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RESUME 

Le but de cette recherche est de mettre en ceuvre un systeme radar «front-end» 

integre au substrat a modulation de frequence a ondes continue (frequency-modulation 

continuous-wave, FMCW) pour des applications a courte portee. Les principaux 

elements de ce travail sont Integration et l'interaction entre les differents elements 

constitutifs, y compris les antennes, les melangeurs, les amplificateurs et les diviseurs 

de puissance. 

Une approche hybride d'integration planaire a non planaire, c'est-a-dire ce qu'on 

appelle les circuits integres au substrat (CIS), est la methodologie adoptee pour 

accomplir ce travail. On arrive a la conclusion que la difference geometrique entre les 

structures guide d'ondes non-planaires, comme les guides d'ondes metalliques 

classiques, et les structures guides d'ondes planaires, comme les lignes microrubans, 

n'est plus une restriction de cette strategic d'integration. En integrant differentes 

structures guide d'ondes sur le meme substrat, les merites des differents modules 

peuvent etre combines ensemble, tandis que les limites peuvent etre eliminees, en partie 

au moins, sinon totalement. Cette declaration est justifiee par un melangeur CIS utilisant 

une approche d'integration hybride «surface-volume». En se basant sur les resultats des 

mesures strictes, il est demontre que le melangeur CIS a une performance globale 

superieure comparativement aux melangeurs concus avec une approche d'integration 

monotone. 

La conception et la mise en ceuvre d'un tel systeme front-end sont etudiees en detail 

dans ce travail, apres l'achevement d'un radar FMCW utilisant des puces-modules 
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multiples commerciales. La fonctionnalite du systeme front-end implemente ainsi que 

son application dans un radar FMCW pour les mesures de la portee ont soigneusement 

ete experimentees. 

La conclusion de ce travail est que cette technologie CIS offre une plateforme 

integree, souple, polyvalente et caracterisee par de bonnes performances, une haute 

densite d'integration et dont les couts de fabrication relativement faibles de l'approche 

systeme sur substrat pour sont prometteurs pour l'avenir de l'industrie des micro-ondes. 
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ABSTRACT 

The purpose of this research is to implement a completely integrated frequency-

modulation continuous-wave (FMCW) radar front-end system-on-substrate (SoS) for 

short range applications. The main foci of this work are the integration and interaction of 

various building blocks, including antennas, mixers, amplifiers, and power dividers. 

A planar/non-planar hybrid integration approach, i.e. the so-called substrate-

integrated-circuits (SICs) is the adopted methodology to accomplish this work. It is 

concluded that the geometry difference between non-planar waveguiding structures such 

as classic metallic waveguide, and planar waveguiding structures such as microstrip 

lines, is no longer distinctive under the roof of this integration strategy. By hybrid 

integration of different waveguiding structures on the same substrate, the merits of 

different building blocks can be combined together, while the limitations may be 

eliminated, partly at least if not completely. This statement is justified by a proposed 

SICs mixer using a "surface-volume" hybrid integration approach. Based on strict 

measurement results, this SICs mixer demonstrates superior overall performance 

compared with mixers designed with a monotonous integration approach. 

The design and implementation of such a front-end SoS are investigated in detail in 

this work, after the completion of an FMCW radar using commercial multiple-chip-

modules. The functionality of the implemented front-end SoS as well as its application 

in a FMCW radar for range measurement are carefully experimented. 



X 

The conclusion of this work is that such a SICs technology provides a flexible and 

versatile integration platform characterized by good performances, high integration-

density and relatively low fabrication cost SoS approach for modern and future 

microwave industry. 
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CONDENSE EN FRAN^AIS 

Historique et motivation 

Les technologies micro-ondes et en ondes millimetriques sont essentielles pour les 

future systemes de communication sans fil et les applications electromagnetiques, 

comme les reseaux haute vitesse pour environnement personnel et les capteurs radars. La 

technologie du guide d'ondes metallique conventionnel est arrivee a maturite et est 

largement acceptee par l'industrie. Des composantes performantes sont offertes grace a 

cette technologie, notamment pour certaines applications a haut facteur de qualite telles 

que les antennes, les cavites et les duplexeurs entre autres. Neanmoins, les composantes 

en guide d'onde sont souvent volumineuses et exigent generalement un usinage precis, 

ce qui rend l'ensemble des systemes micro-ondes tres chers et leur usage limites a des 

applications militaires telles que les radars, ou a des applications commerciales tres 

specifiques telles que les satellites. Au fil du temps, la demande continue de l'industrie 

pour une plus grande performance des dispositifs, des circuits de taille plus compacte, la 

baisse des couts de fabrication ainsi que le developpement rapide des demandes du 

marche civil comme la necessite d'avoir des radars automobiles a faibles couts, stimule 

sensiblement la recherche sur les circuits integres monolithiques micro-ondes 

(monolithic microwave integrated circuits, MMICs). Basee sur les lignes de 

transmission micro-ondes planaires, cette technologie est bien adaptee a la fabrication a 

grande echelle. Elle integre les dispositifs actifs comme les transistors et les diodes sur 

des materiaux semi-conducteurs. Jusqu'a ce jour, quelques MMICs transmetteurs 



Xll 

integres, que ce soit pour des applications radars ou de telecommunications, ont ete 

demontres. 

En examinant l'industrie des micro-ondes, une des applications commerciales 

importantes est les capteurs radars a courte portee, avec des fonctions typiques comme la 

mesure du niveau de l'automobile ou le regulateur de vitesse. Toutefois, le deploiement 

d'un systeme integre de hautes performances, a faible cout, produit en masse est tout un 

travail a realiser. De nombreuses composantes au facteur de qualite eleve sont difficiles 

a integrer a la technologie MMIC, notamment les antennes et les filtres. Beaucoup de 

ces systemes sont construits avec une puce integree emettrice et des antennes 3D 

fabriquees separement, comme l'antenne cornet, la lentille ou l'antenne parabolique. La 

limite fondamentale du niveau d'integration du systeme est que le systeme d'antennes a 

haute directivite, haute efficacite et haut gain n'est pas disponible pour les materiaux 

semi-conducteurs resistifs. Par consequent, une approche plus pratique consiste a 

fabriquer une antenne a haute performance separement et ensuite de la connecter a un 

transmetteur monolithique par le biais d'une structure permettant la transition planaire a 

non planaire, comme il est montre a la figure 1. 

Figure 1. Circuits MMIC avec radar FMCW et antenne cornet externe [8]. 
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Cependant, les transitions necessaires entre puces MMIC planaires et antennes non 

planaires compliquent souvent le design et Installation de l'ensemble du systeme et 

aussi augmentent le cout du systeme, ce qui vient contrer les avantages de l'utilisation 

des MMICs integres. Une approche d'integration qui combine l'avantage de la 

technologie des guides d'ondes de posseder un facteur Q eleve et l'avantage de la 

technologie MMICs de permettre la production de masse, est indispensable pour pousser 

plus loin l'etude de systemes micro-ondes. 

Afm de repondre a ce probleme, les circuits integres au substrat (CIS) sont utilises 

dans ce travail. L'objectif est de concevoir et de mettre en oeuvre un radar frontal integre 

au substrat, en utilisant l'approche de l'integration CIS. 

Methodologie 

Cette technologie d'integration CIS offre une occasion unique d'integrer des 

structures a guides d'ondes geometriquement dissemblables de facon uniforme sur un 

substrat. Le principe de base des CIS est la conception ou la synthese des structures 

classiques non planaires sous forme de "circuits planaires", de sorte que les structures 

planaires et non planaires peuvent etre realisees sur un seul substrat avec les techniques 

de fabrication existantes. Pour ce faire, les techniques de synthese du substrat sont 

utilisees, elles confinent les ondes guidees le long du substrat avec l'aides de canaux 

metallises percees dans le substrat ou en utilisant des trous remplis de dielectrique a 

faible indice de refraction afin de creer un canal dielectrique grace au contraste de la 

constante dielectrique equivalente, comme on peut le voir a la figure 2. 
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Figure. 2. Exemples du concept des circuits integres au substrat. [11] 

En agissant de la sorte, certaines structures guides d'ondes non planaires 

conventionnelles peuvent etre integrees sur seul un meme substrat. C'est pourquoi un 

certain nombre de composantes au facteur Q eleve comme les antennes ou cavites peut 

etre integrees avec d'autres MICs. 

Un membre de la famille des CIS, c'est-a-dire le guide d'ondes integre au substrat 

(GIS) est largement utilise dans ce travail. Puisqu'il y a des similitudes entre les GIS et 

les guides d'ondes classiques, cette approche d'integration est tres adaptee a la 

conception d'antennes basees sur les guides d'ondes. 

Etapes duprojet de recherche -

Conception au niveau du systeme 

Avant de proceder a la conception au niveau des composantes, le systeme complet 

est concu en se basant sur les modeles des «boites noires». La topologie du systeme ainsi 
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que le systeme IF doivent etre definis en premier lieu, ce qui est le probleme 

fondamental en termes de conception du systeme. La performance du systeme desire 

resulte de l'interaction entre les differents blocs mis ensemble. Differentes composantes 

«front-end» sont caracterisees par leurs specifications individuelles. Pour etudier les 

interactions multiples entre les differents blocs places en cascade, l'ecart du gain du 

systeme en cascade cause par de multiples reflexions dues a l'adaptation imparfaite au 

port correspondant, doit etre pris en compte. Ceci est complete par le calcul de gain net 

vers l'avant entre les differents modules. En assumant un gain constant pour les deux 

signaux fondamentaux ainsi que les produits non-lineaires d'intermodulation, le point 

d'intersection de la non linearite de troisieme ordre est calcule entre deux modules 

consecutifs. La chaine complete du systeme en cascade est obtenue par l'addition de tous 

les produits non-lineaires ayant passe ce niveau. 

Conception au niveau des composantes: les antennes 

Differentes solutions d'antennes sont etudiees dans ce travail. Une antenne cornet 

dans le plan H, presentee a la figure 3, fut le premier prototype de l'antenne pris en 

consideration pour le systeme radar integre. 

Figure.3. Antenne cornet dans le plan H integre au substrat. [29] 
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L'ouverture effective de rayonnement de cette antenne est construite en placant une 

couche de mousse a faible permittivite entre deux couches de substrat. Ainsi, une 

ouverture de 0.66?i sur plan E peut etre formee, et le plan H a une ouverture de 7.2IX. Le 

principe d'equivalence de Huygens peut etre applique a l'ouverture a travers la fente afin 

d'obtenir le courant equivalent sur l'ouverture. La conception de l'antenne est similaire 

au design d'une antenne cornet classique dans le plan H. L'entree mesuree Sn de 

l'antenne presente une large bande ou l'adaptation est bonne, ce qui s'explique par le fait 

que cette antenne est presque un guide d'ondes. Le diagramme de rayonnement mesure 

demontre une largeur du faisceau a demi-puissance de 16,0 ° dans le plan H et de 59,5 ° 

dans le plan E. Deux contraintes nous limitent pour ce type d'antenne dans le cas d'une 

application integree «front-end». D'abord, parce que l'antenne est reliee a une 

alimentation coaxiale a l'aide d'une transition coaxiale guide d'ondes, la veritable source 

d'alimentation de l'antenne doit etre considered comme un port guide d'ondes, c'est-a-

dire une entree d'alimentation non planaire. L'integration de cette antenne avec d'autres 

circuits planaires GIS necessite une transition GIS guide d'ondes. Cependant, un 

diagramme de rayonnement large du a l'etroite ouverture dans le plan E pourrait etre un 

inconvenient pour les applications radars ou un faisceau de rayonnement relativement 

etroit est generalement souhaite afin d'eviter d'encombrer l'environnement. 

Pour depasser ces limites, une antenne cornet pyramidale est proposee, exposee a la 

figure 4. En raison d'un passage SlW-guide d'ondes necessaire afm d'assurer 

l'interconnexion des circuits imprimes SIW avec l'antenne, une ouverture de 

rayonnement peut etre formee par l'evasement continu de l'interface du guide d'ondes, 



XVII 

obtenant ainsi une grande ouverture. Pendant ce temps, puisque que la plupart des 

circuits micro-ondes et integres necessitent un boitier metallique, cette structure peut 

etre construite et attachee a l'exterieur de ce boitier comme la visiere d'une casquette, 

quelle que soit la technologie d'integration. 

horn antenna 
section 

SIW circuitry substrate material 
metal base 

Figure. 4. Antenne cornet pyramidale avec un guide d'ondes SIW a l'entree [30]. 

La transition de la technologie GIS au guide d'onde rectangulaire operant en mode 

fondamental TEio requiert un transformateur d'impedance quart d'onde en guide 

d'ondes. Un prototype dos-a-dos de troisieme ordre de type Tchebychev est concu ou 

l'impedance definie par la puissance et le courant est utilisee pour la synthese de la 

fonction de transfert. 

Bien qu'elle soit adaptee pour une large bande et qu'elle ait de bons diagrammes de 

rayonnement, cette structure proposee doit toujours faire face au defi de son integration 

avec profil planaire «front-end». Si l'objectif de l'integration au niveau du systeme 
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devient une priorite plus elevee, une structure complete GIS avec l'antenne pourrait etre 

une meilleure solution. Un reseau de fentes d'alimentation GIS, presente a la figure 5, est 

concu dans ce travail pour atteindre cet objectif. 

Metallized channels 

Feeding Radiation array 
network 

Figure 5. Reseau d'antennes fentes GIS [72]. 

La procedure de base de la conception d'un tel reseau de fentes est d'extraire 

l'information de l'admittance resonante d'une seule fente sur GIS premierement. Lors de 

la synthese du rayonnement, la distribution equivalente des tensions sur chaque element 

peut etre calculee. Avec pour objectif l'adaptation du port d'entree, l'admittance exigee 

de chaque element peut etre aussi obtenue. Par consequent, l'emplacement et la longueur 

de la fente peuvent etre ainsi determines. 

Un reseau de fentes GIS qui possede un profil planaire complet est approprie pour 

un processus de fabrication standard de circuit imprime. Pour cette raison, cette antenne 

est choisie finalement comme prototype «front-end». La bande de frequences des pertes 
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de retour de 10 dB pour le reseau de fentes GIS est mesuree a 650 MHz, ce qui est 

suffisant pour les applications radars FMCW. Le diagramme de rayonnement mesure 

maintient un seul faisceau directif sur toute la largeur de cette bande de frequences. 

Conception au niveau des composantes: les melangeurs 

En plus de l'antenne integree, un autre element important dans un radar FMCW 

«front-end» est le melangeur, c'est-a-dire un convertisseur vers le haut utilise dans les 

transmetteurs et convertisseur vers le bas utilise dans les recepteurs. Deux types de 

melangeurs sont proposes dans ce travail. L'un est melangeur SIW 90 degres, l'autre est 

un melangeur hybride microruban GIS 180 degres. Le melangeur 90 degres GIS, montre 

a la figure 6, utilise un coupleur ayant un couplage de cote de 3dB comme jonction 

hybride de puissance. Lorsque les lignes microrubans planaires sont utilisees dans le 

design d'une jonction hybride de puissance de 3dB, la limite du coupleur est 

generalement en dessous de 20 GHz. Ceci s'explique par les limites de la taille des 

circuits a hautes frequences, ou la longueur de la ligne diminue avec l'augmentation de la 

frequence, devenant comparable a sa largeur. Par consequent, les discontinuity de la 

jonction deviennent dominantes, ce qui se traduit par une baisse du rendement et rend le 

coupleur microruban a quadrature presque inemployable aux hautes frequences. 

Cependant, en utilisant des structures GIS, les frequences d'operation de cette classe de 

jonction hybride sont bien etendues dans la gamme des ondes millimetriques. 
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LO/RF Surface 

RF/LO Metallized slots 

J SIW90-deg hybrid U 

Figure 6. Melangeur 90 degres GIS [72]. 

L'approche de conception est de modeliser les effets de sommation des modes TE10 

et TE20 afin de determiner les decalages de phase de 90 degres et le couplage de 

puissance de 3 dB entre des deux ports de sortie (ports 2 et 3) du coupleur. Une paroi 

capacitive metallisee est positionnee le long de l'ouverture pour compenser la reactance 

parasite introduite par l'ouverture. Deux diodes Schottky sont utilisees comme jonction 

de conductance variable dans le melangeur au lieu des diodes GaAs, afin de fournir des 

hauteurs de barriere plus basses et un meilleur TOS au port LO. Avec une frequence RF 

de 24,1 GHz et une frequence de l'oscillateur local (LO) de 22,6 GHz, le gain maximal 

de conversion mesure a frequence de -6,7 dB est obtenu. 

Pour obtenir une meilleure isolation LO-RF et une meilleure performance du rejet 

des erreurs, un melangeur CIS 180 degres est propose et illustre a la figure 7. Le design 

de ce melangeur CIS est une integration hybride des GIS et des lignes microrubans 

conventionnelles. Les ports RF et LO sont concus a l'aide de SIW tandis que la 

puissance hybride en phase et hors-phase est obtenue au moyen d'un anneau hybride 

microruban. L'utilisation de microruban dans ce melangeur vise essentiellement a 
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faciliter l'integration des diodes et de reduire au minimum la taille du circuit entier du 

melangeur en meme temps. Cela est du au fait que l'anneau hybride SIW 3dB occupera 

une superficie du substrat plus grande, ce qui se traduit par un profil de circuit plus 

large. L'utilisation de la technologie GIS dans les ports RF et LO vise a reduire les 

pertes associees a la transmission des lignes microrubans a hautes frequences. 

Volume 

!« siw *\ !* siw »[ 

Figure. 7. Melangeur CIS 180 degres de surface et de volume [72]. 

Du point de vue de la fabrication des MICs, la fabrication des lignes de transmission 

planaires conventionnelles, comme les lignes microrubans, n'implique seulement que la 

surface du substrat; done les circuits microrubans peuvent etre consideres comme des 

"circuits de surface". Le processus de fabrication des guides d'ondes synthetises sous 

forme planaires, comme la technologie GIS, n'implique pas seulement la surface d'un 

substrat, mais egalement la transformation ou la gravure du volume du substrat. Ainsi, 

les circuits GIS peuvent etre consideres comme des "circuits de volume". Englobant la 
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simplicity d'integration avec les dispositifs semi-conducteurs tels que les diodes 

classiques planaires pour les lignes de transmission, tout en exploitant les merites du 

facteur Q eleve, le confinement efficace des ondes EM pour les guides d'ondes 

synthetises, cette integration "surface-volume" optimise et maximise l'utilisation du 

substrat electriquement et materiellement. Par exemple, le melangeur CIS "surface-

volume" devrait avoir un gain de conversion a frequence plus elevee compare au 

melangeur microruban similaire geometriquement. C'est parce que la totalite de 

l'enceinte du SIW confinera mieux les ondes EM dans le substrat et done reduira les 

inevitables pertes de rayonnement et de transmission typiques des lignes microrubans a 

hautes frequences. Cette affirmation est confirmee par les resultats des mesures. Le 

melangeur CIS montre une amelioration du gain de conversion d'environ 3 dB par 

rapport a celui concu completement avec des lignes microrubans. Evidemment, cette 

approche d'integration hybride surface-volume demontre en effet un rendement 

superieur compare a la conception en utilisant un design monotone. Simultanement, 

compare au melangeur GIS mentionne ci-haut, cette strategic d'integration hybride 

surface-volume necessite moins de surface du substrat (163,8 mm2) par rapport au 

melangeur GIS (270,0 mm2), ce qui peut etre particulierement interessant pour la 

conception MMIC utilisant des semi-conducteurs GaAs. 

Integration au niveau du systeme 

Differentes composantes GIS ou CIS et dispositifs peuvent etre integres ensemble sur 

le meme substrat, mais certains problemes d'integration uniques aux systemes integres 

sur un substrat doivent etre soigneusement examines. Par exemple, en tant que membre 
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de la famille des radars CW, le radar FMCW est egalement confronte au defi du 

phenomene de fuite entre l'emetteur et le recepteur qui est inherent a tout radar CW. 

Cette fuite pourrait causer de graves problemes pour le recepteur radar FMCW en 

saturant le recepteur amplificateur a faible bruit de premier stade ou en degradant la 

performance du radar en reduisant la portee dynamique, dependamment du niveau de 

puissance de fuite et de l'emplacement de la fuite. C'est pourquoi la plupart des radars 

FMCW sont limites a des applications a courte portee, ou une haute puissance de 

transmission n'est pas requise et le niveau de puissance de fuite est faible. 

Des que la construction du modele generique du recepteur radar FMCW homodyne 

employant un systeme d'antenne utilisant la technologie GIS fut realisee, les fuites dans 

l'espace libre et leurs effets sur les performances du recepteur radar FMCW ont ete 

etudiees dans ce travail. Le niveau de degradation du ratio signal sur bruit, qui est cause 

par l'augmentation du niveau de bruit en raison des fuites en espace libre est 

soigneusement mesure. La conclusion est qu'avec le niveau de puissance disponible 

transmissible, les fuites en espace libre seules entrainent une diminution de la sensibilite 

du recepteur d'environ 10 dB. 

Le systeme complet «front-end» sur substrat est fabrique sur dielectrique ayant les 

caracteristiques suivantes : RT6002, er = 2,94 et tanS = 0,0012 a 10 GHz. Le processus 

de fabrication est similaire a celui des circuits imprimes classiques. Tout d'abord, les 

parois laterales du GIS, qui necessitent une coupure dans le substrat, sont faites. Un laser 

Nd-YAG a impulsions est utilise pour remplir cette tache. Puis, la metallisation de ces 

parois laterales se fait par pulverisation d'une fine couche de cuivre suivie d'une 
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galvanoplastie. Un precede standard de photolithographic est utilise dans la phase finale 

pour creer le schema des circuits sur la surface du substrat presente a la figure 8 

Figure. 8. Circuits imprimes du radar FMCW «front-end» systeme sur substrat. [72]. 

Experiences du systeme radar "front-end" 

La fonctionnalite du systeme front-end seul est verifiee avant d'etre utilise pour 

effectuer des mesures de portee. Parce que l'emetteur et le recepteur du systeme front-

end sont tous integres ensemble, un test individuel n'est pas possible. Toutefois, avec un 

signal externe illuminant le systeme front-end integre, un signal demodule de sortie du 

recepteur peut etre mesure. La frequence du signal externe doit etre une fonction lineaire 

de la sortie demodulee du recepteur IF front-end. C'est pourquoi le signal IF a une 

tonalite est applique a l'emetteur front-end, le systeme front-end lui-meme est 

essentiellement une mesure de la difference de la frequence entre l'emetteur du signal de 

reference et la frequence du signal externe. Une source externe a balayage de frequences 
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est mathematiquement equivalente a changer la distance separant la cible du front-end. 

Le resultat des mesures, illustrees a la figure 9, confirme que le systeme front-end seul 

fonctionne bien. 
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Figure. 9. Mesures des frequences IF du receveur «front-end» versus la portee de la 

cible 

Pour effectuer les mesures de portee, un signal module en frequence est applique a 

l'entree du port IF de l'emetteur. Du theoreme de Wiener-Khinchine, le signal de l'onde 

radar retournee est l'inverse de la transformee de Fourier du signal transmis. Par 

consequent, pour un signal module lineairement en frequence, le spectre de puissance 

rectangulaire produira un signal demodule ayant une distribution d'enveloppe suivant la 

fonction sine. Comme la portee de la cible varie, la fenetre de distance repondra a 

differentes frequences consequemment. Afin de grouper le plus du signal demodule dans 

une fenetre de distance de spectre, les techniques a modulation de frequences (linear-

_i_ 
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frequency-modulation, LFM), y compris des ondes de formes symetriques et 

asymetriques en dents de scie (triangulaire), montrees a la figure 10, sont utilisees dans 

ce travail. Ceci est une caracteristique unique des techniques LFM. Un oscillateur VCO 

externe avec un generateur de fonction est utilise pour generer le signal FM de base 

requis. Un reflecteur a angle est utilise comme station cible placee hors de l'ecran radar. 

La sortie du recepteur SI est filtre avec un filtre passe-bas avant d'etre mesure a l'aide 

d'un analyseur de spectre. La frequence du signal a son amplitude maximale est 

enregistree, ce qui est relie de facon lineaire a la portee de la cible. La frequence 

mesuree du recepteur SI en fonction de la portee de la cible demontre la linearite du 

systeme, ce qui confirme la fonctionnalite du front-end pour un systeme radar FMCW 

utilisant des ondes de forme LFM. 
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Enfin, parce que le radar FMCW et le radar a etalement de spectre emploient des 

techniques de traitement d'auto-correlation du signal, il est possible de concevoir un 

systeme front-end approprie pour les deux radars. En modifiant le signal de base par 

l'intermediaire d'un synthetiseur numerique direct, les differentes parties du radar 

peuvent etre realisees grace a des logiciels de controle. En ce sens, il est possible de 

denommer ce type de radar comme defini par logiciel. 

Conclusion et travaux futurs 

Le concept d'un systeme sur substrat {system on substrate, SoS) radar FMCW integre 

front-end a ete presente avec un prototype experimental. L'application des CIS dans le 

design des MICs permet une integration complete au niveau du systeme. Le SoS integre 

est essentiellement un circuit micro-ondes tridimensionnel fait par le biais du processus 

de fabrication PCB planaire bidimensionnel. Comparee a la technologie monolithique, la 

strategic d'integration hybride proposee offre une possibilite unique d'exploiter les 

avantages complementaires de chaque element tout en eliminant (en partie au moins, si 

ce n'est completement) les inconvenients inherents. Par consequent, un systeme complet 

avec les differentes structures guide d'ondes peut etre construit en meme temps sur un 

seul substrat de maniere coherente. En fait, une conception du systeme CIS n'est pas (et 

ne devrait pas etre) limitee a une seule structure guide d'ondes. Un SoS complexe et 

polyvalent pourrait egalement inclure differentes structures guide d'ondes integrees au 

substrat, telles que le guide d'ondes dielectrique integre au substrat non rayonnant, le 

guide d'ondes integre substrat, le guide d'ondes image integre au substrat pour en 
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nommer quelques-uns, et les structures guidees planaires classiques comme la ligne 

microruban et le guide d'ondes coplanaire. 
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CHAPTER 1 INTRODUCTION 

Microwave and millimetre-wave technologies are critical for future wireless systems 

and electromagnetic applications such as high-speed personal-area networks and radar 

sensors [1-5]. Conventional metallic waveguide technology is well matured and widely 

accepted by the industry. Good component performances are offered through this 

technology, especially for some high quality-factor applications such as antennas, 

cavities, diplexers and so on. Nevertheless, waveguide components normally are bulky 

and generally require precision metallic machining, which makes many microwave 

systems very expensive and mostly limit their usages in military applications such as 

radars, or very specific commercial applications such as satellites. As time goes on, the 

continuous demands of the industry for higher performances, more compact size, lower 

fabrication cost, as well as the rapid development of civil market such as the need for 

high-speed wireless data connection, significantly stimulate the research on monolithic 

microwave integrated circuits (MMICs) [6]. Based on planar microwave transmission 

lines, this technology is well suited for active components such as mixers and amplifiers, 

where diodes and transistors such as FETs can be integrated conveniently on 

semiconductor materials. Up to date, some integrated transceiver MMICs, either for 

sensor applications or for telecommunication applications, have successfully been 

demonstrated. However, the deployment of a low-cost, mass-producible and high-

performance integrated system remains a challenging issue. This is because many high 

quality (Q) factor components are difficult to get integrated into an MMIC, especially 
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antennas and filters. Quite often, this class of components are seen as individual building 

blocks within a microwave system [7, 8]. There has always been a need for an 

integration approach which can combine the advantage of high-Q owned by non-planar 

metallic waveguide technology, and the advantage of suitability for mass-production of 

planar MICs technology. 

As an answer to such a specific challenge, the substrate-integrated-circuits (SICs) is 

widely considered as a potential candidate for the next generation microwave 

/millimetre-wave integrated circuits integration approach both within research societies 

as well as industrial communities. Being a new hybrid integration methodology, SICs [9] 

offers a unique opportunity to integrate geometrical dissimilar waveguiding structures in 

a uniform manner on a piece of substrate. The basic principle of the SICs is to design or 

synthesize the conventional non-planar structures in the form of "planar circuits", so that 

the planar and non-planar structures can be made onto a single substrate with existing 

manufacturing techniques [10-12]. To do so, substrate synthesis techniques are used, 

which confine waves guided along substrate with metallised cut-through channels (or 

vias) on the substrate, or make use of air-filled holes to create an artificial dielectric 

guiding channel with the contrast of equivalent dielectric constant [12]. The significance 

of this integration approach is that conventional challenges encountered in planar 

integration industry can be overcome in an unconventional way by a conventional 

fabrication process. For example, the classic waveguide cavity structures can be 

fabricated in a planar profile with more compact profile [13, 14]. 
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A class of substrate integrated waveguiding platforms was developed based on this 

synthesized integration approach. Some typical examples are the substrate integrated 

non-radiating dielectric guide (SINRD) [15, 16], the substrate integrated waveguide 

(SIW) [17, 18], the substrate integrated image guide (SIIG) [19] and so on. Among them, 

the SIW is the most extensively studied geometry. This could be because the electric 

field profile of the SIW is most similar to microstrip, a widely adopted planar MICs 

technology currently. The field transition between these two structures is smooth and 

low loss over a wide bandwidth. Therefore, it is very convenient to use the SIW in 

conjunction with other existing planar structures. 

As far as the electromagnetic wave propagation mechanisms are concerned, the 

SIWs are quite similar to classic metallic waveguides. However, there are some different 

features inherent to the integrated SIW structures. For example, the resonant 

characteristics of a standing wave fed SIW slot array antenna is different from that of a 

metallic waveguide structure, where waveguides are all air-filled instead of dielectric-

filled. The result is that the equivalent admittance of the slot cut on the SIW is more 

depend on its offset from the center because of the dielectric filling and waveguide 

height reduction. 

Meanwhile, some classic post-fabrication tuning work for waveguide components 

can be relieved to a great extent by deploying the planar fabrication process. For 

example, the port match tuning based on an inductive metal post at the input port for a 

classic waveguide power divider can be realized easily by embedding a metallized via 

hole on the substrate. 
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It is worth mentioning that the research concerning SIWs has progressed much 

beyond its original concept as a laminated waveguide for applications such as antenna 

feeding structures[20]. Many new devices featuring excellent performances while 

exhibiting a compact profile were reported in a review article [12]. A typical example of 

this statement is a planar cavity oscillator, which is usually realized using a metallic 

cavity or a low-Q microstrip resonator [13]. In fact, as a member of the entire SICs 

family, the development of SIWs has well established its own set of design methods, 

rules and postulates and evolves into a systematic self-encapsulated integration 

discipline [18]. The concept of the SICs applies more to a fundamental methodology 

issue than simply an integration approach. 

The design philosophy of SICs is not to fabricate every microwave integrated 

circuits using a monotonous integration strategy. Instead, SICs offers an integration 

technology which can exploit and combine the technical merits of different integration 

approaches. Meanwhile, this SIC methodology may eliminate the technical 

disadvantages of different integration approaches, partly at least if not completely, which 

is illustrated by a SIC mixer using a surface-volume hybrid integration approach in this 

work. An analogy can be made is that the SICs is not intended to be a key which is able 

to open every door. Instead, it is a balanced integration technology between different 

available technologies such as exchanging substrate size with quality-factor (e.g. 

microstrip, small size, lower-Q factor vs. SIW, larger size, higher-Q factor). It is also a 

bridge among different waveguiding structure geometries, which has already been 

proven by many developed transitions between planar structures and non-planar 
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structures [17]. It is an art where the designer's understanding of waveguiding 

mechanisms is crucial to make a proper decision on the selection of versatile integration 

technology. 

Up to date, many interesting SICs components with very compact profile have been 

reported. However, so far, most of the research results in this area are still limited to 

fundamental demonstrations of single passive or active SICs components. Many of the 

advantages of general SICs are still not fully explored. Among them, one most 

interesting aspect in the SICs design is the potential ability to integrate a complete 

system on a single piece of substrate including a radiating element — antenna, which can 

be designed most suitably with a non-planar structure. System level integration of this 

concept remains a question mark. The entire SICs building misses an important brick, i.e. 

a system-on-substrate integration demonstration [21]. The aim to answer this question 

constitutes the first fundamental motivation of this research. 

Examining from the application side of microwave industry, one important 

commercial application is the short range frequency-modulation continuous-wave 

(FMCW) radar sensor, with typical functions such as level measuring and automotive 

cruise control [22]. The initial driving forces behind these research activities were 

mostly military applications [23, 24]. A large amount of efforts were put on the 

automotive application since the 1990's [4, 22, 25-27], when the matured GaAs 

monolithic integration technology opened the door for low-cost mass-production-based 

commercial applications. Many of these systems are constructed with an integrated 

transceiver chip and separate 3-D antennas, such as horn, lens or dish [7, 8]. The 
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fundamental limitation on system level integration is that a high directive, high-efficient 

and high-gain antenna system is simply not available based on a resistive semi-

conductive material. Therefore, a more realistic approach is to fabricate a high 

performance antenna separately, and then interconnect the antenna to a monolithic 

transceiver through a planar-to-nonplanar transition structure. However, the required 

transitions between planar MMIC chips and non-planar antennas usually complicate the 

design and installation of the whole system and also increase the system cost, which may 

overshadow the advantages of employing the integrated MMICs. 

This challenge, however, can be resolved relatively simple by using SICs integration 

technology, based on the fact that high performance waveguide type antennas could be 

designed through this technology. The objective to combine the superior integration 

ability of SICs and the application of a short range radar system becomes the second 

motivation of this research work. The output of this initiative constitutes the first 

contribution of this work. 

The thesis is organized into five chapters, as outlined below. 

Following this introduction, chapter 2 gives the design of the front-end system from 

the perspective of a set of performances specified functional blocks. The desired system 

performance is created by the interaction of these building blocks based on 

specified/synthesized block performances. As a matter of fact, the system design is a 

bilateral analysis-synthesis process throughout this work, in order to obtain achievable 

individual building block specifications with an acceptable design cost. The system 

design methodology includes system topology selection (homodyne/super-heterodyne) 
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and IF selection in terms of mixer spurious response (spurs) analysis/synthesis, linear 

gain/return loss analysis/synthesis and non-linear products/intermodulation levels 

analysis/synthesis. Based upon the system design method mentioned above, a test-bed 

using commercially available components was designed and tested. This part of the 

work was published in [28]. 

Chapter 3 presents different proposed antenna solutions for the radar system. Based 

on the chronological sequence of the development of this project, the design of a quasi-

integrated H-plane sector horn [29], a nonplanar surface mountable horn [30] and an 

integrated SIW slot array [31] are investigated. Their pros and cons in the application of 

radar are discussed upon the measured antenna parameters. 

Chapter 4 is devoted to the design of two different SIW and SICs mixers. An SIC 

mixer is proposed, which attempts to combine the advantages of different waveguiding 

structures as well as remove the limitations of each, based upon a proposed "surface-

volume" [11] integration technique. The proposed SIC mixer performances are carefully 

compared with a mixer designed using conventional microstrip technology. Conclusion 

is made that the "surface-volume" integration approach indeed demonstrates a superior 

applicability compared with a monotonous integration approach. This is the second 

contribution of this work. 

Integration issues unique to an FMCW radar front-end system-on-substrate are 

studied in chapter 5, such as the proper selection of different mixers, the leakage 

between two sets of antennas and its effect on the overall radar performances [32] and so 

on. The functionality of the front-end alone and the functionality of the front-end as in 
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FMCW radar are verified separately through different experiments. The measured data 

are carefully discussed as well. A conclusion and directions for future research work in 

this area are given in the end of the thesis. 
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CHAPTER 2 FRONT-END SYSTEM DESIGN 

2.1 System Topology and Intermediate Frequency Selection 

Two distinctively different FMCW radar systems are shown in figures below. The 

major difference lies on the selection of receiver intermediate frequency (IF) which 

leads to two different systems, namely, a heterodyne system and a homodyne system, 

also known as a high-IF system and a zero-IF system [4, 5, 33]. 

As shown in Figure 2-1, there is a central frequency shift Af in the direct signal path 

between the FM generator and the receiver mixer. The amount of frequency offset is 

determined by transmitted spectrum width, filter design parameters in selecting the 

sideband, and the requirements for suppression of other parts of the signal spectrum. The 

basic purpose of the central frequency shift is the realization of a classical heterodyne 

reception. As the central frequencies of direct and reflected signals are separated by Af 

the converted signal spectrum will be grouped around that frequency. This permits the 

amplification of a received signal by an IF band-pass amplifier, as in the case of a 

typical heterodyne receiver with high receiver sensitivity. One major issue in heterodyne 

receivers is the suppression of unwanted image signals using filters with high quality 

factor, which requires careful filter design to reject unwanted sideband. Consequently, 

these multiple stages of down-conversion and amplification significantly increase the 

difficulty of system level integration and add to the complexity and cost of the system. 
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Figure 2- 2. Homodyne FMCW radar with zero intermediate frequency. 

Shown in Figure 2-2 is a zero-IF system, also known as a homodyne system. In the 

case of homodyne FMCW radar, the reflected signal is directly down-converted to base­

band by mixing with the reference signal. The mixer output is immediately followed by 

low pass filters and a chain of high-gain direct-coupled amplifiers that can amplify the 

demodulated base-band signals. The homodyne systems are quite attractive and widely 

adopted mainly due to the simplicity of its direct conversion receiver architecture, which 

is essential for ultra-compact, low-power and low-cost applications [25]. If implemented 
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successfully, homodyne FMCW radar systems are the most compact realizations one can 

achieve [8, 24]. 

Both of the two system architectures have their unique advantages and disadvantages 

in terms of system integration, topology complexity and signal distortion. For example, 

in the case of a homodyne system, because of the presence of a strong in-band LO signal, 

the generation of DC offset is unavoidable due to LO self-mixing. The extraneous DC 

voltage in the demodulated spectrum of a homodyne FMCW radar receiver will be 

amplified immediately by the following baseband amplifier stages. Therefore those 

unwanted DC offsets could not only corrupt the output, but also propagate through the 

baseband circuitry and saturate the subsequent stages. The separation of the down-

converted output from the extraneous DC offset becomes troublesome. In the other hand, 

the heterodyne approach can eliminate the DC offsets very easily through capacitive 

coupling, but suffers the image interference unless multiple conversion stages and band 

pass filters are deployed in the system. 

To accommodate these advantages and limitations, some modifications have to be 

made in the integrated system. In this work, the integrated radar receiver is implemented 

on the basis of a homodyne architecture for the purpose of simplicity. However, to 

reduce the free space leakage problem associated single antenna homodyne system, two 

integrated SIW antennas are used for transmitter and receiver respectively. This is a 

significant advantage associated with the SIW technology in a system design, which 

enables a high density integration scheme including dual antennas on the same substrate. 
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The measured free space leakage between both antennas is over 40 dB, which presents a 

significant improvement compared to the design using one antenna plus a circulator. 

In the radar transmitter, care must be taken to select an appropriate IF to facilitate the 

filtering after up-converting. As a general case, the output spectra of a mixer are defined 

by the order of RF harmonics and LO harmonics with fIF = mfL0 + nfRF where m and n 

are integers. 

Considering a system with an LO of 24.05 GHz and IF bandwidth of 30 MHz -105 

MHz generated from a sweeping VCO , the transmitter up-converter output spur chart is 

plotted in Figure 2-3. The mixer output spurious response (spur) including the upper-

side-band component (USB) and the lower-side-band (LSB) component are defined by 

IRF = fw + fiF a n d fxF ' = /LO- fir respectively, which correspond to f1F = -fLO + fRF 

(m,n)=(-l,l) as the red line shown in the spur chart and f1F' = fL0-fRF (m,n)=(l,-l) as 

the black line shown in the spur chart. The LSB and USB bandwidth are 23.945 

GHz~24.02 GHz and 24.08 GHz~24.155 GHz respectively. To separate the two bands 

apart, a filter with a transit band of 0.06 GHz over 24 GHz would be required, which 

means a 0.249% relative bandwidth. This filtering task becomes almost impossible 

because of the low IF selection. On the other hand, if a higher IF is selected so that the 

LSB, LO and USB bands can be widely separated, then the filtering circuitry 

requirements will be greatly relieved. In this work, a 2.4-GHz IF is selected as the front-

end transmitter IF. The related mixer output spur chart [34] is plotted in Figure 2-4 as 

shown below. 
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Mixer Spur Chart LO=24.05GHz, 
IF=0.030GHz~0.105GHz 
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Figure 2- 3. Transmitter mixer spurious response chart (IF=67 MHz). 

Mixer Spur Chart LO=21.682GHz, 
IF=2.343GHz~2.543GHz 
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Figure 2- 4. Transmitter mixer spurious response chart (IF=2.4 GHz). 
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With an IF bandwidth from 2.343 GHz~2.543 GHz and LO 21.682 GHz, the LSB 

band and USB band are 19.139 GHz~19.339 GHz and 24.025 GHz~24.225 GHz 

respectively. For this selected IF, the relative filter transit band is increased to 19.4%. 

Under this circumstance, a high pass filter in the form of a section of SIW or a narrow 

band antenna can be integrated within the substrate to attenuate the undesired signal. A 

proposed front-end system block diagram is shown in Figure 2-5. 

^H> 
VCO/DDS Up-converter FIL 

X < 

3dB 

I Information 
• ̂ Processing ) 

SIW slot array 

I * . 

Down|converter 

SIW slot array 

Figure 2- 5. An FMCW radar with a zero-IF receiver, a high-IF transmitter. 

2.2 Cascade System Linear Gain Analysis 

The system gain is contributed by the gain or loss of each individual building block 

and the interconnecting transitions and adapters. For an ideal system where all the 

building blocks have the same nominal port impedance, say 50Q., the system gain will 

simply be the sum of the individuals. However, the mismatch between different building 

blocks or transitions between different waveguiding structures such as microstrip-to-

SIW transition will complicate the system gain calculation, because they may create 
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reflections or multiple-reflections due to their bilateral characteristics. In order to 

accurately estimate the cascade gain, the mismatches between different cascaded 

modules must be modeled and accounted for [35]. An approach treating the multiple 

reflections effects as a feed-back network is adopted in this work [36]. Consider a 

bilateral interconnection module j between two modules j-1 andy'+l, with a voltage 

transfer ratio represented by y, the voltage at the output of this cascade is v0,j+i, the 

voltage at the input is V0JT • The net forward signal gain estimation should include the 

multiple reflections created among these modules. Therefore, the contribution to the 

cascade gain variance caused by individual mismatches can be modeled by the following 

network as in Figure 2-6 [36, 37]. 

SIW component 

=S22j-1 

SlW-microstrip Wire-bonded 
transition MMIC 

Module./-/ 

j, bilateral 
module 

Module j+1 

"ojl 

•Kl 
^ 
-J 
\ 

$22,1-1 

w *j 

h S'//,/+/ 

Vu,j+1 

Figure 2- 6. Modeling a three-module cascade with imperfect port matching. 

The closed-loop equation is given by 
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[ V + (S22J-l • f/ • Sl 1„/+1) •
 VoJ+l 1 • Tj = V

0, ;+i 

V ^ + ^j-r'Z-y •5 lu+1-vOJ+1=vOJ+] (2.1) 

Vo/T 1 ~~ ^22,7-1" T / '^11J+1 

— n-
ad »-jPd 

where T ; can be modeled as T], = e ff • e 

The closed loop voltage transfer function is given by 

a. = -J^lL = i-2 (2.2) 
Vo/T 1 $22,1-1 ~Tj 'S\\J+l 

The open-loop (round-trip, shorted as RT in subscript) voltage transfer function can be 

obtained by 

\fy | _ | T |2 I O I | O | 
I "'RTj M t,/' I I 0 22, / - l I I °ll,y+l I 

2 ra^.-i f w i ? ; + 1 - i (2.3) 

The corresponding forward power gain is given by 

* _,* 0-^ J - , - ' - / -S„ J . , ) [ l - ^ 1 •(!•/)•*,„] 

*>? 
1 5 2 2 j - i ' T / ' "Si w+i - 5'22.,,1 ' (

T / ) ' 5,
11,7+1

 + I S22j-i • Tj • S\ u+i I" 

\iA 
1 -21 S22iH • r,2 • 5!U/+11 • cos(Z511,/+1 + ZS22J_X -2/3d)+1 S22J_X • r / • SUJ+l |

2 

\tjt 
1 -21522;i_j • r.2 • 5,u+11 • cos0+1 522>j,_! • T;.

2 • S, 1 / + 1 1 2 

(2.4) 

where 0 = ZSllJ+i +ZS22J_1-2fid 

Using (2.3) and we have 
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g, = —t—r^n—a <2-5) 

1 - 21 orR7>. | cos 0+1 fl^^. | 

Therefore, the minimum and maximum forward voltage gain can be given by 

l « / U = i . | T / ' = 7 - ^ ~ (2-6) ^ i / Imax j ( ? 1 I 
" • fY \ + \ (Y I t— 6^pT; 

and | a, |min = , | T / I = - ! j ^ - (2.7) 

when cos# varies from 1 to -1 representing the sum up effect of multiple reflections is in 

phase or off-phase. The average gain of interconnection module^' is obtained by 

g 
^•l2 r2* dO 

'' 2;r * 1-21 a„ * DT: 1 v U 3 C7~T" I / D T ; 

I 7 / ' 2 . . . . 
- \ (7 \ • \ (Y 1 10CRTj 

|2 ' / 'max I / tmm 

To write in dB form we have 

G.=10logg.=10lo g i ' + I 0 l o g — U 
l - aBT lJr\oc, RT \ *• ' I " W 

ITI Irl (2-9) 
20log ' ' +20log ' ' _ 

\-\a I \+\a G + G. 
_ _ _ _ 

The maximum gain deviation of the interconnection caused by multiple reflections can 

be expressed (in dB) as 
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A =G. -G.=G. - G / - m a x + G / ' m i n 

max /,max / ,/,niax ^ 

G G \T\ ITI 
/,max /,min i n i ' 1A1 M / T i n \ 

= — T — = 101og - lOlog— (2.10) 
2 2 1-1 ««r I 1+1 ^sr I 

= 10 log ^ 1 1-1 a I 

The overall cascade system gain variance can then be determined upon the cumulative of 

the gain variance of each individual module. The worst case and best case cascade gain 

can be estimated based on the calculated overall gain variance. Using a spreadsheet, the 

system gain behaviour can be estimated based on this method. 

The above mentioned cascade gain estimation approach is not limited to integrated 

system design. Systems using multiple-chip-modules interconnected by adapters or 

cables can also be estimated by this method. In this work, a radar front-end prototype 

using commercially available components was designed using the above mentioned 

approach to estimate the cascaded gain. A design example is shown in the Table 2-1. A 

description of the procedure to calculate the cascade gain is given as follows. The first 

part of the table describes the behaviour of each individual building block including the 

gain and port matching conditions. Active modules such as amplifiers and mixers are 

assumed to be unilateral. Their gain variances come from measurement results within 

the operating frequency bandwidth. Passive modules such as transitions or adapters are 

bilateral and they are the cause of multiple reflections. A baseband VCO is measured 

with 0 dBm output power and a +/- 1.0 dBm variance, i.e. -1.0 dBm to 1.0 dBm. The 

output return loss of this VCO is 9 dB, from which the output VSWR of 2.09 can be 

calculated. This VCO module is connected to an up-converter through an 
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interconnection (adapter), which has a 1.5 dB insertion loss and a measured port VSWR 

of 1.2. Based on Eq. 2.3, the open-loop gain of this interconnection including multiple 

reflection effect between the VCO output and up-converter input port can be calculated 

as 0.022. A gain variance of 0.2 dB will be caused by this value, from Eq. 2.10. The gain 

(power level) variance is calculated in the second part of the work sheet, where gain 

variance caused by the mismatching at each individual module port is computed. It is 

reflected in the second part that the gain of the adapter will be varied between -1.5 (dB)-

0.2 (dB)= -1.7 (dB) to -1.5 (dB)+0.2 (dB)= -1.3 (dB). These numbers are accumulated 

consecutively at the third part of the work sheet, where the gain variance and gain of the 

cascaded modules are summed up. Therefore, at the output of the adapter in the 

cascaded, when multiple-reflection effect is taken into account, the power level is 

estimated to be varied between -1.0 (dBm)+(-1.7 (dB))= -2.7 (dBm) and 1.0 (dBm)+ (-

1.3 (dB))= -0.3 (dBm), as shown in the third part of the table. The net gain variance at 

the adapter output port is the summed up of the variance of the VCO module and the 

interconnection module, i.e. 1.0 (dB)+0.2 (dB)=1.2 (dB). Consecutively, the output 

power level at each stage in the cascaded system can be calculated and the entire cascade 

gain performances can be estimated this way. 
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Table 2- 1. System linear gain analysis/synthesis. 

vco 
adapter 

Mixer 

filter high_pass 

Driver Amp. 

3dB power Div 

Power Amp. 

Gain 

nom 

0.0 dB 

-1.5 dB 

-8.0 dB 

-1.5 dB 

16.0 dB 

-4.0 dB 

13.0 dB 

Gain 

+/-

1.0 dB 

2.0 dB 

2.0 dB 

2.0 dB 

SWR 

at out 

2.09987834 

1.2 

1.3289767 

2 

1.92495059 

1.1 

1.67089966 

K T | 

0.02283 

0.03333 

0.00599 

PortSn 

-17 dB 

-10 dB 

-12.0 dB 

RL 

9dB 

17 dB 

10.0 dB 

12.0 dB 

Derived 

VCO 

adapter 

Mixer 

filter_high_pass 

Driver Amp. 

3dB power Div 

Power Amp. 

Gain 

mean 

0.00 dB 

-1.50 dB 

-8.00 dB 

-1.50 dB 

16.00 dB 

-4.00 dB 

13.00 dB 

Gain 

max 

1.00 dB 

-1.30 dB 

-6.00 dB 

-1.21 dB 

18.00 dB 

-3.95 dB 

15.00 dB 

Gain 

min 

-1.00 dB 

-1.70 dB 

-10.00 dB 

-1.78 dB 

14.00 dB 

-4.05 dB 

ll.OOdB 

Gain 

± 

1.00 dB 

0.20 dB 

2.00 dB 

0.29 dB 

2.00 dB 

0.05 dB 

2.00 dB 

Cumulative 

At the output of 

VCO 1 

adapter 

Mixer 

filter_high_pass 

Driver Amp. 

3dB power Div 

Power Amp. 

Pwr 

0.00 dBm 

-1.50 dBm 

-9.50 dBm 

-10.99 dBm 

5.01 dBm 

1.01 dBm 

14.01 dBm 

max Pwr 

1.00 dBm 

-0.30 dBm 

-6.30 dBm 

-7.50 dBm 

10.50 dBm 

6.55 dBm 

21.55 dBm 

min Pwr 

-1.00 dBm 

-2.70 dBm 

-12.70 dBm 

-14.48 dBm 

-0.48 dBm 

-4.53 dBm 

6.47 dBm 

Var 

1.00 dB 

1.20 dB 

3.20 dB 

3.49 dB 

5.49 dB 

5.54 dB 

7.54 dB 
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2.3 Cascade System Nonlinear Intermodulation Products and Intercept 
Points Analysis 

Apart from the linear gain analysis of a cascaded system, the nonlinear analysis of a 

system is also an important part in the design process. Assuming that none of the 

modules of the cascaded system are input too much power or are saturated, i.e. the input 

power level for different modules are well below the 1-dB saturation point (PldB point) 

for active circuits, the most problematic nonlinear issue concerning a system is the 

generated intermodulation distortion (IMD) products in the cascaded stages. When the 

nonlinearity of active devices is modeled as a three-term power series, a convenient way 

to express this characteristic is to use intercept points, which is the quantitative 

description of its intermodulation products (intermods) levels. Because its frequency is 

by nature adjacent to in-band signal, third order intermodulation distortion products 

analysis is absolutely necessary for microwave system design. As the active devices will 

saturate long before 3rd-order IMD product intercepts the fundamental output power, the 

measurement of IP3 is usually carried out when the devices are operated well within the 

small signal region and the IP3 is usually approximated from the interception between 

the extrapolation of the third order IMD and the fundamental output power. A common 

estimation for this signal level is 10 dB lower than PldB gain compression point. For a 

two port active device such as an amplifier, the output 3rd intercept point (OIP3) is 

given by 

0 / P 3 = P ^ + | , (2.H) 
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where Pout,F is the output power level in dB, A is the level (in dBc) of the IMD relative to 

the fundamental. For a three port active device such as a mixer, input 3rd intercept point 

is usually measured by 

A 
im=A+-

as demonstrated in the graph. 

IMD1 IF1 IF2 IMD2 LO RF1 RF2 

(2.12) 

Figure 2- 7. Spectrum components of a mixer with two-tones input. 

The calculation of IP3s of a cascaded system is well documented in many resources 

such as [38]. In order to facilitate the calculation of nonlinear products in a cascaded 

system, we assume that the gain of each individual block is the same for all of the 

signals of interest, including the fundamental signals and their intermods. The general 

cascaded intermods calculation can actually be simplified based on a two-modules-

cascade model, with one module representing the second module and the other 

representing the cascade of all preceding modules. 
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The intermod power of the first module at its output port can be written as [36] 

Po,jMi(m±f2)=Po,l'TPm''F2 (2.i3) 
PoiP3,IM 

where Fl and F2 refer to tone 1 and tone 2 respectively. 

Since we have assumed the same frequency response for IMDs too, after the second 

module, the total IMDs at the cascade output is the sum of the IMDs from the first 

module times the gain of the second module, plus the newly generated IMDs at the 

second module. As it is pointed in [39], IMDs which are close to each other (in 

frequency) tend to be in phase, which means that IMDs created at different modules 

should be combined voltage-wisely, i.e. IMDs voltage amplitude summation is a more 

accurate estimation of the worst case IMD estimation of a cascade system. Because of 

this, the total IMDs at the output of the cascade can be expressed as [36] 

1/2 1/2 
1/2 /,r\ r i r \ _ 1/2 Pout,F\,\Pout,F2,\ Pout,F\,2Pout,F2,2 ( 0 \ A \ 

PoiP3,IM,\ Pom,IM,2 

_ V^2 ' Pout,F\,\)\Sl ' Pout,F2,\) Pout,F\,2Pout,F2,2 sj i r\ 

§2 ' PoiPl,IM,\ PoiPl,lM,2 

Note that 

(2.16) 

(2.17) 

g2-P out,F\,\ r out,F\,case 

(2.18) 

g2-P out,F2,l rout,F2,casc 

(2.19) 

out,F 2,2 rout, F'2, case 
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Then (2.15) is rewritten as 

1/2 iA-O -f 4- -f \ * out,F\,casr out,F2,cas . r out,F\,casr out,F2,cas /ry ^s\\ 
P out,IM3,casc V—LJ\ — Jl) ~ ' \L.L\i) 

§2 ' PoiPl,lM,\ PoiP3,IM,2 

P out,IM3,casc\—^Jl — J2) ~ Pout,F\,case ' P out,F2,casc\ ' ) (•'••*•'•) 

§2 ' PoiP3,IM,l PoiPl,lM,2 

2 1 1 2 
Pout,Ml,case y—^Jl — J 2 ) ~ P out,Fl,casc ' Pout,F2,casc 1 ' ) ( 2 . 2 2 ) 

§2' PoiP3JM,\ PoiP3JM,2 

The 0IP3 of the two-modules cascade system can be found as in [40] 

1 1 1 , o ^ 
-+ (2.23) PoiP\casc SlPoiPW PoiP3,2 

To translate the IP3 points from output port to input port, times the gain of the two 

modules gig2 at both sides of the equation above and we have 

1 _ g. , 8l82 + ^ 1 * 2 _ ( 2 2 4 ) 

Pom,cas ' 8l§2 PoiPl,\ PoiP3, 

= + = (2.25) 
PoiP3,l ' 8l PoiPi,2 ' 8i82 PlIP3,cas 

Therefore it is evident for a two module cascade, the worst case IP3 estimation can be 

made by 

1 _ 1 . ft + ̂ ^ _ (2.26) 
P]JP3,cas P]JPl,l Pj/P3,2 

A design of cascaded transmitter is shown in the table below. It should be noticed that 

very often in practice, output IP3s are cited in case of amplifier, input IP3s are cited in 

case of mixer. 

file:///L.L/i
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Table 2- 2. System non-linear products analysis/synthesis. 

VCOl 

adapter 

Mixer 

Filter_high 

Driver Amplifier 

3dB power divider 

Power Amplifier 

Gain 

nom 

0.0 dB 

-1.5 dB 

-8.0 dB 

-1.5 dB 

16.0 dB 

-4.0 dB 

13.0 dB 

Gain 

+/-

1.0 dB 

2.0 dB 

2.0 dB 

2.0 dB 

SWR 

at out 

2.099878 

1.2 

1.328 

2 

1.924951 

1.1 

1.6709 

|aRT| 

0.0228 

0.0332 

0.0060 

Intermodulation products-3rd 

OIP3 

5.1 dBm 

IIP3 with 

39.0 dBm 23.0 dBm 

26.0 dBm 

Derived 

VCOl 

adapter 

Mixer 

Filter_high 

Driver Amplifier 

3dB power divider 

Power Amplifier 

Gain 

mean 

0.00 dB 

-1.50 dB 

-8.00 dB 

-1.50 dB 

16.00 dB 

-4.00 dB 

13.00 dB 

max 

1.00 dB 

-1.30 dB 

-6.00 dB 

-1.21 dB 

18.00 dB 

-3.95 dB 

15.00 dB 

min 

-1.00 dB 

-1.70 dB 

-10.00 dB 

-1.78 dB 

14.00 dB 

-4.05 dB 

ll.OOdB 

± 

1.00 

0.20 

2.00 

0.29 

2.00 

0.05 

2.00 

Cumulative 

at output of 

VCOl 

adapter 

Mixer 

Filterhigh 

mixer from in 

mixer at out 

3dB power divider 

Power Amplifier 

output power 

mean Pwr 

0.00 dBm 

-1.50 dBm 

-9.50 dBm 

-10.99 dBm 

5.01 dBm 

5.01 dBm 

1.01 dBm 

14.01 dBm 

max Pwr 

1.00 dBm 

-0.30 dBm 

-6.30 dBm 

-7.51 dBm 

10.49 dBrr 

10.49 dBrr 

6.55 dBm 

21.55 dBrr 

min Pwr 

-1.00 dBm 

-2.70 dBm 

-12.70 dBm 

-14.48 dBm 

-0.48 dBm 

-0.48 dBm 

i -4.53 dBm 

i 6.47 dBm 

±Gain 

1.00 dB 

1.20 dB 

3.20 dB 

3.49 dB 

5.49 dB 

5.54 dB 

7.54 dB 

I1P3 

mean 

14.61 

14.61 

14.5 

14.5 

10.0 

IIP3 with 

max gain 

) 11.40 

) 11.40 

11.38 

5 11.38 

5 11.19 

7 11.19 

IIP3 with 

min gain 

17.80 

17.80 

17.69 

17.69 

16.95 

16.95 
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2.4 Test-bed Using Multiple Chip Modules 

A test-bed using commercially available multiple-chip modules based on the above 

design methodology was designed and part of the results were published in [28]. A wide 

tuning bandwidth VCO is used to generate a triangular FM signal. Tuning voltages are 

carefully selected so that the VCO works in a relatively linear tuning range. A 211 MHz 

FM signal centered at 2.443 GHz is generated to provide a LFM signal. For a triangular 

modulation scheme, the demodulated mixer output signal frequency/R is related to the 

target range by 

4 -Af-f R 
R ~ 

c 

where fm is the modulation frequency, Af is the tuning bandwidth, R is the distance 

between the target and the radar and c is the speed of light. A range measurement with a 

0.25 m range step by using a corner reflector as a target is performed. A linear response 

of the measured output IF frequency as a function of target range is observed, which 

confirms the functionality of the design methodology. 
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CHAPTER 3 RADAR ANTENNA DESIGN 

Different antenna solutions were studied in this work including an H-plane sector horn 

antenna, a surface mountable pyramidal horn antenna and an SIW slot array antenna. 

These different types of antenna have their own advantages and limitations in terms of 

electrical performances such as radiation pattern, input impedance matching, operating 

bandwidth and mechanic considerations in connection with the integration with other 

front-end components, profile size, fabrication difficulties and so on. This chapter 

discusses the design considerations, integration issues, measurement results and their 

applications in radar system. 

3.1 H-Plane Sector Horn 

This antenna was the first antenna prototype considered in this thesis work for the 

integrated radar system [29]. The origin of this proposal comes from the quasi-

waveguide geometrical resemblance between SIW and a full waveguide. This is because 

a classic metallic waveguide H-plane sector horn is nothing but a waveguide aperture 

flared into a large opening on the H-plane. However, significant radiation would not 

happen if the two parallel metallized via holes of SIW are flared open only on one 

substrate layer. The physical explanation of this is related to the very thin substrate 

thickness, compared with propagation wavelength, will confine the electromagnetic 
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waves within the substrate instead of radiating. An electromagnetic explication is that 

the displacement current will close within the substrate instead of closing at the far field 

to constitute radiation. To design a radiating structure using this concept, a larger 

opening in terms of propagation wavelength at the physical aperture of the antenna must 

be obtained, especially in the E-plane. The original idea has therefore evolved into using 

two substrate layers to sandwich a low permittivity foam layer in between. As such, an 

aperture with 0.661 on the E-plane can be formed and the H-plane has an opening of 

7.211. A schematic view of the proposed H-plane sector horn is shown in Figure 3-1. 

Because the two linear equally spaced metal post arrays act as electric walls, the 

excited mode inside the input SIW section is quasi-TElO mode. Therefore, Huygen's 

equivalent principle can be applied to the aperture across the opening to obtain 

equivalent current on the aperture. The far-field magnetic vector potential A and electric 

vector potential F can be obtained by integrating equivalent electric and magnetic 

currents over the aperture. Assuming aperture fields are associated with transverse 

electric fields of the waveguide through a quadratic phase item [41], then the 

substitution of this relationship into magnetic vector potential and electric vector 

potential will result in a two-dimensional Fourier transform. Far-field electric fields and 

magnetic fields can then be obtained from the electric vector potential and magnetic 

vector potential. 
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Figure 3- 1. Schematic view of a substrate integrated horn antenna. 

Based on the above design principles, the horn antenna pattern can be computed with 

following formulas [41]. The E-plane pattern (<p=90°) is given by 

FEW = 
1 + cos 6 sin[(/76 / 2) sin 6 sin (p\ 

2 (/?6/2)sin<9sin#> 
(3.1) 

and the H-plane pattern is given by 

FH(0) = 
1 + cosfl I(O,<p = 0) 

2 1(0 = 0°, #> = 0 ° ) 
(3.2) 

where 

j(R\ I2p)(p sin 6 cos qn-nlAf 
I{e,<p) = e 

j(R\l2p%psm0cos<p-nlAy 

[C(52 ' )- jS(s2')-C(sl') + jS(sl'}] + 

[C(,t2<)-jS(t2<)-C{tx<) + jS(tx<)-\ 
(3.3) 

s, = 
1 fiA 

7tfiRx 2 

7tR 
(3.4) 

1 .ft A n a • a 7CR\. 
KpRx 2 A 

(3.5) 
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V KpR{ 2 A 

t2' = j-^(^-R^in0coscp+^) (3.7) 
^ 7tpRx 2 A 

where C(x) and S(x) are Fresnel integrals defined as 

C ( x ) = £ c o s ( - r 2 V r 

and 

S(x)=£sin(-T2)dT 

Notice that this design approach implies two assumptions [41]. The first assumption 

is that the aperture fields exist only over a finite portion (physical aperture) of the 

antenna where the antenna is mounted on an infinite ground plane. The second is that the 

aperture is large enough (several wavelengths in both dimensions) so that aperture 

electric fields and aperture magnetic fields are related by a TEM relationship. A 

prototype geometry description is given in Figure 3-2. The aperture widths is 53.50 mm; 

axial length RH is 77.30 mm; input waveguide broad width a is 7.112 mm; b, which is 

not shown, is the height of a foam layer with 3.57 mm; flare angle aH is 16.70°; metal 

post diameter d is 0.90 mm; the center distance between two metal posts p is 1.80 mm. 

Top layer and bottom layer substrate both have a thickness of 1.00 mm. 
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Figure 3-2. Design parameters of a substrate integrated horn. 

The measured antenna input Sl l magnitude is shown in Figure 3-3 where the solid 

line represents measurement results, and dash line represents simulation results obtained 

from Agilent HFSS. It can be observed that the simulation results generally match the 

measurement results. A broadband input VSWR with 1.57 or lower is obtained due to 

the wide-band quasi-waveguide characteristic by applying SIW technology. 
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Figure 3- 3. Measured and simulated antenna input Sl l magnitude. 
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The far-field radiation pattern is measured in a compact-range anechoic chamber as 

shown in Figure 3-4 and Figure 3-5. Both co-polarization component and cross-

polarization component of H-plane pattern and E-plane pattern are measured. Around 

16° half-power beam width (HPBW) in H-plane and around 47° HPBW in E-plane are 

obtained. The cross-polarization component level at the main radiation beam is more 

than 20 dB lower than the co-polarization component. Symmetrical radiation pattern is 

achieved in the H-plane, while in the E-plane asymmetry appears. This could be caused 

by the misalignment of the substrate and foam layers during fabrication. It could also be 

due to the metal base mounted underneath the antenna or the asymmetry of the 

installation when the antenna is mounted on the rotation table of the measurement 

system. 

H-plane pattern 
0 

-10 

-20 

g - 3 0 

-40 

-50 

~-?00 -50 0 50 100 
(j> (degree) 

Figure 3- 4.Measured H-plane radiation pattern. 
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Figure 3-5. Measured E-plane radiation pattern. 

Since the two assumptions mentioned above are not well satisfied, theoretical results 

(not shown) and measurement results start to have more differences when deviating 

from the antenna main beam, which is because of the edge diffraction effect of the horn. 

More accurate simulation can be obtained if the fringe current at the edge of waveguide 

aperture is taken into consideration [42]. 

There are some advantages of this type of antenna. For example, the antenna 

provides a wide input matching, which is a direct benefit of using the SIW structures. A 

narrow H-plane radiation pattern is also obtained as well as a compact profile and a low 

fabrication cost. However, there are also some inherent drawbacks. Two important ones 

are a non-planar input feeding port and a wide E-plane HPBW. Because the antenna 

prototype is connected to a coaxial input through a coaxial-waveguide transition, the real 

input feeding of the antenna should be considered as a waveguide port, i.e. a non-planar 
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input feeding. The integration of this antenna with other planar SIW circuitry would 

require an SlW-waveguide transition. Meanwhile, a wide E-plane radiation pattern due 

to the narrow E-plane opening could be a disadvantage for radar application, where 

relatively narrow radiation beam width is generally desired to avoid environment clutters. 

To overcome these limitations, a surface mountable pyramidal horn antenna is proposed. 

3.2 Surface Mountable Pyramidal Horn 

As mentioned above, because the H-plane sector horn antenna feeding port should be 

considered as a non-planar structure, a transition from SlW-waveguide would be 

required if a horn type antenna were to be used. Meanwhile, the E-plane radiation 

pattern HPBW should be narrower if possible. Therefore, the structure of a surface 

mountable pyramidal horn antenna is proposed by flaring the cross-section of the SIW-

waveguide transition continuously into a large aperture for radiation [30]. 

Since most microwave integrated circuit modules require a metal housing regardless 

of the integration technology, this structure can be constructed and installed as part of 

the external housing as easily as a surface mounted "cap", as shown in Figure 3-6. 

The design of an SlW-waveguide transition is basically related to the design of an 

appropriate transformer that effectively confines guided-wave fields between different 

waveguiding structures. Because the fundamental waveguiding mode within the SIW is 

quasi TE10 mode, the electric fields are mainly confined between the top and bottom 

metal layers of the dielectric substrate. The transition to a rectangular waveguide 
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operating with a fundamental TE10 mode would require the design of a stepped 

waveguide quarter-wave impedance transformer. 

horn antenna 
section 

SIW circuitry substrate material 
metal base 

Figure 3- 6. A surface mountable horn antenna and transition to substrate-integrated-
waveguide. 

The design theory of a stepped waveguide quarter-wave impedance transformer 

makes use of a multiple reflection scheme which has been well documented in [43]. The 

impedances of each transformer section are first synthesized based on this theory and 

then a full wave simulation is deployed for optimization. With respect to the selection of 

the waveguide and SIW characteristic impedances, the impedance defined by power and 

current, i.e. Zp-i as formulated by (3.8), is chosen because it is well-defined for a 

waveguide port, and the power and current are computed over the area of the port. Also, 
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the power-current impedance definition is able to meet the design requirements so as to 

include the effect of narrow wall thickness on the waveguide impedance. 

z., = r i 

'" " 8 a ["XT (3-8) 

A back-to-back third-order Chebychev prototype is designed as shown in Figure. 3-7. 

The substrate under study is chosen as duroid/RT5880 with sr=2.2 and a thickness of 60 

mils. The discontinuity between the interfaces of the SIW section and waveguide section 

does not pose severe a problem as suggested from the simulation, resulting in a low 

insertion loss connection as shown in Figure 3-8. This is because the height difference 

between the two waveguiding structures is so small that neither significant radiation nor 

reflection can happen at these discontinuities. 

Special attention must be paid to the parasitic susceptance, which is caused by the 

discontinuity between different waveguide steps. The presence of this susceptance will 

affect both magnitude and phase of individual step reflection coefficient as well as that 

of transmission coefficient. An extra phase shift is created by those discontinuities in 

addition to those due to the propagation distance. To improve the performance of the 

transition, each section can be optimized by shortening their physical length by half the 

electrical length which corresponds to this extra phase shift [44]. A full wave analysis of 

the transformer is carried out by using Ansoft HFSS software package to fine tune the 

length of each section. An average shortening of 6% is applicable in this design. 

Detailed design parameters are summarized in Table. 3-1. Simulation results of an 
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optimized back-to-back transition and un-optimized one are shown in Figure. 3-8. It is 

observed that more than 10 dB improvement is achieved in the design band from 23 

GHz to 26 GHz. 

Substrate integrated Quarter-wave 
waveguide impedance transformer 

Figure 3- 7. Schematic view of an SIW-waveguide transition design. 

Table 3- 1. Design parameters of the SfW-waveguide transition. 

Geometry Symbol 

L0 

LI 

L2 

L3 

bO 

bl 

b2 

b3 

b4 

Quantity (mm) 

3.56 

3.56 

3.54 

3.54 

1.10 

1.70 

2.70 

3.90 

4.32 
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Figure 3- 8. Simulated S parameters of an SlW-waveguide back-to-back transition. 

A surface mountable horn antenna itself is designed and fabricated in this work. 

With the SlW-waveguide transition, the standard waveguide port of the transition is 

flared into a large opening and forms a horn. Because of the surface mountable profile, 

the antenna can be fabricated together with the metal housing for the planar microwave 

integrated circuits and the installation of the horn antenna is as easy as a "cap" on top of 

the metal base. The radiation pattern design theory is similar to the aperture radiation 

theory of H-plane sector horn. Detailed design parameters are listed in Figure 3-9 and 

Table 3-2. A photograph of the fabricated antenna prototype is shown in Figure 3-10. An 

extra metal layer is added around the aperture of the horn to reduce the back-scattering 

caused by edge diffraction effect. The antenna radiation patterns are measured in a 

compact-range anechoic chamber with 1-degree azimuth angle and elevation angle 
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resolution. Measured results in the two principal planes, i.e. the H-plane and E-plane as 

well as the input matching of the horn are shown through Figure. 3-11. to Figure. 3-13. 

Figure 3- 9. Design parameters of surface mountable horn antenna (not drawn to scale). 

Table 3- 2. Design parameters of the surface mount horn. 

Geometry Symbol 

a 

b 

A 

B 

RE 

RH 

Quantity (Unit: mm) 

10.67 

4.37 

56.12 

21.74 

68.02 

68.02 



Figure 3- 10. Photograph of a surface mountable horn antenna. 
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Figure 3-11. Measured and simulated H-plane radiation pattern. 
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Figure 3- 12. Measured and simulated E-plane radiation pattern. 

Figure 3-13. Measured input SI 1 magnitude of the surface mount horn. 
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It can be read that the HPBW at H-plane is about 15°. At E-plane the HPBW is about 

27°, which are significantly narrower, compared to an H-plane sector horn, because of 

the larger E-plane aperture opening. The cross-polarization levels in the main beam at 

both planes are below 30 dB. Meanwhile, the input port matching of the horn also shows 

a wide bandwidth performance. 

3.3 SIW Slot Array 

The above-mentioned two types of horn antennas demonstrate interesting 

characteristics for radar application. However, a limitation exists, i.e. both antennas do 

not possess a complete planar profile. Both the non-planar surface mountable horn and 

the quasi-planar H-plane integrated sector horn have to be interconnected with other 

planar MICs through a transition. This means the fabrication of a complete front-end 

system cannot be accomplished within one process. Because the objective of system 

level integration remains the highest priority, some compromises must be made to meet 

this goal. Generally, two types of planar antennas are potentially available for 

consideration, i.e. a microstrip patch array and an SIW-fed slot array. Microstrip patch 

array has the advantage of easy-fabrication (standard photolithographic process) and low 

cost. However, the maximum gain is limited because of the large transmission losses of 

microstrip. Therefore, most arrays possess a relatively low radiation gain. On the other 

hand, SIW-fed slot array essentially is a waveguide slot array antenna integrated on a 

piece of substrate through SIW technology, which provides a potential for designing a 

highly directive and high gain antenna. Therefore, the objective of designing an SIW slot 
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array antenna is proposed. The advantages of using SIW technology on slot array design 

are obvious. The traditional expensive milling process required for metallic waveguide 

slot array fabrication can now be exchanged with a conventional photolithography PCB 

fabrication process. Also, the fabricated SIW slot array has a completely integrated 

profile, which makes it an attractive option for an integrated system. A schematic view 

of the proposed SIW slot array is shown in figure below. 

Metallized channels 

Feeding Radiation array 
network 

Figure 3- 14. Schematic view of an SIW slot array antenna. (Not drawn to scale). 

Although a similar structure was reported in [45], the equivalent circuit of the 

radiation element was analyzed in detail in [46]. Research on design theory of 

waveguide feed slot array dated back in 1940s' when it was invented by Watson at 

McGill University around 1946 and 1947. The detailed design theory was developed 

later and documented in [47, 48]. A uniformly-excited slot array consists of off-centered 

longitudinal-cutting slots spaced every half guided wavelength along the longitudinal 

direction, which disturb transverse surface currents when the TEio mode is excited inside 

the waveguide. Short-ended slot array is essentially a narrow band antenna because of 



44 

the resonance characteristics of the radiation slots. The key design approach is to model 

the slot cut on the broad wall as a shunt element [49] and the entire array is modeled as a 

parallel of the shunt element. The radiation pattern can then be calculated based on the 

slot voltage distribution [50]. If the slots are spaced half a guided wavelength apart each 

other, the array is said to be standing-wave fed. However, the universal design curves for 

the full height air-filled waveguide will be quite different for a dielectric material filled 

SIW [46]. Accurate equivalent circuit parameters extraction is an important step in 

designing an SIW slot array. 

Considering an off-center slot cut on the broad wall of a waveguide, the design 

geometry parameters are shown in the Figure 3-15. It was shown that the scattering off 

the slot is symmetrical [51], which implies that the equivalent circuit of the slot can be 

modeled as a shunt element in a two-wire transmission line system. 

Figure 3- 15. Single slot model, a) A 3-D perspective, b) A top-view perspective. 
(Not drawn to scale). 
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Go Y„ ^ ^ Go 

o 1 o 
x=-y 4 x=0 x= y 4 

Figure 3- 16. Equivalent circuit of a single slot embedded in SIW. 

For the equivalent circuit topology as shown above, there is Sn = S22 and Su = S2l. 

Therefore the parallel admittance is [46] 

y=L- = G + jB (3.9) 

where Go is the waveguide port conductance. 

Full wave slot model was then constructed to extract the equivalent normalized 

admittance. A very useful form to express the admittance data of a single slot was 

suggested in [47], where extracted slot admittance data are assembled with slot offset 

and length as parameters. Ansoft HFSS software package is used to extract the S 

parameters. The resonance is confirmed when Y/Go is pure real. Under this circumstance, 

YI G0= g , G = Gr and the slot length is defined as resonant length lr. 
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Figure 3- 17. Resonance characteristic of a 0.3 mm offset slot on SIW. 

The purpose of this step is to obtain the slot length and offset for a resonant slot, 

which will be used later as an initial value to achieve a matched array input. The 

extracted ratio of single slot conductance normalized to SIW port admittance as a 

function of the slot offset is plotted in Figure 3-18. The physical understanding of the 

increase of equivalent conductance as a function of increasing slot offset is quite 

straightforward. As the slot is placed more off-center, the more surface current it 

disturbs, which makes the slot a stronger radiation element. Because the dissipated 

power due to radiation can be described as Pmd = F0
2 • Gr, where V0 is waveguide mode 

voltage being unchanged, therefore it is clear that a stronger radiation relates to a larger 

resonant conductance G„. 
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Figure 3-18. Normalized SIW slot resonant conductance. 

The extracted ratio of single slot susceptance normalized to SIW port admittance as a 

function of the slot offset is shown in Figure 3-19. It is observed that the susceptance of 

the slot also increases as the slot offset is increased. This is because as the slot is placed 

farther from the SIW center, the more discontinuity it creates, therefore dissipative 

higher modes are created which contribute to the larger susceptance part of the shunt 

element in the equivalent model. 
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Figure 3- 19. Normalized SIW slot resonant susceptance. 

If a specified antenna radiation pattern is desired, each slot length and offset can be 

determined based on the slot voltage distribution Vs
n on each slot and the port matching 

specification [51]. For a uniformly excited array, when the mutual coupling between 

different elements is not considered, each radiation element is to be excited uniformly. 

However, in the case of an SIW slot array, where slots are closely spaced to each other, 

the mutual coupling effects between each slot should be considered. A careful tuning of 

the slot offset and length using HFSS is crucial in the design process. As a matter of fact, 

[48] suggested that when mutual coupling effects are considered in the design process, 

the final array slots are detuned off-resonance, because mutual coupling creates 

susceptance component and this has to be compensated by a reactance component 

coming from the off-resonance slot. 

x-x 
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j 1 1 

- - offset 0 mm 
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An antenna prototype was fabricated on a piece of substrate material. The measured 

array input port matching is shown in Figure 3-20. 

- 51 > 1 1 1 1 1 

~3^3 23.2 23.4 23.6 23.8 24 24.2 24.4 
GHz 

Figure 3- 20. Measured antenna input Sn magnitude. 

A 10 dB return loss bandwidth ranging from 23.75 GHz to 24.40 GHz (650 MHz) is 

achieved. The STNV slot array exhibits a narrow band characteristic with relative 

bandwidth around 2.7%. Many reasons contribute to this result. First, the slot itself is a 

resonant type radiating element. This is the major reason for the narrow bandwidth. The 

bandwidth is further reduced by the mutual coupling between slots. Unless the radiating 

slots were to be spaced to form a traveling wave antenna rather than by a half guided 

wavelength, the bandwidth of the slot will always remain a narrow band type. The 

second major reason of narrow bandwidth is the dielectric filling as well as waveguide 
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height reducing [48]. To justify this statement, a comparison on the normalized slot 

resonant conductance is made between a slot etched on an SIW and a slot milled on a 

classic full-height metallic waveguide, as shown in Figure 3-21. Obviously, the slot on 

SIW structures possesses a narrower bandwidth compared with the slot on standard 

metallic waveguides. The practical interpretation of this information is that the 

fabrication error will have a stronger influence on the slot array matching performance, 

which explains from another perspective why the SIW slot array exhibits a narrow 

bandwidth. 
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Figure 3-21. Normalized slot conductance on waveguide and SIW. 

The measured gain of this antenna is 15.7 dBi at 24.1 GHz. The measured radiation 

pattern exhibits consistent shape throughout its matching bandwidth. Measured radiation 
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patterns at 24.1 GHz are plotted below. The measured half-power-beam-width (HPBW) 

at E-plane is 31° (simulation results indicate 27.02°) and that at H-plane is 37° 

(simulation results indicate 36.11°). The electric field magnitude across the edge of slot 

on the E-plane of the fabricated prototype is uniform as expected, which is confirmed by 

the -13.5 dB first side lobe level. The electric field magnitude across the edge of the slot 

on the H-plane is a quasi-cosine distribution, as observed from the wider HPBW and the 

lower first side lobe level. 
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Figure 3- 22. Measured SIW slot array E-plane radiation pattern. 
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H-plane radiation pattern at 24.1 GHz 
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Figure 3- 23. Measured SIW slot array H-plane radiation pattern. 

As a final note to this chapter, it is clear there are still many modifications that can 

be made to improve the performance of this type of antenna. For example, a traveling 

wave fed slot array would provide wider input matching bandwidth as well as a 

complete solution of integration. This can be left as a direction for future research on the 

related areas. 
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CHAPTER 4 SIW/SIC MIXERS AND SURFACE-VOLUME 

INTEGRATION 

The mixer is one of the most important components in an FMCW radar system. In 

the radar transmitter, it upconverts base-band signal to RF band. In the radar receiver, 

the mixer autodynes the reference FM signals from transmitter with the received signals. 

Because of different functionalities of a mixer in radar system, different performance 

requirements apply to mixer design. Some common requirements include high frequency 

conversion gain, high isolation between ports, low port reflection, high linearity, being 

able to suppress certain orders of harmonics and so on. In an integrated system, there are 

also integration issues such as a compact profile, facility to integrate with diodes or 

transistors, possibility to fabricate with a standard photolithograph process, etc. Two 

different types of mixers are proposed in this work with completely different integration 

philosophies. One is a 90-deg SIW mixer designed with the major integration approach 

being SIW. The other mixer is a 180-deg SIC mixer, which is designed with a hybrid 

integration approach combining microstrip and SIW technologies to achieve an overall 

optimized performance. A surface-volume integration philosophy is implemented in this 

work. Strict experimental comparison results confirmed that this hybrid integration 

methodology demonstrates superior characteristics in terms of electrical performances, 

substrate material usage, and circuitry size and so on compared with a monotonous 

integration approach. This chapter will discuss the design strategy, integration 
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philosophy, their advantages and compromises, measurement results and the related 

analysis of the two mixers. 

4.1 SIW Mixer 

A 90-deg SIW mixer based on a 90-deg SIW quadrature coupler is designed in this 

work. Many electrical advantages can be obtained by applying SIW technology. For 

example, a planar 90-deg quadrature coupler applying microstrip technology normally 

works at low frequencies only up to 18 GHz or so. This is because of the circuit size 

limitations at high frequencies, where the line length decreases with increasing 

frequency, becoming comparable to its width. Therefore, the junction discontinuities 

become dominant, resulting in a lower performance and rendering the microstrip 

quadrature coupler almost unemployable at high frequencies. The use of SIW in the 

making of the hybrid junction easily allows the design of a planar 90-deg quadrature 

coupler into Ka band. As a good application example of this technology to active 

devices design, a 90-deg single-balanced mixer based on a SIW coupler is proposed in 

this work. 

The design of an SIW mixer includes the design of an SIW power hybrid junction, 

i.e. a quadrature coupler, the diodes matching circuits, the transition between SIW 

hybrid junction and the diodes matching circuits, the transition between the input and 

output lines and IF output design. 
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The first decision a mixer designer needs to make is the selection of proper diodes. 

Although most mixers are less limited by the properties of the diodes than by those of 

the circuit [52], there are still many considerations of diode selection in terms of 

performances, ease of integration and cost. A very basic choice is between silicon and 

GaAs. GaAs diodes have very high cut-off frequency and very good overall performance. 

However, in the application of design SIW/SIC mixers, where external diodes bias is 

difficult to apply because the top metal layer of the substrate is also DC grounded due to 

the conducting SIW side walls, GaAs diodes require more LO power because of their 

higher barriers. This situation should be avoided because the integrated radar receiver 

LO comes directly from the integrated transmitter, a scenario where extra amplification 

is limited and no external power can be requested. Therefore, silicon diodes are 

considered in this work. Another advantage of choosing silicon diodes are the better LO-

port reflection properties because of the lower barriers. Also, by choosing silicon diodes 

instead of GaAs ones, the mixer will have a lower I If noise characteristic unique to 

silicon diodes [52, 53]. For a homodyne FMCW radar receiver, the demodulated signal 

usually is a low frequency signal in the range of kilohertz, well within the range of \lf 

noise. Therefore the lower 1//noise the mixer obtains, the more sensitivity the system 

can achieve. 

The second decision which needs to be made related to diodes is the selection of the 

diodes package form. Bare chips diodes have small series resistance but difficult to 

integrate within a substrate. Packaged diodes are easy to handle but posses a larger 
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parasitic inductance. The compromise being made is the beam-lead package form, which 

yields adequate performances while low in parasitic. 

The diodes used in this mixer are silicon beam-lead Schottky diodes. The admittance 

of the diode can be calculated based on their equivalent circuit. Different LO drive 

power will excite diodes with different self-bias current leading to different admittance. 

The equivalent circuit of the diodes with 1 mA self-bias current is shown in the figure 

below [54]. 

0,03 pF 

0.1 nH 0.04 nH 

11Q 

Figure 4- 1. Equivalent circuit of a beam lead Schottky diode. 

Diodes junction resistance and capacitance with different self-bias current are shown 

in the following table. 

Table 4- 1. Beam lead Schottky diodes equivalent circuit model parameters [54]. 

Rj(Q) 

Cj (pF) 

1mA self bias 

267 

0.11 

1.5mA self bias 

232 

0.11 

3mA self bias 

150 

0.12 
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Their respective admittance can be calculated as shown in the following Y Smith 

chart. Diode matching circuitry can then be designed based on these calculations. 

Self bias current=1.0 mA 
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ml 
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impedance = Z0 * (0.337 -jO.552) 

Self bias current=3.0mA 

c). 

freq (1.000GHz to 26.00GHz) 
ml 
freq=24.00GHz 
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Figure 4- 2. a)-c) Beam lead Schottky diodes admittance as a function of the bias current. 
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The SIW power hybrid junction is designed using a side wall coupling-based 

directional coupler. The detailed schematic drawing of the 3-dB SIW 90° power hybrid 

junction is shown in Figure 4-3 as below. 
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Figure 4- 3. Geometrical top view of 90-deg SIW hybrid junction (not drawn to scale). 

A simplified design strategy can be modeled as both TE10 mode and TE20 mode are 

excited in the broad waveguide section [55]. Because TE10 mode and TE20 mode are 

experiencing different phase shift, and the output electric field at port 2 and port 3 has 90 

degree phase difference, the dimension of the broad waveguide section can be 

determined by equalizing the power at port 2 and port 3. Suppose the input signal excites 

two modes equally, then at the input of the coupler, the electric field of TE10 £, ' and 

the electric field of TE20 £," has the same amplitude and direction; while at the output 

of the coupler, the electric field of TE10 E2
} and electric field of TE20 is2"are related 

by 
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.2n, 

E2
} = Ey

ye * 

.In, .In 
-j-H -IT1' 

E2
n = Ex"e s =Ey'e

 e 

where Xg
x and X " are guided wavelength of TE10 and TE20 respectively, Ex' and 

Ex" are electric field of TE10 mode and TE20 mode at port 1. 

The port 2 output electric field is given by 

E2=E2'+E2" = El\e ' v +e ' **" ) 

_ . ln_ 2n_J In In I _ In In I 

= £, 'e ' V + V 2[e V v 2 +e ' v v 2] (4.1) 

2;r 2;r N /, "^f^f^l 
2n_ 2n J 

= 2£.'-cos[( —)-]-e 

The port 3 output electric field is given by the vector summation of E3' and E3" where 

E3' = E2' and E3" = -E2" 

_ .2n_ _ .2n_t 

E, = £3 '+£3" = E2 '-E2 " = £, \e ' V -e 'K" ) 

_ -<i£ 2 £ i l -,2g 2* / _ 2g 2g / 

= £, 'e * * [e * Xg ~-e s s ] (4.2) 

. , 2 * 2 w . / 

= 2j-El'-sm[(—-—)-]• e 

To satisfy the equal power coupling requirement, we have |,£72 j = |£3 | , as expressed by 

r.2;r 2;r. /n . r.2;r 2;r. /n , . , , , 
cos[( )—1 = sin[( )—] which leads to 

xg' Ag" 2 xg' x/r 
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V V 
To compensate the reactance introduced by the discontinuities of the aperture, a 

conductive metal post at the center of the coupler is inserted [56, 57]. The transverse 

dimension of the metal septum is determined by the minimum achievable fabrication 

resolution. The longitudinal dimension of the septum a, however, has a strong influence 

over the input port matching and the two port coupling. A detailed full wave study of the 

size of the metallised septum is done using Ansoft HFSS. The summarized simulation 

results on RF/LO port reflection, isolation, coupling and phase shifting are shown in the 

following figures. It is observed from Figure 4-4 that an input port return loss better than 

20 dB over 3 GHz frequency band can easily be achieved. 
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Figure 4- 5. 90-degree SIW coupler 521 port magnitude. 

Port 2 is the through port which is supposed to have a 3 dB coupling coefficient. The 

simulated results in Figure 4-5 show that the coupling coefficient varies from -2.40 dB 

to -4.67 dB as a varies from 0.2 mm to 2.0 mm as observed. 
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Figure 4- 6. 90-degree SfW coupler coupled port magnitude. 
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Port 3 is the quadrature coupling port of the coupler. 3-dB power coupled from the 

input port as well as 90 degree phase difference to port 2 should be obtained. As shown 

in Figure 4.6, a -2.33 dB to -4.0 dB coupling is achieved when a varies from 0.2 mm to 

2.0 mm. 

-20Q1 ' ' ' ' ' ' ' ' 
20 21 22 23 24 25 26 27 28 

GHz 

Figure 4- 7. 90-degree SIW coupler S21 and S31 phase. 

The phase shift between the input port to either the through port or the coupled port 

is not important in a balanced mixer design. However, the 90-deg phase difference 

between the through port and the coupled port, i.e. port 3 and port 2, is critical as it 

determines the rejection of superior responses. The simulated result in Figure 4-7 shows 

a clear 90 degree phase difference across the interested band of frequencies. 

The 90-deg mixer LO-RF isolation is mainly determined by the isolation of its 

coupler. The maximum port 4 isolation to port 1, as shown in Figure 4-8, varies from -30 

dB to -40 dB as a varies from 0.2 mm to 2.0 mm. It is important to note that the 

maximum isolation is achieved at the center design frequency. Because of this, it makes 



63 

the 90-deg mixer mostly applied in a situation where the LO and RF frequencies are 

close to each other. 
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Figure 4- 8. 90-degree SIW coupler isolated port magnitude. 

An electric field magnitude spectrum plot is given in Figure 4-9. It is observed that 

when the port 2 electric field magnitude reaches the maximum, the electric field 

magnitude at port 3 reaches minimum. A 90 degree electrical length on the propagation 

direction exists between the maximum and the minimum. The isolated port 4, on the 

other hand, shows very low level electric field distribution. A summary of fabrication 

details for a 90-deg coupler prototype is listed in the following table. 

-a=0.2 mm 
-a=0.6 mm 
-a=0.9 mm 
-a=1.4 mm 
-a=2.0 mm 
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Figure 4- 9. 90-degree SIW coupler E-field magnitude at 24.2 GHz. 

Table 4- 2. Design parameters of the 90-degree SIW hybrid junction 

GEOMETRY 

SYMBOL 

LI 
L2 
L3 
a 

Wl 
W2 
W3 
W4 

QUANTITY ( M M ) 

20.00 
4.00 
5.55 
0.90 
4.75 
10.00 
0.50 
0.50 

LO/RF Surface 

IF 
RF/LO Metallized slots 

Volume .•' 

J SIW 90-deg hybridU 
/ 

Figure 4- 10. 3-D schematic view of a 90-degree SIW mixer. (Not drawn to scale). 

A 3-D descriptive view of the SIW mixer is shown in Figure 4-10. The power hybrid 

junction of the mixer is an SIW 90-deg directional coupler. At one side of the coupler, 

the LO port and the RF port of the SIW section are transited into microstrip line through 
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an impedance matching transformer to facilitate the measurement. At the other side of 

the coupler, the top metal layer of the SIW section is stretched out to integrate two 

diodes. The other side of the diodes are integrated with an impedance matching stub. 

Because the two diodes are orientated in an anti-parallel orientation, the IF signal should 

be coupled out directly. It is worth noting that a high impedance DC direct coupling 

technique is used instead of an AC coupling technique. This is because an AC coupling 

involves a capacitance which blocks the DC components generated by the LO self 

coupling. However, this capacitance also adversely affects the IF signals with low 

frequencies. Keep in mind that in a zero-IF FMCW radar system, when the target is 

close to the radar or the modulation frequency is low, the direct down-converted IF 

signals are of low frequency. Therefore the filtering effect introduced by the AC 

coupling could downgrade radar ability to detect very weak returned target signal and is 

not adopted in this design. 

A circuit level co-simulation combining the diodes, the matching stubs, the 3-dB 90-

deg SIW coupler, which has been modeled as a SNP junction, is performed using ADS 

harmonic balance engine. Primitive results on mixer conversion gain, LO driven level, 

PldB saturation point can be obtained through this part of the work. 

The mixer performance including conversion gain, RF port reflection, LO-RF port 

isolation, RF-IF port isolation, and input-intercept-point-third-order (IIP3) and the RF 

port PldB power saturation point are carefully measured. In the experimentation of 

mixer frequency and conversion gain, two signal sources plus a spectrum analyzer are 

used in this work. As a matter of fact, many of the above mentioned mixer 
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characteristics can be measured using a network analyzer. An additional section on the 

mixer measurement using network analyzer is given at the end of this chapter. 

A photograph of the mixer measurement setup using the spectrum analyzer is shown 

in Figure 4-11. The mixer is clamped by a universal test fixture with a right angle 

launcher. The offset ability of the fixture jaws provides freedom to design the mixer RF 

port and IF port with an offset. The measurement of the mixer conversion gain is 

performed with a fixed RF frequency at 24.1 GHz and a fixed LO frequency at 22.6 

GHz. Because mixer frequency conversion gain is a strong function of the LO driving 

power level, the frequency conversion gain should be measured with the LO power level 

as a sweeping parameter. The LO power level is also swept from 0 dBm to 14 dBm. The 

RF power level is swept from -6 dBm to 8 dBm. Measured conversion gain data set with 

LO of+7 dBm is plotted as shown in Figure 4-12. 

Figure 4-11. Mixer measurement setup using spectrum analyzer. 
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Figure 4- 12. Measured SIW mixer frequency conversion gain with fixed RF 
frequency and fixed LO frequency. 

The mixer operates well with as low as 7 dBm LO driven level. This is because the 

lower barrier of the silicon diodes requires less LO power as compared to GaAs diodes. 

It is demonstrated that the mixer exhibits a linear frequency conversion response as RF 

power increases from -6.0 dBm to -4.0 dBm with the maximum frequency conversion 

gain of -6.7 dB. This is almost unchanged as the RF power sweeps from -6.0 dBm to 0 

dBm. As the RF power level continues to increase, the mixer starts to saturate and the 

conversion gain starts to decrease. The mixer RF port input PldB with 7 dBm LO input 

level is expected to be higher than 8 dBm, because the conversion gain drops down only 

by 0.6 dB when the RF port input level is increased from 7 dBm to 8 dBm. 
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Figure 4-13. Measured mixer frequency conversion gain data interpretation with 2 
dBm LO and 7 dBm LO. 

It is interesting to notice that the conversion gain keeps dropping for low LO level 

driving, even when the RF port level has increased to 7 dBm, as indicated by point 1 

shown in Figure 4-13. This seems to violate the physical principle of the 90-deg single 

balanced mixer, where the RF port and LO port are electrically exchangeable, because 

the conversion gain is expected to be at the same level when LO is biased with 7 dBm. 

However, if we take another look at the definition of the frequency conversion gain, 

which is defined by the power ratio between the power at the IF port and the power at 

the RF port, we shall notice that this definition does not distinguish the real RF port and 

LO port. Actually, the illogical value of point 1 is just because of the good symmetry of 

this SIW mixer. The physical understanding of the measurement data of point 1 is the 

mixer is biased from the RF port when RF port level is 7 dBm. The real conversion gain 

is to be understood as the ratio between IF port power level of -5.7 dBm and the LO port 
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power level of+2 dBm, i.e. -7.7 dBm, which is almost in the same level as the measured 

conversion gain when the mixer is biased from the LO port with +7 dBm as shown of 

point 2 in the figure. Only a difference of 0.7 dB is observed, which confirms the good 

symmetry between the RF port and LO port of this SIW mixer. 

The complete measurement results, with the mixer LO port power level swept from 

0 dBm to 14 dBm, with the mixer RF port power level swept from -6 dBm to 8 dBm, are 

plotted in Figure 4-14. 

LO power, dBm RF power, dBm 

Figure 4-14. Measured SIW mixer frequency conversion gain. 
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Figure 4- 15. Measured SIW mixer RF port reflection. 

-10 

£ - 2 0 

-30 

-4i 
\ 

s = s 3 a B 

-,z:!^^B!!::^::s:!FSS"""a''" 

---LO = 2dBm 
— L O = 7dBm 

LO = 12dBm 

. - - - - - - - _ - . . 

-
1 / . • • ' * 

-

23.5 24 24.5 25 25.5 26 
GHz 

Figure 4- 16. Measured SIW mixer RF-IF port isolation. 

The measured SIW mixer RF port reflection and RF-IF port isolation are shown in 

Figure 4-15 and Figure 4-16. Because all the mixer port impedances are related to the 

LO power level as a result of differences in diodes impedances, the mixer RF port 
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reflection as well as the RF-IF port isolation are also observed as a function of different 

LO power levels of 2, 7 and 12 dBm, respectively. At ISM band (24.00 GHz to 24.25 

GHz), the SIW mixer shows Su below -13.0 dB at the RF port and the RF-IF isolation 

of the SIW mixer is better than 17.3 dB over the ISM band of interest. 
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Figure 4- 17. Measured mixer LO-RF port isolation. 

24.1 

The measured LO-RF isolation is shown in Figure 4-17. The LO-RF isolation is 

around 18 dB. This is within expected range but not an excellent one. It is the price paid 

by choosing a 90-deg mixer in exchange of its convenient circuitry layout, since a 90-

deg mixer normally exhibits a poor LO-RF isolation [52]. The effect of this limited 

isolation for the radar system will be discussed later in chapter 5. The conclusion drawn 

there is that this leakage does not significantly degrade radar receiver dynamic range. 
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The mixer 3rd-order input intercept point level is measured with two RF tones 

spaced 10 MHz apart and 0 dBm power level with LO bias 7.0 dBm. At 24.125 GHz, a 

14.6-dBm IIP3 is achieved for the SIW mixer. 

4.2 SIC Mixer -A Surface-Volume Integration Approach 

The above mentioned 90-deg SIW mixer demonstrates many advantages over 

conventional microstrip 90-deg branch line mixers [58]. However, as a 90-deg single 

balanced mixer, there are also some limitations on its application such as limited LO-RF 

port isolation and limited spurious response rejection and so on. A 180-deg single 

balanced mixer, on the other hand, is able to remove these limitations [52]. 

The frequently encountered microstrip hybrid ring seems a possible candidate for 

this application. However, at 24 GHz, microstrip lines suffer from high transmission 

losses as well as radiation loss. A complete SIW H-plane ring definitely will reduce the 

transmission losses as well as enlarge the operating bandwidth. Nevertheless, if an SIW 

H-plane ring was to be used for power coupling, then the integration with diodes would 

be awkward because the SIW section needs to be transformed into microstrip again. 

Also, the SIW technology will occupy a larger substrate area compared with microstrip 

technology at the same frequency band. Therefore it comes out naturally to combine the 

integration merits of both microstrip and SIW. An SIC mixer is designed in this work as 

an up-converter. The innovation in this part of the work is the combination of 

synthesized SIW and classic microstrip lines. A schematic view of the completed SIC 
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mixer is shown in Figure 4-18. The design is a hybrid platform of SIW and conventional 

microstrip technologies. RF port and LO port are designed using SIW technology. A 

microstrip ring is embedded functioning as a balun to excite LO currents and RF 

currents on the diodes with/without 180° phase difference. Between the ring and SIW 

there is a SlW-microstrip transition. The integration with beam-lead diodes is very 

convenient with the adoption of microstrip ring in the mixer because of their planar 

profile. 

r« siw »• i* s i w " ' 
Figure 4- 18. 3-D schematic view of a 180-degree SIC mixer. (Not drawn to scale). 

The ring is designed using a commercial 2-D planar method-of-moments based 

software, i.e. Agilent Momentum. The designed sum port (I) and difference port (A) S-

parameters performances are shown in the figures below. 
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Figure 4-19. Simulation results of microstrip ring, magnitude and angle, I port. 

18 19 20 21 22 23 24 25 26 27 28 
GHz 

Figure 4- 20. Simulation results of microstrip ring, magnitude and angle, A port 

The RF and LO SIW feeding section is characterized using a full wave software 

package, i.e. Ansoft HFSS. 

The mixer conversion gain is measured in a similar manner as the STW mixer. Power 

level calibration is performed with an accuracy of 0.1 dB. Measured conversion gain 

results are shown in Figure 4-21. The best conversion gain of-6.9 dB is achieved with a 

LO driven level of 7.0 dBm. It is clearly demonstrated that the pattern of the conversion 

gain changes as a function of input power level, which is similar to the SIW mixer. 

Meanwhile, the mixer balance characteristic is also shown. The smoothness of the 

measured data is because only power level is involved in the measurement. The 

frequency conversion gain as a function of the port power level across a wide power 
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range is measured. The measurement results are plotted in Figure 4-22. Again, gain 

variance as a function of the port power level similar to the previously mentioned SIW 

mixer is observed. In fact, Figure 4-21 is a cross-cut of Figure 4-22. 
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Figure 4-21. Measured SIC mixer frequency conversion gain. 
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Figure 4- 22. Measured SIC mixer frequency conversion gain. 
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The measured mixer RF port reflection and RF-IF port isolations are shown in the 

following figures. The SIC mixer RF port reflection Sll magnitude is shown below -

14.5 dB when mixers are driven with the LO level of 7 dBm. RF-IF isolation for the SIC 

mixer is more than 20.0 dB with 7 dBm LO driven level, as shown in Figure 4-24. 
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Figure 4- 23. Measured SIC mixer RF port reflection with different LO driven levels. 
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Figure 4- 24. Measured SIC mixer RF-IF port isolation. 
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The measured LO to RF port isolation as in Figure 4-17 shows a good isolation 

around 30 dB. This is because of a good symmetry of the mixer circuit topology, which 

is also confirmed by the symmetrical simulation results in Figure 4-19 and 4-20. The 

mixer 3rd-order input intercept point level is measured with two RF tones spaced 10 

MHz apart with 0 dBm input power level. Mixer is biased with LO=7 dBm. Around 10.5 

dBm IIP3 is achieved for this mixer. 

4.3 Performances Comparison between Hybrid Integration Approach 

and Monotonous Approach 

The above mentioned SIC mixer integrates two different waveguiding structures on a 

substrate, i.e. conventional microstrip lines and substrate integrated waveguides. From 

the fabrication perspective of MICs, the making of conventional planar transmission line, 

such as microstrip, involves only the surface of a substrate ("simple printing or surface 

etching techniques"); therefore microstrip circuitry may be viewed as "surface circuits". 

The fabrication process of synthesized planar waveguides, such as SIW, involves the 

volume etching or processing of a substrate. Thus, SIW circuitry may be better viewed 

as "volume circuits" [11]. Encompassing the advantages of simplicity of integration with 

semiconductor devices such as diodes for conventional planar transmission lines, while 

exploiting the merits of high-Q, well-confining EM waves for synthesized waveguides, 

this "surface-volume" integration scenario optimizes and maximizes the usage of the 

substrate electrically and materially. For example, the "surface-volume" SIC mixer is 
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expected to have a higher frequency conversion gain compared with geometrically 

similar microstrip mixer. This is because the complete enclosure of SIW will confine 

EM waves well within the substrate and therefore reduce the unavoidable radiation and 

transmission losses typical of microstrip lines at high frequencies. A geometrically 

resembling microstrip 180-degree ring mixer is fabricated as shown in Figure 4-25 to 

compare the performances with the SIC mixer. 

J 

RF/LO 

H Complete microstrip topology H 

Figure 4- 25. 3-D schematic view of a 180-degree microstrip mixer. (Not drawn to 

scale). 

One of the most important mixer specifications, namely, the frequency conversion 

gain of the microstrip mixer is carefully measured to make a comparison. Spectrum 

analyzer is used firstly to measure the frequency conversion gain with fixed RF 

frequency as well as fixed LO frequency. The measurement results are shown in Figure 

4-26. The mixer is measured in a same manner as the SIC mixer. It is apparent that the 

microstrip mixer exhibits more losses compared with its SIC counterpart. In order to 

make the comparison more objective, careful measurements were done across 23 GHz to 

25 GHz as shown in Figure 4-27. The measured results of the three mixers are compared 



79 

together. The conclusion is clear that both the SIW mixer and the SIC mixer 

demonstrates higher frequency conversion gain compared with the microstrip one. 

Around 3 dB improvement has been achieved by adopting the integrated waveguide 

technology. The SIW mixer and the SIC mixer has similar performance until 24.3 GHz. 

Then the complete SIW mixer possesses a better conversion gain in contrast with the 

SIC one. This could be the effect of the microstrip ring used in the SIC mixer, which is 

not as wide band as the SIW quadrature coupler. As frequency increases, the LO power 

distributes unevenly on the two mixing diodes and lead to lower conversion efficiency. 

Also, the adoption of microstrip lines at 24 GHz could be another reason for higher 

losses. 
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Figure 4- 26. Measured SIC and microstrip mixer frequency conversion gain with fixed 
RF frequency and fixed LO frequency. 
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Figure 4- 27. Different mixers frequency conversion gains comparison. 

As a final note of this section, all the measurement results point to one fact, this 

surface-volume integration strategy indeed demonstrates better electrical performances 

than conventional planar strategy under this circumstance. Meanwhile, the microstrip 

ring used in the SIC mixer has a smaller size (164 mm2) compared with the designed 

SIW quadrature coupler (270 mm2). It is clear that the proposed hybrid approach 

effectively combines the complementary advantages of each individual building block 

while eliminating (partly at least if not completely) inherent drawbacks and results in a 

fully integrated fabrication process and a very compact overall system profile. The 

microwave integrated circuit design is not (and should not be) limited to a monotonous 

guiding wave structure. The concept of SIC broadens the versatility of integration and 

offers a unique bridge between different integration technology to maximize the 

integration density as well as optimize circuit performance. 
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Microstrip mixer 
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4.4 Mixer Measurement Using Network Analyzer 

Among many specifications in terms of the performances of a mixer, many 

quantities can be measured either by a spectrum analyzer or a network analyzer. The 

spectrum analyzer can provide very high precision measurements up to 0.1 dB and 

distinct frequency discrepancy. This approach is widely adopted in a spectrum-rich 

measurement such as the power level related mixer performances including mixer 

frequency conversion gain, input port power saturation level (PldB), inter-modulation 

distortion level and so on. However, this method would be extremely time-consuming 

when frequency conversion gain values are desired over a band of frequencies, unless 

extra automation programming is provided. The vector network analyzer method, on the 

other hand, can provide fast measurements over a band of frequencies, at the expense of 

more complicated calibration techniques and post data processing. It is suited to quantify 

frequency related mixer performances including port isolation and reflection. Although a 

three-port network analyzer would be useful for measuring power level related quantities 

including mixer frequency conversion gain [59], a two port network analyzer can also be 

used to measure mixer frequency conversion gain when proper calibration techniques 

are provided [60, 61]. 

Power transfer and reflection type quantities without frequency conversion, such as 

isolation and port reflection, can be measured using a network analyzer. For example, in 

the case of measurements of RF-IF isolation, it is performed with RF port connected to 

network analyzer port 1 and IF port connected to network analyzer port 2. The Sl l 

obtained in the measurements is interpreted as RF port reflection. Note that the 
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definition of isolation is defined as the ratio between power levels of the same signal at 

another port to the power levels at its originated port. The RF-IF isolation is interpreted 

as the ratio of RF signal level at the IF port, to the RF signal level at the RF port. 

Therefore, the measured S21 magnitude after a standard S parameter calibration is 

interpreted as the isolation quantity. That is why in sections before these two measured 

quantities appeared in association. It is important to notice that a mixer should exhibit 

different isolation and reflection quantities as a result of different mixer LO driven level. 

This is completed by incorporating another external source in the measurement as an LO 

source. 

The measurement of mixer LO-RF isolation is more difficult, because network 

analyzers generally cannot provide enough high-frequency power output to adequately 

bias the LO port. The maximum output power level of Anritsu 37xxx is around -4.0 

dBm. Therefore extra amplification of the network analyzer output power should be 

provided. To amplify the network analyzer output power level, an extra low noise 

amplifier is inserted in the network analyzer port 1 branch so that the mixer can be 

properly driven. The obtained output power level at port 1 is 6.2 dBm (with the default 

network analyzer output power of -7.0 dBm plus the amplifier gain and the interior port 

1 branch insertion losses and exterior cable losses). With this output power level, it is 

sufficient to drive the mixer under proper working condition. 

A network analyzer can also be used to measure mixer frequency conversion gain, 

when proper configuration is provided. The principle of this measurement is easy to 

understand, when the mechanism of S parameters measurements is understood. At either 



83 

port of the network analyzer, a pair of transmitter and receiver is configured to measure 

the power ratio of the transmitted signal as well as the reflected signal. The measurement 

of conversion loss therefore is possible if only absolute power levels are measured 

instead of power ratios. This is equivalent to say that the network analyzer is the same as 

a spectrum analyzer when it only measures the received power level. Of course, a proper 

power level calibration should be performed in order to make power level measurement 

interpretable. 
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CHAPTER 5 INTEGRATION OF SYSTEM-ON-

SUBSTRATE AND SYSTEM EXPERIMENTS 

Before different SIW and SIC components and devices can be integrated together on 

a substrate, some integration issues unique to an integrated system-on-substrate should 

be carefully considered, for example, the proper selection of the transmitter up-converter 

and the receiver down-converter, the leakage effects on the system performance and so 

on [32, 62-65]. The fabrication process of the prototype is explained in this chapter. 

Upon the completion of the prototype, the functionality of the front-end is confirmed 

using a single tone test experiment. Radar range measurement is performed afterwards 

by using a VCO to generate a linear frequency modulated signal. Detailed discussion on 

radar range responses and the measured results are given in this chapter. Finally, the 

possibility of sharing the FMCW radar front-end with spread-spectrum radar is 

discussed. 

5.1 Selection of Mixer 

When it comes to justify the selection of different mixer in the transmitter and 

receiver, the electrical performances as well as the integration issues of the mixers 

should be balanced [33]. An advantage of a 90-deg mixer is that its LO port and RF port 

are placed on the same side of the mixer, which is a very gracious point in the design of 

a compact integrated system due to this layout convenience. As it will be discussed later 



85 

in this chapter, this orientation of mixer LO port and RF port also enables the radar 

antennas to be placed in a way that permits high free space isolation between antennas. 

Parametric studies on chapter 4 suggest that the isolation of SIW coupler used in this 

mixer obtains its maximum isolation when the two ports are excited in the same 

frequency band. Meanwhile, since the homodyne FMCW radar receiver is a zero-IF 

architecture, the receiver LO signal and the received RF signal are in the same frequency 

band. Therefore it is concluded that the FMCW radar receiver could be an appropriate 

application situation for a 90-deg SIW mixer. On the selection of transmitter mixer, a 

180-deg mixer can accommodate a much larger frequency difference between the LO 

signal and RF signal. This enables the separation of the USB signal from LO signal and 

LSB signal to be performed easily. Meanwhile, a 180-deg mixer generally exhibits 

better LO-RF isolation performances as observed from the measurement results in 

chapter 4, which is effective in reducing the transmitter leakage. Another benefit of 

choosing the SIC mixer is that it occupies a relatively small size in contrast with the 

SIW mixer in the transmitter, where devices including SIW power divider, transmitter 

drive amplifier, power amplifier and receiver LO driver are concentrated together. Care 

must be taken in considering the placement of the 180-deg SIC mixer LO port and RF 

port, because they are placed on different sides of the IF signal. In this work, because the 

transmitter LO signal comes from an external source, therefore the 180-deg SIC mixer 

can be placed conveniently with the RF port interconnected to the SIW power divider, 

while the LO port and IF port can be oriented normal to each other on both sides of the 

system. 
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5.2 Leakage and LO Interference 

As a member of CW radar family, FMCW radar also faces the challenge of leakage 

phenomenon between the transmitter and receiver which is inherent to any CW radar. 

This leakage could cause severe problems for the FMCW radar receiver by saturating 

the receiver first-stage low-noise-amplifier or degrading radar performances by reducing 

the dynamic range, depending on the leakage power level and the leakage place. This is 

why most FMCW radars are limited to short range applications, where high transmitter 

power is not required and leakage power level is low [23, 62, 64, 66]. For a radar system 

with one antenna, the majority of the leakage comes from the insufficient isolation 

between the circulator ports connecting transmitter and receiver, in which 25-dB 

isolation is typical. For a radar system with two antennas, the majority of the leakage 

comes from the free space coupling between the transmitter antenna and the receiver 

antenna, in which up to 60 dB isolation can be achieved. FMCW radars employing two 

separate antennas are mostly used to overcome the challenge of designing a high 

isolation circulator. In the integrated system-on-substrate, because of the size restraint on 

the front-end, the two SIW slot array antennas are spaced very close, which might result 

in insufficient free space isolation and degraded receiver performances, as shown in 

figure below. 
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Figure 5-1. A generic FMCW radar model with illustrated leakage paths. 

In order to investigate the effect of leakage on the receiver performances, accurate 

leakage modeling and measurements of its effect on the receiver dynamic range is of 

great importance. Upon a constructed generic FMCW radar homodyne receiver model 

employing such an antenna system, the free space leakage and its effect on the FMCW 

radar receiver performances are investigated in this work. 

Considering the generic FMCW radar model as shown in Figure 5-1, the basic 

ranging principle of FMCW radar is to measure a frequency shift caused by the time 

delay of a reflected signal, when the transmitted signal is linearly-frequency-modulated 

by a periodic waveform. Because of its auto-correlation ranging method, FMCW radar 

receiver requires a reference signal directly coupled from the transmitter mixing with the 

received signal. Therefore, the FMCW radar homodyne receiver is mathematically 

equivalent to a frequency difference measuring device for the reference channel and the 

received signal channel. Successful detection of the target range depends on sufficient 

detection of this frequency difference signal between the two channels [62]. 

file:///ieakage
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Upon this, an experiment to measure the effects of leakage on the homodyne receiver 

is designed as shown in Figure 5-2. 

Spectrum M j x e r 

CW receiver 

Simulated leakage 
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Simulated returned 

wave 
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Figure 5-2. Free space antenna leakage measurement setup. 

15 GHz 

Incoming waves 
v 24.15007 GHz 

Figure 5-3. Photograph of the measurement setup (the second source which 
functions as a simulated target return signal is not shown). 

The receiver is constructed with an SIW slot array antenna connected to a mixer RF 

port. The SIW antenna is mounted on a copper base to facilitate the connection with the 

mixer module. The LO of the receiver is provided with an external signal source. The 
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function of this source is equivalent to the reference signal in the generic model. A 

second source is placed far away from the receiver, which emits a signal through a horn 

antenna illuminating the receiver with a frequency different from the receiver LO. Bear 

in mind that for an FMCW radar with linear-frequency-modulation, the target range is a 

linear function of the frequency difference between the reference and the reflected 

signals [67]. Therefore, this source is equivalent to a reflected signal from a target with a 

frequency shift different from the reference signal. A third source is connected to 

another SIW slot array, with a frequency identical to the receiver LO. This source is the 

simulated source of transmitter leakage. The antenna is clamped by a universal test 

fixture and is placed in a way similar to the placement of the two antennas on the 

system-on-substrate layout [31]. It is worth mentioning that in order to approach a more 

realistic system, the leakage signal should be coherent to the reference signal, that is to 

say that the leakage signal should be applied to the transmitter SIW antenna from the 

receiver LO either through a power divider, or through a directional coupler. However, 

this approach will lose the control over the absolute leakage power level on the receiver 

antenna, limiting the measurement system. Moreover, for an FMCW radar system when 

only frequency difference information (i.e., target range) is of interest, losing leakage-

reference phase coherency will not affect the system ability to measure the frequency 

difference. Notice here that the definition of leakage refers only to the free space leakage 

between the two antennas. The feed-through of the direct coupling signal, either caused 

by the limited receiver mixer LO-RF isolation or the imperfect receiver antenna port 

matching condition, is not singled out. However, because the variables of this 
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experiment are the power levels of the simulated leakage source and the simulated 

returned wave, both are external to the radar receiver, therefore the observed receiver 

detection ability changing is due to the free-space leakage only. 

The radar receiver LO frequency is set at 24.15 GHz. The simulated target return 

wave source is set with a frequency value of 24.15007 GHz. The power level is set at the 

radar receiver antenna port where the incoming wave is -84.6 dBm. Based on the radar 

equation [23], P = P • G2 • X2 • <r/[(4^)3 • R4], for a CW system with a 0-dBm transmitter 

power level, this is equivalent to a target with 260 m2 radar-cross-section (RCS) 50 m 

away. 

Because single tone signal is used in the experiment, the minimum detectable signal 

level (MDSL) is an appropriate description of the receiver sensitivity. With the spectrum 

analyzer (Rohde & Schwarz FSIQ40) measurement bandwidth of 20 kHz, the noise floor 

is around -110 dBm. Consider a signal-to-noise (SNR) ratio of 15-dB, the MDSL is 

around -95 dBm. However, with the presence of leakage signal, either the receiver 

sensitivity or the SNR will be degraded. The leakage signal power level on the receiver 

antenna is controlled by changing the third source power level. With a measured leakage 

level of -36.0-dBm, the measured receiver MDS versus a measured receiver MDS 

without leakage is shown in Figure 5-4. 
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Figure 5-4. The minimum detectable signal level without the presence of leakage and 
the degraded signal with the presence of leakage. 

It is clearly demonstrated that even with a small leakage level, the noise floor of the 

receiver is still increased to -105 dBm. With the incoming waves unchanged, the 

receiver SNR is decreased to 10 dB. The physical reason of this is the presence of an 

unwanted DC component generated because of the mixing of receiver LO and the 

leakage signals. Once the DC component is generated, it will flow within the nonlinear 

mixing junction and increase the flicker noise, therefore increasing the overall mixer 

noise level. It is important to notice that although some techniques exist to cancel this 

leakage signal [68-70], they are however generally complicated and expensive for low-

cost sensor applications. 

To recover the IF signal, either the "useful" input RF signal level has to be increased, 

or the IF signal-to-noise ratio should be sacrificed. This implies that either the radar 
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cannot "see" as far as in a no leakage situation when a -36.0-dBm leakage is presented, 

or the radar probability of detection has to be reduced due to the reduced SNR. In most 

radar applications, the SNR is specified from a given false-alarm probability and 

normally cannot be compromised, which suggests that the maximum range 

performances have to be compromised to maintain a given SNR. Experiment results as 

shown in Figure 5-5 reveal that only when the input RF signal level is increased to a -

74.5-dBm would the IF signal be recovered for a 15-dB signal-to-noise ratio. Obviously, 

the augmentation of input RF signal levels to maintain the signal-to-noise ratio is 

equivalent to a loss of receiver sensitivity. Based on radar equation, the reduced 

maximum radar operating range can be estimated. 

Figure 5-5. The degraded original signal and the recovered signal (with the penalty 
of 10.1 dB dynamic range sacrifice). 
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Meanwhile, the DC component caused by the leakage will also influence the upper 

end of the dynamic range by affecting the compression point, i.e. PldB point, as 

illustrated in the figure below. 

Gain compression , i ' 

Power level, dBm 

Figure 5-6. 1-dB dynamic range measurement definition (not drawn to scale). 

A circuit-level model is constructed using the Advanced Design System (ADS) 

simulation package to investigate this effect. The simulated mixer frequency conversion 

gain, as a function of different leakage levels is shown in Figure 5-7. 
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Figure 5-7. Simulated conversion gain compression point decreasing with different 
leakage levels. 

Clearly, the PldB gain compression points demonstrate a trend to decrease as the 

leakage level increases. This is also because of the unwanted DC component offsets the 

mixer diodes operation point. Therefore, at the upper end of the receiver dynamic range, 

the leakage signal will make the receiver more likely to be saturated. However, it is 

found that the effect of leakage on the gain compression point decreasing is minuscule. 

Even when the leakage level is increased to -3-dBm, the PldB point shows less than a 

0.5-dB decrease. The physical explanation for this is that the diodes biasing point 

shifting caused by the generated DC component, is a small quantity compared with the 

diodes biasing currents provided by the LO driven signal. 

To experiment this effect, let us consider the "self-mixing" effect caused by mixing a 

signal possessing the same frequency as the LO, the free-space leakage measurement 
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experiment can be simplified by using a mixer model with a power-combing network. 

The experiment is set up as shown in the following figure. 

Direct coupling 
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Figure 5-8. Measurement setup for modeling dynamic range with leakage effect 
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Figure 5-9. Measured conversion gain compression with different leakage levels. 

The measurement turns out to be difficult since when the leakage level increases, the 

generated DC component also increases. Because the mixer is directly coupled to the 

input port of the spectrum analyzer, this DC component overflows the spectrum analyzer 

input mixer and introduces fluctuation on the converted IF signal. It is found that the 
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power saturation performances are indeed influenced much less even if a significant 

level of leakage occurs. Less than 1 dB PldB drop down is recorded with the presence 

of a -3 dBm leakage. Therefore it is safe to conclude that a leakage in the level of -40 

dBm will almost have no effects on the upper end of the dynamic range. 

Besides the free space leakage introduced from the receiver antenna, there are other 

sources of leakage affecting the receiver performances. Among these leakages, those 

that are caused by the receiver LO is of most interest, because the LO signal normally 

has a high power level within the receiver. One possible leakage is the one from LO to 

the receiver low-noise-amplifier (LNA) input port, which is caused either through 

insufficient receiver mixer LO-RF isolation or caused by the substrate coupling. The 

effect of this leakage is potentially to saturate the LNA due to the high signal power 

level before the useful signal is amplified. The leakage as a consequence of low LO-RF 

isolation can be reduced either by improving mixer performances, or by placing an 

additional isolator between the mixer RF port and the LNA output port. The on-substrate 

coupling between the receiver LO and the LNA could be suppressed by embedding 

metalized channels within the substrate to isolate different modules. The quantitative 

analysis of this leakage however, should be performed based on each specific layout 

situation from a full-wave analysis point of view [71]. Possible insufficient RF-LO 

isolation, however, cannot be a severe damage to the overall performance, because the 

RF signal power level is relatively low. This is the same for the possible insufficient RF-

IF isolation. 
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Another important leakage within the receiver is related to insufficient mixer LO-IF 

isolation. If the receiver IF processing unit has a high gain chain, the leaked LO could 

saturate the IF before the useful signal is amplified. Also, for a system with a fixed 

analog-digital converter (ADC) sampling rate, the excessive LO could easily produce 

aliasing phenomenon for the signal processing part, making the target beat frequency 

undetectable. A simulation system based on behavior model is designed to simulate this 

effect. Considering the receiver has an input signal level of-30 dBm with an 18-dB gain, 

the simulated demodulated IF beat signal for a 15-dB LO-IF isolation and the same 

propagation path for a 30-dB mixer LO-IF isolation are shown in Figure 5-10. Clearly, 

the demodulated IF beat signal for an insufficient LO-IF isolation contains extra high 

frequency LO component and will cause aliasing of the ADC. The signal amplitude is 

also significantly increased due to the excessive LO signal, which could exceed the 

dynamic range of the ADC. To prevent this, the mixer LO-IF isolation should be high 

enough or a low pass filter should be included between the ADC and receiver mixer 

output to sufficiently attenuate high frequency LO signals. 
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Figure 5-10. a) A simulated demodulated IF signal in a receiver system with 
received power level is -30 dBm and a mixer LO-IF 15 dB isolation. 

_ - i i i i i i i i i i i 

60 80 100 120 140 160 180 200 220 240 
time, us 

Figure 5-10. b) A simulated demodulated IF signal in a receiver system with 
received power level is -30 dBm and a mixer LO-IF 30 dB isolation. 
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5.3 Front-End Fabrication 

The complete front-end system on substrate is fabricated on a dielectric material 

RT6002 with er=2.94, and tan8=0.0012 at 10 GHz. A copper cladding thickness of 17 

|j,m is chosen. Although thicker copper cladding will increase the adhesion of the copper 

to the (CF4)n media, it will reduce the maximum achievable photolithography resolution. 

Thinner copper cladding could maximize the achievable photolithography resolution; 

however, a very thin copper layer could peel off the dielectric media easily and reduce 

the entire PCB mechanical robustness. Another reason why this sr=2.94 material is 

chosen instead of a lower dielectric material such as RT 5880 with sr=2.22, is that 

compared with pure PTFE ((CF4)n) material such as RT5880, RT6002 material is a 

composite material. This property improves the adhesion of tin to the substrate in a 

chemical process, which is crucial for SIW sidewall metallization process. 

The fabrication of the front-end system is described as follows. The first step 

requires the complete cutting contour for all the SIW components on the substrate. A 

Nd-Yag Q-switched laser is used in this process which generates a pulsed laser with 532 

nm wavelength. After sputtering a thin metal layer on the channels, the PCB is then 

immerged into a CUSO4 electroplating solution to metalize the side walls of the channels 

on the PCB. Those metallised channels are then protected with a FeCl3 erosive-resistant 

transparent tape before photolithography. After aligning the PCB with its mask, a 

standard photolithograph process is performed to produce the complete layout of the 

system. A photograph of a front-end system-on-substrate PCB is shown in Figure 5-11. 

Finally, active devices are wire-bonded to the traces on the substrate, which is glued on a 
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metal base using a conductive silver epoxy. It is worth knowing that because the PCB 

layout is made out of copper, the bonding process becomes extremely difficult since 

fused gold adhere to copper poorly. The sacrifice paid for this is that wire bonding was 

used between MMIC and PCB instead of ribbon bonding, which leads to 2-3 dB extra 

amplifier gain loss at each stage of the system. The future development of SIW radar 

should avoid this disadvantage by depositing a thin layer of gold on the entire circuit. 

Figure 5-11. Photograph of a front-end system-on-substrate PCB (from [72]). 

5.4 Radar Front-End System Experiments 

a). Front-end functionality verification. 

Before performing the target range measurement experiment, the functionality of the 

front-end should be verified. It is important to notice that the functionality of the front-

end is a different concept with respect to that of radar. The radar functionality is 
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described by its ability to measure target range. While front-end functionality is mostly 

related to the frequency response of a FM system. Considering a triangular waveform 

modulated FMCW radar, the front-end basically functions as a frequency difference 

measuring device. That is to say, at any instantaneous moment, the front-end measures 

the frequency difference between the reference signal (the same as the transmitted signal) 

and the received returned signal (target reflection signal). Therefore, the frequency 

response of the front-end itself can be verified using a single tone experiment. 

The experiment is designed as shown in the figure below. With a single tone 

transmitter IF signal TxIF, mixing with a single tone transmitter LO signal TxLO, a 

single tone transmitter signal Tx is generated. This transmitter signal is coupled to the 

receiver as a reference signal, bearing the same frequency. Meanwhile, another source 

transmits a signal Rx different to Tx in frequency, illuminating the front-end. The 

receiver is supposed to be able to receive this Rx signal and mix it with Tx, generating a 

IF signal RxIF, which is equivalent to measuring a target. The mathematical 

relationship between this measured RxIF signal and the equivalent target range, should 

be a linear function for a linear modulation scheme. 
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Figure 5- 12. Front-end functionality measurement principle. 

For example, for a TxIF with a 3.0874001 GHz signal input into the front-end, 

given a TxLO at 20.86500094 GHz, the transmitted Tx frequency is 23.952401 GHz. 

With another source illuminating the front-end with a frequency of 23.952411 GHz (Rx), 

the front-end is supposed to be able to generate an IF signal (RxIF) around 10 kHz. For 

this particular frequency set, the measured front-end IF signal is 10.1 kHz. Imagining a 

triangular waveform modulated FMCW radar with a modulation bandwidth of 150 MHz 

and modulation frequency 10 kHz, i.e. 20 kHz/m, this measured 10.1 kHz RxIF is 

equivalent to a target at a range of 0.5 m. 
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Figure 5- 13. Measured front-end receiver IF frequencies as a function of equivalent 
target range. 

Tuning the simulated target source with a frequency step is equivalent to moving the 

target away from the front-end. For a well-designed front-end, the measured real front-

end receiver IF output RxIF should be a linear function of the changed Rx. The 

recorded real receiver IF outputs as a function of the equivalent target range are plotted 

in the above figure. It is observed that a linear response is obtained with the fabricated 

front-end prototype, which confirms the functionality of the front-end. 
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Figure 5- 14. Photograph of the FMCW radar during experiment. 

b). Radar functionality verification. 

To verify the functionality of the radar, a LFM signal is used as a baseband input. 

The radar performance with different modulation techniques can be studied with a 

generic approach [67]. Suppose an FM signal is in the form of 

f' = f0 + Mf(t) (5.1) 

where/o is the carrier frequency, fit) is the modulation signal, Mis modulation index. 

The instantaneous transmit signal phase can be obtained by 

<p = 2n-f f\x)dx = 2nf0t + 2trMf f(x)dx (5.2) 
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Based on the homodyne design of the system, the output of the mixer in receiver is 

essentially a multiplier; the output will be the vector summation of the reference signal 

Vo from the transmitter and the received signal Vs with a time delay T, i.e. 

V = y]v0
2 + Vs

2 + 2V0VscosA<p (5.3) 

Expanding the above equation in a power series until the second order gives 

1 V2 1 V2 

V = Vn + V,'cosAcp+—- s—cosAcp (5.4) 

0 s 2 V0 2 V0 

Because the received signal amplitude is much less than the reference signal, i.e. 

I K \<<:\ K I' m e second order terms can be omitted and we can get the following 

vs~V-V0 = VscosA(p (5.5) 

Note that here v, is referred to as a time signal. 

The instantaneous phase difference between the transmitted signal and the received 
signal can be given by the integration of frequency over time as 

T T reference rreceiving 

= 2xf0t + 2nM j ^ f{x)dx - 2nfG (t-t)- 2nM £ J f(x)dx (5.6) 

= 2xf0T+2nM [ f(x)dx 

Therefore, the instantaneous mixer output signal can be given as 

v, = Vs cos[2xf0T + 27rM ( f(x)dx] (5.7) 

Integrating this signal over the modulation period gives 

V cT/2 

V: f cos[2/r/0r+2^-M| f(x)dx]dt (5.8) 
J-772 Jf-r 
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which is also the auto-correlation of the transmitted signal. From Wiener-Khinchine 

theorem, which states that the power spectral density of a wide-sense-stationary random 

process is the Fourier transform of the corresponding autocorrelation function, this 

received signal is the inverse Fourier transform of the transmitted signal power spectrum. 

Consequently, for a linear-frequency-modulation signal, the rectangular power spectrum 

will produce a demodulated signal having a sine-function envelope distribution. As 

target range varies, the range gate will give responses at different frequencies 

accordingly as shown in Figure 5-15 below. 

To group most of the demodulated signal into a major spectrum range gate, linear-

frequency-modulation (LFM) techniques including symmetrical sawtooth (triangular) 

waveform and asymmetrical sawtooth waveform are used in the experiment. This is the 

unique characteristics for LFM techniques. An external VCO with around 0 dBm output 
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power is used to generate the required baseband FM signal. A corner reflector with a 

RCS of approximately 260 m2 is used as a station target placed away from the radar. The 

output radar transmitted signal is measured around 0 dBm from 23.87 GHz to 24.13 

GHz as shown in Figure 5-16. 
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Figure 5- 16. Measured transmitted signal spectrum. 
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Figure 5- 17. Measured spectrum of a converted receiver IF output for a 1.00 m 
target with a modulation frequency of 20 kHz. 
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The receiver IF output is low-pass filtered before being measured using a spectrum 

analyzer. As an example of typical measured range responses, one converted receiver IF 

signal spectrum is shown in Figure 5-17. The baseband VCO is swept at a rate of 20 kHz 

over 7.0 V, resulting in a frequency-modulation bandwidth (for 0-dBm power level) of 

approximately 260 MHz and an IF frequency around 70-kHz/m distance between the 

antenna and the target for a triangular modulation. The measured range response 

includes a spectral peak around 80 kHz for the case of a triangular modulation, 

indicating the measured target range. For the case of a sawtooth modulation, because the 

tuning bandwidth is not changed while the modulation period is actually doubled, the 

demodulated IF output is approximately a half of the triangular modulation case. Aside 

the major peak component, several range side lobes are clearly visible. It is interesting to 

point out that there are basically two major factors contributing to this phenomenon. 

Firstly, it is in the nature of the FM system employing a rectangular spectrum [67] to 

produce such range side lobes. Because, as mentioned earlier, the range response of such 

an FMCW radar is the inverse Fourier transform of the transmitted power spectrum, i.e. 

a group of harmonics with the envelope of a sine function. 

Secondly, the spreading of the range response could also be due to the limited FM 

linearity. In this case, it is because of the limited VCO frequency tuning linearity. Some 

research works [73, 74] on increasing the FM ramp linearity clearly demonstrate the 

improvement on range measurement accuracy. It is concluded from [73, 74] as shown in 

the figure below, that reducing spread of range side lobes and achieving a high range 

peak will be obtained when the linearity of the FM is significantly improved. 
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Figure 5- 18. Range profile of a delay line. a), without linearization, b).with hardware 
linearization, c). with hardware and software linearization. (From [73]). 

The frequency value of the maximum range response is recorded to calculate the 

measured range. A series of range measurements can be made by moving the target with 

a distance step. Two types of modulation schemes are used in this work and the detailed 

range measurement results are plotted in the figure below. Obviously, it is observed that 

the measured spectral peak is linear to the target range, which confirms the functionality 

of the front-end for radar application. The radar range resolution, which is defined as the 

minimum distance between two targets that radar can discern, could be measured with a 

radar signal processing unit. 
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Figure 5-19. Measured IF frequency as a function of range using different 
modulation techniques. 

During the range measurement experiments, it is found that the spectra of the range 

response are sensitive to the movement of the target, i.e. limited changes on the 

movement of the target can have an impact on the shape of the range response. This can 

be explained by considering the range response in time domain [67] which is written as 

v = - ^ cos 2nf0t + cos 2xf0T • £ a2k cos[2x(2k)fj - 7t{2k)fmT] 
k=\ 

+sin 2xf0T • JT a2k_x cos{27t{2k - \)fmt - n{2k - l)fmr] 

(5.9) 

*=i 

It is important to pay attention to the side lobes amplitude modulation terms 

cos 27rfQT and sin 2?rfQT, because the two terms can have different effects on the side 

lobe levels which will have a direct impact on the range response spectrum shape [67]. 

For example, for a range gate 8, the spectrum lines are distributed in several adjacent 

lines as shown below when cos 2/r f0T = 0 and sin 2nf0T = 1. 
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Figure 5-20. Effect of RF phase on typical post mixing spectra (from [67]). 

If the two amplitude modulation terms are changed into cos2;r/0r = l and 

sin 2/r/0r = 0, i.e. A(p = nl2 then the demodulated signal spectrum can be concentrated 

into only one or at most a few spectrum lines. That is to say, if there was a target range 

perturbation, which causes the 27rf0-Ar item a nl2+nn phase change, significant 

change of the look of the range response would happen. The minimum range 

perturbation then can be concluded as 

i f A
 n

 A A 2 2AR 2nfQ -At- — =>Ar = — • — = 
2 8 c c 

where AR = \ 18. 

(5.10) 

At 24 GHz, the quantity \l% is approximately 1.6 mm. In other words, range 

perturbations in the order of millimeters can have an impact on the looking of the 

observed demodulated signal spectrum. 
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5.5 Integration FMCW Radar with Spread-Spectrum Radar 

Research activities on the use of different radar waveforms in a radar system in order 

to achieve different range resolutions in different applications are carried for a long time 

[26, 75-78]. FMCW waveform including linear frequency modulation, sine-wave 

modulation, dual modulation and FSK waveform can share a same front-end system as 

in [79]. Recently, many efforts are put in the development of spread-spectrum radar 

trying to achieve better range resolution [80]. 

If one takes a look at (5.2), the instantaneous transmitted signal is written as 

v(t) = cos[27rf0t + 27rM F f(x)dx] (5.11) 

The auto-correlation function of the transmitted signal is [67] 

y/(z) = lim - £r/"2 cos[2;r/0f + InM j ^ f(x)dx\ • 
1 eTll 

y i-ri: 

cos[2;r/0 (t + f) + 2nM f+* f(x)dx]dt 
J—oo 

T 

r) + 2nM (+t f(x)dx'\dt 
(5.12) 

1 rT/2 rt 
= l i m — COS\2KLT + 27VM\ f(x)dx]dt 

T^^^T J-772 L J{} it-rJ V ' 

The similarity of equations (5.8) and (5.12) reveals the autocorrelation essence of 

FMCW radar. Therefore, integrating the front-end of spread spectrum radar and FMCW 

radar together is straightforward. A schematic block diagram is given in Figure 5-21 for 

a descriptive explanation. The radar signal processing mode changes could be made with 

the replacement of a spread-spectrum signal generator by a frequency modulation (FM) 

signal generator, which can be achieved using a currently widely available multifunction 

direct digital synthesizer. In this sense, radar systems with different signal processing 



113 

method can be realized with the same front-end platform by choosing different 

configurations of the digital synthesizer and we may call this radar "software defined" 

[28]. 
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Figure 5- 21. A block diagram for a FMCW/Spread-spectrum radar. 
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CONCLUSION AND FUTURE WORK 

A complete FMCW radar front-end system-on-substrate (SoS) has been designed, 

fabricated and characterized. This is the first integrated system prototype based on the 

substrate-integrated-circuit (SIC) concept. It is the first original contribution of this work. 

The direct technical merit of this contribution is that it has demonstrated that a complete 

front-end system-on-substrate can be fabricated in one process which is compatible with 

a conventional PCB fabrication process. By doing so, the microwave system front-end 

part can achieve a very compact profile as well as a much lower fabrication cost. 

The adopted hybrid integration approach, the so-called substrate-integrated-circuits, 

has proven its usefulness in the design of high performances MICs, as demonstrated by 

the designed antennas, power dividers, and mixers in this work. One member of the SIC 

family, i.e. substrate integrated waveguide (SIW) has been widely used for prototypes. 

Although a geometrical similar structure, as called post-wall or laminated waveguide, 

was reported earlier, the development of SIW integration technology has progressed 

beyond its original scope. As a matter of fact, substrate-integrated-circuits design is an 

advanced organic design philosophy which has self-evolved much further than a mere 

design concept. 

It is concluded that superior MICs performances can be achieved by hybrid 

integration of different geometries and structures, such as non-planar classic metallic 

waveguide, and planar microstrip lines through a coherent fabrication manner. A 
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proposed 180-degree SICs mixer demonstrates that overall performances of such a 

hybrid MIC are optimized compared with MICs designed with a single waveguiding 

structure. The easiness of integration with diodes and small size associated with 

microstrip lines, were integrated together with the lower transmission losses of the SIW, 

especially at high frequency bands. That is the second original contribution of this work. 

Also, as a by-product of this work, the third original contribution is a measurement 

technique, by which nonlinear characteristic of frequency conversion devices can be 

measured using a network analyzer. 

Although a complete integrated FMCW radar front-end was implemented in this 

work, there are still many improvements that can be made. For example, a detailed noise 

analysis, especially the transfer of phase noise from transmitter to the receiver, is desired 

but not studied because of the limited time frame. This is of course left as a future work 

in this area. 

There are also other directions on the implementation of integrated system on 

substrate. Although only SIW has been extensively used in this work, the possibilities of 

integrating other guiding wave structures on the same substrate are enormous. In fact, a 

good SIC system design is not (and should not) limited to a single guiding wave 

structures. Areas of future SIC related research areas including: 

• Development of semiconductor substrate based high performance SIC components 

and devices, with the ultimate objective of synthesizing SIC components on a silicon or 

GaAs substrate. This will enable the large scale manufacturing of high-quality passive 
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and active microwave integrated circuits and calls for the maturation of monolithic 

semiconductor processing techniques. 

• A complex versatile SoS combining different SIC family members including 

substrate integrated non-radiating dielectric guide, substrate integrated waveguide, 

substrate integrated image dielectric guide, to name a few, and classic planar structures 

such as microstrip lines, coplanar waveguide and so on, with different building blocks 

exemplified by their unique capabilities, shall be pursued to demonstrate the usefulness 

of this integration methodology. 
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