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R E S U M E 

L'objectif de recherche de cette these est de developper un algorithme de resolution 

de la redondance (RR) arm d'optimiser la trajectoire dans l'espace articulaire d'un 

robot industriel devant effectuer des taches manufacturieres. 

La plupart des operations d'usinage tel que le soudage, l'ebavurage ou le fraisage ont 

un axe de symetrie. II est clair que la rotation de l'outil autour de l'axe de symetrie n'a 

pas d'effet sur la tache a accomplir. Si la tache est effectuee avec un robot industriel 

possedant six axes de rotation, il y a un degre de liberte (DDL) redondant qui permet 

potentiellement d'optimiser. Cette sorte de redondance est appelee une redondance 

fonctionnelle, ce qui contraste avec la redondance intrinseque bien connue par la 

plupart des chercheurs. Les taches qui sont fonctionnellement redondantes sont tres 

communes dans le domaine de la robotique industrielle mais demeurent ignorees par 

la plupart des chercheurs. 

Concernant les exigences pour l'utilisation de robots industriels dans les operations 

manufacturieres, cette these propose une nouvelle approche dans la resolution de la 

redondance pour les taches robotiques fonctionnellement redondantes. Cette approche 

est appelee methode de decomposition du torseur de vitesse (Twist Decomposition 

Approach) (TWA). Au lieu de projeter un critere d'optimisation sur l'espace nul 

de la matrice Jacobienne tel que le font la majorite des schemas de resolution de la 

redondance, la methode TWA decompose premierement le torseur de vitesse cartesien 

de l'effecteur en deux sous-espaces; l'un etant le sous-espace dans lequel la tache 

principale s'effectue, tandis que l'autre est l'espace redondant. La tache peut alors 

etre optimisee dans le sous-espace redondant. Dans cette these, les limites des joints 

ainsi que l'evitement des singularites sont considered comme etant les deux principaux 

objectifs d'optimisation. 

II a ete demontre que le TWA est capable d'optimiser de maniere efficace la trajec

toire dans l'espace articulaire pour diverses taches et divers robots industriels. Les 

applications possibles de TWA inclus le soudage, le fraisage, l'ebavurage, la peinture, 
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la coupe au laser et bien d'autres taches qui requierent moins de six degres de liberte 

au repere de l'outil. 

Afin de prendre pleinement avantage du potentiel de TWA, il y a une question cruciale 

qui doit etre abordee. Ce sont les ponderations qui ont un role d'equilibre entre les 

sous-taches et la contribution de chaque articulation dans l'optimisation. Etant donne 

que les ponderations ont une grande influence sur l'optimisation, et aussi sur le succes 

ou l'echec d'une tache, la question de l'adaptation des ponderations merite une etude 

plus approfondie. Dans cette these, deux methodes d'adaptation des ponderations 

sont proposees, la methode d'auto-adaptation et la methode d'adaptation dyna-

mique. Les deux methodes identifient premierement la sensibilite des ponderations. 

La methode d'auto-adaptation utilise une methode de recherche lineaire pour adapter 

les ponderations, tandis que la methode d'adaptation dynamique developpe quelques 

fonctions empiriques pour adapter dynamiquement les ponderations a chaque instant 

sur la trajectoire. Les deux methodes fonctionnent dans des taches variees. Par contre, 

la methode d'adaptation dynamique a un eventail d'applications plus large et atteint 

de meilleurs resultats d'optimisation etant donne que les ponderations sont adaptees 

selon les besoins a chaque instant au lieu de les conserver fixes a certaines valeurs tel 

que dans la methode d'auto-adaptation. 

Cette these est composee de sept chapitres. Le chapitre 1 introduit le concept de 

taches fonctionnellement redondantes et presente les taches fonctionnellement redon-

dantes comme etant commune dans le monde de la robotique industrielle. 

Le chapitre 2 fait une revue des travaux de recherche sur la resolution de la redon-

dance cinematique, incluant les approches d'optimisation locale et globale, et l'appli-

cation de techniques de controle intelligentes. D'autres resolutions de la redondance 

fonctionnelle developpee sont presentees. 

Le chapitre 3 presente et applique le TWA aux problemes d'evitement des limites 

articulaires, alors qu'au chapitre 4, l'evitement des singularites est ajoute en parallele 

a l'evitement des limites des articulaires aux objectifs d'optimisation de la trajectoire 

du robot dans l'espace articulaire. 
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Les chapitres 5 et 6 proposent deux methodes differentes pour l'adaptation des 

ponderations, l'auto-adaptation au chapitre 5 et l'adaptation dynamique au chapitre 

6. 

Finalement, la conclusion est presentee au chapitre 7. 
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A B S T R A C T 

The research objective of this thesis is to develop a redundancy-resolution (RR) 

algorithm to optimize the joint space trajectory of six-revolute industrial robot as 

performing manufacturing tasks. 

Most of machining operations, such as welding, deburring or milling, have a symme

try axis. Clearly, the rotation of the tool around the symmetry axis is irrelevant to 

the view of the task to be accomplished. If the task is performed with a six-rotation-

axis industrial robot, there is one degrees of freedom (DOF) of kinematic redundancy, 

which provides the potential of optimization. This kind of redundancy is called as 

functional redundancy, with contrast to intrinsic redundancy well known by most re

searchers. Functionally-redundant tasks have very common existence in the industrial 

robotic field, but still are ignored by most researchers. 

Concerning the requirement for applying industrial robot in manufacturing, this thesis 

proposes a new redundant-resolution approach to solve functionally-redundant robo

tic tasks. This approach is called Twist Decomposition Approach (TWA). Instead of 

projecting an optimization criterion onto the null space of the Jacobian matrix as 

most of the redundancy-resolution schemes do, TWA firstly decomposes the Carte

sian twist of the end-effector into two suitable subspaces; one being the subspace 

where the main task undergoes, while the other one being the redundant subspace. 

Then, the task can be optimized on the redundant subspace of the twist. In this the

sis, joint-limits and singularity avoidance are considered as the two main optimization 

objectives. 

TWA has been demonstrated to be able to optimize effectively the joint space trajec

tory for various tasks and various types of industrial robots. The possible application 

of TWA include welding, milling, deburing, painting, laser cutting and many other 

tasks requiring less than six-DOF in tool frame. 

In order to take the full advantage of TWA's potential, there is a critical issue which 

need to be addressed. It is the weights that play the role of balancing among the 
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subtasks and contribution of each joint in the optimization. Since the weights have 

such a great influence on the optimization, and even the task success or failure, the 

weights adaptation issue deserves more study. In this thesis, two weights adaptation 

methods are proposed, namely the self-adaptation and dynamic-adaptation methods. 

Both methods identify sensitivity of weights component firstly. Self-adaptation me

thod proposes the use of a linear space searching method to adapt weights, while 

dynamic-adaptation method develops some empirical functions to dynamically adapt 

weights at each instant of the trajectory. Both methods succeed in various tasks. Ho

wever, dynamic-adaptation method has greater application range and reaches better 

optimization results, since weights are adapted according to the need of each ins

tant (dynamic-adaptation method), instead of keeping them fixed at certain value 

(self-adaptation method). 

This thesis is composed of seven chapters. Chapter 1 introduces the concept of 

functionally-redundant tasks, and presents the common existence of the functionally-

redundant tasks in the industrial robotic field. 

Chapter 2 reviews the research works on kinematic redundancy resolution, inclu

ding the local and global optimization approaches, and the application of intelligent 

control techniques. Some other developed functional redundancy resolutions are also 

introduced. 

In Chapter 3, TWA is presented and applied on avoiding joint limits problem, while 

in Chapter 4, the singularity avoidance is added into the optimization objective of 

the robot joint space trajectory besides the joint limit avoidance. 

Chapters 5 and 6 propose two different methods on adapting weights, self-adaptation 

method in Chapter 5, and dynamic-adaptation method in Chapter 6. 

Finally, the conclusions and future works are presented in Chapter 7. 
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C O N D E N S E EN FRANQAIS 

0.1 Introduction 

Dans cette these, les sources de redondance cinematique d'un manipulateur seriel 

sont classees dans deux categories : la redondance intrinseque et la redondance fonc-

tionnelle. Ces dernieres sont definies au chapitre 1 (voir la definition 1.1, 1.2 et 1.3 

en pages 6 et 9). 

Reliees a la redondance intrinseque, les methodes de resolution de la redondance (RR) 

sont classifies en methodes optimales globales et locales. Le probleme de RR a ete 

egalement resolu au niveau des deplacements et des vitesses. La plupart des chercheurs 

ont travaille au niveau de la vitesse et ont employe l'inverse generalised de Moore-

Penrose ou l'inverse generalised ponderee de la matrice Jacobienne. Les methodes 

employant l'inverse generalised utilisent soit la solution de norme minimale (voir 

l'eq.(2.23)) soit la solution de norme non-minimale (voir l'eq.(2.25)). La solution 

de norme non-minimale ajoute une composante homogene a la solution de norme 

minimale. La composante homogene projette un vecteur arbitraire sur le noyau (ou 

espace nul) de la matrice Jacobienne. L'equation (2.25) est largement utilisee par les 

chercheurs pour resoudre des taches redondantes. 

Dans le cas de la redondance fonctionnelle, les methodes de RR intrinseques tra-

vaillant dans l'espace nul de la matrice Jacobienne ne peuvent etre directement em

ployees car la dimension de l'espace nul de la Jacobienne est egale a zero. Ann d'ob-

tenir un systeme sous-determine, il y a deux possibilites : augmenter la dimension 

du vecteur de vitesse articulaire, ou reduire la dimension du torseur de vitesse de 

l'effecteur. Correspondant aux deux possibilites, les methodes de RR fonctionnelle 

peuvent etre classifiees en deux groupes : l'approche augmentee et l'approche reduite. 

La methode de l'articulation virtuelle selon l'approche augmentee et la methode 

d'elimination selon l'approche reduite sont passees en revue au chapitre 2. 

Dans cette these, on propose une nouvelle methode de RR fonctionnelle qui est basee 
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sur la decomposition du torseur de vitesse. Cette methode ne necessite pas la pro

jection sur l'espace mil de la matrice Jacobienne. La methode de decomposition du 

torseur de vitesse a une applicability potentielle a toutes les taches de moins de six 

DDL quelque soit le nombre de DDL du manipulateur. 

0.2 La methode de decomposition du torseur de vitesse (TWA) et evitement 

des limites articulaires 

Tous les vecteurs de R3 peuvent etre decomposes en deux parties orthogonales en uti-

lisant le projeteur M et son complement orthogonal M -1 . Les projeteurs sont donnes 

pour les quatre dimensions possibles du sous-espace de R3 : de la tache de dimension 

zero a la tache de 3 dimensions (voir l'eq.(3.2)). 

Selon la decomposition orthogonale des vecteurs, n'importe quelle rangee du torseur 

de l'espace 2 x l 3 peut egalement etre decomposed en deux parties orthogonales en 

utilisant le projeteur T et son complement orthogonal T x . Les projeteurs de torseurs 

de vitesse sont dermis par une matrice diagonale des deux projeteurs des vecteurs 

de R3 (voir l'eq.(3.6)). Pour les manipulateurs series fonctionnellement redondants, 

il est possible de decomposer le torseur de vitesse de l'effecteur en deux parties or

thogonales dans le sous-espace tache et le sous-espace redondant. Par consequent, 

la decomposition orthogonale du torseur de vitesse peut se substituer a la solu

tion de norme minimale de la cinematique inverse du manipulateur redondant (voir 

l'eq.(3.8)). La premiere partie du cote droit de l'eq.(3.8) atteint le deplacement articu-

laire exige par la tache, alors que la deuxieme partie atteint le deplacement articulaire 

dans le sous-espace redondant. L'equation (3.8) est la contribution originale principale 

de cette these. Elle n'exige pas la projection sur l'espace nul de la matrice Jacobienne 

comme la majorite des algorithmes de resolution de redondance, mais exige plutot 

une projection orthogonale basee sur la geometrie instantanee de la tache a accomplir. 
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Puisque les deux projeteurs de vecteur dans la matrice de projeteur de torseur ont 

quatre dimensions possibles dans R3, le projeteur de torseur a 16 possibilites comme 

montre au Tableau 3.6. Selon la condition de la tache, un projeteur different du 

torseur sera choisi pour decomposer ce dernier. L'algorithme 3.1 montre la resolution 

de redondance fonctionnelle avec la methode de decomposition du torseur de vitesse. 

Trois exemples sur different manipulateurs ont montre les applications de TWA pour 

eviter les limites articulaires. 

0.3 Evitement des limites articulaires et singularites 

Ann d'eviter non seulement les limites articulaires, mais aussi les singularites merae 

temps, un nouveau critere de performance relatives a ces dernieres, nomme parametre 

de Singularity, est propose et analyse dans ce chapitre. Pour eviter les limites arti

culaires, le critere de performance peut etre ecrit comme l'eq.(4.1) pour maintenir le 

manipulateur le plus proche possible de la position milieu 6 articulaire . 

II y a deux criteres bien connus pour la detection de la configuration singuliere, la 

manipulabilite u>mom et le conditionnement ujcond- Comme oomom ne represente que 

le volume de Pellipsoide de manipulabilite, alors que u>cond represente seulement la 

forme, un indice de performance, qui represente a la fois le volume et la forme de 

l'ellipsoide manipulabilite, est propose et nomme parametre de Singularity'68^, definie 

comme l'eq.(4.6). 

Ann de detecter la singularity, une valeur seuil de singularity UJ0 est fixe. Lorsque 

ujps depasse u0, la configuration correspondante a cet instant est enregistree en tant 

que 6Ts. Le critere de performance ecrit comme l'eq.(4.7) est alors active afin de 

maintenir le manipulateur aussi proche que possible de BTs devant toute l'etapes 

suivante, jusqu'a ce que le u>ps soit inferieur a la valeur seuil UJ0. 

Enfin, la fonction objectif pourrait etre ecrite comme l'eq.(4.8) avec l'evitement des 

limites articulaires et des singularites comme taches secondaires, et l'eq.(3.8) pourrait 

etre reformule comme l'eq.(4.10). 

Les tests numerique demontrent le bon fonctionnement de l'optimisation par l'evitement 
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des singularities, des limites articulaires, et montrent la grande influence de la ponderation 

des criteres sur l'optimization. 

0.4 Auto-adaptation des poids en TWA 

Les resultats obtenus par la methode TWA sont aussi tres sensible au choix des 

ponderations tel que la methode classique GPM. Leur succes s'appuient sur le vec-

teur de ponderation (l'importance relative de la tache secondaire par rapport a la 

tache principale), qui doit etre ajuste pour que le processus d'optimisation reussisse. 

S'il est mal choisi, la tache principale peut echouer. Jusqu'a present, le vecteur est 

habituellement choisi par la methode d'essai-erreur. 

Un systeme d'auto-adaptation des ponderations est propose. Ce systeme est compose 

de trois componsantes principales decrits ainsi : 

1. Identification de la sensibilite des ponderations (IWS); 

2. Algorithme devaluation des performances des trajectoires articulaires (JT-

PEA); 

3. Methode de recherche lineaire (LSM) dans l'espace convexe 2D ; 

L'ensemble de la procedure de reglage est illustre a Palgorithme 5.1. (en page 81). 

0.4.1 Identification de la sensibilite des poids 

La plupart des manipulateurs industriels serie 6-axes sont decouples, et par consequent, 

l'orientation d'effecteur est controlee par les trois dernieres articulations, c'est-a-dire, 

de la 4ieme a la 6ieme articulations. Dans le cas de la rotation redondante d'effecteur, 

les ponderations des trois dernieres articulations ont plus d'influence sur le movement 

redondant que les autres ponderations. Selon le rapport geometrique entre l'axe de 

symetrie de l'outil et l'axe de rotation de l'articulation, l'innuence de chacune des 

articulations sur le movement redondant peut etre identifiee. Enfin, le probleme de 

recherche d'espace 6-D est simplifie a un probleme d'espace 2-D convexe . 
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L'influence de ces trois poids sur la rotation autour de l'axe de l'articulation redon-

dante ef depend de l'orientation relative entre e6 et e t, comme ci-apres, 

- Cas 1 : et J_ e6 =>• 6ieme n'est pas sensible =>• Adapter hieme et Heme. 

- Cas 2 : et \\ e^ =>• et _L es =>• 5ieme n'est pas sensible =>• Adapter 6ieme et 4ieme. 

- Cas 3 : Ni et _L e@ ni e t || e6 =>• Tous /es trozs soni pertinents. 

0.4.2 Algorithme devaluat ion des performances des trajectoires articu-

laires 

Le processus d'evaluation est presente a la Fig. 5.1. Une fois les trajectoires articu-

laires obtenues par resolution de la cinematic inverse, la plus grande distance par 

rapport a la limite articulaire et les pires parametre qui rendent le manipulateur 

singulier le long des trajectoires sont pris comme criteres de performance de cette 

solution dans l'espace articulaire. 

0.4.3 Methode de recherche lineaire 

Dans cette methode, la dimension de l'espace de recherche est toujours deux, car a 

chaque fois seul un des elements de w et de k sont regies. La recherche de l'espace est 

suppose etre 2D convexe selon nos experiences. Par consequent, une simple methode 

de recherche lineaire directe est effectuee pour rechercher la valeur minimale. La 

Fig. 5.2 montre la processus de recherche dans un espace 2-D convexe avec le point 

le plus bas inconnu. 

0.4.4 Exemple numerique 

Avec trois exemples d'applications, le systeme d'auto-adaptation est bien demontre 

et verifie. Tous les exemples ont ete mis en ceuvre sur Robotmaster'71!, un logiciel de 

programmation robotique. 

- Exemple 1 : e t 1 e6 (en pages 88 et 89); 

- Exemple 2 : e t || e6 (en page 90); 

- Exemple 3 : ni et || e6 ni et _L e6 (en pages 91 et 92). 
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0.5 Adaptation dynamique des ponderation en TWA 

Etant donne que les differents segments d'une tache demandent generalement des 

optimisations differentes, la methode d'auto-adaptation ne peut pas repondre a cette 

exigence, les ponderations sont fixes a la meme valeur sur toute la trajectoire. Dans ce 

chapitre, un systeme d'adaptation dynamique des ponderations pour la redondance 

fonctionnelle est developpe pour remplacer la methode peu efficace qui fixe la valeur de 

l'adaptation. La systeme d'adaptation dynamique des ponderations est integre dans 

le TWA developpe, et est applique dans le cas de multiples taches secondaires qui 

examinent non seulement l'optimisation des limites articulaires et de la singularite, 

mais aussi des vitesses articulaires. 

L'evaluation de la fonction d'adaptation joue un role cle dans le systeme entier. Les 

fonctions sont developpees dans la section 6.3. L'algorithme d'adaptation dynamique 

est presente dans l'algorithme 6.1 (en page 108). 

Ann d'atteindre ces objectifs, nous devons resoudre les trois problemes suivants : 

- Quelles sont les variables influant sur les ponderations de l'adaptation ? 

- Quelle est la relation entre les ponderations et les variables d'entree ? 

- Comment exprimer la fonction d'adaptation sous forme mathematique ? 

II y a deux vecteurs et un scalaire variables influencant les ponderations d'adaptation. 

Ce sont des vecteurs en trois dimensions, /3 , qui detecte l'influence des trois dernieres 

articulations sur les deplacements redondants; un vecteur S de six dimensions, qui 

mesure la distance de la position articulaire actuelle a ses limites; et l'echelle wmom, 

qui mesure la distance de la configuration actuelle a la singularite. 

A partir de la geometrie de l'outil symetrique entre l'axe et et l'axe de rotation e;, 

nous pouvons exprimer l'influence de zieme articulation par $ = arccos(|efe t |). 

Comme Tangle /?j est en baisse a 0, la rotation autour de et devient sensible a la 

valeur des ponderations Wi. 

Par experimentation, nous constatons que les deux fonctions d'adaptation fjoint et fsing 

sont des cas dependants et ont de grandes differences selon les diverses applications. 

C'est-a-dire, il n'existe pas de fonction generale unique de fioint et fsi selon notre 



XV11 

experience. Avec une serie d'equations developpees a partir de eq.(6.7) a (6.12), les 

ponderations w et k peuvent etre adaptes dynamiquement en fonction des exigences 

instantanees. 

Le long de la trajectoire essaye, l'instant ou les indices de performance sont les pires 

est appelle l'instant critique de cette trajectoire. Afin d'affiner w et k pour repondre 

aux criteres d'optimisation autour de cet instant critique, Cj0int et csing des eqs.(6.7 

6.8) sont adaptees sur la base des trois principes suivants : 

- augmentation de Cjoint afin de reduire au minimum les deplacements des 1'articu

lations ; 

- augmentation de cSing pour mettre le manipulateur hors de la singularite; 

- reduction de Cj0int ou csing pour diminuer la vitesse articulaire 

Avec les exemples d'applications, le systeme d'adaptation dynamique des ponderations 

est en mesure d'atteindre des trajectoires de l'espace articularie qui sont plus optimise 

que dans le systeme d'auto-adaptation. 

0.6 Conclusion 

La methode de decomposition du torseur de vitesse peut atteindre une trajectoire 

plus lisse et plus precise que la methode d'articulation virtuelle pour notre tache. Bien 

que la methode de decomposition du torseur de vitesse peut seulement resoudre des 

problemes de redondance fonctionnelle, elle reste neanmoins significative et interessante 

puisqu'un nombre eleve de taches fonctionnelles redondantes existe dans le milieu in-

dustriel, telle que la soudure, la pulverisation, le fraisage, le decoupage par jet d'eau 

et le decoupage au laser, etc. 

Dans cette these, la methode de decomposition du torseur de vitesse n'est pas seule

ment utilisee pour eviter le probleme pose par les limites articulaires. Elle est utilisee 

pour eviter les singularites et les hautes vitesses des articulations. 

Pendant le processus d'optimisation, nous notons que les choix de la posture initiale 

et de vecteur de ponderation affectent considerablement la trajectoire optimisee. Un 

mauvais choix peut meme causer l'echec total de l'optimisation. En fait, ces choix 
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sont fondes, la plupart du temps, sur l'experience. Alors, deux methodes d'adaptation 

des vecteurs ponderation sont developpees. Grace aux developpements, la methode 

de decomposition du torseur de vitesse est plus efficace et est capable d'obtenir de 

meilleurs resultats. 
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C H A P I T R E 1 

I N T R O D U C T I O N 

A manipulator is a device that helps human beings to perform manipulating tasks. 

A robotic manipulator is to be distinguished from the previous for its ability to lead 

itself through computer control. Once programmed, it can implement the same task 

repeatedly. In general, robotic manipulators can be studied using the concept of 

kinematic chain. A kinematic chain is a set of rigid bodies, also called links, coupled 

by kinematic pairs. A kinematic pairs is the coupling of two rigid bodies so as to 

constrain their relative motion. There are two basic types of kinematic pairs, namely, 

upper and lower kinematic pairs. Upper kinematic pairs occur through either line 

contact or point contact between two bodies, and thus, appear in cam-and-followers, 

gear trains, and roller bearings, for example. Lower kinematic pairs occur through 

a common surface between two bodiesW. As shown in Fig. 1.1, there are six lower 

kinematic pairs, namely, (E) Planar, (S) Spherical, (C) Cylindrical, (R) Revolute, 

(P) Prismatic, and (H) Helicoidal. 

As shown in Fig. 1.2 and classified in Table 1.1, kinematic chains are termed either 

simple or complex; and either open or closed. Simple chains are those having links with 

a degree of connectivity1 of less than or equal to two, while complex chains are those 

having at least one link with a degree of connectivity greater than two. Open and 

closed simple kinematic chains occur in serial manipulators and linkages, respectively. 

Open complex kinematic chains are sets of open kinematic chains in a tree-type 

structure, and occur therefore in tree-type manipulators. Closed complex kinematic 

chains are termed either parallel or hybrid depending on whether the kinematic loops 

lie in parallel arrays or not. Closed complex kinematic chains with loops in parallel 

xThe degree of connectivity of a body is defined as the number of bodies directly connected to 
the said body through kinematic pairs. 



(E) Planar pair : D 0 F = 3 

(C) Cylindrical pair : D 0 F = 2 

(P) Prismatic pair : D 0 F = 1 

(S) Spherical pair : D 0 F = 3 

(R) Revolute pair : D O F = l 

(H) Helicoidal pair : D O F = l 

FlG. 1.1 The six lower kinematic pairs 

arrays occur in parallel manipulators, while all the other kinematic chains are classified 

as hybrid manipulators, i. e., those containing either more than two links with a degree 

of connectively greater than two, or those containing both closed and open kinematic 

chains. Figure 1.3 presents four examples of different manipulators, which include (a) 

a serial manipulator, (b) a parallel manipulator, (c) a robotic hand and (d) a walking 

machine. Clearly, both the robotic hand and the walking machine can be classified 

as tree-type manipulators. 

In this thesis, we focus on serial manipulators, i.e., simple open kinematic chains. In 

such manipulators, there are exactly two bodies with a degree of connectivity of one, 

called end-bodies, and all other bodies within the chain have a degree of connectivity 

equal to two. One end-body is arbitrary regarded as fixed and is called the base, 

while the other end-body is regarded as movable and is called the moving body, or 
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(e) Hybrid 
F I G . 1.2 Classification of the kinematic chains 

the end-effector (EE) of the manipulator. 

1.1 Background and Basic Terminology 

1.1.1 Degrees of Freedom of a Mechanical System 

In general, the minimum number of variables (also called coordinates) to completely 

specify the configuration of a mechanical system is called the degrees of freedom 

(DOF) for that system. For a serial manipulator, each independent variables is typi

cally associated with a joint i, e.g., B{. Since, the DOF related to a serial manipulator 
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Simple 
C < 9 
KJmax — ^ 

Complex 
C >̂ 9 

Open 
Serial Manipulator 

Q = l , i = l ,2 
d = 2,i>2 

Tree-type manipulator 
C ^ 9 

with no loop 

Closed 
Linkage 
Ci = 2 

Parallel manipulator 
Ci > 2, i = 1,2 
Ci = 2, i > 2 

Hybrid manipulator 
all other cases 

T A B . 1.1 Classification of the kinematic chains (d is the degree of connectivity of 
link i and Cmax is the maximum degree of connectivity of all links). 

is the sum of DOF of each joint, the combination of the joint positions of a mani

pulator is referred to as a posture. We can combine the joint position into a vector, 

namely 6, given by 

e = [e1...en]Tejn, (l.i) 

where J is the Joint space in which 0 is defined, and its dimension n is given by 

n = dim(J'), therefore n is the DOF of the manipulator. 

1.1.2 Degrees of Freedom of the End-Effector 

The combination of the position and the orientation of a rigid body is referred to as the 

pose of the corresponding body. For a rigid body freely moving in three-dimensional 

space, a minimum of six coordinates are required to completely define its mobility or 

DOF. At the displacement level, the pose of a rigid body can be defined by the position 

of a point of the body together with the orientation of the body around that point. 

The position of a point of the body can be defined by specifying its three Cartesian 

coordinates in some convenient coordinate frame, e.g., px, py and pz. Similarly, the 

orientation of the body around that point can be defined by three angles in the same 

coordinate frame, i.e., 6X, 9y and 9Z. We can combine the six elements into one array, 
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msfi 

a. Serial manipulator b. Parallel manipulator 

c. Robotic hand d. Walking machine 
F I G . 1.3 Classification of the robotic manipulators : (a) PA10-6C from 
MITSUBISHI^ ; (b) Agile Eye from Laval University^ ; (c) SARAH Robotic Hand 
from Laval University^ ; (d) COMET-II from Chiba University^. 

namely x, given by 

x ~ ®x Oy 0Z Px Py Pz 
i T 

(1.2) 

Consequently, the motion of the EE can be defined by the motion of x. The space in 

which the EE undergoes its motion is usually called the operational space, denoted 

by O, and its dimension o is given by o = dim(O). 

For a specific task, the motion of the EE may require the whole operational space 

O or only a subspace of O. In both cases, we call the space in which the task is 

undergoing, the task space T, its dimension t is given by t = dim(T), where t < o, 
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since dim{T) < dim(0). In all cases, we must have n> o >t with T C O, otherwise 

the task can not be performed by the manipulator. 

1.1.3 Kinematic Redundancy 

The main focus of this thesis belongs to kinematic redundancy. 

Definition 1.1 : Kinematic redundancy 

A pair made of a serial manipulator and a task is said to be kinematically redundant 

when the dimension of the joint space J, denoted by n = dim(J'), is greater than the 

dimension of the task space T of the EE, denoted by t = dim(T) < 6, while the task 

space being totally included into the resulting operation space of the manipulator, i.e., 

T C O, and hence, n > t. The degree of kinematic redundancy of a pair of serial 

manipulator-task, namely r^, is computed as 

rK — n — t. (1.3) 

In a system with kinematic redundancy, it is possible to change the internal structure 

or configuration of the mechanism without changing the position and orientation of its 

, a so-called self-motion of the manipulator. In this thesis, the term "redundancy" 

refers to "kinematic redundancy". 

A typical example of a redundant manipulator is the human arm, which has ap

proximately seven DOF from the shoulder to the wrist. If the base and the hand 

position and orientation are both fixed, requiring six DOF; the elbow can still be 

moved, due to the additional mobility associate with the redundant DOF. Thus, it 

becomes possible to avoid obstacles in the workspace. Furthermore, if a joint of a 

redundant manipulator reaches its mechanical limit, there might be other joints that 

allow execution of the same prescribed EE motion. 
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1.2 Problem Formulation 

Many redundant manipulators have been developed so far. Some were developed for 

research purposes, while others have already been used in real applications. However, 

the control of a redundant manipulator is more challenging, since there are infinitely 

many joint trajectories that exist for a given task. The operator must evaluate the 

best one according to a performance criterion. The solution strategy, which effectively 

exploits the potential advantages of kinematically redundant mechanisms, is called : 

Redundancy Resolution (RR) scheme. Since there is no general RR scheme solution, 

RR scheme has attracted the attention of many researchers for at least three decades. 

Redundancy is a concept related to the definition of the task instead of being an intrin

sic feature of the robot's structure. Even if a manipulator is kinematically redundant 

for a specific task, it may not be redundant for another task. Hence, according to 

the relation among joint space, operational space and task space, kinematic redun

dancy can be classified into two groups, i.e., functional redundancy and intrinsical 

redundancy, for which we have purposed the following two definitions. 

Definition 1.2 : Intrinsic redundancy 

A serial manipulator is said to be intrinsically redundant when the dimension of the 

joint space J', denoted by n = dim(v7), is greater than the dimension of the resulting 

operational space O of the EE, denoted by o — dim(C) < 6, i.e., n > o. The degree 

of intrinsic redundancy of a serial manipulator, namely rj, is computed as 

rj = n — o (1-4) 

Definition 1.3 : Functional redundancy 

A pair made of a serial manipulator and a task is said to be functionally redundant 

when the dimension of the operational space O of the EE, denoted by o — dim(0) < 
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F I G . 1.4 Intrinsic and functional redundancies of serial robotic tasks 

6, is greater than the dimension of the task space T of the EE, denoted by t = 

dim(T) < 6, while the task space being totally included into the operation space of 

the manipulator, i.e., T C O, and hence, o > t. The degree of functional redundancy 

of a serial manipulator-task pair, namely rp, is computed as 

rp — o — t. (1.5) 

Evidently, from eqs.(1.4) and (1.5), the kinematic redundancy of eq.(1.3) can be 

rewritten as 

rK = ri + rF, (1.6) 

which makes clear that kinematic redundancy comes from two different sources : 

the functional redundancy and the intrinsic redundancy. The distinction among the 

different redundancies is shown in Fig. 1.4. When n — o, we have non-redundant 

manipulators. When n > o, we intrinsically redundant manipulators. Finally, when 
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n < o, the manipulator does not exist because it can not fulfill the motion in the 

operational space. For example, let us consider a PRRRR serial manipulator as 

shown in Fig. 1.5. For this manipulator, J is of dimension 5, i.e., dim(v7) = n = 5, 

the resulting O is only of dimension 4 (positioning a point of the EE in 3D space 

and orienting the EE around a vertical axis), i.e., dim(0) = o = 4, and hence, this 

manipulator has a degree of intrinsic redundancy of one, i.e., ri = n — o = 5 — 4 = 1. 

For the positioning task in 3D space without considering its orientation , T is only of 

dimension 3, i.e., dim(T) = t = 3, and hence, the degree of functional redundancy of 

the pair of manipulator-task is one, i.e.,rp = o — t = 4 — 3 = 1. Finally, the kinematic 

redundancy of this pair of manipulator-task is two because TK = Tj + r> = 1 + 1 = 2, 

and not one. In the literature, most of the research works on RR scheme of serial 

manipulators study only the case of r> = 0, and thus, TK = Tj. In this thesis, we 

rather study the opposite case, i.e., rp ^ 0 and thus, TK = TF + r j . 

Pi 

tf 0> 
«4 

ft 
LJU 

FlG. 1.5 Kinematic redundant manipulator : Robot 1 

For example, the Canadarm2 used on the International space station is a seven-

revolute serial manipulators that is intrinsically redundant. For intrinsically redun-
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dant manipulators, the scheme of using the null space2 of the Jacobian matrix can 

be directly used to select an optimized solution. 

Six-revolute serial manipulators are the most well known and popular robots because 

they are multipurpose. These manipulators are also able to be functionally redundant 

when the tasks require less than the full six-DOF of the EE. As shown in Figs. 1.6 

and 1.7, arc-welding, laser cutting and milling tasks require only 5-DOF (t = 5). It is 

because, for all these tasks, there exist an axis around which a rotation of the EE is 

irrelevant to the task. In these cases, the tasks and the manipulators are functionally-

redundant. A similar situation occurs for pick and place operations of axis-symmetric 

objects (t = 4 or 5). 

F I G . 1.6 Arc welding task (left) and laser cutting task (right) 

Most of the RR schemes focus on the solution of intrinsically-redundant manipulators, 

and use the null-space of the Jacobian matrix. However, the RR schemes that use the 

null space of the Jacobian matrix can not directly be used to solve the functionally-

redundant problem. In these cases, the Jacobian matrix is a full rank square matrix, 

and hence, the dimension of its null space is zero. Consequently, the well known RR 

2Null space : If T is a linear transformation of Kn , then the null space Nul l (T) is the set of all 
vectors x such that T(x) = 0, i.e., Nul l (T) = {x : T(x) = 0}J81 
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schemes that use the null space of the Jacobian matrix are not able to solve the 

functionally-redundant problem directly. 

F I G . 1.7 Pick-up task (left) and milling task (right) 

1.3 Research Objective 

Many industrial tasks, such as arc-welding, milling, deburing, laser-cutting, and many 

others, require less than six-DOF, because of the presence of a symmetry axis of the 

EE. The EE rotation around the symmetry axis is irrelevant, and thus functional 

redundancy occur as these tasks are performed by the manipulators with DOF greater 

or equal to six, i.e., n > 6. Hence, the main research objective of this thesis is to 

study how to take advantage of the functional redundancy to optimize the joint space 

solution for a given Cartesian path. 
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C H A P I T R E 2 

LITERATURE REVI EW 

2.1 Level of Kinematic Analysis 

The kinematic analysis of serial manipulators comprises the study for three aspects 

of such mechanical systems'1' : 

1. the relations between joint positions and Cartesian positions of the EE, known 

as displacement analysis; 

2. the relations between the time-rates of change of the joint positions, referred to 

as the joint rates, and the twist1 of the EE, known as velocity analysis; 

3. the relations between the second time-derivatives of the joint positions, referred 

to as the joint accelerations, with the time-rate of change of the twist of the 

EE, known as acceleration analysis. 

2.1.1 Direct and Inverse Kinematic Problems 

Figure 2.1 shows the mapping between joint space and operational space at the dis

placement level. The direct kinematic problem (DKP) is the mapping from joint space 

to operational space, i.e., determining the pose of the EE for a given manipulator in 

a given posture. For serial manipulators, this problem is straightforward and admits 

a unique solution, which can be determined by simple matrix and vector multiplica

tions. Alternatively, the inverse kinematic problem (IKP) is the inverse problem as 

expressed by its name, i.e., it pertains to the mapping from operational space to joint 

space, i.e., determining the posture of a given manipulator for a given pose of its EE. 

JThe twist refers to the combination of linear and angular velocity of the EE. 
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F I G . 2.1 Mapping between joint and operational spaces at the displacement level. 

At the displacement level, a point in operational space may map onto a set of points 

in the joint space, while a point in joint space represents a unique pose of the EE. 

Accounting for the dependence of position and orientation of the EE with the joint 

positions, the DKP can be written as the following nonlinear algebraic system, i.e., 

x = DKP(0) , (2.1) 

where 0 is a point in J and x the corresponding point in O. The function DKP(-) 

allows the computation of the operational space variables x from the knowledge of 

the joint space variables 0 and the characteristics of the manipualtor. 

Similarly, the IKP is also written as the following nonlinear algebraic system, i.e., 

0 = IKP(x). (2.2) 

In general, the IKP is much more complex and challenging than the DKP for the 

following reasons'9] : 

- the equations to be solved are nonlinear, and thus, it is rarely possible to find a 

closed-form solution; 
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- multiple solutions usually exist; 

- an infinite number of solutions may exist, in the case of a kinematically redundant 

manipulator; 

- there might be no admissible solutions, in view of the manipulator kinematic struc

ture. One may ask for a pose of the EE outside of the reachable workspace of the 

manipulator. 

At the displacement level, inverse kinematics requires the solution of a highly nonli

near algebraic system, for which no analytical closed-form solution exists for a general 

6-R manipulator!10!. Pieper'11! showed that all 6-R manipulator with three succeeding 

revolute joint axes intersecting at a common point, termed as decoupled manipulator, 

always have closed-form solutions of eh IKP. Tsai and Morgan'12! found that although 

the number of real solutions changes from case to case, the total number of solutions 

(real and complex) is 16 for all the 6-R manipulators, except for the decoupled cases 

where there are only 8 solutions. The existence of joint limits and link obstruction 

may eventually reduce the number of reachable solutions. 

2.2 Differential Kinematics and Redundancy 

Differential kinematics of robot manipulators were introduced by Whitney!13! in 1969. 

He proposed to use differential relationships to solve the joint space motion from a 

given Cartesian space motion of the EE. The relationship between the EE velocity and 

the joint velocity can be represented by a linear algebraic equation. The coefficient of 

the linear equation is the Jacobian matrix, which is a nonlinear function of the joint 

angles and the manipulator's geometry. Whitney named this method the resolved-

motion rate control. 

Although the computation of closed-form nonlinear solution, if available, is gene

rally less computationally expensive than that for resolved-motion rate control, the 

linearity of the equation at the velocity level allows the development of general dis-
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cussion, whereas the computation of closed-form solution depends on the specific 

design of a robotic manipulator. Particularly, the differential kinematics are natu

ral and unique in Cartesian trajectory control when the manipulator dynamics are 

considered because rigid-body dynamics and kinematics are naturally connected at 

the acceleration level. The relationship between the EE acceleration and the joint 

acceleration becomes a similar linear one, with the Jacobian matrix as a coefficient. 

This scheme is named resolved acceleration control as an extension of resolved motion 

rate control. It is noteworthy that differential kinematics are also related to EE force 

control ^ . 

2.2.1 Geometric and Analytical Jacobian Matrices 

Suppose that the following relation holds between a fc-dimensional vector £ = [£}, £2, • • • , £,k]T 

and an /-dimensional vector 77 = [r/i, r]2, •.., r/i]T : 

?7i = / i ( 6 , 6 , . - - , 6 0 , j = l,2,...,l. (2.3) 

Then the I x k matrix 

is called the Jacobian matrix^ of rj with respect to £. Furthermore, suppose that 

rj and £ are functions of time, then differentiating eq.(2.3) with respect to time and 

substituting eq.(2.4) yields 

•h = v o e (2.5) 

Using the Jacobian matrix, we can express the relation between the EE velocity and 

dm 
oil 
dm 
Oil 

dm 
aft 

dm 

dm 

drjL 
a§2 • 

&m_ 

dm 
• d£,k 

dm 
• d£k 

drj 

3£ 
(2.4) 
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the joint velocity of a manipulator in a compact form as follows : 

x = J (0)0 . (2.6) 

If defining t = x, then eq.(2.6) is written as 

t = 3(9)0. (2.7) 

The translational velocity of the EE, i.e., p , can naturally be expressed by the time 

derivative of the position vector p , however, there are many methods for expressing 

the rotation velocity of the EE as follows : 

Method I : Select a vector A<f)B consisting of three variables for expressing the orien

tation of the EE (e.g., Euler angles, or roll, pitch and yaw angles), and use its time 

derivative Acf>B — ~£B to express the rotation velocity of the EE2. 

Method II : The motion of TB with respect to TA at each instant of time is a rotation 

about an axis passing through the origin. This means that the rotation velocity of TB 

can be described by the vector AOJB, which has the same direction as the instantaneous 

axis of rotation and a magnitude proportional to the rotational speed about this axis. 

The vector AUJB is called the angular velocity vector. 

From the viewpoint of the physical meaning of the vector expressing the velocity, 

AOJB is superior to A(j>B. The three components of AcoB represent the orthogonal 

angular velocity components about the X, Y, and Z axes of TA- In contrast, those of 

A4>B generally represent non-orthogonal components about the three axes of a skew 

coordinate system whose coordinate axes vary depending on the present value of A<j>B-

It has been shown that the mapping between A(f>B and Au}B introduces singularity 

into the linear algebraic system if A<t>B is used, while no singularity is added if AOJB 

2The superscript A and the subscript B of A(f>s indicate that <j> describes the orientation of TB 
with respect to TA-
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F I G . 2.2 General n axis manipulator'1! 

is used. 

Corresponding to the two methods of expressing the rotation velocity, there are two 

kinds of Jacobian matrices, termed as geometric and analytical Jacobian respectively. 

When method I is used for expressing the rotational velocity of the EE, the equation 

of reaching the analytic Jacobian J a is as follows : 

J a (0) = ^ e M6X". (2.8) 

Whitney'13!computed 0 in this way with method I in 1969. 

However, it would be computationally inefficient to try to evaluate the analytic Jaco

bian matrix. In 1972, Whitney'15! proposed another method of the Jacobian matrix, 

i.e., geometric Jacobian matrix for method II. 

From Fig. 2.2, the angular velocity vector of the EE, namely u>, is readily computed 

as 
n 

u> = ^ e O , (2.9) 
4 = 1 

where 9i and e* are respectively defined as a joint rate and a unit vector associated 

with the direction of the revolute axis of joint i. 
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Moreover, the translational velocity of the origin of the frame Tn attached to the EE, 

namely p, is readily computed as 

P = £ > (2.10) 
i=\ 

where vector r̂  is defined as the position vector of the origin of JFn with respect to 

the origin of Ti and expressed in FQ, i.e., 

r i = a» + ai+l + ... + an, (2.11) 

and â  is defined as 

a. 

licos(0i) 

hsm(6i) (2.12) 

Therefore, the velocity relationship involving the geometric Jacobian matrix as 

t - 3g(9)0, (2.13) 

where the geometric Jacobian matrix is defined as 

where 

and 

J* = 
A 

B 

A = ei e2 
p3xn. 

B ei x ri e2 x r2 ... en x iv, 
t>3xn 

t = 

0 = 

T n T (J1 P 

Q\ • • • 6n 

(2.14) 

(2.15) 

(2.16) 

(2.17) 

(2.18) 
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If the Euler angles are used as <j>, i.e., there is 

4> = a $ 7 (2.19) 

where a, (3 and 7 are the rotation angles about the Z, Y and X axis, respectively. 

u) and <f> are obtained from each other by the following mapping, i.e., 

w = K<£, (2.20) 

K (2.21) 

where 

0 — sin a cos a sin /? 

0 cos a sin a sin f3 

1 0 cos/? 

Therefore, the analytical Jacobian Ja(0) and the geometric Jacobian Jg(0) are related 

to each other by 

3g(d) = 
K 0 

0 1 
JaW, (2.22) 

where 1 e l 3 x 3 is an identity matrix. The coefficient matrix on the right-hand side 

of equation eq.(2.22) becomes singular when sin/3 — 0. This means that although 

any rotational velocity can be described by AU>B, there are rotational velocities that 

can not be described by A<j>B when sin/3 = 0. Orientations of this kind are called 

representation singularities of A<J>B-

In general, it is anticipated that the geometric Jacobian will be adopted whenever 

it is necessary to refer to quantities of clear physical meaning, while the analytical 

Jacobian will be applied whenever it is necessary to refer to differential quantities of 

variables defined in the operational space. 
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FlG. 2.3 Classification of RR schemes : the most popular ones are in the shaped 
region 

2.2.2 Classification of Redundancy-Resolution Schemes 

Redundant manipulators attracted the attention of many researchers in recent years, 

because of their extra DOF allowing more sophisticated motions than their non-

redundant counterparts. Hence, the redundant manipulators have widely been used 

on avoidance tasks for obstacles, joint-limits and singularities. Many research works 

focused on the theoretical aspects of the RR schemes. For example, Baillieul'16!'17] used 

redundancy for obstacle avoidance by using an extended Jacobian technique. Klein'18' 

solved redundancy for maximum dexterity of a manipulator. However, most of the 

reported works have been tested on simulations, while only a few implementations 

on real robots have been reported as Honegger and Codoureyl19'. 

The RR schemes can be classified into local methods and global methods. The global 

optimal control methods need all the required data of the overall path before the 

movement is realized. The local optimal control methods give a solution for every 

instant and can also use the available sensory data. Thus, the locally optimal control 
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approach is suitable for real-time applications, such as sensor-based obstacle avoi

dance strategies. The globally optimal control approach is limited only to off-line 

trajectory planning for tasks requiring strict optimality, such as obstacle avoidance 

in a complicated but time invariant workspace and energy minimization!7]. Therefore, 

these two frameworks should be properly used, depending on the situation. Most of 

the RR schemes use local methods since their performance index depends on the 

instantaneous robot posture. 

The RR problem has been solved at both joint-position levelt20' '211 and joint-rate 

level^17! I22l using different methods. At the joint-position level, the RR problem is 

nonlinear, whereas it is linear at the joint-rate level. Figure 2.3 shows the classification 

of RR schemes discussed above. The shaded part is the most popular research domain, 

i.e., RR scheme in local method at joint-rate level. 

During the last two decades, more and more researchers have applied the artificial 

intelligent technique on the redundant manipulator control. 

2.3 Local Optimization Algorithms 

Nowadays, most of the RR researchers worked on the joint-rate level, and used the 

Moore-Penrose Generalized Inverse'23!3 (GI) or the Weighted Generalized Inverse 

3Given an TO x n matrix B , the Moore-Penrose generalized matrix inverse is a unique n x m 
matrix pseudoinverse B^. The Moore-Penrose inverse satisfies 

B B f B = B 

B t B B t = B f 

( B B t ) T = 6 6 + 

( B f B ) T = B+B. 

It is also true that 
z = B f c 

is the solution with shortest length to the problem 

Bz = c. 
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(WGI) of the Jacobian matrix. 

2.3.1 Schemes Using the Generalized Inverse 

The Moore-Penrose pseudo-inverse can be used to find the joint-rate vector that has 

the smallest Euclidean norm, usually called the minimum-norm solution computed 

as 

J t = J T ( J J T ) " \ (2.23) 

and hence eq.(2.7) becomes 

0 = J f t . (2.24) 

Klein and Huang (1983)'24' showed that such a solution may lead to noncyclic motions 

in joint space. At the cost of giving up the minimum-norm solution, an homogeneous 

component can be added to eq.(2.24) in order to optimize a secondary task into an 

additional criterion. Thus, this non-minimum-norm general inverse solution can be 

written as : 

0 = (J f)t + ( l - J f J ) h , (2.25) 

minimum—norm solution homogeneous solution 

where the first part of eq.(2.25) is the minimum-norm solution, known as the base so

lution, and the second part is an arbitrary vector in the null space of the Jacobian J . 

Equation (2.25) is used widely by many researchers such as Angeles et al. (1998)'25^, 

and Siciliano (1992)'22' in order to solve redundant tasks. Vector h of eq.(2.25) comes 

from an optimized performance criterion. Different selection of h give different per

formances. 

Liegeois (1977)t26l developed the Gradient projection method (GPM), which minimizes 

a position-dependent scalar performance index p{6) and takes its gradient as vector 
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h, i.e., 
dp 

h = w— = w 
do 

dp dp dp 

~W[ df2 "" Wn 
(2.26) 

where w i s a positive scalar coefficient. Liegeois introduced a p that helps joint-limit 

avoidance, in the form 

i " / Qj-er1 y ( . 
fi ' J \ ffrnid _ Qmax J ' \6-Ai) 

where 9flld — {6™m + #™ax)/2, Q™1™ and 9™ax are lower and upper joint limits, res

pectively. 

Other researchers developed different performance indeces related to various applica

tions of RR schemes. 

Yoshikawa (1984)t27l suggested a scaler value to to be the measure of manipulability 

(MOM), namely, 

u> ^Jdet(JJT), (2.28) 

and used u) as performance index p to avoid singularities. Yoshikawa also introduced 

a performance index for obstacle avoidance, namely, 

p_ifi-Brrwf,-er)t (229) 

where H is a diagonal matrix with constant entries greater than zero and 6r a given 

arm posture. 

If using SVD for Jacobian, J = UT,VT, eq.(2.28) becomes 

u = y d e t ( £ E r ) = criCTa • • • am. (2.30) 

Thus, MOM is nothing but the product of the singular values of J . When the Jacobian 

matrix degenerates, one or more singular values becomes zero, and so does MOM. 

file:///6-Ai
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The condition number of the Jacobian matrix is 

« = — , (2.31) 

which is firstly used by Salisbury and Craig'28!. 

As described by Nakamura^, the relationship between MOM and the condition num

ber is clear when they are physically interpreted using the manipulability ellipsoid. 

MOM is proportional to the volume of the ellipsoid, whereas the condition number 

is the ratio of the lengths of the longest and shortest principal axes. In other words, 

MOM is related to the magnitude of the ellipsoid, whereas the condition number 

concerns the shape of the ellipsoid. Therefore, MOM prefers large ellipsoids, and the 

condition number prefers ellipsoids with spherical shape. 

Yoshikawa's manipulability measure has been used extensively. However, the deter

minant cannot be a measure of how close a matrix is to singularity, as pointed out by 

Golub and Van Loan (1989)'29!. Therefore, Kosuge and Furuta (1985)'30! suggested 

to take the reciprocal (in order to have a number between 0 and 1) of the condition 

number of the Jacobian matrix as a controllability measure. 

2.3.1.1 Inverse Kinematic Solutions Considering the Order of Priority 

Nakamura and Hanafusa (1985)'33! found that there exist a lot of tasks which are 

composed of subtasks with different levels of significance, and call them tasks with 

the order of priority. For tasks with the order of priority, if it is impossible to perform 

all of the subtasks completely because of the degeneracy or the shortage of the DOF, 

they proposed to perform the most significant subtask preferentially and the less 

important subtask using the remaining DOF. In the case of a task with two subtasks. 

The subtask with the first priority is specified using the first manipulation variable, 

r i 6 R m i , and the subtask with the second priority is specified using the second 
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manipulation variable, r i = 2 G Rm 2 . The kinematic relationships between the joint 

variables 6 G R n and the manipulation variables are expressed as follows : 

Ti = fi{9), (2.32) 

with i = 1,2. Their differential relationships are expressed as follows : 

h = J;(6>)0, (2.33) 

where Jj(0) G R m « x n is the Jacobian matrix for the zth manipulation variable. 

The general solution of eq.(2.33) for i = 1 is obtained using pseudoinverses as follows : 

6 = J l (0 ) r i 4- (I - J I (0)J i (0) )y . (2.34) 

Substituting eq.(2.34) into eq.(2.33) for i — 2, we get the following equation : 

J 2 ( I - Jt
1(6»)J1(6»))y = r2 - 323\vu (2.35) 

where y G R n is an arbitrary vector. If the exact solution of y exists for eq.(2.35), 

it means that the second manipulation variable can be realized. However, the exact 

solutions does not generally exist. We get y, which minimizes ||r"2 — J2#||> in the same 

way as eq.(2.34), i.e., 

y = J*(r2 - J a J l rO + (I - J p 2 ) z , (2.36) 

where J 2 = J 2 ( I — j{ J i ) , and z G R n is an arbitrary vector. 

The solution 0 is obtained from eqs.(2.34) and (2.36) as follows : 

6 = Jjrx + (I - J t J i ) J 2 ( r 2 - J 2 J l f i) + (I - J l J i ) ( I - J p 2 ) z . (2.37) 
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Equation (2.37) represents the inverse kinematic solution considering task priority. 

2.3.1.2 Schemes Using the Weighted Generalized Inverse 

The Weighted Generalized Inverse (WGI) solution to eq.(2.7) is 

0 = Jt,t, (2.38) 

where 

J^ = W _ 1 J T ( J W - 1 J T ) - 1 , (2.39) 

and W is a positive-definite weighting matrix. Whitney (1969)'131 applied priorities 

through the weighted matrix. Park, Chung and Youm (1996)'31' used the WGI and 

introduced the weight not only in the generalized inverse, but also in the Jacobian 

matrix and in the joint velocity, which they called weighted Jacobian and weighted 

joint velocity, respectively. Hence, they solved the equation 

3W0W = t , (2.40) 

where Jw and 0W are the weighted Jacobian and weighted joint velocity, respectively. 

Chan and Dubey (1995)[32] compared WGI with GPM in the case of joint limits 

avoidance problem, and found WGI reached a joint trajectory requiring much less 

joint velocities than GPM. 

2.3.2 Scheme Using Householder Reflection 

Arenson, Angeles and Slutski (1998)'25! proposed to use Householder reflection in RR 

scheme. For the sake of brevity, we name it as AA householder reflection algorithm. 



27 

The algorithm is developed as follows. At first, equation (2.25) can be rewritten as : 

0 = k + h, (2.41) 

where k is shown as : 

k = J f ( t - J h ) . (2.42) 

Equation (2.42) can be rewritten as : 

Jk = t - Jh. (2.43) 

In order to solve eq.(2.43), Householder reflections are used for the Jacobian matrix 

J. When matrices H and U are found, they have a relation with J in the form 

HJ2 U 

0 
(2.44) 

where U is a (o x o) upper-triangular matrix, H is an orthogonal matrix (nxn), and 

n > o for intrinsic redundancy. Hence, there is 

H J H = 1, (2.45) 

Rewriting eq.(2.43) to, 

Because of 

J H r H k = t - Jh. 

T\T JHJ = ( H J J ) U T 0T 

equation (2.46) is equal to 

(2.46) 

(2.47) 

U T 0 T H k = t - J h . (2.48) 
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Then, k can be reached as follows 

1̂  = ^ (u^-Ht-Jh) 
0 

Substituting eq.(2.49) into eq.(2.41) and yields 

e = w (u^)-Ht-Jh) 
o 

+ h. 

If we define : 

y = 
(u^-^t-Jh) 

o 

Equation (2.50) can be rewritten as : 

(2.49) 

(2.50) 

(2.51) 

0 = H T y + h. (2.52) 

The AA algorithm avoids the direct calculation of the generalized inverse of the 

Jacobian matrix, as with eq.(2.23) and even worst with eq.(2.25). Hence, the squaring 

of the condition number of J is avoided and the round-off error of the algorithm 

is not amplified. It is an interesting method for the calculation of joint-motion at 

ill-condition postures, because here the Jacobian matrix J may have a very high 

condition number. 

2.4 Global Optimization Algorithms 

Although the local optimal control approach requires a small amount of computation, 

it lacks a guarantee of global optimality. The global optimal control approach is better 

for off-line trajectory planning of tasks requiring strict optimality, such as obstacle 

avoidance in complicated working spaces and energy minimization. 
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There are less papers published on the topic of global optimal control than on local 

optimal control. Whitney'15' first suggested the integrated value of kinetic energy, 

which is approximated to square joint velocities, be as a global criterion for redun

dancy utilization 

The global optimal control methods are based either on the variational calculus with 

constraints or on Pontryagin's maximum principle. 

2.4.1 Schemes Using the Pontrygain's Maximum Principle 

Nakamura and Hanafusa'33''341 have solved the global optimal control problem with 

Pontryagin's maximum principle. 

The optimal control problem of redundancy is represented as follows : 

0 = J f
r i ( i ) + (I - J t j )y = g (0 , i ,y ) . (2.53) 

r 2 = I* p(0,t)dt. (2.54) 
J to 

where ri G Mmi represents the constrained variable such as the position and the 

orientation of the end effector; r2 G R™2, m2 = 1, represents the performance in

dex of the integral type, which evaluates the performance of redundancy utilization. 

Equation (2.53) can be regarded as a system equation of a time-variant, non-linear, 

dynamical system by considering 6 as a state vector and y as an input vector, thus 

eqs.(2.53) and (2.54) can be regarded as an ordinary optimal control with a variable 

first endpoint and a free last endpoint, then Pontryagin's maximum principle can be 

applied to the problem. 

The Hamiltonian function for a fixed-time problem with a fixed first endpoint and a 



30 

free last endpoint is as follows : 

R(iP,0,t,y) = -p + tl>Tg, (2.55) 

where tjj e Rn is an adjoint vector and y(i) is the independent control variation and 

can be arbitrary. If a y*(t) maximizing the Hamiltonian of eq.(2.55) at every moment 

t is chosen, there is 

The optimal joint trajectory 0*(t) is yielded by solving the following differential 

equations : 

where eq.(2.57) is equivalent to eq.(2.53). 

One example of the representative performance index in the work of Nakamura and 

Hanafusa is given as : 

r 2 = f\kPo(O) + 0TG)dt (2.59) 
J to 

where A; is a nonnegative scalar. If k = 0, there is the simplest case of eq.(2.59) : 

ft! 

'to 
I 6 Odt. (2.60) 

Jtn 

The integrand of the criterion is considered as a pseudo-kinetic energy, and eq.(2.60) 

is used as the performance index to minimizing the integral of pseudo-kinetic energy. 

In order to plan the joint trajectory farthest from singular points, the measure of 

manipulability UJ proposed by Yoshikawa^27! is taken into account, and UJ is calculated 

as eq.(2.28). Then, the corresponding performance index to plan the joint trajectory 
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farthest from singular points is given as follows : 

= f" ( — 
•**<> \yfdeti 

•JT: 
r2= I I —j== + 0 6\dt (2.61) 

'det(JJT) 

If the trajectory approaches the singularity, the first term of the integrant of eq.(2.61) 

increases infinitely. 

2.4.2 Schemes Using the Calculus of Variations 

Hollerbach and Suh (1987)'35^ offered a solution for the global torque optimization 

based on the calculus of variations. Kazerounian and Wang (1988) l36"37' also used the 

calculus of variations to develop global solutions for the least square joint rates and 

the least kinetic energy. 

In the method of Kazerounian and Wang, a global optimization problem is firstly set 

up to minimize 

1= (qTq)dt (2.62) 
J to 

subject to 

G*(q, t) = 0, k = ltom (2.63) 

The augmented objective function I* is defined as 

I * = f ' g(ci,q,t)dt (2.64) 
J to 

where 

S = q r q + J > ( * ) G f c . (2.65) 

Then by using the Euler-Lagrange equation, the necessary condition for q to be an 

file:///yfdeti
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optimal of the functional I* given by eq.(2.64) is 

= 0. (2.66) dg rf(§§) 
dq dt 

Because 

eq.(2.66) can be rearranged as 

3Tfi - 2q = 0, (2.69) 

i.e., there is 

q = 0.5JT)Lt. (2.70) 

There is the acceleration relation between the EE and joints as 

J q = x - j q . (2.71) 

By substituting eq.(2.70) into eq.(2.71), [i is reached as follows : 

^ = 2 ( J J r ) " 1 ( x - j q ) . (2.72) 

By substituting eq.(2.72) into eq.(2.70), the acceleration vector q is reached as fol

lows : 

q = J T ( J J T ) - 1 ( x - Jq) . (2.73) 

Hence, eq.(2.73) is the local minimization of the joint acceleration and will result in 

the global minimization of joint velocities. 

Although the global optimization provides a more meaningful and stable solution 
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than local optimization, the disadvantages of global optimization is the amount of 

computations involved in the global optimization process often makes the on-line 

scheme prohibitive. 

2.5 Redundancy-Resolution in Intelligent Control 

Intelligent control is a new research direction making control systems to be more in

telligent and higher degree of autonomy. With proper development, intelligent control 

systems may have great potential for solving complex control problems. Owing to this 

motivation, a number of realistic intelligent control approaches have been proposed 

and justified for their feasible applications to robotic systems and other complex sys

tems. The most common intelligent control methods applied to RR schemes include 

neural networks (NN), fuzzy logics (FL) and genetic algorithms (GAs). These tech

niques eliminate some or all of the modelling of the manipulator kinematics and/or 

dynamics that is usually needed to implement conventional control techniques. This 

characteristic of intelligent control algorithms is significant considering the complexity 

of the mathematical models of the robotic system. 

2.5.1 Fuzzy-Based Redundancy-Resolution Approach 

Recently, some researchers'38![39l[40][41] solved the inverse kinematics problem using 

FL. However, most of them did not propose a systematic method for generating and 

adjusting membership functions of fuzzy sets. 

Graca (1993)'42! proposed an intelligent control algorithm, namely, Fuzzy Learning 

Control, for non-redundant robotic manipulators to track specified trajectories in 

Cartesian space. This algorithm consisted of treating the robotic kinematic equation 

as a linear possibility system with fuzzy coefficients. This linear possibility system 

was then solved for the fuzzy coefficients using Fuzzy Regression'43! to obtain a fuzzy 
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version of the Jacobian inverse matrix, as opposed to symbolically determining the 

Jacobian. Graca'44' also extended this algorithm to redundant manipulator for opti

mizing a secondary task. 

Kim and Lee'38"39' proposed fuzzy resolved-motion rate algorithm (FRMRA) for a 

3-DOF planar redundant manipulator, in order to replace the pseudo-inverse of the 

Jacobian matrix by the fuzzy reasoning. They designed a new motion-rate resolving 

algorithm (MRRA) based on the gradient method, then converted MRRA to FRMRA 

by fuzzifying the differential relationship between dx and dO for reaching a more 

accurate solution. 

2.5.2 Neural Networks-Based Redundancy-Resolution Approach 

In recent years, new interests in Neural Network (NN) research have been generated 

due to the low complexity in implementation and the fast computational time of 

motion planning and control for manipulators (t45' — '53^). Various NN have been 

applied for kinematic/dynamic control and path planning of manipulators. Many NN 

for robot kinematic control are feed-forward networks or variants of it. 

Recurrent NN '48' '511 have also been applied for kinematic control. Unlike feedforward 

NN, most recurrent NN do not need offline supervised learning and thus are more 

suitable for real-time robot control in uncertain environments. In order to effectively 

handle the physical limit constraints, Wang et alS52^53^ proposed a dual NN for ki

nematic resolution problems. The simulation results of this network are discussed on 

control the 7-DOF PA10 robot arm and show that its applications are successful. 

However, the disadvantage of the dual network is that an inverse matrix operation 

is required. Moreover, as pointed out by Wang^52l, the exponential convergence of 

the dual network can not be guaranteed when it is not full rank or physical limit 

constraints are considered. 
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2.5.3 Genetic Algorithms-Based Redundancy-Resolution Approach 

Genetic Algorithms (GAs) are a particular class of evolutionary algorithms that use 

techniques inspired by evolutionary biology such as inheritance, mutation, selection, 

and crossover (also called recombination). The use of GAs for solving the inverse ki

nematics of redundant robots was introduced by Parker et al. '54^. The GAs were used 

to position the end-effector of a robot at a target location with minimum position er

ror, while minimizing the maximum rotational displacement from the initial position. 

Davidor'55' proposed a technique to apply GAs to the problem of robot trajectory 

generation in environment free of obstacles. Nearchou'56' ^ used GAs to solve the 

inverse kinematics problem in environments with obstacles, and also presented five 

reasons that makes GAs well suited for use in RR as the following : 

- GAs often find nearly global optima in complex spaces ; 

- GAs do not require any form of smoothness; 

- GAs do not need the computation of the Jacobian matrix, and need only the 

forward kinematics equations; 

- GAs allow additional constraints to be easily specified; 

- GAs work with the joint variables represented as digital values that is more suitable 

for computer controlled robot systems. 

In the GAs technique, the final position accuracy is not satisfactory, since it generates 

a large final positioning error. However, GAs combined with other heuristic methods 

seems to be able to reach the desired solutions of the inverse kinematics problem. 

2.5.4 Pros and Cons of Intelligent Controls 

There are many researches that want to replace the physical kinematic and dynamic 

modelling of related manipulators by a learning process of an intelligent control al

gorithm which then be used to control the manipulator. On the other hand, there 

are many researchers who believe that this approach is not a good use of intelligent 
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control algorithms and should keep as much physical modelling as possible, and let 

the intelligent control algorithm to handle the uncertainties and the unknown physical 

phenomenon of the mechanical system at hand. 

2.6 Functional Redundancy-Resolution 

Redundancy is a concept related to the definition of the task instead of the intrinsic 

feature of the robot's structure. Although this fact is still not well understood in 

practice, it has been recognized by several researchers. Samson et a/.'58' clearly stated 

that redundancy depends on the task and may change with time. Sciavicco and 

Sicilianot9! said the manipulator can be functionally redundant when only a number 

of components of dimensional operational space are of concern for the specific task, 

even if the dimension of operational space and joint space are equal. 

Most of the researchers use the generalize inverse together with the projection onto 

the null space of J to solve the IKP of redundant manipulators. However, in the case 

of functional redundancy, J is often a full rank square matrix, i.e., its null space 

doesn't exist from a mathematical point of view. 

Although Sciavicco and Siciliano proposed the concept of functional redundancy, they 

didn't developed the corresponding solution. Thus, a new algorithm corresponding 

to the cases of full rank J becomes necessary. 

In order to change eq.(2.7) to an under-determined system, there are two possibilities. 

One is augmenting the dimension of joint-rate 0, another one is reducing the dimen

sion of twist t . Corresponding to the two possibilities, the functional RR schemes 

can be classified into two groups, i.e., augmented approach and reduced approach, as 

shown in Fig. 2.4. Virtual joint method pertains to the augmented approach, while 

elimination method and TWA pertains to reduced approach. 
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'Virtual Joint Method'59! 
Augmented 
Approach ? 

Functional Redundancy 
Resolution \ y Elimination Method 

Anoroach \~~" Twist Decomposition Approach'6] 

? 

F I G . 2.4 Classification of functional redundancy-resolution schemes 

The TWA is one of the main original contributions of this thesis, and was first pro

posed to solve the functional redundancy by Huo and Baron'6! in 2005. Instead of 

using the projection onto the null space of the Jacobian matrix, TWA is based on the 

orthogonal decomposition of the instantaneous twist into two orthogonal subspaces. 

TWA has great differences with the task-decomposition approach of Nakamura et 

a/.'60'. Both of them consider the order of task priority, but the TWA projects the 

task from the robot base frame to the EE frame, and the motion of the secondary 

task is always constant in the EE frame, e.g., the rotation around the symmetry 

axis of EE, while this secondary motion may or may not be constant in the base 

frame. Therefore, TWA classifies the order of task priority in the instantaneous EE 

frame instead of the robot base frame. Moreover, TWA is directly developed from 

the minimum-norm solution without considering the projection onto the null space 

of J , while the development of task-decomposition approach is based on the general 

equation using the null space of J . The TWA is fully developed in Chapter 3. Virtual 

joint method and elimination method are reviewed as the follow. 

2.6.1 Elimination Method 

In some specific cases, the redundant velocity in operational space can be identified 

and directly eliminated, and hence the functionally-redundant task is transformed to 

an intrinsically-redundant task. This method is called elimination method. 
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For example, BarorJ61! proposed to use an elimination method to optimize the sur

facing operation implemented by 5-axes CNC milling machine with a half-ball EE. 

In the case of end-point surface milling, the orientation of EE is irrelevant to the 

task, and the angular velocities can be eliminated from twist t. Thus, eq.(2.7) can be 

rewritten as 

p = B0, (2.74) 

where B is lower part of J as defined in eq.(2.16), i.e., a 3 x 5 matrix, while p and 0 

are 3 and 5—dimensional vectors, respectively. Hence, the well known non-minimum-

norm solutions to eq.(2.74) can be written as 

0 = ( B t ) p + ( l - B t B ) h , (2.75) 

with h being a secondary task and B t the right generalized inverse of B, i.e., B* = 

B T ( B B T ) _ 1 . Obviously the orientation of the milling tool is not totally irrelevant, 

and hence, the preferred orientation is specified by h as a secondary task onto which 

we accept some deviation to accommodate other criteria. 

However, the redundant velocity of the EE in operational space is not always constant 

in the base frame, and hence, it is sometime impossible to identify the redundant 

velocity in the base frame. Thus, the elimination method can not always be applied 

to solve functional redundancy. 

2.6.2 Virtual Joint Method 

The functional redundant space is always constant in the EE frame, while may or may 

not be constant in the base frame. When the functional redundant space is constant 

in the base frame, elimination method using the null-space can be used. However, 

when it is not constant, we must use non-traditional technics as the virtual joint 

method or the TWA. 
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Virtual joint method changes a functionally-redundant robotic task into an intrinsically-

redundant manipulator by adding a virtual joint. Although the virtual joint does not 

exist, it is added into the joint vector in order to obtain an under-determined linear 

algebraic system with at least one DOF of redundancy. 

In 2000, Baron'59' proposed to add a virtual joint to the manipulator so that a column 

is added to J , rendering it underdetermined. In the case of arc-welding, a virtual joint 

around the symmetric axis of the electrode is added. The Jacobian augmented by the 

virtual joint-rate 6n+i, namely 3V, maps the augmented joints-rate 6V into the twist 

t of the EE as 

t = Jvev, (2.76) 

where dv is defined as 

I" 6 
6V= . . (2.77) 

Qn+l 

The control of this virtual (n + l)-DOF robot along a fully constrained n-DOF task 

with t = 3V6V is equivalent to the control of the previous n-DOF manipulator along 

the (n — l)-DOF task with t = 30. In both cases, there is one DOF of redundancy. 

Hence, based on eq.(2.25), the non-minimum-norm solutions to eq.(2.76) can be writ

ten as 

Gv = J t t + ( 1 - 3l3v)h, (2.78) 

where 1 denotes the (n + 1) x (n + 1) identity matrix, h the secondary task and j£ 

the right generalized inverse of 3V, i.e., 

J t = J ^ J ^ r 1 (2.79) 

This virtual joint method to solve redundant robotic tasks suffers from the potential 

ill-conditioning of the augmented J , i.e., 3V, and the additional computation cost 

required to solve 3V. 
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2.7 Conclusion 

This chapter reviewed the main methods to solve the inverse kinematics of kine-

matically redundant robotic tasks, which included the global and local optimization 

methods, and the artificial intelligence methods. 

Functional redundancy-resolution, a sub-domain on redundancy resolution and the 

main study issue of this thesis, is overviewed with more details in this chapters. 

By taking advantage of the functional redundancy existing regularly in the robotic 

machining tasks, the objective of the optimization is to optimize the joint trajectories 

corresponding to the whole required path. A local optimization method named as 

TWA is developed in Chapter 3 and 4. For approaching the best joint trajectories , 

two methods of adapting weights are developed in Chapter 5 and 6, respectively. 



41 

C H A P I T R E 3 

T W I S T DECOMPOSITION A P P R O A C H A N D JOINT-LIMITS 

AVOIDANCE 

3.1 Introduction 

This chapter presents the Twist Decomposition Approach (TWA), which solves re

dundant robotic tasks requiring less than six-degrees-of-freedom. Instead of projecting 

the secondary task onto the null space of the Jacobian matrix in order to take advan

tage of the redundancy, the TWA directly decomposes the task into two orthogonal 

subspaces where the main and secondary tasks lie, respectively. This approach has 

shown to be efficient, i.e., having a low computation cost, and accurate, i.e., having 

a low round-off error amplification. In this chapter, several numerical examples are 

shown for different manipulators and tasks. 

The content of this chapter was published in the Transactions of the Canadian Society 

for Mechanical Engineering'6' in 2005. 

3.2 Kinematic Inversion of Functionally-redundant Manipulators 

3.2.1 Orthogonal-Decomposition of Three-Dimensional Vectors 

Decomposing any vector (•) of H 3 into two orthogonal parts, [-}M, the component 

lying on the subspace, A4, and [-JM-1) the component lying in the orthogonal sub-

space, Ai"1, using the projector M and an orthogonal complement of M, namely M x , 
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as follows : 

( • ) = [ - ]M + [ - ] M - = M ( - ) + M J (M + M x ) ( (3-1) 

It is apparent from eq. (3.1), that M and M x are related by M + M x = 1 and 

M M 1 = O, where 1 and O are the 3 x 3 identity and zero matrices, respectively. 

The orthogonal complement of M thus defined, M 1 , is therefore unique, and hence, 

both M and M-1 are projectors that verify the following properties : 

• Symmetry : 

• Idempotency : 

• Rank-complementarity : 

• Subspace-complementarity : 

[M]T = M, [MX]T = M x 

[M]2 = M, [M x ] 2 = Mx 

rank(M) + rank(M x ) = 3 

M 0 M1- = IR3 

The projector M projects vectors of IR3 onto the subspace At, while the orthogo

nal projector M x projects those vectors onto the orthogonal subspace M.^. These 

projectors are given for the four possible dimensions i of subspaces of IR3 as : 

Mt=( 

1 

p 
) 

L 

O 

Mi=< 

O 

L 

P 

1 

i = 2> 

i = 2 

i = 1 

i = 0 

=• 3-D task 

=> 2-D task 
> 

=4> 1-D task 

=>• 0-D task 

where the plane and line projectors, P and L, respectively, are defined as : 

(3.2) 

P = 1 - L, L = ee", (3.3) 

in which e is a unit vector along the line £ and normal to the plane V. The null-

projector O is the 3 x 3 zero matrix that projects any vector of H 3 onto the null-

subspace O, while the identity-projector 1 is the 3 x 3 identity matrix that projects 

any vector of IR3 onto itself. 
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3.2.2 Or thogona l -Decompos i t ion of Twis t s 

Any twist array (•) of 2 x IR3 can also be decomposed into two orthogonal parts, [ • }r, 

the component lying on the task subspace, T, and [ • ]r±, the component lying on the 

orthogonal task subspace (also designated as the redundant subspace), Tx, using the 

twist projector T and an orthogonal complement of T, namely T -1, as follows : 

(•) = [ - ] r + [ - ] ^ = T ( . ) + T - L ( - ) = (T + T^) ( . ) (3.4) 

It is apparent from eq. (3.4), that T and T1- are projectors of twists that must verify 

all the properties of projectors in section 3.2.1. However, twists are not vectors of IR6, 

and hence, projectors of twists cannot be defined as in eqs. (3.2) and (3.3), e.g., 

T ^ ttT, Tx ± 1 - ttT, (3-5) 

but must rather be defined as block diagonal matrices of projectors of IR3, i.e., 

T = 
M w O 

O M„ 
T x = 1 - T 

1 - M a 

O 

O 

1 - M „ 
(3.6) 

where M^ and M„ are projectors of IR3 defined in eqs. (3.2) and (3.3) which allow 

the projection of the angular and translational velocity vectors, respectively. It is 

noteworthy that the matrices of eq. (3.5) do not verify the properties of projectors, 

and hence, cannot be used for orthogonal decomposition. Finally, eq. (3.4) becomes 

t = t T + t T j . = T t + (1 - T) t . (3.7) 
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3.2.3 Twis t Decompos i t ion Algo r i t hm in Solving Funct iona l R e d u n d a n c y 

For functionally-redundant serial manipulators, it is possible to decompose the twist 

of the EE into two orthogonal parts, one lying into task subspace and another one 

lying into the redundant subspace. Substituting eq. (3.7) into eq. (2.24) yields 

A0 = ( J f T) t + j t ( l - T ) J h , (3.8) 

task displacement redundant displacement 

where h is an arbitrary vector of J allowing to satisfy a secondary task. Vector h is 

often chosen as the gradient of an objective function to be minimized (Baron '591). For 

the avoidance of joint-limits, the objective function z can be written as to maintain 

the manipulator as close as possible to the mid-joint position 0, i.e., 

1 _ _ min 
z = -{0~ 0 ) r W T W ( 0 - 0) -> , (3.9) 2 

with 0 and W being defined as 

0 

0 = \ (0max + 0min), W = diag I ^ — — ) . (3.10) 
' max v mm 

Vector h is thus chosen as minus the gradient of z, i.e., 

h = - V * . (3.11) 

The first part of the RHS of eq. (3.8) is the joint displacement required by the 

task, while the second part is the joint displacement in the redundant subspace (or 

irrelevant to the task). Clearly, eq. (3.8) does not require the projection onto the null-

space of J as most of the redundancy-resolution algorithms do, but rather requires 

an orthogonal projection based on the instantaneous geometry of the task to be 

accomplished. 
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Algorithm 3.1 : Twist Decomposit ion Algorithm 

1 0 <— initial joint position ; 

2 {pa, Qd} <— desired EE position and orientation; 

3 {p, Q} 4= DKP(0) 

4 A Q ^ Q r Q , 

5 Ap <̂= pd - p 

Qvect(AQ) 
6 t 

Ap 

7 DKP(0) => { 

e 

f : 

J 

M„ 

T<= 
Mw O 

O M„ 

9 A0^= JtTt + J f ( l - T ) J h 

10 if ||A6>|| < e then stop; 

else 

11 0 <= 0 + A0, and go to 3. 

As shown in Algorithm 3.1, eq. (3.8) is used within a resolved-motion rate method. 

At lines 1-3, the joint position 0 and the desired EE pose {p^, Q<*} are first initia

lized, then the actual EE pose {p, Q} is computed with the direct kinematic model 

DKP(0) . At lines 4-6, an EE displacement t is computed from the difference between 

the desired and actual EE poses. The vect( •) at line 6 is the function transforming 

a 3 x 3 rotation matrix into an axial vector as defined in M (page 34). At lines 7-8, 

the instantaneous orthogonal twist projector T is computed from DKP(0) . At line 

9, the orthogonal decomposition method is used to compute the corresponding joint 

displacement A0. Finally, the algorithm is stop whenever the norm of A0 is smaller 

than a certain threshold e. 
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3.3 Example I : P u m a 500 

joint 
1 
2 
3 
4 
5 
6 

unit 

Oi 
9i 

e2 
e3 
e4 
e5 
0e 

rad. 

ca 
0.0 

0.4318 
-0.0203 

0.0 
0.0 
0 
m 

k 
0.0 
0.0 

0.1491 
0.4330 

0.0 
0.055 

m 

&i 

- T T / 2 

0.0 
vr/2 

- 7 T / 2 

TT/2 

0 
rad. 

T A B . 3.1 DH parameters of PUMA 500. 

When performing arc-welding operations, the electrode of the welding tool has an 

axis of symmetry around which the welding tool may be rotated without interfering 

with the task to be performed. This axis describes the geometry of the functional 

redundancy (or the redundant subspace of twists). The unit vector e denote the 

orientation of the symmetry axis along the electrode. The projection of OJ along e is 

the irrelevant component of u>, while its projection onto the plane normal to e is the 

relevant component of UJ. For a general arc-welding task around the electrode axis e, 

the twist projector is defined as 

-weld 
0 

^ 0 

1 
T _L 

weld 

eeT 0 

0 0 
(3.12) 

Now, substituting eq. (3.12) into eq. (3.8) yields 

Ad = 3^Tweldt + J 
ee T Ah 

0 
(3.13) 

where A is the upper part of J as defined in eq. (2.15). Equation (3.13) can be used as 

line 9 of Algorithm 3.1 in order to solve the inverse kinematics of serial manipulators 

while performing a general arc-welding task. 
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• H I 

F I G . 3.1 Arc-welding task with the PUMA 500 manipulator 

As shown in Fig. 3.1, a PUMA 500 serial manipulator is used to perform a pipe-to-

bride welding task. Its DH parameters are described in Table 3.1. The welding tool 

has a transformation matrix Atooi as 

Hool 

1 0 0 0 

0 cos(f) - s i n ( f ) 0.1 

0 sin(f) cos(f) 0.501 

0 0 0 1 

The EE must perform consecutively the trajectory Ai (T = 285 sec), i.e., 

P = 

0.1cos(c<;£) 

0.6 + 0.1sin(^) 

-0.59 

, Q = 

cos a — sin a cos (3 sin a sin j3 

sin a cos a cos (3 cos a cos (3 

0 sin (3 cos (3 

(3.14) 

, (3.15) 

3?r , , _ 2?r 0 < £ < T, where distances and angles are with a = ^ + cot, (3 •— —^-, ^ — T , 

expressed in meters and radians, respectively. The orientation of the electrode axis 

namely e, can be computed as 

e = Q i Q 2 - - - Q 6 k , k E [ 0 0 lp (3.16) 
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The secondary task h is chosen to avoid the joint-limits such that 

h = - W ( 0 - 0 o ) , (3.17) 

where W is a positive-definite weighting matrix given as in eq. (3.10), and do the 

mean-joint position of the robotic manipulator, i.e., 

en = IT/2 —7r/3 TV 7r/4 7r/3 7r 
l T 

(3.18) 

3 

2 

1 

0 

0 
(rad.) "1 

-2 

-3 

-4 
-5 

I*— 1st tu rn 

' 

-t 

^ - ' c 

— 2nd turn—•) 

v_^C"~ -

^V_ ' 
100 200 300 400 500 600 700 

Time (sec.) 

F I G . 3.2 Joint position with respect to time without using RR scheme 

Figure 3.2 shows the joint positions to perform twice the trajectory Ax as computed 

by the resolved-motion rate method without considering the functional redundancy, 

i.e., using eq. (2.24) at line 9 of Algorithm 3.1. Apparently, without taking advantage 

of the axis of symmetry of the electrode, the manipulator is able to perform the first 

turn of the trajectory Ai while the second consecutive turn is not possible without 

exceeding the joint limits. Figure 3.3 shows the joint positions to perform twice the 

trajectory Ai as computed by the augmented approach, i.e., using eq. (2.25) at line 

9 of Algorithm 3.1. Apparently, the manipulator is able to perform multiple conse-



49 

cutive turns without exceeding the joint limits. However, excessive joint velocities 

appear at every turn. Figure 3.4 shows the joint positions for two consecutive turns 

as computed by the TWA, i.e., using eq. (3.8) at line 9 of algorithm 3.1. Apparently, 

the manipulator is able to perform multiple consecutive turns without exceeding the 

joint limits. Excessive joint velocities appear only at the first turn, because of the 

arbitrarily chosen initial conditions. 

However, starting from the second turn, the joint space trajectories have no excessive 

joint velocities, and the same joint trajectories repeated in the following turns. The 

reason of causing this phenomenon is that the manipulator posture reaching the first 

path point is optimized after first turn. 

U— 1st turn —tl>— 2nd turn 
6, 1 , , r-4 , , 

_ 2 I I i i I I I I 

0 100 200 300 400 500 600 700 

Time (sec.) 

F I G . 3.3 Joint positions with respect to time for the virtual joint method 

For the sake of comparing the performance of the augmented and projected ap

proaches, the trajectory Ai is discretized into n segments, for which the average 

reaching accuracy of their end-point is computed. For this performance evaluation, 

lines 3 to 10 of Algorithm 3.1 is performed at constant number of iterations rather 

than until a threshold is reached. The position error of segment j , namely ePj, is 

computed as the norm of the difference between the corresponding reached position 
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Time (sec.) 

F I G . 3.4 Joint positions with respect to time for the twist decomposition method 

prj and desired position p ^ , i.e., 

epj = \\Prj ~ Pdjl ( 3 - 1 9 ) 

and the average position error ep along the whole trajectory A is given as 

1 n 

£p = -J2ePr (3"2°) 

Similarly, the orientation error of segment j , namely eej, is computed as the norm of 

difference between the corresponding reached orientation Qrj and the desired orien

tation Qdj, i.e., 

eej = | |vect(Q^.Qdj)| | . (3.21) 

Since the rotation around the electrode axis does not affect the welding task, the 

orientation error around that axis is also irrelevant, and thus, only its projection onto 

the plane normal to that axis is meaningful. Let the unit vector e be aligned along 

the electrode axis in the base frame, then the projection of the orientation error of 

eq. (3.21) onto the plane normal to e is given as 

file:////Prj
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eoj = ||(1 - e e r )Q r i vec t (Q5Q d j ) | | , (3.22) 

and the average orientation error e0 along the whole trajectory A is given as 

1 n 

e0 = - Y ^ e - . (3.23) 

Table 3.2 shows the average position and orientation errors of the augmented and 

twist decomposition approaches computed with 20 iterations for each segment. It is 

apparent that the TWA has much lower position and orientation errors in the task 

space than the augmented approach. The TWA produces more accurate solutions 

than the augmented approach with the same number of iterations. In other words, 

the TWA is able to approach the desired posture faster than the augmented approach. 

method 
augmented 

TWA 
unit 

Cp 

2.4742 x 10"6 

9.4712 x 1(T8 

meter 

e0 

2.2511 x 10"5 

9.2936 x 1(T6 

rad. 

T A B . 3.2 Errors of the augmented and projected approaches. 

3.4 Example II : Fanuc M16iB 

In this example^62!, the end-milling operation is performed by a Fanuc M16iB. The 

graphic simulator and translation path of the task are shown in Figure 3.5. When 

performing the end-milling operations, the milling tool has a symmetry axis, around 

which the milling tool may be rotated without interfering with the task to be perfor

med. This axis describes the geometry of the functional redundancy (or the redundant 

subspace of twists). The unit vector e denote the orientation of the symmetry axis 

of the tool. The projection of u) along e is the irrelevant component of u>, while its 
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(a) 

(b) 
F I G . 3.5 (a) Graphic simulator of the end-milling operation with a Fanuc M16iB (b) 
the end-point path in the base frame. 

projection onto the plane normal to e is the relevant component of UJ. 

For a general end-milling task and the symmetry axis e, the projectors M^ and M„ 

are defined as 

M w = [1 - eeT] , M„ = [1] (3.24) 

After substituting eq.(3.24) into eq. (3.6), eq.(3.8) becomes 

A 0 = J f T A i + J f 
ee T Ah 

0 
(3.25) 

where A is the upper part of J as defined in eq.(2.15). Equation (3.25) can be used as 

line 9 of Algorithm 3.1 in order to solve the inverse kinematics of serial manipulators 

while performing a general end-milling task. A Fanuc M16iB serial robot is used to 
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perform a sphere-edge milling task. Its DH parameters and joint limits are described 

in Table 3.3. 

joint 
1 
2 
3 
4 
5 
6 

unit 

CLi 

0.150 
0.770 
0.10 
0.0 
0.0 
0 
m 

h 
0.525 

0.0 
0.0 

0.740 
0.0 

0.10 
m 

OLi 

- T T / 2 

0.0 
TT/2 

- T T / 2 

TT/2 

0 
rad. 

Min. 
-2.9671 
-2.1817 
-4.0143 
-3.4907 
-2.4435 
-7.8540 

rad. 

Max. 
2.9671 
2.1817 
4.0143 
3.4907 
2.4435 
7.8540 
rad. 

TAB. 3.3 DH parameters of the Fanuc M16iB. 

meth. 

Aug. 
TWA 

a. Itera. No. = 1 
Period A 
7.2546 
5.6308 

Period B 
1.3748 
0.3950 

b. pe < 0.001; oe < 0.01 
Period A 
8.0307 
6.0448 

Itera. No. 
4809 
4787 

T A B . 3.4 Computation time of the augmented (Aug.) and twist decomposition ap
proaches (TWA) : (a) fixing the iteration number as one; (b) reaching the same 
accuracy. Period A — the computation time from line 3 to 11 in Algorithm 3.1; 
Period B — the computation time of line 9 in Algorithm 3.1. All the unit of time are 
seconds. 

The milling tool has a transformation matrix Atooi as 

A/™/ — 

cos/? 0 - s i n / ? -0.0785 

0 1 0 0 

sin/3 0 cos/3 0.154 

0 0 0 1 

(3.26) 

with /3 — —0.4398 rad. The EE must perform consecutively the trajectory A2 (T = 50 

sec). The symmetry axis of the milling tool is always normal to the sphere surface 

along the trajectory A2. The velocity of the tool is changing according the sine curve 
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(from —7r/2 to n/2) along each edge. That is to say, EE velocity is zero at each corner 

of the path, and is accelerated smoothly to maximum at the middle point of the edge, 

then the EE velocity is decelerated smoothly till zero at the next corner. The path 

planning is done with the help of CATIA V5 machining module. The secondary task 

h is chosen to avoid the joint-limits such that : 

h = - W ( 0 - 0O), (3.27) 

where W is a positive-definite weighting matrix as in eq.(3.10) and 0O the mid-joint 

position of the robotic manipulator, i.e., 

W = Diag( 0.10 0.12 0.10 0.10 0.10 0.10 ), (3.28) 

en = 0 0 0 0 0 0 
T 

(3.29) 

Figure 3.6(a) shows the joint positions to perform twice the trajectory A as computed 

by the resolved-motion rate method without considering the functional redundancy, 

i.e., using eq.(2.24) at line 9 of Algorithm 3.1. Apparently, without taking advantage 

of the tool symmetry axis, the manipulator is unable to perform the trajectory A. 

Figure 3.6(b) shows the joint positions to perform twice the trajectory A as com

puted by the augmented approach, i.e., using eq.(2.25) at line 9 of Algorithm 3.1. 

Apparently, joint 4 is out of the joint limit starting from 30 second. On the other 

hand, excessive joint velocities appear at every turn. Figure 3.6(c) shows the joint 

positions for two consecutive turns as computed by TWA, i.e., using eq.(3.8) at line 9 

of Algorithm 3.1. Apparently, the manipulator is able to perform multiple consecutive 

turns without exceeding the joint limits shown in Table 3.3. 

For the sake of comparing the efficiency, the computation time of the augmented and 

twist decomposition approaches are studied as shown in Table II. Apparently, the 

TWA is much faster than the augmented approach, and the computation of eq.(3.8) 

is almost three and half times faster than eq.(2.25). The main reason, which lags the 
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computation of augmented approach, is the computation of the pseudo inverse of a 

non-square Jacobian matrix rather than the inverse of a square jacobian matrix as in 

the TWA. 

3.5 Example III : Fanuc 710c50 

3.5.1 Task Description 

The arc-welding operation is performed with a Fanuc M-710 iC/50. The DH para

meters and joint limits of this robot are described in Table 3.5. The welding parts 

is made of two cylinder of radius 400mm and 250mm, respectively. Figure 3.7 shows 

the robot and the welding parts. The welding path A3 is the intersection curve of 

Joint 
1 
2 
3 
4 
5 
6 

unit 

0i 
0 

-90 
0 
0 
0 
0 

degree 

a-i 

150 
870 
170 
0 
0 
0 

mm 

h 
0 
0 
0 

1016 
0 
175 
mm 

OLi 

-90 
180 
-90 
90 

-90 
180 

degree 

Max. 

180 
75 
230 
360 
125 
360 

degree 

Min. 

-180 
-60 

-131.8 
-360 
-125 
-360 

degree 

T A B . 3.5 DH parameters of Fanuc M-710ic/50. 

the two cylinders, as shown in Fig. 3.8. The length of A3 is 1829mm. The EE must 

perform the welding operation consecutively along the path A3, with the speed about 

75mm/min. The welding tool symmetry axis must always be directed toward point 

P, which locates at [ 0 0 0 ] T in the part frame, the intersection point of the axes 

of the two cylinders. The transformation matrix from the robot base frame to the 



56 

part frame is 

T 

1 0 0 1150 

0 1 0 200 

0 0 1 -200 

0 0 0 1 

(3.30) 

Figure 3.9 shows the joint positions to perform twice the trajectory A as computed 

by the resolved-motion rate method without considering the functional redundancy, 

i.e., using eq.(2.24) at line 9 of Algorithm 3.1. Apparently, without taking advantage 

of the redundant axis, the sixth joint goes out of its joint limit, the manipulator is 

unable to perform this task. Thus, an optimization is needed to avoid the joint-limits. 

3.5.2 Test I : Joint-limits Avoidance 

The secondary task h is chosen to avoid the joint-limits such that 

h = - V ^ o i n t = Diag(w i n i)(0 - 0), (3.31) 

where 6 is the mid-joint position of the robotic manipulator, and 

Win,,; — 0.01 0.01 0.01 0.01 0.01 0.01 (3.32) 

Equation(3.31) is used as the secondary task to avoid the joint-limits. Figure 3.10 

shows the joint positions for two consecutive turns as computed by the TWA, i.e., 

using eq.(3.8) at line 9 of Algorithm 3.1. The trajectories of each joint are within 

its joint limits. The maximum rotation velocity of the fourth and sixth joints are 

74.5deg/sec and 56.9deg/sec, respectively. 

Although the TWA, with only joint limits avoidance, can reach a solution within the 

joint limits. The robot configuration is close to singularity at the instants 61 and 194 
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seconds, where the corresponding singularity performance indices are 

ooCond = 163, Lomom = 0.0066, u)ps = 157. (3.33) 

Clearly, these indices are very close to a singularity. Thus, a singularity avoidance 

strategy becomes necessary in addition to the joint-limits avoidance for TWA. 
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1st turn J, 2nd turr 

{rod.) 

ldt turrfi 
(bY Time (sec) 

j ^ _ 5 ° 2 n ¥ t u r f ° 

20 40 
(cYTime' (sec.) 
v '60 8 0 v 100 

FlG. 3.6 Joint space trajectories of two consecutive turns of trajectory A as computed 
by the resolved-motion rate method with different approaches : a) No redundant-
resolution approach; b) Augmented approach c) Twist decomposition approach 
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FIG. 3.7 Graphic simulator of arc-welding operation with a Fanuc M-710 iC/50 . 

meter 
0 .42 , 

0.4-

0.38-

0.36 

0.34. 

0.32-

meter meter 

FIG. 3.8 The welding path in the part frame. 
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t 1st turn—4*— 2nd turn-

e 
(rad.) -s 

~-

"~-; 

• 

- ^ 

'^ -

i 

/ 

\ 

~~ - -% 

-^^T^-^x^—~^J 

~~~- -

r~~K-

\ 
\ 

50 100 150 200 250 300 

Time (sec.) 

F I G . 3.9 Joint positions of two consecutive turns of trajectory A3 as computed by the 
resolved-motion rate method (without considering the functional redundancy). 

0 k ^ , 
(rad.)0\><.S$< 

L_ 1st turn J, 2nd turn J 

50 100 150 200 250 300 

Time (sec.) 

F I G . 3.10 Test I : Joint position with respect to time with the joint-limits avoidance 
strategy. 
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3.6 General Task Projectors 

There are four possible dimension for the projectors M w and M„ respectively, in 

principle, the twist projector can be constructed with 16 possibilities as shown in 

Table 3.6, from fully free motion (both of M w and M„ are equal to 0) to completely 

constrained motion (both of M w and M„ are equal to 1). 

Thus, if the tasks have more than one-DOF of functional redundancy, TWA can still 

be applied with corresponding M u and M„. For example, if a half-sphere end-milling 

tool is used, then the irrelevant motion include the rotation not only around the tool 

symmetry axis Z, but also may around the X and Y axes under some limitations. In 

this case, we have M w = 0 and M„ = 1. 

Moreover, TWA is able to work on the tasks not only related to the tool geometry, 

but also related to part geometry. For example, as handling a cylindrical part, the 

orientation of the handler around the cylinder axis becomes irrelevant. In this case, 

the twist must be decomposed in the part frame instead of the tool frame. These 

more generalized tasks still need more analysis and are left for future research works. 

3.7 Conclusion 

In this chapter, the kinematic inversion of functionally-redundant serial manipulators 

is formulated using the orthogonal decomposition of the twist of the EE into a task 

subspace and a redundant subspace. The numerical simulation of three examples 

of serial manipulators has shown that the TWA is more effective relative to the 

augmented and non-redundant approaches. 

Moreover, the simulation shows that the numerical stability greatly depends on the 

initial posture and the weights between the joints. Furthermore, the numerical condi

tioning is sometime very bad, the latter should not appear if taking the conditioning 
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into account in the secondary task as presented in the next chapter. 
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C H A P I T R E 4 

JOINT-LIMITS A N D S I N G U L A R I T Y AVOIDANCE IN TWA 

4.1 Introduction 

The aim of this chapter is to apply the TWA to optimize the joint-motion of six-

revolute serial manipulators as avoiding joint-limits and singularities. 

Some researchers'63] have realized that the success of the GPM relies on the evaluation 

of the performance criterion on the joints position. As the task requires not only the 

avoidance of the joint-limits but also keeping the robot configuration as far as possible 

from singularities, we need two different performance criteria relating to joint-limits 

and singularities, respectively. Here, the distance to the mid-joint position is used as 

the performance index relating to the joint-limits. 

In order to avoid not only the joint limits but also the singularities at the same time, a 

new performance criterion relating to singularities, named Parameter of Singularity, 

is proposed and analyzed in this chapter. The numerical examples with application 

to arc-welding are also presented at the end of this chapter. 

The content of this chapter has been published in Industrial Robot : An International 

Journal[64] in 2008. 
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4.2 Performance Criteria 

4.2.1 Joint-limits Avoidance 

In order to perform the joint-limits avoidance as the secondary task, we need to 

keep the manipulator as far as possible from its joint limits. Thus, in this case, the 

performance criterion can be written as to maintain the manipulator as close as 

possible to the mid-joint position 6, i.e., 

1 _ „ „ _ min 

Zjoint = -(o-o)TwTw(o-o)^ , (4.i) 
2 o 

with 0 and W being defined as 

o = -(omax + omin), w = Diag(w). (4.2) 

The setting of the weighting vector w of eq.(4.2) is very important to the success of 

the optimization. If w is too small, the redundant displacement may not be sufficient 

to avoid the joint-limits; if w is too large, the redundant displacement may produce 

high joint velocities. Therefore, w is usually set based on trial and error. We will 

study this question in chapter 5, but here let us introduce the singularity avoidance. 

4.2.2 Kinematic Singularity Avoidance 

A singular posture is defined as the manipulator's configuration 0*, where 3(0*) is 

not full rank. The Singular Value Decomposition (SVD) of J is defined as 

J = U S V r , E ^ D i a g f a , - - - , ^ ) , (4.3) 
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where U and V are, respectively, m x m and n x n orthogonal matrices, and £ 

is an m x n diagonal matrix of the singular values of J . The manipulator is in a 

singular state when at least one of its singular value equal to zero, i.e., am = 0. The 

corresponding column of U is referred to as the singular direction s. In this state, the 

motion along s is not possible'65!. 

Moreover, in the neighbourhood of singular points, even a small change in t requires 

an large change in A0, which is not-practically feasible and often dangerous on a real 

manipulator. 

4.2.2.1 Manipulability Index 

The first step in avoiding singularities is to detect them in the joint space. As pre

sented by Yoshikawa'66!, the manipulability ellipsoid represents an ability of manipu

lation, i.e., the EE can move at higher speed in the direction of the major axis of 

the ellipsoid, while only with lower speed in the direction of the minor axes. If the 

ellipsoid is a sphere, the EE can move in all directions uniformly. Moreover, the larger 

the volume of the ellipsoid is, the faster the EE can move. One of the representative 

measures for the ability of manipulation derived from the manipulability ellipsoid 

is the volume of the ellipsoid. Hence, the measure of manipulability, namely comom, 

could be written as 

Umom = ydet(3JT) = axa2 • • • crm. (4.4) 

where cr-y, a2, • • • <rm are the singular values of J ordered from maximum to minimum. 

Thus, let Ui be the ith column vector of U, the principle axes of the manipulability 

ellipsoid are o^ui, er2u2, . . . , amum (see Fig. 4.1). Marani et alJ67' have used the uim0m 

as the distance criterion to avoid manipulator singularity. However, ujmom can not 

represent the shape of the ellipsoid. 
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(f 

7(7111! 

2Uh a2UJ2 I Q'mM-m 
V " 

lifltllli 
FlG. 4.1 Representation of the manipulability ellipsoid 

4.2.2.2 Conditioning 

Another index that might be induced from the manipulability ellipsoid is the condi

tion number, namely u)con(j, of J, which is defined as the ratio of the maximum and 

minimum radius of the ellipsoid, i.e., 

Ucond = > 1, (4.5) 

and is independent of the ellipsoid's size. This ratio is an index of the directional 

uniformly of the ellipsoid. The closer to unity this index is, the more spherical the 

ellipsoid is. In a singular posture, the minor axis of the ellipsoid vanishes, i.e., am — 0, 

so the condition number becomes infinity. The condition number can be used as the 

distance criterion to avoid manipulator's singularities. But as versa to cjm0TO, 0Jcond 

only represents the shape of the ellipsoid. 

4.2.2.3 Parameter of Singularity 

Since uJmom only represents the volume of the manipulability ellipsoid, while LOCond 

only the shape. If keeping constant of the ellipsoid volume, i.e., the product of the 

singular values of J , but changing the ellipsoid shape, i.e., the ration between o\ and 
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c m , oomom can not measure the difference but Locond can. Similarly, if scaling up the 

ellipsoid, there is no changing on u}cond but ujmom can measure the difference. 

In order to better represent the manipulability ellipsoid, a performance index which 

represents both the volume and the shape of the manipulability ellipsoid is required. 

Here, we propose to combine the manipulability and conditioning together to generate 

a new performance index, named Parameter of Singularity (PS)!68!, and is defined as 

uJps = J^^- = J J-. (4.6) 

The index ups represents both the volume and the shape of the manipulability ellipsoid 

at the same time. The smaller u>ps is, the more spherical the ellipsoid is or the larger 

the ellipsoid's volume is, the faster the EE can move in the direction of the minor 

axis. Thus, the ups can be used as a continuous measure that evaluate the kinematic 

quality of a robotic posture. The greater the ujps is, the worse the conditioning is or 

the lower the manipulability is. 

In order to detect the singularity, a threshold singularity value u0 is set. When ujps 

is passing over ut0, the corresponding configuration at this instant is recorded as GTs, 

and the performance criterion is activated to maintain the manipulator as close as 

possible to 6TS in the following steps, until the u>ps is lower than the preset threshold 

value u0. The performance criterion is written as 

z. 
Uls , ,T T • • m l 1 1 

PS a a \T\rT-- -sing -^{0-eTsy^^{e-eTs)^ , (4.7) 
e 

where K is a weighting matrix obtained with the same method as W , i.e., heuristi-

cally. 

file:///T/rT--
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4.2.3 Joint-Limits and Singularity Avoidance 

The two secondary tasks described above, joint-limits and singularity avoidances, 

can be combined into an unique performance criterion, which is to maintain the 

manipulator as close as possible to the mid-joint position 6 and as far as possible to 

the singularities at the same time. The objective function could be written as 

By tuning W and K, the relative importance between the two sub-tasks is adjusted. 

Vector h of eqs.(2.25, 3.8) is thus chosen as minus the gradient of z, i.e., 

h=-Vz = W(d-0) + Kups(0Ts-d), (4.9) 

where K = 0 as u>ps < cv0. 

Thus eq.(3.8) could be rewritten as 

A 0 = (J fT)t + J t ( l - T)JW(fl - 0) + Jt ( l - T)3Kiops(eTs - 0). (4.10) 

task displacement redundant displacement 1 redundant displacement 2 

In eq.(4.10), the redundant displacement is decomposed to two components. The first 

one creates the displacement for avoiding the joint limits, and the second for avoiding 

the singularity. 

4.3 Numerical Examples 

We reuse the same manipulator (FanucM710iC/50) and task as in example III of 

section 3.5. Since we named the testing in section 3.5 as Test I, the tests in this 

section are named as Test II and III. 
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4.3.1 Test II : Joint-limits and Singularity Avoidances 

In the end of Test I, we already realize a singularity avoidance strategy is necessary 

on this task besides of joint-limits avoidance. Thus here, we combine the joint-limits 

and kinematic singularity avoidances into one objective function as 

z = z 
mm 

30mt + zsmg^ ^ , 
(4.11) 

and hence, the solution can be obtained as 

" \vZj0int-\- V Zging) 

= Diag(w i n i)(0 - 6) 

+Diag(k i n i) (OTS - 9) 

(4.12) 

where 

"ini ^-ini 0.01 0.01 0.01 0.01 0.01 0.01 (4.13) 

The preset threshold ups is 5, i.e., eq.(4.12) is applied only when the u>ps > 5, 

[«_ 1st turn ,|, 2nd t u r n ^ 

50 , 100 150, 200 250 300 100 150 20 

(b) Time (sec.) 

F I G . 4.2 Test II : Joint position with respect to time with the joint-limits and the 
singularity avoidance strategy. 
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otherwise, h is computed by eq.(3.31). The joint trajectory with TWA considering 

both joint-limits and singularity avoidance is shown in Fig. 4.2, where the joint mo

tion range is smaller than the result reached in Test I. The closest configuration to 

singularity appears at instants 64 and 197 second, with the singularity indices of 

Ucond = 56, LOmom = 0.03, Ups = 43.2. (4-14) 

By comparing Test I and Test II, the maximum value of the condition number ioconci 

is decreased from 163 to 56, i.e., the shape of the manipulability ellipsoid becomes 

closer to a sphere. The minimum value of u>mom increases from 0.0066 to 0.03, i.e., the 

volume of the manipulability ellipsoid increase. The maximum value of uips decreases 

from 156 to 43, i.e., the EE move faster in the direction of the minor axis of the 

manipulability ellipsoid. As a result of the increasing of the distance from singulari

ties, the maximum rotation velocity of the fourth joint is lower from 74.5deg/sec to 

22deg/sec, respectively. 

[<_ 1st turn ,|, 2nd turn__»| 

0 50 100 150 200 250 300 

Time (sec.) 

FlG. 4.3 Test III : Joint position with respect to time with joint-limits and singularity 
avoidant strategy and adapted weighting vectors. 
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4.3.2 Test III : Joint-limits and Singularity Avoidance with Adapted 

Weights 

As mention before, the setting of the weighting vector has great influence on the 

result. Here, the weighting vectors wadp and kaap are adapted heuristically from their 

original setting, and then are used in eq.(4.12) as 

W a dp — 

K-adp 

0.01 0.01 0.01 0.01 0.01 0.03 

0.01 0.01 0.01 0.01 0.01 0.05 

(4.15) 

(4.16) 

The resulting joint trajectory with this adapted weighting vectors is shown in Fig. 4.3, 

where the motion range of the sixth joint is only 33% of Test II. The closest confi

guration to singularity appears at instant 61 and 194 second, with the singularity 

indices of 

Ucond — 3 1 , U!„ 0.076, ups = 20.2. (4.17) 

These singularity indices are enhanced almost 100% as comparing to Test II. Among 

Test 

I 
II 
III 

unit 

Motion 
range 

- 5 . 3 ~ 4.47 
- 4 . 6 - 4 . 1 7 

- 1 . 5 2 - 4 . 1 7 
radian 

Max. 

^cond 

163 
56 
31 

Min. 

(-"mom 

0.0066 
0.03 

0.076 

Max. 
UpS 

157 
43.2 
20.2 

Max. J6 
velocity 

57 
56 
37 

deg./s 

Max. J4 
velocity 

74 
22 
26 

deg./s 

Error 
orien. 
0.0013 
0.0013 

0.00077 
radian 

Error 
posi. 

0.0024 
0.0024 
0.0024 

mm 

TAB. 4.1 Tests comparison where uJCOnd is condition number of J and ujn 

manipulability measure. 
is the 

all the three tests in sections 3.5.2, 4.3.1, and 4.3.2, the orientation and position errors 

between the reached and desired path in task space are studied in order to verify the 

solution accuracy. All these three tests can reach same level of position accuracy, i. e., 

the maximum position error was 0.0024mm. Relating to the orientation, Tests I and 

II can reach the same level accuracy, i.e., the maximum norm of orientation error 
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is 0.00128rad. Test III can reach higher orientation accuracy, its orientation error is 

0.00077rad. 

All these comparison are summarized in Table 4.1. Obviously, by applying the crite

rion in eq.(4.12) on Test II, the distance from singularities is increased while minimi

zing the the joint motion range; and with adapting the weighting vectors in Test III, 

a much better solution can be reached. 

4.4 Conclusions 

In order to keep the robot configuration as far as possible from singularities, the 

condition number ujcond and manipulability ujmom are not only used, but also combined 

to generate a new kinetostatic performance index ujps which evaluates both the shape 

and volume of the manipulability ellipsoid at the same time. 

The numerical example compares the optimization results among three tests. The 

proposed twist decomposition approach, i.e., TWA, with joint-limits and singularity 

avoidance as the secondary task is able to reach the best solution with this trajectory. 

Hence, the TWA has been proven to be able to optimize the joint space trajectory 

with the different performance criterions. However, we also see the selection of weights 

has very great influence on the success of the optimization, and deserve more study 

as we do in the following chapters. 
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C H A P I T R E 5 

SELF-ADAPTATION OF W E I G H T S IN TWA 

5.1 Introduction 

For a general 6-DOF task, many research works have reported algorithms allowing 

to choose an optimal solution when the manipulator has more joints than the corres

ponding DOF of its EE (e.g., I15> 22- 24' 25> 26< 59> 69< 7°]). All of them use the Gradient 

Projection Method (GPM) to track the desired EE path, i.e., the main task, and solve 

a trajectory optimization problem, i.e., the secondary task. The latter is related to a 

performance criterion. The gradient of this function is projected onto the null space 

of the Jacobian matrix, namely J, in order to choose the best solution among the in

finitely many that exist. Hence, the secondary task is performed under the constraint 

that the main task is realized. 

The success of GPM relies greatly on the weighting parameters (the relative impor

tance of the secondary task wrt. the main task), that have to be precisely tuned in 

order to ensure the fulfillment of both the main and secondary tasks. This problem on 

the setting of W has been noticed by Chaumette and Marchand'63'. They developed 

a tuning method for joint-limits avoidance, and tested it in a 9-DOF manipulator. 

This method avoids the joint limit by damping the joint motion after it passing over a 

preset activation threshold. It requires the manipulator has multiple redundant DOF, 

and is not suitable for the 1-DOF redundant tasks discussed earlier. 

As closing to the singular state, there is much higher possibility on the occurrence 

of the joint "jerk" motion, and the solution in numerical method has lower accuracy. 

Moreover, it is also noticed that the joint-limits occurrence have high relevant with 

the configuration singular state. Thus, the joint-limits and singularity avoidance must 
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be considered together in order to reach a reachable trajectory. 

Unfortunately, the result reached by TWA is also very sensitive to the setting of 

weights as the classical GPM, i.e., both of their success rely on the weighting vector 

(the relative importance of the secondary task wrt. the main task), that has to be 

tuned in order to succeed with the optimization process. If badly chosen, the task may 

fail. Until now, the vector is usually set heuristically, i.e., by trial-and-error method. 

For a 6-axis serial manipulator, the weighting vector is composed of six weights, hence 

the tuning procedure becomes a searching problem into a six-dimensional space. Here, 

we try to reduce the dimension of the search space to two by identifying the two 

most important weights. Then a self-tuning algorithm is developed to search the best 

weighting vector. 

This chapter presents the self-tuning method of weights, and shows three application 

examples. The main content of this chapter has been included in the journal paper'72' 

submitted to the journal of Robotics and Computer Integrated Manufacturing. 

5.2 Joint-Limits and Singularity Avoidances 

When the two secondary tasks of joint-limits and singularity avoidance are combined 

into a unique performance criterion, which is to maintain the manipulator as close 

as possible to the mid-joint position 0 and as far as possible to singularities, both at 

the same time, the objective function z is given as in eq.(4.8). 

Substituting eqs.(4.7) and (4.1) into (4.8), there is 

z = \(fi- 0)TWTW(6 -d) + T^—(0 - 0Ts)
TKTK(0 - 0Ts). (5.1) 

The self-motion related to the two sub-tasks is adjusted by tuning matrices W and K. 

In this context, vector h used in eqs.(2.25) and (3.8) is chosen as minus the gradient 
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of z, i.e., 

h=-Vz = W(d-0) + Kcups(dTs-O), (5.2) 

where W and K are recalled to be defined as 

W = Diag(w) K = Diag(k). (5.3) 

The selection of weights in vectors w and k is very important for the success of 

the optimization. If the values of w and k are too small or too large, the redundant 

displacement may not be sufficient to avoid the joint-limits or singularities. Obviously, 

it is not efficient to manually tune these weights. Thus, a self-tuning method for 

weights becomes necessary. 

5.3 Weights Self-Adaptation System 

5.3.1 Overall Description 

A weights self-adaptation system is proposed here. This system is composed by three 

main components described as follows : 

1. Identification of weights sensitivity (IWS); 

2. Joint trajectory performance evaluation algorithm (JTPEA); 

3. Linear search method (LSM) in 2D convex space; 
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Algorithm 4.1 : Weights Self-adaptation System 

1 oet Wjnj and kjni; 

2 TWA —> joint trajectory with wini and k j n , ; 

3 IWS —> most sensitive weights; 

4 LSM -»• warfp and kadp ; 

5 TWA —> joint trajectory with wa^p and kadp; 

6 JTPEA —> better or worse than the previous 

If (Better) 

Go ahead along same searching direction 

with same step length; 

else (Worse) 

Change searching direction or step length. 

7 If (APerform > Tol) 

Go to step 4; 

else if (APerform < Tol for three times) 

Terminate the adaptation. 

The overall tuning procedure is shown as Algorithm 4.1. Firstly, from Steps 1 to 3, 

the initial set weights wini and kini are applied to the TWA, and the most sensitive 

weights are identified. In steps 4 and 5, based on LSM in 2D convex space, the weights 

are tuned to wadp and kadp, TWA runs again by using wadP and kadp and reaches a 

new joint trajectory. In step 6, the new generated joint trajectory is evaluated by 

JTPEA in the aspect of the distance to joint limits and singularity. In step 7, the 

difference of the trajectory performance between the last two steps is calculated, if it 

is less than the preset tolerance for three times continually, then we say the tuning 

has been convergence and terminate the tuning procedure. 

The three main components of the system are presented with more detail in the 

following. 
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5.3.2 Identification of Weights Sensitivity 

Most of industrial 6-axes serial manipulators are decoupled, and hence, the EE orien

tation is controlled by the last three joints, i.e., from the 4th to the 6th joints. In 

the cases of redundant EE rotation, the weights of the last three joints have more 

influence on the redundant motion than the other weights. In other words, the last 

three weights are the most sensitive ones, we only need to tune those three instead 

of all the six. 

Let vector et represents the redundant joint axis, and vectors e^, e^ and eg the corres

ponding 4th, 5th and 6th joint axes, the following relations hold from the orthogonal 

decoupling of the manipulator, i.e., 

e6 ± e5, e5 ± e4 (5.4) 

The influence of the three weights on the redundant rotation around et depends on 

the relative orientation between e6 and et, i.e., 

- Case 1 : et _L eg =$• 6th weight is not important =4> Tuning 5th and 4th weights. 

In the case of e6 is perpendicular to e t , i.e., et _L e6, the 6th element has not 

influence on the redundant motion. Hence, only the 5th and 4th weights need to 

be tuned . 

- Case 2 : et || e6 => et _L e5 =J> 5th weight is not important =£• Tuning 6th and 4th 

weights. 

In the case where e6 is parallel to et, i.e., et \\ eg, we have eg _L e5, it is apparent 

that et _L e5, the 5th element has no influence on the redundant rotation. Thus, 

we only need to tune the 6th and 4th weights. 

- Case 3 : Neither et J- eg nor e t || eg =3- All three weight elements are relevant. 

In the case where e4 is neither parallel nor perpendicular to eg, all the three joints 

contribute to the redundant rotation, we can detect their sensitivity by testing each 
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weight independently, and select only one or two weights with higher sensitivity 

for tuning. 

5.3.3 Joint Trajectory Performance Evaluation 

Both the joint limits and singularity avoidance are considered at the same time in 

our generated trajectory performance evaluation, so we define the greatest distance 

to the joint limit, and the lowest singularity parameter as our evaluation criteria. The 

distance is defined as positive if out-of-limit, and negative if within-limit. 

The evaluation process is shown in Fig. 5.1. After the joint space trajectories of each 

joint are reached by solving IKP, the greatest distance to the joint limits among all 

the joints and the worst singularity parameter along the trajectories are picked out 

as the performance criterion value of this joint space solution. 

The first step of evaluation is to check whether all the joint motion are within their 

joint limits or not. If any joint motion is out of the limit, the joint limits avoidance has 

higher priority to implement and only the distance to the joint limits is consider as 

the evaluation criterion. If no joint motion is out of the limit, but the motion is very 

close to the limit at some instants, and the difference of the singularity parameter 

is less than the set constant k, the distance to the joint limits is consider as the 

evaluation criterion. Otherwise, the parameter of singularity is consider. 
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Joint space trajectory 

Maximum distance to the Joint 
limits among all the joints 

The worst singularity 
parameter 

ds — the difference of the singularity parameter between the current trajectory 
with the previous one; 
k — constant, set as 0.5; 

FIG. 5.1 Trajectory performance evaluation. 
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If all joint motions are far away with the joint limits, only the singularity parameter 

is consider as the evaluation criterion. 

5.3.4 Linear Search Method 

Because the optimization tasks require to avoid both the joint-limits and singularity, 

the two weighting vectors, w and k, need to be tuned at the same time. Both of w 

and k are 6 dimensional vectors, so there are twelve elements in total. It is difficult 

to search the best values in a twelve dimensional space. 

With the help of the identification of the most sensitive weighting elements, only 

two elements of each weighting vectors need to be tuned. Thus, the dimension of the 

search space is reduced to four. 

In our search algorithm, the two elements are tuned one by one. For example, in 

the case of tuning the 6th and 4th elements, firstly the 6th elements of w and k are 

tuned, secondly the 4th elements are tuned as applying the optimized value of the 

6th elements. This adapting process could even be repeated several times to reach 

the solution with the best performance. In this method, the dimension of searching 

space is always two, since each time only one element of w and one of k are tuned. 

The searching space is assumed to be 2D convex. Hence, a simple linear direct search 

method is carried out to find the minimum value. 

Figure 5.2 shows the searching process in a 2-dimension convex space with unknown 

lowest point R. The searching start point is at o, the weight value is tuned step by 

step along the searching direction d l , which is always and only applied as the first 

searching direction, until point m+1. Since the performance at point m+1 is worse 

than at point m, m is treated as the best point along dl . Next, the search direction is 

changed to d2 with m as new start point. Along d2, point n with the best performance 

is reached. Then, the searching direction is changed again to d3, along which the best 
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performance point is at point p. If p is still not good enough, next search will be 

along d2 from p. In briefly, the searching direction is in the order as : d l , d2, d3, d2, 

d3, . . . . The searching process terminates as the performance criterion convergent to 

a certain value. In the linear search method, the search direction and the step length 

k(i) 

m+l 

w(i) 

F I G . 5.2 Linear direct search method. 

are the two most important issues. Here, three different searching directions are used. 

If searching along direction dl , the step length of w(i) and k(z) are the same; if along 

direction d2, the step length of w(z) is keep as zero, only search along k(z). On the 

contrary, if along direction d3, the step length of k(i) is keep as zero. 

In order to increase the tuning accuracy without loosing too much speed, the average 

value of current w(i) and k(i) is used as initial step length for a new search direction. 

After the best point using this step length is reached, the finer search around this 

point is carried out while step length is reduced 60%. This process may be repeated 

several times until the step length is shorter than a preset tolerance, or the tuning 

do not greatly influent the performance. In this method, the weight value along one 

search direction is finely tuned. 
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5.4 Numerical Examples 

The self-adaptation system has been tested with many different robotic manipulators 

and tasks. Among them, we present below three examples corresponding to the three 

possible cases of orientation of et relative to e6 together with two different manipula

tors. All examples have been implemented on a robotic off-line programming software 

called Robotmaster'71]. Moreover, distance are expressed in meters, while angles are 

in radians. 

FIG. 5.3 Example 1 : Fanuc M710 with et _L e6 and the rectangular part. 

5.4.1 Example 1 : et _L e6 

As shown in Fig. 5.3, a Fanuc M710 robot with a tool axis et J- e6 is used to track a 

rectangular path. The weights are initially set as, 

" i n i K-ini — 0.01 0.01 0.01 0.01 0.01 0.01 (5.5) 
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Without using the self-adaptation system, we obtain the joint trajectory shown in 

Fig. 5.4. Joint 4 goes from —1.047 to +1.05 rad., which is out of the limits ( i.e., 

-0 .78 to +0.78 in rad.). 

Once we execute the self-adaptation system, it detects that the 6th weights are not 

sensitive since et ± e6, and hence, it turns the 4th and 5th weights as follow 

w 0.01 0.01 0.01 0.0807 0.0167 0.01 (5.6) 

k = 0.01 0.01 0.01 0.073 0.0128 0.01 (5.7) 

The corresponding joint trajectory is shown in Fig. 5.5. The motion range of 4th joint 

goes from —0.2437 to 0.2445, only 32% of the previous range and within the joint 

limits. 
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F I G . 5.5 Example 1 : Joint trajectory with the optimized weights. 
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5.4.2 Example 2 : et || e6 (Test IV) 

As shown in Test I, II and III, the Fanuc M710 robot with a tool axis et || e6 is 

used to perform the path shown in Fig. 3.8. The weights are initially as in eq.(4.13). 

Without using the self-adaptation system, we obtain the joint trajectory shown in 

Fig. 4.2. 

Once we execute the self-adaptation system, it detects that the 6th weight is sensitive, 

since e t || e6, and hence, it tunes the weights as follow 

w 

k = 

0.01 0.01 0.01 0.01 0.01 0.0483 

0.01 0.01 0.01 0.01 0.01 0.0256 

(5.8) 

(5.9) 

The corresponding joint trajectory is shown in Fig. 5.6. Apparently, joint 6 goes from 

—0.9707 rad. to 0.1864 rad., a range of only 21% of the one obtained without the 

self-adaptation system. Moreover, the minimum measure of manipulability along the 

trajectory is enhanced by 247%, i.e., from 0.02954 to 0.07323 as shown in Fig. 5.7. 

The self-adaptation system has succeed in keeping the manipulator further from its 

joint-limits and singular configurations. 

As we known, in Test III, the sixth elements of the two applied weights are w(6) = 

0.03 and k(6) = 0.05, respectively, these weights are obtained heuristically. Now in 

Test IV, there are w(6) = 0.0483 and k(6) = 0.0256. The reached joint trajectories 

of Test III and IV is quite similar, but 6th joint motion range obtained in Test IV 

is smaller than the one in Test III, i.e., the result reached in Test IV is better than 

Test III in the defined performance criterion. 

Two consecutive turns of the path is implemented in this testing case, it is obser

ved that the joint trajectories of each turn is cyclical, i.e., the manipulator posture 

reaching one path point is identical between each successive turns. 
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F I G . 5.6 Example 2 : Joint trajectory with the optimized weights. 

5.4.3 Example 3 : neither et || e6 nor et ± e6 

As shown in Fig. 5.8, the Fanuc M16 robot with a tool axis neither parallel nor 

perpendicular to e6 is used to perform the path shown in Fig. 5.9. The weights are 

initially set as in eq.(5.5). Without using the self-adaptation system, we obtain the 

joint trajectory and manipulability shown in Fig. 5.10. Once we execute the self-

adaptation system, it is not clear which weights are the most sensitive, since et is 

neither parallel nor perpendicular to e6, and hence, three tests must be performed. 

Test 1 : When we tune only the 5th and 4th weights, we obtain : 

w 

k = 

0.01 0.01 0.01 0.017 0.0279 0.01 

0.01 0.01 0.01 0.034 0.0987 0.01 

(5.10) 

(5.11) 

Test 2 : When we tune only the 5th and 6th weights, we obtain 

w = 0.01 0.01 0.01 0.01 0.0354 0.0291 (5.12) 

0.01 0.01 0.01 0.01 0.1167 0.0213 (5.13) 
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(b) Time (sec.) 

F I G . 5.7 Example 2 : The manipulability reached with (a) initial weighting vectors, 
and (b) optimize weighting vectors as eqs.(5.8, 5.9). 

Test 3 : When we tune only the 6th and 4th weights, we don't reach a solution. The 

joint trajectories corresponding to Test 1 and 2 are shown in Fig. 5.11, while the 

manipulability are shown in Fig. 5.12. The results of the two tests are compared in 

Table 5.1. Apparently, both tests can reach better results than the initial weights. 

Test 2 can reach a result with higher manipulability and smaller joint motion range 

than Test 1. 
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•A 

FlG. 5.8 Example 3 : Fanuc M16 robot and the working part 

min(MOM) 
Joint out-of-limit 

Initial 
0.197 

4th and 5th 

Test 1 
0.3098 
none 

Test 2 
0.4075 
none 

T A B . 5.1 Performance results of Example 3. 

5.5 Conclusion 

This chapter studied the weighting vector tuning problem of the TWA, and proposed 

a weighting vector self-adaptation algorithm for the six-axis decoupled manipulators. 

The identification of the most sensitive weighting elements is classified into three 

cases relating to the geometry relation between the tool and the 6th joint. By the 

identification, the tuning problem is simplified from 6 dimensions to 2 dimensions. 

With the help of the tuning algorithm, the TWA on avoiding the joint-limits and 

singularity becomes more robust, since their success highly relies on the setting of 

the weighting vectors. Corresponding to the three different geometric cases, three 

application tasks using the weighting vector self-adaptation algorithm are presented, 
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The Input Path in User Frame 

F I G . 5.9 Example 3 : The path in the part frame. 

and the algorithm has been proved to improve the functional redundancy resolution 

results. 
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F I G . 5.10 Example 3 : Joint trajectory(a) and manipulability(b) with the initial 
weights. 
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F I G . 5.11 Example 3 : Joint trajectory of Test 1 (a) and Test 2 (b) with the optimized 
weights. 
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F I G . 5.12 Example 3 : The manipulability of Test 1 (a) and Test 2 (b) with the 
optimized weights. 
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C H A P I T R E 6 

D Y N A M I C - A D A P T A T I O N OF W E I G H T S IN TWA 

6.1 Introduction 

As presented in Chapter 5, a self-adaptation method of weights has been developed. 

This self-adaptation method searches a set of weighting parameters, and uses these 

values for the whole task. However, there are some tasks with complicate Cartesian 

path for industrial application. In these tasks, the different segment of a task usually 

have different optimal requirements. For example, segment A of a task requires to 

optimize the joint motion range, while segment B of the same task requires to optimize 

the singularity parameters. The weighting vector with fixed values for the whole path 

can only be a trade-off among different segments. Moreover, this trade-off value may 

even not exist in some industrial tasks. Apparently, these tasks require weights with 

different values at each instant or segment, instead of fixing them for the whole task. 

In this chapter, a dynamic-adaptation system of weights is developed for the tasks 

with a symmetric tool as implemented on a 6-revolute decoupled serial manipulators. 

This dynamic-adaptation system has been integrated into TWA, and is applied to 

cases with multiple secondary tasks, which consider not only the optimization of 

joint-limits and singularity, but also the joint velocities. 

The main content of this chapter has been included in the paper^73' submitted to 

Industrial Robot : An International Journal. 

6.2 Weights Dynamic-Adaptation System 

The problem of adapting dynamically the weights includes the following subproblems : 
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1. When do the weights need to be adapted ? 

2. Which weight component need to be adapted ? 

3. How much do the weights need to be adapted ? 

Below, the three subproblems are analyzed and a series of solutions are proposed. 

6.2.1 Subproblem I 

In the case of joint-limit avoidance, when the zth joint is approaching to its limits, 

the weights for the joint-limit avoidance should be increased in order to bring the 

joint back to its mid-position. Thus, we define a parameter, namely 6, to measure 

the distance from the current joint position to its limits Ql}m%t, i.e., 

o Qlimit 

S = \5U • • • , 56]
T, where St = -^ V ^ , 1 < i < 6. (6.1) 

i i 

In the case of singularity avoidance, when the manipulator is approaching to singular 

configurations, the weights for singularity avoidance should be increased in order to 

bring the manipulator away from singularity. The measure of manipulability wmom is 

used to measure the distance from current configuration to the singularity. 

Thus, the weights is adapted when the joint configuration becomes close to its motion-

limits or singularities. 

6.2.2 Subproblem II 

In order to find which weight component that need to be adapted, we analyze the 

contribution of each joint on the rotation around e4. As presented in Section 5.3, the 

first three joints do not have contribution on this redundant rotation since the 6R 

serial manipulators are decoupled, the first three weights are kept constant at 0.01. 
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For the last three joints, the contribution of ith joint is greatly influenced by the angle 

fa between the tool symmetry axis et and the joint rotation axis ej. Consequently, 

this angle fa is a good parameter for detecting the influence of the ith joint on the 

redundant displacement. Thus, angle fa is used to decide which weight component 

need to be adapted. Once, a threshold value /3TH is s e t , the weight component Wi is 

adapted when fa < /5TH-

6.2.3 Subproblem III 

Another question that the dynamic adaptation needs to answer is : how much the 

weights need to be adapted ? It requires to develop a function which is able to express 

the relationship between weights and some input variables. In order to reach this 

objectives, we have to solve the following three problems : 

- What are these input variables influencing the weights adaptation ? 

- What is the relationship between weights and these input variables ? 

- How to express the adaptation function in a mathematic form ? 

6.2.3.1 Input Variables Influencing Weights 

In the subproblems I and II, there are two vectors and one scalar variables influencing 

the weights adaptation, i.e., three-dimensional vector /3, which detects the influence 

of the last three joints on the redundant displacement; six dimensional vector S, 

which measures the distance from the current joint position to its limits; and the 

scale LOmomi which measures the distance from current configuration to singularities. 
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6.2.3.2 Relationship between Weights and Input Variables 

From the geometry between the tool symmetry axis et and the joint rotation axis ej, 

we can express the influence of ith. joint by |ef e t | . i.e., 

Pi = arccos(|efet|), (6.2) 

where the angle Pi is 0 < Pi < ir/2. 

As the angle Pi is decreasing to 0, the rotation around et becomes sensitive on the 

value of weight Wi. 

6.2.3.3 Adapting Function Evaluation 

In the case of joint limit avoidance, the last three elements of weights w could be 

expressed as a function fjoint of Pi and Si, i.e., 

wi = fJoint(Pi,Sl), 4 < i < 6 . (6.3) 

If the joint limits problem occurring on the first three joints, the minimum 5min among 

all elements of d is used in eq.(6.3) to replace Si. Then, eq.(6.3) becomes 

wi = fjointiPu Srnin), 4 < i < 6, (6.4) 

where 

Smin = mm{5i, 1 < i < 6}. (6.5) 

In terms of singularities, the last three weights of k could be expressed as a function 

J sing ° * Pi a n ° - ^mom-i I.e., 

ki = fsing(Pi> Umom), 4 < i < 6. (6.6) 



98 

By the experiment of testing, fjoint and fsing are shown to be case dependent functions, 

and there are so great differences among various application cases, i.e., it does not 

exist a single general function of fjoint and fsing. Here, a function evaluation method 

is proposed. 

Firstly, w and k are decomposed into two parts, respectively, as 

w = a + cjointf; (6.7) 

k = b + csingg; (6.8) 

where Cjoint and csing are damping scalars for adjusting the functions, and are set to 

zero by default. Both a and b are six-dimensional vectors, their first three elements 

are constant value as 0.01, whereas their last three elements are defined as 

9(2 ~{-tf) 
Jth , V 4 < i < 6 ; (6.9) 

, 0 , , V 4 < i < 6. (6.10) 

exp(2^;moTO) 

The threshold angle for activating the adaptation is set to be (3th- So if there is 

A < Pth, Q>i and 6, are calculated by eqs.(6.9) and (6.10), otherwise they just keep as 

their default value 0.01. The coefficient q in eq.(6.9) is set to O.Olrad The coefficient 

m in eq.(6.10) is set to 0.25 without unit, since measure of manipulability uimom is 

just a scalar value. 

Moreover, f and g are also six dimensional vectors, with the first three elements as 

zero, and the last three are defined as 

1(1 - (-^)2) 

s ( i _ (-&-)2) 
to= , , \ , V 4 < i < 6 . (6.12) 

exp(2wmom) 

9(2-

m( l 

2Si 
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Here both the two coefficients I and s are set to 1. 

All the four functions defined in eqs.(6.9) to (6.12) are plotted in 3-dimensional space 

as in Figs. 6.1 and 6.2, respectively. 

6.2.4 Dynamic-Adaptation Algorithm 

The weights dynamic-adaptation algorithm has been integrated with TWA, the whole 

processing procedure is shown in Fig. 6.3. 

Firstly, the Cjoint and csing are set to the default value of 0, so we obtain the following 

equations from eqs.(6.7) and (6.8), 

w = a, (6.13) 

k = b . (6.14) 
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F I G . 6.3 Processing scheme of dynamic adaptation. 

After finishing the processing on the whole input tool center point (TCP) path with 

the initial Cj0int and csing, the computation is completed if the tentative trajectory 

with eqs.(6.13) and (6.14) satisfy the optimization criteria. Otherwise, the trajectory 

must be analyzed to detect the segments which are out of the joint limits, close to 

singularity or with high joint velocities. The instant along the tentative trajectory 

where the performance indices is the worst is called the critical instant of this trajec

tory. In order to refine w and k to meet the optimization criteria around this critical 

instant, c^nt and cSing are adapted based on the following three principles : 

- increase Cjoint to minimize the joint motion range; 

- increase csing to move away from singularity; 

- reduce Cjoint or csing to decrease joint velocities. 

Apparently, the dynamic weights adaptation problem has been reduced to adapt two 

damping factors Cj0int and csing, instead of two six-dimensional weights, and hence, 

the automatic adaption becomes much easier. The adaptation may be repeated for 

several times until reaching a satisfying result. More details of the processing are 
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shown in Algorithm 6.1, where U and t2 defined as the adaptation period of time 

around the critical instant, usually 10 ~ 20% of the total time. 

Algorithm 6.1 : 

Weighting Vector 

J- Cjoint Casing " j 

2 TWA; 

If the trajectories 

Stop 

Dynamic Adaptation Algorithm 

meet the task requirements; 

3 Else, if the trajectories have problems at instant t 

^ C ' j o i n t i t-^C-singt ti, t2, d <s= adaptation principle; 

adapting period -4= t — t\ to t + t2 ; 

Go to step 2 ; 

6.3 Numerical Examples 

The weights dynamic adaptation method has been integrated into TWA, and suc

cessfully tested along different industrial tasks using Fanuc, Motorman and ABB 6-R 

decoupled robots, respectively, including the tasks examples shown in Section 5.4. 

Most of these tasks are succeed with Cj0int = csing = 0, and it even does not need to 

implement step 3 of Algorithm 6.1. Here, one task requiring a careful adaptation on 

Cjoint and cSing is shown for demonstration purposes. 

The same task of arc-welding path and Fanuc M-710 iC/50 robot described in Section 

5.4.1 is used, but with a different welding tool. The angle between the tool symmetry 

axis e t and the 6th joint axis e6 is 60 deg, instead of 0 deg. Figure 6.4 shows the 

Fanuc M-710 iC/50 with the new tool. 
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F I G . 6.4 Fanuc M710 iC/50 with new tool. 

6.3.1 Test A : No Weights Adaptation 

The joint space trajectory with the initial weights as in eq.(5.5) is shown in Fig. 6.5. 

The maximum angles of the 5th and 6th joints reach, respectively, 134 deg and 

417 deg, while their corresponding limits being 120 deg and 360 deg (see Table 3.5). 

Obviously, this task can not be completed with these weights, and hence, they need 

to be adapted. 

6.3.2 Test B : Adaptation with Cjoint = csing = 0 

Since the angle between et and eg is 60 deg, all the last three joints are relevant to the 

redundant motion, and the corresponding three weights need to be adapted. After 

applying Algorithm 6.1 with the default setting of Cj0int and csing at zero to adapt 

the weights, the joint motion range is greatly decreased. As shown in Fig. 6.6, the 

maximum angles of the 5th and 6th joints are reduced to only 97 deg and 130 deg. 
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FIG. 6.5 Joint space trajectory reached with the initial weighting vectors. 

(where the limits are recalled to be 120 deg and 360 deg). All joint position are now 

within the limits, but some high joint velocities appear around the instant 84, as 

shown in Fig. 6.7. The highest joint velocities reach 102 deg/sec and 74 deg/sec for 

4th and 6th joints, respectively. Consequently, the task is still very difficult to be 

performed and deserved additional adaptation. 

6.3.3 Test C : Adaptation with Cjoint = 0 and csing = —0.5 

In order to reducing joint velocities, step 3 of Algorithm 6.1 is activated. The instant 

84 is identified as the critical instant, according to the adaptation principle, values 

of cj0int or csing are reduced in order to decreasing the joint velocity. After several 

time of adaption, csing is set to —0.5 during the period from instants 54 to 114. The 

optimized joint trajectory and velocities are shown in Figs. 6.8 and 6.9. The highest 

velocities of the 4th and 6th joints are decreased from 102 deg/sec to 27 deg /sec, 

and from 74 deg/sec to 13 deg/sec, respectively. The optimized trajectory shown 

in Fig. 6.8 is much smoother than the one in Fig. 6.6, so the trajectories becomes 

easier to implement on a real Fanuc M-710 iC/50. Moreover, the u}mom is slightly 
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FlG. 6.6 Joint space trajectory reached with the default setting of cjoint = cSing = 0. 

decreased. Table 6.1 summarizes the results concerning the motion range, motion 

velocity and singularity of this task. Clearly, the results reached with the adaptation 

°f Csing = —0.5 are the best among the three tests. 

Method 

No adaptation 

Cjoint Csing ^ 

Cjoint — U ) Csing V.D 

unit 

Motion range 
Max. 

5th 
134 
97 

96.6 
deg 

Max. 
6th 
417 
130 
130 
deg 

Motion velocity 
Max. 
4th 
450 
102 
27 

deg/sec 

Max. 
6th 
235 
74 
13 

deg/sec 

Singularity 
vain. 

0.1276 
0.1431 

0.12 

T A B . 6.1 Testing results of weights dyna
mic adaptation. 

As shown in eq.(4.10), TWA resolved the joint displacement in order to satisfy 

three sub-tasks, i.e., the sub-displacement required to move the EE, redundant sub-

displacement 1 and redundance sub-displacement 2. The norm of these three sub-

displacements can be calculated. Figure 6.10 shows the sub-displacements correspon

ding to Fig. 6.8. 

Joint 1 
Jainl2 
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F I G . 6.7 Joint velocities reached with the default setting of Cj0int = cSing = 0. 

6.4 Conclusion 

This chapter studied the weights adaptation problem of the functional redundancy re

solution, and proposes a weights dynamic adaptation for six-revolute decoupled serial 

manipulators. This algorithm makes the functional redundancy resolution not only 

robust on avoiding the joint-limits and singularity, but also expanding to the mini

mization of the joint velocity. Corresponding to different geometry relation between 

the tool and the 6th joint in several different application tasks, the weights dyna

mic adaptation algorithm is tested and reaches satisfying results. In the numerical 

example, the different secondary tasks are fulfilled with the help of weights adapta

tion, the empirical functions (eqs.(6.9) to (6.12)) are able to successfully adapting 

weights. 
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F I G . 6.9 Joint velocities reached with the default setting of cjoint = 0, cSing = —0.5 
around the critical instant 84. 



109 

-"—**— joint motion for main task 

^ . k J 
0 20 40 100 120 140 160 18' 

- selfmotion for avoiding joint-limits 

L 
0 20 40 60 80 100 120 140 160 18 

- selfmotion for avoiding singularity 

A 
0 20 40 80 100 120 140 160 180 

F I G . 6.10 Sub-displacements reached with the three components of eq.(4.10). 
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C H A P I T R E 7 

CONCLUSIONS 

7.1 TWA Summary 

In this thesis, TWA has been studied for the general functionally-redundant robotic 

tasks. The main applications of this thesis are on the domain of industrial robot 

programming. In order to implement these tasks by industrial robots, which are, 

in general 6-R decoupled manipulators, the robotic joint space trajectory is often 

required to be optimized to avoid joint limits, obstacles, singularities, etc. In industry, 

robot programmers have to optimize joint space trajectory based on their experience 

and skill, but it is very inefficient and has low success rate. With the help of TWA, 

these tasks can be optimized automatically. 

Besides of the development of TWA, the multi-secondary tasks optimization and two 

weighting parameters adaptation methods are developed in this thesis. Hence, TWA 

is not only able to generate robot trajectory far away from its joint limits, but also 

from singularity with these weights adaptation methods. These features really make 

TWA usable for industrial application. 

7.2 Original Contribution 

The main contribution of this thesis are presented from Chapter 3 to Chapter 6. 

In Chapter 3, TWA is developed based on the orthogonal decomposition of vectors. 

The twist decomposition algorithm is presented in Algorithm 3.1. Three application 

examples with joint-limits avoidances are solved with TWA. 
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In Chapter 4, singularities-avoidance is additionally included into the optimization 

objective. Manipulability and conditioning are also analyzed in this chapter. One 

example requiring both of joint-limit and singularity avoidances is shown. The great 

influence of weights on the reaching solution is observed in this example. 

In Chapter 5, a self-adaptation method of the weights in TWA is proposed. Firstly, 

by identifying the weights sensitivity, the dimension of search space is reduced from 

6-dimension to 2-dimension. Then, a linear search algorithm is used to adapt the 

weights according to defined performance criteria. The adaptation procedure is pre

sented in Algorithm 4.1. This self-adaptation method can reach the optimized weights 

automatically after multiple cycles of adaption. However, the self-adaptation method, 

although optimized, always uses a constant set of weights all along the trajectory. 

Consequently, it can not meet the requirement of some application tasks, where a 

variable set of weights is required. 

In Chapter 6, a dynamic-adaptation method of weights is proposed. This method first 

identifies some input variables which have great influence on weights, then reaches 

the weights by a series of empirical functions representing the relationship between 

weights and these input variables. This method provides a variable set of weights 

along the trajectory, hence, it can meet the stricter optimization requirement than 

self-adaptation method. The processing scheme and algorithm of dynamic-adaptation 

are presented in Fig. 6.3 and Algorithm 6.1, respectively. 

7.3 Future Works 

In this thesis, the TWA has only been studied in the context of functional redundancy 

related to tool having a symmetry axis. However, functional redundancy also exists 

for symmetric parts in the case of pick and place operations as introduced in Section 

1.2. It needs further development to integrate TWA with these pick and place tasks. 
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The TWA allows for taking advantages of functional redundancy. However, when 

functional and intrinsic redundancies are both presented, the TWA alone can not take 

advantage of both redundancies without generalizing the TWA as we have proposed. 

This issue deserves further study. 

During the process of optimization, we notice that the selection of an initial posture 

starting a path greatly affect the optimized trajectory. A bad selection may even cause 

the failure of the optimization. In this thesis, it is observed that the posture may be 

optimized after one fully turn of the path in some test cases. But it still deserves 

further study in order to develop a more effective and rational way of selecting this 

initial posture. 

Finally, we only apply TWA to kinematically decoupled manipulators, although over 

ninety percent of industrial robots belong to this kind of manipulators, the coupled 

manipulators still exist in the market for some special applications and because they 

do not have wrist singularity problem. Thus, it also needs further study on applying 

TWA to coupled manipulators. 
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