 

homogeneous Markov chain with N unobservable states. All N degradation states are 

working states and do not include the failure state which is a non-working state. If a 

failure happens it is known instantaneously. Figure 2-1 shows the Markov transition 

process between degradation states along with the transitions from each degradation 

state to the failure state. pr is the probability of going from degradation state i to the 
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degradation state j during one discrete period given that the system has not failed yet, 

while fi is the probability of going from degradation state / to the failure state. 

PIN 

Figure 2-1: Markov process transition and transition to failure 

The degradation states of the system are not observable except at time t = 0 when the 

state of the system is certainly 1. The transition matrix P is an upper triangular matrix, 

i.e. Py=0 for j<i and ptj = Pr(Z(* + A) = j\Z(t) = i,T > t + A), t = 0,A,2A,... 

otherwise. ptj = 0 for j < i means that system degradation state does not improve by 

itself which is true in most cases. T is a random variable representing the system's 

failure time. The system indicator is inspected at times; t-A,2A,.... The value of the 

indicator (observation) is assumed to take a value in a finite set of M non-negative 

integers, i .e.#e© = {l,2,...,M}. It is also supposed that a value of indicator 6 is 

observed with a known probability qjg, when the degradation state of the system is j . 

Q represents the stochastic matrix which specifies these probabilities, 

i.e.g = [?;*] JeS, 0e@. 
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The failure is not considered a degradation state. It is a condition that causes the system 

to cease functioning and is outwardly obvious. If the failure happens, it is immediately 

recognized and the only possible action is Failure Replacement (FR). Otherwise, at any 

inspection point, we can decide whether to perform Preventive Replacement (PR) or Do-

Nothing. The FR and the PR renew the system and return it to state 1 and period zero i.e. 

new or like new. The cost for the PR is C, while a FR costs K + C,K,C > 0. Both 

actions, FR and PR, are instantaneous. Performing the inspections costs C7 per 

inspection, independent of the inspection's interval. More frequent inspections will cost 

more while provides information in a higher frequency that subsequently results in a 

more efficient replacement policy. 

The system failure rate follows the PHM where the failure rate h(t,Zk) = h0(t)y/(Zk) 

is a product of two independent functions. hQ() is a function of the system's age only 

and y/() is a function of the system's degradation state only. Zk-Z{klS) is the 

degradation state of the system at period k and A is the fixed inspection period. We 

assume that the degradation state of the system remains unchanged during each period 

(between two consecutive inspections) and each degradation state transfer, if any, is 

assumed to take place at the end of each period, just before the inspection point. 

The objective is to find the optimal inspection period and corresponding replacement 

policy that minimizes the total long-run average cost per unit time. 
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Considering the failure rate of the system, the reliability of the system conditional on 

Zk = Z(kA) is: 

R{k,Zk,t) = P{T>kA + t\T>kA,Z„Z2,...,Zk) 

= expH/(Z i f c)] t A h0(s)ds)\;t<A 

where T is the random variable indicating the failure time of the system. The 

conditional reliability of the system indicates the probability of not having the failure in 

time t after kA, given that the failure has not happened until time kA and the 

degradation states of the system have been Zl,Z2,...,Zk at times; A,2A,...kA. The 

conditional mean sojourn time of the system, if no preventive action is performed while 

the system is in degradation state Zk at period k, is: [Makis and Jardine 1992] 

A 

r(k,Zk,A)= Ji? (k, Zk,t)dt (2-2) 
o 

The conditional mean sojourn time of the system is defined as the expected remaining 

life (time to failure) of the system until between the current and the next inspection 

point. In what follows, to address the problem, the theory of Partially Observed Markov 

Decision Process (POMDP) is used. Since the degradation state of the system is not 

perfectly observable through the inspections, an alternative state space for the POMDP 

indicating the "conditional probability distribution of the system's degradation state" and 

then an "alternative state's transition" complying with the alternative state space are 

introduced. 
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2.5 Formulation of the POMDP 

2.5.1 Alternative state space 

We adapt the definition of nk as defined in [Ghasemi et al. 2007] to indicate the 

Conditional Probability Distribution of the system's degradation State (CPDS) at period 

k: 

nk=\nk; 0< nk <1 for i = l,...,N,^i = 1\, * = 0,1,2,... (2-3) 

n\ represents the probability of being at state i at the k-th inspection point. The initial 

value of the CPDS for a new system is defined as: 

X? = < (2-4) 
' [0 \<i<N 

which means that a new or renewed system is at state 1. 

2.5.2 Alternative state transition 

After each collection of observation 0 at an inspection point, the CPDS is updated 

considering the latest observation 0. Using the Bayes' formula and assuming that the 

observation 9 has occurred at the k +ls> inspection point, the updated CPDS ^y+1(#) is 

calculated as [Ghasemi et al. 2007]: 

TV / 

7ik;x{e) = YJ^Pijqje me\K7rk), J=\,...,N ( 2- 5 ) 
i=i / 
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N N 

where Pr(# | k, nk) = ĵT ]jT nt PijOj$ is the probability of observing a certain value 8 at 

k+ 1st inspection period (just before the inspection point) when the CPDS at the A>th 

period is nk. This updated CPDS carries all the observations and actions history from 

the last replacement point. After any PR or FR the period counter k will be reset to zero 

and the CPDS will be set to ;r° as introduced in Eq. (2-2). 

2.5.3 Decision space 

{0,co} is the decision space of the POMDP, where 0 means "replace the system 

immediately (PR)" and co means "Do-Nothing". If "Do-nothing" is selected at a 

decision point and a failure happens before the next inspection (decision) point the 

system will be replaced immediately. The occurring cost for this event is K + C, 

K, C > 0. A Preventive Replacement costs C. 

2.5.4 Dynamic Programming Formulation 

Let V[k,nk) denote minimum total cost of maintenance over the renewal period, while 

the system is in the k-th inspection point and the CPDS is nk : The renewal period is 

the time between two consecutive replacements, whether FR or PR. The total cost is 

defined as replacement cost of maintenance plus the inspections' cost. 

V (k,nk) = min {AC, + C + V (o, x°), W (k, nk, g)} (2-6) 
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where kCl + C + V (0, JTQ I is the renewal period's total cost at A>th inspection point, if 

one decides to perform the PR (decision=0). W\k,7zk,g,CA is the optimal renewal 

period's total cost when at the kth inspection point, one decides that no action takes 

place (decision=oo). 

w(ky,g) = [kC, +K + C + v(0,x°)~§l-~R(ky , A ) ] - g~x{k,nk ,A) 

+ 
M _ (2-7) 

J^v(k + \,xk+1(0))?r(0\k,xk) R(k,7ik,A) 

kCj+K + C + viO,^0}] represents the renewal period's total cost if the decision is 

"Do-nothing" (decision= oo ) and the system fails during the next inspection period. 

^v(k+\,7zk+x(e))?x{d\ky) 
0=\ 

is the expected total future cost of the system at the 

k +1 inspection point, provided that the failure has not happened during the &-th period. 

1 - # ( £ V , A ) 1 and ~R(k,xk,A) are the probability of having the failure during the 

k-th period and the probability that the system is still working at the beginning of the 

k+ 1st period consecutively while the CPDS at period k is nk. T\k,nk,A) and g are 

the mean sojourn time of the system at the k+ 1st period when the CPDS at the A>th 

period nk, is available and the average replacement cost per unit of time over infinite 

horizon respectively [Ghasemi et al. 2007]. g includes the cost of replacements only 

and excludes the inspections cost. 
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_ N 

R(k,7tk,t"j = ]TR(k,i,t) n\ (2-8) 

r(k, K k, A) = P R~(k, 7rk ,t)dt (2-9) 

If a failure happens, the system is replaced and begins the service immediately anyhow 

next inspection will continue as scheduled. The term gT[k,7rk ,Aj is the expected long-

run cost of the overlapped time of two consecutive replacements of the system when the 

system fails. For more details please refer to [Ghasemi et al. 2007]. 

2.5.5 Optimal Policy 

To establish the optimal maintenance policy of the described problem, one needs an 

optimal decision criterion to apply at each decision (inspection) point. This criterion is a 

function of the observed indicator, the age of the system, the system's cost parameters 

and finally g, the long-run average cost of the system. In the following parts, first we 

introduce a decision criterion depending on g. The decision criterion and the minimum 

long-run average cost of the system g* together give the optimal decision criterion for 

the introduced problem. 

2.5.6 Decision Criterion 

Considering Eq. (2-7) above one can write: 
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w(k,7r\g) = kC1+C + v(0,x0)-(kCI+C + v(0,x°))R(k,x\A) + K[\-R(k,7rk,A)\ 

- r M i— 
-gr(ky,A)+ ^V(k + l,?rk+' (0))?r(0\k,xk) R[k,7tk ,A) 

W(k,Kk,g)-[kCj+C + V(oy)] = K\l-~R(k,nk,A)] 

-(itC7+C + K(0,^0))^(it,^*,A) (2-10) 

- r M i— 
-gr(A:,^*,A)+ ^ K ( ^ + l,^ t+1(^))Pr(^|it,^*) R{k,nk ,A) 

\_e=\ J 

Since r(jt + l,;r*+I) is the minimum expected renewal period cost at the k + V period, 

then: 

v(k + l,xk+l)<kC,+C + V(0,7r°) 
v(k + l,7rk+])Pr(0\k,^k)<[kCI+C + v(o,^)]?r(0\k,7Vk) 

M M 

Y,v(k + l^k+l)?v(0\k,7rk)<YJ\kCr+C + v(O,7to)]?r(0\k,^k) 
8=1 0=1 " 

M 

YJV(k + l,xk+l)?r(0\k,xk)<kCJ+C+V(O,7r°) 

This means that: 

YjV(k + l,xk+l)?r(0\k,xk)-[kC]+C+v(O,7ro)\<O 

M ~ 1 _ 
YJV(k + l,7rk+l)Pr(0\k,7tk)-kC]-C-V(O,x0) \R(k,x',A)<0 (2-11) 

if A: l-i?(A:,^,A) <gt(k,7rk ,A\ then the sum of all the terms in right hand side of 

Eq. (2-8) will be negative or zero i.e. w(k,7tk,g}< kCt + C + F ( O , ^ ° ) . This final 

equation means that the cost of leaving the system and doing no preventive action is less 

than the cost of the PR so the optimal decision at k -th inspection point i.e. optimal 

decision= oo. 
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In the case that K\ l-R(k,7rk,A\ >gr(k,7rk,A\ we show that the best solution is to 

replace the system immediately i.e. Decision=0. To continue assume the contrary, that is 

to say; assume while K \\-R[k,nk ,A\ \>gr{k,nk,/s\, the optimal action is "Do-

Nothing", from Eq. (2-4) based on this assumption: 

V(k,nk) = w{k,nk,g 

Also we can write: 

V(k + \,7rk)-V{k,7vk 

v(k + \,7tk)~v[k,Kk 

Replacing W\k,nk,g 

V[k + \,7Tk)-V(k,7tk 

<c+r(o,^°)+c/ (2-12) 

= v(k + l,7rk)R(k,7rk,A) + v(k + l,7rk)[l-R(k,?rk,A) 

-V{k,nk) 

= v(k + \,Ttk)R(k,xk,A) + V(k + \,xk)\\-R(k,7ik ,A) 

-W(k,7Ck,g) 

with right hand side of (2-5): 

\v(k + \,nk)-K-C-kC,-V(oy)^-R(k,7tk,k)\ 

V(k + \,nk)-Yy(k + \,7iM{0))Vx{0\k,7rk) R(k,xk,A) 

9=1 J 
+gt(k,7ik,&) 

+ 

V(k + \,7Tk)-V{k,7Zk) = v(k + \,7Tk)-C-kC1-V(0,n°) \l-R(k,7ik,A) 

+ 
M 

v{k+\,Kk)-'YJv(k+\,zk+i(e))vx(e\k,Kk) R(k,7Tk,A) 

+gT(k,nk,A)-K\\-R[k,nk,h) 
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By definition V\k + \,nk\ is the minimum renewal period cost then 

v(k + \,xk)<C + kCI + V(0,x°) so term 1 is not positive. We have proved in appendix 

that v(k,xk) is non-decreasing in [k,nk\ then: 

v(k + \,7rk)<v(k + l,xk+,(0)) 

?r[d\k,7rk)v{k + \,7tk)<?x[0\k,nk)v{k + l,7i:M(e)) 
M M 

Yv*{o\k,nk)v(k+\,nk)<Yv*(o\k,7zk)v(k+\y+\e)) 
e=\ e=\ 

M 

v(k + \,7rk)<Yv*(Q\Kxk)v{k + \,7rM(0)) 
0=1 

where 6 is the indicator observed at k+lst inspection point. Then the term 2 is not 

positive. Terms Ryk,7rk ,A\ and \-R\k,7rk ,A) are not negative by definition, so: 

v(k + \,xk)-V(k,7ik)<~K\\-R~(k,xk,A)~\ + gr(k,xk,A) 

Since we are considering the case where K l-R (k,7rk,A)]>gT(k,xk,A): 

:.v{k + \,7tk)-V(k,nk)<Q 

In the other hand we have proved that V[k,7rk) is non-decreasing in \k,7rk) then 

v(k + \,7rk)-v(k,7tk) > 0, which is a contradiction. This means that the optimal 

decision is to replace the system immediately (Decision=0). 

The decision criteria can be briefly written as: 

a(k,nk)=\ " _ ; ;" _; ; (2-13) 
x) if A" [ l - /?(*,**, A)] < g r (*,**, A) 

0 if £[l-J?(jt , /r*,A)]>gr(*,;r*,A) 
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where a\k,Tck) indicates the decision at period k while the CPDS is nk. The optimal 

decision is dependent on the long run expected cost per unit time of replacement system 

(excluding inspection cost) i.e. g. The optimal decision based on minimum long-run 

average cost g , can be calculated based on (2-11) by replacing g by g . 

a \k,7Zh ) 
oo if K 

0 if K 

\-R(ky,A)\<g\(k,7rk,{s\ 
_ -. (2-14) 

\-R(k,xk,A)]>gT(ky,A) 

The calculation detail of g* is given in the next section. 

We note that, if the inspection period can be changed, on one hand, there is a constant 

cost that is paid at every inspection epoch i.e. more frequent inspection costs more. On 

the other hand, more frequent inspections provide more information that can lead to a 

more cost effective replacement policy. This means that the optimal inspection period 

can be selected between several feasible inspection periods. The criterion that helps us to 

select the optimal inspection period is the minimum total long-run average cost G , 

which is the long-run average cost of replacements and inspections. In next section we 

calculate this measure as well. 

2.6 Long-run average cost and total long-run average cost 

In this part we introduce a method to calculate the minimum long-run average cost g 

and the minimum total long-run average cost G . The iterative method introduced by 

[Ghasemi et ol. 2007] can be used to calculate the optimal value of g, i.e. g . The 
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minimum long run average cost per unit of time where stopping-time is Tg, is the unique 

C + K?T(T>T) — 
solution of: g - —=—-A——:—- where T is the time to failure, Pr(r > T) is the 

probability of a FR, and Emia (T , T) is the expected average length of a replacement 

cycle. Stopping time is defined as T = A.inf j«>0|.K \l-R(n,7r",A) >gr\n,7i",/\\\ 

[Ghasemi etal. 2007]. 

T . T , 

By letting C g and P g represent the expected cost and expected length over the 

renewal period associated with a replacement policy in which the optimal time to 
replacement is Tr. and g represents the minimum long-run average cost of 

replacement (excluding the inspection cost). The min. total long-run average cost per 

unit of time is: 

7'* r i ^ P r ( r > > r ) ] + ( c + x ) P r ( r . > r ) | C / 

p 
T' A E (T , T) A 

c. C + KHTs>T)lC, 

where C, K and C1 are the replacement cost, failure cost and inspection cost 

respectively. 

The following equations can be used to calculate Pr(T.>Tj and Emin I T.,T\. 

Fr(Tg>T)=Q(0,7r°) and Emm(Tg,T) =w(0,x°) where: 
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W(j,7CJ): 

tg\^)-jA 

J R(j,K',s)ds j = k-\ 
o 

4 M _ 

\R(j^j,s)dS + YJW(j + l,7r
J+](0))R(j^j,A)?r(e\j,^) j<k-\ 

lo e=\ 

also: 

<2C/V) = 
7 * * 

7 = ^ - 1 l - i ? 0 > V g ( ^ ) - y A ) 

_ w _ 
l - i ? 0 > y , A ) + ^ e O - + l , ^ + 1 ( ^ ) ) P r ( ^ | 7 > 0 ^ 0 > y , A ) j<A: - l 

where tg(n) = AJr ei?+ I.K" l-i?(r,;r,A) = g r ( r , ^ , A ) | . For more details please refer 

to [Ghasemi et al. 2007]. 

2.7 Optimal inspection period 

We assume that the optimal inspection period is to be chosen from a finite set of L 

possible inspection periods A/9/ = l,2,...,Z. The optimal inspection period is the one 

with the minimum total long-run average cost G* calculated in previous section. First, 

the optimal inspection period, based on the previous sections results is found and then 

based on the result of "Optimum Policy" section, the optimal replacement policy is 

fixed. 

In the following section we solve a replacement example without any considerable 

inspection cost and a prefixed inspection period; latter we add a considerable cost for the 

inspections and assume two possible inspection periods and we find the optimal 
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inspection period, long-run average cost and the corresponding optimal replacement 

criteria. 

2.8 Numerical Example 

We use the example presented by [Ghasemi et al. 2007] and adapt it to our case of costly 

inspections. In this example, it is assumed that system has a two parameter Weibull like 

behaviour with baseline distribution hazard function having the following parameters. 

h0(t)= ,t~^0, a = l,/? = 2and y/(Xt) = e '* ' . The system's two possible 

degradation states are {1,2} with the transition probability matrix Px -
0.4 0.6 

0 1 
when 

the inspection period is Aj =0.5. #, the observed value of the system's indicator, can 

take three possible values. The indicator value and the system's degradation state are 

related by the probability distribution Q = 
0.6 0.3 0.1 

0.2 0.4 0.4 
C -5 and K = 2 represent 

the replacement cost and the failure cost of the system consecutively. The long-run 

average cost of replacement, based on the provided method, is found to be g} = 8.67 

and the optimum stopping time of the system is 

Tg, = mf{jt>0;2x[l-tf(&,;r\0.5)]>8.67x7(£,;r \0.5)}. 

Now assume that inspection cost Q = 1 applies for each inspection to obtain the 

system's indicator value. We also assume that the there is another possible inspection 
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period A2 = 0.6 with corresponding degradation state transition matrix P2 = 

We are interested in finding the optimal replacement interval and corresponding 

replacement criteria. The following table shows the final result of the method applied on 

the data. 

Table 2-1: Numerical example (optimal inspection interval) 

/ A, „* c*, Stopping Time (Replacement Policy) 

1 0.5 8.67 10.67 Tg. =inf \k > 0 ;2x[ l - t f (*,*'r,0.5)] > 8.67xr(^,^ ,0 .5)} 

2 0.6 8.73 10.39 r , = inf {& > 0 ; 2 x [ l - i ( & , ; r \ 0 . 6 ) ] > 8.73xr()t,;r\0.6)} 

While the long-run average cost of replacement for the shorter inspection period 

At = 0.5, is smaller; the total long-run average cost G i, corresponding to A2 = 0.6, is 

the optimal one. It means that we will totally pay less, if we observe the system by 

inspection period equal to 0.6 and applying the corresponding stopping-time. 

2.9 Conclusion 

For a system which is subject to a CBM program, inspections are performed to obtain 

proper indicators concerning the degradation state of the system and decide on an 

optimal replacement policy. In many practical cases, the inspections do not reveal the 

exact system degradation state. In this work we have relaxed the assumption of non-

costly inspection and found the optimal replacement policy and the total long-run 

average cost of the system replacement and inspections. More frequent inspections while 
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cost more, can lead to a less costly inspection and replacement policy due to higher 

frequency of information provided regarding the system's degradation state. So an 

optimal inspection period minimizing the total long-run average cost of the system can 

be identified. The numerical example shows the application of the model. 
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2.11 Appendix 

2.11.1 Monotone behavior 

In this part, the condition under which the cost function introduced in the previous part 

has a monotonic behavior is established. Some definitions and propositions presented by 

[Ohnishi etal. 1994], [Rosenfield 1975] and [Kurano 1985] are adopted. 

Definition 1: [Ohnishi 1994] An N-dimensional vector x, is said to be stochastically 

N N 

less than an N-dimensional vector y, if and only if ^JC,. < ^y, for any k;l<k<N 
i = * 

and is denoted by x < v. 
ST 

Definition 2: [Ohnishi 1994] An N-dimensional vector x, is said to be less than an N-

dimensional vector y in Likelihood ratio, if and only if 
X: X, 

y-i yj 
> 0 for 1 < i < j < N or 

equivalently x.j • > x;>>; for 1 < i < j < N and is denoted by x < y 
LR 

Definition 3: [Rosenfield 1995] An N-dimensional probability transition matrix P is 

said to be Increasing Failure Rate (IFR) if its rows are stochastically increasing i.e. 

N N N 

^EjP'i -^jP- • an<^ \^k<N and i > i. In other words, the ^Ptj is non-decreasing 
j=k j=k j=k 

in / for \<k<N. 
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Definition 4: [Rosenfield 1975] An N-dimensional probability transition matrix P, is 

said to be Totally Positive of Order 2 (TP2), if its rows are increasing in likelihood ratio, 

i.e. [Ohnishi 1994] 
Pirn Pin 

P jm Pjn 

f l < i < j < N 
> 0 for \ J 

l < m < n < N 

In this research, it is supposed that P = \pif i,jeS, the Markovian probability 

transition matrix, and Q = \q.0 j &S,0e0 are TP2. 

Proposition 1: [Ohnishi 1994] Having [a ;-,l</< TV], an N-dimensional vector with 

N N 

non-decreasing elements, if JC < y then ^£aaixi < ^a^ for 1 < k < N . 
i=k i=k 

Proposition 2: [Rosenfield 1976] If P is TP2 then P is IFR. 

Proposition 3: [Ohnishi 1994] n<fc =s> n<n, where n, ft are two N-dimensional 

LR ST 

vectors. 

The following lemmas are adopted without the proofs from [Ghasemi et al. 2007] where 
nk and nk are two hypothetical CPDSs at the A>th period. 

Lemma \\\i nk <fck then for any a, R(k,7:k,a)>R{k,ftk,a) where R\k,nk,a\ is the 

probability that the system is still working at kA + a while the CPDS at period k is nk 

Lemma 2: R\k,Kk,a) is non-increasing in k for anya. 
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Lemma 3: If nk < nl:, then ~z\k,nk\a\>T\k,nk,a) for any a where T\k,nk ,a\ is the 

mean sojourn time of the system between IcA and kA + a when the CPDS at the k-th 

period is nk. 

Lemma 4: f\k,nk,a) is non-increasing in k for any a. 

Theorem 1: Assuming that assumptions 1 through 5 as stated in [Makis and Jardine 

1992] are satisfied, function V introduced by Eq. (2-6) defined on S , where 5* is the 

set of all possible variations of the pair \k,7ik), with a constant g > 0, is a bounded 

measurable non-decreasing function. 

Proof: 

We consider the restricted action space to be defined as AE ={£",oo} where s means 

taking the action in a short time. [Ghasemi et al. 2007] have shown that under this 

condition, there exist a non-negative real valued function ve (k, nk)<ED for the restricted 

action space A£, such that vs(k,7rk\~Usve\k,nk\ where D is a Borel subset of S . 

The map U£ is defined as: 

U£u(k,nk)= minlkC, +C + U(0,x°,+oo,u),u(k,xk,+co,u)),u e D. By letting £ = 0, 

since C > 0,U£u(o,x°)= mm{kC, +C + u(o,7r°,+oo,u),u(0,x°, +»,«)} = 

U[0,7r0,+co,u) and then we can write: 
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U£u(k,xk) = min{ C + U£u(o,xk), u(k,nk,+x>,u^ 

where we define: 

u(k,nk,a,u) = ^kC1+K + C + u[Q,K°)^-gr(k,7rk,a) 

(2-15) 

U[k^ ,a,u) = \kC1+K + C + u(Qy)Aj^-R(k,7tk ,a)Ygr(k,nk ,a) 

M n _ (2-16) 
+Y\ u(k + \,xk+l(e))?x(e\k,nk) \R(k,7tk,a) 

e=\ 
for each u e D and any constant g > 0. 

Corollaryl: 

For any non-decreasing function u{k,7i), where u(k,x)<kC} +K + C + u(0,x°) for 

any (k,n), u(k,7r,A,u) is non-decreasing in k i.e. u(k,a,A,u)>U(k',n,A,u) where 

k<k'. 

Proof: 

Using Eq. (2-16), we can write: 

' M 

Y,u{k + l,x(0))Pr(0\k,x) 
=i 

^u(k + l,z(0))VT(0\k,x) 

+ 
SR(k,n,A) 

5k 

+ - 8k 
R(k,n,A) 
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SU(k,7r,A,u) 

8k 

M 

^u(k + \,x(0))Pr(0\k,x)-(kCl+K + C + u(o,x0)) 
SR(k,x,A) 

8k 

Sr(k,7r,A) i —, N\ 
-g K

8k
 ; + C7(l-i?(/c,^A)) 

+ -

M 

YJu{k + \,n{d))Vx(0\k,n) 

8k 
±R(k,n,L) 

(2-17) 

Now we show that term 1 is negative. Following the assumption of the corollary which 

states that u < kCj + K + C + u 10, ;r° J by multiplying both side with 

¥x{d\k,nk) and summing up on all possible amounts of 6 ,we can write: 

u(k + \,nk+x)Vx(6\k,nk)<\jcCI + K + C + u{0,7z°)\pr(6\k,nk) 

M M 

Y,u(k + l,xM)Vr(0\k,xk)<YJ\kC]+K + C + u(O,xo)\?r(0\k,7rk) 
e=\ e=\ 

M 

YJu(k + \,7rk+l)Pr(0\k,^k)<kCJ+K + C + u(O,7r°) 
e=\ 

M 

which means that £w(& + l V + 1 ) P r ( # | k,7rk)-kC, -K-C-u(o,;r0)<0 
0=1 

Now we consider term 2: 
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2 > ( * + l,;r(0))Pr(01 *,;*•) Jls\u(k + l,7r(0))?r(0\k,?r)} 

8k 8k 
M 

Yy*{o\k,7i)du{k+\,7t(e)) 
_ e=\ 

= £Pr(0|£,;r) 

8k 

Su(k + \,7r(d)) 

8k 

Since u(k, 7t) is non-decreasing in k the summation will be positive or zero. 

SR(k,7r,A) 
From lemma 2, it follows that - < 0 , and from lemma 4, it follows that 

8k 

8t(k,7r,A) ( —, .\ 
— -< 0 and also the term C, \\-R{k,7i,A)\ is always positive. So that in EQ. 

OK 

(2-17), M ^ A , " ) > 0 i g u(kin^u} defined by Eq. (2-16) is non-decreasing in k. 
8k 

Corollary 2: 

For any non-decreasing function u{k,n), where u{k,n)< kC} +K + C + u(0,7T°), for 

any (k,7r), U[k,7rk,A,u) is non-decreasing in n, i.e. U{k,rt,A,u)>U[k,7t',A,u) if 

n<n'. 
LR 
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Proof: 

W(k,x,A,«)=r +K + C + u,0)YR(k,x,A)_gSr(k,*,A) 

8K
 L v /J §n §n 

8~R~{k,K,A) 

9=1 
+ 

i 

M 

YJu{k + l,7i{6))Vx{e\k,7r) 

8K 

+- <5>r 
/?(*,#, A) 

8U{k,K,A,u) 

8K 

M 

YJu{k + \,7t{e))?x{0\k,7r)-kCI-K + C + u(oy) 
.e=\ 

8R(k,K,A) 

8K 

8r(k,K,A) 
-g 1 L + . 

8K 

M 

YJu{k + \,n(e))Vx(e\k,n) 

8K 
R(k,K,A) 

By using lemmas 1 and 3, ' >0 i.e. U(k,K,A,u) defined by Eq. (2-16) is 
8K 

non-decreasing in n. 

Suppose u0[k,Kk)= 0 for any [k,Kk) in (2-15), so u0 is non-decreasing in \k,Kk). By 

corollaries 1 and 2, and also by considering that un = U£un_}, as given by [Kurano 

1985], then ul is non-decreasing. By induction un(k,Kk\ is non-decreasing in \k,Kk) 

for any n. 

Since v„ ->v£ when n —» oo [Kurano 1985], v£ is non-decreasing as well. It can be 

seen that vs(k,KkJ<vs(k,KkJ if s<£. Suppose v(k,KkJ = limvf(k,Kk) for any 

[k,KkJ. This implies that v[k,Kk) is non-decreasing in [k,Kk). We note that As —> A 
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while s —> 0. Since map U is monotone [Kurano 1985], and by the monotone 

convergence theorem [Capinski 2004] we get: 

\\mU(k,nk,+co,v£) = u(k,xk,+oo,v) (2-18) 

From equations (2-15) and (2-16), when n ^ o o w e get: 

\\mU£un(k,nk) = m.m\ \im(kCI + C + U£uJo,nk)) , \imU(k,7rk,+oo,un)\ 

U£vE (k, nk) = min { kCt + C + U£v£ (0, nk) , U (k, nk, +oo, v£)} 

and when f ^ O w e get: 

lim U£v£ (k, nk) = min {lim (kCI + C + U£v£ (0, nk)), lim U (k, nk, +oo, v£)} 

v(k,7rk) = mmlkC1+C + v(0,xk),U(k,xk,+<x>,v)j\ (2-19) 

U and v defined by (2-18) and (2-19) respectively, represent W and V defined in (2-6) 

and (2-7) respectively which finishes the proof of theorem 1. 
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3.1 Abstract 

This article proposes a model to calculate the Reliability Function (RF) and the Mean 

Residual (Remaining) Life (MRL) of a piece of equipment, when its degradation state is 

not directly observable. At each observation moment, an indicator of the underlying 

unobservable degradation state is observed and the monitoring information is collected. 

The observation process is due to a condition monitoring system where the obtained 

information may contain noise due to errors of measurement, interpretation, accuracy of 

measuring devices, etc. For that reason, the observation process is not perfect and does 

not directly reveal the exact degradation state. In order to match an indicator's value and 

the unobservable degradation state, a stochastic relation between them is given by an 

observation probability matrix. 

We assume that the equipment's unobservable degradation state transition follows a 

Markov Chain and we model it by a Hidden Markov Model. Bayes' rule is used to 

determine the probability of being in a certain degradation state at each observation 

moment. Cox's time-dependent Proportional Hazards Model (PHM) is considered to 

model the equipment's failure rate. This paper addresses two main problems: entire 

problem of imperfect observations and the problem of taking into account the whole 

history of observations. Two numerical examples are presented. 

Keywords: Condition Based Maintenance, Condition Monitoring, Mean Residual Life, 

Hidden Markov Model, Time-dependent Proportional Hazards Model. 
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3.2 Practical Implications 

The conditional reliability function is a measure of equipment's performance indicating 

the probability of survival during a period of time, knowing that the equipment has not 

yet failed. This probability can be used to calculate the MRL which can be used in 

finding the optimal replacement policy for the equipment. If the probability is calculated 

while assuming that the equipment has not yet been put to work, it indicates the 

unconditional reliability of the equipment. When a condition monitoring system is 

available, analysts are interested in knowing the reliability based on the latest available 

information on the equipment's degradation state, i.e. the conditional reliability, while 

taking into consideration the information obtained from the condition monitoring 

system. This paper introduces a model that calculates the conditional reliability function 

and the MRL of a piece of equipment in the presence of condition monitoring data, 

where this data does not directly reveal the degradation state of the equipment, but 

discloses some information which is stochastically related to the equipment's 

degradation state. 

3.3 Introduction 

Condition Based Maintenance (CBM) is based on observing and collecting information 

concerning the condition of equipment, in order to prevent its failure and to determine 

maintenance actions. When a piece of equipment is subjected to CBM, data concerning 

one or more indicators of degradation are collected periodically. The information 

obtained from this data is used to establish a diagnosis of the equipment's condition and 

a prognosis for future performance. Two measures of this performance are the failure 
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rate (or the hazard function), and the MRL. These two measures are calculated from the 

reliability function. 

In reliability analysis, two reliability functions are of interest. The first is the 

unconditional reliability function given by the probability P(T>t), which is the 

probability that the failure time T, of a piece of equipment that has not yet been put into 

operation, is bigger than a certain time t. The second is the conditional reliability 

function calculated by P(T>t\T>r), which is the probability that the time to failure 

T is bigger than /, knowing that the equipment has already survived until time r , where 

r < t. In this later case, the MRL is E(T -T\T>T) (Jardine et al. 2006), which is equal 

r l-F(t) 
to j-^-dt,T>0, where F is the cumulative distribution function and T is 

Jr l - F ( r ) 

having distribution function F . The hazard function A ( r ) , is obtained from the equation 

A(r)Ar= P(T <T<T + AT\T> T). In some reliability analysis, it is assumed that 

every piece of equipment is used in the same environment and under the same 

conditions. This assumption allows the calculation of the MRL and the hazard function 

prior to the actual use of the equipment. In real-life, the environment in which the 

equipment is performing and the conditions of utilization affect the process of 

degradation. Consequently, the conditional reliability, the residual life and the failure 

rate of the equipment are affected. Taking this fact into consideration improves the 

diagnosis of the equipment's degradation state and the prognosis for future performance. 

Many researchers have proposed different reliability models incorporating the 

information gathered periodically regarding the equipment's observed condition. These 
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models are used to calculate an adjusted hazard function and the corresponding MRL. 

One of these models is the Proportional Hazards Model (PHM), proposed by [Cox 

1972]. This model has been widely used in the medical field [Crowley and Hu., 1977; 

Leemis, 1995], and in the field of CBM [Jardine et al, 1985, 1987, 2001; Kumar and 

Westberg, 1996; Ansell and Phillips, 1997; Jozwaik, 1997]. The PHM has the advantage 

of improving maintenance decisions since it is based on a more accurate estimate of the 

hazard function and the MRL [Banjevic and Jardin, 2006]. 

In all previous applications of the PHM, it was assumed that the information collected 

regarding the equipment's condition, indicator 0, was a direct pointer to the 

equipment's degradation state Z , and that the indicator was in a some-to-one or one-to-

one relation with the degradation state that influences the time to failure. In a some-to-

one approach, each possible value of the indicator, in a predefined interval, refers to one 

degradation state. In this approach, there is no indicator value that can refer to more than 

one degradation state. If the condition monitoring reading is of value 0i, the state will be 

a certain value Z.. In this approach, each indicator value 6i refers to only one state Zj. 

At the same time, any state Z., may be referred to by several possible values of the 

indicator in a predefined interval [Makis and Jardine, 1992]. Figure 3-1 demonstrates the 

some-to-one characteristic used in this discussion. It can be seen in Figure 3-1 that any 

indicator value in the interval [a, b ) , e.g. 0X and/or #3, refers to the same state value 

Z,. It is not possible to have more than one state referred to by a certain indicator value. 
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0i e-t, b 82 - indicator 

Figure 3-1: Direct observation for a system with 2 degradation states (some-to-one relationship) 

In the one-to-one approach, the indicator value is assumed to be a direct pointer to the 

equipment's degradation state, and is used directly as the diagnostic covariate in the 

PHM [Kumar et ah, 1996]. In all the previous cases that have used the PHM, either the 

indicator reading was used directly as the diagnostic covariate in the PHM (one-to-one), 

or a transformation of the indicator into a new state space (some-to-one) is considered as 

the diagnostic covariate. 

Realistically, information may contain noise due to errors of measurement, 

interpretation, accuracy of measurement instruments, etc, and may not reveal the exact 

degradation state of the equipment. The information is, however, stochastically 

correlated with the underlying state. In this case, information collected may be referring 

to more than one possible state. For example, a certain level of vibration (indicator) d], 

may be read while the equipment is in any of two different levels of degradation states, 

Z, and Z2. This situation is represented by a probability distribution function. In the 

latter case, the relationship between the collected condition monitoring information 
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(indicator) and the state is some-to-some. One collected indicator value may refer to 

several degradation states and vice versa. This category of condition monitoring is 

referred to as Indirect Monitoring [Wang and Christer, 2000] or Partial Observation 

[Makis and Jiang, 2003]. Figure 3-2 illustrates the stochastic relationship between the 

indicator and the state in this case. As shown in Figure 3-2, the indicator value #, may 

refer to either state Zx or state Z2. An indicator value may be a sign of several possible 

degradation states, and a system in certain degradation states may demonstrate different 

indicator values. 

#i Indicator 

Figure 3-2: Indirect or imperfect observation (some-to-some relation) 

The relationship between the indicator's values and the states is introduced via an 

observation probability matrix or a probability distribution. For example, in Figure 3-3, 

if the state is, Z., i = 1,2, the probability of observing different values of the indicator 

follows a normal distribution N(JUX ,O\ ) . In this paper, we consider a some-to-some 

indicator-state relation. The model is then used in order to propose a solution to the main 

drawback of the time-dependent PHM which is the inclusion of only the latest condition 
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monitoring information in the model. In this paper, the proposed model considers the 

entire history of information obtained from the observation process. 

indicator 

Figure 3-3: Probabilistic relationship between the indicator and state 

To demonstrate the impact of not considering the entire history of information, Figure 

3-4 depicts an explanatory example of a piece of equipment that follows the time-

dependent PHM. In this example, the equipment represented by the bold line has been in 

the state Z = 1 from time zero to time t2. It can be seen that the failure rate of the 

equipment at times tx and t2 are equal to hx and h2 respectively. Now we consider the 

case demonstrated in Figure 3-5. From time zero to time tx, the equipment state is 

Z - 0 and right after, from time tx to time t2, the state becomes Z = 1. It can be seen 

that at time t2, while the equipment is at state Z = 1, the failure rate of the system is 

again h2. The fact that the equipment was in state Z = 0 from time zero to time /,, had 

no effect on the value of the failure rate h2 at t2, which is obviously wrong. 
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Figure 3-4: An explanatory example of a time-dependent PHM without a state change 

Figure 3-5: An explanatory example of a time-dependent PHM with state change 

Conceptually, this drawback may be addressed as shown in Figure 3-6. In this figure, if 

the equipment is in state Z = 0 until time tx, the failure rate at that time is \ . If at that 

time the state changes to Z = 1, then the increase in the failure rate will follow the bold 

line from A, on the curve of Z = 1. This is equivalent to assuming that the system was in 

state Z = 1 from time zero but its age is tx-t. Also after t2—t1, i.e. at age t2, the failure 

rate will be ti2 and not h2. These examples clearly show how the original approach of 
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the time-dependent PHM gives a misleading value of the failure rate by ignoring the 

information history. 

Figure 3-6: Conceptual solution for PHM drawback 

This paper considers the case of indirect monitoring, i.e. the obtained indicator does not 

reveal the equipment's underlying degradation state. Instead, a probability of being in a 

certain state is calculated by using Bayes' rule. This rule considers all the previous 

history of information and incorporates it into the PHM. The proposed model thus 

overcomes the main drawback of the previously applied PHM. Based on this 

modification the conditional reliability and the MRL are calculated. Throughout this 

work "state" and "degradation state" are used interchangeably. 

This paper is organized into four sections. Section 2 presents a literature review of the 

principal models used in the evaluation of the residual life. Section 3 introduces the 

proposed model that assumes the existence of imperfect observations. In section 4, 

numerical examples are presented. Conclusions and future researche are presented in 

section 5. 
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3.4 Literature review 

Many researchers have studied the mathematical structure of the MRL based on 

reliability analysis without considering information concerning the actual use and the 

state of equipment. Tang et al. [1999] consider the residual life as a random variable and 

study its asymptotic behaviour when the reliability function is represented by various 

discrete and continuous distribution functions. Lim and Park [1995] study the monotonic 

behaviour of the residual life. They test the null hypothesis that the residual life is not 

monotone, against the alternative hypothesis that it is indeed monotone. Siddiqui and 

Caglar [1994] treat the residual life as a random variable and give a representation of its 

distribution function. When the distribution is Gamma or Weibull, the authors calculate 

the mean and the variance of the variable. Bradley and Gupta [2003] also study the 

asymptotic behaviour of the residual life. 

Researchers that consider the presence of condition monitoring information use two 

main approaches to calculate the MRL; recursive filtering and PHM [Jardine et al, 

2006]. Recursive filtering is an approach in signal processing that extracts information 

(MRL) based on available signals (indicators), and previously extracted information 

[Byrne, 2005]. Wang and Christer [2000], Wang and Zhang [2005, 2008] and Wang 

[2002], among others, determined the MRL by applying a recursive filtering model. The 

MRL, given the condition monitoring history up to date, is obtained. The recursive 

filtering technique includes the entire observation history. 

Wang and Christer [2000] assume that the observed condition monitoring indicator is a 

function of the underlying residual life and not vice versa, and use the indicator as the 
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covariate. This assumption may not be realistic in many cases. For instance, the wear of 

a rotating shaft (which is reflected in oil particles as the observable indicator) affects its 

residual life, not vice versa. They use a recursive filter in order to calculate the MRL, 

and add to the existing MRL models the possibility of including all past information. 

Addressing the drawback of the approach in [Wang and Christer, 2000], Wang and 

Zhang [2005] introduce a new methodology that uses the difference between two 

consecutive observed indicators as the covariate and uses recursive filtering to determine 

the MRL. They define the MRL e(t,Z(t)) as the expected time interval between the last 

inspection, when the most recent information was gathered, and the expected time of 

failure, given that no maintenance action is taken in this interval. e(t,Z(t)) is thus equal 

to E((T-t) | T > t, Z(t)), where Z(f) is the covariate (the difference of two consecutive 

readings of the indicator) at time t. Wang and Zhang [2008] model the MRL of the asset 

by considering the expert's judgment based on the equipment's observed indicator. In 

this case, the judgment is assumed to be a function of the residual life, which may 

include some noise. 

The PHM may be more suitable in many cases, like oil analysis, since it assumes that the 

failure rate, and so the MRL, is a function of the degradation state or the observed 

indicator, which is representing the degradation state. But the PHM's drawback is that, it 

uses only the latest information of the condition monitoring system. Kumar and 

Westberg [1996] calculate the MRL using PHM when only the most recent information 

is available. Maguluri and Zhang [1994] are inspired by the PHM and calculate the 
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proportional MRL by using the equation e(t | Z) = exp(—j3Z)e0(t), where 

e0(t) = E(T-T\ T >T) is the MRL calculated without including the covariate. Z is the 

vector of indicators used as the covariates in the model and /? is the vector of the 

covariates' coefficients. Sen [2004] calculates the conditional MRL given by 

e(t\z) = je~0:(Aoi'+M)'Ao{,))dju, where A0 (t)= \X0(u)du, A0(t) is the hazard 
0 0 

function, and A(t \ z) = A0(t)e^z is the proportional hazard function. Banjavic and 

Jardine [2006] calculate the joint distribution of time to failure and the diagnostic 

covariate z{t) at time t, and the probability of transition between states Ly^rj)-

P(T>t,z(t)- j\T>r,Z(T) = i), T < t. z(t) is the descritized observed information 

from the indicator into a new state space {0,1,..., JV}, which represents the degradation 

state of the equipment (some-to-one). The conditional reliability is thus given by the 

QC 

equation R(t | T,Z(T))= ^L^TJ), r<t, and the MRL is e(t,z(r)) = ^R(r \ t,z{t))dr . 
i t 

All of these models assume that the information gathered from the indicator likely 

reveals the equipment's exact state, or use the collected information directly as a 

diagnostic covariate that affects the failure rate. Moreover, some of them include only 

the most recently collected information. 

In this paper, the residual life is modelled using the PHM, in the case of indirect 

condition monitoring, i.e. the equipment state is not deterministically known. We present 

a modified PHM model which takes into consideration the whole observations' history. 
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We assume that MRL is related to the equipment's degradation state, and the condition 

monitoring indicator is stochastically related to the equipment's underlying degradation 

state. This work not only addresses the problem of indirect observations, but also 

eliminates the main drawback of using the PHM model, which is the inclusion of only 

the latest information in the calculation of the MRL. Another drawback of the traditional 

time-dependent PHM is that the discretization of the indicator's possible values into 

classes of states (covariates) is very sensible to the lower and upper bounds selected. In 

this paper, since probability distribution is used to relate the indicator's values to each 

class of states, this problem is moderated. The model takes into consideration all 

previous information as well as the equipment's age and assumes that residual life is 

affected by the equipment's degradation state. 

3.5 Model assumptions 

Consider the following notations: 
T : Failure time of the equipment; 
A : Observation interval; 
Z(s) : Equipment's degradation state at time s; 

Zk : Equipment's degradation state after k -th observation interval; Zk = 

Z(kA); 

0 : Current value of the indirect indicator of the system's degradation 
state; 

pr : Probability of going from state / to state j during one inspection 

interval, knowing that the equipment has not failed during that interval. 
It is an element of the transition matrix P; 

qje : Probability of getting condition indicator value 6 while the 

equipment is in state j . It is an element of the observation probability 
matrix Q; 

h(s,z) : The hazard function of the PHM at time s while the system state is 

z; 



99 

h0 (.) : Baseline hazard function; 

y/Q : State effect function; 

R(k,Zk,t) : Conditional reliability at period k for a period of t, knowing that the 

state is Zk; 

r(k,Zk,t} : Conditional mean sojourn time at period k knowing that the state is 

7tk : Conditional probability distribution of the equipment's state at 
observation moment k, k=0,l,...; 

n\ : Probability of being in state i at observation moment k, k=0,l, ...; 

R[k,nk,t\ : Conditional reliability of the equipment for a period of t, at 

observation moment k while the conditional probability distribution 

of equipment's state is nk; 

e(k,z) : Mean residual life at observation moment k while the state is z ; 

'e(k,7ik) : Mean residual life at observation moment k while the conditional 

probability distribution of the equipment's state is;r* . 

We consider the PHM proposed by Cox [1972], and we assume that the condition 

monitoring is indirect. Instead, an indirect indicator's value 6, of the underlying 

degradation state is available at each observation moment. Observations are collected at 

constant (or near constant) interval A. In this study, Z represents the degradation state 

of the equipment which will be used as the diagnostic covariate in the PHM, and 9 is a 

value from the set of possible indicator values 0 = | l , . . . ,M}. The whole set of indicator 

values is discretized into a finite set of M possible values. This assumption does not 

limit the scope of this work since its relaxation only entails the replacement of the 

observation probability matrix Q by a continuous probability distribution such as the 

normal distribution shown in Figure 3-3. The equipment's condition is described as 

follows: 
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• The equipment has a finite and known number of degradation states N. 

J = {l,..., N) is the set of all possible degradation states; 

• Degradation state transition follows a Markov Chain with unobservable states 

and is modeled by a Hidden Markov Model (HMM). The transition 

matrix P = \ Pj~\, is known or can be calculated. ptj is the probability of going 

from state i to state j , i,j e J during one observation interval, knowing that the 

equipment has not failed before the end of the interval; 

• The value of the indicator is stochastically related to the equipment's state 

through the observation probability matrix g = r« 6 l l ,jeJ, # e 0 . qje is the 

probability of getting indicator value 6, while the equipment is in statej; 

• Failure is not a degradation state. It is a non-working condition of the equipment 

that can happen at any time and while in any degradation state, and is known 

immediately (obvious failure). 

Figure 3-7 depicts the process of degradation and the transition from one degradation 

state to another, and from the degradation states to failure. The circles represent the 

states. State 1 is the best state (new or as new equipment). State N is the worst state, but 

it is not failure; the equipment is still working and fulfilling part of its role. It should be 

noted that failure can happen at any time and while the equipment is in any degradation 

state. T is a random variable showing the failure time and 1 - rt is the probability of 

going from state i to failure before the end of the interval. r; = R(k,i,A), which is 

calculated for each observation moment k, is the conditional reliability of the equipment 
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for a period of time A, while the equipment state is i, and is calculated by Equation (3-

2) below. 

1 - * l-r„ 

Failure 

Figure 3-7: The process of degradation and failure 

At time s = 0, the equipment is always in state 1, which indicates that the equipment is 

in its best state. At fixed inspection interval A, i.e. at s = A,2A,...an indicator of the 

equipment's state is observed. The indicator's value 9, is collected with a probability of 

q-g when the equipment is in degradation state y, jeJ,0e&. The values of qj0 are 

assumed to be known. The transition matrix P = ptjA i,jeJ is assumed to be an 

upper triangular matrix, i.e. ptj = 0 for j < i, meaning that the degradation state cannot 

improve by itself, which is the case in most practical problems. 

The parameter estimation problem of this model has been addressed in Ghasemi et ah, 

[2008]. So, it is assumed that all model parameters are known. In this paper, the 

objective is to derive the conditional reliability and the MRL when the condition 

monitoring is indirect. 
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3.5.1 Modeling the residual life 

In the proposed model, the hazard function h(s,Zk) follows the PHM and is represented 

by the equation: 

h(s,Zk) = h0(s)y/(Zk),k = 0,l,2,-,kA<s<(k + l)A (3-1) 

where hQ()is the hazard function of a Weibull distribution and represents the aging 

process, and y/() is a function of the equipment degradation state Zk. The most used 

function is usually exponential in the form y/(Zk) = exp(yZk). This means that the 

hazard function depends on the equipment's age and its state. 

Since the observations are gathered at fixed intervals A,2A,... and the state is assumed 

to be invariable during each interval, the notation Zk = Z(kA) is used. Each change of 

state is assumed to take place at the end of the interval, exactly before the observation 

moment. This assumption requires the observation interval to be short enough to include 

at most one transition during each interval. Having short enough intervals also supports 

the assumption of having the transition at the end of the interval just before the next 

observation moment. The choice of A depends on the nature of the equipment and the 

historical knowledge of its performance. 

In the initial PHM, the conditional reliability is given by [Makis and Jardine, 1992]: 

R(k,Zk,t) = P(T > kA + t | T > kA,Z„Z2,...,Zk),§ < t < A 

= P(T>kA + t\T>kA,Zk),0<t<A (3-2) 

^expt~^(Zk) ^+'h0(s)ds)\,0<t<A 
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The conditional reliability indicates the probability of survival until time kA + t, 

(0 < t < A), knowing that the failure has not happened until time kA, and the states of 

the equipment have been Zl,Z2,...,Zk, at A,2A,...kA. T is the random variable 

indicating the time to failure. Also, the conditional mean sojourn time, if no action is 

performed before time kA + t, while the equipment is in state Zk at interval kA, is 

[Makis and Jardine, 1992]: 

t 

z(k,Zk,t)= JR(k,Zk,s)ds,0<t<A (3-3) 
o 

Equations (3-2) and (3-3) are not valid for t > A, since Zk may change at any of the 

subsequent intervals. The conditional reliability at (k,Zk^, i.e. at the k-th observation 

moment while the state is Zk and for t > A, is formulated by the following equation: 

R(k,Z,,t) = ?r(T > kA + t\T > kA,Z,,Z2,...,Zk),t > A 

= Pr(T>kA + t\T>kA,Zk),t>A 

Since / > A, we continue the calculation of the reliability function by conditioning it on 

the survival until (k +1) A, i.e. until the next observation moment (see Figure 3-8). 

- ) 1 > 

kj 1 >l 

H> > | 

Figure 3-8: Demonstration of survival for t > A 

If the equipment survives for a period of t; / > A after kA, it has to have survived until 

the next observation moment (& + l)A, which may happen with a probability of 
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Fr(T>(k + l)A\T>kA,Zk) = R(k,Zk,A). Just before the moment of (k + l)A, the 

equipment state transfers from state Zk to state Z t+,. At (k + \) A, the equipment has to 

survive for another period of t - A (equivalent of surviving for a period of / after kts.) 

which may happen with a probability of Pr (T > (k +1) A + (t - A) | T > (k +1) A, ZA+1). 

Assuming that the equipment will survive until k +1st observation moment and its state 

at k +1 s t is Zk+1, we can conclude that its conditional reliability is: 

/?(*,Z t ,A)Pr(r>(* + l)A + (f-A)|r>(jfc + l)A,Z i+1). 

But, since Zk+X can take any value j = 1,...,JV (A^ is the number of the possible states), 

with corresponding probability pz . in the Markov transition matrix, then: 

R(k,Zk,t) = yjrR(k,Zk,A)pZkJ?r(T>(k + l)A + (t-A)\T>(k + l)A,Zk+l =j),t> A 

N 

R(k,Zk,t) = YJR(k,Zk,A)pZk j P r ( r >kA + t\T> (A: + l)A,Zt+, = j),t > A (3-5) 

" 1 " is the probability of survival until A, "2" is the probability of transition from state 

Zk to state j at the next observation moment, and "3" is the probability of survival until 

kA + t while at the & + ls t observation moment the state is j , which is equal to 

R(k + l,j,(t-A)). Equation (3-5) can be written as follows: 

R(k,Zk,t) = R(k,Zk,A)fjpZtJR(k + l,j,(t-A)),t>A (3-6) 

Considering equations (3-2) and (3-6), the conditional reliability at the kth observation 

moment, while the state is Zk = i and no action is taken is: 
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R(k,i,t) 

exp - ^ ( / ) P h0(s)ds)\ 0<t<A 

(3-7) 
R(k,i,A)^PiJR(k + \,j,(t-A)) t>A 

7=1 

In this paper, the degradation state is not directly observable, but an indicator of the 

degradation state is observed, and its value 6 is recorded. A new state space 

(conditional probability distribution of the equipment's degradation state at period k, 

7th), and a new transition rule are introduced in equations 8 to 10. nk includes all the 

indicator's observations from the last renewal point up to the k -th observation moment, 

and provides a methodology to deal with unobservable states by calculating the 

conditional probability nk, the probability of being in state i at time kA. nk, the 

conditional probability distribution of the equipment's degradation state at period k, is 

defined as follows: 

nk =\nk\ 0£/r* < 1 for/ = l,... ,JV;£;r*=lLfc = 0,1,2,... (3-8) 

and since new or as new equipment is always in state 1: 

n* = \ (3-9) 

' (0 \<i<N 

After an indicator value 6 is collected at the & + ls t observation moment, the prior 

conditional probability distribution nk, is updated to nM. By using Bayes' formula, 
and knowing that the indicator value 0 has been read at the k +1 s t observation moment, 

7rk+1 (0) , the probability of being in state j at k +1st observation moment is updated: 
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* r ( * ) = 1 7 S • > = U,JV (3-10) 

Y^L^xPiilie 
7=1 /=1 

Since at observation moment A: +1 , the calculation of nk+l is based on nk and the latest 

value of the 6 observed at the k + 1st observation moment, the updated conditional 

distributions*"1"1, carries the history of all the indicator's values from the last 

replacement point. After any preventive or failure replacement, the period counter will 

be reset to zero and the conditional probability distribution of the equipment state will be 

set to 71° using equation (3-9). 

In the case of indirect information, we define R\k,nk ,t\ as the conditional reliability of 

the equipment at the k-th observation moment, while the state conditional probability 

distribution is nk. It is calculated as follows: 

N 

%k,7tk, t) = Pr(r > M +11T > kA, (k, nk)) = £ t t {k , i, t) nk (3-11) 

By substituting equation (3-7) into equation (3-11) we get: 

| > * exp(-^(/) £A
A + \(S>&)) 0< / < A 

Yj7tkR{k,i,K)YjpijxR(k + \,j,{t-A)) t>A 

R(k,7ik,t) = 
A' 

(3-12) 

7=1 

In the case of direct observations, using PHM, the MRL is given by [Banjevic and 

Jardine, 2006] as follows: 
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e(k,i) = E(T-kA\T>kA,Xk =i) 

= JT R ( k, i, kA +1) dt (3-13) 

= r R{k,i,t)dt 

For indirect observations, we define the MRL, 'e[k,7tk\, calculated at the kl 

observation moment, while the state conditional probability is nk, as follows: 

e{k,7ik) = E(T -kA\[k,?rk)} 

N 

= Y,n\e{k,i) 
1=1 

N 

e{k,nk) = ^ r x-R(k,i,t) dt 
(=1 

=[A\iL^R(k>ht))dt 
\i=i 

e(k,7tk}=\" R(k,nk,t)dt (3-14) 

where R\k,xk,t\ is calculated by equation (3-12). 

The steps for calculating the MRL at each observation moment k, where the indicator 

obtained is 6, are as follows: 

• At any observation moment k, when an indicator value 6 is obtained; 

calculate the conditional probability distribution nk, at period k by using 

equations (3-10); 

• Calculate the conditional reliability of the equipment, R(k,7ik ,t), at the &-th 

observation moment by using equation (3-12); 
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• Calculate the MRL of the equipment, e \k,nk J, by applying equation (3-14). 

3.6 Numerical examples 

The first example is adopted from [Ghasemi et ah, 2007]. The hazard function hQ(s), 

representing the aging process, follows a Weibull distribution, and the equipment 

conditiony/{Zk), is given in an exponential form as follows: 

h0(s) = £-ir,sZ0,a = l,p = 2 
cr 

For A = 1, the equipment's hazard function and its conditional reliability from equations 

(3-1) and (3-2) are as follows: 

h(s,Zk) = 2se°-5{Zk~l\kA < s < (k +1) A 

R{k,Zk,t) = exp[-(r + 2tk)e '[k~~>] 

In addition to the obvious failure, the equipment can be in any of two unobservable 

states {1,2}. 1 is the new or as new state. The transition matrix P is given as follows: 

P = State 1 

State2 

State 1 State2 

0.4 0.6^ 

0 1 

The indicator value 0 can take the values of: Excellent (1), Normal (2), or Bad (3). The 

probabilities of observing one of these three values, while the equipment is in state 1 or 

2 are given by the matrix Q as follows: 
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Excellent Normal 

Q = Statel 

State2 

0.6 

0.2 

0.3 

0.4 

Bad 

0 , 1 

0.4 

For example, the probability of finding the indicator Excellent, while the equipment is 

actually in state 1, is 0.6. Based on the developed model, and by assuming that the 

equipment's state is known, the MRL at different observation moments k = 0,1,2,3,4 is 

calculated from equation (3-13) and the results are shown in Table 3-1. The value of the 

MRL at k - 0, while the equipment is in state 2, is not applicable (N/A), since we 

assume that new equipment is always in state 1. According to the calculations, new 

equipment has an MRL equal to 1.62. 

Table 3-1: Mean Residual Life at different observation moments (direct observation) 

Period 

0 

1 

2 

3 

4 

State 
1 
2 
1 
2 
1 
2 
1 
2 
1 
2 

MRL (time unit) 
1.62 
N/A 
0.84 
0.53 
0.40 
0.23 
0.18 
0.10 
0.08 
0.05 

If the equipment's state is unobservable, after the collection of the indicator's value 0, 

the probability of being in state z =1,2 is calculated from equation (3-10), then used in 

equations (3-11) to (3-14) to obtain the MRL. Since we are dealing with an example and 

we do not have in hand the values of the indicator, we calculate the MRL for all possible 

values of 6, and consequently of n\ at each of the next 4 observation moments. For 
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example, at k = l, the corresponding values of n\ is 0.3333,0.6667 or 0.8571 if the 

readings of 6 is 1, 2, or 3, respectively. n\ is the probability of being in state 2 while 

the equipment is at the kth observation moment. This means that in a real situation, at 

k = 1, if we receive an observation 6 = 2 from the equipment, and based on equation (3-

10), we get a value of n\ = 0.6667, then the MRL of the equipment is 0.63 (See Figure 

3-9) 
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Figure 3-9: Mean Residual Life for all possible n\ at k = 0,1,...,4 observation moments 

To explain the relationship between the optimal replacement policy that was obtained in 

[Ghasemi et al, 2007], and the MRL, we recall that in that paper, the cost of preventive 

replacement is C = 5, while the cost of replacement after failure increases by K = 2. 
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The optimal replacement criterion is given as a function of the reliability and the 

conditional mean sojourn in the following observation period as follows: 

T. =inf{ k>0; 2x \-R(k,7rk,AJ]>&.l704xT(k,7rk,A) (3-15) 

where g* =8.1704 is the long run average cost of replacement. Figure 3-10 shows the 

decision criterion for this example. The straight line indicates the threshold value of 

g*/K = 8.1704/2 found in [Ghasemi et al, 2007]. It can be seen that independent of 

the value of n\, it is never cost optimal to replace after the first interval. Similarly, after 

the second interval, the equipment should optimally be replaced regardless of the value 

of n\. 

A=1,g*= 3.1704 
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Figure 3-10: Decision Criterion for A = 1, K=2 and C=5 

This means that after two periods of utilization, the equipment should be replaced 

regardless of its state. This decision takes into consideration the replacement costs, as 

well as the value of the conditional reliability. Another way of decision-making will be 
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to consider the value of the MRL. For example, in Figure 3-10, the decision based on the 

cost and the value of the conditional reliability is to never replace at k = 1 i.e. at the first 

observation moment. However, by considering the value of the MRL given in Figure 3-9, 

which depends on the observation collected at the end of this period, a practitioner may 

decide differently. For example, if the updated n\ is equal to 0.8571, then the MRL is 

0.57 , which is about half the length of an interval. The decision maker may then decide 

to replace the equipment, although it is not the cost optimal decision. The decision can 

aim to prevent a potential interruption during the next period, or may consider 

scheduling a replacement at a convenient moment before the next observation moment 

in a manner that has minimum influence on the equipment's mission. This decision is 

not based on cost considerations and is basically considering the availability of the 

equipment. 

To further explain this criterion, we assume that C = 5 andK = 4, which will result in 

g* =10.17and the threshold line will shift to g*IK = 2.54, as shown in Figure 3-11. 

This shift means that if at the first observation moment the calculated n\ is larger than 

or equal to 0.35, the equipment should be replaced; otherwise it should be replaced at the 

next observation moment. From Figure 3-9, if the indicator's reading at k = 1 is normal 

(2) or bad (3) then n\ is equal to 0.6667 or 0.8571 respectively and the MRL is either 

0.63 or 0.57. Considering that the cost of a failure in this case is twice as much as in the 

previous example, it is obvious why the optimum replacement policy is to replace the 

equipment, even if in these cases, where K = 4, the MRLs are higher or equal to that in 
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the previous example (K = 2), where the optimum decision was not to replace the 

equipment at the first observation moment. Again, here a practitioner may decide to go 

with a different decision than what the optimal replacement criteria suggests, in order to 

address other priorities in the organization, and not just to consider the cost. This gives 

another indication to the decision-makers as to whether they should replace the 

equipment or not. 
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Figure 3-11: Decision Criterion for A = 1, K=4 and C=5 

The results of another example is shown in Figure 3-12. We consider a piece of 

equipment which may be in one of three degradation states i = 1,2,3 (the failure is not 

included), and the observation can again take any of three values, excellent (1), normal 

(2), or bad (3). The transition matrix is P = 

0.9 0.1 0.0 

0.0 0.9 0.1 

0.0 0.0 1.0 

the information matrix is 

Q = 

0.5 0.3 0.2 

0.2 0.3 0.5 

0.0 0.0 1.0 

the Weibull distribution parameters are /? = 3, a = 3, a-0.5, 
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and A = \,C = 5, K = 2. As for the previous example, based on the optimality condition 

that minimizes the cost of replacement in a renewal cycle, the decision is not to replace 

after the first interval and to replace after the second interval k - 2, if the corresponding 

point defined by in\, n\\ on the surface is above the replacement threshold surface as 

shown in Figure 3-12. Another criterion for decision-making is the value of the MRL 

given in Table 3-2. 

}$m& W<t$t®;wier.\ fcmsMiS Sft< fi*5 

Figure 3-12: Decision criterion for equipment with three states 



115 

Table 3-2: Mean residual Life of the equipment for all possible \n\ ,n\ ,n\ \ at k = 0,1,2,3 

k 

< 

n\ 

A 
MRL 

0 

1.00 

0.00 

0.00 

1.88 

1 

0.96 

0.04 

0.00 

1.07 

1 

0.90 

0.10 

0.00 

1.04 

1 

0.78 

0.22 

0.00 

0.97 

2 

0.94 

0.06 

0.00 

0.61 

2 

0.92 

0.08 

0.00 

0.60 

2 

0.87 

0.13 

0.00 

0.57 

2 

0.82 

0.18 

0.00 

0.55 

2 

0.72 

0.28 

0.00 

0.51 

2 

0.71 

0.28 

0.02 

0.50 

2 

0.62 

0.34 

0.04 

0.46 

2 

0.47 

0.46 

0.07 

0.39 

3 

0.94 

0.06 

0.00 

0.34 

3 

0.93 

0.07 

0.00 

0.34 

3 

0.90 

0.10 

0.00 

0.33 

3 

0.88 

0.12 

0.00 

0.32 

k 

n\ 

A 
4 
MRL 

3 

0.85 

0.15 

0.00 

0.32 

3 

0.83 

0.17 

0.00 

0.31 

3 

0.79 

0.21 

0.00 

0.30 

3 

0.75 

0.25 

0.00 

0.29 

3 

0.70 

0.30 

0.00 

0.27 

3 

0.68 

0.30 

0.02 

0.27 

3 

0.67 

0.33 

0.00 

0.27 

3 

0.65 

0.32 

0.03 

0.26 

3 

0.60 

0.40 

0.00 

0.25 

3 

0.57 

0.38 

0.05 

0.24 

3 

0.51 

0.43 

0.06 

0.22 

3 

0.48 

0.52 

0.00 

0.21 

3 

0.41 

0.51 

0.09 

0.19 

3 

0.38 

0.48 

0.14 

0.18 

3 

0.30 

0.50 

0.20 

0.15 

3 

0.20 

0.53 

0.27 

0.12 

In Table 3-2, the values of \rc\,n\,n\\ at k = 0,1,2,3 indicate all possible values for the 

nk =\n\,7i\,n\\. For example, since at k = 0 , there is only one possibility for;r0, i.e. 

a0 = (1,0,0), then at k = l, for each possible observation ( Excellent (1), Normal (2), 

Bad (3)), we will have one possible value of \n\,n\,nl\ as shown in Table 3-2. There 

are less than 9 (3x3) incidents for k = 2. That is because different values of nx have 

produced the same values of x2 when taking into account the different indicator's 

readings. This is also true for k = 3. 

3.7 Summary & Conclusion 

In most published papers that use the PHM and Markov model in CBM, the MRL is 

calculated when the observations are direct or when they are a transformation (some-to-

one) of the indicator's value that is used as a diagnostic covariate that influences the 

time to failure directly. However, in this paper, the MRL is modelled and calculated for 
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equipment with indirect observations and obvious failure. The model is based on the 

PHM with time to failure following a Weibull distribution and the equipment's 

condition represented by an exponential function. It is assumed that the failure rate is a 

function of the equipment's degradation state, and we have taken into account that the 

observed indicator is an indirect pointer to the equipment degradation state and that it 

reveals some stochastic information about the underlying state. 

The conditional reliability is derived from the PHM and used to calculate the MRL. Two 

examples are presented. The cost optimal replacement policy and the MRL are 

calculated at all possible state probabilities for four observation moments. It has been 

shown that the MRL can be used as a supplementary decision tool, in particular when 

the cost elements of preventive replacement are unknown, or there are criteria other than 

the cost to respect. 

A practitioner equipped with an MRL result, may take advantage of the upcoming 

events (like an upcoming shutdown of a production line) that are not usually considered 

in cost optimal replacement criteria, to perform a CBM and to improve the availability 

of the equipment. 
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4.1 Abstract: 

This article proposes methods to estimate the parameters of a Condition Based 

Maintenance model when the equipment's failure rate follows the Cox's time-dependent 

Proportional Hazards Model. Due to errors of measurement, interpretation, accuracy of 

measurement instruments, etc., the observation process is not perfect and doesn't 

directly reveal the exact degradation state. At each observation moment, an indicator of 

the underlying unobservable degradation state is observed and the monitoring 

information is collected. In order to match indicator's value to the unobservable 

degradation state, the stochastic relation between them is given by an observation 

probability matrix. In this study we consider the case of imperfect observations and also 

we assume that the equipment's unobservable degradation state transition follows a 

Hidden Markov Model. We determine the Probability Density Function of the time to 

failure and use the Maximum Likelihood Estimation to estimate the model's parameters. 

The cases of censored and uncensored data are studied. Simulation studies are carried 

out to test the accuracy and the convergence of the methods. 

Keywords: Parameter Estimation, Maximum Likelihood Estimation, Condition Based 

Maintenance, Condition Monitoring, Hidden Markov Model, Time-dependent 

Proportional Hazards Model. 

4.2 Introduction 

Condition Based Maintenance (CBM) is based on observing and collecting information 

concerning the condition of an equipment, in order to prevent its failure and to determine 
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maintenance actions. When a piece of equipment is subjected to CBM, data concerning 

one or more indicators of degradation are collected periodically. The information 

obtained from this data is used to establish a diagnosis of equipment's condition and a 

prognosis for future performance. The diagnosis and prognosis processes are based on 

mathematical models which contain several parameters. In order to apply any diagnosis 

and/or prognosis method on a real world problem, the parameters must be estimated 

from the available data. In this paper we address the parameter estimation problem of a 

CBM system where the failure rate of the equipment is assumed to follow a time-

dependent Proportional Hazards Model (PHM) and its unobservable degradation state is 

modeled by a Hidden Markov Model (HMM). The relation between the indicator's 

values and the degradation states is assumed to be modeled by a stochastic matrix. 

A wide range of parameter estimation methods for CBM models incorporating the 

information gathered periodically regarding the equipment's observed condition exist in 

the literature. Some of these models uses the (PHM), proposed by D. R. Cox [1972]. 

This model has been widely used in the medical field [Crowley and Hu., 1977; Leemis, 

1995], and in the field of CBM [Jardine et a!., 1985, 1987, 2001; Kumar and Westberg, 

1996; Ansell and Phillips, 1997; Jozwaik, 1997]. In all previous applications of the 

PHM, it was assumed that the information collected regarding the equipment's 

condition, that is the indicator 6, is a direct pointer to the equipment's degradation state 

Z . They assumed that the indicator is in a some-to-one or one-to-one relationship with 

the degradation state. In a some-to-one relationship, any state Zi may be referred to by 

several possible values of the indicator in a predefined interval [e.g. Makis and Jardine, 
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1992]. Figure 4-1 demonstrates the some-to-one relationship. It can be seen that any 

indicator value in the interval [a,b), e.g. 9X and/or 03, refers to the same state value Zl. 

It is not possible to have more than one state referred to by the same indicator's value. 

a 
s 
w 

z.2 g o 

z, -• 1 r - o j 
i i i 
i i i 
1 i i 

- | — i 1 1 • * • 
a ^ i &> b Bi c Indicator 

Figure 4-1: Direct observation for equipment with 2 degradation states (some-to-one relationship) 

In a one-to-one approach, each possible indicator's value 0j refers to one degradation 

stateZr The indicator value is assumed to be a direct pointer to the equipment's 

degradation state, and it is used directly as the diagnostic covariate in the PHM [e.g. 

Kumar et al, 1996]. In both cases, there is no indicator's value that can refer to more 

than one degradation state. Either the indicator reading has been used directly as the 

diagnostic covariate in the PHM (one-to-one) or a transformation of the indicator value 

into a new state space (some-to-one) is considered as the diagnostic covariate. 

Nevertheless, in both cases, a certain value of the indicator refers deterministically to a 

certain degradation state. 

Realistically, information may contain noise due to errors of measurement, 

interpretations, accuracy of measurement instruments, etc and may not reveal the exact 
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degradation state of the equipment. The information is, however, stochastically 

correlated with the degradation state. In this case, information collected may be referring 

to more than one possible state with different probabilities. For example, a certain level 

of vibration (indicator) #,, may be read while the equipment is in any of two different 

levels of degradation states Z, and Z2. This situation is represented by a probability 

distribution function or a stochastic matrix. In the latter case, the relation between the 

collected condition monitoring information (indicator) and the state is some-to-some. 

One collected indicator value may refer to several degradation states and vice versa. 

This category of condition monitoring is referred to as Indirect Monitoring [Wang and 

Christer, 2000] or Partial Observation [Makis and Jiang, 2003]. Figure 4-2 illustrates the 

stochastic relationship between the indicator and the state for this case. As shown in 

Figure 4-2, the indicator value 6X may refer to either state Zx or state Z2. An indicator 

value may be a sign of several possible degradation states, and a piece of equipment, in 

certain degradation state, may demonstrate different indicator's values. 

&\ Indicator 

Figure 4-2: Indirect or imperfect observation (some-to-some relation) 
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The probabilistic relationship between the indicator's values and the states may be 

introduced via an observation probability matrix or a probability distribution. For 

example, in Figure 4-3, if the state is Z(.,/ = l,2, the probability of observing different 

values of the indicator follows a normal distribution N(jux,ax). In this paper, we 

consider a some-to-some indicator-state relation. 

Combination of PHM and HMM was originally proposed by Ghasemi et al, [2007] to 

address the imperfect observation problem and to propose a solution to the main 

drawback of the time-dependent PHM, which is the inclusion of only the latest condition 

monitoring information in the model. For more details on the impact of not considering 

all the history of information, please refer to [Ghasemi et al. 2008]. 

6\ indicator 

Figure 4-3: Probabilistic relation between the indicator and state 

We consider the parameter estimation of a CBM system where the degradation state of 

the equipment is unobservable and modeled by a HMM and its failure rate follows 

Cox's time-dependent PHM. 
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This paper is organized into four sections. Section 2 presents a literature review of the 

principal methods used in parameter estimation of a PHM, and more specifically PHM 

used in CBM. Section 3 introduces the proposed model that assumes the existence of 

imperfect observations. In section 4, the parameter estimation algorithms and simulation 

studies are represented. Conclusions and future researches are presented in section 5. 

4.3 Literature review 

Parameter estimation of CBM models using PHM has been considered by the 

researchers in two categories: perfect and imperfect observations. 

For perfect observations, Jardine et al. [1987] incorporated indicators (diagnostic 

covariates) affecting the equipment's time-to-failure into a fully parametric Weibull 

PHM and estimates the model's parameters based on Maximum Likelihood Estimation 

(MLE). Elsayed et al. [1990] developed PHM to estimate thin-oxide dielectric reliability 

by applying the partial likelihood method. Banjevic et al. [2001] estimated the 

parameters of a PHM used in the analysis of a piece of equipment that follows a 

Markovian degradation. A parametric PHM with Weibull baseline hazard function was 

considered and its parameters were estimated by MLE method. The method of MLE is 

also used to estimate the transition probabilities of the Markovian process. 

Cox [1972] introduced the conditional likelihood, later called partial likelihood [Cox, 

1975], to estimate the parameters of a semi-parametric PHM, supposing that the base 

line hazard function in the PHM, 4,(.), is arbitrary and the covariates are time-

dependent. It was assumed that the exponential function incorporated the effect of the 
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covariates into the equipment's time-to-failure. For r failure time t,^, the probability 

of observing the failure on the equipment that has actually failed given the risk set of 

*('w) is: 

(4-1) 

where the risk set R[t) is the set of all equipments that have not yet failed until time / , 

Z represents the diagnostic covariate of the equipment and y is the coefficient which 

represents a weight factor for the covariates. r is the index counter of the sample data of 

a set of n independently observed histories. Consequently, the log partial likelihood 

function is: 

M*M)=Ev-2>s 
r=\ r=\ 

YJ e X p(^ Z ( / ) ) <4"2> 
_/6*('w) 

Several methods are suggested to estimate the base line hazard function \ {t). One of 

them is to assume that A^ (/) is zero except at failure points t,-.. The estimator of /^ (t) 

is thus given by: 

where y is the MLE of / [Kay, 1984]. 

If ties exist in the data and the number of ties is small in comparison to the number of 

available information, then the log partial likelihood is calculated by the following 

equation: 
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i<*(£(r)) = Z ' V - i > g E exp(z(/)̂ ) 
4M) 

(4-4) 

where d,. denotes the number of ties for failure time t,-, and S,rs is the sum of the failed 

items' covariate at time t,r^ [Kalbfleisch and Prentice, 1980]. Also the estimator of 

/IQ (t) is given by: 

*o(t(r))=zdr/\ E exv{rzi) 
lefflt, '(') 

(4-5) 

Cox [1972] proposes that the covariates of the PHM can be allowed to be time-

dependent, that is to say; their values may vary in equipment's lifetime. In this case the 

equation /z(/,Z(/)) = /l0(/)exp(^Z(?)) indicates the PHM with time-dependent 

covariates, where y stands for the covariate's coefficients and Z(t) is the time-

dependent covariate at time t. 

In a semi-parametric PHM where there is no assumption about the form of /^(t), y is 

estimated by maximizing partial likelihood that does not depend on /^(V). In a 

parametric function of a certain form, such as Weibull, the model parameters can be 

estimated by full likelihood [Lin et ah, 2005]. 

For calculating the full likelihood, the complete covariate realization \Zr (t),0 < t < Tr}, 

where Tr is the failure or the censoring time of the r-th equipment, should be known. 

Practically, it is not possible to have the covariate recorded continuously. Instead, it is 

known in discrete times of observations. An approach to deal with this problem is to 
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assume that the covariate Zr (?) is constant between the observations. For the time-

dependent PHM, the log partial likelihood function that estimates the parameter y is 

given by [Kalbfleisch and Prentice, 1980] as follows: 

ML(r)) = irZr(t(r))-±iog 
r=\ r=\ 

(4-6) Y ^v[rz\t{r))) 

It is assumed that the hazard at time t depends only on the current covariate vector. The 

introduced partial likelihood has almost the same form as time-dependent covariates, 

except that the covariates are now time-dependent. 

Banjevic et al. [2001] showed that the likelihood of the set of n independently observed 

histories \Tr,Cr,(Zr(s);s <Trj\, r = \,2,...,n is: 

L(0)cc II h(Tr,Zr(Tr))Yls(TJtZj) (4-7) 
r.C,=\ j 

where Tr is the failure or censoring time of the r-th experiment, Cr is the censoring 

indication that indicates whether the equipment has failed or has been censored. It takes 

the following values: 

f0 Censored 
C = \ (4-8) r [1 Failed 

and: 

S(t;Z) = S(t;Z(s),s<t) = Qxp\-^h(T,Z(T))dr\ (4-9) 

j is the risk set at T.. If the value of Z at the failure or the censoring moment is not 

known, which might often be the case, the value of the latest covariate is used. 
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Estimation of the transition matrix of Markov chain can also be obtained by MLE. By 

considering constant observation times, the estimator of transition probability, p.. (&) = 

Pr(Zk+l = j | T > {k +1) A,Zk = i\ is given by the following equation: 

j 

where n-(k) is the amount of one-step transitions from state / to state j at A: — th 

observation point, A: = 1,2,... [Basawa and Rao, 1980]. 

For the imperfect observations, with hidden degradation process, the CBM model 

consists of two separate stochastic processes: a Hidden Markov Model with finite state 

space describing the state transition and an observation process. When the observations 

are not perfect, some researchers used the Expectation Maximization (EM) technique in 

order to estimate the parameters. Fernandez-Gaucherand [1993] considered a finite state 

Markov Chain for equipment with partial information. He assumed that a maintenance 

action resets the state of the equipment to a known value, and consequently, its future 

evolution becomes independent of the past. He showed that the parameters' estimators 

converge to their true values. 

Lin et al. [2003, 2004] considered a CBM problem while the equipment state is partially 

observable and the failure is obvious. The model's parameters are estimated using a 

recursive EM algorithm. Adjengue and Yacout [2005] used an EM algorithm for 

estimating the parameters of CBM with imperfect information. 



131 

When the observations are imperfect, the EM method is used to avoid modeling the 

Probability Density Function (PDF) of the time to failure. In this work, while the 

observations are imperfect, we have directly modeled the PDF of the observed 

information (indicator) and used the MLE method to estimate the model's parameters. In 

what follows, we introduce the proposed model. 

4.4 Proposed Model 

We consider the PHM proposed by Cox [1972], and we assume that the condition 

monitoring is indirect i.e. an indirect indicator's value 0, of the underlying degradation 

state is available at each observation moment. Observations are collected at constant (or 

near constant) interval A. In this study, Z represents the degradation state of the 

equipment which will be used as the diagnostic covariate in the PHM, and 0 is a value 

from the set of all the possible indicator's values 0 = {l,...,M}, where the whole set of 

the indicator's values is descritized into a finite set of M possible values. The 

equipment's condition is described as follows: 

• The equipment has a finite and known number of degradation states N. 

J = {l,...,N) is the set of all possible degradation states; 

• Degradation state transition follows a Markov Chain with unobservable states 

and is modeled by a Hidden Markov Model (HMM). The transition matrix 

is P = [ptj J, where py is the probability of going from state / to statej, /, j e J 

during one observation interval, knowing that the equipment does not failed 

before the end of the interval; 
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• The value of the indicator is stochastically related to the equipment's state 

through the observation probability matrix Q = \qje , j&J, # e 0 . q.e is the 

probability of getting indicator's value 0, while the equipment is in statey; 

• The indicator is collected periodically at fixed intervals A; 

• Failure is not a degradation state. It is a non-working condition of the equipment 

that can happen at any time and while the system is in any degradation state, and 

it is known immediately (obvious failure). 

Figure 4-4 depicts the process of degradation and the transition from one degradation 

state to another, and from each degradation states to the failure. The circles represent the 

states. State 1 is the best state (new or as new equipment). State N is the worst state, but 

it is not the failure and the equipment is still working and partially fulfilling its mission. 

It should be noted that failure can happen at any time and while the equipment is in any 

degradation state. T is a random variable denoting the failure time and (l-rf) is the 

probability of going from state i to the failure before the end of the observation interval, 

while rf = R{k,i,A), which can be calculated at each observation instant k, is the 

conditional reliability of the equipment for a period of time A, in equipment degradation 

state is i. For more details about the calculation of R(k,i,A), please refer to [Ghasemi 

etal, 2007]. 
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Figure 4-4: The process of degradation and failure 

At time t = 0, the equipment is always in state 1, which indicates that the equipment is 

in its best state. At fixed interval A, i.e. at t = A,2A,... an indicator of equipment's 

degradation state is observed. The indicator's value, 9, is observed with a probability of 

qje when the equipment is in degradation state j ,j eJ,0e®. 

Z(r)e{l,2,..JVJ, the equipment's unobservable degradation state at time t, follows a 

discrete homogeneous Markov process. We assume that the equipment transition from 

one degradation state to another takes place just before the observation moment. This 

assumption requires the observation interval to be short enough to include at most one 

transition during each interval. Having short enough intervals, also, supports the 

assumption of having the transition at the end of the interval just before the next 

observation moment. So Z(t) can be denoted byZA. where kA<t<(k + i)A 

,k = 0,1,2,.... We will use Zk all through this work. 

In this model, the hazard function h(t, Zk) follows the PHM and is represented by the 

equation h{t,Zk) =\{t)y/(Zk), kA<t<(k + l)A,k = 0,1,2,-, where h0(.) is the base 



134 

hazard function of a Weibull distribution and represents the aging process, and y/(.) is a 

function of the equipment's degradation state. The most used function is exponential in 

the form y/(Zk) = exp(yZk), where y is the indicator's coefficient. 

Ghasemi et al. [2007] introduced a new state space and transition rule for this problem. 

The transition rule includes all the observations from the last renewal point, and provide 

a methodology to deal with unobservable degradation states by calculating the 

conditional probability of being in degradation state / at the kth observation moment, 

it\. itk is the conditional probability distribution of the equipment's degradation state at 

period k, and is defined as follows: 

nk = \nk; 0<itk <\for i = l,...,N,J^itk =\i, £ = 0,1,2,... (4-11) 

We have also assumed that it° = \ , meaning that the equipment is in its best 
[0 o.w. 

possible state at period zero. After obtaining an indicator value 6 via an inspection at an 

observation moment, the prior conditional probability itk, is updated to nk+x. By using 

Bayes' formula, and knowing that the indicator 6 has occurred at the & + l-st 

observation moment, itk*1 (0) is determined as follows: [Ghasemi et al, 2007] 

N 

xT(d) = -TT-L • J = l,-.,N (4-12) 

YJYJ^ Pilule 

In the next section, we develop the PDF of the time to failure, and introduce the MLE of 

the model's parameters, with uncensored and censored data. 



135 

4.5 Parameters' Estimation 

Let T be the lifetime of the equipment, which is an i.i.d., non-negative continuous 

random variable. 0(s) = \0\02 ,...,0k};s<T;k = \,2,-~;kA<s is the history of the 

indicator values up to time 5, where A is the observation interval. At any observation 

moment, the observed indicator value 0, is stochastically related to the underlying 

degradation state of equipment j , through the probability matrix Q = \qje . The 

indicator's values history up to time s, can be mapped into the state conditional 

probability distribution up to time 5 as n{s) = \n\n2 ,...,nk }; s<T; k = l,2,...;kA<s, 

where the elements of n{s) are calculated from equations (4-11) and (4-12) at 

corresponding observation moment when a new indicator value is available. This history 

carries the conditional probability distributions from time zero up to time s, at all 

observation epochs. 

We have assumed that the equipment's unobservable degradation states transition 

follows a time homogeneous Markov Process. Then, the transition probability at time 

t = kA, from state /' to state j , knowing that the equipment has survived at least until 

next observation moment, can be expressed as: 

PIJ(k) = pij= ?v(Zk+l=j\Zk=i,T>(k + l)A),k = l,2,X.... 

The survival function of the assumed model is: 

R(t,0(t)) = Pv(T>t,0l,02,...,0k);kA<t<(k + l)A 

= Vv[T > t,7T° ,7r\...,nk); kA<t <(k + \)A 
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i?(?,^(?)) = P r ( r > 0 , ^ 0 ) P r ( ^ 1 , r > A | 7 T > 0 , ^ ° ) P r ( ^ 2 , r > 2 A | r > A , ^ 1 ) 

. . .P r (0 \ r > kA IT > (k-l)A,xk-l)?r(T >t\T>kA,7tk) 

*Vv{T>t\T>kA,nk) 

r k~i 

R(t,0(t)) = Pr(T>O,7r°) f | P r ( ^ + 1 , r > ( / + l )A|r>/A,^- ' ) 
L /=<> 

We have also assumed that n] - \ , meaning that the equipment is in its best 

[0 o.w. 

possible state at period zero. For the sake of calculation and without losing generality, 

we also assume that Prfr > 0,;r0 J = 1. This means that no failure happens at time zero 

when new or as new equipment is put to performance, which is an acceptable 

assumption. 

R(t,e{t)) 

' *_1 1 
f | P r ( ^ + 1 | r > ( / + l ) A , r > / A , ^ / ) P r ( r > ( / + l )A|7 '>/A,^ ' ) YX{T>t\T>kA,nk) 

.1=0 J 

" A - - 1 " 1 

]~]>r(#/+1 | r > ( / + l )A ,^ ' )P r ( r> ( / + l ) A | r > / A , ^ ' ) P r ( r > / | r > A : A , ^ ' ) 
. /=0 J 
k-1 A - l 

= f J P r ( ^ , + 1 | r > ( / + l )A,^ /)]~JPr(r>(/ + l ) A | r > / A , ^ , ) P r ( 7 , > ? | r > A : A , ^ ) 
1=0 /=0 

The probability of observing an observation 0!+l = 6, at the /+ 1st observation moment, 

knowing that the conditional probability distribution of the equipment's degradation 

state at the Ith observation moment was nl and it will survive until the /+ l s t 

observation moment, is [Ghasemi et at,2008]: 
N N 

Pv(0\T>{l + \)Ay) = ^^I
iPijqj0 (4-13) 

;=i j=\ 
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Prfr > (/ + l)A IT > IA,K! J, the conditional probability of survival from Ith observation 

moment until next observation moment, while the conditional probability distribution of 

the equipment's degradation state at the /th observation moment is nl, can be calculated 

by [Ghasemi et al. 2005]: 

N 

Pr(r > (/ +1)A | T > lA,x') = Yjt\ P r ( r > (/ +1)A | T > 7A,Z, = /) 
1=1 

N (/+1)A 

= ^^r /exp - J h{z,i)dz 

where h{r,i) is the PHM's hazard function at time r while the equipment's 

degradation state is i. Also, we have: 

Pr( r > 11T > kk,nk) = J X Pr(T >t\T>kA,Zk= i) 
;=i 

N { V 
= ^^-*exp - J h(z,i)dT 

kA 

then: 

R(t,e(t))= 

nPr(^ / + 1 |7 '>( / + l)A,^) 
/=o 

k-\ N f (;+I)A 

J^J^^'exp - J h(r,i)dz 
1=0 i=l 

f I 

]T;rfexp -\h{r,i)dT 
V AA 

(4-14) 
Based on equation (5-13), term A is function of the probabilities of Markov transition 

Py 's, and of the probabilities of stochastic relation between the equipment's degradation 

states and the indicator's observations, qjg 's. Term B is a function of ptj 's, qje 's and the 

set of all parameters of the hazard function h{r,i), as well. From now on, we will 
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optionally point to the set of all /^ 's , q.g's and the set of all parameters of the hazard 

function as O. 

According to failure analysis methods [Kalbfleisch and Prentice, 1980]: 

?r(t<T<t + At\T>t) _ dR(t) 
fit) = lim 

A/->0+ At dt 

where R(t) is the survival function of the equipment. In the case of existence of 

condition monitoring data, f(t,6{t)\, the PDF of T, the time to failure, is calculated 

by: 

/ ( ' . * « ) = -
dR(t,e{t)) 

dt 

In equation (5-14), since two first terms of R(t,6{t)} do not depend on / ,we can write: 

i*{<A<))-

f[Pr(^+I|r>(/ + l)A,^) 
1=0 

k-\ N (/+1)A 

flS^'exp - J h{t,i)dr 
1=0 1=1 ^ /A 

d N 

dtTt 
V/zf'exp - \h(z,i)dT 

V A-A 

and since —]F]#f exp - \h{r,i) dx = ]T;rf exp - \h(r,i)dT h(t,i) then: 
dt j=l kA i=l kA 

/M('))= 
fl?r(0M\T>(l + l)A,x') 
1=0 

A'-1 N f (/+1)A 

t t & ' ^ P " I h{r,i)dT 
1=0 i=\ /A '=1 V kA 

N ' \ 

^"Vf exp - J h{v,i)dx h{t,i) 

In the next section, we introduce the Maximum Likelihood Estimator of O, the set of 

parameters of interest in the model. 
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4.5.1 Maximum Likelihood Estimation 

We have considered the problem of parameter estimation in two cases of with and 

without censoring data. First, we consider the cases of data without censoring in what 

follows. 

a) With uncensored data 

For a set of n independent experiments, we assume that Tr is the time to failure of the 

r t h experiment. Also we assume that 0(Tr) = [0l,0^,...,9^,kA<Tr <(k + l)A is the 

history of observations of the r th experiment up to Tr. The likelihood of the set of 

parameters Q, based on the available data can be calculated by: [Kalbfleisch and 

Prentice 1980] 

L(Cl) = flf(Tr,d(Tr);n) 

We assume that (Tr,0(Tr)), r = l,...,n are independent. In this paper, we consider a 

parametric PHM with a baseline Weibull hazard function as the hazard function of the 

equipment, which is known as Weibull parametric regression model [Banjevic et ah, 

2001]. 

Since we have assumed that the equipment degradation state does not change during an 

observation period, and any change takes place only at the end of the observation period, 

just before the next observation, then: 

/ \ B(tr~ t \ 
h\t,Z'k;fi,Tj,r) = — - expl/Z, ) ;*A<f<(* + l)A,fc = 0,l,... (4-15) 
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'•fifr^ \h(r,i)dT= f— — exp(7/)ir;?<(A: + l)A 
AA 

= exp(^/) [— - t/r 

exp(/z) 

J /z (r, /) <ir = exp (^/) 
iA 

77y 

' / ^ 

M 

'k6> 

n) n ) 

By applying a maximization technique such as the line search method [Box et ah, 1969, 

Press et ah, 2007], the maximum of the log likelihood function can be calculated. This 

will result in finding the model's set of parameters Q, which contains/?,// and y as 

well as the p.. 's and q .„ 's for all possible values of i,j . 

Simulation 

The accuracy of the provided model is evaluated based on a simulation study. In what 

follows, we simulate the equipment's behaviors based on the assumptions of the model 

and some pre-set parameters. Then by applying the estimation method provided earlier, 

the parameters are estimated and compared to the original pre-set parameters. The 

simulation procedure follows the following steps: 

Overall Initialization: 

We assume a piece of equipment with two possible degradation states {l, 2}, and the 

related Markov transition matrix as P •• 
P 1-P 
0 1 

There are three possible values for 
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the observations indicator, for example {1,2,3} which can be interpreted as level 1, 2 or 

3. These are not the underlying degradation state, but the indicator's values that are 

stochastically related to the equipment's underlying degradation state. The matrix Q 

represents the relation between the equipment's degradation state and the observation as 

\-qx qx 0 

L 0 q2 l ~ q 2 ' 

According to the equation (5-15), there are also three parameters for the PHM, p,t] and 

y. The observation interval is A, which is usually set based on the system's constraints 

or expert's opinion and is not a decision variable or a model's parameter. Ghasemi et al. 

[2008] have addressed the problem of finding the optimum observation interval. We set 

A = l , and we estimate six parameters: p,ql,q2,j3,r/ and / . In order to generate n 

simulated experiments, we introduce r = l,...,n to represent the experiment's index. 

General Initialization: 

Let k represent the observation period counter and let z* represent the 

r-th experiment's real degradation state at the &-th observation moment. It is important 

to notice that the real degradation state is not needed for the parameter estimation 

method, we just keep record of this information for the simulation purpose, and it will 

not be recorded for the experiments at the end of the simulation. This will comply with 

the indirect observation assumption of the model. 

Set r = 1 to generate the first experiment. 
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Experiment Initialization: 

New or as-new equipment is assumed to be in its best degradation state. This means that 

for new or as-new equipment, i.e. when k = 0 ,we set zk = 1, for any r = \,...,n. 

Survival Simulation: 

The conditional probability of survival until the next observation moment for 

r-th experiment at k-th observation moment, while its underlying degradation state is 

zk , will be calculated by [Ghasemi et al, 2007]: 

R(k,zk
r,A) = P(Tr>kA + A\Tr>kA,z°r,zl,...,zk

r) 

= l~P(Tr<kA + A\Tr>kA,z°r,zl,...,zk
r) 

= exp -f(z ')f\(^) 

The probability of survival until the next observation moment can be simulated by 

generating a random number u from a uniform distribution t /(0, l) , and comparing it 

with the probability of survival. If u < R(k,z.', A) the simulation goes to the Transition 

and Observation Simulation, otherwise it goes to Failure Simulation. For example 

R(k,zk, A) = 0.25 means that the probability of survival until kA + A is 25% . If a 

uniform random number u between zero and one is generated, it will have 25% chance 

of being less than 0.25 . So any u < 0.25 can be interpreted as the equipment will 

survive until kA + A . 

Transition and Observation Simulation: 

According to the Markov transition matrix P, which is a stochastic matrix, degradation 

state of a piece of equipment that has not failed during &-th period, will change from 
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current degradation state, /, to a future degradation state j , with a probability ptj. We 

determine the experiment's degradation state during k + l period, z, by generating a 

uniform random number between zero and one, and comparing it with corresponding 

cumulative probabilities of Markov transition matrix to the current degradation state. 

For example assume that the corresponding line of matrix P to state / is [0.4 0.6]. It 

means that the equipment will stay at degradation state 1 by 40% chance or move to 

degradation state 2 by 60% chance. By comparing the generated random variable 

u~U(0,l), with cumulative probabilities i.e. 0.4 and 1.0 we are able to simulate the 

Markov transition behavior. If u < 0.4 then z -1, otherwise z = 2 . 

By considering the experiment's real degradation state during k + l period, z, we 

simulate the indicator's observation at k +1 observation moment ,6. We generate a 

random number from a uniform distribution, £/(0,l) and compare it with the cumulative 

probabilities of matrix Q, corresponding to z, the experiment's degradation state 

during k + l period. For example assume that Q-
0.5 0.5 0 

0 0.4 0.6 
and the real 

degradation state is z = 1, so we have to consider the first row of matrix Q. Also assume 

that, the random number generator has generated 0.65, which is greater than qu =0.5. 

Then we compare the random number with qu + qn ; 0.65 < qn + qn =1.00 which means 

that the simulated observation 6 = 2. qy in this example refers to the element in /'th line 

and j t h column of the matrix Q. 
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We set k = k +1 , zk - z and 0k = 6, and continue from Survival Simulation step. 

Failure Simulation: 

This procedure simulates the failure time of an experiment, during k +1 -st period. Time 

of failure of an experiment, knowing that it has failed before k +1 observation moment, 

can be simulated using conditional survival function [Ghasemi et ah, 2008]. 

F(k,zk
r,t) = ?r(Tr<kA + t\Tr>kA,zlzl,...,zk

r),t<A 

then: 

Pr(rr <kA + t\kA<Tr< kA + A,zu
r,z

l
r,...,z

k) 

?r(Tr < kA + t,Tr <kA + A\Tr> kA,z°r,z).,...,zk
r) 

~ Pr(kA<Tr<kA + A,z%zl
r,...,z

k) 

Pr(Tr<kA + t\Tr>kA,z°,zl,...,zk) 
~ kA+A 

J f(k,zk,r)dr 
kA 

F(k,zk,t) 

F(k,zk,A)-F(k,zk,0) 
t<A 

/ n , ,\ \-R(k,zkt) 
?r[Tr <kA + t\kA<Tr< kA + A,z°r,z

x
r,...,z

k ) = —, — ^ , ' . ,,t < A (4-16) 
1 ; R(k,zk,0)-R(k,zk

r,A) 

where R(k,zk,t) = expi-y/(zk) J h0{r)dr)\;t < A . According to its CDF, the random 

variable U= Pr(Tr<kA + t\kA<Tr<kA + A,z°r,zl,...,zk) , a transformation of 

continuous random variable Tr, is uniformly distributed random variable between zero 

and one [Mirham, 1972]. The inverse of function U is not easy to determine, so the 

reverse CDF method is used here. To simulate the failure time of an experiment Tr, 
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given that it has failed between kA and kA + A, we discretize the observation interval 

A, in to m (an optional number chosen based on the systems characteristics and the 

desired precision) equal parts and calculate Pr(/) = 

Pr 
f 1\ \ 
Tr<kA + — \kA<Tr<kA + A,z°r,z

l
r,...,z

L
r , for all / = 0,...,m-l. This approach 

V m J 

makes it possible to use the discrete random variable generation method, similar to what 

we used in previous parts, to simulate the time to failure of the experiment. A uniform 

/ 
random u ~ C/(0,l), is generated and compared with cumulative probabilities ^ P r ( / ) , 

o 

/ = 0,...,m - 1 . The simulated failure time of the experiment, then will be: 

r ,=*A + mfj — : ^ P r ( / ) >i*,/ = 0,...,ra-l l . 

Record the experiment: 

The parameter estimation method is based on the experiments' failure time Tr and the 

experiments indicator values set [0l
r,...,6

K
ry,kA<Tr <kA + A, We save these two piece 

of information for the current experiment and continue to Experiment Initialization, by 

r = r +1 while r < n, where n is the desired number of experiments to generate. 

Numerical Example 

We have run the simulation by considering A = l, for n = 10,30,100,300,500,1000 and 

5000. Each simulation has been run for 100 samples. For instance, for n = 30, we have 

simulated 30 experiments and estimated the parameters using the introduced method. 
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Each simulation has been repeated for 100 times. The starting parameters of the 

experiments are /? = 1.50, rj- 2.5, y = \, p = 0.95, qx =0.5 and q2 =0.6. The results 

of the simulations are shown in the following figures and tables. 

Figure 4-5, shows that all the estimated parameters converge to the real value of the 

parameter while the number of the experiment increases. 

2.50 -

2.30 1 

V... 

10 50 10! 300 500 1000 5000 

Experiment Number 

V 

0.00 -r- 1 

10 50 100 300 500 1000 
Experiment Number 

Figure 4-5: Mean of the estimated parameters with different experiment number 

Table 4-1 demonstrates the variance and the standard error of the estimated parameters. 

Again, all the cases demonstrate decrease in the variance and standard error by 

increasing the number of the experiments. Generally, it can be concluded from Figure 

4-5 and Table 4-1 that by 50 instances of experiments and higher, the methods gives 

very reasonable results with acceptable variance and standard error. 
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Table 4-1: Variance and standard error of the estimated parameters by different experiment size 

n 

10 
50 

100 
300 

500 
1000 

5000 

Variance 

P 
0.554 

0.033 

0.016 

0.005 

0.003 

0.002 

0.000 

n 
0.751 

0.086 

0.046 

0.012 

0.008 
0.004 

0.001 

Y 
1.978 
0.614 

0.309 

0.060 

0.036 

0.016 

0.004 

P 
0.026 
0.003 

0.001 

0.000 

0.000 

0.000 

0.000 

q1 

0.039 
0.006 

0.003 

0.001 

0.001 

0.000 

0.000 

q2 

0.131 
0.117 

0.064 

0.025 

0.014 

0.006 

0.002 

Standard Error 
P 

0.074 

0.018 

0.013 

0.007 

0.005 

0.004 

0.002 

n 
0.087 
0.029 

0.022 

0.011 

0.009 

0.006 

0.003 

Y 
0.141 

0.078 

0.056 

0.024 

0.019 

0.012 

0.007 

P 
0.016 
0.005 
0.004 

0.002 

0.001 

0.001 

0.001 

I 1 

0.020 
0.008 

0.006 

0.003 

0.002 

0.002 

0.001 

I 2 

0.036 
0.034 

0.025 

0.016 

0.012 

0.008 

0.004 

Table 4-2 includes the Mean Squared Error (MSE) of the estimated parameters with 

different experiment sizes. Decrease in MSE is noticeable while the number of 

experiments increases. 

Table 4-2: Mean Squared Error of the estimated parameters by different experiment numbers 

MSE 
n 

10 

50 
100 
300 
500 

1000 

5000 

P 
0.072 

0.003 

0.002 
0.001 
0.000 

0.000 

0.000 

n 
0.016 

0.000 

0.001 
0.001 
0.001 

0.002 

0.001 

Y 
0.374 

0.022 

0.005 
0.000 
0.000 

0.000 

0.000 

p 
0.011 

0.001 

0.000 
0.000 
0.000 

0.000 

0.000 

q1 
0.007 

0.000 

0.000 
0.000 
0.000 

0.000 

0.000 

q2 

0.023 

0.001 

0.004 
0.003 
0.001 

0.000 

0.000 

Figure 4-6 shows the confidence interval for l-a = 95%, for all the estimated 

parameters. It can be seen that all the intervals are narrowing by higher number of 

experiments, and as discussed before, at the same time, the mean value of the estimated 

value converges to the real value of the parameter. 
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Figure 4-6: Confidence interval of 95% for estimated parameters with different sample sizes 

We conclude that the introduced parameter estimation method is very effective and 

consistent. In what follows, we will introduce a method for estimating the parameters of 

the same problem when random censoring exists in the data. Similarly, we will study the 

consistency and accuracy of the method. 
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b) With censored data 

For a set of n independent experiments, assume that Tr is the stopping time of the r th 

item. Also assume that &(Tr) is the history of the indicator's observations up to Tr. We 

also assume an censoring indicator 5r 
[ 1 if the item has failed 

lO if the item is censored 
which indicates 

whether the value of Tr is an actual failure time or it is the moment at which we have 

randomly stopped the experiment i.e. Tr is the censoring time. We are assuming random 

censorship, and that the censoring times are independent of each other and of the failure 

times, as well. We assume also that the censoring is non-informative [Kalbfleisch and 

Prentice, 1980]. In short, non-informative censoring means that the censoring 

distribution does not depend on the unknown parameters in the model. Since we 

condition on observed values of censorings in Cox's regression model, the censoring 

distributions do not enter the partial likelihood. Then the likelihood of the set of 

parameters Q based on the available data can be given by: [Kalbfleisch and Prentice, 

1980] 

L(Q) = Y\f{Tr,e;Q)S'R{Tr,e;Q.) \-sr 

r=\ 

Earlier we have shown that: 

f{t,e) = 

Y\Pr(0M | r> ( /+ i )Ay) 
1=0 

x V ^ e x p - \h{r,i)dr h{t,i), 

k-\ N ( C+')A 

f j ^ / e x p - J h(z,i)dT 
1=0 i=l 
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and 

R(t,6(t)) = 

nPr(0,+1|r>(/ + l)A,*-') 
/=o 

k-\ N ( ( /+1)A 

]~[^;r, 'exp - J h(r,i)dt 
\ /A /=0 7=1 

]Tn] exp - [/? (r,z) J r 
'"=1 V M V *A 

By applying the same maximization technique that was used for the likelihood of 

uncensored data, the maximum likelihood function of L(Q) can be calculated. In what 

follows, we have analyzed the effectiveness of the estimation method by a simulation 

study. 

Simulation 

The simulation procedure with censored data is similar to what was presented in the 

previous part. One difference is at the step of Overall Initialization, where we define / , 

as the censoring percentage. / is the ratio of the experiments to be censored randomly 

by the simulation. Also we introduce 5r, r = l,...,n, as the censoring indicator which will 

be recorded at Record the experiment step , along with other information. The step 

Censoring Simulation is an extra step in the simulation just before Record the 

experiment. The simulation is censored as follows: 

Censoring Simulation: 

The value of / , the percent of censored experiments in each simulation study, is chosen 

at the beginning of each simulation. For each experiment a random number £/(0,l)is 

generated and compared to the value of / . If the value of the random number is smaller 
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than / , this means that the current experiment should be censored. In this case, we 

update Sr to 1. 

Next step for a censored experiment is to determine at what point of time it has been 

censored. We assume that any experiment is censored at a uniformly distributed time 

between zero and the experiment's failure time. Obviously, the censoring time must 

happen before the equipment failure time; otherwise the equipment would have failed 

before being censored. To apply this step, we generate a random number «~£/(0,l) 

and replace Tr with uTr for the experiments with Sr = 1, r = \,...,n. 

Numerical Example 

To run the simulation with censored data a sample size of 300 was considered. . Figure 

4-7 demonstrates the mean of estimated parameters with different censoring percentage, 

beginning with 0%, i.e. no censoring data. It can be seen that, parameters f3,r] and y 

consistently increase by increasing the censoring percentage. Nevertheless, the 

estimations are very close to the case without censoring for j5 and y even for 80% of 

censoring data. The average estimated value for 77 also shows little increase up to 30% 

of censoring. The increase in average estimated 77 increases more significantly after 

50% of censoring data. 
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Figure 4-7: Mean of the estimated parameters with different censoring percentage and sample size 

300 

The average estimated value of the parameters p and qx are almost the same values 

with and without censored data. Average estimated value of q2 fluctuates more 

significantly around the original value estimated without censoring. The MSE of average 

estimated parameter q2 is less than 0.004 for all the cases (see Table 4-4). Insensibility 

of these three parameters to the percentage of the censored data can be justified by the 

fact that; even when the equipment is stopped before its failure, the relationship between 

the equipment's real state and the observation indicator still exists. Their stochastic 

relationship is not affected by the fact that there has been a failure or censoring. Based 

on the simulation results, we have also calculated the variance and the standard error of 

the estimated parameters shown in Table 4-3. The value of the variances and the 

standard errors show small increase with the increase in the censoring percentage. Yet, 

they are almost constant for parameters p and qx, and slightly increasing for q2. 
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Table 4-3: Variance and standard error of the estimated parameters with different censoring 

percentage 

1 

0% 

5% 

10% 

30% 

50% 

80% 

Variance 

P 
0.005 

0.005 

0.005 

0.010 

0.010 

0.035 

1 
0.012 

0.012 

0.013 

0.022 

0.029 

0.241 

Y 
0.060 

0.074 

0.083 

0.111 

0.148 

0.418 

P 
0.000 

0.001 

0.001 

0.001 

0.001 

0.001 

q1 
0.001 

0.001 

0.001 

0.001 

0.001 

0.001 

q2 

0.025 

0.036 

0.028 

0.033 

0.048 

0.081 

Standard Error 

P 
0.007 

0.007 

0.007 

0.010 

0.010 

0.019 

n 
0.011 

0.011 

0.012 

0.015 

0.017 

0.049 

Y 
0.024 

0.027 

0.029 

0.033 

0.038 

0.065 

P 
0.002 

0.002 

0.002 

0.003 

0.003 

0.003 

q1 
0.003 

0.004 

0.003 

0.003 

0.004 

0.004 

q2 

0.016 

0.019 

0.017 

0.018 

0.022 

0.028 

Table 4-4: Mean Squared Error of the estimated parameters with different censoring percentage 

MSE 

1 

5% 

10% 

30% 

50% 

80% 

3 
0.000 

0.000 

0.004 

0.019 

0.094 

n 
0.001 

0.008 
0.089 

0.392 

3.309 

Y 
0.000 

0.004 

0.001 

0.018 

0.067 

P 
0.000 

0.000 

0.000 

0.000 

0.000 

q1 

0.000 

0.000 

0.000 

0.000 

0.000 

q2 

0.000 

0.000 

0.001 

0.000 

0.004 

The MSE of the estimated parameters are shown in Table 4-4. As explained before, the 

estimation error for PHM parameters, i.e. J3,ri and / increases by increasing the 

censoring percentage and it is almost constant for rest of the parameters. The MSE 

values in Table 4-4 are calculated by considering the average estimated values for the 

parameters without censoring with 300 replications, as the reference point. Figure 4-8 

demonstrates the confidence interval of 95% for estimated parameters while the 

censoring percentage increases. As expected, the confidence interval gets broader by 

increasing the censoring percentage for PHM parameters and is almost constant for the 

rest of the parameters. 



154 

95% Confidence interval for p 95% Confidence interval for n 

9 5 % Conf idence interval for y 

10% 30% 
Censor ing percentage 

1.000 

0.900 

0.800 

0.700 

0.600 

0.500 

0.400 

0.300 

0.200 -

0.100 

0.000 

9 5 % Conf idence interval for p 

~*~UB 

- • - M e a n 

1.000 

0.900 

0.800 

0.700 

0.600 

0.500 

0.400 

0.300 

0.200 

0,100 

0.000 

9 5 % Conf idence interval for q1 9 5 % Conf idence interval fo r q2 

10% 30% 
Censor ing percentage 

Figure 4-8: Confidence interval of 95% for estimated parameters with different censoring 

percentage 

4.6 Conclusion 

In this research, we have addressed the parameter estimation problem for a condition 

monitoring system, where the degradation state of the equipment is not directly 

observable and is modeled by a Hidden Markov Model. The observed indicator on 



155 

equipment's degradation state has a stochastic relation with the degradation state of the 

equipment via a stochastic matrix and does not reveal the real degradation state of the 

equipment. The failure rate of the equipment is assumed to follow the Cox's PHM. We 

have introduced an approach to estimate the parameters of the PHM, Markov process 

transition matrix and the stochastic matrix of observations/state using Maximum 

Likelihood Estimation method. By a simulation approach, we have shown that the 

method converges to the real value of the parameters for bigger sample size. In addition, 

the behavior of the method has been examined when there exist censoring in data. The 

parameters of PHM show higher level of sensitivity to censoring data. The higher the 

percentage of censoring data, farther the amount of the estimated parameter to the real 

value. The existence of censoring data results in higher value of the PHM parameters. 

Based on the same study, the parameters of the Markov process and the stochastic 

matrix of observation/state are not very sensitive to the percentage of the censoring data. 
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CHAPTER 5 : SUMMARY AND CONCLUSION 

In this thesis, we consider a CBM model based on the PHM proposed by Cox [1972], 

and we assumed that the condition monitoring is indirect i.e. an indicator's value 9, of 

the unobservable degradation state is available at each observation moment. 

Observations are collected at constant (or near constant) interval A. In this study, Z 

represents the degradation state of the equipment which will be used as the diagnostic 

covariate in the PHM, and 9 is a value from the set of all the possible indicator's values 

0 = {l,...,M} . The whole set of the indicator's values is descritized into a finite set of 

M possible values. The equipment's condition is described as follows: 

• The equipment has a finite and known number of degradation states N. 

J = {l,..., N] is the set of all possible degradation states; 

• Degradation state transition follows a Markov Chain with unobservable states 

and is modeled by a Hidden Markov Model (HMM). The Markovian transition 

matrix is P = [ # , ] , where py is the probability of going from state / to state j , 

i, j € J during one observation interval, knowing that the equipment has not 

failed before the end of the interval; 

• The value of the indicator is stochastically related to the equipment's state 

through the observation probability matrix Q = [#,#] , jeJ, 9 e © - qje is the 

probability of getting indicator's value 9, while the equipment is in state j ; 
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• The indicator is collected periodically at intervals A; 

• Failure is not a degradation state. It is a non-working condition of the equipment 

that can happen at any time and while the system is in any degradation state, and 

is known immediately (obvious failure). 

• The system's failure rate follows a time-dependent PHM where the failure rate 

h(s,Zk)= h0(s)if/(Zk) is a product of two independent functions. h0() is a 

function of the system's age only and y/Q is a function of the system's 

degradation state only. 

Since the degradation state of the equipment is not observable, we adapted an alternative 

state space nk, the Conditional Probability Distribution of the system's degradation 

State (CPDS) at period k, as introduced by Ghasemi et al. [2007]: 

7Tk=\7r-\ 0 < ^ < l f o r / = l,...,7V",^^-f=ll,A: = 0,l,2,... (5-1) 

n\ represents the probability of being at state /' at the k-th inspection moment. The 

o f1 z = 1 
initial value of the CPDS for a new system is defined as n, = { 

' [0 l<i<N 

At each observation moment, after collection of an observation 6, the CPDS is updated 

by considering the latest observation 6 as follows: 

4+ 1 (0)=T^PiJaJ& YLxiPijijo > J=1>->N <5-2> 
/=] / /=] j=\ 
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In the following subsections, we explain the objectives of the thesis and the 

corresponding methods and solutions that were developed for each objective. 

5.1 Objective 1: Optimal inspection interval and optimal replacement policy 

As the first objective of this thesis, we addressed the problem of optimal inspection 

interval and introduced the corresponding optimal replacement policy when the 

inspections are costly. The cost for a preventive replacement is C, while a failure 

replacement costs K + C,K,C > 0 . Both actions, failure replacement and preventive 

replacement, are instantaneous. The inspection costs C7, independently of the 

inspection's interval. 

We defined V(k,Kk) as the minimum cost of maintenance and inspection over the 

renewal period, while the system is in the k-ih. inspection point and the CPDS is nk. 

The renewal period is the time between two consecutive replacements, whether failure 

or preventive replacements. 

v(k,7zk) = mm\kCj +C + v(o,x°),W (k,Tck ,gf^ (5-3) 

where kCj + C + v( 0,7r°) is the total cost over the renewal period at the k-th inspection 

moment, if the decision is to replace preventively and: 

w{k,7ik,g) = \kC, + K + C + V(0,x°)~\[l-I(k,xk , A ) ] - gr{k,nk , A ) 

+ 
M _ (5-4) 
Y,V(k + l,xk+i (0))?v(0\k,7ik) R(k,7rk,A) 
e=\ 
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kCj +K + C + V(0,7r°) represents the renewal period's total cost if the decision is 

"Do-nothing" (decision= oo) and the system fails during the next inspection period. 

M 

Yv{k+\y+]{e))?x(e\k,7rk) 
.0=1 

is the expected total future cost of the model at the 

k + l inspection moment, provided that the failure has not happened during the A>th 

period. 1 - R (k, nk', AJ and R{k, nk, A) are the probability of having the failure during 

the k-th period and the probability that the system is still working at the beginning of 

the k+ 1st period consecutively while the CPDS at period k is nk. T\k,nk,A) and g 

are the mean sojourn time of the system at the k + 1st period when the CPDS at the k-th 

period nk, is available and, the average cost per unit of time over infinite horizon 

respectively, g includes the cost of replacements only and excludes the inspections cost. 

R\k,7Tk ,Aj and T\k,7rk ,A) are calculated by: 

— N 

R(k,7rk,A) = ̂ R(k,i,A) a- (5-5) 
7 = 1 

?(*,#*,A)= ^R(k,7rk,s) ds (5-6) 

where R{k,i,t)= exp -y/(i) \, hQ(s)ds) 

Under these assumptions and by using the developed model, the replacement criterion is 

found and is given as follows: 

a(k,nk)-
oo if K 

0 if K 

~l-R(k,7tk,A)]<gT(k,xk,A) 

l-R(ky,A)]>gr(ky,A) 
(5-7) 
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This criterion is a function of K, the failure cost; R(k,xk,A\ and t(k,nk,A], the 

conditional reliability and conditional sojourn at the k-th observation moment, 

consequently; and g , the long run average cost of replacement. 

A recursive method to find g*, the minimum long-run average cost of replacement is 

introduced. By replacing g with g*, the optimal replacement policy is obtained from 

equation (5-7). 

The optimal inspection period is chosen from a finite set of L possible inspection 

intervals A,;l = \,2,...,L. The optimal inspection period is the one with the minimum 

C 
total long-run average cost G* where G*, = g, + —. In practice, after finding the G* 

and by fixing A to the corresponding A*, the optimal replacement policy based on the 

earlier results in this study is found. 

5.2 Objective 2: Reliability Function and Mean Residual Life 

In chapter three, we have calculated the Reliability Function (RF) and Mean Residual 

Life (MRL) of the assumed equipment. The MRL and the RF can be used as a 

supplementary decision tool, in particular when the cost elements of preventive 

replacement are unknown, or there are criteria other than the cost to respect. By knowing 

the MRL and the RF a practitioner can take advantage of the upcoming maintenance 

events (like a scheduled shutdown of production line), that are not usually considered in 

cost optimal replacement criteria, to perform a CBM and to improve the availability of 

the equipment. 
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The conditional reliability at (k,Zk), i.e. at the k-th observation moment while the state 

is Zk and for t > A, is formulated by the following equation: 

R(k,Zk,t) = ?r(T>kA + t\T>kA,Z],Z2,...,Zk),t>A 

= Pr ( r > kA + t | T > kA,Zk),t > A 

In the case of direct observation assuming Zk-i, we have shown that: 

(5-8) 

R(k,i,t) (5-9) 

exp[ -y/ (i) f h0(s)ds) 0<t<A 

RikXA^p^k + lJ^t-A)) t>A 

In the case of indirect information, we defined R\k,nk,t) as the conditional reliability 

of the equipment at the k-th observation moment, while the state conditional probability 

distribution is nk. R\k,Kk ,t\ is then calculated as follows: 

R{k,nk,i) = 

]T nk expi-y/ (i) £+' h0(s)ds)\ 0 < / < A 

TV N 

Jj^R(k,i,A)J^piJxR(k + l,j,(t-A)) t>A 
(5-10) 

7=1 

In the case of direct observations, the MRL is given as follows: 

e{k,i)= fR(k,i, t)dt 

We calculated the MRL, (>(k,7rk), at the kth observation moment, while the state 

conditional probability is nk, and proved that it can be represented as follows: 

e(k,7tk}= f* R(k,nk,t)dt (5-11) 
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5.3 Objective 3: Estimation of the model's Parameter 

Any mathematical model, including the models introduced in the two previously 

mentioned objectives, is based on a set of unknown parameters that needs to be 

estimated in order to apply the model in a real life problem. This estimation is based on 

the available data of the system under study. In the chapter four, we introduced methods 

to estimate the parameters of the models under study. To apply any of these models into 

a real life problem, one needs to estimate the parameters of the PHM, the probabilities of 

the Markov transition matrix, and the probabilities of the state-indicator matrix. 

We defined T to be the lifetime of the equipment, which is an i.i.d., non-negative 

continuous random variable, and 0(s) = w\ e2,...,Ok};s< T;k = 1,2,... ; M < s the 

history of the indicator's values up to time s, where A is the observation interval. The 

indicator's values up to time s, can be mapped into the state conditional probability 

distribution up to time s by n(s) = \n ,n2,...,n1'' j ; s < T; k = 1,2,...;kA < s , where the 

elements of n(s) are calculated from equations (5-1) and (5-2) at the corresponding 

observation moment, when a new indicator's value is available. 

We proved that the lifetime's survival function is: 

R(t,e{t)) = 

f j P r ^ 1 | J > ( / + l ) A y ) 
1=0 

k-\ N f (/+1)A 

f j i T ^ ' e x p - J h(rj)dr 
1=0 i=l 

^n* exp - \h(T,i)dz 
''=1 V A-A J 

(5-12) 

, ^ P r ( / < T < / + A / | r > / , ^ ( / ) ) dR(t,0(tj) 
and since f(t,0(t))= lim - V y n - V y j l 

A^O+ At dt 
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/M0) = 
flPr(0M\T>(l + l)A,7r') 
/=o 

A-1 A- ( C+1)A 

1=0 i=l /A 

I r I 

V *A 

(5-13) 

We addressed the parameter estimation problem in two categories: with and without 

censoring. 

In the case of uncensored data, for a set of n independent experiments, we assume that 

Tr is the time to failure of rth experiment. The likelihood of the set of unknown 

parameters Q., based on the available data can be calculated by: 

L(ci)=Hf(T„o(Try,n) (5-14) 
r=\ 

In the case of censored data, we have defined a censoring indicator 

S = 
[l if the item has failed 

0 if the item is censored 
, which indicates whether the value of Tr is an actual 

failure time or it is the moment at which we have randomly stopped the experiment i.e. 

Tr is the censoring time. Then the likelihood of the set of unknown parameters Q. based 

on the available data can be given by: 

L(Q) = flf(Tr,0;Q)SrR{Tr,0;n)1^ (5-15) 
r = l 

In both cases, with censored and uncensored data, by applying a maximization technique 

such as the line search method, the maximum of the log likelihood functions is 

calculated. 
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Convergence and robustness of the introduced estimation methods have been studied by 

using a Monte Carlo simulation technique. Based on this study, the parameters' values 

obtained by the developed methods converge to the real values when the size of the data 

sample increases. The estimation method gives very good results even with 50% 

censoring data. 

This thesis provides a package of useful utilities in condition monitoring studies. It 

introduces an optimal criterion to replace the equipment as well as a method to find the 

optimal inspection interval. It also offers two measures of the future performance of the 

equipment, i.e. the MRL and the RF. These measures help the practitioners in taking 

more accurate decisions concerning the equipment's maintenance. Finally, the 

parameters' estimation techniques allow the practitioners to use the proposed models in 

real cases and also, answer to the problem of finding the best parameters' value, a 

problem that was not addressed in many published researches. Several numerical 

examples are solved and the results are discussed. 

Areas of future studies are to expand the results obtained in this thesis to the case with 

non fixed inspection intervals. In this case, the next inspection moment and the 

replacement policy that minimizes the maintenance cost have to be determined at each 

inspection moment. Based on the replacement policy at each inspection moment, one 

will decide whether to replace the system or leave it work until next inspection point. In 

the latter case, the next observation point will be set at current inspection point based on 

the available condition monitoring data up to date. The time between inspections in this 

case may be non-equal. 
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The case in which, a decision can be made among several repair possibilities can be 

considered as another realistic case of future research. In many practical cases, different 

partial repairs for the equipments which cause different costs may take place. Each 

specific partial repair will changes the degradation state of the system from a current 

state to a probable pre-known state. 

In this thesis, we assumed a homogeneous Markov Model. The case of the non 

homogeneous Markov Model is also an interesting area of prospective research. 
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