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RESUME 

Un systeme electronique utilisable pour une certaine categorie d'experiences en infor

mation quantique est realise. Les specifications du systeme lui permettent de repondre 

aux besoins particuliers de certaines protocoles (experiences de pile ou face et generation 

d'etats « cluster »). 

Le systeme realise au cours de ce projet est flexible et permet une adaptation a d'autres 

experiences par simple reprogrammation. II permet en particulier d'accomplir des taches 

utiles a la detection de photons uniques, aux comptes de coincidences, a la detection 

d'evenements, a la generation de nombres aleatoires, et au controle de phase et d'ampli

tude de signaux optiques. 

Le coeur du systeme est constitue d'un circuit logique programmable (field-program

mable gate array en anglais), qui communique avec un ordinateur via USB. Les ports 

externes d'entree-sortie servent a faire la liaison entre l'unite de traitement et les periphe-

riques. Les signaux de sortie de detecteurs de photons et d'autres peripheriques sont 

geres par un circuit imprime dont 1'architecture a ete dessinee au cours du projet, et 

qui a ete realise sur commande. Un second circuit imprime, permettant la gestion de 

modulateurs electro-optiques, a egalement ete realise. 

Le systeme peut etre gere par l'intermediaire d'interfaces graphiques simples; certaines 

ont ete programmers a titre d'exemple. La modification du code du systeme se fait par 

l'intermediaire de fichiers d l l standards, dont la programmation en langage C est rela-

tivement aisee. 
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ABSTRACT 

An electronic system enabling certain classes of quantum information processing exper

iments is designed and assembled. Requirements for the development of this system 

were obtained by studying particular quantum optical experiments, such as the imple

mentation of coin tossing protocols, and cluster state generation. 

This project provides a flexible, reprogrammable electronic system. It addresses required 

utilities such as single and coincident photon detection, time stamping of events, random 

number generation, and optical phase and amplitude control. 

The processing takes part in a field-programmable gate array, which has a USB com

munication channel for connection to any computer. External input/output ports serve 

to link the processing unit and peripheral devices. Outputs from different kinds of pho

ton detectors and similar devices are processed by a custom designed printed circuit. 

Electro-optic modulators require signals that change their voltage levels during a single 

experience; a second printed circuit was designed to deal with this situation. 

Graphical user interfaces are possible with the current system; some of them were done. 

Generation of d l l libraries that contains C code instructions suffices to program the 

card, send and receive both instructions and data during an execution of the loaded pro

gram. 
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CONDENSE EN FRANCAIS 

Introduction 

La technologie en informatique quantique se developpe en permettant aujourd'hui d'a-

voir des implementations physiques realisables. Elle promet des systemes de cryptogra

phic securitaires et des solutions a des problemes computationnels que les ordinateurs 

classiques ne sont pas capables de resoudre, ou qu'ils peuvent resoudre de facon moins 

efficace. Grace a ces promesses le sujet de recherche est devenu interessant et actif. 

Les systemes electroniques sont une partie incontournable de ce type d'experiences; ils 

permettent l'enregistrement d'un grand nombre de mesures et le controle d'appareils. 

Typiquement, on affronte les besoins en electronique en utilisant des appareils de type 

« boite noire », capables de remplir une seule fonction specifique. En plus, il est pos

sible que ce type d'appareils fonctionne avec un signal d'entree tres specifique et pas 

necessairement conventionnel. L'alternative est de creer des systemes electroniques au 

besoin. 

L'interet de concevoir des systemes d'information quantique et les defis que les systemes 

electroniques posent a leur fabrication forment la principale motivation de ce projet. 

L'absence de systemes commerciaux qui fonctionnent avec different sortes de detecteurs 

et leurs signaux, et l'incompatibilite entre les etages d'acquisition, traitement et d'execu-

tion des experiences ont encourage la realisation de ce projet. 

L'objectif de cette recherche est done de realiser un systeme electronique pour controler 

les appareils de mesure et de controle utilises en experiences d'informatique quantique 

basees sur fibres optiques. Les implementations optiques sont au centre du projet. On 

desire une solution flexible qui marche dans le plus grand nombre de scenarios. 
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Parmi les exigences du systeme, on doit acquerir et enregistrer les donnees provenant 

des detecteurs de photons. La detection de coincidences entre detecteurs est requise 

pour observer et exploiter Pintrication, propriete donnee par la mecanique quantique. 

Par ailleurs, le controle de modulateurs electro-optiques de phase et d'amplitude est 

important pour generer 1'information encodee optiquement. II nous permet d'utiliser la 

superposition, une deuxieme propriete offerte par la mecanique quantique. 

La solution proposee remplit ces exigences. II est concu sur une carte electronique re

programmable, un FPGA (« field-programmable gate array »), qui peut communiquer 

avec un ordinateur pendant l'execution d'une routine en temps reel. La standardisation 

des signaux d'entree est faite par un circuit imprime fait sur mesure. L'amplification de 

quelques signaux de sortie est requise, et est realisee par un deuxieme circuit imprime 

fait sur mesure. 

Des tests des applications programmers sont presentes et analyses. lis demontrent l'u-

tilite, la flexibilite et la performance du produit ici developpe. 

Contenu 

Dans ce projet, l'information quantique est encodee sur des photons. Leur information 

peut etre encodee sur des etats de polarisation, ou la base habituelle est \4>) — a\H) + 

f3\V) (horizontal et vertical). Egalement, elle peut etre encodee sur des etats d'encodage 

temporel {time-bin encoding), avec la base \4>) = a\s) +/3\l) qui correspond aux chemins 

court \s) (short en anglais) et long |Z) d'un interferometre de Mach-Zender. 

L'information temporelle de la generation des photons (signal de synchronisation du 

laser), et leur detection (detecteurs de photons individuels) peut etre utilisee pour syn

chroniser l'experience, processus utile pour determiner la correlation entre les photons 
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emis et mesures. Ceci impose la reception de differents types de signaux electriques, et 

leur traitement sur un pied d'egalite. Un module de conversion analogique-digital est 

realise. 

Pour determiner l'etat quantique, on fait des mesures sur differentes bases. La detection 

des coincidences et anti-coincidences est requise pour faire cette discrimination. 

La demonstration des protocoles de pile ou face quantique ou de cryptographie quantique 

necessitent la generation de nombres aleatoires classiques. II est possible de les generer 

a partir d'un systeme electronique produisant des sequences de bits pseudo-aleatoires. 

L'utilisation d'un interferometre pour l'encodage et le decodage temporel des photons 

necessite le controle d'un modulateur de phase. Ce modulateur accepte un signal elec-

trique periodique, laquelle determine avec son amplitude la phase qui sera applique sur 

le signal optique. 

L'implementation des protocoles quantiques necessite l'acquisition de differents types 

de signaux electriques. Le systeme d'acquisition developpe dans cet objectif permet 

d'acquerir aussi bien des signaux TTL de 1,8 V d'une duree d'environ 150 ns que des 

impulsions irregulieres autour de 100 mV d'amplitude et de durees de l'ordre de 3 ns. 

Ces signaux sont typiques des sorties de detecteurs de photon (Si ou InGaAs) et des 

impulsions de synchronisation de laser pulses. 

Le composant choisi pour realiser la conversion des signaux est un Micrel SY58601U 

{ultra-precision differential 800 mV LVPECL line driver/receiver with internal termina

tion). II permet de generer un signal differentiel qui peut etre lu par un FPGA. Un PCB 

(circuit imprime) capable de realiser la conversion de 8 canaux a ete developpe. Les 

signaux produits par le PCB sont ensuite achemines vers la carte FPGA qui les traite. 

Le FPGA utilise est un Spartan-3 de Xilinx, integre a une carte electronique ZestSC2 
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d'Orange Tree Technologies. En plus du FPGA, la carte integre un systeme de com

munications USB, une memoire SDRAM, une memoire flash, et des diodes electro-

luminescentes (DELs). La carte est programmable en C, et des exemples de configura

tion en VHDL et verilog, un fichier ucf pour configurer le FPGA et quelques applications 

executables, sont fournis. 

Plusieurs applications ont ete realisees pour repondre aux besoins particuliers des expe

riences d'information quantique. En particulier, la mesure de compte d'evenements, 

la detection de coincidences, et l'enregistrement d'information temporelle ajoutee aux 

donnees issues de l'acquisition ont ete developpees au cours du projet. 

La generation de numeros aleatoires et la generation de signaux periodiques sont per-

mettent d'offrir un signal de sortie, qui peut gerer des modulateurs electro-optiques. Le 

FPGA peut generer la porteuse pour ces signaux. Mais il est necessaire de moduler l'am-

plitude du signal pour gerer les modulateurs egalement. 

Un deuxieme circuit imprime est fabrique pour amplifier des signaux periodiques. Une 

modulation de phase quelconque 0 s'obtient avec un voltage applique sur le modulateur 

de phase de V$ = 4>V.K/'K, OU Vn determine le voltage necessaire pour avoir une phase 

optique de n; une valeur typique est V^ = 5 V. 

Les amplificateurs operationnels ne possedent pas la bande-passante adequate pour am

plifier les signaux aux frequences desirees. Pour le cas ou il faut travailler a quelques 

centaines de MHz, l'utilisation de transistors comme interrupteurs est necessaire. Le 

transistor choisi est le PD57002-E (RFpower transistor de STMicroelectronics). II est 

concu pour fonctionner a haute frequence jusqu'a 1 GHz. 

Les protocoles de communication quantique requerant un encodage temporel (time-bin), 

utilisent des valeurs discretes et predeterminees de modulation de phase. Les valeurs 

typiques pour ce genre d'application sont des multiples de 7r/4, mais d'autres valeurs 
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peuvent etre requises pour des applications particulieres. 

La solution implemented pour obtenir plusieurs valeurs de modulation consiste a des 

branches partagees par un connecteur. Chaque branche possede une resistance differente 

et un transistor qui gere le courant dans la branche. Les sorties logiques (0 ou 1) du 

FPGA determinent quelles branches s'activent, ce qui permet de moduler la tension de 

sortie. 

Le circuit imprime possede 4 sorties : deux d'entre elles generent 6 niveaux de tension 

different; les deux autres ne delivrent qu'un seul niveau de tension Les modulateurs de 

phase sont geres par les deux premieres et les modulateurs d'amplitude par les deux 

autres. Le meme circuit peut etre reproduit sur deux ports de la carte ZestSC2, ce qui 

permet de gerer jusqu'a huit appareils simultanement: quatre modulateurs de phase et 

quatre modulateurs d'amplitude. 

Conclusion 

Un systeme de traitement de donnees d'experiences en communication et calcul quan-

tique a ete realise. Le systeme developpe offre une solution flexible et adaptable a de 

nombreuses situations grace au circuit imprime concu, realise et teste au cours du projet. 

Le circuit d'entree gerant la standardisation des signaux a ete teste dans des conditions 

variant en amplitude de 100 mV a 1 V et en cycle d'utilisation de 4 a 96%. La sortie du 

circuit fournit un signal differentiel de ±800 mV dont la frequence suit celle du signal 

d'entree. 

Des applications particulieres ont ete realisees, comme la mesure de compte d'evene-

ments, la detection de coincidences, l'enregistrement d'information temporelle, la gene

ration de nombres pseudo-aleatoires, et la generation de signaux periodiques. La routine 
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de compte d'evenements performe de maniere exceptionnelle, avec nn taux d'erreur sur 

la frequence mesuree ne depassant pas 0,002 5%. 

La detection de coincidences a ete realisee de deux manieres : synchrone et asynchrone. 

Les deux methodes sont capables de correctement distinguer entre des scenarios avec et 

sans coincidences. Pour la version asynchrone, la fenetre de coincidence a une duree de 

1,35 ns. Une version synchrone equivalente aurait besoin d'une horloge nterne proche 

de 4 GHz. Pour la version synchrone, la fenetre de coincidence depends de Phorloge du 

systeme; avec TCLK = 200 MHz la duree d'ouverture de la fenetre et comprise entre 

10 ns et 15 ns. 

L'application d'enregistrement d'information temporelle permet de reconstruire jusqu'a 

5 signaux numeriques. Le nombre de signaux enregistres peut etre modifie, ce qui en-

traine un changement dans le temps de debordement. L'information temporelle ajoutee 

est requise pour la detection de coincidences, l'etude de la correlation entre les signaux et 

les statistiques d'arrivees. Cela est fondamental pour les experiences de communication 

quantique, ou le taux de comptes est entre 100 et 10 000 comptes par seconde. 

Pour controler des modulateurs de phase et d'amplitude, des signaux periodiques ont ete 

generees a 45 MHz et 96 MHz. Leur amplitude est amplifiee (ou reduite) en utilisant le 

circuit imprime concu et fabrique dans ce but. Ce circuit a ete teste dans des conditions 

prouvant que ses caracteristiques sont suffisantes pour obtenir la modulation de phase 

et d'amplitude requises. Pour un fonctionnement nominal entre 0 V et 5 V, les tensions 

de sortie etaient de 0,63 V et 4,67 V respectivement. La reponse en frequence a ete 

egalement testee avec succes. 

Une sequence de nombres pseudo-aleatoires a ete generee a l'aide d'un LFSR Galois. 

Une telle sequence peut etre utilisee dans un generateur de pile ou face et dans les proto-

coles de communication quantique necessitant d'une selection aleatoire d'eventements. 
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Le systeme developpe presente plusieurs avantages. En particulier, sa flexibilite, sa ca

pacity de reprogrammation, son adaptation facile a d'autres sujets permettent une expan

sion facile du projet. En plus, il offre des interfaces graphiques faciles a gerer, comme 

celles qu'ont ete realisees avec Lab View. 

Le codage utilise pour programmer le FPGA est specifique a la carte electronique Zest-

SC2. Mais grace au design par bloc, il est possible de l'adapter pour d'autres cartes 

electroniques, y compris celles provenant de manufacturiers differents. 

La principale barriere technologique de ce travail est la vitesse de traitement. L'horloge 

du systeme fonctionne normalement a 48 MHz. L'utilisation d'autres frequences peut 

impliquer des modifications importantes. De plus, la plage des frequences pouvant etre 

generees par le FPGA est limitee, et la carte electronique utilisee dans ce projet ne sup-

porte pas de frequences plus elevees que 210 MHz. 

Quand on l'utilise avec des systemes de fibres optiques utilisant un encodage tem-

porel {time-bin encoding), la vitesse maximale devient une limitation de taille pour l'in-

terferometre optique. Par exemple une horloge a 200 MHz (5 ns) provoque un retard de 

1,5 m dans l'interferometre. 

II est recommandable de prolonger ce projet. Des nouvelles applications et fonctions 

peuvent etre ajoutees et integrees, de telle facon que le produit final soit plus avantageux. 

Le produit pourrait etre utilise pour differents sujets de recherche. 

Un chercheur qui voudrait continuer avec ce projet devrait partir des applications ici 

deja developpees, les executer et comprendre leur codage dans les differents langages de 

programmation (VHDL, C, Lab View). Comme premier tache, je suggere d'ameliorer la 

detection de coincidences en reglant les temps de delai internes du FPGA. 
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INTRODUCTION 

Quantum information theory and technology have developed in such a way that, nowa

days, its practical implementation is starting to arise. It promises unconditionally secure 

cryptographic systems and solutions to computational problems that current classical 

computers solve either inefficiently of not at all, reasons that make it an attractive and 

active research subject. 

Electronic systems are unavoidably involved in this process; they are tied to measure

ment devices and external controllers, regardless of the experiments' quantum nature. 

The most common existing approach is to deal with electronic systems using specific 

function black-boxes, where each of them serves a single purpose; most of the time they 

may only work with a determined non-conventional type of signal. A second approach 

is to make custom solutions when required. 

This project born moved by the interest in making quantum information systems feasible, 

and due to the diversity of challenges that electronic systems offer to such implementa

tions. The lack of commercial systems that work for different type of detector signals, 

and the disconnection between acquisition, processing and action stages are among the 

reasons that encouraged the realization of this project. 

Hence, the purpose of the present investigation is to develop an electronic system to 

control the action and measurements devices used in quantum information experiments 

based on optical fibres. Optical schemes being the focus of this project, are specifically 

targeted. A flexible solution, which works in as many contexts as possible, is pursued. 

Electronic requirements for running quantum information experiments on optical schemes 

are identified and addressed. They require acquisition and recording of data coming from 

photon detectors. Recognition of coincidences between detectors is required to detect 
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and exploit a quantum mechanical property named entanglement. Controlling phase and 

amplitude electro-optical modulators is relevant in order to manipulate the information 

on optical systems; this enables harnessing superposition, a second property provided 

by quantum mechanics. For experiments with more than one party, providing a classical 

communication channel is necessary. Finally, it is important to synchronize the whole 

system. 

The proposed solution takes into account these requirements. It is based on a repro

grammable electronic device, a field-programmable gate array, which can communicate 

with a computer while executing a routine in real time. Standardization of incoming 

signals is done by a custom designed printed circuit. Amplification of some outgoing 

signals is required, and is done by a second custom designed printed circuit. 

Tests of programmed applications are presented and analysed. They demonstrate the 

utility, flexibility and performance of the product here developed. 
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CHAPTER 1 

BASICS IN QUANTUM COMMUNICATION AND COMPUTING 

To operate experimentally either a quantum communication or a quantum computing 

system, many electronic tasks are required. The purpose of this project is to provide an 

electronic system as general as possible for these situations. The quantum information 

domain is treated before entering the electronics domain, to illustrate the requirements 

and relevance of the developed system. 

Quantum information offers characteristics that are not available in its classical coun

terpart, and makes possible solving some problems for which current algorithms are 

either innefficient or inexistant. Superposition and entanglement properties allow quan

tum schemes be differentiated from classical ones. The theory behind this statement is 

presented in this chapter, along with the experimental optical implementation schemes 

that enclose this project. 

Of particular interest is the one way quantum computing scheme proposed by Raussendorf 

and Briegel [Raussendorf and Briegel, 2001] as well as quantum communication prob

lems, like the quantum key distribution intended for cryptography purposes and the quan

tum coin tossing protocol [Bennett and Brassard, 1984]. 

1.1. Quantum information 

This scheme of computing is based on the quantum mechanical properties provided by 

its minimal information unit, known as a qubit (quantum bit). They can be obtained by 

any quantum system of two levels, which are represented as |0) and |1). 
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While a classic bit can only take one of the values, 0 or 1, a quantum state is able to be in 

a superposition of both basic states |0) and |1). This means that in a quantum system it 

is possible to be in both values at the same time, each of them with a certain probability. 

The sum of these probabilities must be as usual 1. In other words 

M = a |0)+/J | l ) (1.1) 

where \ip) represent the qubit state, and a,@ G C are the probability amplitudes, that 

must satisfy the normalization condition |a|2 + |/3|2 = l. The qubits can be represented 

as vectors in an abstract vector space, called Hilbert space. One possible basis in this 

space is 

i o > = r i i i > = r i (i-2) 

and then a superposition in this basis, namely \xp) = a\0) + /?|1), would be represented 

as 
a 

(1.3) 
P ' 

Obtaining information from these states is possible via measurements. However, it is im

possible to obtain enough information from the state in order to be able of reconstructing 

it, or in other words both values a and (3 cannot be acquired. After measuring the state 

4>, it will collapse into one of the states |0) or |1). The result of this measurement will 

be |0) with probability |a|2, or |1) with probability \(3\2. Is important to state that be

cause a measurement implies an interaction with the system, the quantum state prior to 

a measurement will be lost, and the new state will be determined by the results of the 

measurement. 

An important property of quantum systems is the no cloning theorem, first demonstrated 
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by Wooters and Zurek [Wootters and Zurek, 1982]. This says that is impossible to copy a 

quantum state. This property that in principle appears as inconvenient since the classical 

view uses typically the resource of duplicating information, becomes a powerful tool if 

properly exploited, because you can avoid with certitude that the information in such a 

system could be ever fully copied. 

1.1.1. Entangled states 

It is possible to have systems of several qubits. For example two qubits, let's say 

\tpi), ^2) can be in their corresponding 'ground' state |0). This can be represented as, 

in different equivalent representations, 

|V>i)®|V>2) = |0)<g>|0) (1.4) 

|Vi)|V2) = |0}|0) (1.5) 

| ^ 2 > = |00) (1.6) 

They could also be each one in a superposition state ^ 7 ^ . Here the state of the system 

is 

l * > 8 | * > = ^ « ^ (1-7) 

W>i« = i ( |00) + |01) + |10) + | l l )) (1.8) 

This kind of states, that can be rewritten as a tensor product of n qubits for a system of 

n elements (in the previous examples n = 2) is known as separable state. On the other 

hand some quantum states cannot be separated in such a way. They are called entangled 

states. 
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For the particular case of a two qubit system |T) = a|00) +6|01) +c|10) + d | l l ) , where 

{a, b, c , d } e C and \a\2 + \b\2 + \c\2 + \d\2 = 1, it can be proved that if ad ^ be, then 

|T) is an entangled state. 

Some examples of entangled states are the Bell states, 

|#+) = Mi^> |*+) = M> (,9) 

l*-) = M^H> I * ~ H M > ( U 0 ) 

the GHZ state of n qubits (standing for Greenberger, Home and Zeilinger), 

\GHZn) = - l ( | 0 ) i . . . |0)n + | l ) i . . . |1>„) (1.11) 

and the W state of n qubits 

\Wn) = 4^(|l>i|0>2 • • • |0>„ + |0)1|1>2... |0)n + . . . + |0>i|0)2 . . . | l ) n ) . (1.12) 

1.2. Quantum communication 

The exploitation of quantum systems by two (or more) parties for information transfer 

purposes is called quantum communication. Entanglement in particular could be ex

ploited by them. Given that they share the qubits from an entangled state, when one of 

them, let's say Alice, measures its corresponding qubit, the result that the other party(ies) 

will obtain is correlated with Alice's measurement. There are also some applications that 

don't require a shared entanglement source, like the BB84 protocol exposed in section 

1.3.1. 

To implement quantum communication applications as well as quantum circuits, an opti-



7 

cal approach was selected due to the experience of the research group where this project 

was developed. 

For the production of the raw qubit material in the optical approach (the photons), a 

laser is typically used. Critical characteristics at the moment of selecting one laser are 

the output wavelength and repetition rate, if it's not from the continuous wave type. The 

wavelength will determine constraints on all the elements that follow the laser: mirrors, 

crystals, fibres, detectors. 

The repetition rate determines how fast experiments can be performed. In spite of this, 

the control of these experiences becomes unmanageable when the repetition rate is too 

high. Another related issue is that detectors typically have a period of time where they 

are unable to detect a new photon after detection; this period is known as dead time. The 

detection systems will be discussed in chapter 2. Even more critical, the electronics that 

process all the information put a limit on how fast the experiments can run. This is the 

subject of chapter 3. 

To keep track of a photon, it is handy to work with the sync out signal provided by some 

lasers. It provides the starting time of a single experience. So it is desirable to have 

a sync out signal from the photon source to be used, if some type of control or time 

processing is wanted. 

Because qubits are realized by single photons in conventional schemes, weak pulses 

from lasers are often used. By attenuating the power of a laser, a single photon source 

can in principle be obtained. Because of its probabilistic nature, it can also generate 

several photons at the same time, or none of them with a certain probability. 

Parametric down conversion is another method used to generate single photons. This 

process occurs in non-linear crystals and converts a photon of one wavelength to two 

photons with different wavelengths, conserving energy and momentum. Because both 
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output photons are entangled, when one of them is detected the other has been certainly 

created. 

1.2.1. Polarization encoding 

A photon property easily used for quantum information tasks is its polarization. Polariz

ers block one component of the electric field and transmit the other. From an observer's 

coordinate system, the output polarization can be horizontal, vertical, or any other posi

tion. It can represent the quantum state of single photons, where \H), \V) correspond to 

the preferred orthogonal positions, the so-called computational basis. One state can be 

represented as 

W) = a\H) + P\V) (1.13) 

where |o;|2 + |/3|2 = l. Polarizer beam splitters can separate these two polarizations in 

different paths. Actually they can separate any two orthogonal polarizations depending 

on its alignment. To modify the polarization state of photons, wave plates are used. 

These elements and their behaviour are described by matrices, representing their trans

formations. This description is known as Jones formalism or calculus. Some examples 

are shown in table 1.1 [Saleh and Teich, 1991]. Thanks to the case of operating over 

a polarization qubit, this encoding type is mainly favoured for quantum computation 

experiences. 

1.2.2. Time-bin encoding 

When a photon enters a Mach-Zender interferometer, it can go through the short arm 

or the long arm, from a probabilistic point of view. In a quantum scale description, the 

photon goes by both arms at the same time. It is necessary to have a photon generated 
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Table 1.1 Jones' matrices for some polarization elements 

Linear polarizer along x 

Linear polarizer at angle 9 

, Quarter wave plate: T = f 
Wave retarder „ , _ . f „ z 

Half wave plate: F = ir 

Polarization rotator 

6 5 
/ cos2 9 sin 6 cos 9\ 
\̂ sin 6 cos 9 sin2 9 J 

(1 0 \ 

/cos 9 — sin 9\ 
ysin# cos^ J 

coupler switch 

Figure 1.1 fibre interferometer for time-bin encoding, as introduced by [Brendel et al., 
1999]. 

with a short pulse duration compared to the length difference between the arms of the 

interferometer [Brendel et al., 1999]. 

The basis used is such that when the photon passes by the short arm, it is in the \s) state, 

and for the long case its state is \l). Then, a qubit state in time-bin encoding is 

|^) = a|s)+/?|Z) (1.14) 

Because fibres affect the polarization of photons on it, polarization encoding is not ideal 

for communication experiments. As an alternative time-bin can be implemented over 

fibres, since the interferometer can be fabricated with them. However, making compu

tations in time-bin is currently unpractical, as there is no easy way to perform arbitrary 

unitary transforms on such a basis. 
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1.3. Quantum Protocols 

A protocol is a set of rules that have to be followed in a certain order to achieve a defined 

goal. For example, to get money from an ATM a protocol between the machine and the 

user has to be followed: insert the card, type the password, etc. To register the executed 

transaction, the ATM has a protocol to communicate with a central database in a secure 

way. 

Quantum protocols are a set of rules applied on quantum states, requiring a qubit source 

or even an entanglement source in some cases. These protocols become of interest when 

they can make something better than a classical version of them; more efficient answers, 

or eventually an answer that classically cannot be found. 

When quantum cryptography is mentioned, the promise of a secure cryptography scheme 

comes to mind. Actually, what quantum mechanical properties offer is a way to create 

random keys and share them securely between two parties (Alice and Bob). This private 

random bit sequence can then be used to encrypt a classical message to be sent between 

them. One example of this type of protocol is exposed in section 1.3.1. 

In cases two users prefer (or need) to transfer quantum information securely instead of 

classical information, they can use quantum teleportation [Gisin et al., 2002], provided 

that they share a prior entangled state, as explained in section 1.3.2. 

1.3.1. BB84 protocol 

The first quantum key distribution protocol is known as BB84, as the authors' initials 

and its publication year [Bennett and Brassard, 1984]. This requires the capability of 

creating a qubit, encoding it, sending it (Alice's side), receive it, measure it (Bob's side) 

and a classical communication channel for post-processing tasks between both parties. 
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The feasibility of each step depends highly on the implementation scheme and the type 

of encoding chosen. 

The protocol goes as follows. Alice has to generate a couple of random classical bits: 

the first one will be the bit sent to Bob (x), and the second determines the basis in 

which Alice will encode the bit (b). The choice for the encoding basis can be anyone 

agreed between the two parties, with the condition that the two bases are orthogonal 

between them. For example, they can choose the rectangular and diagonal basis; for 

the rectangular basis a classical 0 is encoded in a |0) state and classical 1 in |1); for the 

diagonal basis a classical 0 is encoded in a |+) = 4=(|0) + |1)) state, while a classical 1 

is in a |-> = ^=(|0) - |1)) state. 

Alice prepares and sends to Bob the state corresponding to her random pair of bits ac

cording to the previous rules. Bob then measures the received state in one of the basis 

(rectangular or diagonal, for example) in a random way, independent of Alice behaviour. 

Notice that if Bob chooses the same basis that Alice selected to encode the bit, the 

measured value will be the bit sent by Alice. If the opposite occurs, i.e. both choose 

a different but orthogonal basis, Bob will learn nothing about the state. This happens 

because he will measure 0 or 1 with probability 1/2 in those cases. 

To complete the protocol, Bob talks to Alice using a classical communication channel, 

and asks for each of the selected bases. If they have selected the same one, they keep 

the corresponding bit as part of their key. If they didn't, the bit is just discarded. They 

repeat this procedure as many times as they want, until they obtain the desired amount 

of shared bits. 

There exist some variations of this protocol to make sure that a possible eavesdropper 

hadn't access to their quantum channel. One typical procedure includes the verification 

that some of the bits they claim to share are equal. This assures that nobody had modified 
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the information, since a third party in order to obtain information has to measure in one 

random basis (possibly a different one from the two chosen by Alice and Bob) and 

then resend the data, biased on its own selection of a basis. Remember the no-cloning 

theorem [Wootters and Zurek, 1982] that prevents a third party to copy the state, save a 

copy for himself and measure it after hearing the classical conversation. 

1.3.2. Quantum teleportation 

Thanks to entanglement, Alice and Bob can transfer between them a quantum state. 

Their interest could be to exchange the result of a quantum operation that only Alice is 

able to make, but Bob is the one who is interested in its output. The procedure known 

as quantum teleportation [Bennett et al., 1993] will permit them to achieve this. To do it 

they need 3 qubits, where two of them are entangled and shared between them, and the 

third one contains the quantum state to be transferred. 

Before entering on the schematic description of the quantum teleportation procedure 

(section 1.3.2.2), is helpful to introduce the concept of quantum circuits (section 1.3.2.1). 

1.3.2.1. Quantum circuits 

Qubits can be altered. The second postulate of quantum mechanics states that: 

"The evolution of a closed quantum system is described by a unitary trans

formation" [Nielsen and Chuang, 2000] 

Then, a modification to these states can only be done by unitary transformations U 

(where C/_1 = W) in the Hilbert space. Qubits can also be transferred and measured. 

The joint of these actions on qubits form what is called a quantum circuit. 
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An arbitrary transformation U applied to a state \ipx), such that its output |^2) = U\tp\) 

is represented as 

l ^ > U \Y^) 

Figure 1.2 Arbitrary unitary gate. 

The Walsh-Hadamard transformation H, usually referred only as Hadamard, converts 

a |0) into a ^ ^ and a |1) into a ®ffi. Using the basis from equation (1.2), the H 

transform is represented as 

H= I ^ ^ j (1.15) 

Its circuit application is represented as 

!*!> P H I l̂ 2> 

Figure 1.3 Hadamard gate. 

Other useful one qubit gates are the negation N and the phase flip P. They are given by 

i V = | 0 1 ] P = \ 1 ° | (1.16) 
1 0 / \ 0 - 1 

where for the negation gate N\0) = |1), N\l) = |0), and for the phase flip gate P\0) = 

|0>,P|1> = -|1>. 

Another important transformation is the controlled-not gate, or just c-not, noted by ®. 

It is a two qubit gate which changes the state of the second qubit (target qubit) from 
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|0) to |1) or from |1) to |0) only if the first qubit (control qubit) is in the state |1). Or, 

if{x,y} G {0,1} then ®(\x)c\y)t) — \x)c\x © y)t. The corresponding matrix to this 

transformation in the |00), |01), 110), |11) basis is 

/ 1 0 0 0 

0 1 0 0 

0 0 0 1 

0 0 1 0 

\ 

(1.17) 

and the diagram which represents it is 

l * > e -

|y>, -&-

\*)c 

\x®y\ 

Figure 1.4 C-not gate. 

1.3.2.2. Quantum teleportation procedure 

The two interested parties, Alice and Bob, start by generating a pair of entangled qubits, 

a |<j)+^ — I22mll l ; o n e of the Bell states from equation (1.9). Alice and Bob each keep 

one of these qubits, and therefore share entanglement. This state can be made from two 

qubits at |0), an H gate followed by a c-not, as shown in the first part of figure 1.5. 

Then, Alice takes the state to be tranferred |T) and applies the next transformation be

tween |T) and her part of the entangled state as indicated in figure 1.5. 

At this moment, the state of the circuit is the following 

10 = ||oo>|r> + ||oi>iv|r> + ^|io>p|r> + ^|ii>#p|r) (1.18) 
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|r>-

|o> 

|o>-

Alice 

H 

H 

M> 

-Si 

+-t-

H -&- H \n 

|r>|*+> 
T 

Figure 1.5 Quantum teleportation circuit. Alice and Bob share an entangled state |$ + ) , 
which allows them to transfer the |T) state from Alice to Bob. 

where Bob's state, the third qubit, is related to the tranferred state |T) except for N 

and/or P transformations; they were defined in equation (1.16). Alice then measures 

her qubits, immediatly collapsing Bob's state to one of the four options. She communi

cates via a classical channel the result of the measurement, so Bob can apply the correct 

transformation to recover |r) on his side. 

1.3.3. Quantum coin tossing 

Alice and Bob want to throw a coin and decide on a winner from this result. They are 

not in the same place. If one of them wants to cheat, he or she will succeed in a classical 

scenario every time. Nevertheless, in the quantum scenario protocols have been proposed 

to avoid that the cheater wins all the time. It has been demonstrated [Kitaev, 2002] that 

in the best case (from the honest person point of view) the cheater will succeed with a 

probability of about 71%. 

One of these protocols was introduced in the same paper as the quantum key distribution 

scheme presented in section 1.3.1 [Bennett and Brassard, 1984]. Here is exposed the 

simplified version described recently [Berlin et al., 2008b]. Alice prepares one of four 

states at random, corresponding to two random bits like in the key distribution protocol: 
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|0), 11) for 6 = 0 or |+), |—) for 6 = 1 . Then she sends this qubit to Bob. 

Bob replies to Alice with a random bit g. Then he measures the received qubit in a 

random basis, namely Bob's 6 with the same convention as Alice's 6. His result will be 

x. 

Alice declares her values for 6 and x. In the case that Bob guessed the basis (6 = 6) and 

the value measured doesn't correspond to the one sent by Alice (x ^ x), Bob recognizes 

that Alice is cheating. If Bob continues with the protocol, the coin value will be 6 © g. 

For this protocol Bob cannot cheat. Alice could cheat by lying over the value of 6 she 

used, or by sending a different state from the agreed four possibilities. 

A newer version of the protocol [Berlin et al., 2008a] does not require a quantum mem

ory. For the experimental implementation of this protocol, random numbers are required. 

If time-bin encoding is selected, depending on the selected basis a phase has to be ap

plied in one of an interferometer's arm; this happens at encoding and decoding stages. 

Consequently, driving phase modulators is required. Single photon measurement at the 

end of the process is also required. All the above tasks can be done, with the support of 

the products of this project. 

1.4. Experimental electronic requirements 

Now that the fundations behind this work are explained, it is possible to talk about ex

perimental requirements that can be addressed from the electronics. 

Timing information of photon generation (laser fast photo diodes) and photon detection 

(single photon detectors) can be used to synchronize the process chain, which is useful to 

determine correlations between emitted photons and their measured counterparts. This 
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requires that the system receives different kind of analog signals and treats them equally. 

An analog to digital conversion stage scheme is presented at section 2.2. 

For timing issues, an external clock is employed as a master clock for the whole system. 

It can be provided also by an electronic system. Recording this type of events with the 

timing information is used for this task. This procedure is presented in section 3.4.3. 

To determine the actual state of a quantum state, measurements in different basis are 

done. Frequently coincidence (or anticoincidence) detection is required. This is dis

cussed in section 3.4.2. 

Coin tossing protocols even in its quantum version require the generation of classical 

random bits (section 1.3.3). Typically quantum communication protocols make use of 

this randomness source. This is possible to address with an electronic system, which cre

ates a pseudo-random sequence of bits following a procedure exposed in section 3.4.4. 

For the implementation of an interferometer designed for time-bin encoding (see section 

1.2.2), it is necessary to control a phase modulator. This modulator, as discussed in 

section 4.1.1, is gated via a periodic electrical signal which depending on its voltage 

level indicates the phase that has to be applied to the optical signal. 
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CHAPTER 2 

PHOTON DETECTION 

As stated, detection of photons is a key step in experiments in optical quantum infor

mation, whatever encoding is been used. Even more critical, at the quantum level it is 

important to be able to detect a single photon. In some cases it is desirable to determine 

how many photons arrive, to facilitate distinction between the arrival of a single photon 

or a two or three photons event. 

A wide variety of single photon detectors exist in the market. Each of them is designed 

to function for a certain wavelength range. Hence the choice of photon detectors is 

relevant when designing an optical experiment. This implies that for different setups, 

the detectors used are usually different. 

This difference between detectors lies not only on its design, but also in its working 

principle and then, in the output that can be acquired for collecting data. There are 

several characteristics that differ, depending on the selection, such as efficiency, cost, 

temperature range operation and portability. 

In section 2.1 several photon detection mechanisms are explored, putting a special em

phasis on avalanchephotodiodes (APDs), being the choice for our experiments. Dealing 

with the outputs of these detectors is considered in section 2.2. The proposal of a circuit 

which unifies the diversity of electrical signal types is exhibited in section 2.3, closing 

this chapter. 
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2.1. Photon detection mechanisms 

Semiconductor APDs, semiconductor quantum dot detectors and superconducting de

tectors [Engel et al., 2004] are today's most discussed types of single photon detectors. 

Among them, the APDs are the most used since the other two types (quantum dot and 

superconducting ones) are recent technologies, which remain for the moment in an ex

perimental stage. 

The principle of operation for any photon detector is to generate or to switch on an 

electrical current whenever a photon arrives on the device. To succeed at the single 

photon level, the scheme has to be such that a single event produces a considerable flow 

of electrons so they can be measured. This macroscopic measurable event is known as 

a 'click'. In practice, not every photon that arrives to the device is able to produce a 

click, and therefore cannot be measured. The concept of quantum efficiency r\ arises as 

the following ratio 
detected photons 

V = ^-^ ~t • C2-1) 
incident photons 

It takes into account every effect that prevents a photon to generate a click in the device. 

7] could be taken as the probability detection of a photon, since 0 < rj < 1. Quantum 

efficiency rj has the property that for a given device, it changes with the photon wave

length A. Curves of r] vs A are typically provided with the photon detector's product 

specifications. 

The temperature of operation is a factor to take into account. APDs work typically be

tween —50 °C and room temperatures, which can be controlled by using Peltier coolers. 

On the other hand, quantum dot detectors [Komiyama et al., 2000] and superconducting 

detectors [Engel et al., 2004,Rosfjord et al., 2006] operate at temperatures of a few or 

tens of Kelvin. As a result they have to be operated in a cryostat. 
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Dark counts is an important and undesired characteristic of photon detectors. The dark-

count rate is the number of clicks per second when no photons are incident on the de

tector. Spontaneous decays of electrons in semi-conducting detectors can generate a 

dark count. Also, residual electrons from previous clicks could start a new process that 

emulates detection, while no-photon arrives; this phenomenon is known as afterpulsing. 

After detection occurs, the system needs some finite time to recover. This interval is the 

dead time. Notice that during this period the device doesn't have the capacity to measure 

any arriving photon. This is a technical limitation for experiments that require detecting 

every single event at a fast rate. 

Given these generalities of single photon detectors, the particular case of semiconductor 

APDs is now presented. 

2.1.1. Used photodetectors: Avalanche Photodiodes 

The operation principle of an avalanche photodiode (APD) is to convert the incident pho

ton into a cascade of moving carrier pairs (electron-hole pairs) in a semiconductor p-n 

junction. It consists of a photodiode with a high reverse bias, which makes the carriers 

accelerate, with enough energy to excite new carriers in a process called impact ioniza

tion [Saleh and Teich, 1991]. When one photon arrives, it is absorbed and generates a 

carrier pair (figure 2.1). The electron (hole) is accelerated by the strong electric field in 

the semiconductor. If the energy acquired by the electron before it collides with other 

one in the semiconductor is enough to have a kinetic energy greater than the gap energy 

Eg, it will liberate another electron. These two electrons continue gaining energy from 

the electric field, and will collide with other electrons, and so on. 

Typical values of operation wavelengths for APDs are 400 nm < A < 900 nm for those 

made in Si, and 1 //m < A < 1.7 jum for those made in Ga, InGaAs and InGaAsP. 
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Figure 2.1 Avalanche process in APDs. 

Silicon detectors are often used for detecting free-space beams, favouring polarization 

encoding experiments. In a particular quantum information experiment for which this 

work was destined, a Ti: sapphire laser at 720 nm is used to generate 360 nm photons, 

which create both 680 nm and 765 nm photons; they are collected by using silicon de

tectors. 

Another experiment taken into account by this work, is a quantum communication im

plementation on optical fibre that uses time-bin encoding with photons at 1550 nm. For 

this particular case, because of the photon's wavelength, InGaAs detectors are used. In 

general, InGaAs detectors are used in experiments that uses optical fibres, since they 

work in the transmission window of 1500 nm as well as in the 1300 nm. 

To achieve single photon resolution in the detection process, an APD is operated in 

Geiger mode, whereas the applied bias voltage VE is larger than the breakdown voltage. 

The problem with this situation is that the current diverges after a click, to the point of 

exceeding the limit where the high current obtained destroys the device [Karlsson et al., 

1999]. 

Therefore, there must be a circuit controlling the avalanche process to avoid permanent 

damage on the APD. These circuits are called quenching circuits, and they come in sev-
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eral schemes, such as passive quenching, active quenching and gated quenching circuits. 

The quantum efficiency defined in equation (2.1), depends on the probability that a pho

ton is absorbed in the semiconductor layer (absorption efficiency), the probability that 

the carrier generated by the photon starts an avalanche process (trigger probability) and 

on the optical coupling efficiency of the light to the device. Quantum efficiency greater 

than 10% can be achieved in InGaAs detectors and about 70% for silicon detectors. 

In terms of dark counts, good silicon single photon detectors exhibit between 10 to 100 

dark counts per second, and for those made on InGaAs or InP this rate goes in the range 

100 to 1000 dark counts per second in the best conditions. 

2.2. Signal conversion and standardization 

Commercial electronic devices often come with circuits that convert their original analog 

outputs into signals compatible with other electronic systems. The output is often digital, 

using one of the existing standards like TTL. However this is not always the case. In this 

section this inconvenience is addressed. 

In this project three types of electrical signals have to be detected and standardized such 

that a complementary circuit may read them and treat them equally. They are 

• Silicon single photon counting module. TTL signal. Amplitude: 1.8 V. Pulse 

duration: 175 ns. See figure 2.2(a). 

• InGaAs photodiode. Analog signal. Amplitude: 180 mV. Pulse duration: 7 ns. 

• Laser fast diode output (sync out). Analog signal. Amplitude: 100 mV. Pulse 

duration: 2.5 ns. Repetition rate: 76 MHz. See figure 2.2(b). 
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EG&G Si detector type output signal Mira 900 Laser sync out signal 
200 

200 400 
Time (ns) 

600 10 20 30 
Time (ns) 

40 

(a) Typical output signal of a EG&G silicon (b) Sync, output signal from a Mira 900 
single photon counting module. pulsed laser. 

Figure 2.2 Examples of input signals for the electronic system. 

The solution for detecting input electrical signals is designed to be universal. The idea 

is to compare the signal, without regard to its form, with a reference voltage as shown 

in figure 2.3. When the signal Vin is higher than a reference level VKf, the circuit should 

convert it to a digital T high level; a digital '0 ' low level should be obtained in the 

contrary. 

The response of this circuit has to be fast enough to detect changes in signals that last 

about 3 ns in the so called high level. Also it has to detect signal amplitudes as low as 

100 mV, meaning that Vrsi has to be approximately 40 mV. 

The proposed solution is to use a driver/receiver for differential signalling. Instead of 

giving the device a differential pair signal as input, it will get the voltages 14, and bef

its output gives a differential pair of amplitude defined by the device characteristics, 

which has as possible values only the two required ones, high and low, '0 ' and ' 1'. 

A Micrel® Ultra-precision differential 800 mVLVPECL line driver/receiver with in

ternal termination (SY58601U) was selected for this purpose. Its maximum operating 

frequency is 5GHz (or 5Gbps). Its output rise/fall time (tr, tf) covers the range be-
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Figure 2.3 Principle of operation for the conversion of signals to TTL. 
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Figure 2.4 Micrel SY58601U internal schematic. 

tween 25 ps and 90 ps. Its output voltage swing is typically 800 mV for each pin, being 

1600 mV the voltage swing for the differential output. When used within its design 

specifications, input swing accepted can be as low as 100 mV. 

The device outlook, as shown in figure 2.4, is used as follows: pin IN is connected to the 

detector signal Vjn; pin VT is connected to an extern voltage VT; pin /IN is connected to 

VKf, pin VREF-AC remains unused. 
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Figure 2.5 Schematic of Micrel SY58601U evaluation board. DC-coupled configuration. 

Table 2.1 Configuration cases for Micrel SY58601U DC-coupled evaluation board tests. 
Case V in 

First configuration 
TTL signal, amplitude > 400 mV 

Second configuration 
Scenario 1 TTL signal, 100 mV amplitude 
Scenario 2 Mira900 laser sync out signal 
Scenario 3 Mira900 laser sync out signal 

v r e f 

variable 

70 mV 
OmV 

40 mV 

VCc 

2.5 V 

2.00 V 
2.00 V 
2.00 V 

v E E 

ov 
-1 .21V 
-1.21V 
-1.21V 

2.2.1. Test results with evaluation board 

Using an evaluation board provided by Micrel (the SY58601U device producer), and 

modified for DC coupled operation, the chip was tested to confirm its performance and 

the usefulness to compare voltages. The schematic of the used configuration is shown in 

figure 2.5. 

It was initially tested with a supply of Vcc = 2.5 V and VEE = 0 V (first configuration, 

in table 2.1). As input a TTL signal of variable amplitude created with a signal generator 

was used. The reference level was provided by a variable voltage divider. Its operation 

limit appeared when the TTL signal amplitude was reduced to less than V;n w 0.4 V. 

With this supply configuration, the signals of lOOmV definitely could not be recognized. 

A second configuration was tested, where the supply voltages were VCc = 2.00 V and 

VEE = —1.21 V (second configuration in table 2.1). In this one, TTL signals of amplitude 
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100 mV were correctly detected, as shown in scenario 1 (figure 2.6(a)). The case of the 

sync out signal from the Mira 900 laser was tested, as the limit case of signals that would 

be detected by the system. In scenarios 2 (figure 2.6(b)) and 3 (figure 2.6(c)) is shown 

that for a Kef = 0 V and Kef = 40 mV respectively, the outputs Q and jQ behave such 

that 

if Vjn > Kef then Q = Qhigh > 0 and jQ = /Qhigh < 0 (high case) (2.2) 

if ViD < Kef then Q = QXovi < 0 and /Q = /Qiow > 0 (low case) (2.3) 

where the high case correspond to the logic T value, and the low case to the logic '0 ' . 

A good differential pair output happens when Q = —/Q and Qhigh = —Qiow, which is 

closely obtained in scenario 2. It can be checked that the first condition, Q = —/Q, 

always occurs. To achieve the second condition, Qhigh = —Qiow, the VT value should be 

adjusted. 

2.3. The input circuit 

After testing the evaluation board, a custom designed PCB is made. This new circuit 

board has the capability to drive eight signals at the same time. The differential output 

is used by the ZestSC2 card, which is presented in section 3.2. 

To design the circuits made in this project, the software Eagle 5.2.0 Standard edition 

was used. The purpose of this Printed Circuit Board (PCB) is to convert eight signals, 

using the scheme described in section 2.2, and to provide as output the same number of 

differential pairs, done in digital format. 

This PCB is designed to work with a ZestSC2 FPGA USB card, from Orange Tree 

technologies. The FPGA characteristics are treated in chapter 3. A short description of 
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(a) Input V|„: TTL signal of 100 mV. VK{ 
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(b) Input V\a: laser sync out signal. Vref = 0 V 
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(d) Legend for figures 2.6(a), 2.6(b) and 2.6(c). 

Figure 2.6 Micrel SY58601U DC-coupled evaluation board tests. Scenarios in second 
configuration: Vcc = 2.00 V and VEE = -1.21 V. 
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this card's characteristics is introduced in section 2.3.1. 

2.3.1. PCB schematic 

The supply voltage of the designed PCB is Vcco = 3.3 V, the working voltage of Micrel 

SY58601U. Any signal applied as an input must not be higher than the supply voltage; 

it would cause damage to the Micrel SY58801U device. The FPGA's VFPGA-CCO is set at 

3.3 V for compatibility with the PCB. Nevertheless the supply voltage Vcco is extern. 

There exist the option to shortcut this two voltages, by using a shunt in the connector 

SV1 (2x1 pin header, see figure 2.7). 

The VT voltages are supplied externally also. The reference voltages VTef are produced 

by the circuit, via eight voltage dividers graduated with potentiometers. They go from 

GND to Vcco- To maintain the VTC{ values protected from circuit currents, unity-gain 

stable power amplifiers were used. In particular, LM4880 devices are employed. In the 

case that VT is desired to be the same as its corresponding VK{, instead of supplying VT 

externally, a shunt can be placed in the corresponding connector SV2 (8x2 pin header). 

For acquiring Vjn signals, because the possibility of having high frequency signals (few 

GHz), SubMiniature version A (SMA) connectors were selected instead of Bayonet Neill 

Concelman (BNC) ones. The outputs are driven to a 32x2 pin header connector, to fit 

directly in the J8 FPGA header of the ZestSC2 card. 

Several bypass capacitances were placed, as can be seen in figure 2.7. For the Micrel 

SY58601U, close to the VCc pin are one 10 nF ceramic capacitance per device and one 

0.1 (IF tantalum capacitance per couple of devices. Their inputs /IN and VT have 

bypass 0.1 (IF capacitances close to the Micrel device, since they are reference voltages. 

For the supply voltage, bypass capacitors in parallel 1000 (IF\ 110 (IF are placed next it. 

The LM4880 amplifier requires a 1 (IF between its bypass pin and ground. Next to the 
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Figure 2.7 Schematic of designed input PCB. The treatment circuit for a single signal 
is here depicted, which includes a voltage divider, a unitary amplifier, and a differential 
driver/reciever. The actual PCB drives eight of these signals. 
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Table 2.2 Components in the input circuit PCB. 
Device 
Connectors 

SMA PCB horizontal connector 
Connector header vertical, 2 positions. O.lOOin 
Connector header vertical, 8 positions. O.lOOin 
Pin header 2x1. O.lOOin 
Pin header 8x2. O.lOOin 
Pin header 32x2. O.lOOin 

Integrated circuits 
LM4880 
Micrel SY58601U 

Resistors and capacitances 
1 kfi trimmer potentiometer Y 
10 nF ceramic capacitance SMD 0603 
0.1 /JF tantalum capacitance SMD 1206 
1 fiF tantalum capacitance SMD 1206 
10 //F tantalum capacitance SMD 1206 
1000 /iF electrolitic capacitance 

Quantity 

8 
1 
4 
1 
1 
1 

4 
8 

8 
8 

24 
4 
1 
1 

signal SMA connectors are placed optional 0.1 /iF capacitances, as recommended by the 

producer in the interface applications. 

In table 2.2 is the whole list of required elements for this PCB. 

2.3.2. PCB layout 

To make the layout for fabrication, the Micro Lead Frame of eight pins (MLF-8) package 

is added to the physical layout library; the Micrel SY58601U device uses this package. 

The specifications are given in the datasheet of the component. 

A 4 layer PCB was used. The top and bottom layers are assigned to routing signals, while 

the second is dedicated to GND and the third to Vcco- The routing was manually made 

for the case of sensitive signals, like the eight V;n from the SMA connectors, the Micrel 
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bypass capacitances and the Q, /Q output signals. In the case of the differential outputs, 

their lengths have to be as equal as possible, and also following a path as symmetrical as 

possible. The remaining signals were routed using the Eagle autorouter application. 

50 fi impedance was desired for the inputs and outputs of each Micrel component. To 

achieve this, the widths of the microstrip traces are specially calculated. Several formulas 

that give an approximation of PCB impedances exist. The used equation is done by the 

IPC document IPC-D-317A [Brooks, 1998] 

87 , / 5.98# \ ^ 
ZQ = , In fi (2.4) 

y/er +1.41 \0.8W + TJ K J 

where H is the height of the dielectric between the ground plane and the trace, W is the 

width of the trace (to be determined), T is the thickness of the trace and er is the relative 

permittivity of the dielectric. 

These characteristics are given by the company which produces the PCB. In this case 

Multifor Ltd., located in Dorval, QC, offers H = 6mil(0.1524mm) T = 1.7mil(0.04318mm) 

sr = 4.3 Giving as a result for Z0 = 50fi, W = 9.234 mil(0.2345 mm). The GND paths 

were made with W = 24 mil. 

The connections layout for this circuit is given in the appendix 1.1. 

2.4. Chapter summary 

A signal conversion system was developed. The necessity of reading analog signals of 

different kinds justify the creation of such a system; typical signals to be addressed in 

quantum optical experiments are silicon and InGaAs single photon detectors outputs, 

and synchronisation outputs from lasers. 
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The main component (Micrel SY58601U) was tested successfully for the conversion 

purpose, providing a differential output that can be read by an FPGA. Then a PCB pro

posal which is able to convert up to 8 signals with different characteristics was presented. 

These converted signals are the inputs of the information processor, based on an FPGA; 

this processing unit is the subject of the upcoming chapter 3. In particular, the PCB was 

specifically designed to work with a ZestSC2 card (see section 3.2). 
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CHAPTER 3 

INFORMATION PROCESSOR AND APPLICATIONS: THE FPGA 

Quantum information systems in general require treatment of information generated 

from measurements, from just counting clicks to recording time information of these 

events for post-processing and analysis. They may also make actions, like turning on 

a device or changing the phase applied by an electro-optical modulator. Any particular 

procedure that could arise in these experiences should be done by one electronic system 

which acts as a processor: managing resources, reading and sending information. 

Due to the great variety of tasks to perform depending on the particular implemented set

up, a system capable of being reprogrammed is advantageous. This reduces the cost and 

increases the utility of such a system. The speed of this processor is another requirement 

to take into account. From Shannon's sampling theorem, 

Theorem 3.1 If a function f(t) contains no frequencies higher than W cps (cycles per 

second), it is completely determined by giving its ordinates at a series of points spaced 

1/2W seconds apart. [Shannon, 1949] 

In the worst case, the system has to be twice faster than the fastest signal to be detected. 

In one case, the limit signal can be the laser sync out signal, of / = 76 MHz, meaning 

that the lower operation frequency for a set-up using the laser sync out will be of /CLK = 

152 MHz. 

Another limit to the processor's frequency is the interferometer path length difference. 

The processor must be able to distinguish between a signal that passes through the long 

arm of an interferometer and the short one. The acquisition rate /CLK determines the 
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extra time At that light could take to pass by the long arm, therefore the extra distance 

Ax that it has to traverse. 

A t > - ^ - (3.1) 

Taking into account these considerations, a Field-programmable gate array (FPGA) is 

used in this project. They accomplish the reconfigurable requirement. The speed of 

FPGAs in the market ranges from a few MHz to 1GHz (a 1066 MHz commercial product 

was announced in June 2008); the faster an FPGA works, the less affordable it becomes. 

In particular, a ZestSC2 card from Orange Tree Technologies was used. It contains a 

Xilinx0 Spartan-3 XC3S2000-4 FPGA, a Universal Serial Bus (USB) to communicate 

with a computer, as well as other components and features (see section 3.2). It works at 

/cue = 48 MHz, but other frequency clocks can be synthesized as explained in section 

3.1.2. 

3.1. Spartan-3 FPGA characteristics 

The details of how an FPGA works and the justification of its uses are presented here. 

Particularities of the Spartan-3 XC3S2000-4 FG676 version from Xilinx® are also 

addressed. It is convenient to decompose the long name of the used card: Xilinx is the 

producer, Spartan-3 is the family, XC3S2000 is the device, -4 is the speed grade, and 

FG676 is the package type. 

An FPGA is formed by a distribution of interconnected functional blocks, the fact that 

gives the second half of its name "gate array". The "field-programmable" label makes 

reference to the capability of programming these blocks and their connections. The 

conventional sorts of components that could be found in such an array are: 

• Configurable Logic Blocks (CLBs) that implement the logic circuits and some 
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Table 3.1 Xilinx Spartan-3 XC3S2000-4 FG676 block components. 
Component 
System gates 
Logic cells 
CLBs 
RAM Blocks 
DCMs 
Dedicated 18bitxl8bit multipliers 
User I/O 
Differential I/O pairs 

Quantity 
2M 

46080 
80 rows x 64 columns = 5120 

40 
4 

40 
489 
221 

storage elements. 

• Input/output blocks (IOBs) that control the flow of information between the inner 

circuits of the FPGA and its I/O pins. 

• Random Access Memory (RAM) blocks to save data. 

• Digital Clock Manager (DCM) blocks, which permit the generation of different 

clock signals. 

• Dedicated algorithmic blocks to enhance the performance of particular tasks. 

In the case of Spartan-3 chips, the dedicated algorithmic blocks included are multipliers. 

The amounts of blocks available in an XC3S2000 device are listed in table 3.1. 

3.1.1. Configurable logic blocks 

The main component of a configurable logic block (CLB) is a function generator which 

is based on a RAM. It is called a Look-Up Table (or LUT). It takes n binary input bits 

(n = 4 for the Spartan-3 family), and gives as a response a single bit. A logical function 

f{x) can be implemented with LUTs: a given digital input xm G { 0 , 1 , . . . , 2n — 1} has 
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a single output xout = f(xin) G {0,1} corresponding to the assigned value in the truth 

table programmed in the LUT. 

Another important element to be contained in a CLB is a storage component. Flip-flops 

type D serve to save the output of LUTs and synchronise them within the system clock 

signal. Other helpful elements in a CLB are multiplexers, simple logic function as AND-

gates, OR-gates, and XOR-gates. 

3.1.2. Digital clock managers 

A digital clock manager (DCM) provides the possibility to synthesise clocks with fre

quencies that are small integer multipliers and divisors of the system main clock fre

quency. In other words, the new frequency /CLKFX in terms of the main clock frequency 

/CLKIN IS 

M 
/CLKFX = /CLKIN x -j) (3-2) 

where {M, D} e N. More specifically 2 < M < 32 and 1 < D < 32. The ZestSC2 

card provides /CLKIN = 48 MHz to the FPGA. Nevertheless the achievable frequency 

is bounded for each device; in Spartan-3 family case, 18 MHz < /CLKFX < 210 MHz 

[UG331,2008,p.l34]. 

Another utility of a DCM is the phase shifting of synthesized clocks. A clock signal can 

be obtained with four possible phase shifts: 0°, 90° , 180° or 270°. 
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ZestSC2 

Figure 3.1 Input/output banks in XC3S2000 FPGA and their distribution in ZestSC2 
card. 

3.1.3. Regular and differential input/output ports 

The FPGA supports several signalling standards both single-ended and differential ones. 

Some examples of supported single-ended standards are LVCMOS at 1.2 V, 1.5 V, 1.8 V, 

2.5 V and 3.3 V, LVTLL at 3.3 V, and supported differential standards examples are 

LVDS and LVPECL. 

The input/output blocks (IOBs) are distributed in 8 banks in a XC3S2000 device, as 

shown in figure 3.1. Each bank has an independent supply voltage Vcco- In the case of 

the ZestSC2 card, the user has access to the banks 0,1,2 and 7. Also the user can choose 

the Vcco of each of these banks. ZestSC2 connectors labelled J3, J5 and J6 serve for this 

purpose. J3 sets banks 0 and 1, where they always have the same Vcco; J5 sets bank 2 

Vcco and J6 sets the one at bank 7. For further information refer to the ZestSC2 User 

Guide [Sweeney and Bowen, 2006]. 

Not every I/O pin is differential capable. To distinguish which of them have this property, 

it suffices to look at the_p/« name in the datasheet of Spartan-3 family [DS099, 2008], 

and it has to be in the format "Lxxy_#" where the 'L' indicates differential capability, 'y' 
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can be 'P' or 'N' referring to the positive or inverted signal of one differential pair, and 

'#' indicates the bank where the pins are located. 

For a given package, FG676 in our case, each pin name has an associated pin number, 

which are one or two letters followed by one or two digits (i.e. A5, R22, AD15). When 

programming the FPGA, the pin number is the one that will be stated and not the pin 

name. 

3.2. Other characteristics of ZestSC2 card 

The ZestSC2 card produced by Orange Tree Technologies comes with a set of de

vices and software with the Spartan-3 XC3S2000-4 FPGA. They can be explored in 

the ZestSC2 user guide [Sweeney and Bowen, 2006]. Among them are a USB commu

nication system, an SDRAM memory, a flash memory, light emitting diodes (LEDs) and 

software including a C library of functions, VHDL (Very-high-speed integrated circuits 

Hardware Description Language) and Verilog configuring examples for the FPGA, the 

ZestSC2 card driver, a user constraints file (UCF) and some executable utilities. 

Power supply to the card can be provided via the USB connection or from an external 5 V 

outlet. For USB supply, the port must have 500 mA of total power available. However it 

is recommended to provide an external supply. 

There are two ways to program the FPGA. When the card is connected, it proceeds to 

configure the FPGA from the flash memory content. It has to contain a valid configura

tion file; the flash memory can be programmed by using the utility ProgFlash included 

within the card documentation. The second way to configure the FPGA is using the USB 

port at any moment. 

The USB communication between the FPGA and the computer is done by an interface 
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controller which includes a 16 bit streaming bus, an 8 bit data bus for registers, another 8 

bit data bus for flags, and one signal for interrupt from the FPGA to the USB controller. 

This communication works at 48 MHz, providing a maximum streaming speed of 96 

Mbytes per second. 

The Synchronous Dynamic Random Access Memory (SDRAM) has a 16 bit data bus to 

communicate with the FPGA. Eight of the thirteen LEDs are available for programming; 

the other five are for status indication purposes. I/O ports provide access to 200 FPGA 

pins. They are distributed in 4 connectors, from J7 to J10, as shown in figure 3.1. Some 

of them are differential pair capable. 

3.3. Software used 

There are three tasks that are done using computer software, in order to operate an 

FPGA: 

• Generation of configuration files 

• Configuration itself 

• Communication with a configured FPGA 

Each of them requires a specific approach. For the description of FPGA's internal be

haviour, VHDL code is used. It is possible to generate a configuration bit-stream file 

from this type of code using software provided by the producer of the FPGA. In this 

case Xilinx ISE was used. To make the configuration itself, executable files calling the 

bit-stream file are generated from C code. Microsoft Visual Studio was used. Finally 

for the communication between computer and FPGA, C functions can be used. For this 

purpose executables from C code can be used, or Dynamic Link Libraries (DLL) can be 
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created to call them from a Graphical User Interface (GUI) like National Instruments' 

Lab VIEW. 

3.3.1. Xilinx ISE and VHDL code 

To dictate the FPGA how to configure its CLBs (described in section 3.1.1), a binary 

file is used. The software provided by the producer is necessary to generate this kind of 

file for a specific device of FPGA. For the Spartan-3 XC3S2000 device from Xilinx, the 

software offered is Xilinx ISE. As of the date of redaction of the present document, the 

ISE WebPack version (free downloadable version) was not available for the XC3S2000 

device family; therefore no valid binary file could be generated with it. An ISE Founda

tion version (full version) is required. Since this software is being developed and tested 

continuously, it is strongly recommended to work with the latest version available to 

avoid software bugs. 

The behaviour of the FPGA is written in VHDL language. This code is designed to 

describe hardware. Components can be described as blocks with an inherent behaviour, 

inputs and outputs. Process components define these functional behaviours, such as 

and-gates, or-gates, multiplexers, latches, flip-flops or counters. Any synchronous or 

asynchronous behaviour is depicted by them. On the other hand the architecture of the 

system is given by how these blocks are used and interconnected; this is described by 

structure components. Structure components may have inside several process compo

nents and other structure components as well. 

Xilinx ISE software does the compilation of a VHDL project in three steps. First, the 

synthesize phase verifies VHDL code syntaxis and generates a corresponding Register 

Transfer Level (RTL) schematic. This one establishes with registers and combinational 

logic a circuit equivalent to the VHDL code. Then, the implement design stage checks 
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Figure 3.2 Xilinx ISE processes window. To modify a property, right click on the process 
and select the properties option. Then the properties window appears. 

the availability of resources of a specific FPGA model and manages them to enable the 

implementation of the code. Finally the software proceeds to create the bit-stream file in 

the generate programming file step. 

For the ZestSC2 card implementation over Xilinx ISE software, some changes are re

quired [Sweeney and Bowen, 2006]. When selecting the project in the 'sources' window, 

the options shown in figure 3.2 appear at the end of the 'processes' window. Modification 

of their properties can be made by a right click on each of them and selecting the 'prop

erties' option. The properties given in table 3.2 should be set. To see all the properties, 

check that the 'property display level' is set in 'advanced'. 

3.3.2. FPGA configuration load and Visual studio 

Once a bit-stream file (f i 1 e_name. b i t ) is generated by the Xilinx ISE software, it has 

to be loaded on the FPGA to run it. As stated in section 3.2, configuration of the FPGA 

in the ZestSC2 card can be done by using the ProgFlash utility (provided with ZestSC2 

documentation) or by using C functions. Here the C code approach is explained; Mi

crosoft Visual Studio was used. 
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Table 3.2 Property changes in Xilinx ISE for a ZestSC2 card. 
Category Property name Value 
Synthesis - XST 

Xilinx Specific Options Pack I/O registers into IOBs Yes 
Implement design —>• Translate 

Translate Properties Allow unmatched LOC constraints Yes 
Implement design —> Map 

Map Properties Perform timing driven packing and placement Yes 
Map Properties Allow logic optimisation across hierarchy Yes 

Generate Programming File 
Configuration Options Unused IOB pins Pull up 
Startup options Drive done pin high Yes 

The C file has to include the library Zes tSC2.h . This library includes the function 

ZestSC2Conf i g u r e F r o m F i l e , which configures the FPGA passing as parameter 

the name of the bit-stream file. The simplest code looks like the following lines 

v o i d m a i n ( v o i d ) { 

ZESTSC2_HANDLE Handle; %variable declaration 

ZestSC20penCard(l, &Handle); %Opens FPGA with CardID=l 

ZestSC2ConfigureFromFile(Handle, "file_name.bit"); 

ZestSC2CloseCard(Handle); %closes FPGA 

} 

where all the ZestSC2 functions are included in the cards provider library. An ex

ecutable file (f i l e_name. exe) is compiled. When running the executable file, the 

corresponding bit file must be in the same folder. Also the ZestSC2 card must be con

nected to the computer, and already recognized by it; this means that the card's driver 

has to be previously installed. 

Another option is to use the ZestSC2LoadImage function. With this function a bit-

stream file is loaded in memory before actually programming it over the FPGA. This can 
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be useful when the decision of the bit-stream file to load is made during execution of a 

C program. 

Data transfer between host computer and FPGA can be done with C functions. For 

streaming data tranfer, functions ZestSC2ReadData and Zes tSC2Wri t eDa ta ex

ist. Functions Z e s t S C 2 R e a d R e g i s t e r and Z e s t S C 2 W r i t e R e g i s t e r access a 

specific register in FPGA's internal RAM memory. The 8 bit flags bus is configured via 

a C function ( Z e s t S C 2 S e t S i g n a l D i r e c t i o n ) , as well as the corresponding read 

and write functions (Zes tSC2ReadSigna l s and Z e s t S C 2 S e t S i g n a l s ) . Inter

ruption signal from FPGA can be read with function Z e s t S C 2 W a i t F o r I n t e r r u p t . 

Error handling functions also exist. However, it is a good idea to design the behaviour of 

the FPGA such that the LEDs indicate the status of the loaded program, since the error 

handler only covers some error cases. 

Deeper explanations can be found in the card's user guide, as well as studying the five 

examples provided by Orange Tree Technologies. They have to be studied together with 

their corresponding VHDL code sources to understand them. These codes have already 

configured the communication systems between the FPGA and the other components in 

the ZestSC2 card (SDRAM, LEDs, USB). 

3.3.3. Labview and DLL libraries 

For the user friendly interface during operation of the FPGA, Labview was used. With 

this GUI software, it is possible to call C functions if they are included in a shared library, 

namely a Dynamic Link Library (DLL). The functions within the DLL can execute any 

routine which calls ZestSC2 functions to configure the FPGA or transfer data. For ex

ample, a function could be created to write on the RAM of the FPGA a value x in an 

address a, where x and a are variables given by the user. 
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The procedure to generate a DLL library and how to call its functions from Lab View is 

described in National Instruments' documentation "Using External Code in Lab VIEW" 

(preferable the l v e x c o d e . pdf file) [lvexcode, 2003]. In Labview, the block that calls 

a C function contained in a DLL is the Call Library Function Node (in Labview's french 

version is called Appeler une fonction d'une DLL). Note that this block can only be 

called from the block diagram environment and not from the front panel. 

C function's definition and declaration to be exported from the DLL must be prefixed by 

the keyword _ d e c l s p e c ( d l l e x p o r t ) . For example, 

_ d e c l s p e c ( d l l e x p o r t ) i n t myfunct ion( f loa t a, i n t b ) ; 

_ d e c l s p e c ( d l l e x p o r t ) i n t myfunct ion( f loa t a, i n t b) 

It must be checked also that the declaration of the C function corresponds to the proto

type generated by the Call Library Function Node after configuration within Lab View. 

Steps to generate a DLL differ between versions of Visual Studio software. General 

steps are the following 

• Create an empty DLL project (file —»• new) 

• Add the C file and required libraries (i.e. Zest.h, extcode.h, ZestSC2.1ib, Setu-

pAPI.lib) to the project 

• In the project settings (right click on project's name, and select settings) change if 

necessary the following configuration properties: 

o C/C++ —> Code generation —> Struct member alignment control = 1 Byte 

o C/C++ —> Code generation —> Run-time library = Multithreaded Debug DLL 
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- Build the DLL. 

The DLL file has to be copied in the same folder as the Labview project. When using 

DLL calls in Labview, Visual Studio must be also installed on the computer. 

3.4. Built applications 

The software tools just presented were used to develop utilities which use the FPGA as 

well as other resources in the ZestSC2 card. These applications are focused on improving 

the performance of quantum communication and quantum computing experiments. To 

be completely useful, they need either a system to receive signals from measurement 

devices (chapter 2) or a medium to drive electro-optical modulators (chapter 4). 

3.4.1. Event frequency measurement 

A commonly requested task in quantum experiments is to count. How many photons 

are generated by a light source? How many of them take a certain interferometer path? 

Have a \H) polarization state? A 4= (\s) + \l)) time-bin state? Are entangled? Are lost? 

Due to detector's efficiencies r\ < 1 and other limitations, these questions have no direct 

answers. However, if the experiments are repeated, statistics give a good picture of the 

behaviour of a particular system. 

A more useful statistic than a rough counting of events is the event frequency. A live 

update of this statistic helps to make alignments in an efficient way. The typical mea

surement unit used in photon based experiments is counts per second. 
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Figure 3.3 RTL of main block for event frequency measurement. Produced with Xilinx 
ISE. Inputs: clock, reset, lbit signal. Outputs: integer number of counts, valid data flag. 

3.4.1.1. Solution's principle 

With the FPGA, it is possible to have blocks counting the rising edges of a signal. Let 

us use two counters, CCLK and Cins, both with reset and enable options. The value CCLK 

counts clock cycles that occur since the start of the routine while C\ns keeps count of the 

measured signal rising edges. The clock period TCLK determines the number of system 

cycles that are required to reach one second. The idea is to use the first one as an enable 

of the second one, in such a way that Ci„s works while CCLK < TCLK-

The system saves the Cins value when CCLK = ^CLK- The system then enters in a standby 

state. Once the registered value is read by the host computer, the reset signal is activated 

clearing the counters' value and enabling them. The RTL of the developed VHDL code 

is illustrated in figure 3.3. 

The counter value is saved in 4 bytes (32 bits). The computer reads a byte at a time, so 
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Figure 3.4 Lab VIEW block diagram for event frequency measurement routine. 

four reading instructions have to be performed. When the fourth one happens, then the 

system proceeds to the reset state. The computer takes the four values and regenerates 

the 32bit word containing the counts per second measured integer value. 

A Lab View interface was developed to provide a tool with which provides live re

sults. The particular code was made to measure an event frequency on port 10(2) from 

FPGA, with TCLK = l/48MHz. The Lab View routine (figure 3.4) first calls the function 

l o a d t c o u n t e r , which loads the bit-stream file in the FPGA. A loop is then activated 

periodically each t = 1.02 s, where the function r e a d c o u n t s is called. This function 

reads the four bytes and returns the measured event frequency. The execution time is 

set to t > 1 s to permit the FPGA to measure data (t = 1 s) and allow the computer to 

read the four FPGA internal registers. Asking for a result at exactly t — 1 s exposes the 

system to have no measurement available in memory for a read event. 
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Figure 3.5 Lab VIEW front panel for event frequency measurement routine. 

3.4.2. Coincidence detection 

One of the most useful and critical tasks in quantum information experiments is the de

tection of simultaneous events. When entanglement (section 1.1.1) has to be verified, 

measurements in particular basis for each qubit contained in the quantum state are ap

plied. Take the following example: suppose that an optical source creates one of the fol

lowing two photon entangled states in polarization encoding |$+ ) = -j^(\HH) + \VV)) 

or |<&~) = -k=(\HH) — \VV)). It is wanted to distinguish between them. 

Measurements of each photon is performed with polarization beam splitter (PBS), where 

horizontal polarized light goes through, and vertical polarized light gets reflected with 

a 90° angle. Since both photons are entangled in such a way that they always have the 

same polarization (\H) or | V)) the photons will go to the same detector in the setup of 

figure 3.6(a). Both photons will be transmited or both will be reflected. 

If a Hadamard transformation is applied to each photon prior to the PBS, the states |<&+) 

and |$~) become immediately distinguishable. For the state | $ + ) , applying H to each 
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Figure 3.6 Experimental setup to distinguish between |<3>+) and |<E> }. 
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photon gives 

# i ® # 2 | $ + > = ^ 1 ® ^ 2 4 = ( I ^ 1 ^ 2 > + |^1^2» (3-3) 
A/2 

= -L(\H1 + V1)\H2 + V2) + \H1-V1)\H2-V2}) (3.4) 

= -^r(\HlH2 + HlV2 + VlH2 + V1V2+ 

+H1H2 - EXV2 - VXE2 + VXV2)) (3.5) 

= ±=(\HlH2 + VlV2)) (3.6) 

= |$+> (3-7) 

In other words, |$+) remains unchanged with a H ® H operation. Now, for the |$ } 

state 

H^H^-) = H^H^dH^-lVM}) (3.8) 
v 2 

= ^ ( | # l + ^l)|#2 + ^ ) - | t f l - ^ l > l # 2 - ^ 2 > ) (3.9) 

= 4= (\HiH2 + HlV2 + V1H2 + V1V2+ 
V8 

-H1H2 + H1V2 + VlH2-V1V2)) (3.10) 

= - L f l t f ^ + V ^ ) ) (3.11) 

= l*+) (3-12) 

This quantum state has been changed. When the state |\I/+) passes through the PBS, one 

photon is transmited while the other one is reflected. Which one goes where is irrelevant. 

In any case, both detectors click at the same time (assuming perfect efficiency). 

As a conclusion, by implementing the experiment shown in figures 3.6(b) and 3.6(c) the 

entangled states |<&+) and |$ _ ) are easily distinguishable. If no coincidence occurs the 

produced state is |<£+); if both detectors click simultaneously the state is \&~). 
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In practice, the definition of a coincidence must be refined. In theory a coincidence 

happens when both detectors click within a time interval At < rCOh, where rCOh is the 

coherence time of the source. For our case this time ranges between 1 ps < rCOh < 

1 ns, corresponding to the coherence times of a Ti:sapphire laser and a Nd:Yag laser. 

In practice, coincidence is defined as events within a finite time difference At. Jitter 

from detectors and other electronic systems used (i.e. FPGA and conversion circuit) 

are typically the most significant determining factor for setting At. Possible experiment 

misalignments have also to be taken into account, since a non-zero optical path length 

difference will also increase At. 

3.4.2.1. Asynchronous solution's principle 

The objective is to make a system capable of determining when two events seem to be 

in a coincidence. A photon detector first produces a rising edge when it clicks. The 

electrical pulse duration in a high state is correlated to detector's physical properties 

rather than the photon's arrival time. Let's say, for photon detectors A and B, that their 

output signals are DA and DB respectively. Define the time when DA (respectively on 

DB) shows a rising edge as tr-A (respectively on tr_B). 

The desired system sends a rising edge if |tr_£ — U-A\ < twait, where twajt is the maxi

mum waiting time between a click in detector A (respectively on B), and in detector B 

(respectively on A). The solution architecture is based on the block shown in figure 3.7. 

The detector signals DA and DB drive the clock signals of a couple of D-type flip-flops 

with reset signals. 

When DA presents a rising edge, its corresponding flip-flop saves a 1. It is erased after 

the time given by the feedback delay. Therefore, this generates a short pulse after a click 

is received. The same process occurs with signal DB. 
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Figure 3.7 Architecture for asynchronous coincidence detection. 

If these two pulses happen at the same time, or one starts with respect to the other in a 

time under the delay time, the AND-gate at the end of the architecture creates a pulse 

per detected coincidence. 

3.4.2.2. Synchronous solution's principle 

Here an alternative solution is presented. The advantage of a synchronous solution is the 

independence of adjusting delays within the architecture block; the disadvantage is its 

dependence on the system's clock. 

As in the asynchronous solution, the system sends a rising edge if \tr-B — U-A\ < ŵait-

However, these three times (tr^B, U-A and £wajt) are going to be rounded to the next 

clock rising edge; therefore the system is synchronous. 

The logic works as follows: for a 200 MHz clock (provided by a DCM), each 5 ns the 

system reads the state on inputs DA and DB and compares it with its pervious value (5 ns 

ago). Let us start with the state where both have not a detection; DA = DB = 0. If DA 

(or DB) changes to 1, a timer turner starts running. This timer runs while £tjmer — ŵait> 
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Table 3.3 Behaviour of coincidence detection with synchronous approach. States are 
represented by the logic levels of each detector (00 means both detectors show low lev
els). 

Previous state 
00 
01 
10 
00 
00 

XX 

New state 
11 
11 
11 
01 
10 
00 

Condition on timer Result 
no condition coincidence 
if *timer < ŵait coincidence 
if t̂imer < *wait coincidence 

activate timer 
activate timer 

no condition reset system 

out 

Figure 3.8 Architecture block for synchronous coincidence detection. 

giving a chance to DB (or DA) to change to 1. If both detector signals become 1 before 

their timer runs out, a coincidence is counted. 

If the signals change from both being 0 to both being 1 within a clock period, the system 

immediately recognizes this situation as a coincidence. This means that the timing reso

lution for coincidence counting is given by the system's clock. Note that this procedure 

starts only from both detectors being in 0, and that it works independently of which of 

the detectors clicks first. 

The inputs for this architecture block are a reset, a clock, the two inputs from the detec

tors and the value of twait, which corresponds to TCLK X 'time limit' in figure 3.8. 
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3.4.3. Time stamping 

To collect statistics from photon arrivals, coincidences and waiting times it is useful to 

know not only which event happens, but when it does happen. Since the FPGA has a 

clock, a chronometer can be set. Each time that an event occurs in a signal (rising edge 

or falling edge), the change and the moment when it happened can be recorded. 

There are two main limitations for a time stamping utility. The first is the time resolution: 

if the FPGA clock is too slow, it may miss pulses shorter than the period of the clock 

TCLK • For example, the sync out signal from the Mira 900 Laser of 76 MHz cannot 

be time stamped with the default Spartan-3 /cue = 48 MHz included in the ZestSC2 

card. The second is memory: saving for a long time may overflow the memory capacity. 

Also when the recorded elapsed time increases, its value in clock ticks requires a higher 

amount of bits in memory. 

To obtain a better performance in terms of recording speed, a DCM (Digital Clock Man

ager) from the FPGA is used. This results in a system operating with two clocks at the 

same time, since the original frequency /CLK = 48 MHz has to be employed for the 

already configured communication with the host computer. 

The DCM is synthesized with the Architecture Wizard tool from Xilinx, which creates 

a VHDL code that can be inserted in the project. The maximum frequency that can be 

obtained is /CLKFX = 208 MHz, which corresponds to equation (3.2) with /CLKIN = 

48 MHz, M = 13 and D = 3. However tests were made with a synthesized frequency 

/CLKFX = 200 MHz (M = 25 and D = 6). 

To interconnect the systems that save or transmit data at different rates, a dual clock FIFO 

was used. This is a FIFO where writing operations work at a different rate from reading 

operations. In this particular case the writing clock frequency exceeds the reading one 
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/write > /read- Care has to be taken since the dual clock FIFO may get overflowed. Flag 

treatment can help to detect this situation and avoid misinterpretations of information 

when an overflow happens. The dual clock FIFO is synthesized with the help of the 

CORE Generator tool from Xilinx, more precisely the FIFO Generator. Independent 

clocks option is selected. Full, empty and valid flags are activated. 

To reconstruct all the signal information in small packages of information, each time that 

a rising or falling edge occurs in a tracked signal, the whole status of the tracked signals 

is saved in conjunction with the corresponding time stamp. To avoid large time stamps 

(in terms of bits) whenever the timer overflows, the status of the tracked signals with the 

time stamp is also saved. In the case of a 6-bits time stamp ts, once ts = 2b — 1 the 

status of the n tracked signals s[0. . . n] is saved. This prevents having long bit chains 

for timing information. In the other hand, if the bit chain is made too small the FIFO 

may rapidly overflow. 

The read data from the dual clock FIFO is then saved in the FPGA's main FIFO. The 

host computer reads this from the FPGA using the C function ZestSC2ReadData. 

Memory has to be previously allocated to receive the output of this function. The trans

ferred data from the FPGA to the computer via streaming is then saved in a plain text 

file. The C code also reconstructs the actual time value in FPGA ticks; this means that 

each time the 6-bits time stamp information ists = 1 1 . . . 11 = 26 — 1, a local variable 

myclock increases by 26. For any event registered, the time saved in the plain text file 

is then myclock + ts, corresponding to the time elapsed since the start of the routine 

measured in FPGA ticks. 

It is good to remember that the time resolution of the system shifts or even erases timing 

information. Also all amplitude information is lost; this is intended for digital signal 

recording. 
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3.4.4. Pseudo-random number generator 

In quantum communication protocols, random number generators (RNGs) are frequently 

required, as explained in section 1.2. Physical ways to generate random numbers such 

as flipping a coin or throwing a dice exist. It would be interesting if an electronic system 

like an FPGA could make a RNG. This would allow us to have all what is necessary to 

control a quantum communication protocol that requires random numbers in one inde

pendent system. 

Electronic systems are generally incapable of producing a RNG, since their numbers 

are generated from an algorithm that can be repeated, and therefore the output numbers 

are predictable if the algorithm is known. What electronic systems implement is known 

as pseudo-random number generator (PRNG). One particular kind of PRNG is a linear 

feedback shift register (LFSR). It is widely used because it requires few computational 

resources. 

An LFSR is a sequence of n-bit registers that are shifted in a synchronous way. To 

put it in mathematical terms, lets say that the ith bit is given by the polynomial xl~l 

multiplied by its value (0 or 1); so the first bit corresponds to the polynomial order 

x° = 1, the second to a;1 = x, the third to x2 and so on. A shift corresponds to multiply 

the polynomial by x. For example if A — 0011010 = a6a5 . . . a0 is the 7-bit number to 

be shifted, its polynomial is 

A — a6 • x
6 + a5 • x5 + a4 • x4 + a3 • x

3 + a2 • x2 + ai • x + a0 • 1 (3.13) 

A = 0-x6 + 0-x 5 + l - x 4 + l - x 3 + 0-x2 + l - x + 0 - l (3.14) 

A = x4 + xs + x (3.15) 

Proceeding to the shift operation, forgetting that the most significant bit (first digit) goes 
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Figure 3.9 LFSR Galois general scheme. Each buffer allows the signal pass by when 
<7i = 1, and therefore apply the corresponding xor-gate. 

back in the chain to become the least significant bit (last digit), the new polynomial xA 

is 

xA = x5 + x4 + x2 (3.16) 

which corresponds to xA = 0110100. The principle of an LFSR is to modify at least 

one of the shifted bits replacing it (or them) by the result of an exclusive-or ('xor', 

represented by ©) operation between two established bits. There are two types of LFSR: 

Fibonacci and Galois. Here the LFSR Galois is described and implemented. 

Some bits are chosen to be potentially changed when a shift occurs. These chosen bits are 

changed if they are equal to the most significant bit (MSB), the one that is becoming the 

least significant one (LSB) after shifting. If they are different, they remain unchanged. 

This is nothing but a 2-input xor between each of them and the returning bit. This can 

be seen in figure 3.9. Each coefficient <& indicates if the xor for the ith-bit is applied or 

not with the w-bit. Notice that g0 = 1 and gn = 1 always. 

The characteristic polynomial of an LFSR is given by 

G(x) = gnx
n + gn-\x

n l + . . . + gxx + #o (3.17) 

For example, the characteristic polynomial of the LFSR shown in figure 3.10 is G(x) = 

xz + x + 1, since the #2 = 0 cable is the only one deactivated. There exists another way 
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Figure 3.10 LFSR Galois example with characteristic polyomial G(x) = x3 + x + 1. 

to represent a characteristic polynomial in a more compact way, called the feedback taps. 

It corresponds to the list of activated indexes gt = 1, in decreasing order. The first index 

indicates the length of the LFSR n, being always gn = 1. The i = 0 case is omitted 

since by definition go = 1. Continuing with the example of figure 3.10, its feedback tap 

representation is [3, l]g, where the g subindex indicates that the LFSR is a Galois type. 

An LFSR is then a cyclic series of bits that appear to be random. It is cyclic since any 

value is followed by a single possible value, and the number of values that can be made 

with a n-bit string is 2n. Notice however that there is one value that doesn't work for an 

LFSR for producing pseudo-random numbers: zero. If a sequence of only zeroes starts 

the sequence, this value remains, since 0 © 0 = 0. 

In this order of ideas, the best that an LFSR can do is a periodic sequence of numbers 

with period 2n — 1. A sequence that has this particular period is called a maximum 

sequence or m-sequence. They represent the closest result to a RNG. When one of the 

word's bit is taken as the output of the system bout, it doesn't represent a random series 

since the probabilities of obtaining 60ut = 0 or 60Ut = 1 are not equal. 

1 / 2 n \ 
P(&out = 0) = ^ 3 T ( T - l J (3-18) 

1 / 2 n \ 
F ( 6 - = l ) = ^ ( - j ) (3.W) 

Notice that increasing n, makes both probabilities closer to \. Maximal and near-
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maximal LFSRs can be theoretically determined [Clark and Weng, 1994]. 

For this project a [16,13,12,7]g was implemented. In general, an LFSR Galois with four 

taps [A, B, C, D]g, can be implemented by the following VHDL instruction 

l f s r <= l f s r ( A - 2 downto B) & ( l f s r ( A - l ) x o r l f s r ( B - l ) ) 

& l f s r ( B - 2 downto C) & ( l f s r ( A - l ) x o r l f s r ( C - l ) ) 

& l f s r ( C - 2 downto D) & ( l f s r ( A - l ) x o r l f s r ( D - l ) ) 

& l f s r ( D - 2 downto 0) & ( l f s r ( A - l ) x o r l f s r ( 0 ) ) ; 

In the case that A = B +1, B = C+1 or C = D + 1, the corresponding downto se

quence must be eliminated. Therefore, for [16,13,12, 7]g the sequence "& I f s r o u t (B-2 

downto C) " has to be removed, since B = 13 and C — 12. 

3.4.5. Periodic signal generator 

In time-bin encoding system for quantum communication and computing it is useful 

to have periodic digital signals at precise frequencies. These signals are used to drive 

amplitude and phase modulators within a time-bin based set-up. 

The frequency of the signals corresponds to the one given by interferometers used in the 

experiment. Usually the interferometers are in fact designed to work at a given frequency 

imposed by the control system. They may be used in state preparation stages as well as 

measurement stages. 

It is desirable that the electronic system generates these periodic signals by itself. In this 

project, the FPGA was used to generate 45 MHz and 90 MHz periodic signals that were 

required for a particular custom-made interferometer. 
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Table 3.4 Encoded output value for periodic signal generator application. 
Code value 

0x00 
0x01 
0x02 
0x03 
0x04 

Signal 
logic '0 ' (GND) 
logic'l'(VCCO) 
45 MHz clock signal 
90 MHz clock signal 
45 MHz clock signal with a 180° phase 

The periodic signals were synthesized with a DCM from the FPGA. A program was 

made routing the DCM produced signals and making them available in 5 pins of the 102 

port of the FPGA. The VHDL code description multiplexes one of five possible values 

for a pin: 0 , 1, a 45 MHz periodic signal with zero phase or 180° phase, or a 90 MHz 

periodic signal. 

To drive them from the computer, in VHDL the selection of the output values 102 [4. . . 0] 

each depended on a registered value at the addresses 0x200A + i, where 0 < i < 

4 indicates the 102 corresponding port. So, the computer host program writes in the 

desired position the wanted encoded output value, as shown in table 3.4. 

A user interface in Lab View was developed. It calls a load function ( loadclocksGB) 

to configure the FPGA at the beginning of the routine, and it calls the write instruction 

wr i t e r eg when a change in the roll-down menus value occur, at the front panel (shown 

in figure 3.12). Each chosen value calls the same function but sends different parameters. 

The particular case of a change in 104 is illustrated in figure 3.11, where the address 

variable value is OxOA + 4 = 14, since the C code adds to this value 0x2000, obtaining 

the address 0x200£'. The encoded value sent to the function comes from the drop-down 

selection. 

The needed output to drive the phase modulator is 5 V amplitude. The ZestSC2 card is 

not capable of generating this kind of signal. The maximum output amplitude produced 
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by the FPGA is 3.3 V ideally, but since the current output of the FPGA is restricted, the 

actual value achieved with a single output port was about 1.8 V. This is due to the load 

of the electro-optical modulators is 50 fl 

A temporary solution is to apply the same signal in several output ports, and putting 

them in parallel to drive as much current as possible from the ZestSC2 card. Amplitudes 

of 2.9 V were thus obtained. Nevertheless the shape of the periodic signal becomes 

distorted when adding the signals in this way. This happens because the signals do not 

arrive at the same moment to their intersection point. This method is not suggested. The 

right way to obtain periodic signals with higher amplitudes is addressed in chapter 4, 

where a circuit is designed for this purpose. 

3.5. Chapter summary 

The properties and operation of the used FPGA and the card that contains it are intro

duced. Several applications were developed. These applications respond to particular 

necessities of quantum information experiments. 

Event frequency measurement (section 3.4.1), coincidence detection (section 3.4.2) and 

time stamping (section 3.4.3) applications acquire data from external devices. This ac

quisition can be done from different types of analog signals, converted to digital signals 

by the input circuit described in chapter 2. 

Pseudo-random number generator routine (section 3.4.4), as the periodic signal genera

tor one (section 3.4.5) are intended to give an output signal, which can be used to drive 

electro-optical modulators. These signals however require extra treatment in order to 

drive modulators; this is the subject of chapter 4. 
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CHAPTER 4 

OUTPUTS AND CONTROL 

In previous chapters, the processes of photon detection, reception and processing have 

been covered. The generation of data and output signals that drive outer electronic sys

tems for control issues is the last link in the chain. Some output characteristics have been 

already presented in section 3.4. 

Among the problems to solve at the output stage is the compatibility of signals, a situa

tion analogous to the one present at the inputs of the card. Output signals serve several 

purposes, and each of them may require a particular signal treatment. For this project, 

it is of particular interest to drive electro-optic modulators, as explained in section 4.1. 

Among them, amplitude and phase modulators are of interest. Their working principle 

is presented. To drive them an amplification system is proposed in section 4.2. To drive 

them, a custom circuit was designed and fabricated, which is presented in section 4.3. 

4.1. Electro-optic modulators 

Variation of refractive index can be induced in some special crystals by applying an 

electric field. This electro-optic phenomenon is known as the Pockels effect when the 

dependence of the refractive index is linear with the electric field and Kerr effect when 

it is quadratic. For modulation purposes, a linear dependence is more practical, and 

therefore the Pockels effect is preferred. For this case the refractive index goes as 

n0
3rE 

n(E)^n0 — (4.1) 
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Figure 4.1 Phase modulator made with a non-linear crystal inside a capacitor. 

where no = n(0), and r is known as the electro-optic coefficient. Constant values 

typically range from 10~12 to 10~10m/V. A Pockels cell is made of a non-linear crystal 

where metallic parallel plates are placed (see figure 4.1). This forms a capacitor in the 

crystal, which provides a constant electric field in it E = V/d where d is the distance 

between the conductor plates. A variation in the voltage has as consequence a linear 

change in the refractive indices of such a crystal. 

Some of the non-linear crystals that present this effect are: potassium di-deuterium phos

phate (KD*P = DKDP), potassium titanyl phosphate (KTP), beta-barium borate (BBO), 

lithium niobate (LiNb03), lithium tantalate (LiTa03), ammonium dihydrogen phosphate 

NH4H2P04 (ADP) and cadmium telluride CdTe [Saleh and Teich, 1991]. 

4.1.1. Phase modulators 

The first application of the Pockels effect is a phase modulator. When light passes by 

this cell with V applied, the velocity of light inside the crystal is changed, therefore its 

phase is modified. Furthermore, the total accumulated phase in the crystal is 

<P = n(E)—L (4.2) 
^0 
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if light passes by the crystal a length L and its wavelength in free space is A0. Using 

equation (4.1) 

n0
3rEL 

(j) = 0O-7T (4.4) 

cf> = 0o + A0 (4.5) 

There exists a particular voltage for which the additional phase | A0| is n. This voltage 

is known as Vn or half wave voltage. This value is an important specification that is 

usually given by optical phase modulator manufacturers. The electric field required for 

a 7r phase is \0/(n0
3rL), and therefore 

K = - % (4.6) 
riQ6rL 

Most phase modulators are polarization dependent, which means that only a particular 

polarization maximizes the phase shift; this requires incident light to be aligned with a 

preferred transmission axis. Temperature fluctuations also change the refractive index of 

the material and subsequently modify the phase applied at a given voltage. This means 

that T4 depends on temperature. 

The operation frequency of phase modulators can go as high as 40 GHz and Vn values 

can go as low as a few volts. These limit values are achieved with micro-fabricated 

waveguides made of LiNb03 with on-chip electric contacts. In this type of fabrication, 

an electrode impedance of 50f2 is usual. 
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4.1.2. Amplitude modulators 

Phase modulators can be used to make amplitude modulators. The idea is to use a Mach-

Zender interferometer and control the phase applied in one of the interferometer arms. 

By changing this phase, constructive or destructive interference occurs at the output 

junction, producing the amplitude modulation. 

The characteristic voltages in an amplitude modulator are those that determine a con

structive interference where no phase difference exists between arms, and a destructive 

interference where the phase difference between paths is ir. For constructive interfer

ence an amplitude 1 is defined and its voltage is named V\, for destructive interference 

an amplitude 0 is defined and its voltage is named V0. Notice that when using a phase 

modulator for making an amplitude modulator Vn — V\ — V0. 

4.2. Electric signal amplification 

Phase and amplitude modulators are driven with periodic signals. A method for gen

erating these signals with an FPGA was developed and described in section 3.4.5. An 

arbitrary phase modulation 4> is obtained with a voltage V<j, = (pV^/rc. The obtention of 

the required voltage typically requires amplification of the FPGA output signal. 

An operational amplifier seems a logical solution. This is not the case, however, because 

operational amplifiers don't offer a sufficiently good frequency. Currently, what are 

known as "very high speed operational amplifiers" have "reasonable performance up to 

50 MHz" [LT1226, 1992, p.6]. A correct solution for this case, in the hundredths of 

MHz regime, is to use transistors as switches. 

In quantum communication protocols implemented over time-bin encoding, discrete pre-
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Figure 4.2 Phase modulator driver circuit scheme, with n possible phase values. 

determined values of phase modulation are used. To prepare states or to make change in 

between the |0), |1) and 4=|0 + 1), 4g|0 — l) basis, typical phase values required are 

7r/4 multiples (0°, 45°, 90°, 270°,...). For some protocols other values may be wanted, 

as in [Berlin et al., 2008a] where a phase of 36° is also required. In the case of amplitude 

modulators, they are used as optical switches, either blocking or transmitting photons. 

Therefore VQ and V\ are the only values of interest. 

The chosen scheme to obtain several drive levels is presented in figure 4.2. When the 

gate source voltage VGS of the transistor passes its threshold level (VQS > KhX a drain 

current i0 flows. This current provides a voltage in the connector of Vout — 50 Q • in, 

since the phase (amplitude) modulator input has 50 Q impedance. The system is operated 

in such a way that only one transistor is 'on' per SMA output connector. 

The ^D current for a single conducting transistor is 

ID = 
Vcc - Vi EE 

mn + 30£l + Rj + RDL 
(4.7) 
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where Rj is the resistance placed as load in the jth transistor, RDL is the inner resistance 

of the transistor from drain to load and the 50 0 corresponds to the impedance of the 

phase (amplitude) modulator. The VEE choice is given by the threshold voltage V& and 

the FPGA's output voltage when a logic ' 1' occurs (let's say VFPGA = 1-8 V), 

^FPGA " Vm > Vth (4.8) 

Since the possible values are determined by the resistances Ri, the phase shift values 

(or the amplitude modulation values) are fix. The range of voltages is discrete, with n 

choices. 

4.3. The output circuit 

Most of the general characteristics of the designed PCB for controlling the electro-optic 

modulators are the same to those of the input's PCB, from section 2.3. Modeling is 

performed in Eagle 5.2.0. It is designed to interface with the ZestSC2 card presented in 

chapter 3. 

The transistor selected to this application is an RF power transistor PD57002-E from 

STMicroelectronics. It is designed to work at frequencies up to 1 GHz. Its maximum 

VDS is 65 V, where its typical operation is at 28 V. Its maximum drain current iD is 

0.25 A. Its threshold voltage Vth = 3.0 V. 
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4.3.1. PCB schematic 

The supply voltages of the designed PCB are Vcc = 10 V and VEE = — 2 V. When a 

logic '0 ' come in the gate pin of the transistor (VQ = 0 V), the transistor is off since 

Vbs = 0 - ( -2 V) = 2 V < 3 V - V± (4.9) 

For the logic ' 1 ' case, VG — 1.8 V (depending on configuration of ZestSC2 card could 

be 1.8 V, 2.5 V or 3.3 V) the transistor is on 

Vbs = 1 . 8 V - ( - 2 V ) = 3 . 8 V > 3 V = Kh (4.10) 

Supply voltages Vcc, GND and VEE are provided via the connector Jl . The inputs for 

this circuit are provided by a 32x2 pin header connector fitting directly in the J9 or J10 

FPGA header of the ZestSC2 card. The outputs of the circuit are SMA connectors for 

connection with the phase (amplitude) modulators over high frequency coaxial cables. 

In order to obtain the desired precision of each resistance value a pair of parallel resistors 

are placed where one value is just above the desired one and the second value can be 2 

or 3 orders of magnitude higher, instead of a single resistor. This is necessary because 

actual resistor values differ from the advertised value. High precision resistors may help, 

but still do not provide the required precision. For example, instead of looking for a 30 0 

resistance, is preferable to use 30.9 O||1.02 kQ « 30.0 tt. Values of Ri to obtain some 

phase modulations ip of interest are shown in table 4.1. 

For the case where the only two resistance connected to the drain of a transistor are 30 Q 
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Table 4.1 Resistance values to obtain some phase modulation values using the scheme 
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and the modulator's 50 fi, the drain's current for a 12 V supply (Vcc — ^EE = 12 V) is 

^cc ~ ^EE 12V 
ZD = 50Q + 30fi = 8 b l 7 = a i 5 A ( 4 - U ) 

which is less than the transistor maximum of 0.25 A. Notice that selecting a higher 

(Vcc — ^EE) voltage could draw a higher drain current and damage a transistor. 

Each resistor consumes power P = IV for each resistor. Taking the worst case scenar

ios, it can be determined that the required power ratings for the resistors are: 1 W for the 

30 Vt resistors, 0.5 W for the low valued resistors in each couple of resistors and 0.25 W 

for the high valued ones. 

As in the input circuit PCB (section 2.3.1), a 1000 //F| |10 /JF bypass capacitor is placed 

next to each supply voltage. No extra capacitors are required to drive signals. 

The PCB is designed to drive two phase modulators and two amplitude modulators. 

Each phase modulator connector has 6 possible values, and the amplitude modulator 

connector only a single possible value. In table 4.2 is the whole list of required elements 

for this PCB. 

4.3.2. PCB layout 

The layout of the PCB required to model the PowerSO-lORF package of the PD57002-E 

transistor. The specifications are given in an application note of the component producer 

[AN 1294, 2001]. This model requires via holes for proper power dissipation which are 

connected to the lower voltage layer, i.e. VEE-

As in the input circuit PCB, a 4 layer model was used, where the top and bottom layers 

are for routing purposes. The second layer is dedicated to GND and the third layer in 
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Table 4.2 Components in the output circuit PCB. 
Device Quantity 
Connectors 

SMA PCB horizontal connector 
Connector header vertical, 3 positions. O.lOOin 
Pin header 32x2. O.lOOin 

Integrated circuits 
PD57002-E transistor 

Resistors and capacitances 
10 /iF tantalum capacitance SMD 1206 
1000 \xF electrolitic capacitance 
30.9 n resistance, 1 W SMD 2512 
1.02 kfi resistance, 1/4 W SMD 1206 
Low valued resistances, 1/2 W SMD 2010 
High valued resistances, 1/4 W SMD 1206 

this case corresponds to VEE-

Routing was manually made for all the signals coming from the FPGA all the way to 

the SMA connectors, passing through the transistors and resistances. Manual routing is 

done to ensure signals arriving at the same point passing by routes of the same length; 

failing to do so may generate overlapping in high frequency digital signals (MHz) and 

therefore an incorrect output value. 

Since phase and amplitude modulators have a 50 O impedance input, all the routing 

was designed to have the same 50 f2 impedance. The width of the microstrip traces is 

W = 9.234 mil(0.2345 mm), since the dimensions and characteristics are the same as in 

the input circuit case (section 2.3.2). The VEE paths have W = 50 mil and other regular 

paths have W = 10 mil. 

4 
1 
1 

14 

2 
2 
4 
4 

2 each 
2 each 

The connections layout for this circuit is given in the appendix 1.2. 
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4.4. Chapter summary 

Electro-optical phase and amplitude modulators are driven by periodic signals with am

plitudes that determine the amount of modulation applied. Since an FPGA offers only 

two levels of amplitude as output, corresponding to logic 1 and 0, a circuit for driving 

these modulators using signals from an FPGA was proposed. 

The designed circuit, intended to work with the ZestSC2 card (section 3.2), has four 

outputs: two of them are capable of applying 6 different voltage values (per channel) 

and the other two have only one possible voltage value. They are intended to drive phase 

modulators, where phase changes are frequent, and amplitude modulators, where they 

are typically used as an optical switch. 

This circuit can be placed in two ports of the ZestSC2 card, offering the possibility to 

drive up to eight electro-optical modulators: four phase and four amplitude modulators. 
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CHAPTER 5 

RESULTS AND ANALYSIS 

5.1. Input circuit 

The circuit designed for electric signal standardization, described in section 2.2 was 

tested. Input signals were generated by using a digital delay/pulse generator (model 

DG535 from Stanford research systems). Supply voltage for the PCB is set at Vcc — 

3.3 V. 

For a 1 V amplitude signal used as input, and a duty cycle about 40%, the results are 

shown in figure 5.1(a). Here Vp = VTef (shunting them) are externally set at Vcc 12 — 

1.65V. The signals Q and /Q correspond to the positive and negative output pin, mea

sured with respect to the common ground plane, and with 50O impedance at the oscil

loscope. The resulting differential signal Q — jQ is also depicted. Notice that the DC 

level of this signal is almost zero, since its high and low levels are ±800 mV. 

The input signal is then reduced to 0.1 V. The result is shown in figure 5.1(b). The 

Micrel component stills recognize this weak amplitude signal. 

Then the duty cycle is modified. A situation of reduced duty cycle (4%) is tested. 

The case where VT = Vref is in figure 5.2(a). The high and low levels are not any 

more ±800 mV. In fact, the high level remains 800 mV, but the low level increases to 

-100 mV. 

A similar situation is presented when testing a high duty cycle case (96%), as shown in 

figure 5.3(a), where the roles of high and low output levels are inversed; 100 mV for 
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Figure 5.1 Test results of designed input circuit, with 40% duty cycle input. VT = Vref 
Vcc/2. 
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Figure 5.3 Test results of designed input circuit, with 96% duty cycle 100 mV amplitude 
input. 

high level, and —800 mV for low level. 

These situations have to be corrected in order to be read by the FPGA correctly. This is 

adjusted by modifying the VT value, letting VKf = 1.65V. In the 4% duty cycle case, VT 

is increased slightly to 1.70 V. Result is shown in figure 5.2(b). For the 96% duty cycle 

case, VT is reduced slightly to 1.64 V, to obtain the results in figure 5.3(b). Corrected 

±800 mV differential signals are obtained. 

5.1.1. Analysis 

When using the input circuit for signals with a duty cycle close to 50%, it can be operated 

by shunting VT and Vref at a Vcc/2 level. This offers a good differential signal as an 

output, which can be read by the FPGA. 

For narrow or wide pulses the optimal operation parameters are setting VTef = Vcc/2 
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Table 5.1 Event frequency measurement application tests. A variable frequency TTL 
signal generator is used as source. 
Real frequency (Hz) 
Measured events (cps) 

Real frequency (Hz) 

Measured events (cps) 

Real frequency (Hz) 

Measured events (cps) 

700000 

699986 

460000 
459991 

220000 

219996 

660000 
659987 

420000 
419992 

180000 

179996 

620000 

619988 

380000 
379992 

140000 

139997 

580000 
579988 

340000 
339993 

100000 

99998 

540000 

539989 

300000 
299994 

60000 
59999 

500000 

499990 

260000 
259995 

20000 

20000 

and increasing (or decreasing) VT slightly. 

Since the circuit was successfully tested with 0.1 V amplitude signals, it will work with 

no problem with weak signals from photon detectors and laser sync out signals (section 

2.2). 

5.2. Event frequency measurement 

This section describes test results for the application introduced in section 3.4.1. TTL 

signals of amplitude 1.8 V and different frequencies were generated by using a digital 

delay/pulse generator (model DG535 from Stanford Research Systems). It can create 

signals with frequencies as high as 1 MHz. This signal was connected to port IO2(0) in 

the FPGA. 

Measurements for frequencies between 20 kHz and 700 kHz were taken. Results are 

shown in table 5.1. 

5.2.1. Analysis 

In every case the percent error is under 0.0025%. The relative error is presented in figure 

5.4. This error can even be attributed to the signal generator itself, since the absolute 
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Error from tests of event 
x IQ~5 frequency measurement routine 
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Figure 5.4 Absolute error obtained on event frequency measurement application tests. 
For low frequencies, error is 0. For high frequencies the error oscillates around a limit, 
about 2 x 10~5 = 0.002%. 

error shows regions where it increases, followed by a sudden decrease, instead of a 

monotonous increase with the signal frequency. For low frequencies / < 20 kHz the 

error is zero. 

In conclusion, we have an accurate count per second value as output of the designed 

system with the FPGA. 

5.3. Coincidence detection 

This application described in section 3.4.2 was tested using a digital delay/pulse genera

tor (model DG535 from Stanford research systems), which is capable of generating two 

signals in two different channels A and B, where the signal in B is delayed a control

lable finite time with respect to the signal in A. The finest resolution of this delay is 5 ps. 

Signals of 500 kHz are used for these tests. 



79 

Identical cables were used to connect the signals A and B from the delay generator to 

the FPGA input ports IO2(0) and 102(1) respectively. A Lab View interface (figure 5.5) 

is made, allowing to check coincidences between channels A and B as well as the counts 

per second in each channel (event frequency measurement routine). 

The interface was tested in a quantum optical experiment, where correlated photons at 

two different wavelengths are produced by a non linear crystal. If the optical line is 

well aligned, coincidences should be detected at the end of the line. Therefore, this 

application serve to align the optical set-up, by checking for coincidences and counts 

per second per channel. 

5.3.1. Synchronous solution 

The synchronous approach was implemented with TCLK = 5 ns, and a waiting time 

twait = 2TCLK = 10 ns. 

The expected result is to have a coincidence when signals A and B differ by less than 

10 ns. When the signals differ by 15 ns or more, the system should not count this 

events as coincidences. In the time window 10 ns < t < 15 ns the system counts it 

as coincidence with a certain probability. This happens since event's arrivals between 

fn • TCLK and (m + 1) • TCLK cannot be distinguished, where ra e N (see figure 5.6). 

Changing the delay from 0 ns to 20 ns, and taking several measures per delay, the result 

shown in figure 5.7 is obtained. The coincidences are normalized, dividing the coinci

dences per second by the counts per second of the channels (always the same for both 

channels). 
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the same TCLK- In this example A and B are equal for the system, since it reads them 
each clock's rising edge. 
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Figure 5.7 Coincidence detection results. By changing the delay between two 500 kHz 
TTL signals, normalized coincident events are here shown. Synchronous approach: 
for tdeiay < 2T events count as coincidences; for ideiay > 3T, events count as 
non-coincidences, T being the system's clock period. Asynchronous approach: for 
d̂eiay < 1-25 ns, events count as coincidences; for t^\ay > 1.5 ns, events count as non-

coincidences. 
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5.3.2. Asynchoronous solution 

Tests of coincidence detection with the asynchronous approach were made as well. The 

expected result is to have coincidences for signals with almost no delay between them, 

since the permitted delay corresponds to the execution time of two consecutive NOT-

gates. In contrast to the synchronous solution, a fast transition zone is expected in terms 

of delay. 

A sweep of delay times from 0 ns to 2 ns is done. The results are in figure 5.7. Signals 

with less than a 1.35 ns delay are considered as coincidences; when the delay is greater, 

signals are seen as non coincident. A transition happens between 1.25 and 1.5 ns. 

5.3.3. Analysis 

The overall behaviour is the expected one: for a reduced time delay, all the events are 

counted as coincidences; for a high time delay, no coincidences are detected; for a spe

cific delay window, the probability of taking events as coincidences ranges between 0 

and 1. The moments where these three behaviours should occur for the synchoronous 

approach are at 2TCLK and 3TCLK- The results (figure 5.7) show that this does not happen 

at 10 ns and 15 ns as expected; however is not far from those values. If the times are 

marked for a clock frequency /CLK = 192 MHz, the window where the probabilistic 

behaviour takes place, fits with the predicted situation. 

For the asynchronous version, the time that the system waits for considering two signals 

as a coincidence is considerably shorter than the fastest synchronous detection system 

(15 times shorter). If high accuracy is required, the asynchronous version is the best 

choice. The asynchronous system presents an unexpected feature: the transition zone. 

Despite of this non-instantaneous change between coincidences and no-coincidences 
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(around 1.35ns, figure 5.7), the transition is much faster than a TCLK-

In order to have a synchronous coincidence detection system with similar characteristics 

as its asynchronous counterpart, it would be necessary to have a clock of 

TCLK = (1.5 - 1.25) ns = 250 ps (5.1) 

or in frequency terms, a / = 4 GHz clock. 

A conclusion from the taken measurements is that the generated frequency of the DCM 

is not exactly 200 MHz. More importantly, both synchronous and asynchronous coinci

dence detection routines reliably distinguish between coincidence and non-coincidence 

events. 

5.4. Time stamping 

An application which records 5 input signals was tested. The description of its working 

principle is presented in section 3.4.3. 

Data was obtained from two silicon detectors (EG&G silicon single photon counting 

modules). They provide a 1.8 V TTL pulse of about 150 yus per click, with a dead time 

of about 250 /is. They saturate at about 1 million counts per second. 

The optical setup consisted of a system that was designed to provide entangled photon 

pairs at 760 nm and 680 nm. These optical signals were optically separated (by a de-

multiplexor) and then measured with the above named silicon detectors. These signals 

were used as inputs in ports 102(2) (channel 2) and 102(3) (channel 3) respectively at 

the FPGA. The counts (obtained using an SR400 two channel gated photon counter from 

Stanford Research Systems) of channel 2 were about 55000 c.p.s. (counts per second), 



84 

0. 

to. 
o 

•5,0. ' 
0.2 

Time stamping result on two silicon 
detector outputs (fragment) 

1 L 
Channel 2 
Channel 3 

211 ticks 
I 

1000 1500 2000 2500 3000 
Ticks on FPGA clock 

3500 

Figure 5.8 Time stamping. Reconstruction of two single photon detectors signals. Data 
is recorded when a change in any of the tracked signals occurs (points). Also each 211 

clock ticks data is recorded, for whole signal reconstruction. The presented fragment 
ocurred at 29 • 211 ticks away from tick zero. Sampling frequency = 48 MHz. 

and for channel 3 about 8800 c.p.s. 

Since the bus of transferred data between the computer and the FPGA is of 16 bit (see 

section 3.2), the bus is composed by the digital binary version of the 5 input pins, and 

the other 11 bits are used for the time stamp. This means that if there is no change at any 

input signal, the FPGA sends data each 211 = 2048 clock cycles. At 48 MHz, 

) i i 

twait — 
48 x 106 Hz 

= 42.66 fis. (5.2) 

A plain text file with this information is obtained. 
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5.4.1. Data processing and analysis 

A sample of the taken data is shown in figure 5.8. This is the reconstruction of a fraction 

of the signal, after processing the data. Each time that a signal (channel 2 or channel 

3) shows a change, the state of the 5 signals is received with its corresponding time (in 

clock ticks). Each 211 ticks, with or without modification of the recorded signals, the 

state is recorded, and the internal FPGA counter starts over. 

The duration of the measured pulses was 7 or 8 ticks; this corresponds to 145.83 and 

166.6 ns. This means that the pulse duration is about 150 ns. 

The pulses per second at both detectors were calculated. At channel 2,46638 pulses were 

detected per second; 15.2% of error compared with the previously counted pulses. At 

channel 3, 5414 pulses were measured; 38.5% of error in this case. In the disconnected 

channels no pulse was registered. 

The missed events are mainly lost information in the recording process. This could be 

noticed since in a file of about 125000 registers, 94 times the data that corresponds to 211 

ticks is missing. This irregularity can be found by verifying how many times the clock 

decreases. Overflowing any memory involved in the process (FPGA, USB interface, 

computer) can cause this situation. 

A 100 kHz signal from a delay/pulse generator was used to test the time stamping ap

plication once again. 99957 pulses per second were obtained; 0.043% error is present. 

However, the missing control ticks were 84 of 512000 registers. 

Also the coincidences can be determined between any two channels by processing the 

recorded information; about 24.5 coincidences per second were detected between chan

nels 2 and 3. Calculated coincidences show that only dark-count type coincidences are 

detected. The recorded pulses are close in the corresponding orders of magnitude for 
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Table 5.2 Periodic signal generator. Measured output characteristics. 
Characteristic 
Frequency 
Period 
Rise time 
Fall time 
Duty cycle 

45 MHz 
45.004 MHz 

22.22 ns 
930 ps 
850 ps 
49.5% 

45 MHz with IT phase 
45.147 MHz 

22.15 ns 
900 ps 
830 ps 
50.9% 

90 MHz 
96.246 MHz 

10.39 ns 
1.07 ns 
960 ps 
53.0% 

each detector signal. However a considerable loss of pulses is noticed. 

5.5. Periodic signal generator 

Periodic signals are obtained from the FPGA by using the scheme described in section 

3.4.5. In particular 45 MHz and 90 MHz signals are generated. The characteristics of the 

output signals were measured with a 500 MHz oscilloscope (Yokogawa DL1700 model); 

they are shown in table 5.2. They were taken from port IO2(0). 

The resulting waveforms are shown in figure 5.9. These three signals are obtained from 

the same DCM (Digital Clock Manager) with a clock input of /CLKIN = 48 MHz, and 

were measured at the same output pin. The outputs of the DCM that were taken corre

spond to CLKFX for the main output (45 MHz) CLKFX180 for the main output with a 

7r phase, and CLK2X with the double of the frequency (90 MHz). 

5.5.1. Analysis 

Since the main synthesized frequency is 45 MHz (T = 22.2 ns), its waveform has the 

best performance in terms of frequency and duty cycle (50% is desired). Note that the 

signal that is supposed to have 90 MHz (T = 11.1 ns) has actually about 96 MHz 

(T = 10.4 ns). To generate a more accurate signal in frequency, it is suggested to work 
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(c) 90 MHz. 

Figure 5.9 Periodic signal generator output waveforms for the three programed values. 
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with a DCM whose main frequency is set at 90 MHz. Is good to remember that the 

DCM resources are very limited; four in the XC3S2000 model and two are required by 

the ZestSC2 card. 

5.6. Output circuit 

An amplitude modulator channel at the output circuit was tested. This circuit is described 

in section 4.3. Refer to figure 4.3 to see the schematic of the circuit. 

Care has to be taken with ground signals. Supply voltages of the output circuit and the 

ZestSC2 card should come from sources not coupled to ground. The USB port may also 

provide an undesired ground coupling. 

The measured values of the used resistances are 71.37 fi and 3330 ft, which placed in 

parallel give a resistance of 

1 1 ^ 
RA = ——- + = 69.87 0 (5.3) 

A l 71.37 Q 3300 Q ' V ' 

If the resistance of the load (i.e. the amplitude modulator) is 50 fi, when the transistor 

conducts the voltage at the load (modulator) is 

v* = ^-v^R^kn (5-4) 
= 12 V ^ ^ (5.5) 

119.87 Q V ) 

= 5.0053 V (5.6) 

and when the transistor does not conduct, VA = 0 since no current pass through the 

output SMA connector. In practice, the voltage VQS of the transistor is — VEE ^ 0 V, 

and therefore the current at the drain iD is not zero. As consequence, the output SMA 
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connector voltage is not zero. 

The periodic signals of 45 MHz and 96 MHz obtained at section 5.5 were used for testing 

purposes. Their 2 V amplitude difference at the input of the circuit suffices to turn the 

transistor on (off) and provide the current needed to obtain a signal with the desired 

amplitude. 

Tests were made by changing Vcc and VEE- The output voltage at the SMA connector 

was about 4.67 V, by maintaining a difference of Vcc — VEE = 12 V and provided a DC 

coupling at 50 Q (equivalent to have connected an amplitude modulator). The operation 

supply voltages are Vcc = 10 V and VEE = — 2 V (see section 4.3.1); measured results 

are shown in figure 5.10(a). The voltage for a logic ' 1 ' is 4.64 V, where the current 

through the channel is close to the required limit for correct functioning. Reducing VGS 

would reduce iD, and therefore the output voltage would not be the result of a voltage 

divider but the maximum voltage that can be obtained with the particular zD current. 

A second case was tested, where the (Vcc — VEE) = 12 V condition was respected, but 

the supply voltages were changed to work closer to the threshold voltage of the transistor 

(about 3 V), such that VGS = V&. This situation, whose measurements are depicted in 

figure 5.10(b), shows a better response in terms of iD for a logic ' 1 ' input. However to 

work that close to Vth results in increasing the output voltage for a '0 ' logic input; the 

ideal case would be a 0 V output for a '0 ' input. 

An output of 5 V was obtained, with VCc = 10.14 V and VEE = -3.04 V; this cor

responds to inhibit light from passing trough the electro-optical modulator, given that 

Vn = 5 V. However, by operating at these voltages the output at zero level increases, 

and reaches values that are higher than 1 V. This result is shown in figure 5.10(c). 

The responses at 45 MHz and 90 MHz have a fast rising edge response, but the falling 

edge response is not fast enough. The voltage level decreases exponentially with the 
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(a) Test with Vcc = 10 V and VEE = - 2 V. 
Critical ip obtained at logic ' 1' condition. 

Output signal to drive amplitude modulator 
V^ =10.14V,V„ =-3.04V 

(c) Test to obtain an output of 5 V for a 
logic ' 1' input, resulting in Vcc ~ 10 V and 
y B B « - 3 V . 

Output signal to drive amplitude modulator 

(b) Test with Vcc = 9 V and Vm = - 3 V. 
Undisired io rise easier at logic '0 ' . 

T 

96 MHz 

45 MHz 

'0' 

(d) Legend for figures 5.10(a), 5.10(b) and 
5.10(c). 

Figure 5.10 Results from tests on custom built output circuit, at a single amplitude mod
ulator output. Voltages of 5 V and 0 V are expected. Frequency response is also tested. 
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same time constant, despite of the frequency variation; hence this is doubt to a capacitive 

load. This has as consequence that increasing the input frequency results in a '0 ' level 

that does not arrive to the supposed value. Notice that this characteristic is not heralded 

of the FPGA output, as can be verified in figure 5.9. A possible improvement to this 

situation is to take into account capacitive loads in the PCB design, or adding inductive 

loads to the circuit. 
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CONCLUSION 

An electronic processing system for quantum communication and computing experi

ments was developed. Electronic systems are useful and at the same time unavoidable 

in these types of experimental realizations. The developed system offers a flexible solu

tion that is adaptable to a wide range of situations, thanks to the signal standardization 

printed circuit that was designed, realized and tested in this project. 

Particular applications were implemented such as event frequency measurement, coinci

dence detection, time stamping, pseudo-random number generation and periodic signal 

generation. Event frequency measurement works with outstanding performance, where 

the error in the measured frequency is always under 0.0025%. 

Coincidence detection was done by two approaches: a synchronous and an asynchronous 

one. Both have been shown to reliably discern between coincident and non-coincident 

scenarios. For the asynchronous version, the coincidence window has a duration ap

proximately 1.35 ns. An equivalent synchronous version would require a clock of the 

order of 4 GHz. For the synchronous version, the coincidence window depends on the 

system's clock period; at TCLK
 = 200 MHz this time ranges between 10 ns and 15 ns. 

Time stamping application provides a way to reconstruct up to 5 recorded digital signals. 

The number of recorded signals can be modified, having as consequence a change in 

the recording overflow time. Timing information is useful for post-processing analysis 

such as coincidence detection, signal correlation and arrival statistics. This is relevant 

to quantum communication experiments, where the count rate can be about 102 to 104 

counts per second. 

To control phase and amplitude modulators, periodic signals were generated at 45 MHz 

and 96 MHz. Their amplitude is corrected and amplified (or reduced) using the printed 
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circuit designed and made for this purpose. This circuit was also tested, where changes in 

supply voltages and resistance values suffice to obtain a determined phase or amplitude 

modulation. For a designed operation of 0 V to 5 V, the obtained output voltages are 

0.63 V and 4.67 V respectively. Frequency response was tested successfully. 

Pseudo-random series of numbers were done by using an LFSR Galois. This could be 

used to play the role of a coin in quantum communication protocols that require a random 

number selection in their process. 

The system shows several advantages. Among the most remarkable are its flexibility 

given by its reprogrammable capacity, the adaptability to other domains, a centralized 

management of information, and an easy project expansion. Also, it is possible to offer 

graphical interfaces of simple use, like those developed in Lab View. 

The codes to program the FPGA are particularly adapted to the ZestSC2 card. Thanks 

to the used block design, they are easily adaptable to other types of cards, or even to 

FPGAs from other producers. 

The main limitation of the present work had been the processing speed. By default the 

system clock runs at 48MHz. Changing it to other frequencies requires extra effort. 

Furthermore, the available frequencies are limited by the FPGA's characteristics; the 

used device in particular does not reach higher operating speeds than 210MHz. 

Using it in fibre optic systems with time-bin encoding, the speed limit translates to an 

interferometer size constraint. For example a 200 MHz (5 ns) clock, translates into a 

1.5 m delay at the interferometer. 

The continuity of this project is highly recommended. New applications and functions 

can be integrated, making more profitable the utilisation of the final product. It can even 

be exploited in other research areas. 
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A researcher who wishes to continue the project may take all the applications here pre

sented, execute them, study and understand the corresponding source codes in each 

language (VHDL, C, Lab View). As a first task, I suggest improving the coincidence 

detection utility by adjusting FPGA's inner delay times. 
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APPENDIX I 

PCB PIN CONNECTIONS 

1.1 Input circuit connections 

The circuit has 8 connectors as shown in figure 1.1:6 JTAG headers with the J prefix 

(Jx), and 2 of them with the SV prefix (SVx). The Jl connector is intended for the main 

supply voltage, 3.3V. The J2, J3, J4 nd J5 connectors provide access to the eight Vref and 

VT- Notice that there are two ways of providing Vre{ voltages: if the LM4880 and the 

potentiometer are placed, this voltage is done by the voltage divider; if this components 

are not placed these voltages can be provided externally using the J2 and J3 connectors. 

Figure 1.1 Layout of PCB for signal conversion. 

J6 connector is designed to fit in the J8 connector of the ZestSC2 FPGA USB card. The 

pins where a differential pair Q, /Q arrives (from pin 11 to pin 26) were chosen in such 

a way that they correspond in the FPGA also to differential pair pins. 



99 

Table 1.1 Pins for Jl in input PCB: JTAG header for voltage supply 
Pin Signal 

GND 
K;co 

Table 1.2 Pins for J2 in input PCB: JTAG header for Kef(0..3) 
Pin 

1 
2 
3 
4 
5 
6 
7 
8 

Signal 
GND 
VREFO 
GND 
VREF1 
GND 
VREF2 
GND 
VREF3 

The SVx connectors are designed to shunt them optionally. SV1 will short circuit the 

Vcco from the PCB with the VFPGA-CCO from the FPGA. SV2 provides a way to connect 

each VKf(i) with its corresponding VT(i). 

Table 1.3 Pins for J3 in input PCB: JTAG header for VTef(4..7) 
Pin 

1 
2 
3 
4 
5 
6 
7 
8 

Signal 
GND 
VREF4 
GND 
VREF5 
GND 
VREF6 
GND 
VREF7 
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Table 1.4 Pins for J4 in input PCB: JTAG header for VT(0..3) 
Pin 

1 
2 
3 
4 
5 
6 
7 
8 

Signal 
GND 
VTO 
GND 
VT1 
GND 
VT2 
GND 
VT3 

Table 1.5 Pins for J5 in input PCB: JTAG header for VT(4..7) 
Pin 

1 
2 
3 
4 
5 
6 
7 
8 

Signal 
GND 
VT4 
GND 
VT5 
GND 
VT6 
GND 
VT7 
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Table 1.6 Pins for J6 in input PCB: JTAG header to be connected with FPGA (J8 of 
ZestSC2 card). 

Signal 
VCC (5V from FPGA) 
GND 
GND 
GND 
NC 
Q0 
Ql 
Q2 
Q3 
Q4 
Q5 
Q6 
Q7 
NC 
NC 
NC 
NC 
GND 
GND 
GND 

Pin 
1 
3 
5 
7 
9 

11 
13 
15 
17 
19 
21 
23 
25 
27 
29 

57 
59 
61 
63 

Pin 
2 
4 
6 
8 

10 
12 
14 
16 
18 
20 
22 
24 
26 
28 

56 
58 
60 
62 
64 

Signal 
HPGA-CCO 
GND 
GND 
GND 
NC 
/Q0 
/Ql 
/Q2 
/Q3 
/Q4 
/Q5 
/Q6 
/Q7 
NC 
NC 
NC 
GND 
GND 
GND 
GND 

Table 1.7 Pins for SV1 in input PCB: JTAG header to shunt supply voltages 
Signal 
^FPGA-CCO 

Pin 
1 

Pin 
2 

Signal 
Vcco 

Table 1.8 Pins for SV2 in input PCB: JTAG header to shunt reference voltages 
Signal 
VTO 
VT1 
VT2 
VT3 
VT4 
VT5 
VT6 
VT7 

Pin 
1 
3 
5 
7 
9 

11 
13 
15 

Pin 
2 
4 
6 
8 

10 
12 
14 
16 

Signal 
VREF0 
VREF1 
VREF2 
VREF3 
VREF4 
VREF5 
VREF6 
VREF7 
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Table 1.9 SMA connectors in input PCB 
Connector 
SMA[0..7] 

Signal 
vyo.j] 

1.2 Output circuit connections 

The circuit for the electro-optic modulators has 2 connectors as shown in figure 1.2: a 

JTAG header Jl of 3 pins, and X3 which is a 32x2 pin header connector. 

Figure 1.2 Layout of PCB for signal conversion. 

X3 connector is designed to fit in the J9 or J10 connectors of the ZestSC2 FPGA USB 

card. If it is connected to J9, the signals from the FPGA will be 102 (re); if it is connected 

to J10, the signals from the FPGA will be 107(re). For phase modulators, signals are 

TxPy, where Tx indicates the number of the transistor (re = {1,2,3,4,5,6}) and Py 

the number of the phase modulator (y = {1,2}). For amplitude modulators signals are 

TOAz since there is only one transistor, and Az indicates the number of the amplitude 

modulator (z = {1,2}). 
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Table 1.10 Pins for Jl in output PCB: JTAG header for voltage supply 
Pin 

1 
2 
3 

Signal 
Vm 

GND 

Table 1.11 Pins for X3 in output PCB: JTAG header to be connected with FPGA (J9 or 
J10ofZestSC2card). 

Signal 
NC 
T1P1 
T3P1 
T4P1 
T6P1 
T2P2 
T3P2 
T5P2 
T0A1 
T0A2 
NC 
NC 
NC 
NC 
NC 
NC 
NC 
NC 
NC 
NC 
NC 
NC 
NC 
NC 
NC 
NC 
NC 
NC 
NC 
NC 
NC 
NC 

Pin 
1 
3 
5 
7 
9 

11 
13 
15 
17 
19 
21 
23 
25 
27 
29 
31 
33 
35 
37 
39 
41 
43 
45 
47 
49 
51 
53 
55 
57 
59 
61 
63 

Pin 
2 
4 
6 
8 

10 
12 
14 
16 
18 
20 
22 
24 
26 
28 
30 
32 
34 
36 
38 
40 
42 
44 
46 
48 
50 
52 
54 
56 
58 
60 
62 
64 

Signal 
NC 
T2P1 
GND 
T5P1 
T1P2 
GND 
T4P2 
T6P2 
GND 
NC 
NC 
GND 
NC 
NC 
GND 
NC 
NC 
GND 
NC 
NC 
GND 
NC 
NC 
GND 
NC 
NC 
GND 
NC 
NC 
GND 
NC 
GND 
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Table 1.12 SMA connectors in output PCB 
Connector 
X1P1 
X2P2 
X4A1 
X5A2 

Signal 
Phase modulator 1 
Phase modulator 2 
Amplitude modulator 1 
Amplitude modulator 2 

f 


