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RESUME 

Le vecteur adenoviral est actuellement le vehicule viral le plus utilise dans les 

protocoles cliniques de therapie genique. Recemment, un nouveau vecteur 

adenoviral nomme vecteur adenoviral dependant d'un virus auxiliaire (helper-

dependent adenoviral vector, HDV) a ete developpe afin d'ameliorer I'efficacite 

et la surete des traitements. Malgre le potentiel therapeutique certain du HDV, la 

caracterisation de ce vecteur dans des protocoles cliniques est limitee par les 

difficultes liees a sa production. Cette these decrit le developpement d'un 

processus integre pour la production du HDV. Les etapes du processus sont 

definies par trois procedes distincts qui ont ete etablis pour produire a grande 

echelle des lots de vecteurs de grade clinique. Les procedes ont ete etudies en 

detail pour ameliorer la comprehension de la formation des vecteurs. 

La premiere etape du processus de production consiste en un procede de 

secours du HDV utilisant une nouvelle methode nommee adenofection. Cette 

methode combine la transfection de la culture cellulaire par le HDV a I'infection 

par le virus auxiliaire (helper adenoviral vector, HV). Realisee en suspension, 

I'adenofection reduit la duree du processus de production grace a la generation 

du HDV a un titre plus eleve compare aux methodes conventionnelles. Le 

transfert de I'ADN du HDV est le facteur limitant de la production. Les 

complexes d'adenofection requierent une quantite elevee d'ADN et de HV pour 
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produire le HDV a un titre maximum apres seulement deux passages 

d'amplification (1 x 108 unites infectieuses/mL). 

La deuxieme etape du processus de production est un procede d'amplification 

du HDV utilisant une methode d'infection. Cette methode repose sur le controle 

quantitatif de I'infection par le HDV et le HV pour garantir le titre de HDV 

(jusqu'a 2 x 108 unites infectieuses/mL) et limiter la contamination par le HV 

(jusqu'a 2%). Le titre de HDV maximum est obtenu lorsque le HV est ajoute a 

une multiplicite d'infection (quantite de HDV infectieux par cellule, multiplicity of 

infection, MOI) faible, ce qui limite aussi la contamination par le HV. Le titre de 

HDV augmente avec la MOI du HDV puis diminue au-dela d'une MOI de 5. La 

contamination par le HV est dependante du ratio entre le HDV et le HV apportes 

au moment de I'infection. D'autre part, la competition entre le HDV et le HV 

restreint ('amplification du HDV. Des strategies de delai d'infection et de choc de 

temperature sont appliquees pour pallier cette limitation. Ces strategies n'ont 

cependant pas eu d'influence significative sur le titre de HDV. 

La troisieme etape du processus de production repose sur la purification du 

HDV, procede inclus dans le processus de production du HDV. Le procede de 

purification combine I'avantage des methodes chromatographiques pour la mise 

a I'echelle a I'avantage d'une methode d'ultracentrifugation utilisant un gradient 

de densite d'iodixanol pour la separation du HDV et du HV. Les taux de 

recuperation du HDV (-75%), le ratio d'infectivite du HDV (-100%), la reduction 



ix 

de la contamination par le HV (-facteur 7) et la purete du materiel confirment 

I'efficacite du procede. Par ailleurs, I'amplification du HDV ne depend pas d'une 

eventuelle selection par recombinase. La lignee cellulaire parentale est une 

alternative a la lignee cellulaire recombinase difficile a generer et a caracteriser. 

Les titres de HDV et de HV etant similaires avec la lignee cellulaire parentale, le 

procede de purification detaille precedemment est requis pour reduire 

substantiellement la contamination par le HV. 

Les procedes decrits dans cette these ameliorent significativement la fiabilite et 

I'efficacite de la production du HDV. Ces avancees contribueront certainement a 

soutenir I'emploi therapeutique du HDV a grande echelle. 
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ABSTRACT 

Adenoviral vector is presently the most employed vehicle in gene therapy clinical 

trials. Recently, a new adenoviral vector called helper-dependent adenoviral 

vector (HDV) has been developed to improve the safety and efficacy of 

treatments. Even though the HDV has demonstrated a high therapeutic 

potential, further characterization of this vector has been hampered by 

production difficulties. This thesis describes the development of an integrated 

process for the production of HDV. The steps of the integrated process defined 

by three distinct processes have been established to allow clinical grade vector 

production at large scale. They were studied in details to improve the 

understanding of vector formation. 

The first step of the integrated process consists of a HDV rescue process using 

a new method called adenofection. This method combines the transfection of 

cells by a helper-dependent adenoviral vector (HDV) with the infection by a 

helper adenoviral vector (HV). The adenofection of cells in suspension reduced 

process duration by generating the HDV at higher titer in comparison to 

conventional methods. The transfer of HDV DNA was the limiting factor of 

production. The adenofection complexes required high amounts of HDV DNA 

and HV to produce the HDV at a maximum titer following only two amplification 

passages (1 x 108 infectious units/mL). 
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The second step of the integrated process is a HDV amplification process using 

an infection method. This method relies on the quantitative control of infection by 

the HDV and HV to guarantee HDV titer (up to 2 x 108 infectious units/mL) and 

to limit contamination by the HV (to less than 2%). Maximum HDV titer was 

obtained when the HV was added at a low multiplicity of infection (number of 

infectious HDV per cell, MOI), which also limited the contamination by the HV. 

HDV titer increased with the MOI of HDV, then decreased above a MOI of 5. 

Contamination by the HV was dependent on the ratio between the HDV and HV 

provided at the infection time. Furthermore, the competition between the HDV 

and HV restricts HDV amplification. Strategies consisting of infection delay and 

cellular heat shock were evaluated to overcome this limitation. However, those 

strategies did not have a significant effect on HDV titer. 

The third step of the integrated process relies on the purification of the HDV, a 

step included in the production process. The purification process combines the 

advantage offered by chromatographic methods for scale-up possibilities to the 

advantage of a rapid ultracentrifugation method using iodixanol density gradient 

for the separation of the HDV and HV. The recovery yield (-75%), HDV 

infectivity (-100%), reduction of contamination (-factor 7) and material purity 

confirmed the process efficiency. Furthermore, it was demonstrated that HDV 

amplification did not depend on an eventual recombinase selection. The 

parental cell line is an alternative to the recombinase cell line difficult to generate 
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and to characterize. The HDV and HV titers being similar with the parental cell 

line, the purification process previously detailed was required to substantially 

reduce the contamination by the HV. 

The processes described in this thesis significantly improve the reliability and 

efficacy of HDV production. Those advances will certainly contribute to sustain 

the therapeutic use of the HDV at large scale. 
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TU Transducing unit, unite de transduction 

TVP or VP Total viral particles or viral particles, particules virales totales ou 

particules virales 

UV Ultraviolet 

VG Viral genomes, genomes viraux 

¥ Encapsidation signal, signal d'encapsidation 
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AVANT-PROPOS 

Ce travail de these est le resultat de quatre annees de travaux de recherches a 

I'lnstitut de Recherche en Biotechnologie du Conseil National de Recherches 

Canada en collaboration avec le departement de genie chimique de I'Ecole 

Polytechnique de Montreal. 

Cette these se divise en une introduction, quatre chapitres principaux et une 

section de discussion generale, conclusions et recommandations. Les quatre 

chapitres sont presentes sous forme d'articles qui ont ete soumis a des journaux 

scientifiques avec comites de lecture. 

Dans un premier chapitre, une revue de litterature fait etat des connaissances 

concernant la production d'AdV de premiere, deuxieme et troisieme generation. 

From the First to the Third Generation Adenoviral Vectors: what Parameters are 

Governing the Production Yield ? a ete soumis a la revue Biotechnology 

Advances. 

Les chapitres 2 a 4 contribuent a definir, etudier et optimiser un processus 

integre de production du HDV. Le chapitre 2 detaille le travail sur I'etape initiale 

de production du HDV dans laquelle le HDV est disponible sous la forme d'ADN. 

II fait I'objet d'une premiere publication intitulee An Efficient and Scalable 

Process for Helper-Dependent Adenoviral Vector Production using 

Polyethylenimine-Adenofection actuellement en revision finale dans la revue 
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Biotechnology and Bioengineering. Dans cet article, une nouvelle methode pour 

le procede de secours est etudiee. La methode se revele efficace et adaptable 

en suspension. Des resultats complementaires sont presentes et ouvrent la voie 

a I'utilisation du parametre MOI comme outil de controle de la production pour 

I'etape subsequente d'amplification. 

La generation d'un stock viral tel que presente au chapitre 2 permet de realiser 

les etudes portant sur I'etape d'amplification du HDV. Au chapitre 3, une 

deuxieme publication intitulee Identification of Critical Infection Parameters to 

Control Helper-Dependent Adenoviral Vector Production using QPCR soumise 

dans la revue Biotechnology and Bioengineering est presentee. L'effet des 

parametres d'infection sur la production du HDV et la contamination par le HV y 

est etudiee. Toujours dans le but de favoriser ('amplification du HDV au 

detriment du HV, une courte etude sur le choc thermique est decrite sous forme 

de resultats complementaires. 

Afin d'utiliser le HDV pour des applications cliniques, I'etape de purification pour 

eliminer la presence de serum, la contamination par le HV et les impuretes 

derivees des cellules hotes est necessaire. Un procede de purification utilisant 

des methodes chromatographiques couplees a une methode 

d'ultracentrifugation par gradient de densite d'iodixanol est presente sous forme 

d'article au chapitre 4. An Efficient Process for the Purification of Helper-

Dependent Adenoviral Vector and Removal of Helper virus by lodixanol 
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Ultracentrifugation a ete soumis au journal Analytical Biochemistry. Les resultats 

complementaires du chapitre 4 comparent la production du HDV avec les 

lignees cellulaires parentale et recombinase. Les productions sont utilisees dans 

le procede de purification. 

Ces travaux de recherche ont ete presentes lors de conferences a caractere 

international et national. 

Dormond E., Perrier M., Kamen A. 2008. Critical process parameter to control 

productivity in helper-dependent adenoviral vector production. Vaccine 

Technology II. Albufeira, Portugal, June 1-6. Poster 

Dormond E., Bernier A., Jacob D., Chahal P.S., Perrier M., and Kamen A. 2008. 

Production and purification of helper-dependent adenoviral vector: 

comparison of parental and recombinase HEK293 cell line. Cell Culture 

Engineering XI. Coolum, Australia, April 11-16. Poster 

Dormond E., Meneses-Acosta A., Jacob D., Durocher Y., Perrier M., and Kamen 

A. 2007. A scalable process for helper-dependent adenoviral vector 

production using PEI-derived transfection strategy in suspension culture. 

The 20th Meeting of the European Society for Animal Cell Technology. 

Dresden, Germany, June 17-20. Poster and proceeding 
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Meneses-Acosta A., Dormond E., Durocher Y., Gilbert R., and Kamen A. 2006. 

Optimization and scale-up of helper-dependent adenovirus production by 

FLP/frt system using the multiplicity of infection criteria. The 14th Annual 

Congress of the European Society of Gene and Cell Therapy. Athens, 

Greece, November 9-12. Poster 

Dormond E., Durocher Y., Perrier M., and Kamen A. 2006. Helper-dependent 

adenoviral vector generation using an easy and scalable rescue process 

based on adenofection. The 4th Annual Meeting of the Montreal Centre 

for Experimental Therapeutics in Cancer. Montreal, Canada, October 26-

27. Poster 

Dormond E., Durocher Y., Perrier M., and Kamen A. 2006. Adenofection: a 

simple and efficient process for large-scale helper-dependent adenoviral 

vector production. The 56th Canadian Chemical Engineering Conference. 

Sherbrooke, Canada, October 15-18. Oral 

Dormond E., Meneses-Acosta A., Durocher Y., Perrier M., and Kamen A. 2005. 

Helper-dependent adenoviral vector generation using an easy and 

scalable rescue process based on adenofection. The 3rd Annual Meeting 

of the Montreal Centre for Experimental Therapeutics in Cancer. 

Montreal, Canada, May 26-27. Poster 
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Dormond E., Meneses-Acosta A. and Kamen A. 2004. Strategy for scale-up of 

Gutless viral vector production. The 2? Bioprocess Perspectives Meeting. 

Montreal, Canada, September 24. Oral 

A titre de deuxieme auteur, une publication portant sur la production de HDV 

intitulee Development of a suspension serum-free helper-dependent adenovirus 

production system and assessment of co-infection conditions est parue dans la 

revue Journal of Virological Methods. 
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INTRODUCTION 

Les adenovirus (AdV) ont ete decouvert il y a plus d'un demi-siecle par Rowe et 

ses collegues (Rowe et al. 1953). L'AdV est un virion de 70 a 90 nm compose 

d'une capside et d'une enveloppe interne dans laquelle se trouve un complexe 

ADN-proteines. Le genome de I'AdV est un ADN lineaire double-brin d'environ 

36 kb. II se compose des elements cis, elements qui doivent etre presents sur le 

genome pour assurer la croissance virale, tels le signal d'encapsidation (¥) et 

les repetitions terminales inversees (ITR, inverted terminal repeats), et des 

elements trans, elements qui peuvent etre supplemented independamment de 

I'AdV, tels les genes viraux. Les AdV sont specifiques aux especes et differents 

serotypes ont ete isoles a partir d'especes mammiferes tel I'homme et le 

primate. Entre autres, il existe 51 serotypes distincts d'AdV humains (Schenk 

2001). L'AdV humain de type 5 dont il est question dans cette these est 

actuellement le serotype ayant fait I'objet du plus grand nombre de recherche. 

Initialement, les AdV de type humain ont servi de modele pour la 

comprehension des mecanismes de base des cellules eucaryotes tels que la 

replication, la traduction, la transcription et la cancerogenese. Par ailleurs, la 

capacite des AdV a se modifier genetiquement durant leur croissance en culture 

(Lewis et al. 1966; Lewis and Rowe 1970; Pierce et al. 1968) a inspire les 
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scientifiques pour utiliser des vecteurs modifies genetiquement afin de transferer 

un gene de choix dans les cellules. La therapie genique est ainsi nee. 

L'utilisation des AdV pour la therapie genique humaine connait un engouement 

scientifique certain, justifie par les caracteristiques propres a ces vecteurs. Les 

AdV ont demontre un large tropisme cellulaire pour des cellules quiescentes et 

non-quiescentes. lis n'ont pas demontre que leur genome s'integrait au genome 

de la cellule note et ne sont done pas oncogenes, lis ont une grande capacite 

d'insertion pour le transgene therapeutique. lis peuvent etre produit a haut titre. 

Ces caracteristiques font des AdV les vecteurs les plus utilises dans les 

protocoles cliniques de therapie genique, de therapie cancereuse et de 

vaccination, totalisant plus d'un quart des protocoles debutes a ce jour, soit 342 

(www.wiley.co.uk/qenetherapy/clinical/). Cependant, I'interet therapeutique que 

les AdV suscitent se heurte souvent au manque de developpement de leur 

production impliquant des couts qui, a I'heure actuelle, depasse la volonte 

d'investissement des industries. Pres de vingt ans apres I'approbation du 

premier protocole clinique impliquant un virus pour le traitement de patients 

souffrant du melanome metastatique (www.wiley.co.uk/genetherapy/clinical/, 

essai clinique US-001), la commercialisation d'une therapie virale tarde encore 

dans les pays occidentaux. 

Suite au deces d'un patient traite avec I'AdV pour une deficience en ornithine 

transcarbamylase (Raper et al. 2003), I'efficacite et la surete des traitements 

http://www.wiley.co.uk/qenetherapy/clinical/
http://www.wiley.co.uk/genetherapy/clinical/
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utilisant des AdV a fortement ete remise en question. L'implication de la reponse 

immunitaire dans ce drame a conduit au developpement d'AdV de nouvelles 

generations caracterisees par le retrait progressif des sequences trans sur le 

genome viral. Par rapport a I'AdV de premiere generation, les benefices 

apportes par I'AdV de seconde generation, denue de quelques sequences trans 

sont peu claires. Ainsi, au debut des annees 1990, un AdV de troisieme 

generation depourvu de toutes les sequences trans est construit. Les avantages 

therapeutiques de cet AdV de troisieme generation sont notables. Compares a 

I'AdV de premiere generation, la reponse immunitaire de I'hote est reduite, 

I'expression du transgene est allongee dans le temps et I'espace disponible 

pour le transgene est considerablement augmente. Le desavantage majeur de 

ce vecteur reside dans sa production, relativement complexe. 

DO a la particularity de sa construction, I'AdV de troisieme generation, appele 

aussi vecteur adenoviral dependant d'un virus auxiliaire (helper-dependent 

adenoviral vector, HDV) est complemente par un virus auxiliaire, un AdV de 

premiere generation (helper virus, HV). La production de HDV s'effectue 

generalement dans les cellules de rein d'embryon humain 293 (Human Embryo 

Kidney 293, HEK293). Ce systeme produit de nouvelles particules de HDV 

grace a I'apport du genome HDV par le HDV lui-meme, I'apport des sequences 

des proteines necessaires a son encapsidation par le HV et I'apport des 

sequences initiant la replication virale par la lignee cellulaire HEK293. 
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Actuellement, le potentiel therapeutique du HDV est limite par deux aspects : la 

difficulty de production du HDV et la contamination de la production par le HV. 

Les productions sont realisees avec des lignees cellulaires adherentes, 

lesquelles sont cultivees en boites de Petri. Les protocoles de production sont 

empiriques, c'est-a-dire qu'ils n'utilisent aucun principe de bio-ingenieurie 

permettant de garantir les rendements de production. Les conditions de 

production sont ainsi difficiles a realiser a grande echelle et ne permettent de 

generer que de petites quantites de HDV a peine suffisantes pour effectuer des 

etudes pre-cliniques sur de petits modeles d'animaux. D'autre part, le materiel 

viral est contamine par le HV. L'utilisation d'un systeme de selection 

recombinase a grandement reduit la contamination par le HV. Cependant, la 

contamination par le HV n'est maTtrisee que par l'utilisation d'une lignee 

cellulaire HEK293 exprimant la recombinase de maniere constitutive, lignee qui 

se doit d'etre efficace a la fois pour produire le HDV et pour reduire la 

contamination par le HV. La caracterisation et I'isolement d'une telle lignee sont 

difficiles. 

L'utilisation du HDV dans les protocoles cliniques d'envergure en vue d'etoffer 

sa caracterisation necessite done d'ameliorer les methodes de production du 

HDV. A cette fin, le developpement de methodes de production basees sur 

l'utilisation de parametres faciles d'utilisation et predictifs des rendements de 

production est souhaite. L'hypothese principale de cette recherche est que la 

production du HDV est gouvernee par I'apport de HDV et de HV, lesquels 
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ajoutes a la culture cellulaire selon des quantites relatives et totales definies 

permettent de rencontrer des exigences de production identifies. 

L'objectif principal de cette recherche est de definir un processus integre, 

efficace et adaptable a grande echelle pour la production du HDV de grade 

clinique. Le processus doit etre defini par des procedes fiables et efficaces 

correspondant chacun a une etape de production. Pour parvenir a cet objectif, il 

est necessaire d'identifier les parametres cles regissant la production du HDV 

pour les etapes de secours et d'amplification. La maitrise de ces parametres 

permet ensuite d'optimiser la production en maximisant la production du HDV et 

en minimisant la contamination par le HV. La purification des vecteurs et leur 

separation efficace est ensuite requise pour une utilisation clinique du HDV. 
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CHAPITRE1:DE LA PREMIERE A LA TROISIEME GENERATION DE 

VECTEURS ADENOVIRAUX: QUELS SONT LES PARAMETRES 

GOUVERNANT LE RENDEMENT DE PRODUCTION ? 

1.1 Presentation de I'Article 

Le but de cette these est de developper un processus pour la production du 

HDV a grande echelle. identification de parametres qui definissent les etapes 

du processus et qui permettent un controle de la production est un sous-objectif 

important de cette these. Afin de mesurer ces parametres, la production doit 

etre caracterisee. Les connaissances acquises durant ces vingt dernieres 

annees, portant principalement sur la production d'AdV de premiere generation, 

sont autant de ressources qui peuvent aider au developpement de procedes 

efficaces pour la production d'AdV de troisieme generation. 

Ce chapitre presente sous forme d'article de revue fait etat des connaissances 

concemant la production d'AdV. II tente d'expliquer comment revolution des 

generations a affecte le developpement de la production au niveau de la 

caracterisation, de I'amplification virale et des procedes. L'article From First to 

Third Generation Adenoviral Vectors: what Parameters are Governing the 

Production Yield ?a ete soumis a la revue Biotechnology Advances. 
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1.2 From the First to the Third Generation Adenoviral Vector: what 

Parameters are Governing the Production Yield ? 

Dormond E.1'2, Perrier M.2, and Kamen A.1 

1Animal Cell Technology Group, Biotechnology Research Institute, National 

Research Council Canada, 6100 Royalmount Avenue, Montreal, Quebec, 

Canada H4P 2R2 

2Chemical Engineering Department, Ecole Polytechnique de Montreal, Campus 

de I'Universite de Montreal, 2500, chemin de Polytechnique, Montreal, Quebec, 

Canada, H3T1J4 

Keywords: Adenovirus; Helper-dependent adenoviral vector; Production; 

Quantification. 

1.2.1 Abstract 

Human adenoviral vectors serotype 5 (AdVs) are presently the primary viral 

vectors used in gene therapy trials. Advancements in AdVs process 

development directly contribute to the clinical and commercialization of the AdV 

gene delivery technology. Notably, the development of AdV productions in 

suspension culture has driven the increase in AdV volumetric and specific 

productivity, therefore providing large quantities of AdV required for clinical 

studies. This review focuses on detailing the viral, cell and cell culture 
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deterministic aspects governing the productivity of the three generations of AdV 

vectors. 

1.2.2 Introduction 

Human adenoviral vector serotype 5 (AdV) is the most characterized virus 

among 51 others human serotypes of the same family and therefore its biology 

is well known (McConnell and Imperiale 2004; Tatsis and Ertl 2004). AdV has 

been considered a good candidate for therapeutic gene delivery in humans for a 

number of advantages including its wide cell tropism in quiescent and non-

quiescent cells, its inability to integrate the host genome, its high capacity for the 

therapeutic gene insertion and its high production titer. Within the last two 

decades, the AdV genome has been progressively modified from the wild-type 

genome to improve its safety and efficacy in therapeutic applications. A 

decrease in the immunological response following vector administration has 

been achieved by a progressive removal of non-essential viral DNA regions. 

From the first generation of AdV (FGAdV) with the deletion of the replication 

region to the third generation of AdV (TGAdV) with the complete clearance of 

viral genes, an enhanced capacity for a therapeutic gene insertion from ~7 kb to 

-30 kb has been achieved. 

The number of AdV clinical trials increased from 1994 to 1999 and then dropped 

dramatically in 1999 (Figure 1.1) (www.wiley.co.uk/genetherapy/clinical/) 

http://www.wiley.co.uk/genetherapy/clinical/
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following the tragic death of a patient ongoing an AdV therapy for the treatment 

of an ornitnine transcarbamylase deficiency (Raper et al. 2003). Safety and 

efficacy concerns in AdV therapy were reevaluated by the National Institute of 

Health, USA and the group gave recommendations to strengthen the design, 

evaluation and conduct of AdV-based protocols (National Institute of Health 

2002). Then, targets for gene therapy moved completely from monogenic 

diseases towards the more typical marketable diseases involving transient 

therapies. In this context, AdV is also an interesting candidate for vaccine 

technology, cancer, vascular dysfunctions and rheumatoid arthritis. In 2007, 

cancer therapy constituted the major field of AdV clinical applications (80%). 

Following Shenzhen SiBiono GenTech's commercial licensing in China 

recombinant AdV-p53 (Pearson et al. 2004), a similar product Introgen's 

Advexin, currently undergoing phase III clinical trials will likely be the first 

approved gene therapy in the USA. However, the recent decision by Merck & Co 

to stop a phase II AdV-based HIV vaccine clinical trial will certainly bring again a 

period of skepticism regarding AdV-based therapies. 
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Figure 1.1 Evolution of number of starting AdV clinical trials from 1993 to 

2007. From http://www.wilev.co.uk/qenmed/clinical/. Updated march 2008 

The actual need for large amounts of clinical-grade AdV (1012-1013 viral 

particles/patient; 1010-1011 plaque-forming units/patient) requires efficient and 

established processes for productions at large-scale capacity under good 

manufacturing practices. To develop robust production bioprocesses for AdV, 

up-to-date knowledge on overall production systems and on the critical 

parameters that affect the AdV yield are required. 

This review provides a summary of the research activities relating to AdV 

production. Quantification assessment of AdV will be described first to 

http://www.wilev.co.uk/qenmed/clinical/
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demonstrate the impact of the viral product, the virus-cell system, and the cell 

culture aspect on AdV productivity with specific concerns on the third generation 

of AdV. Finally, current research trends dedicated to the enhancement of 

production yields will also be discussed. 

1.2.3 Adenoviral Vector Characterization 

Detailed quantification assessments are required during the whole 

manufacturing process including viral amplification, purification and formulation 

to evaluate and to control process parameters. During production, quantification 

allows us to control viral amplification through the multiplicity of infection (MOI), 

ie. the number of infectious viral particles added per cell at infection. 

Quantification is also intended to monitor the production yield. In order to 

coordinate the wide variety of techniques, an AdV serotype 5 reference material 

(ARM) has been developed by the FDA, academic centers and industries and 

coordinated by the Williamsburg BioProcessing Foundation (Hutchins 2002; 

Hutchins et al. 2000). The initial purpose of such work was to generate and 

thoroughly characterize an AdV stock with representative assays to further help 

in validating new assays. This promoted an open exchange of standard 

operating procedures (SOP) among development and manufacturing groups 

contributing to a generalization of best practices in the field (Simek et al. 2002). 

However, the ARM, a FGAdV, has failed to serve as a universal standard for all 

AdV generations, despite some efforts to adapt it (Palmer and Ng 2004). 
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Quantification methods tended to be generation specific and since the 

establishment of the ARM, a wide variety of methods have been developed to 

fulfill the requirements for TGAdV characterization. The lack of uniformity in 

TGAdV quantification complicated a meaningful comparison of data in process 

development and pre-clinical studies. 

A panel of methods to quantify AdV is routinely used in the development and 

manufacturing productions of this virus. They rely on physical, molecular or 

biological properties of the particles. The main features of the methods are 

described in Table 1.1. Three groups of characterization assays are commonly 

used: physical assays (viral particles, VP), infectivity assays (infectious viral 

particles, IVP), and replication competent AdV (RCA) assays. The VP assays 

are intended to measure the process yield, the IVP assays are useful to monitor 

the bioactivity of AdV and the RCA assays report the biological purity of the 

production. 
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1.2.3.1 Viral Particles Concentration 

The VP concentration is commonly measured by assessing DNA absorbance at 

260 nm of a purified lysed virion preparation using the extinction coefficient for a 

36 kb wild-type AdV (Maizel et al. 1968). Upstream from ultra-violet (UV) 

detection, anion-exchange high performance liquid chromatograpy (AEX-HPLC) 

has been developed to determine AdV concentrations in non-purified samples 

(Klyushnichenko et al. 2001; Shabram et al. 1997; Transfiguracion et al. 2001). 

The relative standard deviation (RSD) is ~10% for crude samples and -5% for 

purified samples. Size correction should be made if the viral DNA size varies 

from the usual 36 kb ARM standard used for calibration. For instance, this 

method is less precise for the determination of TGAdV concentrations. Non-

purified samples from TGAdV productions usually contain an unknown mixture 

of FGAdV and TGAdV (30 and 36 kb AdV) harboring similar capsids. 

Nevertheless, the advantage of this HPLC method is its adaptation to the 

quantification of all AdV harboring anionic charged capsids at neutral pH. 

Reverse phase HPLC (RP-HPLC) protocol has also been developed to assess 

the VP concentration based on hexon quantification (Lehmberg et al. 1999). 

Fluorescent detection of AdV DNA has been shown to further improve the 

detection level of AdV by a factor of 20 (Murakami and McCaman 1999). Also 

considering that the limit of detection for TGAdV samples using AEX-HPLC is 

determined by the limit of the UV absorbance methods used, fluorescent dye 
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technology will certainly enhance the sensitivity of the methods. Although the 

initial cost for the set-up of an HPLC including development and validation of the 

instrumentation is high, FGAdV concentration has been routinely assessed by 

these established, fast and accurate methods in most of the development 

laboratories and manufacturing facilities. Real-time qPCR is deemed the most 

sensitive method for DNA detection although its sensitivity to contaminant 

requires the use of highly purified DNA samples. To improve specificity, TaqMan 

technology has been used for single or multiplex detection (Ma et al. 2001; 

Puntel et al. 2006). The development of qPCR is undoubtedly justified for the 

characterization of TGAdV samples. By using this technique, an accurate 

comparison of the concentration of FGAdV to the concentration of TGAdV has 

been rendered possible (Palmer and Ng 2005). The AdV concentrations are 

assessed on the same detection basis allowing a good base of comparison of 

the concentrations. For purified samples, reproducibility is high -5% RSD. The 

costs of the equipment and consumables are high, and even higher when multi-

fluorescent techniques are used. Total viral particles concentration can be 

reported as viral particles (VP)/ml_, as total viral particles (TVP)/ml_ or as viral 

genomes (VG)/ml_. For consistency, viral particle concentrations will be reported 

as VP/mL, in the remaining of the text. 
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1.2.3.2 Infectious Viral Particles Concentration 

Infectious viral particles have been referred to as particles able to transduce 

cells in which they undergo one or more viral life steps such as DNA replication, 

transgene expression, viral growth, etc. Provided with this definition, the number 

of existing infectious assays for AdV is wide considering the diversity of methods 

used to detect their occurrence. During production development, most infectious 

assays use the HEK293 cell line as the target cell line taking advantage of its 

availability in laboratories. The most common infectious assay involves the 

detection of a cytolytic effect on cells following viral spread. The fastest 

infectious assay relies on the transfer of a specific gene coding for a protein and 

the subsequent detection of this protein. Other infectious assays have relied on 

molecular DNA detection techniques following viral DNA replication. The 

cytopathic effect assay has been the most widely used method to quantify 

FGAdV. It can be easily performed in most laboratories, requiring minimal 

equipment and was therefore chosen to characterize the infectious viral particle 

concentration of ARM. Target cells show a cytopathic effect as a consequence 

of mass production of cytotoxic viral proteins following the amplification of AdV. 

This assay has been usually performed in plaque-format or end-point dilution 

format (Graham and van der Eb 1973; Mittereder et al. 1996; Nyberg-Hoffman et 

al. 1997). The ARM protocol has been made available from the WilBio website 

(www.wilbio.com). This assay is highly insensitive as a consequence of the 

successive and dependent viral events that need to occur to observe a cytolytic 

http://www.wilbio.com
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event. Hence concentrations are usually one log below other infectious titers 

(Mittereder et al. 1996; Nyberg-Hoffman et al. 1997). To limit assay variability, 

the SOP has to be strictly executed by a limited number of well-trained people 

resulting in a RSD lower than -40% (Callahan 2002; Hutchins 2002). Moreover, 

the cytopathic effect assay is not appropriate in determining TGAdV 

concentrations as these vectors are devoid of viral coding sequences and are 

therefore replication-deficient in HEK293 cell lines. But, this assay is well suited 

to detect infectious viral particles concentration of FGAdV present in TGAdV 

lots. The cytopathic effect assay is applicable to FGAdV with no regards to its 

transgene. It has been therefore used at the pre-clinical and clinical stages, for 

vectors whose marker gene has been replaced by a therapeutic gene. In gene 

transfer assays (GTA), AdV transfers to cells a gene for which the 

corresponding protein is expressed and its activity is measured. With an 

expression cassette containing a reporter gene detectable in each cell such as 

the green fluorescent protein (GFP) under the cytomegalovirus (CMV) strong 

promoter control, the GTA is fast, sensitive and easy to perform. Following the 

infection of HEK293 cells with serial dilutions of the AdV sample in a plaque-like 

format or end-point dilution format, infected cells are detected either by direct 

monitoring such as fluorescent reading and colorimetric staining or by 

immunostaining (Cote et al. 1997; Lusky et al. 1998; Mittereder et al. 1996; 

Nyberg-Hoffman et al. 1997; Park and Lee 2000; Weaver and Kadan 2000). 

With direct detection methods, we generally obtained a RSD of -30% 
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(unpublished results). The variability in concentration assessment is increased 

with differences in viral constructs, reporter gene and expression cassette 

characteristics, sensitivity of detection method, as well as target cell line and cell 

culture conditions (Kamen and Henry 2004; Mittereder et al. 1996; Nyberg-

Hoffman et al. 1997). During process development, infectious viral particle 

concentration is not routinely monitored for FGAdV. However, specificity of the 

marker gene permits to distinguish the FGAdV from the TGAdV. When AdV is 

ready to be manufactured, the marker gene is replaced by the therapeutic 

cassette and immunoassays or cytopathic effect assays are then employed for 

viral titer determination. Combined infectious and qPCR assays have also been 

used to a lesser extent to monitor infectious titer (Wang et al. 2005). Following 

cell infection with samples at low MOI, AdV DNA is subjected to qPCR. This 

assay is limited by the qPCR instrument availability and the costs related to its 

use. Infectious viral particle concentration have been reported as infectious viral 

particles (IVP), plaque forming units (PFU), tissue culture infected dose at 50% 

(TCID50), infectious units (IU), infectious particles (IP), transducing units (TU), 

green transfer units (GTU) in the case of the GFP reporter gene, blue-forming 

units (BFU) in the case of the (3-galactosidase reporter gene, etc. Taking into 

account the various sensitivities of the different assays, the infectious viral 

particle concentrations will be reported as PFU for the cytopathic effect assays 

and as IVP for the gene transfer assays. 
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1.2.3.3 Ratio between Viral Particles and Infectious Viral Particles 

The infectivity ratio, i.e the ratio between VP and IVP has been highly relevant to 

assess the quality of the vector stock (National Institute of Health 2002). 

Because the AdV capsid proteins are cytotoxic, the use of AdV stocks at low 

infectivity ratios limits the risk associated with the toxicity due to the total 

particles while it increases the therapeutic benefits provided by the infectious 

particles. In terms of the infectivity ratio of AdV lots, the FDA requirement has 

been strengthened from 1998 to 2002 (Simek et al. 2002) (Biological Response 

Modifiers Advisory Committee Meeting 30, 13 July 2001). The infectivity ratio of 

clinical lots should stand below 30:1 (VP:PFU). By quantifying VP by HPLC or 

by qPCR and IVP using GTA, we usually obtain an infectivity ratio of 3:1 to 10:1 

(VP: IVP) for FGAdV and TGAdV (Kamen and Henry 2004; Meneses-Acosta et 

al. 2007). 

1.2.3.4 Replication Competent Particles Determination 

A replication competent adenovirus (RCA) is able of propagating in non-

complementing cells as a consequence of the incorporation of the E1 region into 

its genome. The presence of these RCA particles in clinical lots is unwanted as 

they would be able to propagate uncontrollably in tissues leading to patient 

infection and enhancement of the immunological response (Imler et al. 1995; 

Lochmuller et al. 1994). The FDA has restricted the RCA presence in clinical lots 
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to 1 for every 3 x 1010 VP (Biological Response Modifiers Advisory Committee 

Meeting 30, 13 July 2001). Assessment of infectious RCAs consists of a serial 

cytopathic effect assay performed in E1-deleted cells. The presence of plaques 

is reported as the initial AdV dose applied on cells. The RCA assay is semi

quantitative and time-consuming usually performed over two to three weeks. 

Roller bottle cultivation mode is often required to increase the surface of 

adherent cells. Moreover, like all cytopathic-based assays, the cytopathic RCA 

assay suffers from high variability and underestimates the RCA concentration. In 

an attempt to facilitate the quantitative assessment of the RCAs, Ishii-Watabe et 

al. (2003) have developed a q-PCR assay which has shown more sensitivity and 

less variability as compared to the traditional cytopathic RCA assay. This 

method has been refined by Schalk et al. (2007) to diminish the constraints 

related to the handling of large cell culture volumes. 

The interpretation of AdV quantification results is not straightforward as the 

methods for the same type of assessment have different sensitivities and 

therefore different meanings. Quantification results should be carefully used 

while keeping in mind the nature and limitations of these assays. 

1.2.4 Adenoviral Vector Production 

To get a better understanding of what governs the yield in AdV productions, we 

have classified the pertinent parameters described in the literature into two 
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categories. The first category concerns the parameters related to the AdV and 

the second one concerns the cell culture conditions. 

1.2.4.1 Viral Parameters 

Viral Production Systems 

The AdV has been divided into four main types of constructs: the FGAdV, the 

conditionally replicating AdV (CRAdV), the second generation of AdV (SGAdV) 

and the TGAdV. The size of the type 5 AdV genome should stand between -28 

and ~38 kb to be efficiently packaged therefore enabling deletions and 

insertions on the original 36 kb genome (Bett et al. 1993; Parks and Graham 

1997). Figure 1.2 and Table 1.2 provide a description of the AdV vector systems 

and an insight on productivity of such systems. 
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Figure 1.2 Schematic representation of wild-type AdV genome and different 

generations of AdV. Genomes are divided into 100 map units (28 to 38 kb). E1 

to E4: early transcript units, L1 to L5: late transcript units, ITR: inverted terminal 

repeats, MLP: major late promoter, \\f. packaging signal 



29 

Table 1.2 Virus-cell system characteristics for production 
Virus- Vector Construction specificity Complementing cell Production yield 
Cell generation vs. wild-type AdV system 

system 

FGAdV AE1 + AE3 
HEK293, PERC6, 

HeLa 
Suspension 

3 x 1 0 - 1 x10 J 

PFU/cell 
5x10 2 - 6x10 3 

IVP/cell 
2x10 4 -1 x105 

VP/cell 

References 

(Reviewed in Nadeau 
and Kamen 2003) 

C-RAdV AEIAor AE1B, Tissue 
specific promoter 

HEK293, HeLa, 
A549 

Suspension 
1-5 x104 VP/cell (Longley et al. 2005; 

Yuk et al. 2004) 

HEK293 
50% FGAdV 
(temperature 

mutation on E2A) 
(Engelhardt et al. 1994) 

a> 
T3 
c 
a> 
Q-
(D 

T3 

c 

SGAdV 

AE1/E2 mutation or 
deletion + AE3 

HEK 293-E2B 
4x108PFU/mL 

(temperature 
mutation on E2B) 

(Amalfitano et al. 1996; 
Amalfitano and 

Chamberlain 1997) 

A549-E1-E2A 50% FGAdV 
1-3 x102 PFU/cell 

(Gorziglia et al. 1996) 

4x107IVP/mL 
HEK293E1-E2A 

(Luskyetal. 1998) 

HEK293-E4 

1 x109IVP/mL 

2x108PFU/mL 

(Zhou and Beaudet 
2000) 

AE1/ AE4 total or partial 
(Wangetal. 1995) 

HEK293- E4 partial 10-50% FGAdV 
2-4x108IVP/mL 

(Lusky et al. 1998) 

HEK293-E2A + E4 
transient transfection 

7x10^ VP/cell (Gorziglia et al. 1999) 

AE1/AE2A/AE3/total or 
partial AE4 

HEK293-E2A-partial 
E4 

HEK293-E2A-total 
E4 

4 x 1 0 " VP/mL 
4x1010IVP/mL 

(Andrews et al. 2001) 

HEK293-AdV 
amplicon E1-E4 

50 % FGAdV 
5 x103 VP/cell 
2x1012VP/mL 

(Catalucci et al. 2005) 

E 

CD 

I 

5x10'IVP/mL 
All viral sequences 
deleted (except ITR 

and packaging signal * 
FGAdV loxP 

HEK293-Cre 
Suspension 

1-5x108IVP/mL 
1.8x10" VP/cell 
1.2 x103 IVP/cell 

(Parks etal. 1996) 

(Ng et al. 2001; Palmer 
and Ng 2003) 

PERC6-Cre 
Suspension 

1 x1010 VP/mL 
3 x103 VP/cell 

(Sakhuja et al. 2003) 

TGAdV 
All viral sequences 
deleted (except ITR 

and packaging signal 
* ) + FGAdV/AE2A or 

/AE2B loxP 

HEK293-E2A-Cre 
1-5 10" VP/mL 

0.8-2 x10'° 
I VP/mL 

(Zhou etal. 2001) 

HEK293-E2B-Cre 1 x108IVP/mL 
(Barjot et al. 2002; 

Hartigan-O'Connor et al. 
2002) 

All viral sequences 
deleted (except ITR 

and packaging signal 
¥) + FGAdV frt 

1 x10°IVP/mL (Umanaetal. 2001) 
HEK293-FLP 
Suspension 

2-5x10" I VP/mL (Ng etal. 2001) 

1-4x108IVP/mL (Meneses-Acosta et al. 
2007) 
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Table 1.2 Virus-cell system characteristics for production (continued) 

Virus- Vector Construction specificity Complementing cell Yield References 
Cell generation vs. wild-type AdV system 

system 
All viral sequences 
deleted (except ITR 

and packaging HEK293-Cre 6 x 1 o7 IVP/mL (Sargent et al. 2004) 
signal ¥) + AplX 

FGAdV loxP 

All viral sequences 
deleted (except ITR 

and packaging signal HEK293-Cre 4 x 109 IVP/mL (Cheshenko et al. 2001) 
¥) + Baculovirus 

FGAdV loxP 

The AdV has been divided into four main types of constructs: the FGAdV, the 

conditionally replicating AdV (CRAdV), the second generation of AdV (SGAdV) 

and the TGAdV. The size of the type 5 AdV genome should stand between -28 

and -38 kb to be efficiently packaged therefore enabling deletions and 

insertions on the original 36 kb genome (Bett et al. 1993; Parks and Graham 

1997). Figure 1.2 and Table 1.2 provide a description of the AdV vector systems 

and an insight on productivity of such systems. 

The FGAdV is devoid of the E1 region. This region codes for two important 

subunits E1A and E1B. E1A transactivates other early units, crucial for viral 

replication function which induces a propitious cell environment for viral 

replication and deregulates various cell cycle controls. E1B is mainly involved in 

the inactivation of apoptosis pathways. Most of the FGAdV constructs have also 

been deleted in the E3 region, which is not necessary for viral amplification and 

permits a transgene insert capacity of up to 8.2 kb. Because the E1 deletion 

CD 
Q. 

I 
TGAdV 
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impairs AdV replication, FGAdV are produced in a cell line supplying the E1 

sequence in trans. The HEK293 cell line developed by Graham et al. (Graham 

et al. 1977) has been the typical cell line used to produce AdV. The AdV 

production in HEK293 has been shown to generate RCA, directly attributable to 

the presence in HEK293 genome of a large AdV sequence containing the E1 

region and which undergoes homologous recombination with the vector (Hehir 

et al. 1996; Lochmuller et al. 1994; Louis et al. 1997; Zhu et al. 1999). During 

production, the RCA presence is unwanted as it amplifies advantageously over 

non-RCA rendering the production process uncontrollable. A panel of novel 

human cell lines preventing or minimizing sequence overlaps between vector 

and cell genome have been used to reduce RCA occurrences (Fallaux et al. 

1998; Fallaux et al. 1996; Gao et al. 2000; Imler et al. 1995; Schiedner et al. 

2000; Xu et al. 2006). Also, the transfer of the pIX encoding gene to the cell 

genome has diminished sequence overlaps and contribute to RCA reduction 

(Hehir et al. 1996). Another alternative has consisted of artificially increasing 

FGAdV DNA size with stuffer DNA in the E3 region, rendering the E1-

recombined viral DNA un-packageable (Bett et al. 1993). 

CRAdV has been employed in cancer treatments (Everts and van der Poel 

2005). The first type of CRAdV has been engineered in its E1 functions. Either 

the E1A or E1B region has been mutated which confers the capacity of the 

CRAdV to replicate in human tumor cells that harbor a defective retinoblastoma 

tumor suppressor functions or p53. The second type of CRAdV, less common, 
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contains a tissue specific promoter upstream from E1A for specific replication in 

target cells. Type 1 and 2 CRAdV have been efficiently produced in E1-

containing cell lines. RCA-preventing cell lines such as HeLa or A549 cell lines 

have also been used for CRAdV production (Longley et al. 2005; Yuk et al. 

2004). 

Additional deletions to FGAdV have been proposed to reduce the in vivo 

immunogenicity associated with FGAdV. Together with E1 or E1/E3 deletions, 

full or partial deletion of E4 and full or partial deletion of E2 have given rise to 

SGAdV. A first modification of deleted-E1 and deleted-E1/E3 AdV concerns 

temperature sensitive mutations or partial or total deletions in the E2 region 

(Amalfitano et al. 1996; Amalfitano and Chamberlain 1997; Engelhardt et al. 

1994; Gorziglia et al. 1996; Zhou et al. 1996). For AdV productions, this deletion 

is complemented by the cell line constitutively expressing the E2 region missing 

in the vector. 

Additional lethal deletions in the E4 region were also done. To generate stable 

cell lines, the E4 region transactivated by E1 expression has been driven by an 

inducible promoter to keep the cell line viable during maintenance (Lusky et al. 

1999; Wang et al. 1997; Yeh et al. 1996). A third type of SGAdV is deleted in all 

the early regions, i.e E1-E2-E3 and partially E4 (Andrews et al. 2001; Catalucci 

et al. 2005; Gorziglia et al. 1999). Due to these additional viral deletions, the 

SGAdV system has been shown to generate less RCAs (Hehir et al. 1996). The 
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major problem of the SGAdV concerns the isolation of a complementary cell 

line, a time-consuming process. Cell systems generally have suffered from low 

level of expression and also inappropriate expression timing that result in low 

vector productivity. Yields are usually lowered by a factor 2 to 10 as compared 

to FGAdV. Due to intrinsic difficulty in developing SGAdV systems, scarce data 

are available regarding production development of this vector. 

Progressive deletions of viral coding regions for safety concerns have given rise 

to the TGAdV, completely devoid of non-essential viral genes. Compared to the 

FGAdV and SGAdV systems, the TGAdV or helper-dependent AdV relies on a 

helper-dependent system to be produced. AdV sequences required in cis, are 

the inverted terminal repeats (ITR) where DNA replication starts and the 

packaging signal (Grable and Hearing 1992). The 36 kb of space available for 

the transgene is filled with non-coding stuffer DNA. The helper functions are 

provided by a FGAdV also called helper AdV. Initial work on TGAdV pointed out 

a relative low yield in TGAdV and a high contamination in helper AdV (Kochanek 

1999; Mitani et al. 1995). Because FGAdV and TGAdV carry the same 

envelope, only partial separation through density difference was achieved 

(Kumar-Singh and Chamberlain 1996; Mitani et al. 1995; Parks and Graham 

1997). For this reason, the size of TGAdV never exceeds 32 kb allowing a better 

separation from the 36 kb FGAdV. By introducing a recombinase system, the 

TGAdV system was improved in terms of contamination (Hardy et al. 1997; 

Lieber et al. 1996; Parks et al. 1996). A recombinase recognition site is added 
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beside the packaging signal of the helper AdV, and renders this one un-

packageable when infecting a HEK293 cell line constitutively expressing the 

recombinase. Three recombinase systems have been used: Cre/LoxP, FLP/frt 

and attB-attP/4>C31. Cre/LoxP and FLP/frt have demonstrated similar 

efficiencies in the removal of FGAdV (Ng et al. 2001; Umana et al. 2001). Before 

purification, FGAdV contamination is -1-10%. Some sequences present on the 

TGAdV genome have been shown to have an impact on TGAdV yield. The 

preferred stuffer DNA has been determined to be non-coding DNA of human 

origin with minimal repeated sequences (Parks et al. 1999; Sandig et al. 2000; 

Schiedner et al. 2002). The presence of the promoter for the E4 region has 

conferred an amplification advantage to TGAdV (Sandig et al. 2000). The 

construction of FGAdV has also been shown to influence TGAdV amplification 

(Zhou et al. 2002). An homology of sequences in the packaging signal should be 

avoided to limit the generation of recombinant FGAdV and TGAdV (Hardy et al. 

1997; Sandig et al. 2000). TGAdV complementary cell lines have been derived 

from those producing FGAdV or SGAdV. Additionally, they constitutively express 

the recombinase Cre or/and FLP or 4>C31 (Alba et al. 2007; Ng et al. 2001; 

Parks et al. 1996; Umana et al. 2001). The generation of a cell line that 

efficiently supports the amplification of TGAdV and limits the FGAdV 

contamination is not straightforward. Investigators have shown that 

contamination by FGAdV is attributable to the AdV-mediated host cell shutoff 

(Ng et al. 2002). Others have demonstrated that high levels of recombinase 
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expression might impair the amplification of TGAdV (Hartigan-O'Connor et al. 

2002). RCA emergence in TGAdV preparations is often associated with the 

presence at low concentration of the FGAdV as a helper vector, however, a 

production method requiring the presence of the two viral constructs during 

serial passages might increase the probability of an RCA occurrence. Solutions 

to prevent RCA are similar to those proposed for the FGAdV system, i.e., the 

use of cells with minimal homology such as the PERC.6 cell line (Sakhuja et al. 

2003) or the addition of stuffer DNA in the E3 region of FGAdV DNA to limit 

encapsidation due to viral DNA size constraints (Parks et al. 1996). 

Production data concerning the recently developed TGAdV are not available as 

extensively as for the FGAdV. Consequently, the next sections of this review are 

mostly dedicated to the production of FGAdV but should serve as a basis for 

TGAdV production approaches. 

Although their impact is lesser, non-viral sequences have shown an effect on the 

AdV yield. The choice of transgene expression cassette containing the 

promoter, the transgene and polyA signal, dictated by the target tissues type 

and the target disease, have been shown to influence the AdV yield (Youil et al. 

2003). Besides variation of titers provided by the difference in transgene type 

and sensitivity of transgene detection, promoter and transgene orientation has 

influenced AdV amplification. 
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Clinical requirements to produce less immunogenic AdV led to progressive 

deletions of all non necessary viral sequences. The ongoing elucidation of the 

AdV complex network functions has rendered possible the development of virus-

cell system for AdV production where missing functions are complemented by 

helper functions provided by the cell line or a FGAdV. However, these systems 

gave rise to lower AdV yields compared to wild-type AdV system. A 

comprehensive research for the viral gene functionality and for the effect of viral 

modifications will continue to be helpful in order to improve AdV constructions. 

Also, development of improved stable cell lines will contribute to an 

enhancement of AdV productivity. 

Viral Material for Production 

Initial viral vector productions start from viral DNA. Within the late nineties, 

authors have dramatically improved the generation of recombinant AdV DNA 

(for a pertinent review, see Danthinne and Imperiale (2000)). Following vector 

linearization, complementary cells are transfected and AdV is recovered in its 

viral form. This step is often referred to as rescue. Transfection has been usually 

performed on adherent cell lines in static cultures which are limited by surface 

area for scale-up. Using HEK293 and PER.C6 cell lines, Blanche et al. (2000) 

have recovered around 3 x 108 VP/mL of FGAdV at 14 days post-transfection 

using Lipofectamine-mediated transfection. Recently, Subbramian et al. (2008) 

have described a method for the rapid preparation of a FGAdV. PERC.6 and 
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HEK293 cells, cultivated under static conditions, have been transfected by the 

calcium-phosphate co-precipitation method. Around 4 x 108 VP/mL (5 x 1010 VP 

per 1 tray Nunc cell factory) have been produced at day 6 post-transfection. 

TGAdV have usually been generated by transfection of cells with TGAdV DNA 

followed by infection with FGAdV (Parks et al. 1996) or by transfection with 

FGAdV DNA (Kochanek 1999). TGAdV yields at this step are low (102 to 106 

BFU/mL) (Kumar-Singh and Chamberlain 1996; Parks et al. 1996). Adherent 

C7-Cre cells co-transfected with AdV DNA have been used to produce up to 107 

IVP/mL at 8 to 12 days post-transfection (Hartigan-O'Connor et al. 2002). We 

have developed a highly efficient method compared to the original 

transfection/infection method, adaptable to suspension cell culture conditions 

(Dormond et al., to be published). The so-called adenofection process has 

enabled the generation of 106 IVP/mL at the rescue step. 

Because infection is a more efficient method to transfer and express DNA in 

cells, productions of AdV have been more often reported from viral seed. 

Following AdV rescue as previously described, amplification by infection has 

enhanced AdV yield at least by a factor of 100 allowing the preparation of large 

viral stocks (Blanche et al. 2000; Schoofs et al. 1998). For TGAdV productions, 

amplification by infection has usually led to an increase in titer by a factor -10-

100. Up to six amplification rounds of co-infection have been required to get a 

maximum titer corresponding to ~1 x 108 IVP/mL or ~109 VP/mL. Using the 
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efficient adenofection rescue step, two amplification rounds were required to 

obtain 1.5 x 108 IVP/mL in a 3 L bioreactor (Dormond et al., to be published). 

The generation of a large stock of AdV allows careful study and the 

establishment of controlled bioprocesses where the AdV seed is not a variable 

per se. 

Infection Parameters 

The multiplicity of infection (MOI) has been referred to as the ratio of the number 

of IVP to the number of cells. This parameter has been defined by the Poisson 

distribution and has been originally used to calculate AdV titer. Its use as a 

parameter to control production processes is subjected to controversy. The 

Poisson distribution describes discrete events for which the MOI is less than 1. 

However, when describing experimental conditions, it is often used at values 

greater than 1. Detail commentaries are available in Shabram and Aguillar-

Cordova (2000). Although controversial, the use of MOI is convenient when 

used in the acceptable range of both cell and virus concentrations. The MOI has 

been largely employed for AdV production as it determines viral stock 

production. In Schoofs et al. (1998), production of FGAdV is roughly identical at 

low (1) and high MOI (125) producing -3000 PFU/cell. AdV titer has been 

increased for MOI from 0.01 to 1 and has remained constant for MOI from 1 to 

200 (-1000 PFU/cell) (Park et al. 2004). Provided by two distinct AdV, 

components of TGAdV are assembled at an established stoichiometry for AdV. 
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In a previous work, we have shown that the establishment of a MOI-based 

strategy of infection allows to limit waste of viral material, improve TGAdV yield 

while limiting contamination by FGAdV (Dormond et al., to be published). 

Productivity of TGAdV has attained -300 IVP/cell when MOI of TGAdV is 5 and 

MOI of FGAdV is 0.5. 

Because the titer is maximal when cell viability is still high, AdV has been 

preferably recovered within the cell paste. AdV also has shown a better stability 

when stored in the cell fraction. Furthermore, downstream processing has been 

greatly facilitated by cell centrifugation or microfiltration, allowing therefore a 

reduction of processing volumes to up to 100 times thereby increasing the initial 

low virus concentration. Consequently, cell culture viability has often dictated the 

time of harvest which usually occurs between 36 to 72 hpi, the time at which 

viability is -60 % (Kamen and Henry 2004). For TGAdV production, viability at 

harvest time has been usually higher as a result of a lower AdV yield (Dormond 

et al., unpublished results). The productivity peak has been reached at 48 hpi 

(Meneses-Acosta et al. 2007; Sakhuja et al. 2003). 

1.2.4.2 Towards Improving the Viral Amplification Efficiency: 

Identification of the Limiting Steps 

Viral amplification efficiency is dependent on the viral construction, viral binding 

properties and the cell line surface characteristics. A viral cycle begins with 
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infection involving virus diffusion, virus attachment to the cell surface through 

specific receptors present on the cell surface (Coxsackie adenovirus receptors 

and ocv integrins) and AdV ligands (viral fiber and penton base proteins). 

Following AdV-cell binding, the virus is internalized through endocytosis, 

released efficiently from endosomes, translocated to the nucleus and 

unpackaged for DNA import into the nucleus. More details are available in 

specialized reviews (Meier and Greber 2003). AdV DNA delivery is recognized 

as a highly efficient method to transfer and express DNA. In order to evaluate 

the possible rate-limiting steps in a viral cycle process, quantitative experiments 

coupled to mathematical modeling have been shown to be useful tools. Viral 

diffusion has been identified as a limiting step of the infection process 

(Mittereder et al. 1996; Nyberg-Hoffman et al. 1997) and another limiting step 

has been shown to be the reversibility of adsorption (Gilbert et al. 2007). 

Increasing viral diffusion could possibly be achieved at low temperatures while 

endocytosis is blocked. More efficient interactions between AdV ligands and cell 

receptors might also improve the adsorption step. Such strategies involve 

modifications of the cell surface receptors through their number or their 

characteristic concomitant with the engineering of AdV proteins for cell targeting 

(reviewed inVarga et al. 2000). None of the steps from viral uptake to gene 

expression have been identified as rate-limiting (Varga et al. 2005). As an 

example, reporter protein expression has been detected as early as 6 hpi 

(Gilbert et al. 2000). Post-delivery events such as DNA replication, transcription, 
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translation and viral assembly are more probably rate-limiting compared to pre

delivery events. Deletions and transfers of specific viral regions from AdV DNA 

to the cellular genome have not compromised AdV amplification but are 

incontestably responsible for a decrease in the AdV yield. As an example, if 

deletion of the E3 region has not impaired viral amplification, its presence has 

conferred to AdV a significant growth advantage (Youil et al. 2003). The highly 

evolved efficiency of the AdV life cycle does not expect a high dependency on 

one single step which probably permitted the AdV persistence during evolution. 

A thorough knowledge on AdV biology should serve to design experiments and 

set-up models to systematically investigate the limitations of post-delivery 

events. This will further help in designing and engineering AdV constructs to 

generate enhanced production systems. 

1.2.5 Cell Culture Parameters 

It has been assumed by the scientific community involved in process 

development, that early work in this field should be done in readily scalable cell 

culture conditions in order to maximize development capabilities of the product. 

Since the early nineties, AdV productions in cell suspension cultures have been 

demonstrated to be feasible (reviewed in Nadeau and Kamen 2003). 
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1.2.5.1 Cell Culture Characteristics 

Since the isolation of Graham's cell line, several daughter cell lines have been 

selected for their growth capacity, their ability to produce AdV or their adaptation 

to scalable culture mode. Adherent cell lines have shown a higher specific 

productivity compared to suspension-adapted cell lines (Iyer et al. 1999). 

However surface requirements for cell growth renders such processes difficult to 

scale-up to large volumes and high cell densities. Roller bottles and cell factory 

systems for cell cultivation could offer a large surface. Up to 10 cell factories 

have been used to produce FGAdV within the HEK293 B cell line (Okada et al. 

2005). Specific productivity has been maintained with active gassing to up to 8 x 

103 PFU/cell. Microcarrier supports have offered a better scalable solution to 

produce AdV with the adherent cell line. Scalability is however limited by initial 

cell inoculum size expanded on static vessels. With cytodex beads, up to 1.5 x 

104 PFU/cell have been produced in small spinner flasks whereas 2 x 104 

PFU/cell have been produced in small-scale static cultures (Wu et al. 2002). 

Lyer et al. (1999) have demonstrated that specific productivity was similar using 

Cytodex microcarrier beads in serum containing cultures and in suspension 

serum-free culture in a bioreactor. Recovery of AdV from cell pellet is however 

cumbersome requiring cell detachment from the beads by trypsinization. 

Nevertheless, normal scale-up capacity is attained under suspension cell culture 

conditions. The original HEK293 cell line has been adapted to suspension 
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through passage into nude mice (Graham et al. 1977). However, the majority of 

suspension cell lines have been obtained from gradual adaptation to suspension 

conditions (Cote et al. 1997; Gamier et al. 1994; Schoofs et al. 1998). Cell line 

stability over time is displayed by the stability of cell growth rate and AdV yield 

and is cell line-dependent. In long-term cultures, changes in cell growth rate 

have been reported (Cote et al. 1997; Gamier et al. 1994; Schoofs et al. 1998). 

Park et al. (2004) have demonstrated that growth rate and cell size instabilities 

for their HEK293M cell line affected the AdV yield. Similarly, PER.C6 cells at 

high passage numbers have displayed a larger cell diameter, a higher specific 

growth rate and metabolism. AdV volumetric productivity has been increased by 

a factor of 3 (Berdichevsky et al. 2008). 

1.2.5.2 Cell Culture Conditions 

The cell environment for AdV productions has been extensively studied because 

of its complexity for optimization purposes where cell growth has to be sustained 

with high AdV yield. The cell environment is characterized by medium 

formulation, physicochemical conditions, feeding strategies and various cellular 

stresses induced by the different culture modes. Media available for HEK293 

cell line growth are usually under proprietary formulation. Their development is a 

labor-consuming task requiring high expertise. A medium contains hundreds of 

components and therefore procedures used to develop one are highly empirical 

and the final formulation is often suboptimal. A basal defined medium is 
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completed with amino-acids, trace elements and balanced at physiological pH 

with buffer. Certain components of animal origin might hinder the development 

of a large-scale process where production variability, final product contamination 

and safety issues regarding human injectable material are not desirable. 

Statistical analysis design has been shown to be useful in screening 

components and optimizing quantities (Liu and Wu 2007). Analysis of central 

cell metabolism has permitted to identify differences in consumption and 

production rates during growth and infection (Maranga et al. 2005; Nadeau et al. 

2002). Rates of consumptions and productions are also altered by changes in 

medium composition. To summarize, an increase in consumption rates of 

amino-acids and oxygen demand have been noted when switching from growth 

to infection. Considering the cell requirement dependence to the process status, 

the development of a good medium is even more complex when both good cell 

growth and AdV production have to be satisfied to sustain large-scale 

productions. In answer to an increase in rates of extracellular fluxes following 

infection, various medium adjustments through control of physico-chemical 

conditions and feeding strategies have been implemented to batch cultures. 

Slightly acidic and basic pH control in a bioreactor have shown a drastic effect 

on nutrient/metabolite consumption/production rates and on AdV productivities 

(Jardon and Gamier 2003; Xie et al. 2002). The optimum pH value has been 

found to be about 7.2. Bioreactor control at low pC02 (0.05 atm) has shown to 

positively affect AdV productivity and a three-fold enhancement in AdV 
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productivity has been obtained at 35°C (Jardon and Gamier 2003; Xie et al. 

2002). Operation complexity and the cost of feeding processes have been 

concomitantly increased with AdV productivity from cocktail addition (fed-batch), 

to medium exchange at infection (fed-batch with discontinuous cell retention), to 

perfusion (fed-batch with continuous cell retention). Fed-batch strategies could 

be beneficial if factors limiting batch cultures are precisely identified. However, 

these strategies have been shown to be of limited success. Inhibitory effects of 

factors such as waste metabolite accumulation, pH acidification and an increase 

in osmolarity are also detrimental for maintaining specific productivity (Ferreira 

et al. 2005; Gamier et al. 1994; Nadeau et al. 1996; Nadeau et al. 2002). 

Although they are more difficult to implement at large-scale, medium 

replacement at infection time combined or not with pulse feedings have been 

shown to increase specific productivities (Ferreira et al. 2005; Gamier et al. 

1994; Nadeau et al. 1996). Perfusion systems have allowed successful nutrient 

renewal and waste removal through continuous medium exchange and cell 

retention. Although particularly costly, perfusion addresses limitations occurring 

with previous feeding techniques. Plain capacity of perfusion systems has been 

attained at high cell densities for which productivity is not sustainable using 

previous fed-batch modes. This technique will be discussed below. Cellular 

shear stresses are common problems associated with the large-scale culture of 

cells. Sparging and agitation requirements for efficient mass transfer as well as 

cell retention systems in perfusion culture have increased cell sensitivity which 



46 

decreased their AdV yield. Requirements to cultivate cells in serum-free medium 

have also increased cell sensitivity, by depriving cells from protecting serum 

agents. Investigations on causes of AdV productivity decrease when using a 

sparging system have pointed to polysorbate-80, a surfactant present in the viral 

stock formulation buffer (Xie et al. 2003). Removal of polysorbate-80 in viral 

buffer formulation while increasing the surfactant Pluronic-F68® from 0.3 to 1 g/L 

in medium has permitted to maintain AdV productivities under sparging 

conditions applicable to the 10,000 L bioreactor-scale. Because infected cells 

are particularly fragile, gentle retention systems for perfusion devices are 

preferred. Although literature does not provide a comparative study in uses of 

retention devices for AdV production, the acoustic separator chamber (Henry et 

al. 2004) which is known to induce less cell shear stress (Voisard et al. 2003) 

compared to the hollow fiber system (Cortin et al. 2004; Yuk et al. 2004) would 

be a better choice for AdV production. 

1.2.5.3 Cell Density at Infection 

Cell density achievable at infection depends on cell intrinsic characteristics and 

also cell culture conditions, sections that were previously discussed. Studies on 

the cell environment have permitted to enhance specific AdV productivity 

through better cell culture environment control (medium formulation and feeding 

strategies). These strategies have also been developed to increase the cell 

density at infection to ultimately enhance volumetric productivity. The challenge 
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has been to keep the specific productivity obtained at low cell density constant 

without feeding. The cell density effect describes a drop in the specific virus 

production when cell density is above 0.5 x 106 cells/mL (Kamen and Henry 

2004). Because of a potential huge gain in AdV yield, efforts to understand and 

overpass this limitation has gained interest by research groups. The major 

hypothesis behind the cell density effect is that nutrient depletion and metabolite 

accumulation hinders cell metabolism and renders them unable to support viral 

production at high cell densities. Consequently, in order to improve substrate 

renewal and metabolite removal, production modes have gained in complexity 

from batch to perfusion system. Fed-batch strategies have failed to maintain a 

high specific productivity above 2 x 106 cells/mL (Gamier et al. 1994). High cell 

density at high viability could only be attained using perfusion systems through a 

continuous renewal of medium. Compared to a batch cell culture infected at 0.5 

x 106 cells/mL with medium replacement, specific productivity has been 

maintained at 1.8 x 104 VP/cell when infection was performed on a 3 L perfusion 

cell culture at ~3 x 106 cells/mL, with 2-3 volumes/day under serum-free 

conditions (Henry et al. 2004). Up to 4.1 x 1010 VP/mL has been produced under 

these conditions. Cortin et al. (2004) have infected 8 x 106 cells/mL at 35°C at 1 

volume/day in 5% serum-containing medium to produce ~8 x 109 IVP/mL. 

CRAdV productions in HeLa cells have been successfully performed at infection 

densities of 5 to 14.6 x 106 cells/mL at 1.5-2 volumes/day, under serum-free 
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conditions. Productivities have reached 3-6 x 1011 VP/mL and 3-5 x 104 VP/cell 

(Yuk et al. 2004). An other avenue to explain cell density effect has been studied 

by Zhang et al. (Zhang et al. 2006). They demonstrated that a decrease in the 

proportion of cells in S phase was also responsible for a decrease in specific 

productivity at high cell densities. 

In order to decrease process development time-lines and to optimize 

productivity for large-scale productions, integrated process development is 

sought. Because clone characteristics, medium composition and culture mode 

are highly inter-dependent, it would be misleading to optimize each variable 

independently. Selection of best producing clone should be done under 

suspension conditions in a serum-free medium (Cote et al. 1997; Cote et al. 

1998). 

1.2.5.4 Towards Understanding Cell Physiological State at Infection 

The cell physiological state is a global term that describes the metabolic 

characteristics of a cell during its growth and production phases. It depends on a 

variety of parameters such as cell line characteristics, cell culture conditions and 

cell density. Their effects on growth and production are usually studied 

independently. The status of infection has been monitored using a variety of 

non-invasive on-line measurements to provide useful information. The oxygen 

uptake rate (OUR) and the capacitance signal have been correlated to viable 
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cell growth prior to infection (Henry et al. 2004). At infection both signals are 

affected. An increase in respiration has been noted together with an increase in 

capacitance measurements (Gamier et al. 1994; Henry et al. 2004; Monica et al. 

2000). This correlates well with an increase in cell metabolic activity and an 

increase in cell size upon infection. In an attempt to measure the kinetics of 

infection of a GFP-expressing AdV, a fluorescent probe has been designed by 

Gilbert et al. (2000). It was used to monitor the AdV production kinetics and as a 

tool to identify the appropriate harvest time. At-line monitoring of GFP cells by 

flow cytometry has given valuable information on AdV production kinetics 

(Sandhu and Al-Rubeai 2008). These monitoring tools have however been of 

limited success in providing indications on the relative efficiency of AdV 

productions. 

Developing a good understanding of specific metabolic requirements for both 

cell growth and virus production remains the basis of further improvements in 

AdV productivity. Even so, knowledge of the cell metabolic requirements is not 

sufficient as fed-batch strategies partially alleviated production limitations. 

Understanding the effect of metabolites inhibition has led to perfusion system 

use. However, these limitations have only been partially alleviated. Analysis of 

extracellular metabolic fluxes relies on envisioning a cell as a black box. 

Intracellular metabolic fluxes are useful indicators in the investigation and 

understanding of mammalian cell physiology and its changes in response to 

environmental variations. Identification, quantification and analyzes of 
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intracellular metabolic fluxes have provided a rationale to develop better media 

and feed strategies but also to improve cell system and viral vectors with genetic 

tools. In the context of AdV productions, Kamen's group has dedicated 

continuing efforts to better understand the cellular physiology at infection time 

through metabolic flux analysis. Based on material balancing and isotope tracers 

for the measurement of carbon, Nadeau's model includes glycolysis fluxes, 

glutaminolysis, amino acids pathways and the pentose-phosphate cycle 

(Nadeau et al. 2000). A favorable metabolic state for AdV production has been 

defined by an increase in glycolytic fluxes, in TCA fluxes and in ATP production 

rates upon infection (Henry et al. 2005; Nadeau et al. 2000). This state might be 

prolonged at higher cell densities if the feed rate is adjusted (Henry et al. 2005). 

In better medium/feeding strategies, glucose enters more efficiently into the TCA 

cycle and glutaminolysis and amino-acid catabolism rates are reduced. Lower 

lactate and ammonia production rates have been consequently observed (Henry 

et al. 2005; Nadeau et al. 2000). Metabolic fluxes are therefore useful to 

determine culture conditions resulting in enhanced productivity. It provides a 

basis for a rational approach to improve medium and feeding strategies, to 

design better cell lines with improved TCA activity and ATP production rates and 

to implement on-line control of such fluxes. 
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1.2.6 Conclusion 

Successful development of high yield AdV production processes definitely 

requires an integrated approach. Concomitant decision on cell line 

specifications, cell culture characteristics, cell culture density, viral parameters 

and viral construction with respect to final viral product identity should be taken 

into consideration to fully optimize AdV production. Better understanding of viral 

amplification and cell physiology will contribute to the elaboration of an improved 

viral cell system for high viral specific productivities at high cell density 

processes. This knowledge acquired during the production development of 

FGAdV will be highly relevant to improving TGAdV production, an AdV with 

improved in vivo capacity for gene therapy protocols. 
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CHAPITRE2: UN PROCEDE EFFICACE ET ADAPTABLE A GRANDE 

ECHELLE UTILISANT L'ADENOFECTION PAR LA POLYETHYLENEIMINE 

POUR LA PRODUCTION DU VECTEUR ADENOVIRAL DEPENDANT DUN 

VIRUS AUXILIAIRE 

2.1 Presentation de I'Article 

La premiere etape de production d'un AdV consiste a former les premieres 

particules virales. Dans la litterature, on nomme "secours" cette etape qui 

permet de recuperer le HDV sous la forme de virus a partir de I'ADN du HV. 

Generalement, le secours du HDV consiste en une transfection de la lignee 

cellulaire HEK293 par I'ADN du HDV, suivie d'une infection par le HV. Cette 

etape est particulierement importante puisqu'elle genere les premieres 

particules virales de HDV, lesquelles doivent etre amplifiers par la suite. De son 

rendement depend le rendement en HDV de I'etape d'amplification 

subsequente. 

L'article presente dans ce chapitre decrit I'etude d'une nouvelle methode pour 

realiser de maniere efficace I'etape de secours du HDV. An Efficient and 

Scalable Process for Helper-Dependent Adenoviral Vector Production using 

Polyethylenimine-Adenofection a ete soumis a la revue Biotechnology and 

Bioengineering et est actuellement en revision finale. Un des objectifs de ce 

chapitre est d'evaluer I'importance des parametres regissant I'apport des 
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constituants du HDV. Le complexe d'adenofection forme de I'ADN du HDV, de 

polyethylenimine (PEI) et de HV sous sa forme virale est utilise. A I'aide de 

plans experimentaux factoriels, les quantites relative et totale de ces entites sur 

la production du HDV est examinee. L'etude a revele que la quantite d'ADN du 

HDV est un parametre determinant pour la production de HDV. L'apport 

simultane du HV avec I'ADN du HDV est important pour ameliorer la transfection 

et vraisemblablement la replication de I'ADN du HDV. La methode 

d'adenofection adaptee en suspension demontre qu'elle facilite la generation de 

grandes quantites de HDV comparativement aux methodes de 

transfection/infection utilisees jusqu'alors. Cette etude initie le travail portant sur 

la comprehension de la formation du HDV. 

2.2 An Efficient and Scalable Process for Helper-Dependent Adenoviral 

Vector Production using Polyethylenimine-Adenofection 

Dormond E.1'2, Jacob D.1, Durocher Y.\ Gilbert R.\ Perrier M.2and Kamen A.1 

1Animal Cell Technology Group, Biotechnology Research Institute, National 

Research Council Canada, 6100 Royalmount Avenue, Montreal, Quebec, 

Canada H4P 2R2 

2Chemical Engineering Department, Ecole Polytechnique de Montreal, Campus 

de I'Universite de Montreal, 2500, chemin de Polytechnique, Montreal, Quebec, 

Canada, H3T1J4 
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2.2.1 Abstract 

Safety requirements for adenoviral gene therapy protocols have led to the 

development of the third generation of vectors commonly called helper-

dependent adenoviral vectors (HDVs). HDVs have demonstrated a high 

therapeutic potential; however, the poor efficiency and reliability of the actual 

production process hampers further large-scale clinical evaluation of this new 

generation of vector. The current HDV production methods involve a preliminary 

rescue step through transfection of adherent cell cultures by a HDV plasmid 

followed by a helper adenovirus (HV) infection. Amplification by serial co-

infection of complementary cells allows an increase in the HDV titer. Using a 

HEK293 FLP/frf cell system in suspension culture, an alternative protocol to the 

current transfection/infection procedure was evaluated. In this work, the 

adenofection uses the HDV plasmid linked to the HV with the help of 

polyethylenimine and has shown to outperform standard protocols by producing 

higher HDV yield. The influence of complex composition on the HDV production 

was examined by a statistical design. The optimized adenofection and 

amplification conditions were successively performed to generate HDV at the 3 

L bioreactor scale. Following only two serial co-infection passages, up to 1.44 x 

108 HDV infectious units/mL of culture were generated, which corresponded to 

26% of the total particles produced. This production strategy, realized in cell 

suspension culture, reduced process duration and therefore the probability of 
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vector recombination by introducing a cost-effective transfection protocol, 

ensuring production of high-quality vector stock. 

Keywords: Helper-dependent adenoviral vector; Virus production; HEK293; PEI-

transfection; Bioreactor 

2.2.2 Introduction 

During the past decade, gene therapy involving adenoviral vectors has gained 

considerable attention through its successes and failures (Branca 2005; National 

Institute of Health 2002; Peng 2005). The development of new adenoviral 

vectors has been a major task fed by the numerous advantages of this vector 

(Nadeau and Kamen 2003). The helper-dependent adenoviral vector (HDV) was 

constructed to overcome drawbacks of the first generation of adenoviral vectors. 

The HDV genome is devoid of all viral coding genes making a large space 

available for the insertion of a therapeutic transgene (up to 37 kb). 

Consequently, in treatment of various model diseases involving this vector, 

negligible in vivo toxicity and immunogenicity were observed (reviewed in 

Brunetti-Pierri and Ng 2006; Kochanek 1999; Morsy and Caskey 1999; Palmer 

and Ng 2005). The HDV genome harbors only cis-acting elements including the 

packaging signal OF), inverted terminal repeats (ITRs), the transgene and 

additional sequences to improve its replication. Its genome construction and 

propagation in bacterial systems has been facilitated by work done by Chartier 
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et al. (1996). The HDV production in human embryonic kidney 293 cells 

(HEK293) requires trans-acting elements provided by the first generation of 

adenoviral vector called helper virus (HV) and by the host cell line (E1) (Graham 

et al. 1977). Initial attempts emphasized the necessity to develop cell systems 

capable of reducing the HV contamination. This has been achieved through the 

use of Cre/loxP (Hardy et al. 1997; Lieber et al. 1996; Parks et al. 1996) or 

FLP/frf recombinase systems (Ng et al. 2001; Umana et al. 2001). The HV 

harboring loxP or frt sites on both sides of ¥ loses the latter when replicating in 

HEK293 cells that express Cre or FLP respectively. Both the Cre/loxP and 

FLPIfrt systems have shown similar efficiencies in reducing the HV 

contamination and in amplifying the HDV (Ng et al. 2001; Umana et al. 2001). 

The standard HDV production consists of a multi-step process (Figure 2.1). The 

initial step, commonly known as the rescue step, aims to recover HDV from HDV 

DNA. Transfection of producer cells with the linearized HDV genome, i.e excised 

from the bacterial sequence, is followed by the HV infection 8 to 18 h post-

transfection. Typical transfection protocols involve calcium phosphate-DNA co-

precipitation (Hartigan-O'Connor et al. 2002b; Ng et al. 2002b; Sakhuja et al. 

2003; Sandig et al. 2000) or DNA complexation with commercial liposomes (Oka 

and Chan 2005). However, protocols requiring adherent cell cultures are 

problematic when transfering to large-scale operations. The viral lysate 

containing the HDV is recovered when a cytopathic effect is visible, usually 48 to 

72 h post-infection. At this step, because the HDV titer is low (102 to 105 
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Infectious Units (IU) of HDV/mL) (Kumar-Singh and Chamberlain 1996; Ng et al. 

2001; Parks et al. 1996), further amplification of the HDV is required. To achieve 

this goal, an increasing number of adherent cells are co-infected with the HV 

and a defined volume of the viral lysate obtained from the previous step 

(Hartigan-O'Connor et al. 2002a; Ng et al. 2002b). Using this volume-based 

protocol for amplification, at least four to six passages are needed to attain a 

maximal HDV titer (about 108 IU of HDV/mL). Additional passages cause cyclic 

fluctuation in the HDV titer (Hartigan-O'Connor et al. 2002a; Ng et al. 2001; Ng 

et al. 2002b). Furthermore, favored by homologies between viral genomes but 

also by the number of passages, various HDV and HV recombinants are 

produced (Hartigan-O'Connor et al. 2002a; Sakhuja et al. 2003; Sandig et al. 

2000). 
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Figure 2.1 Production process of HDV which consists of (A) the rescue step, 

(B) the amplification step and (C) the purification step 

Despite major advances in cell system development and in vivo testing, 

limitations concerning the HDV production restrict its possible use in gene 

therapy protocols, where high-quality clinical-grade vectors should be produced 

in large amounts under good manufacturing process conditions (Lusky 2005). 

Because the HDV production is carried out via empirical protocols, the reliability 

as well as the efficiency of the production are questionable. Moreover, because 

volumetric productivity is limited by surface area, standard protocols requiring 

adherent cell cultures are not suitable for large-scale production of the HDV. 

In this study, we have shown how to rescue and amplify the HDV using an 

optimized production process in suspension that is easily transferable to large-

scale volumes. An efficient method to transfer the large HDV DNA to cells, 
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which takes advantage of the HV infection, was evaluated and optimized in 

suspension cell cultures. Following a reduced number of amplification steps, an 

HDV stock was generated in a 3 L bioreactor using a cost-effective, efficient and 

scalable process. 

2.2.3 Materials and Methods 

2.2.3.1 FLPe Cell Line 

A stable FLPe cell line was obtained following transfection of suspension-

growing HEK293 SF-3F6 cells (Cote et al. 1997; Meneses-Acosta et al. 2007). 

Stable clones were selected for their ability to excise the ¥ of HV genomes, to 

limit the HV contamination and to amplify the HDV. FLPe cells were typically 

cultivated in low-calcium HSFM medium (Gibco, Ontario, Canada) 

supplemented with 10 mM HEPES buffer, 1% BCS and 0.75 ^ig/mL puromycin 

(Durocher et al. 2002). Cells were maintained as a suspension culture in shake 

flasks at 37°C in a humidified incubator with 5% C02 and agitation (120 rpm). 

Every 2 or 3 days, cells were subcultured to maintain exponential growth. 

Haemacytometer counts using the erythrosine dye exclusion technique were 

used to assess cellular densities. 



81 

2.2.3.2 Plasmid and Viruses 

The HDV plasmid, pHCAgfp (32 kb) was a generous gift from Dr. V. Sandig. It 

carries a gfp expression cassette driven by the cytomegalovirus promoter, two 

ITRs adjacent to the bacterial sequence, the *P and the E4 promoter region of 

the adenovirus type 5. pHCAgfp was amplified in E.coli DH5-cc and purified 

using Giga-Prep columns (Qiagen, Ontario, Canada). When necessary, the HDV 

DNA was Pmel-linearized to liberate the viral sequence. The purified DNA was 

quantified by UV absorbance in 50 mM Tris-HCI pH 8.0 ensuring that A260/A280 

was always between 1.80 and 1.95. 

The HV, provided generously by Dr. P. Lowenstein, is an E1/E3 deleted 

adenoviral vector available in viral form (Umana et al. 2001). It bears two parallel 

frt sites flanking the VP. A high-titer stock of the HV was produced by infecting 

HEK293 SF-3F6 cells in a 3 L bioreactor. In the transfection/infection and the 

adenofection protocols, the HV was purified by double CsCI banding (one step 

gradient at 100,000 x g, 4°C for 1.5 h and one linear gradient at 100,000 x g, 

4°C for 24 h) followed by dialysis against 10 mM Tris-HCI pH 7.9, 1 mM MgCI2. 

In co-infection protocols, a viral lysate of the HV was employed. 
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2.2.3.3 Rescue Step via Transfection / Infection or PEI-

Adenofection 

At a 6-well plate scale, FLPe cells were seeded in fresh medium at 0.5 x 106 

cells per well 24 h prior to transfection and adenofection or at 1 x 106 cells per 

well 1 h prior to transfection and adenofection. 

At a 250 mL shake flask scale, FLPe cells were seeded in fresh medium at 0.5 x 

106 cells/mL in a 50 mL working volume 1 h prior to adenofection. 

Transfection complexes were formed in low-calcium HSFM containing 10 mM 

HEPES. Unless stated otherwise, 1 |ig of HDV plasmid/mL of cell culture was 

mixed with 3 |ig of linear 25 kDa PEI (Polysciences, Warrington, PA) per mL of 

cell culture or 6 uL of Lipofectamine 2000 (Invitrogen, Ontario, Canada) in one-

tenth of the cell culture volume (200 jxL or 5 mL). Complexes were incubated at 

room temperature for 10 min and added to FLPe cells. Medium for adherent 

FLPe cells in 6-well plates was changed prior to transfection and adenofection 

with HSFM containing 10 mM HEPES and replaced 5 h post-transfection and 

adenofection with complete medium. FLPe cells were infected with the purified 

HV 12 h post-transfection at a multiplicity of infection (MOI) of 5 HV lU/cell. 

PEI-adenofection complexes were formed following the preparation of PEI-

transfection complexes. After DNA-PEI complexation, the purified HV was 

added at a MOI of 5 HV lU/cell (unless stated otherwise). The resulting 
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complexes were left to stand for 10 min before being added to the cells. The 

viral lysates were collected 48 h post-infection in all cases and subjected to one 

freeze/thaw prior to being used in amplification step. This step will be further 

referred to as passage 0 (P0). 

2.2.3.4 Amplification Step via Co-Infection 

For the HDV serial amplification, the viral lysate from a previous passage and 

the HV were used to co-infect FLPe cells in fresh medium. Cells were seeded as 

stated above in 6-well plates (using adherent or suspension culture mode) or in 

shake flasks. The volume of viral lysate added was equal to one-tenth of the 

final culture volume (200 u.L or 5 ml_). HV was added at a MOI of 1 HV lU/cell. 

The viral harvest was done at 48 h post-infection. Three passages of 

amplification, further referred to as passage 1 (P1), passage 2 (P2) and passage 

3 (P3) were successively performed following the protocol described above. 

For the HDV production in a 3 L bioreactor, the optimized adenofection 

complexes were used to rescue and further amplify the HDV for two passages 

using the optimized infection conditions. P1 was done in a 2 L shake flask with a 

working volume of 400 ml_. Briefly, 40 ml_ of P0, frozen and thawed once, was 

used to co-infect FLPe cells, resuspensed in fresh medium at 0.5 x 106 cells/mL 

with the HV at a MOI of 0.5 HV lU/cell. Harvest was done 48 h post-infection. P2 

was performed in a 3 L Chemap CF-3000 bioreactor (Mannedorf, Switzerland). 
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The temperature was maintained at 37^0 with a water jacket. The bioreactor 

was equipped with three surface baffles and two marine impellers. Agitation was 

maintained at 100 rpm. Oxygen, nitrogen and carbon dioxide were supplied at 

300 mL/min by surface aeration to maintain the dissolved oxygen (DO) at 40% 

of air saturation. Carbon dioxide was replaced 24 h post-infection by 1 N NaOH 

to maintain the pH at 7.2. On-line control was performed via a thermocouple, a 

pH probe, a DO probe and individual mass flow controllers all connected to a 

control unit. FLPe cells were inoculated at 0.3 x 106 cells/mL in the bioreactor 24 

h prior to infection. At infection time, the medium was completely renewed and 

cells were resuspended to 0.5 x 106 cells/mL for a final volume of 2800 ml_. Co-

infection was done with 280 ml_ of the viral lysate from P1 and the HV lysate at a 

MOI of 0.5 HV lU/cell. Cells were harvested at 48 h post-infection. 

2.2.3.5 Experimental Design 

A design of experiment (DOE) was performed to maximize the HDV yield using 

the adenofection protocol. To do so, the stoichiometry of adenofection 

complexes was examined: the concentration of HDV DNA in culture ([HDV 

DNA]), the mass ratio of PEI to DNA ([PEI]/[DNA]) and the MOI of HV were 

chosen as variables. Experiments were conducted in 6-well plate suspension 

cultures. Adenofection efficiency and HDV titer at P3 were chosen as 

responses. A full 2-level factorial design was first performed. It was augmented 

by axial points to generate a face-centered central composite design 



85 

(Montgomery 2005), that allowed for the determination of the optimum point 

location. Statistical analysis of the results and optimum finding were completed 

using Statistica 6.0 software (Statsoft, Tulsa, OK). Adenofection experiments 

were performed within one week to minimize the variability associated with cell 

transfection. 

2.2.3.6 Assessment of Transfection and Adenofection Efficiency 

The efficiency of HDV DNA transfection and HDV DNA adenofection in FLPe 

cells was assessed by the number of cells expressing GFP at 48 h post-

transfection or adenofection. For this purpose, FLPe cells were harvested, 

centrifuged at 300 x g for 5 min and resuspended in 2% p-formaldehyde 

(Polysciences, Warrington, PA) in PBS. Following a 1 h incubation at 4°C, cells 

were filtered through a 60 îm mesh prior to flow cytometry analysis (EPICS™ 

XL-MCL flow cytometer, Beckman Coulter, FL). EXPO 32 software was used to 

gate at least 10,000 events and determine the number of GFP-positive cells. 

2.2.3.7 Quantification of Viral Vectors 

The HDV was quantified by infecting target cells in suspension culture (HEK293 

E cells in low-calcium HSFM, 10 mM HEPES, 1% BCS, 50 ^ig/mL G-418 

(Durocher et al. 2002)). At least two different dilutions of the viral lysate were 

used to infect HEK293 E cells inoculated at 0.5 x 106 cells/mL in 12-well plates 
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with fresh media. At 20 h post-infection, cells were counted and fixed with 2% p-

formaldehyde in PBS. Ratios of GFP-positive to total cells were assessed using 

flow cytometry analysis as described above. Only ratios between 3 and 30% 

were retained to estimate the HDV titer (Cote et al. 1997). The limit for an 

accurate detection was 105 IU of HDV/mL 

The HV titers were assessed by the end-point dilution method. Briefly, HEK293 

A cells routinely maintained in adherent culture in DMEM+ (Wisent, Quebec, 

Canada) supplemented with 2 mM L-glutamine, 1 mM sodium pyruvate and 5% 

FBS, were seeded at 0.03 x 106cells/ml_ in 96-well plates and infected 24 h later 

with serial dilutions of viral lysate. The cytopathic effect was determined by 

visual observation 14 days post-infection. Positive wells were scored and the HV 

titer was estimated according to the calculation by Reed and Muench (O'Reilly 

etal. 1994). 

The total viral particle (TVP) concentrations were determined using anion-

exchange high performance liquid chromatography coupled to UV detection 

spectroscopy (Klyushnichenko et al. 2001). Lysates stored at -80°C were 

thawed and centrifuged at 4,500 x g for 2 min. Supernatants were filtered 

through a 0.45 |a,m membrane syringe filter before injection. The TVP 

concentration was corrected for the difference in vector size between the wild 

type adenovirus standard used to make the standard curve and the HDV (Ng et 

al. 2002b). 
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The viral genomes (VG) titers of the HDV and the HV were determined by a 

SYBR-Green I quantitative PCR assay (qPCR). Specific set of primers for the 

HDV and the HV were designed with the help of Clone Manager Professionnal 

Suite v.7 (Sci-Ed Software, Cary, NC). Primer sequences were as follows: HDV 

forward 5'-AGCTCACAGGCTGTAGTTTG-3' (bp 2347 to 2366 from HCAgfp 

stuffer region) and HDV reverse 5'-GGATCACTTGCACGGTTTAG-3' (bp 2551 

to 2570); HV forward 5'-CCGCAGTTGACAGCATTACC-3' (bp 21402 to 21422 

from the wild type adenovirus 5 genome) and HV reverse 5'-

CGGACCACGTCAAAGACTTC-3' (bp 21601 to 21620). A standard curve was 

generated for each qPCR run. To do so, a plasmid containing the HDV and the 

HV targeted sequences was constructed. The reaction was performed in the 

Light Cycler instrument (Roche Diagnostics, Quebec, Canada). Reactions were 

done in a total volume of 20 |iL containing 18 |iL of PCR Mix (12 |iL H20, 1.6 |iL 

MgCl2 25 mM, 1.2 pL forward primer 5 JIM, 1.2 fxL reverse primer 5 |iM, 2 \iL 

10x Master Mix Light-Cycler Fast-Start SYBR Green I purchased from Roche 

Diagnostics) and 2 |iL of template (serial dilution of standard from 109 to 102 

molecules or unknowns or water for negative control). Conditions for the 

reaction were a pre-incubation period at 95°C for 10 min; 40 cycles of 

amplification at 95°C for 10 s, 61 °C for 7 s and 72°C for 10 s; a melting curve at 

95°C, 70°C for 15 s and 95°C with a ramp of 0.10°C/s; a final cooling step at 

40°C. Analysis of data was done using the Light Cycler 480 software. Specificity 
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of the reaction was confirmed by melting curves analysis and runs of qPCR 

products on agarose gels. 

2.2.4 Results 

2.2.4.1 Evaluation of Adenofection in 6-Well Plate Adherent Cell 

Cultures 

The adenofection protocol was compared to standard transfection/infection 

protocols for its ability to deliver HDV DNA and to produce HDV in adherent cell 

culture. The transfection or the adenofection efficiencies of FLPe cells using the 

circular or the linearized HDV DNA was first examined (Table 2.1). As expected, 

greater transfection or adenofection efficiencies were achieved using the circular 

HDV DNA; however, since the corresponding HDV titers were undetectable at 

P2, the linearized HDV DNA was used in all subsequent studies. Furthermore, 

PEI-adenofection complexes generated higher transfection levels compared to 

PEI-transfection complexes. 
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Table 2.1 Rescue protocols in adherent cell culture 

Rescue Protocol HDV DNA Transfection Amplification of 
form efficiency (%) HDV at P2 

Lipofectamine 2000 - Circular 57 (±18) No 
Transfection / 

Infection at 12 h post- L j n e a r i z e d 4 2 ( ± 1 5 ) Y e s 

transfection v ' 

PEI - Transfection / 

imeciion ai \c. n post-
transfection 

" C I " r\Ut7llUlfc?UUUi 1 

Circular 

Linearized 

Circular 

Linearized 

36 (± 8) 

12 (±6) 

41 (± 5) 

23 (± 3) 

No 

Yes 

No[a] 

Yes 

Notes : The various rescue protocols were performed using the circular or the linearized form of 

HDV DNA. The transfection efficiency was assessed 48 h post-transfection in all cases. The 

amplification was performed by three serial passages of co-infection. The means are given for 

triplicate wells of two independent experiments (n=6) with the standard deviation in parenthesis 

[a] Variable from flask to flask; values close to detection limit (105 IU of HDV/mL) 

Since the HDV titer could not be accurately determined at P0, serial 

amplification passages were done to allow accurate titer determination and to 

assess the capacity of rescue protocols to produce the HDV. HDV quantification 

revealed that compared to the Lipofectamine- and the PEI-

transfection/infections, the adenofection allowed for a maximum titer of 1.02 x 

108 ± 3.14 x 107 IU of HDV/mL in only two amplification passages whereas a 

third amplification passage was required to attain a similar level for the former 

two protocols (Figure 2.2). Surprisingly, the Lipofectamine-mediated 

transfection/infection, which gave a higher transfection level (Table 2.1) resulted 
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in a similar viral production as the PEI-mediated transfection/infection (Figure 

2.2). 

IU
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Figure 2.2 Rescue and amplification of the HDV via various rescue protocols 

in adherent cell culture. The HDV titers in IU of HDV/mL are represented for 

three serial passages of amplification. The means are represented for triplicate 

wells of two independent experiments with errors bars being the standard 

deviation (n = 6). Error bar is not represented for the HDV titer at P0 (limit of 

detection) 
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2.2.4.2 Evaluation of Adenofection in 6-Well Plate Suspension Cell 

Cultures 

Adenofection experiments were also conducted in 6-well plate suspension 

cultures. It was observed that even if the adenofection efficiency at PO was 

lower for adherent (23 ± 3%) than for suspension cultures (33 ± 2%), the HDV 

titers were always lower in the latter case. In adherent cell cultures, the 

adenofection-based protocol allowed a maximum titer at P2 (Figure 2.2), 

whereas in suspension culture the titer constantly increased from PO to P3 to 

finally reach 4.65 x 107 ± 1.23 x 107 IU of HDV/mL at P3 (the mean is the value 

from triplicate and duplicate wells of two independent experiments with the 

standard deviation for n=5). 

2.2.4.3 Evaluation of Adenofection in Shake Flask Suspension Cell 

Cultures 

The adenofection protocol was further evaluated in larger volumes of 

suspension cell cultures. Figure 2.3 indicates similar kinetics of HDV 

amplification to that obtained in the adherent 6-well plate experiments. The HDV 

titer was maximum at P2 (9.89 x 107 ± 9.43 x 106 IU of HDV/mL) and declined at 

P3. The evolution of viral titers is displayed in Figure 2.3. The total viral particle 

concentrations remained constant from PO to P2 (about 3 x 108 TVP/mL). The 

HV titers were also stable from PO to P2 and remained below 105 IU of HV/mL. 
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Consequently, the HDV infectivity ratio (IU of HDV/TVP) increased constantly to 

27%, while the HV contamination ratio in terms of IU (IU HV/IU HDV) decreased 

to 0.1% at P2. At P3, a decrease in the TVP concentration and the HDV titer 

was observed and the HDV infectivity ratio showed high variability. 

1 0 9
T 60% 

50% 

40% 
Q. 

30% 3 
> 
Q 

+ 20% 

10% 

Figure 2.3 Rescue and amplification of the HDV via adenofection using HDV 

DNA in suspension cell culture. The viral titers (HDV lU/mL in full bars, HV IU 

/ml_ in hatched bars, TVP/mL in squared bars) and the HDV infectivity ratio 

(black squares) are shown for P0 to P3. The means are represented for 

duplicate shake flasks of two independent experiments with error bars being the 

standard deviation (n = 4). Error bar is not represented for the HDV titer at P0 

(limit of detection) 
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2.2.4.4 Optimization of Adenofection Complexes Composition 

The rescue step is the major bottleneck in the HDV production (Hartigan-

O'Connor et al. 2002a); therefore, to improve the overall process, the poor 

productivity of the initial rescue step should be overcome by optimizing the 

adenofection protocol. The composition of the adenofection complexes needs to 

be optimized in order to adenofect a maximum number of cells and to provide 

the HDV DNA and the HV in an appropriate ratio for the HDV production. Hence, 

the effect of the concentrations of HDV DNA, PEI and HV was studied. The 

range of those variables were chosen with respect to common values found in 

literature for the PEI-transfections in HEK293 cells (Durocher et al. 2002) and for 

the HDV generation (Hartigan-O'Connor et al. 2002b; Ng et al. 2002b; Oka and 

Chan 2005) (Table 2.2). Considering the limitation for the HDV amplification 

observed in preliminary experiments performed in 6-well plate suspension cell 

cultures, three amplification passages were performed to get a detectable titer, 

constantly increasing from P0 to P3 (data not shown), for all the adenofection 

conditions. 
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Table 2.2 Description of variables and applied range in the DOE 

Variable description Variable names Applied levels 

Low(-1) Center High (+1) 
(0) 

Concentration of HDV n I r,,. _ . . . . . _ . __ _ 
DNA in culture (M/ml_) ^ V DNA] 0.5 1.25 2 

M a S S rati°D°NAEI t 0 H D V [PEIMHDV DNA] 2 3 4 

Number of infectious units . .~. , U \ / ^ c c in 
of HV/cell (HV lU/cell) MOI of HV 1 5.5 10 

In order to extract the maximum of information in a minimal set of experiments, 

sequential DOEs were applied. A full factorial design with center points showed 

a significant curvature (p<0.05). Therefore, additional points (axial points with 

center points) were included to produce contour plots of the response as 

functions of the variables. Complete design and responses are provided in Table 

2.3. At P3, adenofection efficiency showed response ranges with a fiftyfold 

increase (1.3 to 49.6%) and a HDV titer having a difference of 2 orders of 

magnitude (1.01 x 105 to 5.88 x107 IU of HDV/mL). This indicates that the 

number of adenofected cells and the HDV titer at P3 are highly sensitive to the 

concentrations of HDV DNA, PEI and HV. A good correlation between the 

adenofection efficiency and the HDV titer at P3 was obtained, i.e, the highest 

adenofection efficiencies corresponded to the highest HDV titers (Figure 2.4). 

For low adenofection efficiencies (below 10%) variable HDV titers were obtained 

at P3. Adenofection efficiency was further employed as the response to be 

maximized. 
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R2 = 0.65 
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Adenofection Efficiency 

40% 

A M 
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Figure 2.4 Relationship between the adenofection efficiency at P0 and the 

HDV titer at P3. A good degree of correlation is observed above an adenofection 

efficiency of 10% 

With respect to the ANOVA hypothesis of normality of data, normality of error 

distribution and constant variance, a predictive quadratic equation combining all 

significant terms (variables and their combinations) (p<0.05) was constructed. 

The goodness-of-fit, R2 = 0.91, indicated that experimental data were in good 

agreement with equation predictions. The relative contributions of the significant 

terms are presented in a Pareto chart (Figure 2.5). Far from the others, the most 

important variable was [HDV DNA]. In decreasing contribution order, the MOI of 

HV and [PEI]/[HDV DNA] follow as first-order terms. A dose-dependent increase 

in the number of adenofected cells was seen with [HDV DNA], [PEI]/[HDV DNA] 
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and the MOI of HV (Figure 2.6 A, B, C). However, the effects of the MOI of HV 

and [PEI]/[HDV DNA] were partially modified by the negative effect of second-

order terms (MOI of HV)2, ([PEI]/[HDV DNA])2 and by the effect of interaction 

terms (Figure 2.5 and 2.6 A, B, C) . The presence of a quadratic term is 

reflected by the fact that, at high values of the variables, the effect on the 

response is more important than at low values of the variables. In Figure 2.6 A, 

B and C, the combined effect of first and second-order terms for both MOI of HV 

and [PEI]/[HDV DNA] was shown by the presence of a maximum of 

adenofection efficiency in the upper range of variables. 
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[HDV DNA] 

MOI of HV 

[PEI]/[HDV DNA] 

(MOI of HV)2 

([PEI]/[HDV DNA])2 

[HDV DNA] x {[PEI]/[HDV DNA]) 

([PEI]/[HDV DNA]) x MOI of HV 

4.8 

. 

14.8 

-
8.1 • 

• 

• 

-4.5 

4.0 

-3.5 -

-

! I 2 - 5 
• > 

i, , i . L_ *. < i i 1 L 1 1 I t J 

p = 0,05 

Effect Estimate (Absolute Value) 

Figure 2.5 Pareto chart for variable contribution in the adenofection efficiency 

response. The values indicated at right of bars represent levels and signs of the 

variable contribution, (positive value: increase of the response when the variable 

is augmented, negative value: decrease of the response when the value of 

variable is increased) 
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Figure 2.6 Response surfaces of the adenofection efficiency. A, B, C are 

countour plots as functions of two variables with the third one held constant 
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The significant interaction between [HDV DNA] and [PEI]/[HDV DNA] calculated 

in Figure 2.5 is seen partially in Figure 2.6 A. There is a less drastic change in 

adenofection efficiency when [PEI]/[HDV DNA] was varied at high levels of [HDV 

DNA] rather than at low levels of [HDV DNA]. In Figure 2.6 B however, the 

interaction between [PEI]/[HDV DNA] and MOI of HV is completely hidden. In 

fact, those former interaction terms ([HDV DNA] x [PEI]/[HDV DNA] and 

[PEI]/[HDV DNA] x MOI of HV), are confounded by the higher impact of [HDV 

DNA], [PEI]/[HDV DNA], ([PEI]/[HDV DNA])2, MOI of HV and (MOI of HV)2 which 

represent more than 80% of the response variability. 

Overall, the number of adenofected cells was the highest at the highest level of 

[HDV DNA], and with [PEI]/[HDV DNA] and the MOI of HV at levels within the 

upper range tested. The predicted maximum adenofection efficiency (51%) was 

found to be formed with complexes having the following composition: [HDV 

DNA] = 2 ^ig/mL, [PEI]/[HDV DNA] = 3.1, MOI of HV = 7.8 HV lU/cell. 

2.2.4.5 Scale-Up of the HDV Production 

In order to evaluate the scalability of the overall process, the optimized 

adenofection protocol previously established was tested in combination with the 

viral amplification procedure to produce HDV in a 3 L bioreactor. Using the 

optimized complexes for adenofection of FLPe cells in shake flasks, the 

efficiency of adenofection obtained was 37.5 ± 0.6%. For P1 of amplification, 
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FLPe cells were co-infected with the maximum volume of lysate acceptable, 

defined as one-tenth of total volume of culture (HDV MOI of <1 HDV lU/cell). For 

P2 amplification, the bioreactor cell culture should have been co-infected with an 

optimum MOI of HDV of 5 HDV lU/cell (to be published); however, the 

corresponding volume of lysate exceeded the defined maximum volume. 

Consequently, FLPe cells were infected with the maximum volume of viral lysate 

(280 ml_) from P1 corresponding to a HDV MOI of 2 HDV lU/cell. For P1 and P2, 

the HV was added at the optimal MOI of 0.5 HV lU/cell (to be published). Viral 

amplification dynamics are displayed in Figure 2.7. Similar trends in the TVP 

concentration, the HDV titer and the HDV infectivity ratio were observed for both 

the 3 L bioreactor and shake flask experiments. Characterization of the HDV 

bioreactor stock is shown in Table 2.4. The final HDV titer in the bioreactor was 

1.44 x 108 HDV lU/mL A total of 4.02 x 1011 HDV IU of was produced 

corresponding to 1.60 x 1012 TVP. The HDV infectivity ratio was 26% and the 

HV contamination ratio was 7.68% in terms of viral genomes or 0.27 % in terms 

of IU. 
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P0 
(Shake Flasks) 
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(Bioreactor) 

Figure 2.7 Large-scale amplification of the HDV. The adenofection complexes 

were formed as described in Materials and Methods however using 2 |o.g of HDV 

DNA/mL of culture, 6.2 |ig of PEI/mL of cell culture and the HV at MOI of 7.8 HV 

lU/cell. P0 was performed in 50 ml_ of working volume in shake flasks. P1 was 

done in 400 ml_ of working volume in shake flasks. P2 was conducted in 2800 

ml_ of working volume using a 3 L Chemap bioreactor. The viral titers (HDV 

lU/mL in full bars, HV lU/mL in hatched bars, TVP/mL in squared bars) and the 

HDV infectivity ratio (black squares) are shown for P0 to P2. The means are 

represented for duplicate shake flask experiments (n = 2) (P0 and P1) and for a 

single bioreactor experiment (n = 1) (P2) 
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Table 2.4 Characterization of the 3 L bioreactor stock (raw lysate) 

lU/mL 
TVP/mL 
VG/mL 

HDV HV 

1.44x108 3.82x105 

5.48x108 

5.47 x108 4.20 x107 

HDV infectivity 
ratio (%) 

NA 
26 
27 

HV contamination 
ratio (%) 

0.27 
NA 

7.68 

2.2.5 Discussion 

Large-scale production of HDV is necessary to conduct pre-clinical tests in large 

animal models; however, such tests are restricted by a HDV production process 

involving an initial rescue step performed in non-scalable culture mode and 

based largely on empirical amplification protocols. In an attempt to overcome 

those drawbacks, we developed a PEI-derived transfection method for cells in 

suspension, which efficiently allows transfection of large DNA constructs and 

generates HDV. 

In preliminary experiments, from a process perspective, the circular HDV DNA 

was used which required less manipulation after the bacterial plasmid 

purification. In previous studies, the circular DNA yielded higher in vivo and in 

vitro transfection efficiencies (Cherng et al. 1999; von Groll et al. 2006). 

However, in our case, the production of the HDV was less efficient with the 

circular DNA. In the best of cases, extensive amplification was required to get a 

significant HDV titer (data not shown). Eventually this confirmed the fact that the 

adenoviral particles are more easily produced when the adenoviral DNA harbors 



104 

ITRs at DNA extremities, probably providing an easier access for the replication 

factors (Tamanoi and Stillman 1982; van Bergen et al. 1983). The use of the 

linearized HDV DNA was therefore a prerequisite for an efficient HDV 

production. In the transfection/infection protocols, similar effectiveness in the 

HDV production using either the Lipofectamine 2000- or the PEI-

transfection/infection protocols was somewhat surprising considering that the 

Lipofectamine 2000- outperformed the PEI-transfection efficiencies under 

standard transfection conditions. Even if the medium was renewed post-

transfection, the high cytotoxicity of Lipofectamine 2000 might be detrimental to 

the formation of progeny viruses. Nevertheless, the adenofection, a proven 

method to efficiently transfer large DNA constructs into cells such as the 30 kb-

HDV DNA (Baker and Cotten 1997; Campeau et al. 2001), outperformed the 

standard rescue procedures. Consistent with these results and previous works, 

it is believed that compared to the PEI-transfection, the PEI-adenofection not 

only enhanced the number of transfected cells (Baker et al. 1997; Campeau et 

al. 2001; Diebold et al. 1999; Meunier-Durmort et al. 1997) but also improved 

the HDV DNA nuclear translocation due to a higher endosmolytic activity of 

complexes (Cotten et al. 1992; Curiel et al. 1991; Yoshimura et al. 1993). This 

would lead to a better availability of the HDV DNA for further maturation into the 

HDV particles. Moreover, to produce a new HDV particle, both the HDV DNA 

and the HV are required in a cell. The adenofection complex is thought to bring 

simultaneously the HDV DNA and the HV to a same producer cell. 
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Consequently, the probability of producing more HDV particles is increased and 

instead of three, only two amplification passages were required to attain 108 IU 

of HDV/mL in adherent cell cultures. In 6-well plates, lower HDV yields were 

observed in suspension than in adherent cell cultures. Although the exact 

reason of this limitation remains unknown, cellular stresses induced by the use 

of 6-well plates under agitation might be responsible for a lower production. This 

aforementioned limitation was overcome in shake flasks culture as HDV yields 

were similar to those obtained in 6-well plate adherent cultures. Moreover, the 

study of the viral amplification suggested that the level of total viral particle 

production is similar at each passage. Considering the low infectious titers in the 

initial passages, the majority of the total viral particles produced at P0 and P1 

are thought to be defective viral particles. At the maximum HDV yield, the HV 

contamination ratio in the raw lysate was inferior to 0.1% in terms of IU, which is 

similar to what has been previously reported using similar assays, indicating the 

efficiency of the FLPe selection system (Meneses-Acosta et al. 2007; Umana et 

al. 2001). The decrease of both the total viral particle concentration and the HDV 

titer obtained at P3 might be a consequence of a suboptimal infection scheme 

resulting from a volume-based amplification protocol (see discussion below). 

While the production benefit of the adenofection was demonstrated in 

suspension culture, further understanding was sought to get better control of the 

adenofection protocol. The study of the stoichiometry of the complexes using a 
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DOE was useful in understanding the relative importance of the complexes 

components and to optimize the HDV yield. 

Variability associated with the HDV amplification through three serial passages 

did not allow us to accurately correlate the HDV titer at P3 to the stoichiometry 

of adenofection complexes. Reasoning that only HDV DNA-adenofected cells 

are capable of producing HDV, the adenofection efficiency would therefore be a 

good but also an easy-to-get indicator of the HDV production at P0. This 

hypothesis was confirmed by the correlation between the HDV titer at P3 and 

the adenofection efficiency above 10%. Below 10% however, the HDV is 

amplified with great variability as a result of its rescue at low titer. 

Previous studies highlighted that adenofection complexes are efficiently 

delivered into the cells thanks to a combined and also reciprocal enhancement 

effect of PEI and adenovirus at multi-levels (cell binding, entry, transport, DNA 

release, transcription) (Baker et al. 1997; Dunphy et al. 1999). Some 

researchers suggested that the carrier adenovirus binds to the PEI-DNA 

complexes via the negative charge of hexons and the global positive charge of 

the condensed DNA (Baker et al. 1997). Other studies demonstrated that the 

number of adenofected cells and transgene expression were dependent on the 

composition of complexes (Baker et al. 1997; Campeau et al. 2001; Meunier-

Durmort et al. 1997). The titration of HDV DNA, PEI and the HV was done within 

the appropriate range of values enabling the generation of useful information. 
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For instance, the statistical analysis underlined the crucial function of the HV in 

the adenofection process. It further confirmed the role of the adenovirus in the 

enhancement of the transfection efficiency. A rapid decline in the adenofection 

efficiency was observed below those values in HDV DNA concentration, 

PEI/DNA ratio and MOI of HV. Compared to Durocher et al. (2002) who used a 

similar cell-transfection system, our optimal PEI/DNA ratio is higher. Those 

remarks are in accordance with Baker et al. (1997) and Campeau et al. (2001). 

They suggested to adenofect cells with PEI-DNA complexes of higher positive 

charge (as compared to PEI-DNA transfection complexes) to bind efficiently to 

the adenovirus. Complexes of higher charge or higher viral load have less effect 

(as compared to lesser charge or lesser viral load) on the variation of 

adenofection efficiency or transgene expression but are more cytotoxic. An 

optimal composition for the complexes was found in a minimal set of 

experiments and was further used to produce HDV in a 3 L bioreactor. 

The experiment conducted in a bioreactor demonstrated the effectiveness and 

reliability of the developed HDV production process at 3 L scale. Consistent with 

the use of the optimized adenofection and the co-infection conditions, the HDV 

was amplified within two passages. The lower adenofection level compared to 

DOE prediction was still acceptable considering the experiment-to-experiment 

variability of the PEI-based transfection. 
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Currently, the HDV amplification uses a volume-based protocol, which is highly 

empirical and thus, impossible to rely on for scale-up from a bioengineering 

perspective. Reliable bioprocesses aim to define a set of parameters able to 

predict the overall performance of production. The MOI is the most 

characterized parameter describing co-infection protocols. It has been shown to 

be highly associated to the quality and the yield of bioproducts (Aucoin et al. 

2006; Palomares et al. 2002). However, if the MOI has been only partially 

examined (Hartigan-O'Connor et al. 2002a), it has never been utilized as a 

predictive parameter during the HDV production starting from the HDV DNA 

(Palmer and Ng 2003; Sakhuja et al. 2003). In a separate study (to be 

published), we determined the optimal MOI for HV (0.5 HV lU/cell) and HDV (5 

HDV lU/cell). During the HDV amplification, whenever possible, the optimal co-

infection conditions were used, i.e, optimal MOI of HV was applied whereas 

optimal MOI of HDV was never attained. An infection using a volume-based 

protocol is appropriate for initial amplification passages at the quantity of HDV is 

limiting. However, as identified by Ng et al (2001), at higher amplification 

passages, a volume based-protocol would lead to an over-optimal MOI of HDV 

infection. It results in a waste of the HDV infecting material as well as in a 

lowered HDV titer. 

Compared with other studies, the HDV final titer in the bioreactor is roughly 

similar; however, an HDV infectivity ratio is 3 to 4 times higher than reported 

elsewhere (Palmer and Ng 2003) has been achieved. Since total viral particles 
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mediate acute dose-dependent toxicity (reviewed in Palmer and Ng 2005), the 

HDV infectivity ratio is highly relevant to assess the quality of vector stock where 

high ratios are desirable (National Institute of Health 2002). We also observed a 

good concordance between VG and TVP concentrations, which comforts us in 

using the two quantifications methods. It appears that the HV contamination 

ratio in raw lysate is high compared to what has been previously reported 

(Palmer and Ng 2003; Sakhuja et al. 2003). However the purity of material 

tested and/or the HV quantification methods employed by others could explain 

those differences. Semi-purified or purified materials are partially cleared of the 

HV, therefore underestimating the HV contamination in raw lysates. In addition, 

major differences in principle and sensitivity of the HDV and the HV assays do 

not always allow a direct comparison between the HV and the HDV titers and 

tends to minimize the HV contamination (Mittereder et al. 1996). DNA-based 

quantification methods are therefore more appropriate to compare the HV to the 

HDV titer in order to assess the HV contamination (Puntel et al. 2006). 

Previously, the HDV production has been scaled-up in a 2 L bioreactor; 

however, this was achieved with extensive amplification of HDV in adherent cell 

culture (Sakhuja et al. 2003). Palmer and Ng (2003) produced HDV in a 3 L 

spinner-flask within four amplification passages; however, the process was 

mostly done in adherent cell cultures as well. Our suspension process permitted 

the production of a high quality HDV vector stock in a 3 L controlled bioreactor 

within only two amplification passages, which is both time-saving and restricts 



110 

possible viral recombinations (Hartigan-O'Connor et al. 2002a; Sakhuja et al. 

2003). 

From a manufacturing perspective, this process was completely realized in cell 

suspension mode from rescue to amplification in low serum-containing medium. 

Recent developments in large-scale transfection strategies and media 

optimization allowed operations in commercial serum-free medium. For the first 

time, the PEI-adenofection was employed in suspension cell culture for 

production purpose. The PEI-adenofection has been validated with great 

success for the HDV production, in a simple, time-saving and cost-effective way 

considering the simultaneous use of PEI and virus compared to a commercial 

transfection reagent. Moreover, because it was easily performed and optimized 

in suspension cultures, it might be adaptable to larger volumes considering the 

PEI-transfection scalability for the production of adeno-associated virus up to 3 L 

(Durocher et al. 2007). We are presently looking forward to producing the HDV 

at an even larger bioreactor scale within our facilities where production of the 

first generation of adenoviral vector has been scaled-up to 100 L (Kamen and 

Henry 2004). Taken together, these advances will be highly relevant to produce 

high-quality grade HDV to sustain the therapeutic development of this viral 

vehicle. 
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2.3 Resultats Complementaires 

2.3.1 Introduction 

L'amplification du HDV est restreinte par les faibles quantites de HDV produites 

aux premiers passages. L'utilisation d'un lysat cellulaire plus concentre en HDV 

permettrait d'augmenter la quantite de HDV infectant une culture cellulaire et 

done d'ameliorer I'aimplification du HDV. Le nombre de passages d'amplification 

pour atteindre le titre maximum de HDV devrait ainsi etre reduit. 
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2.3.2 Materiels et Methodes 

L'experience est realisee en flacons agites selon les conditions decrites au 

Chapitre 2, 2.2.3 Materials and Methods. Pour I'adenofection, I'ADN du HDV est 

utilise sous sa forme circulaire ou lineaire. Le lysat cellulaire est place tel quel 

(1x) a -80 °C ou concentre prealablement 10 fois (10x) par centrifugation a 300 

x g pendant 5 min. Apres un cycle de gel/degel, le lysat cellulaire 1x est ajoute 

directement a la culture cellulaire tandis que le lysat cellulaire 10x est triture par 

pipetage, centrifuge (4,500 x g , 2 min) et seul le surnageant est ajoute. Une 

evaluation de la perte de HDV entrainee par I'utilisation du lysat cellulaire 10x 

est menee. La viabilite des cultures cellulaire n'est pas affectee par I'utilisation 

du lysat 10x. Elle est de 80% (± 5%) en utilisant le lysat 1x (n=10) et 87% (± 

5%) en utilisant le lysat 10x (n=10). Le HDV est concentre conformement au 

facteur de concentration du lysat. Un maximum de perte de 25% est cependant 

observe lors du relargage des particules virales suite aux etapes de trituration et 

de culottage des debris cellulaires. Le facteur d'amplification est le ratio entre 

les Ul de HDV produites et les Ul de HDV introduites au moment de I'infection 

2.3.3 Resultats et Discussion 

La Figure 2.8 presente les titres obtenus du P0 au P4 en utilisant I'ADN 

circulaire (A) ou I'ADN lineaire (B). A la Figure 2.8 A et B, les titres obtenus a 

partir de I'adenofection avec I'ADN circulaire (A) sont deux ordres de grandeur 
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en dessous des titres obtenus a partir de I'adenofection avec I'ADN lineaire. Ces 

resultats sont conformes a ceux presentes a la Table 2.1. Aux premiers 

passages d'amplification (PO a P3 Figure 2.8 A, PO a P1 Figure 2.8 B), les titres 

pour le lysat 10x sont peu differents de ceux pour le lysat 1x. Pour les passages 

suivants (P4 Figure 2.8 A, P2 a P3 Figure 2.8 B), I'utilisation d'un lysat 

concentre contribue meme a reduire le titre du HDV. Le titre relativement bas 

obtenu a partir de I'adenofection avec I'ADN circulaire stagne a ~3 x 106 Ul de 

HDV/mL entre le P3 et le P4 avec le lysat 10x (Figure 2.8 A). En utilisant 

I'adenofection avec I'ADN lineaire, le titre diminue puis augmente a nouveau 

entre le P2 et le P4 avec les deux lysats (Figure 2.8 B). Le titre maximum est 

-1-2 x10 8 Ulde HDV/mL. 
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Figure 2.8 Secours et amplification du HDV en culture cellulaire en 

suspension. L'adenofection a ete realisee avec I'ADN circulaire (A) ou lineaire 

(B). L'amplification a ete realisee avec le lysat cellulaire 1x (barres blanches) ou 

10x (barres grises). Les titres viraux (Ul de HDV/mL) sont represented pour PO 

a P4 pour les lysats cellulaire 1x. Les valeurs moyennes sont donnees pour des 

duplicata de cultures (n = 2) 
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Une analyse des conditions d'amplification est montree a la Figure 2.9. La figure 

reporte le titre de HDV en fonction de la MOI de HDV calculee a partir du titre du 

lysat utilise pour I'infection. Pour I'adenofection avec I'ADN lineaire, les resultats 

indiquent I'obtention d'un titre maximum pour une MOI de HDV entre 2 et 10. De 

maniere surprenante, les resultats de I'adenofection avec I'ADN circulaire sont 

differents des resultats de I'adenofection avec I'ADN lineaire. II est difficile de 

justifier ces observations. Eventuellement, I'utilisation de I'ADN du HDV sous la 

forme circulaire genere des recombinants HDV ayant une capacite 

d'amplification limitee. Cette hypothese reste cependant a verifier. 
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Figure 2.9 Relation entre la MOI de HDV et le titre de HDV 

Le Tableau 2.5 reporte le facteur d'amplification obtenu a chaque passage. Ce 

facteur est une mesure du gain viral considerant la quantite initiale de HDV 
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apportee a la cellule au moment de I'infection et la quantite finale de HDV 

produite. L'amplification est maximum au P1 (324.8) pour les conditions 

d'adenofection avec I'ADN lineaire et d'amplification avec le lysat 1x. Au P2, le 

facteur d'amplification diminue (117.1) suggerant que le systeme atteint une 

limite de production. Le P2 correspond effectivement au titre maximum de HDV. 

Les valeurs des facteurs d'amplification pour le lysat 10x sont beaucoup plus 

faibles. 
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Tableau 2.5 Facteurs d'amplification pour le secours et ['amplification du HDV 

en culture cellulaire en suspension 

Adenofection ADN circulaire Adenofection ADN lineaire 

NA 

324.8 

117.1 

4.3 

25.5 

NA 

63.5 

1.0 

2.4 

67.3 

2.3.4 Conclusions 

Ces resultats complementaires confirment les resultats obtenus au Chapitre 2, 

2.1 An Efficient and Scalable Process for Helper-Dependent Adenoviral Vector 

Production using Polyethylenimine-Adenofection, a savoir que I'utilisation de 

I'ADN circulaire n'est pas efficace pour produire le HDV. Pour des raisons non-

elucidees, meme les passages d'amplification repetes ne permettent pas 

d'atteindre des titres de HDV de I'ordre de 1 x 108 UI/mL. D'autre part, les 

resultats pour I'adenofection avec I'ADN lineaire indiquent que I'utilisation d'un 
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lysat concentre selon une methode d'amplification par volume est trop aleatoire 

pour atteindre plus rapidement le titre maximum de HDV. La fenetre de MOI 

conduisant a des titres maxima est relativement etroite. L'utilisation d'un lysat 

concentre peut mener a infecter la culture cellulaire avec des MOI trop elevees, 

ce qui diminue le titre de HDV. L'utilisation d'un lysat concentre ne permet pas 

d'atteindre la capacite d'amplification obtenue avec le lysat 1x. Si, aux premiers 

passages, la MOI de HDV utilisee se rapproche de la fenetre de MOI optimale, 

la MOI du HV peut eventuellement etre trop elevee et mener a amplifier 

faiblement le HDV. 

En conclusion, la production de HDV peut etre en partie maftrisee par un 

ajustement de la MOI du HDV. Une identification des parametres controlant la 

production de HDV fait I'objet d'une etude plus approfondie dans le chapitre 

suivant. 
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CHAPITRE 3: IDENTIFICATION DES PARAMETRES CRITIQUES 

DEFECTION POUR CONTROLER LA PRODUCTION DU VECTEUR 

ADENOVIRAL DEPENDANT DUN VIRUS AUXILIAIRE PAR QPCR 

3.1 Presentation de I'Article 

Dans le processus integre de production du HDV, I'etape d'amplification fait 

suite a I'etape de secours. Elle consiste a infecter les cultures avec le HV et un 

volume defini de lysat cellulaire contenant le HDV obtenu au passage 

precedent. La co-infection est iteree jusqu'a I'obtention d'un titre maximum de 

HDV. Ce procede d'amplification par volume de culture est empirique et conduit 

a produire le HDV avec un rendement aleatoire. 

Ce chapitre se compose de I'article intitule Identification of Critical Infection 

Parameters to Control Helper-Dependent Adenoviral Vector Production using 

QPCR soumis a la revue Biotechnology and Bioengineering. L'article rapporte le 

developpement d'un procede fiable pour I'etape amplification du HDV. Comme 

au chapitre precedent, les quantites relatives et totales de HDV et de HV ajoutes 

au moment de I'infection sont etudies. Cependant, a I'etape d'amplification par 

infection, ces quantites sont manipulees par des parametres d'infection comme 

la MOI et le ratio entre les vecteurs. Grace a un outil quantitatif servant a la 

caracterisation de la production, on observe que la MOI et le ratio entre les 

vecteurs controlent le titre de HDV et le niveau de contamination par le HV. 
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D'autres parametres d'infection comme le delai d'infection sont manipules en 

vue de favoriser specifiquement I'amplification du HDV. Les conditions 

optimales d'infection sont identifies. De cette etude decoule une meilleure 

comprehension de la formation des deux vecteurs, ce qui permet d'entrevoir une 

nouvelle approche de production utilisant la lignee cellulaire parentale. 

3.2 Identification of Critical Infection Parameters to Control Helper-

Dependent Adenoviral Vector Production using QPCR 

Dormond E.1'2, Perrier M.2, and Kamen A.1 
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3.2.1 Abstract 

Helper-dependent adenoviral vectors (HDVs) are the most promising adenoviral 

vectors for gene therapy treatments as well as vaccination strategies. However, 

the lack of a robust and efficient strategy to produce the HDV at high titers 

constitutes a major obstacle hindering the use of this promising technology at 

the clinical level. The HDV production requires a double infection of a 

recombinase-expressing HEK293 cell line with the HDV and a helper virus (HV). 

To limit lots contamination by HV, encapsidation of HV is prevented by the 

recombinase action. A real-time PCR assay was developed to accurately 

characterize the production of this system. Infection strategies to enhance the 

HDV yield and reduce the contamination by HV were investigated. The 

multiplicity of infection (MOI) was identified as a critical parameter to 

simultaneously improve the HDV yield and reduce the contamination by HV. 

HDV to HV MOI ratio dictated the HDV yield whereas the HV accumulation was 

controlled by the MOI of HV. Delaying infection with the HV did not improve the 

HDV yield. 

3.2.2 Introduction 

In viral vectored gene therapy applications, a major drawback remains the 

availability of viral vector lots in sufficient quantity and quality to support pre

clinical and clinical trials. Compared to other vectors, the high yield production of 
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adenoviral vectors (AdV) makes these vectors particularly attractive for use as 

gene delivery vectors. The third generation AdV referred to as helper-dependent 

adenoviral vector (HDV) has demonstrated substantial in vivo benefits over 

earliest constructions. Still, the full exploitation of HDV potential suffers from a 

lack of focused efforts on the development of production processes. 

The HDV is a 30 kb vector devoid of the major viral coding sequences. It 

accommodates up to 37 kb of transgene. Contrary to previous AdV 

constructions, it displays safer in vivo toxicity and immunogenicity profiles 

(reviewed in Brunetti-Pierri and Ng 2008; Palmer and Ng 2005). For its 

production in a recombinase-expressing HEK293 cell line, a first generation AdV 

called helper virus (HV) is required. In this system, the viral genome is supplied 

by the HDV while the structural proteins and replication elements are supplied 

by the HV and the HEK293 cell line. The HEK293 cell line expresses 

constitutively a recombinase (e.g. FLP) which cleaves DNA at the recognition 

sites (frf) flanking the packaging signal of the HV (Alba et al. 2007; Meneses-

Acosta et al. 2007; Ng et al. 2001; Umana et al. 2001). Without its packaging 

signal, the HV genome is theoretically not integrated into a capsid. However, 

any remaining HV has to be efficiently removed from the final HDV preparation 

since it is considered as a contaminant. 

The HDV production consists of a transfection of the producer cells with the 

HDV DNA followed by an infection with the HV. Then, serial amplification 
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passages allow increase of the HDV titer through co-infection of cells with the 

HDV-containing lysate and the HV. Previous studies have mostly focused on the 

improvement of the HDV yield and the reduction of the contamination by HV 

through the design of better viral constructs (Parks et al. 1996; Sandig et al. 

2000) and the development of better producer cell lines (Barjot et al. 2002; 

Hartigan-O'Connor et al. 1999; Zhou et al. 2001). We recently developed an 

improved protocol referred to as adenofection to significantly reduce the number 

of amplification steps required to attain a high HDV yield (Dormond et al., to be 

published). Due to the lack of accurate and routine characterization of HDV 

production, a volume-based protocol is usually employed to amplify the HDV. 

Using this approach, the multiplicity of infection (MOI) of HDV, i.e the quantity of 

infecting units per cell, is expected to rise unpredictably assuming an increase of 

the HDV titer. At the early amplification steps for which the MOI of HDV is 

generally below 1 lU/cell, HDV titer increased logarithmically with the passage 

number. Some authors have proposed to infect cells with a MOI of HDV above 1 

lU/cell, thereby ensuring a synchronous infection and a better HDV yield 

(Hartigan-O'Connor et al. 2002a). At late passages, a drop in the HDV titer 

suggested that the high MOI of HDV saturates the cellular machinery (Ng et al. 

2002a). In a one-degree-of-freedom experiment, we have shown that the HDV 

production was maximum at a MOI of HDV equal to 5 (Meneses-Acosta et al. 

2007). 
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Infection parameters such as the MOI are commonly used to maximize and 

reproduce AdV yields (Park et al. 2004; Schoofs et al. 1998). Moreover, in 

vector producing systems using multiple infections, the ratio of input viruses at 

the infection time point has been correlated to the yield and the quality of the 

final product (Aucoin et al. 2006; Meghrous et al. 2005; Palomares et al. 2002). 

In the HDV system, an incorrect stoichiometry between the two input viruses 

may also lead to a waste of viral material, a reduced HDV yield and an 

increased contamination by HV. 

However, the establishment of reliable correlations between infection conditions 

and HDV production characteristics is hampered by the lack of appropriated 

quantification methods. Indeed, the well-established methods for the 

characterization of AdV suffer from a number of shortcomings. HPLC methods 

have been developed for the absolute quantification of the first generation AdV 

(Klyushnichenko et al. 2001; Shabram et al. 1997; Transfiguracion et al. 2001). 

However, assessment of concentration by HPLC consists of an overall 

quantification of vectors without providing indication on contamination level by 

HV, an important characteristic of the production of HDV. Moreover, the 

quantification is biased by the calibration curve usually done with a 36 kb wild-

type adenovirus whereas the sample contains an unknown mixture of 30 kb 

HDV and 37 kb HV. Also, the low detection limit of HPLC (~108 VP/mL) hinders 

the accurate determination of the TVP concentration of HDV in samples, which 

is usually in the range of 108-109 VP/mL. Due to large differences in sensitivity, 
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the infectivity assays used to determine the HV and the HDV titers, do not allow 

an accurate assessment of the contamination by HV. Consequently, the 

reported contamination by HV underestimates the true contamination (Palmer 

and Ng 2005). DNA-based assays such as dot blot, Southern blot and qPCR 

assays have emerged as sensitive and reliable assays to measure the 

contamination by HV using a same unit of measurement (Kreppel et al. 2002; 

Palmer and Ng 2004; Puntel et al. 2006). Moreover, the qPCR assay surpasses 

the hybridization assays by providing an absolute quantification of the HDV and 

the HV. In Puntel et al. (2006), a qPCR assay based on the TaqMan technology 

was developed. This procedure is however difficult to exploit routinely, mainly 

due to its high cost. 

Here, a routine duplex real time quantitative PCR assay was developed to 

accurately evaluate HDV production characteristics. Infection parameters served 

to fine tune the stoichiometry between components forming the HDV to 

ultimately increase the HDV yield and reduce the contamination by HV. First, the 

combined effect of the individual MOIs was examined. Second, a differential 

time of co-infection was tested. The advantages of a rational co-infection 

strategy to control the HDV production are presented. 
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3.2.3 Materials and Methods 

3.2.3.1 Cells 

The HEK293SF-FLPe cell line is a stable cell line expressing FLPe and has 

been described previously (Meneses-Acosta et al. 2007). The HEK293SF-FLPe 

cell line was maintained in HSFM medium supplemented with 10 mM HEPES, 

1% BCS and 0.75 u.g/ml_ puromycin at 37°C in a 5% C02 humidified incubator. 

The cells were maintained in suspension at 120 rpm in shake flasks and 

passaged three times a week at 0.2 x 106 cells/mL. The cell density and viability 

were assessed by haemacytometer counts using the erythrosine dye exclusion 

method. 

3.2.3.2 Viruses 

The HDV construct (HCAgfp), a generous gift of Dr. V. Sandig from Probiogen 

AG Germany, is a 30 kb adenoviral vector similar to the construction reported 

elsewhere (Sandig et al. 2000). A GFP expression cassette under the control of 

a CMV promoter is used as a marker. The HV, an E1/E3-deleted adenoviral 

vector, was kindly provided by Dr. P. Lowenstein (Umana et al. 2001). It carries 

/>t sites flanking the packaging signal. 

A high-titer stock of the HV was produced by infecting HEK293SF (Cote et al. 

1998) cells in a 3 L bioreactor. Briefly, the cells were seeded at 0.25 x 106 
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cells/mL in fresh NSFM13 medium (Nadeau et al. 2002) and infected one day 

later with HV at a MOI of 5 lU/cell. At 48 hours post-infection (hpi), the cell lysate 

was collected and centrifuged at 300 x g for 10 min. The cell pellet was diluted 

in one-twentieth of the original cell culture volume. The HV was released in the 

supernatant by three freeze/thaw cycles and cell debris pelleting at 4,500 x g for 

2 min. Unless stated otherwise, supernatant of HV was used. The HDV stocks 

were obtained following the so-called adenofection protocol (Dormond et al., to 

be published). Briefly, the HDV rescue (P0) was performed by adenofecting (2 

Hg/mL of HDV DNA, 6.2 |ig/ml_ of linear 25 kDa PEI and MOI of HV of 7.8 

lU/cell) the HEK293SF-FLPe cells seeded at 0.5 x 106 cells/mL in 25 mL of 

fresh medium. For the adenofection, CsCI-purified HV was used (one step 

gradient at 100,000 x g, 4°C for 1.5 h and one linear gradient at 100,000 x g, 

4°C for 24 h followed by dialysis against 10 mM Tris-HCI pH 7.9, 1 mM MgCI2). 

At 48 hpi, 2.5 mL of freezed-thawed P0 lysate was used to co-infect cells with a 

MOI of HV of 0.5 lU/cell in the same conditions (P1). The harvest was done at 

48 hpi. P2 was performed similarly to P1 and was used as the HDV stock. The 

HDV stocks were generated in duplicated flasks from P0 to P2 (HDV stock 1 

and HDV stock 2). 
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3.2.3.3 Infection Experiments 

The HEK293SF-FLPe cells were amplified in a 2 L shake flask at 500 ml_ 

working volume. The cells were resuspended in 25 ml_ of fresh medium and 

distributed in 125 ml_ shake flasks at 0.5 x 106 cells/mL 

For conciseness, MOI of HDV and MOI of HV will be further referred to without 

units. In the MOI experiments, co-infection was carried out at MOI of HDV and 

MOI of HV of 0.1, 0.5, 1, 2, 5, 10. A total of 36 infected cell cultures were 

processed at the same time. The harvest was done at 48 hpi. Samples were 

aliquoted and frozen at -80 °C for subsequent analysis. The experiment was 

repeated a second time with the HDV stock 2, obtained under similar conditions 

(n=2). 

In the ATOI experiments, duplicated cell cultures were infected with HDV at a 

MOI of 5. The HV infection was carried out at 0, 1.5, 3, 4.5 and 6 hpi at a MOI of 

0.5. The control consists of HV uninfected cell cultures. Samples were taken 

daily until 96 hpi with respect to the HV infection, processed immediately or 

frozen at -80°C for further analysis. The co-infection experiment (ATOI = 0 hpi) 

was repeated twice with the HDV stock 1 and 2 (n=4). The delayed infection 

experiment was done once (n=2). 
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3.2.3.4 Quantification Methods 

GFP Positive Cells and Total GFP 

Cells were resuspended in 2% p-formaldehyde in PBS. After 1 h of fixation at 

4°C, at least 10,000 events were analyzed by flow cytometry using the Coulter 

EPICS™ XL-MCL cytometer and EXP032 software to determine the percentage 

of GFP-positive cells and the mean fluorescence. Total GFP was assessed by 

multiplying the number of GPF-positive cells with the mean fluorescence. 

Infective HDV by GTA 

The HDV IU were quantified by GFP gene transfer assay (GTA) on target cells 

in suspension culture. The HEK293E cells were seeded at 0.5 x 106 cells/mL in 

12 well plates with HSFM medium, 10 mM HEPES, 1% BCS, 50 (ig/mL G-418 

(Durocher et al. 2002). Dilution of unknown (100 uL) was applied on the cells. At 

24 hpi, cells were counted and resuspended in 2% p-formaldehyde in PBS and 

analyzed by flow cytometry as described in the previous section. A minimum of 

two dilutions showing 3 to 30% GFP-positive cells were taken into account for 

the titer calculation as previously described (Cote et al. 1997). 
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Infective HV by CPE-EPDA 

The HV IU were quantified by a cytopathic effect (CPE) detection following end-

point dilution assay (EPDA) on infected target cells. The HEK293A cells were 

seeded at 0.03 x 106 cells/mL in 96-well plates with DMEM+, 2 mM L-glutamine, 

1 mM sodium pyruvate and 10% FBS. One day later, each column received a 

logarithmic dilution of unknown. A non-infected column was used as a negative 

control. The positive wells were scored 14 days post-infection and the HV titer 

was estimated according to the calculation by Reed and Muench (O'Reilly et al. 

1994). 

Total Viral Particles by HPLC 

The total viral particle (TVP) concentrations of the HDV and the HV stocks were 

determined by an anion-exchange high performance liquid chromatography 

method coupled to UV detection spectroscopy (Klyushnichenko et al. 2001). The 

lysates stored at -80°C were thawed and centrifuged at 4,500 x g for 2 min. The 

supernatants were filtered through a 0.45 u.m GHP-membrane syringe filter 

before injection. When necessary, the TVP concentrations were corrected for 

the difference in vector size between the HDV (30 kb) and the ATCC wild-type 

adenovirus reference material (36 kb) used to make the HPLC standard curve 

(Ng et al. 2002b). 
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Viral Genomes by qPCR 

The cell lysates were thawed at 37 °C and centrifuged for 2 min at 4500 x g to 

remove the cell debris. The supernatants (200 \xL) were treated with 1 u l of 

Dnase I 57 U/|iL(lnvitrogen, Grand Island, NY) in Dnase I buffer for 30 min at 

37 °C. The samples were mixed with 5 (iL of 0.5 M EDTA and Dnase I was 

inactivated at 65°C for 30 min. The viral genomes were extracted using the High 

Pure Viral Nucleic Acid kit (Roche Diagnostics, Laval, QC, Canada) following the 

manufacturer's instructions. 

To assess the HDV and the HV viral genome concentrations, a standard 

plasmid for quantification was constructed. The HV genome was obtained by the 

Hirt extraction protocol. Briefly, the CsCI-purified HV was incubated in a 0.5% 

SDS solution containing 0.5 uxj/uL of proteinase K (Roche Diagnostics, Laval, 

QC, Canada) for 1 h at 37°C. The extraction was performed using the 

phenol/chloroform and chloroform procedures. The HDV and HV elongated 

qPCR products were amplified by standard PCR using the pHCAgfp and the 

extracted HV genome as templates. Restriction site sequences were added to 

the 3'-end of each primer sequence (HDV forward: 

AAAGTTTAAACGCCCAGGTAGTAAATQTCTC containing Pmel sequence, 

HDV reverse: containing EcoR I sequence, HV forward: 

AAAAAGCTTGGCCTACCCTGCTAACTTCC containing Hind III sequence, HV 

reverse AAAGCGGCCGCAGGTACACGGTTTCGATGAC containing Not I 
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sequence). The PCR cycling conditions were 94°C for 5 min; 35 cycles of 94°C 

for 30 s, 58°C for 30 s, 72°C for 40 s; 72°C for 7 min and final temperature 40°C. 

Each product was gel purified, digested, desalted and ligated sequentially into 

pTT vector (Durocher et al. 2002). The resulting standard plasmid pTT3-HDV-

HV (6,718 bps) was amplified in E.coli and purified by Qiagen Maxiprep 

(Qiagen, Mississauga, ON, Canada). The standard stock was quantified by UV 

spectroscopy Plasmid preparations with absorbance ratios 260 nm/280 nm 

greater than 1.8 were considered pure and accepted for further studies. 

A description of the duplex real-time qPCR in terms of reaction conditions, 

quantification and reaction specificity is shown in Table 3.1. 

For design of primers, the stuffer region of the HDV and the hexon region were 

chosen to target the HDV and the HV, respectively. Specific primers for both the 

HDV and the HV were designed with the help of Clone Manager Software v.7 

(Sci-Ed Software, Cary, NC) to ensure a high specificity for the HDV and the HV, 

respectively in a same qPCR run. The primer sequences and the qPCR product 

position and length are reported in Table 3.1. The qPCR was done using the 

Light Cycler instrument (Roche diagnostics, Manheim, Germany). The 

amplification conditions described in Table 3.1 were performed in a total volume 

of 20 uL containing 18 u l of PCR Mix (12 u l H20 PCR grade, 1.6 [i\ MgCI2 25 

mM, 1.2 u.L forward primer 5 uJVI, 1.2 fxl_ reverse primer 5 uJvl, 2 u,L 10 x Master 
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Mix Light-Cycler Fast-Start SYBR Green I (Roche diagnostics, Laval, QC, 

Canada) and 2 |iL of template (standard or samples)). 

The HDV and the HV were quantified based on the standard curves generated 

at each qPCR run with duplicated logarithmic dilutions of pTT3-HDV-HV as 

described in Table 3.1. The quantitative analysis of data, the efficiency of the 

qPCR run (slope of the standard curve) and the goodness-of-fit of the standard 

curve (R2 value) were assessed using the Light Cycler software (Table 3.1). The 

specificity of reaction was ensured by analyzing the melting curve and the 

agarose gel of qPCR product (Table 3.1). Results are expressed in HDV viral 

genomes, in HV viral genomes (VG/mL) or in total viral genomes (TVG/mL) 

(addition of HDV and HV viral genome concentrations). 
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Table 3.1 Description of the duplex real-time qPCR in terms of reaction 

conditions, quantification and specificity of reaction 

HDV HV 

Primer sequence (5'-3') Forward 

Primer sequence (5'-3') Reverse 

AGCTCACAGGCTGTAGTTTG CCGCAGTTGACAGCATTACC 

GGATCACTTGCACGGTTTAG CGGACCACGTCAAAGACTTC 

Product position and size 2551 to 2570 - 224 bps 21402 to 21422 - 220 bps 
qPCR 

conditions 

Quantification 

Reaction 
specificity 

Amplification 
(40 cycles) 

Standard 
curve 

Melting curve 

Agarose gel 

Denaturation 

Annealing 

Elongation, 
quantification 

Range 

Slope 

R2 

Condition 

Primer dimers 
[a] 

Non-specific 
products [b] 
Melting of 
products 

Primer dimers 

[c] 
Non-specific 
products [d] 

Bands 

95°Cfor10s 

61 °C for 7 s 

72 °C for 10 s, single fluorescence acquisition at end 

108 to 103 molecules/2 uL (1:10 10' to 102 molecules/2 |xL (1:10 
dilutions) dilutions) 

-3.6 < Slope < 3.1 

R2>0.99 

70°C for 10 s, 70 °C to 95°C at 0.10°C/s with continuous 
fluorescence acquisition 

no no 

no no 

87.2°C<T<87.5°C 

no no 

no no 

Single band at - 200 bps Single band at - 200 bps 

Notes: [a] Primer dimers are usually produced when a fluorescence shift is observed at T<T of 

product on the melting curve [b] Non-specific products are usually produced when a 

fluorescence shift is observed at T>T product on the melting curve, [c] Bands for primer dimers 

are usually observed above the product band (>200 bps) on the agarose gel. [d] Bands for non

specific products are usually observed below the product band (<200 bps) on the agarose gel 

In the text, "titer" refers to the infectious concentrat ion in lU/mL (for both the 

HDV and the HV) while the term "concentration" refers to the sum of infectious 

and non-infectious concentration in VG/mL or in TVP/mL. The concentration in 

TVP/mL and the HV titer in lU/mL are only used to characterize the viral stocks. 
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Unless otherwise stated, the infectivity and the contamination by HV are ratios of 

HDV IU to TVG and HV VG to HDV VG, respectively. 

3.2.4 Results 

3.2.4.1 Viral Stocks Characterization 

For the HDV stock 1 and 2, the TVG concentrations determined by qPCR are in 

accordance with the TVP concentrations determined by HPLC (Table 3.2). Also, 

the HDV stock 1 had similar HDV and HV VG concentrations compared to HDV 

stock 2. Noticeably, qPCR provided information on both the HDV and HV 

concentrations whereas HPLC gave an overall concentration value taking into 

account the two vectors. Based on the VG concentrations, the contamination by 

HV for the HDV stocks were -3-5% (Table 3.2). In comparison, the 

contamination by HV in terms of IU showed much lower values ranging from 

0.03% to 0.08% and was subject to a greater variability. The latter observation 

was due to the two-fold difference noted in the HV titers when comparing the 

HDV stocks, whereas the HV concentrations in VG were almost similar for both 

stocks. Importantly, the contamination by HV in term of IU was determined by 

two distinct infectivity assays, whereas the contamination by HV in terms of VG 

was assessed using the same assay (see Material and Methods section). 
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Table 3.2 Characteristics of viral stocks used in infection experiments 

Titers 

Concentration 
by q-PCR 

Concentration 
by HPLC 

Infectivity 

HV 
contamination 

Units 

IU of HDV/mL 

IU of HV/mL 

VG of HDV/mL 

VG of HV/mL 

TVG/mL 

TVP/mL 

UI/VG 

UI/TVP 

IU of HV/IU of HDV 

VG of HV/VG of 
HDV 

HDV stock 1 
[a] 

1.08 x108 

8.65 x104 

4.18x108 

1.28 x107 

4.31 x108 

3.51 x108 

(HDV) 25% 

(HDV) 31% 

0.08% 

3.06% 

HDV stock 2 
[a] 

1.09 x108 

3.71 x104 

3.10x108 

1.46 x107 

3.25 x10 s 

3.45 x10 s 

(HDV) 34% 

(HDV) 32% 

0.03% 

4.71% 

HV stock 

NA 

2.31 x109 

NA 

1.31 x1011 

NA 

1.36 x1011 

1.76% 

1.70% 

NA 

NA 

Notes : [a] HDV stock 1 and 2 are stocks generated in duplicated flasks as described in 

Materials and Methods. NA : non applicable 

The HDV yield of the two HDV stocks showed a similar high HDV titer -108 

lU/mL (Table 3. 2). A good infectivity ratio of -30% also characterized the 

stocks. Because of the low contamination by HV, the infection of the 

HEK293SF-FLPe cell line with the HDV stocks was not contributing to the 

overall MOI of HV. Therefore, in the infection experiments, the MOI of HV was 

estimated based on the addition of the HV stock only. 
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3.2.4.2 MOI Experiment 

HDV 

Figure 3.1 A and B presents the HDV titers relatively to the MOI of HDV and the 

MOI ratios, respectively. The HDV titers are distributed over a ~3 log range, from 

3 x 105 (MOI of HDV 0.1 & MOI of HV 10) to 2 x 108 UI/mL (MOI of HDV 5 & 

MOI of HV 0.5) as shown in Figure 3.1 A. Therefore, a substantial improvement 

could be obtained by simply adjusting the MOI of the two viruses. Also, for a 

specific MOI of HDV, the HDV titer was dependent on the MOI of HV. In the 

range of the MOIs evaluated, the maximum HDV titer was systematically 

obtained for a MOI of HV equal to 0.5, independently of the MOI HDV. When the 

MOI of HV was increased, the MOI of HDV also had to be increased to maintain 

or increase the HDV titer. This interdependence is more obvious in Figure 3.1 B 

where HDV titer is plotted against the MOI ratios. The HV titers for a MOI of HV 

equal to 0.1 were systematically lower when compared to the titers for HV at a 

MOI of 0.5. We hypothesized that under this condition, a limitation of cell 

infection with the HV does not sustain the production of HDV. For a MOI ratio of 

HDV over HV between 0.01 and 10, the larger the ratio was, the higher the HDV 

titer was. At high MOI of HDV and low MOI of HV (ratios -10-100), a decrease in 

HDV titers was noted. Above the limiting infection conditions for the HV 

(MOI>0.1) and below a MOI of HDV equal to 10, we observed a good correlation 

between the HDV titers and MOIs ratios. 
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Figure 3.1 HDV titer in IU of HDV/mL at 48 hpi. (A) HDV titer at various MOI of 

HDV and MOI of HV. (B) Correlation between HDV titer and MOI ratios 

The concentration of HDV versus the MOI of HDV and the MOI ratios are 

presented in Figure 3.2 A and B, respectively. The HDV concentrations were 

found to be proportional to the HDV titers, i.e no obvious dependence on the 

MOIs value was noted (data not shown). Therefore, as expected, the results in 
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term of HDV concentrations (Figure 3.2 A and B) led to the same observations 

as those previously made for the HDV titers (Figure 3.1 A and 3.1 B). 

1 2 
MOI HDV 

1x101 

1x109 I 
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-•-MOI HV0.1 ••-MOIHV2 
-*-MOIHV0.5-*-MOIHV5 
-*-MOIHV1 -0-MOIHV10 

B 

0.01 0.1 1 10 
MOI HDV / MOI HV 

100 

Figure 3.2 HDV concentration in VG of HDV/mL at 48 hpi. (A) HDV 

concentration at various MOI of HDV and HV. (B) Correlation between HDV 

concentration and MOI ratios 
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HV 

The HV concentration ranged over ~2 log from 4 x 106 to 1 x 108 VG/mL as 

shown in Figure 3.3 A. In contrast to the titer and concentration of HDV 

previously shown in Figures 3.1 B and 3.2 B, Figure 3.3 B highlights the 

independence of the HV concentration from the MOI ratios. However, a broader 

VG concentration distribution was noticeable for an MOI of HV equal to 0.1. 

Figure 3.3 C shows the dependence of the HV concentration from the sole 

parameter MOI of HV. Again, at a MOI of HV equal to 0.1, the HV concentration 

varied with the MOI of HDV, i.e the lower the MOI of HDV, the higher the HV 

concentration. 
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Figure 3.3 HV concentration in VG of HV/mL at 48 hpi. (A) HV concentration at 

various MOI of HDV and HV. (B) Correlation between HV concentration and 

MOI ratios. (C) Correlation between HV concentration and MOI of HV 
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Contamination by HV 

Considering that the contamination by HV represents HV concentration over 

HDV concentration, and that the former concentration depends on the MOI of 

HV whereas the latter concentration depends on the MOIs ratio, the 

contamination by HV is a complex function of second order term. The 

contamination by HV is reported in Figure 3.4. The level varied between -2% 

and 6000% (Figure 3.4 A). The contamination is dependent on the MOI of HV: at 

low MOI of HV, the level and contamination ranges are smaller (4 to 40%) than 

at high MOI of HV (68 to 6244%) (Figure 3.4 A). The MOI of HDV had an 

inverse effect on the contamination: the level and contamination ranges at low 

MOI of HDV were higher (21 to 6244%) than at high MOI of HDV (3 to 68%) 

(Figure 3.4 A). Summarizing, at high MOI ratios, the contamination was low and 

at low MOI ratios, the contamination was high (Figure 3.4 B). Moreover, for the 

highest HDV yield (MOI of HDV 5, MOI of HV 0.5, 2 x 108 lU/mL), the 

contamination was the lowest. For the lowest HDV yield (MOI of HDV 0.1, MOI 

of HV 10), the contamination was dramatically high. 
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3.2.4.3 ATOI Experiment 

Co-Infection Kinetics 

In Figure 3.5 A and B, ~1 log increase was observed for the HDV titer and 

concentration between 24 and 48 hpi. At the standard harvest time (48 hpi) 

(Meneses-Acosta et al. 2007) the HDV yield was 8 x 108 VG/mL (910 VG/cell) 

and 3 x 108 lU/mL (380 lU/cell). Between 48 and 96 hpi, HDV concentrations 

and titers were constant (Figure 3.5 A). Comparatively, the HV concentration 

was doubling from 2.3 x 107 VG/mL (23 VG/cell) at 24 hpi to 5.3 x 107 VG/mL 

(54 VG/cell) at 48 hpi (Figure 3.5 A). Constant volumetric and specific HV 

concentrations were noted after 48 hpi. 

The kinetics of HDV infectivity, contamination by HV and cell viability are shown 

in Figure 3.5 B. The level of contamination by HV decreased rapidly between 24 

and 48 hpi from 55 to 3% as a consequence of sudden rise in HDV 

concentration and slow rise in the HV concentration. Thereafter, the level of 

contamination remained -3-6% over time. The HDV infectivity was reduced 

between 24 hpi (50%) to 96 hpi (25%). Also the cell viability declined between 

24 to 96 hpi to reach -25%. 
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Figure 3.5 Viral kinetics of HDV and HV from 24 to 96 hpi. (A) HDV and HV 

amplification kinetics through titer and concentrations. (B) Cell viability, HDV 

infectivity and HV contamination evolution over time 

Delay in Infection 

The efficiency of the HDV infection measured by the relative level of GFP was 

assessed from the delayed infection time point (Figure 3.6 A). At 24 hpi, a 
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downshift in the level of GFP expression was noted with the differential time of 

infection ranging from 1.5 to 6 h. After 24 hpi, the level of GFP expression was 

above the level of the co-infected control. The cells infected with only HDV 

represented 25% of the GFP-positive co-infected control. Also the level of GFP 

expression represented only 12% of the control. However, at the time of 

maximum yield, i.e 48 hpi, the HDV titer was not enhanced by applying an 

infection delay (Figure 3.6 B). 
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Figure 3.6 Effect of delaying HV infection from 0 to 6 hpi on kinetics from 24 to 

96 hpi for (A) Relative total GFP expression. (B). Relative HDV titer 

3.2.5 Discussion 

Currently, HDV production by infection is highly empirical and thus, impossible 

to translate into a robust process for large-scale production following basic 

bioengineering principles. To overcome these drawbacks, we evaluated a 
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strategy of co-infection based on the MOI, a widely approved parameter to 

control infection processes. The MOI-strategy provides several important 

improvements to the technology of HDV production that should help to take plain 

advantage of the system in terms of HDV yield and contamination by HV. 

We first evaluated various assays to accurately characterize the HDV 

production. For low HV contaminated samples, a good correlation between TVP 

and TVG values has been obtained by correcting the TVP concentration for the 

difference in DNA size. The difference observed in the HV titers of the HDV 

stocks is attributable to the high variability of the CPE (Mittereder et al. 1996). 

Moreover, it is known that titers assessed by CPE are below titers determined 

by GTA assays (Mittereder et al. 1996). However, to assess accurately the 

contamination by HV as well as the HDV and the HV concentrations allowing a 

reliable comparison, these assays are not suitable. To remediate this 

shortcoming, a highly specific duplex qPCR assay has been developed. Using 

highly specific primer design, we implemented an affordable SYBR Green I 

qPCR technique suitable for routine analysis. As expected, the contamination by 

HV determined by qPCR showed less variability between the HDV stocks and 

was also higher than the contamination determined by infectivity assays. Taken 

together the HDV infectivity assay and the SYBR Green I qPCR assay constitute 

a set of appropriate assays for the routine characterization of the HDV 

production in terms of quantity (HDV titer and concentration, HV concentration) 

and quality (contamination by HV, HDV infectivity). Therefore, their use was 
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further extended to evaluate the results of the infection experiments. To produce 

HDV, the use of stocks in a lysate form has been shown to be as efficient as the 

use of HDV purified material. Not only is the preparation of lysates less time-

consuming, but also results in less waste of precious material (Meneses-Acosta 

et al. 2007). Moreover, the high HDV titers, the high infectivity and the low HV 

contamination of the HDV stocks ensure that the lysate will not affect the cell 

culture during production by substantial addition of cell-toxic material. 

The stoichiometry of the viral constituents, i.e the viral genome and the viral 

proteins, is a defined property of an adenoviral particle (Schenk 2001). In the 

case of production of HDV, the HDV components are provided by two viruses 

harboring distinct growth properties dictated by their respective constructions. 

Also, the HDV functions are complemented by the HV and the cell system. 

Consequently, the production of HDV consists of a highly complex cascade of 

events involving concomitant participation of the HDV, the HV and the cell 

system through complex kinetics. Previously, Park et al. (2004) and Schoofs et 

al. (1998) did not report any differences for the AdV yields of first generation 

when a MOI between 1 and 125 and between 5 and 100 was used, respectively. 

Here, the HDV yield has shown to be dependent on both the MOI of HDV and 

the MOI of HV on a small range of values. At the single cell level, both the HDV 

and the HV have to be present to form a new HDV particle. During early 

amplification steps for which the MOI of HDV<1, HDV produced at a too low 

level cannot be supplied to every individual cells. However, the HV which 
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provides all the necessary transcriptional elements (except E1 function) for the 

HDV production, is required in cells that already contain the HDV. Therefore, the 

synchronous infection of the cells with the HV is a prerequisite for efficient HDV 

production. This requirement is easy to meet considering that the HV quantity is 

not a limited factor compared to the HDV quantity. The synchronous infection of 

cells with the HV is thought to occur at a MOI of 0.5, considering that the 

maximum HDV titer and concentration was always obtained using this condition 

regardless of the MOI of HDV. The use of a higher MOI of HV was detrimental to 

the HDV yield and generated a higher HV concentration. For non-limiting HV 

infection conditions, the HV titer has been shown to be strictly dependent on the 

MOI of HV. This observation is not surprising considering that the HDV does not 

contribute to the formation of HV particles. However, we observed that under 

limiting HV infection conditions, the MOI of HDV had a direct impact on the HV 

titer. In Ng et al. (2002a), Sato et al. (2002), Ng et al. (2001) and Sandig et al. 

(2000), the authors have suggested that the difference in yields observed for the 

first generation AdV and the HDV resulted from a competition for replication and 

packaging factors between the two vectors. This competition largely favors the 

HV propagation because of its genome structure (Sandig et al. 2000). Here, at a 

low MOI of HV, the impact of HDV competition can be observed. Based on this 

observation, we believe that the relative amounts of input viruses balance the 

competition between HDV and HV for their respective amplification, even if this 

competition is mainly driven by the genome structures. At the optimal MOI of 
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HV, infecting with HDV at MOI>5 corresponded to a small decrease in the HDV 

yield. This result has also been observed by Ng et al. (2001) and Meneses-

Acosta et al. (2007). In the former study, a one-log decrease in the HDV titer 

was observed when MOI of HDV-100-200 were used in a volume-based 

protocol of infection. In the latter study, a small decrease in HDV titer was seen 

above a MOI of 5. Optimizing the MOI ratio to improve the HDV titer probably 

enhanced the relative amplification efficiency of the HDV by balancing the 

competitiveness between the two vectors. Finally, in non-limiting conditions for 

HV, we have shown that the HDV yield was optimized at a MOI ratio of 10. 

Comparatively, MOI ratio of 0.25 have shown to generate higher HDV yields 

than MOI ratio of 1 (Barjot et al. 2002). Major differences in the HV construction 

through the deletion of the E2B region could probably explain the lower MOI 

ratios compared to our optimal MOI ratio. The contamination by HV is highly 

dependent on the co-infection conditions. To our knowledge, this is the first 

article reporting that co-infection conditions are determinant of the contamination 

by HV. Ng et al. (2002a) pointed out the importance of the recombinase level in 

the efficiency of HV removal. Also, the regulation of recombinase expression 

has been shown to improve the HDV yield (Hartigan-O'Connor et al. 2002a). 

Interestingly, the higher HDV yield has been correlated to the lower 

contamination by HV. A MOI strategy of co-infection to control production by 

limiting the number of amplification passages is an approach that appears quite 

relevant, considering that less amplification passages diminishes the process 
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duration (Dormond et al., to be published) and the possibility of vector 

rearrangement in the system (Hardy et al. 1997; Hartigan-O'Connor et al. 

2002a; Sandig et al. 2000). At the rescue and the first amplification steps, the 

strategy of co-infection should focus on increasing the HDV yield by infecting the 

cell culture synchronously at the lowest MOI of HV. When the HDV titer is 

sufficiently high to perform a synchronous co-infection of cells, the HDV and the 

HV input should be controlled to avoid over-infection of cells with HDV. By co-

infecting with the optimal MOI, a high HDV yield and a low HV contamination are 

ensured while the waste of input viral material is limited. 

Usually during the amplification steps, HDV titer increases 10 to 100-fold per 

passage whereas during the amplification of the first generation AdV, titer 

increases more than 100-fold. We observed that the maximum rate of HDV 

propagation occurred between 24 to 48 hpi with more than a 10-fold increase in 

the HDV titer. Generally, the propagation rate of the first generation AdV peaks 

between 0 and 24 hpi with a 100-fold increase in titer. A 2- to 6-fold increase in 

titer is usually observed between 24 and 48 hpi (Altaras et al. 2005; Kamen and 

Henry 2004). The major differences in amplification efficiency mentioned 

previously are also time dependent. Downstream processing constraints should 

be taken into account when choosing the harvesting period (Altaras et al. 2005). 

Therefore, a good harvest time is based on a compromise between both high 

HDV titers and infectivity, good cell viability and low contamination by HV. At 48 

hpi, a maximum HDV titer with a minimal HV contamination was obtained. Cell 
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viability of 77% is high enough to recover the viral material in the cell fraction. 

Because the HDV has been shown to induce an in vivo toxicity associated to the 

capsid proteins (reviewed in Palmer and Ng 2005), a highly infective stock is 

desirable to limit the amount of non-active that remain toxic. The infectivity ratio 

at 48 hpi is sufficiently high that it will not compromise HDV infectivity. The HDV 

replication was previously identified to limit the HDV yield (Hartigan-O'Connor et 

al. 2002a; Sandig et al. 2000; Sato et al. 2002). Moreover, we think that the HDV 

amplification is delayed compared to the first generation AdV. The hypothesis 

behind the delay in the HV infection experiments was that HDV replication could 

be enhanced by providing the cellular machinery earlier with the HDV genome. 

The HDV pre-infection does not allow the onset of DNA replication which is 

known to start with expression of the E2 region (reviewed in Liu et al. 2003), the 

latter being provided by the HV. Indeed, the HDV pre-infection was carried out to 

prepare the HDV genome for replication. Therefore, a small time frame for the 

second infection was chosen (0 to 6 hpi) so as to limit compromising the 

cascade of viral events. Although the delay in the HV infection resulted in an 

increase of relative reporter gene expression, enhancement of the HDV yield 

was not achieved. Consequently, the optimal time for HV infection consists of 

infecting simultaneously the cells with the HDV and the HV. The co-infection 

situation is closer to the wild-type AdV infection: the viral promoters are still wild-

type and the viral cascade of events are probably best orchestrated when 

components are brought at the same time if not in the same construction. 
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A reliable bioprocess for HDV production was established by the identification of 

critical parameters allowing prediction of the overall production performances. 

Because of the ease for implementation in a scalable production environment, 

infection strategies involving the MOI and delay of infection were evaluated for 

the manipulation of stoichiometry of HDV components. For the first time, this 

article relates the concomitant importance of the MOI of HDV and HV for 

production of HDV lots of high quality. These findings support and define a 

rational infection strategy based on minimizing the amount of viral stock 

employed for infection, enhancing the HDV yield and limiting the contamination 

by HV. These results are relevant for the development of a robust large-scale 

process to support the evaluation of the HDV for the delivery of therapeutic 

genes in clinical protocols. 
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3.3 Resultats Complementaires 

3.3.1 Introduction 

Dans une cellule ou la presence du HDV et du HV est requise pour produire de 

nouvelles particules de HDV, les deux vecteurs sont en competition pour leur 

replication et leur encapsidation respective. L'efficacite d'amplification du HDV 

est faible comparee a l'efficacite d'amplification de I'AdV de premiere 

generation. Une strategie d'infection differee pour le HV a ete precedemment 

testee dans I'idee d'avantager I'amplification du HDV par rapport a celle du HV. 

Cette strategie n'a cependant pas permis d'ameliorer le titre de HDV a 48 hpi. 

La reponse cellulaire au choc thermique est un phenomene physiologique bien 

documents. Elle se caracterise par I'augmentation et la relocalisation des 

proteines de choc thermique (heat shock protein, hsp) dans la cellule hote suite 

a I'infection. Cette reponse a ete observee pour de nombreux vecteurs viraux 

comme I'AdV, le virus herpes simplex, le cytomegalovirus, le virus de la 

poliomyelite et le virus de la rubeole (Burch and Weller 2005; Chromy et al. 

2003; Glotzer et al. 2000; Haviv et al. 2001; Kao and Nevins 1983; Lopez et al. 

2006; Phillips et al. 1991; Santomenna and Colberg-Poley 1990; Vasconcelos et 

al. 1998). Glotzer et al. (2000) ont montre que la reponse cellulaire au choc 

thermique etait essentielle pour la replication de I'AdV CELO. Un AdV CELO 

incapable d'augmenter et de relocaliser certaines hsp retrouvait partiellement 
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ses fonctions replicatives si son note cellulaire subissait un choc thermique. 

Lopez et al. (2006) ont montre qu'un choc thermique facilitait la replication du 

rotavirus dans les cellules de rein de jeune hamster (Baby Hamster Kidney, 

BHK). Plus specifiquement pour I'AdV de type 5, certains auteurs ont decouvert 

que le produit du gene E1A induit la reponse cellulaire au choc thermique (Kao 

and Nevins 1983; Nevins 1982). De plus, les niveaux d'expression des produits 

de E1A sont relies aux niveaux d'expression des hsp (Imperiale et al. 1984). 

L'hypothese de travail est qu'un choc thermique augmente la reponse de choc 

thermique ce qui ameliore ('amplification de I'AdV de type 5 par une 

augmentation de la replication virale. L'objectif est de favoriser specifiquement 

('amplification du HDV par une strategie qui consiste a appliquer un choc 

thermique a la culture cellulaire avant d'infecter celle-ci en apposant un delai 

entre I'infection par le HDV et le HV. 

3.3.2 Materiels et Methodes 

Les cellules, milieu et conditions de culture sont identiques a celles decrites 

precedement au Chapitre 2, 2.2.3 Materials and Methods. L'experience de delai 

d'infection est celle decrite au Chapitre 3, 3.2.3 Materials and Methods. 

L'experience de choc thermique et delai d'infection est presentee au Tableau 

3.3. Apres inoculation, les flacons agites sont places pendant 30 min dans 

I'incubateur humidifie a 37°C, 5% CO2. Le choc thermique s'effectue pendant 1 
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h : les flacons, places sur une plaque rotative, sont submerges au-dessus du 

niveau liquide de la culture dans un bain-marie prechauffe a 41 °C ou 45°C pour 

assurer efficacement le transfert de chaleur. Les bouchons des flacons sont 

maintenus fermes pour eviter I'echange gazeux. Les flacons controles sont 

maintenus bouchons fermes dans I'incubateur a 37°C. Les flacons sont ensuite 

replaces dans I'incubateur a 37°C pendant 30 min avant de proceder a 

I'infection. Une partie des flacons est co-infectee avec le HDV et le HV a une 

MOI de 5 et 0.5, respectivement. L'autre partie des flacons est infectee 

successivement avec le HDV puis avec le HV 3 h apres, selon les memes MOI. 

L'echantillonnage des flacons a lieu a 24, 48, 72 et 96 hpi, relativement au 

moment de I'infection par le HV. Les comptes cellulaires, les analyses au 

cytometre en flux (GFP total) et la determination des titres infectieux a 48 hpi 

sont effectues tel que decrit precedemment au Chapitre 2, 2.2.3 Materials and 

Methods. 
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37°C 

41 <€ 

45 °C 

Tableau 3.3 Description des conditions experimentales pour le choc thermique 

et I'infection 

Temperature de Delai d'infection entre HDV et le Nombre de flacons 
choc thermique HV (ATOI) (n) 

Oh 4 
3h 4 
Oh 2 
3h 2 
Oh 2 
3h 2 

3.3.3 Resultats et Discussion 

La Figure 3.7 indique les densites et les viabilites cellulaires en fonction du 

temps. Les cultures ayant uniquement subit un delai entre I'infection du HDV et 

du HV voient leur densite cellulaire augmenter apres infection et ce, d'autant 

plus lorsque le delai d'infection est grand (Figure 3.7). L'infection du HV induit 

I'arret du metabolisme cellulaire par I'expression de la region E2 (revue dans Liu 

et al. 2003). L'application d'un delai retarde done I'arret du metabolisme 

cellulaire et permet a la culture de continuer a croitre apres I'infection par le 

HDV. Les viabilites cellulaires sont cependant relativement comparables dans le 

temps. 
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Figure 3.7 Cinetique de viabilite et de densite cellulaire. Les cultures sont 

maintenues a 37°C et I'infection du HV a lieu avec ou sans delai (ATOI = 0 h, 

1.5 h, 3h ,4 .5h, 6h) (n = 2) 



169 

Afin de limiter le nombre de flacons, un delai de 3 h est choisit dans I'experience 

de choc thermique et correspond au delai moyen utilise au Chapitre 3, 3.2 

Identification of critical infection parameters to control helper-dependent 

adenoviral vector production using qPCR. Pour les cultures ayant subit un choc 

thermique a 41 °C et ayant ete infectees par le HV avec un delai de 3 h (Figure 

3.8), la densite cellulaire est plus elevee que pour le traitement sans delai 

d'infection. Cependant, le traitement thermique a 45°C est nefaste pour les 

cultures: d'une part la densite cellulaire dans le temps est egale ou inferieure a 

la densite cellulaire d'inoculation et d'autre part, a 24 hpi la viabilite cellulaire est 

basse comparee au traitement thermique a 41 °C. A partir de 48 hpi, les 

viabilites cellulaires sont relativement comparables indiquant la capacite de 

recuperation de la cellule apres ce choc thermique. 
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Figure 3.8 Cinetique de viabilite et de densite cellulaire. Les cultures ont subit 

un choc thermique (41 °C et 45°C) avec ou sans delai d'infection du HV (ATOI = 

0 h ou 3 h) (n = 2). Les cultures controles sont maintenues a 37°C et I'infection 

du HV a lieu avec ou sans delai (0 h ou 3 h) (n = 4) 
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L'expression de la GFP n'est certes pas correlee a la production de HDV. Elle 

est cependant reportee afin d'obtenir d'avantage d'information (Figure 3.9). Les 

niveaux d'expression sont similaires a 48, 72 et 96 hpi pour les cultures traitees 

a 41 °C et les cultures controles. Les niveaux d'expression sont bas pour les 

cultures traitees a 45°C, suggerant a nouveau I'effet nefaste d'un traitement 

thermique a cette temperature sur la culture cellulaire. 

150 -, 
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D. 

LJ-

50 

0 ^ -, — , - - -
0 24 48 72 96 

temps (hpi) 

Figure 3.9 Cinetique d'expression de la GFP. Les cultures ont subit un choc 

thermique (41 °C et 45°C) avec ou sans delai d'infection du HV (ATOI = 0 h ou 3 

h) (n = 2). Les cultures controles sont maintenues a 37°C et I'infection du HV a 

lieu avec ou sans delai (ATOI = 0 h ou 3 h) (n = 4) 

L'analyse de la production volumetrique et specifique indique que le traitement 

thermique couple au delai d'infection ne permet pas d'ameliorer ['amplification 
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du HDV a 48 hpi (Figure 3.10). Les resultats concernant le delai d'infection 

corroborent les resultats obtenus antecedemment au Chapitre 3, 3.2 

Identification of Critical Infection Parameters to Control Helper-Dependent 

Adenoviral Vector Production using QPCR. Ceux-ci montraient que I'application 

d'un delai d'infection n'ameliore pas ('amplification du HDV. De meme, 

I'amplification du HDV ne peut etre amelioree par I'application d'un choc 

thermique. Probablement, la reponse de choc thermique induite par la region 

E1A presente dans le genome de la cellule HEK293 n'est pas un facteur limitant 

pour la replication virale. Eventuellement, I'amplification du HDV dans des 

cellules non-permissives caracterisees par I'absence de la region E1 (exemple : 

lignee cellulaire A549) pourrait etre efficace si le choc thermique permet 

d'induire I'expression des genes viraux precoces. Cette avenue, qui presenterait 

I'avantage d'eviter la generation de RCA reste cependant a evaluer. 

Les analyses des experiences (analyse de I'efficacite de replication virale par 

qPCR, analyse des niveaux d'expression des hsp40 et hsp70) n'a pas ete 

realisee puisque I'objectif a atteindre n'a pas ete rencontre. 
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Figure 3.10 Titres infectieux volumetriques et specifiques de HDV a 48 hpi. Les 

cultures ont subit un choc thermique (41 °C et 45°C) avec ou sans delai 

d'infection du HV (ATOI = 0 h ou 3 h) (n = 2). Les cultures controles sont 

maintenues a 37 °C et I'infection du HV a lieu avec ou sans delai (ATOI = 0 h ou 

3 h) (n = 4) 
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3.3.4 Conclusion 

L'amplification du HDV est restreinte par la competition pour les facteurs de 

replication provenant de la necessite de supplementer la production par le HV 

(Ng et al. 2001; Ng et al. 2002a; Sandig et al. 2000; Sato et al. 2002). Dans 

cette courte etude, I'application d'un choc thermique suivit d'un delai d'infection 

entre les deux vecteurs n'a pas permis d'ameliorer la production du HDV. La 

methode de co-infection a 37 °C par le controle de la MOI et du ratio des deux 

vecteurs reste done actuellement le meilleur moyen d'optimiser la production du 

HDV. 
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CHAPITRE 4: PRODUCTION ET PURIFICATION DU VECTEUR 

ADENOVIRAL DEPENDANT DUN VIRUS AUXILIAIRE : COMPARAISON 

ENTRE LES LIGNEES PARENTALE ET RECOMBINASE HEK293 

4.1 Presentation de ('Article 

La purification du HDV et la diminution de la contamination par le HV est 

preferable avant I'utilisation in vivo du HDV. Les methodologies 

conventionnelles utilisant un gradient de densite de chlorure de cesium sont 

couramment employees pour a la fois purifier les preparations virales des 

impuretes provenant de la culture et separer les vecteurs sur la base de leur 

infime difference de densite. Plusieurs etapes d'ultracentrifugation pendant de 

longues heures sont necessaires. Les rendements sont generlement tres 

faibles. 

L'article ci-dessous reporte ('elaboration d'un procede de purification pour le 

HDV et constitue la deuxieme partie de ce chapitre. Cet article intitule An 

Efficient Process for the Purification of Helper-Dependent Adenoviral Vector and 

Removal of Helper Virus by lodixanol Ultracentrifugation a ete soumis a la revue 

Analytical Biochemistry. Un procede de purification complet utilisant Des 

methodes de chromatographies couplees a une methode d'ultracentrifugation 

par gradient de densite d'iodixanol est presente. Ce procede documente pour la 

premiere fois la purification et la separation des particules infectieuses de HDV 
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de I'ensemble des contaminants incluant les particules non-infectieuses et les 

particules de HV. Bien que restreint dans la capacite de mise a I'echelle par 

I'utilisation d'une methode d'ultracentrifugation, ce procede se revele efficace et 

rapide. D'excellents taux de recouvrement sont obtenus. 

4.2 An Efficient Process for the Purification of Helper-Dependent 

Adenoviral Vector and Removal of Helper Virus by lodixanol 

Ultracentrifugation 

Edwige Dormond1'2, Alice Bernier1, Parminder Chahal1, Michel Perrier2 and 

Amine Kamen1 

1Animal Cell Technology Group, Biotechnology Research Institute, National 

Research Council Canada, 6100 Royalmount Avenue, Montreal, Quebec, 

Canada H4P 2R2 

2Chemical Engineering Department, Ecole Polytechnique de Montreal, Campus 

de I'Universite de Montreal, 2500, chemin de Polytechnique, Montreal, Quebec, 

Canada, H3T1J4 

Keywords: Helper-dependent adenoviral vector; Purification; lodixanol, 

Ultracentrifugation; Chromatography. 
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4.2.1 Abstract 

The preparation of large amount of purified helper-dependent adenoviral vector 

(HDV) material is hampered by the lack of development of downstream 

processes with proven records on separation and recovery efficiencies. In order 

to facilitate the use of clinical-grade HDV material for large-scale in vivo studies, 

we developed a three-step purification scheme consisting of (1) an anion 

exchange chromatography, (2) an iodixanol density ultracentrifugation and (3) a 

size exclusion chromatography. The novel and fast iodixanol density 

ultracentrifugation step was highly effective in separating infectious HDV from 

contaminating helper virus (HV) and non-infectious viral vectors. The overall 

downstream processing scheme gave up to 75% infectious particle yield with 

about 100 % infectivity. Moreover, the contamination by HV was reduced by a 

factor of 7 and a high level of purity was achieved. 

4.2.2 Introduction 

Adenoviral vector (AdV) of third generation also known as helper-dependent 

adenoviral vector (HDV) are attracting number of investigators for gene therapy 

delivery (reviewed in Brunetti-Pierri and Ng 2008). The production of HDV has 

been proven to be amenable to large-scale volume with reduced process 

duration and optimized infection conditions (Meneses-Acosta et al. 2007). 

However, the efficient downstream processing of HDV has not been yet reported 
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with proven records on material purity and recovery. Obtaining high quality-

grade HDV in sufficient amount is a critical task that hampers the 

characterization of this vector in pre-clinical studies. 

Large-scale downstream processing of first generation AdV is well established 

(reviewed in Burova and loffe 2005); however the purification of HDV suffers 

from separation difficulties arising from the production methods. The HDV is 

produced in human embyo kidney 293 (HEK293)-derived cell line and requires 

the help of a first generation AdV called helper vector (HV) to provide all the 

HDV viral missing functions. In order to limit the concomitant production of HV, a 

recombinase-expressing HEK293 cell line is usually used (Alba et al. 2007; Ng 

et al. 2001; Parks et al. 1996; Umana et al. 2001). Recombinase recognition 

sites are placed besides the HV packaging signal, rendering the latter non-

packageable following recombinase action. However, such a virus-cell system is 

not fully efficient and the HV arises as a contaminant during HDV production. 

Although the capacity to limit the HV contamination is diminished by the AdV-

mediated host cell shutoff (Ng et al. 2002a), the HV contamination could also be 

leveled by modulating the infection parameters during production (Dormond et 

al., to be published) or by improving the recombinase expression level 

(Hartigan-O'Connor et al. 2002a; Ng et al. 2001). Using our HEK293SF-FLPe 

cell system under the best infection conditions, the HV contamination is - 2 % 

HV/HDV (Dormond et al., to be published). Another group reports 0.4 to 0.1% 

HV/HDV contamination on semi-purified HDV with their improved cell line 
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(Palmer and Ng 2003). Nevertheless, further reduction of the HV contamination 

is often desirable (Palmer and Ng 2005). 

Because of same capsid characteristics, the only technique allowing separation 

of HV from HDV rely on the minimal density difference between the viruses. 

Separation is claimed to be achieved with time-consuming ultracentrifugation 

run using CsCI density medium (Hartigan-O'Connor et al. 2002b; Ng et al. 2001; 

Ng et al. 2002b; Oka and Chan 2005). However, reports do not provide 

information regarding proof of separation and recovery yield. CsCI medium has 

slow sedimentation rates and therefore requires long separation run. Moreover, 

because it is hyperosmotic and cytotoxic at the density used to band the virus, 

the viral recoveries are low and a medium exchange by dialysis should be 

performed before in vivo injection, lodixanol, an iodinated compound was 

originally used as a nontoxic X-ray contrast medium (Nossen et al. 1990; 

Svaland et al. 1992). The use of iodixanol for viral vector separation has largely 

proven to solve the aforementioned limitations encountered with CsCI 

(Dettenhofer and Yu 1999; Gias et al. 2008; Nielsen et al. 2006; Peng et al. 

2006; Segura et al. 2006; Zolotukhin et al. 1999). 

In this work, an overall purification scheme is described and documented. We 

combined a well-established large-scale downstream processing strategy with 

an improved iodixanol ultracentrifugation procedure designed to rapidly separate 
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components harboring low density differences. This high yield purification 

scheme resulted in the generation of highly purified HDV material. 

4.2.3 Materials and Methods 

4.2.3.1 Adenoviral Vectors, Cell Lines, Viral Stocks Production 

The HDV is a kind gift from Dr. V. Sandig. This 30 kb vector carries a CMV-GFP 

expression cassette. The HV is a E1/E3 deleted adenoviral vector kindly 

provided by Dr. P. Lowenstein and described elsewhere (Umana et al. 2001). 

This 36 kb vector carries a CMV-luciferase expression cassette. 

The HEK293SF-derived cell lines (Cote et al. 1997) were used to amplify the 

HDV and HV. The HV infecting stock was produced by the original HEK293SF-

3F6 cell line cultivated in a 3 L controlled bioreactor in NSFM13 medium 

(Nadeau et al. 2002). Cells seeded at 0.3 x 106 cells/mL were infected with HV 

after 24 h at a multiplicity of infection (MOI) of 10. Cells were harvested at 48 h 

post-infection (hpi), centrifuged at 290 x g for 15 min and concentrated 20 times 

in the spent medium. This raw lysate containing HV was further employed for 

the HDV production. 

The HDV infecting stock was produced in a 3 L bioreactor following HDV rescue 

and amplification in the HEK293SF-FLPe cell line (Meneses-Acosta et al. 2007). 
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The HDV purification stocks were prepared by infecting the HEK293SF and 

HEK293SF-FI_Pe cell lines cultivated in two separate 3 L bioreactors. Cell lines 

cultivated in HSFM (Gibco Invitrogen, Grand Island, NY) supplemented with 10 

mM HEPES, 0.1% Pluronic F-68 (Sigma), 1% BCS and 0.75 ng/mL puromycin 

(HEK293SF-FLPe only) (Durocher et al. 2002) were seeded at 0.25 x 106 

cells/mL Infection was carried out after 24 h with HDV (MOI of 5) and HV (MOI 

of 0.5) without medium exchange. 

4.2.3.2 Purification Process 

Figure 4.1 shows the downstream processing scheme. This scheme involves 

release of virus particles prior to the purification steps. The virus is then 

captured on anion-exchange chromatography, HV contaminants are isolated 

and final buffer exchange and other small molecule contaminants are removed 

by size exclusion chromatography. AdV were captured by anion-exchange 

(AEX) chromatography. HDV were separated from HV in a 38.6% self-forming 

iodixanol ultracentrifugation run at 180,000 x gav for 3 h. AdV were further 

purified by size-exclusion chromatography (SEC) allowing also iodixanol 

removal. Two independent purification runs were performed. They correspond to 

the purification of material coming from viral productions using HEK293SF cell 

line (SF run) and HEK293SF-FLP cell line (FLP run). Major difference of those 

productions concerns the level of the HV contamination (see Results and 

Discussion). 
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VIRAL VECTORS RELEASE 
(CONCENTRATION, CELL LYSIS, DNA CLEARANCE 

& MICROf ORATION) 

1 ' 

VIRAL VECTORS CAPTURE 
(ANION EXCHANGE CHROMATOGRAPHY-AEX) 

' ' 

HV REMOVAL 
(IODIXANOL DENSITY GRADIENT ULTRACENTRIFUGATION) 

1 
f 

POLISHING & BUFFER EXCHANGE 
(SIZE EXCLUSION CHROMATOGRAPHY-SEC) 

Figure 4.1 Dowstream processing strategy. From the 1x cell lysate, AdV were 

released by low speed centrifugation concentration, by cells lysis using 

freeze/thaw cycle in lysis buffer, DNA clearing using Benzonase®, 300 mM NaCI 

conditioning and by centrifugation and 0.45 |im microfiltration clarification 

Cell Concentration, Cell Lysis, DNA Clearance and Microfiltration 

Cells were harvested at 48 hpi, centrifuged for 15 min at 290 x g and 

resuspended in lysis buffer containing 10 mM HEPES, 2 mM MgCI2 pH 7.5 in 

one-tenth of their culture volume. The 10x cell lysates were aliquoted and stored 

at -80°C until further use. The 10x cell lysates were thawed at 37°C and 

homogenized by pipette triturating. Benzonase® (Merck KGaA, Darmstadt, 

Germany) was added at a concentration of 100 units/mL to digest the 
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contaminating nucleic acids. The lysates were incubated at room temperature 

for 1 h with gentle shaking and centrifuged at 4700 x g for 10 min. Concentrated 

NaCI solution was added dropwise to the supernatants to obtain a final 

concentration of 300 mM NaCI. The conditioned supernatants were filtered using 

a 0.45 |im cellulose acetate membrane in a vacuum filtration unit with a glass 

fiber pre-filter (Corning Life Sciences, Lowell, MA). 

Anion-Exchange (AEX) Chromatography 

The AEX chromatography was used to selectively capture the AdV and remove 

the majority of protein contaminants (Figure 4.1). The AEX purification was 

performed at room temperature using the low-pressure GradiFrac system 

(Amersham Biosciences, Uppsala, Sweden) with UV elution monitoring at 280 

nm and linear flow rate of 2 mL/min. The mobile phase was made by mixing 

Buffer A (50 mM HEPES, 2 mM MgCI2, 2% sucrose pH 7.5) and Buffer B (50 

mM HEPES, 2 mM MgCI2, 2% sucrose, 1 M NaCI pH 7.5) as required. The 

Fractogel ® DEAE beads (Merck KGaA) were packed in HR 5/5 glass column 

(Amersham Bioscences) with a 3.6 mL bead volume and equilibrated with 30% 

of Buffer B. The clarified-conditioned supernatants were loaded onto the column. 

The loaded material was washed with 30% Buffer B until a base line was 

obtained. The elution was carried out by a step gradient formed with 45% of 

Buffer B in 7 column volumes (CV). All unbound proteins were removed by 1 M 

NaCI. After each run, the column was cleaned with 0.5 M NaOH and 1 M NaCI 



193 

solution at 1 mL/min for 1 h, rinsed with 10 CV of water at 2mL/min and stored in 

20% ethanol and 150 mM NaCI solution. The collected AEX-AdV peaks were 

processed immediately by iodixanol gradient ultracentrifugation step. 

lodixanol Gradient Ultracentrifugation 

The AEX-AdV peaks were subjected to iodixanol gradient ultracentrifugation to 

isolate HDV from HV (Figure 4.1). OptiPrep iodixanol 60% stock solution (Axis-

Shield, Oslo, Norway) was diluted in 10 mM Tris-HCI, 150 mM NaCI, 1 mM 

EDTA pH 7.9. The self-forming gradients were made in 13.5 ml_ PA Ultracrimp 

tube (Thermo Scientific, Milford, MA) with final 38.7% iodixanol solution 

containing AEX-AdV peak materials. The ultracentrifugation was carried out in a 

Sorvall discovery ultracentrifuge (Thermo Scientific) using a Stepsaver 50V39 

vertical rotor and running at 180,000 x g for 3 h at 4°C. A total of six tubes per 

run were processed and 16 fractions per tube were collected by puncturing at 

the bottom. The refractive index was measured for each fraction and correlated 

to the iodixanol content (% w/v) and density (g/mL) using OptiPrep Table 

(http://www.axis-shield-density-gradient-media.com/Applic/V01.pdf). Fractions 

were immediately analyzed and kept overnight at 4°C. The HDV iodixanol-

containing fractions were pooled, sampled and subjected to size exclusion 

chromatography the following day. 

http://www.axis-shield-density-gradient-media.com/Applic/V01.pdf
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Size Exclusion Chromatography (SEC) 

SEC was used to remove iodixanol and remaining protein contaminants (Figure 

4.1). The SEC step was carried with a Sepharose 4FF resin (Amersham 

Bioscences, Pistacaway, NJ) packed in a XK 16/70 glass column with a bead 

volume of 29 ml_. The SEC step was performed at room temperature using the 

low-pressure GradiFrac system (GE Healthcare, Uppsala, Sweden) with elution 

monitoring at 280 nm and linear flow rate of 2 mL/min for load and 3 mL/min for 

elution. The mobile phase was 10 mM Tris-HCI, 150 mM NaCI, 1 mM EDTA, 2% 

sucrose pH 7.9. A maximum of 15% of the CV was loaded. The SEC-AdV peaks 

were collected, pooled, aliquoted and stored at -80°C or were analyzed 

immediately. 

4.2.3.3 Viral Quantification 

Total Viral Particle Concentration 

The total viral particle (TVP) concentrations were determined using AEX high 

performance liquid chromatography (HPLC) coupled to UV detection 

spectroscopy (Klyushnichenko et al. 2001). The cell lysates (thawed if stored at 

-80 °C) were centrifuged at 4,500 x g for 2 min. The supernatants were filtered 

through a 0.45 |im GHP membrane syringe filter before injection. To prevent 

interference during UV detection, the iodixanol-containing fractions were loaded 
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in an enhanced time to completely elute iodixanol before the virus elution step. 

The TVP concentration was corrected for the difference in vector size and 

amount of vectors between the wild type AdV (36 kb) used to make the standard 

curve, the HDV (30 kb) and the HV (36 kb) using the VG ratio (HDV to 

HDV+HV) (determined following the formula described below). 

i_ir«# w/~ *• HDV VG concentration 
HDV VG ratio=-(HDV VG concentration + HV VG concentration) 

x -^wr. xx- TVP concentration 
corrected TVP concentration = wild type AdV DNA size 

x (HDV VG ratio x HDV DNA size + (1 - VG ratio of HDV) x HV DNA size) 

HDV and HV Viral Genome Concentration, HV Contamination Ratio 

The viral genomes (VG) concentration of HDV and HV were determined by a 

highly specific and duplex SYBR-Greenl quantitative PCR assay (qPCR) against 

HDV and HV sequences. Details of qPCR run are available upon request. The 

HV contamination ratio is calculated by dividing the HV over the HDV 

concentration. 

infectious HDV Concentration 

The HDV carries the GFP reporter gene allowing the quantification of infectious 

particles using target cells and flow cytometry analysis. For this purpose, the 
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HEK293E cells cultivated in suspension were seeded at 0.5 x 106 cells/mL in 12 

well plates with HSFM medium, 10 mM HEPES, 1% BCS, 50 ng/mL G-418 

(Durocher et al. 2002). Dilution of unknown (100 |iL) was applied on cells. At 24 

hpi, cells were counted and resuspended in 2% p-formaldehyde in PBS. After 1 

h of fixation at 4°C, at least 10,000 events were analyzed using the Coulter 

EPICS™ XL-MCL cytometer and EXP032 software to determine the percentage 

of GFP-positive cells and the mean GFP fluorescence. A minimum of two 

dilutions showing 3 to 30% GFP-positive cells were taken into account for the 

titer calculation as previously described (Cote et al. 1997). Values are reported 

in infectious units (IU). 

4.2.3.4 GFP and Luciferase Quantification 

In order to select the iodixanol fractions of interest, all fractions were tested for 

the relative presence of HDV and HV. HDV expresses the GFP reporter gene 

whereas HV expresses the luciferase reporter gene in target cells. A 1:1,000 

dilution of iodixanol-containing fractions was used to infect HEK293 6E cells 

cultivated as described in the Infectious HDV particles concentration section. At 

20 h post-infection, one half volume of the cell culture was analyzed for the ratio 

of GFP-positive cells while the other half was analyzed for luciferase (HV 

reporter gene) expression. The ratio of GFP-positive cells was determined as 

described in the Infectious HDV particles concentration section. The level of 

luciferase was assessed by the Luminoskan Ascent (Thermo Scientific) using 



197 

the Luciferase Assay System (Promega, Madison, Wl). The relative level of 

luciferase expression was calculated by dividing the luciferase expression level 

in the fraction to the maximum observed level for all fractions. 

4.2.3.5 Protein Analysis 

Total protein concentration was determined by the Bradford Protein Assay (Bio-

Rad, Hercules, CA) using BSA as a standard. Electrophoresis samples were 

diluted 2:1 in sample buffer containing 50 mM DTT, heated 5 min in boiling 

water and centrifuged 2 min at 16,000 x g. Samples were loaded on 4-20% SDS 

Tris-HCI Ready Gels (Bio-Rad) and run with the Mini Protean II system (Bio-

Rad). A molecular weight marker (broad molecular weight standard for SDS-

PAGE, GE Healthcare; pre-stained low molecular weight standard for Western 

Blot, Bio-Rad) and the ARM standard (ATCC VR-1516) were applied to each 

gel. Protein bands were visualized by silver staining (Silver Staining Plus, Bio-

Rad). Western transfer was carried out on a Hybond ECL nitrocellulose 

membrane (Amersham Biosciences) using a Tran-Blot SD semidry transfer cell 

(Bio-Rad). The primary antibody against adenovirus type 5 (rabbit polyclonal 

anti-AdV type 5 antibody, Access Biomedicals, San Diego, CA) (dilution 1/5,000) 

was incubated overnight. Proteins were visualized following the secondary 

antibody coupling (protein A HRP conjugated, Bio-Rad) (dilution 1/3,000) and 

revelation was done using the BM Chemiluminescence Blotting Substrate 

(Roche Diagnostics, Indianapolis, IN). 
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4.2.4 Results and Discussion 

4.2.4.1 Purification by AEX Chromatography 

Mediated by the strong ion exchange properties of the hexon protein, the AEX 

chromatography is the most suitable purification step of all scalable downstream 

processing strategies for AdV (Altaras et al. 2005). From the variety of resins 

that have been tested for now, Fractogel® DEAE has been widely approved and 

was used in our laboratory to purify up to 20 L of AdV-containing suspension cell 

culture (Arcand et al. 2003; Kamen and Henry 2004). 

The knowledge of the elution profile of AdV for this resin allowed us to directly 

apply a NaCI step gradient to ensure a high separation efficiency between viral 

particles and protein contaminants with a reduce process time and an increased 

concentration factor (Arcand et al. 2003). Following viral load at 300 mM NaCI, 

the column was washed with 300 mM NaCI and the AEX-AdV peak was eluted 

at 450 mM NaCI step change. The column was further washed with 1 M NaCI to 

remove the rest of the bound material (Figure 4.2). 
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Figure 4.2 AEX chromatography profile. Conditionned-clarified lysates (43.3 

and 97.6 ml_ containing 1.72 x 1012 TVP and 1.19 x 1012 TVP for SF and FLP 

runs, respectively) were loaded on a 3.6 mL-DEAE Fractogel column. Viral load 

was carried out at 300 mM NaCI, and column wash at 1 M NaCI. AdV-AEX 

peaks were eluted using a 450 mM NaCI step gradient (22.4 and 22.7 ml_ 

containing 1.01 x 1012 TVP and 1.03 x 1012 TVP, for SF and FLP runs, 

respectively) 

The targeted product was the infectious HDV for the whole purification scheme, 

therefore same amount of IU of HDV for both stocks determined the volume to 

be processed. The initial clarification-conditioning procedure consisting of cell 

concentration and lysis, Benzonase® treatment, NaCI conditioning, 

centrifugation and microfiltration were highly efficient to prepare the load for an 
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AEX as suggested by the high recovery yields in TVP (116 and 109% for SF and 

FLP runs, respectively). The AEX column was loaded at 35 to 50% of its 

maximum TVP capacity which permitted to obtain high infectious recovery yields 

of about 80% for both stocks (Table 4.1). The AEX chromatography step was an 

excellent mean for concentrating the virus by a factor 18 to 40. The recovery 

yields were in accordance with previous results mostly obtained for first 

generation AdV (reviewed in Burova and loffe 2005). Blanche et al. (2000) 

reported a 50% overall recovery in TVP for the purification of HDV using AEX 

chromatography followed by SEC and ultrafiltration. 
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The examination of viral purity by SDS-PAGE profile indicated that the 

clarification-conditioning procedure was not modifying the protein content (lane 1 

to 4, Figure 4.3). The comparison of the electrophoretic profiles of lane 3 to 4 

showed that most of the protein contaminants passed through the column. The 

SDS profile for AEX-AdV peak displayed a high content of high molecular weight 

proteins (lane 5), whereas the low proteins were found in the 1 M NaCI wash 

fraction (lane 6). A high purification factor and a high recovery yield of TVP were 

therefore achieved with the AEX chromatographic procedure. 
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Figure 4.3 Electrophoretic analysis of the overall downstream processing 

scheme on 4-20% SDS-PAGE. (A) Silver-stained SDS-PAGE. (B) Western blot 

of SDS-PAGE revealing adenoviral proteins. 

Lane 1: 1x cell lysate ; lane 2: 10x cell lysate ; lane 3: conditioned-clarified 

lysate ; lane 4: AEX flowthrough ; lane 5: AEX-AdV peak ; lane 6: AEX wash ; 

lane 7: HDV-iodixanol pooled fractions ; lane 8: SEC-AdV peak. Molecular 

weight marker (MW) and AdV type 5 standard (Std) were loaded at the gel 

extremities. Protein loaded: 500 ng/lane; lane 8 loaded undiluted (40 ng). 

Separation of Viruses by Self-Forming lodixanol Gradient 
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Separation by ultracentrifugation is difficult when components have a small 

difference in their densities. Ultracentrifugation runs were performed in 

screening experiments using swinging bucket rotor (SW28 Beckman rotor, 

sedimentation path length (SPL) 85.7 mm) with step or continuous gradient or 

using fixed angle rotor (70 Ti Beckman, SPL 52.4 mm) with self-forming gradient 

(data not shown). Using these rotor types, separation of HV and HDV was never 

achieved; the two viruses usually settled in the same fraction. The large SPL of 

swinging bucket rotors and fixed angle rotors with large volume tubes generated 

steep gradients from the top to the bottom of the tube. In these gradients, the 

density difference between fractions was too high to allow a good separation 

between HDV and HV. Thus, in order to decrease the SPL, samples were run in 

a small volume vertical angle rotor as suggested in Ford et al. (1994) (Sorvall 

Stepsaver 50V39 vertical rotor, SPL 16 mm). The purpose of this part was to 

highlight the reliability and reproducibility of the iodixanol run with no regard to 

the HDV stock characteristics. The use of two viral stocks with highly different 

HV contamination levels was thought to provide the reader with some limitation 

aspect concerning the use of density gradient separation. 

The gradients profiles observed in Figure 4.4 are sigmoidal, steep at both ends 

and shallow at the middle. Iodixanol content in fractions were 66% to 18% 

corresponding to 1.35 to 1.09 g/mL, respectively. The shallow part of the 

gradient (fractions 4 to 13) contained from 43.5 to 37.6% of iodixanol 

corresponding to density of 1.23 to 1.20 g/mL, respectively. The fractions of 
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interest were found at the same fraction number for both runs and the range of 

iodixanol content/densities were similar (Table 4.2). The HV banded at 40.8% or 

1.22 g/mL iodixanol and the HDV banded at 38.7% or 1.21 g/mL iodixanol. 

Although HDV and HV settled at an infinitely small difference in densities (2.1% 

iodixanol or 0.01 g/mL in iodixanol medium), the fractions expected to contain a 

maximum of HV and HDV were distant by at least two fractions allowing a good 

separation of the HDV and the HV. The data indicated that the separation 

method was giving a high reproducibility. 

Figure 4.4 Iodixanol gradient profile at the end of the ultracentrifugation runs 

for SF run (A) and FLP run (B). For both runs, 16 fractions representing 0.5 cm 

of tube height were collected and characterized. Levels of relative luciferase unit 

(RLU) and % of GFP+ in target cells were assessed to separate the infectious 

HDV containing-fraction (9-12) from the infectious HV-containing fractions (6-8). 

Iodixanol content of individual fractions was determined by refractive index 

measurement and TVP concentration was assessed by HPLC as described in 

Material and Methods 
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Table 4.2 Characteristics of the self-formed iodixanol density gradients 

obtained following 3 h run at 180,000 x gav 

SF FLP 

Fraction number 6-8 6-8 

HV Iodixanol content (% w/v) 41.2-39.3 41.6-40.3 

Density (g/mL) 1.222-1.215 1.224-1.217 

Fraction number 9-12 9-12 

HDV Iodixanol content (% w/v) 39.3-37.6 39.4-37.6 

Density (g/mL) 1.212-1.203 1.212-1.203 

The profile of TVP concentrations assessed for all fractions showed three peaks 

for the SF and two peaks for the FLP run. The first peak only visible for the SF 

run (between fractions 5 to 9) coincided with the luciferase peak and therefore 

corresponded to the HV TVP particles (Figure 4.4 A). This peak was observed in 

the FLP run for which HV production had been hindered by the recombinase 

action (Figure 4.4 B). The peak appearing between fractions 9 and 13 overlaid 

the GFP-positive target cells peak, identified the location of the infectious HDV. 

The third peak occurring after fraction 13 did not coincide with any other peak 

therefore could be linked to the location of the non-infectious HDV (Figure 4.4 A 

and 4.4 B). When comparing the SF and the FLP iodixanol profiles, although 

similar level of GFP-positive cells were noted, the absolute level for luciferase 

expression was greatly higher for the SF run for all fractions (data not shown). 
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This indicated that the HDV fraction of interest was still highly contaminated with 

HV compared to FLP run. 

A high cumulative IU yield was obtained for both stocks from these four fractions 

(82% and 80% for SF and FLP runs, respectively). It corresponded to a 

substantial loss of TVP for the SF run which had shown to be initially highly 

contaminated with the HV (Table 4.1). The absolute value of the infectivity ratio 

should be carefully interpreted considering that the quantification methods for IU 

and TVP differ. Nevertheless, the run permitted to greatly enhance the infectivity 

ratio of HDV from 28 and 50% (for AEX-AdV peak) to 92 and 101% (HDV 

iodixanol pooled fractions) for SF and FLP runs, respectively. The iodixanol 

separation step reduced the HV contamination by a factor of 7. An enhancement 

of HV separation is not possible by a longer ultracentrifugation run. Longer run 

would have steeped the gradient and let the HDV and HV fractions overlay. Only 

successive runs would help to further reduce the HV contamination. The 

iodixanol run did not dilute or concentrate the virus. 

The electrophoretic analysis of the fractions indicated a similar protein profile for 

all fractions, even faint bands of high molecular weight and low molecular weight 

of non-viral proteins were observed in fraction 1 and 16 (Figure 4.5 A). A low 

molecular weight non-viral protein contaminated the fraction 4 (<10 kDa). A 

similar observation could be done for fraction 11 to 13, although the 

contamination was predominant in fraction 12 (-20 kDa). Moreover, an overall 
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protein contamination remained in all fractions. In the overall purification SDS 

profile (Figure 4.3 A), a similar pattern for lane 5 and lane 7 suggested that the 

iodixanol run was not further reducing the non-viral protein content. These 

results suggest that the contaminants that elute in AEX were of the same 

density as dictated by iodixanol fractions from 1 to 16. These contaminants will 

be removed by polishing step comprised of size exclusion chromatography. 

The western blot profile highlighted the presence of virus in all the fractions 

although higher levels of viral proteins were observed for fractions 9 to 14 

(Figure 4.5 B). Interestingly, a high hexon to penton band intensity ratio was 

seen for fractions 9 to 16, whereas the ratio seemed to be lower for fractions 1 

to 8. The reason of such a difference remains to be elucidated. 
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Figure 4.5 Electrophoretic analysis of iodixanol fractions 1 to 16 on 4-20% 

SDS-PAGE. (A) Silver-stained SDS-PAGE. (B) Western blot of SDS-PAGE 

revealing AdV proteins. Molecular weight marker (MW) and AdV type 5 standard 

(Std) were loaded at the gel extremities. Protein loaded: 500 ng/lane 

The iodixanol run is a simple, fast and efficient procedure to separate infectious 

HDV from non-infectious and HV. This procedure was designed to antecede the 

AEX chromatographic process where the separation of AdV from most of the 

cell culture protein contaminants takes place and to precede the size exclusion 

chromatography step to remove additional protein contaminant (Figure 4.1). 
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4.2.4.2 Polishing by Size-Exclusion Chromatography 

Size-exclusion chromatography was previously used as a combined polishing 

and iodixanol removal step (Segura et al. 2006). The chromatographic elution 

profile showed good separation efficiency between the HDV and the iodixanol 

(Figure 4.6). The 100,000 kDa AdV was eluted in the excluded volume whereas 

the small iodixanol molecules along with other protein contaminants were 

retained in the resin and eluted thereafter. 
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Figure 4.6 SEC profile. HDV-iodixanol pooled fractions (4.24 ml_ per run) were 

loaded onto a 29 ml_ Sepharose 4FF column. AdV-SEC peak was recovered in 

the flowthrough (6.75 ml_ and 7.70 ml_ corresponding to 4.8 x 1010 TVP and 

8.97 x 1010 TVP, per run for SF and FLP run respectively). For SF and FLP 

runs, 3 SEC runs were performed and SEC-AdV peaks were pooled 

The recoveries were 69 and 80% of IU for SF and FLP runs, respectively (13 

and 37% of TVP, respectively) (Table 4.1). The concentrations of final purified 

materials were 7.11 x 109 TVP/mL with 80% IU/TVP and 1.17 x 1010 TVP/mL 

with 120% IU/TVP for SF and FLP runs, respectively. The contamination ratio 

remained similar to what was assessed in the HDV-iodixanol pooled fractions 

lodixanol 
and low Mol. wt 
components 

SEC-AdV peak 
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(15.6% and 0.2% for SF and FLP runs, respectively). The concordance of the 

TVP concentrations and the HV contamination ratio for the HDV-iodixanol 

pooled fraction and the SEC-AdV peak indicated that the HPLC method and the 

purification of AdV particles for qPCR were not affected by the iodixanol 

presence in samples. Moreover, the reduction of HV contamination was once 

more documented with similar results for both runs. Depending on the starting 

production concentration, a concentration factor of 12 to 22 was achieved. 

A 100-fold reduction in protein content has been observed following the SEC 

step (from 0.32 mg/mL in iodixanol pooled fractions to 0.003 mg/mL in SEC-AdV 

peak). Moreover, on the SDS-PAGE pattern, the predominant however faint 

band probably corresponded to the viral hexon (II) protein (Figure 4.3 A, lane 8) 

as suggested by the AdV standard profile. This band was not the predominant 

one in the HDV-iodixanol pooled fraction (Figure 4.3 A, Iane7) and therefore 

constituted, with the 100-fold reduction in protein content, another proof of the 

reduction in non-viral protein contaminants following the SEC step. In the SEC-

AdV Western blot pattern, hexon (II), penton (Ilia) and hexon associated (VIII, 

IX) were visualized. Faint bands corresponding to the penton (III) and fiber (IV) 

were also observed whereas they were less obvious for the other purification 

steps (Figure 4.3 B, lane 8 compared to other lanes). It further confirmed the 

purification enhancement achieved with this SEC step. 
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Although the iodixanol medium might be in vivo injected (Nossen et al. 1990; 

Svaland et al. 1992), the iodixanol removal by SEC alleviated the problems 

associated to the use of viscous medium (homogenization, sterile filtration). 

Moreover, the SEC step contributed to polish the final HDV material by further 

reducing the non-viral protein content. 

4.2.5 Conclusion 

For the first time here, an efficient processing scheme for the purification of HDV 

is reported. An easy, fast, and high recovery separation procedure was 

described and fully documented. An iso-osmotic and non-toxic 

ultracentrifugation medium, iodixanol, was used to form a shallow density 

gradient and has proven to reliably and reproducibly separate infectious HDV 

from HV and non-infectious AdV with high recovery. This ultracentrifugation run 

was integrated in an overall chromatographic purification scheme with proven 

efficiency and scale-up potential. Overall, high infectious recovery yields (69 to 

80%) and purity have been reported. Therefore, this efficient processing scheme 

might be employed to purify HDV for gene therapy applications where high 

amounts of viral material with optimal purity, potency and safety are required. 
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4.3 Resultats Complementaires 

4.3.1 Introduction 

Les resultats complementaires constituent la premiere partie de ce chapitre. 

Une comparaison entre les lignees cellulaires parentales et recombinase pour 

produire le HDV y est presentee. La production du HDV est realisee a partir de 

I'ADN du HDV ou a partir d'un stock viral de HDV. 

Comme conclu au Chapitre 3, la contamination par le HV est reduite a la fois 

grace au controle de la MOI du HV et a I'utilisation d'un systeme recombinase 

empechant I'encapsidation du HV. L'utilisation du systeme recombinase 

necessite la generation d'une lignee cellulaire exprimant de fagon constitutive 

cette enzyme. La selection d'un clone efficace doit a la fois prendre en compte 
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la capacite de la lignee a produire le HDV et a restreindre I'encapsidation du HV. 

C'est bien souvent une premiere etape dans le developpement de la production 

du HDV. A ce stade, un manque de connaissance du systeme de production 

restreint revaluation adequate des clones. Si la contamination est dependante 

des niveaux d'expression de la recombinase (Hartigan-O'Connor et al. 2002a; 

Ng et al. 2002a), elle est aussi dependante des parametres d'infection comme 

demontre au Chapitre 3, 3.2 Identification of Critical Infection Parameters to 

Control Helper-Dependent Adenoviral Vector Production using QPCR. La 

caracterisation de la lignee cellulaire necessite des methodes de quantification 

adaptee comme la qPCR en temps reel developpee au Chapitre 3, 3.2 

Identification of Critical Infection Parameters to Control Helper-Dependent 

Adenoviral Vector Production using QPCR. Ajoute a ces contraintes, I'obtention 

de clones stables est un processus laborieux qui requiert du temps et de la main 

d'oeuvre qualifiee. 

L'etude au Chapitre 3 a revele que I'apport de HDV et de HV controle la 

production de HDV. A priori, I'avantage d'utiliser une lignee cellulaire 

recombinase reside uniquement dans la capacite a limiter la contamination par 

le HV. D'autre part, la production dans cette lignee est systematiquement suivie 

d'une methode d'ultracentrifugation reduisant d'avantage la contamination par le 

HV. L'hypothese de travail est que la lignee cellulaire parentale HEK293SF-3F6 

developpee specifiquement pour la production d'AdV en suspension (Cote et al. 

1998) produit le HDV a un titre similaire grace au controle de la MOI et du ratio 
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entre les vecteurs HDV et HV. Par la suite, la contamination par le HV peut etre 

reduite par I'utilisation d'un procede de purification efficace comme celui decrit 

dans ce Chapitre (4.2 An Efficient Process for the Purification of Helper-

Dependent Adenoviral Vector and Removal of Helper Virus by lodixanol 

Ultracentrifugation). 

4.3.2 Materiels et Methodes 

Les lignees cellulaires HEK293SF et HEK293SF-FLPe sont decrites dans Cote 

et al. (1998) et Meneses-Acosta et al. (2007). Les cellules sont maintenues dans 

le milieu HSFM supplements avec 10 mM HEPES, 1% BCS et 0.75 |ig/mL 

puromycine pour la lignee HEK293SF-FLPe uniquement. La production du HDV 

est effectuee en flacon agite inocule avec 25 mL de culture cellulaire a 0.5 x 106 

cellules/mL dans du milieu frais. Dans le cas de la production en flacon agite 

sans changement de milieu, I'inoculation est effectuee a 0.25 x 106 cellules/mL 

24 h avant I'infection. 

Le secours et l'amplification du HDV a partir de I'adenofection est detaille au 

Chapitre 2, 2.2.3 Materials and Methods. L'addition de HV est omise pour les 

passages d'amplification avec la lignee HEK293SF. L'amplification du HDV a 

partir du stock viral est realise avec les stocks viraux de HDV et HV provenant 

des productions en bioreacteur de 3 L Chapitre 2, 2.2.3 Materials and Methods. 

Les cultures sont infectees avec une MOI de HDV de 5 et une MOI de HV de 
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0.5. La recolte virale est effectuee a 48 hpi. Les productions en bioreacteurs 

sont realisees comme decrit au Chapitre 4, 4.2.3 Materials and Methods. Les 

productions sont analysees comme decrit au Chapitre 3, 3.2.3 Materials and 

Methods. 

4.3.3 Resultats et Discussion 

La capacite des lignees cellulaires a generer le HDV a partir du DNA du HDV 

est comparee. L'utilisation de la lignee parentale necessite deux passages 

d'amplification supplementaires (Figure 4.7). Avec la lignee recombinase, la 

faible contamination obtenue a chaque passage permet de reajuster de maniere 

optimale la MOI du HV. La production du HDV qui depend partiellement de la 

MOI du HV {Chapitre 3, 3.2 Identification of Critical Infection Parameters to 

Control Helper-Dependent Adenoviral Vector Production using QPCR) est ainsi 

plus efficace lorsque la MOI du HV est controlee. Ce controle est impossible 

avec la lignee parentale qui ne limite pas I'encapsidation du HV. A chaque 

passage d'amplification, les cultures cellulaires de HEK293SF sont assurement 

infectees a des MOI de HV superieures a la MOI optimale (0.5)1. Cependant, le 

titre maximum de HDV est similaire pour les deux lignees et de I'ordre de 1-2 x 

1 L'adenofection est realisee avec une MOI de 5 et le facteur d'amplification du HV est de I'ordre 

de 50 - valeur exporte de Sato M, Suzuki S, Kubo S, Mitani K. 2002. Replication and packaging 

of helper-dependent adenoviral vectors. Gene Ther 9(7):472-6.: le HDV et le HV repliquent 

dans HEK293SF avec une efficacite similaire et I'augmentation en BTU du HDV est de I'ordre de 

50 - la MOI du HV au P1 est alors de 25. 



218 

108 UI/mL. Le secours et I'amplification du HDV, etapes necessaires pour la 

generation d'un stock viral d'infection, peuvent etre realises avec la lignee 

cellulaire parentale. Pour atteindre cependant un titre infectieux comparable, 

quelques passages supplementaires d'amplification sont necessaires. 
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Figure 4.7 Secours et amplification du HDV a partir de I'adenofection (n = 4) 

La production de HDV a partir d'un stock viral est analysee au Tableau 4.3. Les 

titres de HDV sont similaires pour les productions avec les lignees parentale et 

recombinase. Avec la lignee parentale, les concentrations en genomes viraux 

sont relativemenet semblables, indiquant une efficacite d'amplification similaire 

pour le HDV et le HV voire legerement avantagee pour le HV. L'infectivite du 

HDV est d'environ 37% pour les deux lignees. La contamination par le HV 
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atteint cependant des niveaux en moyenne 23 fois plus eleves avec la lignee 

parentale. La production de HDV n'est pas affectee par I'utilisation de la lignee 

recombinase ou parentale. Seul le niveau de contamination par le HV est 

affecte. 

Tableau 4.3 Production du HDV a partir de stock viraux (n = 4) 

HEK293SF(x108) 

HEK293SF-FLPe (x 
108) 

TitredeHDV -
Ulde 

HDV/mL 

5.2 
(+ 3.2) 

4.0 
(±1.1) 

Concentration 
HDV HV 

GV de GV de 
HDV/mL HV/mL 

12 14 
(+ 6.5) (± 5.3) 

11 0.52 
(±4.4) (±0.041) 

Infectivite du 
HDV 

UI/VG (%) 

36.7 
(±14.0) 

38.2 
(+ 4.6) 

Contamination par HV 
GV de HV/GV de HDV 

(%) 

125.8 
(±18.5) 

5.4 
(+1.7) 

Afin de simplifier le processus de production a grande echelle, le HDV est 

produit sans changement de milieu a I'infection. Les differences de production 

sont peu significatives a cette densite cellulaire d'infection (Tableau 4.4). Les 

productions en bioreacteur de 3 L sont done realisees sans changement de 

milieu evitant ainsi la consommation supplemental de milieu et un risque de 

contamination accru par des manipulations extensives (vidange du bioreacteur, 

centrifugation de la culture, suspension dans du milieu frais et a nouveau 

inoculation du bioreacteur). Ces resultats indiquent aussi la capacite de mise a 

I'echelle du procede a des volumes plus importants pour lesquels le 

changement de milieu n'est pas techniquement et economiquement realisable. 
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Tableau 4.4 Production du HDV avec ou sans changement de milieu a 

I'infection (n = 4) 

Titre de HDV 
Ul de HDV/mL 

Avec changement Sans changement 
HEK293 SF ( x 10") 6.5 (+1.9) 2.9 (+ 1.1) 

HEK293SF-FLPe(x108) 3.8 (±1.5) 2.9 (± 0.52) 

Quelques details des deux productions a I'echelle de 3 L sont presentees a la 

Tableau 4.5. D'autres donnees pertinentes sont presentees au Chapitre 4 4.2 

An Efficient Process for the Purification of Helper-Dependent Adenoviral vector 

and Removal of Helper Virus by lodixanol Ultracentrifugation, Table 4.1. 

Tableau 4.5 Production du HDV en bioreacteur de 3 L sans changement de 

milieu a I'infection (n = 1) 

HEK293 SF 
HEK293SF-FLPe 

Densite cellulaire 
cellules/mL 

8.2x10b 

9.0x10b 

Viabilite 
% 
86 
77 

Titre de HDV HDV UI/mL 

9.2x10° 
4.1 x10B 

Titre specifique de HDV 
Ul de HDV/cellule 

1115 
457 

4.3.4 Conclusions 

L'amplification du HDV n'est pas dependante de la selection par recombinase. 

Les titres maxima de HDV sont similaires avec les deux lignees. La production 

du HDV dans la lignee parentale est done une solution envisageable. La 

difficulty liee a la generation d'une lignee stable et efficace et I'efficacite de la 

production du HDV dans la lignee parentale rendent cette solution 

particulierement attractive. La production du HDV dans la lignee parentale peut 

aussi constituer un excellent point de depart dans le developpement d'une 
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lignee cellulaire capable de produire le HDV et de reduire la contamination par 

le HV de maniere efficace. Entre autre, la production du HDV dans la lignee 

parentale permet d'etablir des methodes de caracterisation adequate des 

lignees stables grace a la generation de materiel viral. 

Le procede de purification decrit dans I'article de ce chapitre n'a pas permis de 

diminuer la contamination par le HV a des niveaux proche de ceux obtenus avec 

la lignee recombinase. Eventuellement, une etape supplemental 

d'ultracentrifugation permettrait d'atteindre des niveaux de contamination 

comparable. 
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DISCUSSION GENERALE, CONCLUSIONS ET RECOMMANDATIONS 

L'echec d'un protocole clinique utilisant I'AdV de premiere generation a 

gravement mine la confiance du public quant a la surete des therapies virales. 

Ce revers a fait I'objet d'un examen approfondi de la FDA. Celle-ci a, d'une part, 

identifie le besoin d'elaborer un standard de reference (ARM) pour pallier le 

manque de caracterisation des stocks viraux et, d'autre part, defini le niveau 

d'infectivite minimum et le niveau de RCA maximum admissibles dans les lots 

cliniques. Par ailleurs, I'implication de la reponse immunitaire dans le deces du 

patient sujet a un traitement therapeutique adenoviral a accelere le 

developpement de I'AdV de troisieme generation, le HDV. 

Le standard de reference permet d'exploiter de maniere adequate les differentes 

methodes de quantification des particules virales totales et infectieuses. Le 

benefice apporte par le standard de reference depasse la simple caracterisation 

du materiel final. La quantification d'un stock viral permet de definir des 

procedes de productions reproductibles grace a des parametres d'infection 

predictifs des performances de production, ce qui limite la variability du produit 

final et garanti I'optimisation de la production. Les procedes de production 

etablis selon des principes non-empiriques ont I'avantage d'etre plus facilement 

adapte a grande echelle. Grace au standard de reference, les procedes de 

production et leurs performances peuvent etre compares. 
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L'objectif final etant de definir un processus integre pour la production du HDV a 

grande echelle, la caracterisation de la production revet une importance cruciate 

dans ce travail. Cependant, les methodes de quantification standardises sont 

inadaptes pour I'AdV de troisieme generation. Elles ne peuvent servir ni a la 

quantification des particules virales totales et infectieuses de HDV ni a 

revaluation de la contamination par le HV. De plus, le developpement de 

nombreuses methodologies de quantification permettant la caracterisation des 

productions de HDV rend difficile les comparaisons entre les differentes etudes. 

L'etablissement d'un standard de reference pour I'AdV de troisieme generation 

permettrait de comparer adequatement les productions. Dans cette etude, la 

quantification des particules virales totales de HDV et de HV est realisee par 

qPCR. L'unite de mesure etant la meme pour le HDV et le HV, le niveau de 

contamination par le HV est evalue avec precision. Les productions sont 

rapportees en terme d'UI de HDV, d'UI de HV, de TVP, de GV de HDV et de GV 

de HV, d'infectivite du HDV et de contamination par le HV permettant ainsi une 

evaluation tres complete des experiences. 

Dans ce travail, trois procedes utilisant des methodes innovatrices sont 

presentes. La definition de ces procedes repose sur I'emploi de parametres de 

production faciles d'utilisation, correles aux performances. Ainsi, les procedes 

permettent de produire le HDV a grande echelle avec fiabilite et efficacite pour 

limiter a la fois le temps de production et garantir une utilisation efficace du 

materiel initial. Dans le premier procede, le complexe d'adenofection est identifie 
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comme un complexe tres efficace pour transferer le materiel viral a la cellule et 

produire le HDV. La composition des complexes est correlee au titre de HDV. A 

partir de I'ADN du HDV, la generation d'un stock viral a grande echelle et 

caracterise par un titre maximum de HDV necessite 6 jours. L'avantage de ce 

procede reside dans sa capacite de mise a I'echelle et son faible cout grace a 

I'utilisation de I'agent complexant PEL Le second procede utilise le stock viral 

genere par le premier procede. La production du HDV est controlee par la MOI 

et le ratio entre les deux vecteurs. Ces deux parametres sont correles au titre de 

HDV et a la contamination par le HV. A partir d'un seul stock viral caracterise, ce 

procede permettrait d'effectuer de maniere reproductible de multiples 

productions a grande echelle en I'espace de 2 jours. La strategie de purification 

est realisee en 1 jour grace a une nouvelle methode d'ultracentrifugation. La 

possibility de mise a I'echelle du procede de purification depend de la 

disponibilite d'equipements d'ultracentrifugation de grande capacite. II est 

cependant important de noter que la separation du HDV et du HV, s'il est 

necessaire, ne peut etre realisee que grace a une methode d'ultracentrifugation. 

L'etude des methodes d'adenofection et d'infection conduit a mieux comprendre 

la formation de HDV. La production du HDV est generallement diminuee d'un 

facteur 10 a 100 compare a la production d'AdV de premiere generation. Le 

transfert du HDV par adenofection (sous forme d'ADN) ou par infection (sous 

forme de vecteur viral) est le facteur le plus critique de la production du HDV. Le 

HDV possede une capacite d'amplification differente suivant la forme dans 
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laquelle il se trouve. Contrairement aii genome viral, I'ADN du HDV n'est pas lie 

a la proteine terminale laquelle a une grande affinite pour les facteurs de 

replication. En consequence, la capacite de replication de I'ADN du HDV est 

faible relativement a celle du genome viral du HDV. Au-dela d'avantager le 

transfert de I'ADN du HDV, la presence simultanee du HDV et du HV favorise la 

replication du HDV lors de de I'infection et vraisemblablement lors 

I'adenofection. Cependant puisque la production du HDV par adenofection 

depend du HV a la fois pour le transfert de I'ADN et pour la production du HDV, 

son role dans ce contexte est difficile a determiner. La difference de production 

entre I'AdV de premiere et troisieme generation est aussi due a la presence de 

deux vecteurs distincts dans le meme hote cellulaire. Cette presence simultanee 

induit une competition entre les deux vecteurs pour leur amplification respective. 

Le HDV presente un avantage replicatif grace a la taille de son genome (30 kb 

pour le HDV versus 36 kb pour le HV) et un avantage en terme d'encapsidation 

grace a son signal non-modifie (contrairement au signal d'encapsidation du HV 

borde de sites de reconnaissance de la recombinase). Cependant, la nature des 

sequences (non-codantes pour le HDV versus virales pour le HV) avantage 

vraisemblablement ('amplification du HV. En effet, dans des conditions 

d'infection optimales pour la production du HDV, I'amplification dans la lignee 

cellulaire parentale avantage legerement le HV. II est postule que les quantites 

relatives de chacun des vecteurs apportes au moment de I'infection (dictees par 

la MOI et le ratio des virus) ont un effet sur la competition entre les vecteurs 
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meme si cette competition est d'avantage controlee par les structures virales. 

En revanche, le delai d'infection, le choc de temperature et le systeme de 

selection par recombinase ne modifient pas la competition entre les deux 

vecteurs. En resume, la presence des deux vecteurs dans le meme systeme 

cellulaire de production induit a la fois une competition pour les facteurs de 

replications et d'encapsidation et une aide pour la replication. 

A I'heure actuelle, le developpement d'un standard de reference pour I'AdV de 

troisieme generation fait defaut et les niveaux acceptables de contamination par 

le HV ne sont pas encore etablis par la FDA. Ceci empeche la definition de 

conditions precises pour la production du HDV. Precedemment, il a ete note que 

la capacite de mise a I'echelle de la production du HDV est restreinte par 

I'utilisation d'une methode d'ultracentrifugation pour diminuer la contamination 

par le HV. Cependant, la methode d'ultracentrifugation separe aussi les 

particules virales infectieuses des non-infectieuses. Une partie de la reponse 

immunitaire est correlee a la quantite de particules virales totales, mais seules 

les particules virales infectieuses ont un interet therapeutique. En vue de 

diminuer cette reponse immunitaire, il convient eventuellement d'utiliser une 

methode d'ultracentrifugation. La methode d'infection peut servir a controler 

efficacement la contamination par le HV. Cependant, elle est limitee par les 

caracteristiques intrinseques de la lignee cellulaire recombinase. La lignee 

recombinase est generalement selectionnee pour sa capacite a exciser le signal 

d'encapsidation du HV. L'efficacite d'excision n'est pas totale et certains 
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genomes de HV sont encapsides generant un certain niveau de contamination 

par le HV. Le niveau de contamination semble dependre du niveau d'expression 

de la recombinase. Le phenomene d'arret du metabolisme cellulaire du a I'AdV 

exacerbe I'excision incomplete du signal d'encapsidation du HV. Actuellement, 

aucune etude n'a correle le niveau d'expression de la recombinase a I'efficacite 

d'excision et a I'efficacite d'amplification du HDV. Des recherches en ce sens 

permettraient d'etablir les caracteristiques requises pour qu'une lignee cellulaire 

soit a la fois capable d'amplifier efficacement le HDV et de limiter la 

contamination par le HV. Des strategies visant a limiter le phenomene d'arret du 

metabolisme cellulaire par I'AdV pourraient etre explorees. Une avenue tres 

interessante consisterait a empecher totalement la contamination par le HV au 

moyen de nouveaux systemes de production. Ces nouveaux systemes ont deja 

fait I'objet d'etude mais necessitent des ameliorations pour limiter la generation 

de HV non-infectieux ou de RCA. [.'utilisation finale du materiel, le niveau de 

contamination juge acceptable et I'efficacite du systeme cellulaire a reduire la 

contamination par le HV definiront en dernier lieu la capacite de mise a I'echelle 

du procede par le besoin ou non de separer les deux vecteurs. Cependant, la 

volonte de reduire la contamination par le HV ne doit pas occulter les points 

suivants. D'une part, le HV est present a des faibles niveaux de contamination 

avec les systemes cellulaires actuels et ceci avant meme I'etape de purification. 

D'autre part, le HV, un AdV de premiere generation a ete utilise dans de 

nombreux protocoles cliniques sans aucun effet nefaste. 
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La production du HDV peut tres certainement etre amelioree par une 

modification des structures virales. Par exemple, pour le HDV, la nature des 

sequences de remplissages et insertion d'origine de replication de sequences 

virales ont demontre avoir une influence positive sur ('amplification du HDV. 

Pour le HV, la presence de la region E3, le positionnement des sites de 

reconnaissance de la recombinase ont une influence sur le titre de HDV. 

D'autres recherches visant la modification des sequences en lien etroit avec 

I'etude de la biologie du virus permettraient d'augmenter le titre de HDV. D'un 

point de vue procede, des ameliorations substantielles de production du HDV 

peuvent etre obtenues. II s'agit d'appliquer le bagage impressionnant de 

connaissances deja acquises pour la production d'AdV de premiere generation. 

Dans cette these, le choix du milieu de culture est dicte pour accommoder 

initialement la methode d'adenofection. Le choix de la densite cellulaire est 

realise en vue d'obtenir les meilleures efficacites de transfection ainsi que les 

meilleures productions specifiques dans des conditions de cultures en cuvee. La 

production du HDV a de plus grandes densites cellulaires avec des milieux 

optimises sans serum dans des conditions maintenant un etat physiologique 

propice a la production d'AdV doit etre etudiee. A cette fin, I'utilisation d'outils 

comme I'analyse de flux metabolique est recommandee. 



235 

REFERENCES 

Alba R, Hearing P, Bosch A, Chillon M. 2007. Differential amplification of 

adenovirus vectors by flanking the packaging signal with attB/attP-PhiC31 

sequences: implications for helper-dependent adenovirus production. 

Virology 367(1 ):51 -8. 

Altaras NE, Aunins JG, Evans RK, Kamen A, Konz JO, Wolf JJ. 2005. 

Production and formulation of adenovirus vectors. Adv Biochem Eng 

Biotechnol 99:193-260. 

Amalfitano A, Begy CR, Chamberlain JS. 1996. Improved adenovirus packaging 

cell lines to support the growth of replication-defective gene-delivery 

vectors. Proc Natl Acad Sci USA 93(8):3352-6. 

Amalfitano A, Chamberlain JS. 1997. Isolation and characterization of packaging 

cell lines that coexpress the adenovirus E1, DNA polymerase, and 

preterminal proteins: implications for gene therapy. Gene Ther 4(3):258-

63. 

Andrews JL, Kadan MJ, Gorziglia Ml, Kaleko M, Connelly S. 2001. Generation 

and characterization of E1/E2a/E3/E4-deficient adenoviral vectors 

encoding human factor VIII. Mol Ther3(3):329-36. 



236 

Arcand N, Bernier A, Transfiguracion J, Jacob D, Coehlo H, Kamen A. 2003. 

Adenovirus Type 5 (Ad5) chromatographic purification process at the 20 

L scale. Bioprocess J2:72-75. 

Aucoin MG, Perrier M, Kamen AA. 2006. Production of adeno-associated viral 

vectors in insect cells using triple infection: optimization of baculovirus 

concentration ratios. Biotechnol B/oeng95(6):1081 -92. 

Baker A, Cotten M. 1997. Delivery of bacterial artificial chromosomes into 

mammalian cells with psoralen-inactivated adenovirus carrier. Nucleic 

Acids Res 25(10):1950-6. 

Baker A, Saltik M, Lehrmann H, Killisch I, Mautner V, Lamm G, Christofori G, 

Cotten M. 1997. Polyethylenimine (PEI) is a simple, inexpensive and 

effective reagent for condensing and linking plasmid DNA to adenovirus 

for gene delivery. Gene Ther 4(8):773-82. 

Barjot C, Hartigan-O'Connor D, Salvatori G, Scott JM, Chamberlain JS. 2002. 

Gutted adenoviral vector growth using E1/E2b/E3-deleted helper viruses. 

J Gene Med 4(5):480-9. 

Berdichevsky M, Gentile MP, Hughes B, Meis P, Peltier J, Blumentals I, Aunins 

J, Altaras NE. 2008. Establishment of higher passage PER.C6 cells for 

adenovirus manufacture. Biotechnol Prog 24(1 ):158-65. 



237 

Bett AJ, Prevec L, Graham FL. 1993. Packaging capacity and stability of human 

adenovirus type 5 vectors. J Virol 67(10):5911 -21. 

Blanche F, Cameron B, Barbot A, Ferrero L, Guillemin T, Guyot S, Somarriba S, 

Bisch D. 2000. An improved anion-exchange HPLC method for the 

detection and purification of adenoviral particles. Gene The/" 7(12): 1055-

62. 

Branca MA. 2005. Gene therapy: cursed or inching towards credibility? Nat 

Biotechnol 23(5) :519-21. 

Brunetti-Pierri N, Ng P. 2006. Progress towards the clinical application of helper-

dependent adenoviral vectors for liver and lung gene therapy. Curr Opin 

Mol Ther 8(5):446-54. 

Brunetti-Pierri N, Ng P. 2008. Progress and prospects: gene therapy for genetic 

diseases with helper-dependent adenoviral vectors. Gene Ther 

15(8):553-60. 

Burch AD, Welter SK. 2005. Herpes simplex virus type 1 DNA polymerase 

requires the mammalian chaperone hsp90 for proper localization to the 

nucleus. J Virol79(16):10740-9. 



238 

Burova E, loffe E. 2005. Chromatographic purification of recombinant adenoviral 

and adeno-associated viral vectors: methods and implications. Gene Ther 

12SuppM:S5-17. 

Callahan JD. 2002. A Statistical Analysis of Adenovirus Reference Material 

Assay Results. Bioprocessing J1 (3):43-7. 

Campeau P, Chapdelaine P, Seigneurin-Venin S, Massie B, Tremblay JP. 2001. 

Transfection of large plasmids in primary human myoblasts. Gene Ther 

8(18):1387-94. 

Catalucci D, Sporeno E, Cirillo A, Ciliberto G, Nicosia A, Colloca S. 2005. An 

adenovirus type 5 (Ad5) amplicon-based packaging cell line for 

production of high-capacity helper-independent deltaE1-E2-E3-E4 Ad5 

vectors. J V/ro/79(10):6400-9. 

Chartier C, Degryse E, Gantzer M, Dieterle A, Pavirani A, Mehtali M. 1996. 

Efficient generation of recombinant adenovirus vectors by homologous 

recombination in Escherichia coli. J Virol 70(7):4805-10. 

Cherng JY, Schuurmans-Nieuwenbroek NM, Jiskoot W, Talsma H, Zuidam NJ, 

Hennink WE, Crommelin DJ. 1999. Effect of DNA topology on the 

transfection efficiency of poly((2-dimethylamino)ethyl methacrylate)-

plasmid complexes. J Control Release 60(2-3):343-53. 



239 

Cheshenko N, Krougliak N, Eisensmith RC, Krougliak VA. 2001. A novel system 

for the production of fully deleted adenovirus vectors that does not require 

helper adenovirus. Gene 7/?er8(11):846-54. 

Chromy LR, Pipas JM, Garcea RL. 2003. Chaperone-mediated in vitro assembly 

of Polyomavirus capsids. Proc Natl Acad Sci USA! 00(18):10477-82. 

Cortin V, Thibault J, Jacob D, Gamier A. 2004. High-titer adenovirus vector 

production in 293S cell perfusion culture. Biotechnol Prog 20(3):858-63. 

Cote J, Bourget L, Gamier A, Kamen A. 1997. Study of adenovirus production in 

serum-free 293SF suspension culture by GFP-expression monitoring. 

Biotechnol Prog 13(6):709-14. 

Cote J, Gamier A, Massie B, Kamen A. 1998. Serum-free production of 

recombinant proteins and adenoviral vectors by 293SF-3F6 cells. 

Biotechnol Bioeng 59:567-65. 

Cotten M, Wagner E, Zatloukal K, Phillips S, Curiel DT, Birnstiel ML. 1992. High-

efficiency receptor-mediated delivery of small and large (48 kilobase gene 

constructs using the endosome-disruption activity of defective or 

chemically inactivated adenovirus particles. Proc Natl Acad Sci USA 

89(13):6094-8. 



240 

Curiel DT, Agarwal S, Wagner E, Cotten M. 1991. Adenovirus enhancement of 

transferrin-polylysine-mediated gene delivery. Proc Natl Acad Sci USA 

88(19):8850-4. 

Danthinne X, Imperiale MJ. 2000. Production of first generation adenovirus 

vectors: a review. Gene 7/?er7(20):1707-14. 

Dettenhofer M, Yu XF. 1999. Highly purified human immunodeficiency virus type 

1 reveals a virtual absence of Vif in virions. J Virol 73(2): 1460-7. 

Diebold SS, Lehrmann H, Kursa M, Wagner E, Cotten M, Zenke M. 1999. 

Efficient gene delivery into human dendritic cells by adenovirus 

polyethylenimine and mannose polyethylenimine transfection. Hum Gene 

Ther10{5):775-86. 

Dunphy EJ, Redman RA, Herweijer H, Cripe TP. 1999. Reciprocal enhancement 

of gene transfer by combinatorial adenovirus transduction and plasmid 

DNA transfection in vitro and in vivo. Hum Gene Ther 10(14):2407-17. 

Durocher Y, Perret S, Kamen A. 2002. High-level and high-throughput 

recombinant protein production by transient transfection of suspension-

growing human 293-EBNA1 cells. Nucleic Acids fles30(2):E9. 



241 

Durocher Y, Pham PL, St-Laurent G, Jacob D, Cass B, Chahal P, Lau CJ, 

Nalbantoglu J, Kamen A. 2007. Scalable serum-free production of 

recombinant adeno-associated virus type 2 by transfection of 293 

suspension cells. J Virol Methods. 

Engelhardt JF, Ye X, Doranz B, Wilson JM. 1994. Ablation of E2A in 

recombinant adenoviruses improves transgene persistence and 

decreases inflammatory response in mouse liver. Proc Natl Acad Sci U S 

/4 91 (13):6196-200. 

Everts B, van der Poel HG. 2005. Replication-selective oncolytic viruses in the 

treatment of cancer. Cancer Gene Ther 12(2):141 -61. 

Fallaux FJ, Bout A, van der Velde I, van den Wollenberg DJ, Hehir KM, Keegan 

J, Auger C, Cramer SJ, van Ormondt H, van der Eb AJ and others. 1998. 

New helper cells and matched early region 1 -deleted adenovirus vectors 

prevent generation of replication-competent adenoviruses. Hum Gene 

7/)e/-9(13):1909-17. 

Fallaux FJ, Kranenburg O, Cramer SJ, Houweling A, Van Ormondt H, Hoeben 

RC, Van Der Eb AJ. 1996. Characterization of 911: a new helper cell line 

for the titration and propagation of early region 1-deleted adenoviral 

vectors. Hum Gene Ther 7(2):215-22. 



242 

Ferreira TB, Ferreira AL, Carrondo MJ, Alves PM. 2005. Effect of re-feed 

strategies and non-ammoniagenic medium on adenovirus production at 

high cell densities. J Biotechnol 119(3):272-80. 

Ford T, Graham J, Rickwood D. 1994. lodixanol: a nonionic iso-osmotic 

centrifugation medium for the formation of self-generated gradients. Anal 

Biochem 220(2) :360-6. 

Gao GP, Engdahl RK, Wilson JM. 2000. A cell line for high-yield production of 

E1 -deleted adenovirus vectors without the emergence of replication-

competent virus. Hum Gene Ther 11 (1 ):213-9. 

Gamier A, Cote J, Nadeau I, Kamen A, Massie B. 1994. Scale-up of the 

adenovirus expression system for the production of recombinant protein 

in human 293S cells. Cytotechnology 15(1 -3):145-55. 

Gias E, Nielsen SU, Morgan LA, Toms GL. 2008. Purification of human 

respiratory syncytial virus by ultracentrifugation in iodixanol density 

gradient. J Virol Methods 147(2):328-32. 

Gilbert PA, Gamier A, Jacob D, Kamen A. 2000. On-line measurement of GFP 

fluorescence for the monitoring of recombinant adenovirus production. 

Biotechnol Lett 22:561 -7. 



243 

Gilbert PA, Kamen A, Bernier A, Gamier A. 2007. A simple macroscopic model 

for the diffusion and adsorption kinetics of r-adenovirus. Biotechnol 

Bioeng 98(1 ):239-51. 

Glotzer JB, Saltik M, Chiocca S, Michou Al, Moseley P, Cotten M. 2000. 

Activation of heat-shock response by an adenovirus is essential for virus 

replication. Nature 407(6801 ):207-11. 

Gorziglia Ml, Kadan MJ, Yei S, Lim J, Lee GM, Luthra R, Trapnell BC. 1996. 

Elimination of both E1 and E2 from adenovirus vectors further improves 

prospects for in vivo human gene therapy. J Wro/70(6):4173-8. 

Gorziglia Ml, Lapcevich C, Roy S, Kang Q, Kadan M, Wu V, Pechan P, Kaleko 

M. 1999. Generation of an adenovirus vector lacking E1, e2a, E3, and all 

of E4 except open reading frame 3. J Virol 73(7):6048-55. 

Grable M, Hearing P. 1992. cis and trans requirements for the selective 

packaging of adenovirus type 5 DNA. J V/ro/66(2):723-31. 

Graham FL, Smiley J, Russell WC, Nairn R. 1977. Characteristics of a human 

cell line transformed by DNA from human adenovirus type 5. J Gen Virol 

36(1):59-74. 

Graham FL, van der Eb AJ. 1973. A new technique for the assay of infectivity of 

human adenovirus 5 DNA. Virology 52(2):456-67. 



244 

Gueret V, Negrete-Virgen JA, Lyddiatt A, Al-Rubeai M. 2002. Rapid titration of 

adenoviral infectivity by flow cytometry in batch culture of infected 

HEK293 cells. Cytotechnology 38(1 -3):87-97. 

Hardy S, Kitamura M, Harris-Stansil T, Dai Y, Phipps ML 1997. Construction of 

adenovirus vectors through Cre-lox recombination. J Virol 71 (3): 1842-9. 

Hartigan-O'Connor D, Amalfitano A, Chamberlain JS. 1999. Improved 

production of gutted adenovirus in cells expressing adenovirus 

preterminal protein and DNA polymerase. J Virol 73(9)7835-41. 

Hartigan-O'Connor D, Barjot C, Crawford R, Chamberlain JS. 2002a. Efficient 

rescue of gutted adenovirus genomes allows rapid production of 

concentrated stocks without negative selection. Hum Gene Ther 

13(4):519-31. 

Hartigan-O'Connor D, Barjot C, Salvatori G, Chamberlain JS. 2002b. Generation 

and growth of gutted adenoviral vectors. Methods Enzymol 346:224-46. 

Haviv YS, Blackwell JL, Li H, Wang M, Lei X, Curiel DT. 2001. Heat shock and 

heat shock protein 70i enhance the oncolytic effect of replicative 

adenovirus. Cancer Res 61 (23):8361 -5. 



245 

Hehir KM, Armentano D, Cardoza LM, Choquette TL, Berthelette PB, White GA, 

Couture LA, Everton MB, Keegan J, Martin JM and others. 1996. 

Molecular characterization of replication-competent variants of 

adenovirus vectors and genome modifications to prevent their 

occurrence. J V7ro/70(12):8459-67. 

Henry O, Dormond E, Perrier M, Kamen A. 2004. Insights into adenoviral vector 

production kinetics in acoustic filter-based perfusion cultures. Biotechnol 

Bioeng 86(7):765-74. 

Henry O, Perrier M, Kamen A. 2005. Metabolic flux analysis of HEK-293 cells in 

perfusion cultures for the production of adenoviral vectors. Metab Eng 

7(5-6):467-76. 

Hutchins B. 2002. Development of a Reference Material for Characterizing 

Adenovirus Vectors. Bioprocessing J1 (1 ):25-8. 

Hutchins B, Sajjadi N, Seaver S, Shepherd A, Bauer SR, Simek S, Carson K, 

Aguilar-Cordova E. 2000. Working toward an adenoviral vector testing 

standard. Mol Ther 2(6):532-4. 

Imler JL, Bout A, Dreyer D, Dieterle A, Schultz H, Valerio D, Mehtali M, Pavirani 

A. 1995. Trans-complementation of E1-deleted adenovirus: a new vector 

to reduce the possibility of codissemination of wild-type and recombinant 

adenoviruses. Hum Gene 7/7er6(6):711-21. 



246 

Imperiale MJ, Kao HT, Feldman LT, Nevins JR, Strickland S. 1984. Common 

control of the heat shock gene and early adenovirus genes: evidence for 

a cellular E1 A-like activity. Mol Cell B/'o/4(5) :867-74. 

Ishii-Watabe A, Uchida E, Iwata A, Nagata R, Satoh K, Fan K, Murata M, 

Mizuguchi H, Kawasaki N, Kawanishi T and others. 2003. Detection of 

replication-competent adenoviruses spiked into recombinant adenovirus 

vector products by infectivity PCR. Mol 7T7er8(6):1009-16. 

Iyer P, Ostrove JM, Vacante D. 1999. Comparaison of manufacturing techniques 

for adenovirus production. Cytotechnology 30:169-72. 

Jardon M, Gamier A. 2003. PH, pC02, and temperature effect on R-adenovirus 

production. Biotechnol Prog 19(1):202-8. 

Kamen A, Henry O. 2004. Development and optimization of an adenovirus 

production process. J Gene Med 6 Suppl 1 :S184-92. 

Kao HT, Nevins JR. 1983. Transcriptional activation and subsequent control of 

the human heat shock gene during adenovirus infection. Mol Cell Biol 

3(11):2058-65. 



247 

Klyushnichenko V, Bernier A, Kamen A, Harmsen E. 2001. Improved high-

performance liquid chromatographic method in the analysis of adenovirus 

particles. Journal of Chromatography B. Biomedical Sciences and 

Applications 755(1 -2):27-36. 

Kochanek S. 1999. High-capacity adenoviral vectors for gene transfer and 

somatic gene therapy. Hum Gene Ther 10(15):2451 -9. 

Kreppel F, Biermann V, Kochanek S, Schiedner G. 2002. A DNA-based method 

to assay total and infectious particle contents and helper virus 

contamination in high-capacity adenoviral vector preparations. Hum Gene 

7/7er13(10):1151-6. 

Kumar-Singh R, Chamberlain JS. 1996. Encapsidated adenovirus 

minichromosomes allow delivery and expression of a 14 kb dystrophin 

cDNA to muscle cells. Hum Mol Genet 5(7) :913-21. 

Lehmberg E, Traina JA, Chakel JA, Chang RJ, Parkman M, McCaman MT, 

Murakami PK, Lahidji V, Nelson JW, Hancock WS and others. 1999. 

Reversed-phase high-performance liquid chromatographic assay for the 

adenovirus type 5 proteome. J Chromatogr B Biomed Sci Appl 

732(2):411-23. 



248 

Lewis AM, Jr., Prigge KO, Rowe WP. 1966. Studies of adenovirus-SV40 hybrid 

viruses. IV. An adenovirus type 2 strain carrying the infectious SV40 

genome. Proc Natl Acad Sci USA 55(3):526-31. 

Lewis AM, Jr., Rowe WP. 1970. Isolation of two plaque variants from the 

adenovirus type 2-simian virus 40 hybrid population which differ in their 

efficiency in yielding simian virus 40. J V7ro/5(4):413-20. 

Lieber A, He CY, Kirillova I, Kay MA. 1996. Recombinant adenoviruses with 

large deletions generated by Cre-mediated excision exhibit different 

biological properties compared with first-generation vectors in vitro and in 

vivo. J Wro/70(12):8944-60. 

Liu CH, Wu PS. 2007. Optimization of adenoviral production in human 

embryonic kidney cells using response surface methodology. J Biosci 

B/oeng 103(5):406-11. 

Liu H, Naismith JH, Hay RT. 2003. Adenovirus DNA replication. Curr Top 

Microbiol Immunol 272:131 -64. 

Lochmuller H, Jani A, Huard J, Prescott S, Simoneau M, Massie B, Karpati G, 

Acsadi G. 1994. Emergence of early region 1-containing replication-

competent adenovirus in stocks of replication-defective adenovirus 

recombinants (delta E1 + delta E3) during multiple passages in 293 cells. 

Hum Gene 77)er5(12):1485-91. 



249 

Longley R, Radzniak L, Santoro M, Tsao YS, Condon RGG, Lio P, Voloch M, 

Liu Z. 2005. Development of a Serum-free Suspension Process for the 

Production of a Conditionally Replicating Adenovirus using A549 Cells 

Cytotechnology 49(2-3) :161 -71. 

Lopez T, Lopez S, Arias CF. 2006. Heat shock enhances the susceptibility of 

BHK cells to rotavirus infection through the facilitation of entry and post-

entry virus replication steps. Virus Res 121 (1):74-83. 

Louis N, Evelegh C, Graham FL. 1997. Cloning and sequencing of the cellular-

viral junctions from the human adenovirus type 5 transformed 293 cell 

line. Virology 233(2):423-9. 

Lusky M. 2005. Good manufacturing practice production of adenoviral vectors 

for clinical trials. Hum Gene Ther 16(3):281 -91. 

Lusky M, Christ M, Rittner K, Dieterle A, Dreyer D, Mourot B, Schultz H, 

Stoeckel F, Pavirani A, Mehtali M. 1998. In vitro and in vivo biology of 

recombinant adenovirus vectors with E1, E1/E2A, or E1/E4 deleted. J 

Virol72(3):2022-32. 

Lusky M, Grave L, Dieterle A, Dreyer D, Christ M, Ziller C, Furstenberger P, 

Kintz J, Hadji DA, Pavirani A and others. 1999. Regulation of adenovirus-

mediated transgene expression by the viral E4 gene products: 

requirement for E4 ORF3. J Virol 73(10):8308-19. 



250 

Ma L, Bluyssen HA, De Raeymaeker M, Laurysens V, van der Beek N, Pavliska 

H, van Zonneveld AJ, Tomme P, van Es HH. 2001. Rapid determination 

of adenoviral vector titers by quantitative real-time PCR. J Virol Methods 

93(1-2):181-8. 

Maizel JVJ, White DO, Scharff MD. 1968. The polypeptides of adenovirus. I. 

Evidence for multiple protein components in the virion and a comparison 

of types 2, 7A, and 12. Virology 36(1 ):115-25. 

Maranga L, Aunins JG, Zhou W. 2005. Characterization of changes in PER.C6 

cellular metabolism during growth and propagation of a replication-

deficient adenovirus vector. Biotechnol Bioeng 90(5):645-55. 

McConnell MJ, Imperiale MJ. 2004. Biology of adenovirus and its use as a 

vector for gene therapy. Hum Gene Ther 15(11 ):1022-33. 

Meghrous J, Aucoin MG, Jacob D, Chahal PS, Arcand N, Kamen AA. 2005. 

Production of recombinant adeno-associated viral vectors using a 

baculovirus/insect cell suspension culture system: from shake flasks to a 

20-L bioreactor. Biotechnol Prog 21 (1 ):154-60. 

Meier O, Greber UF. 2003. Adenovirus endocytosis. J Gene Med5(6):451-62. 



251 

Meneses-Acosta A, Dormond E, Jacob D, Tom R, Bernier A, Perret S, St-

Laurent G, Durocher Y, Gilbert R, Kamen A. 2007. Development of a 

suspension serum-free helper-dependent adenovirus production system 

and assessment of co-infection conditions. J Virol Methods. 

Meunier-Durmort C, Grimal H, Sachs LM, Demeneix BA, Forest C. 1997. 

Adenovirus enhancement of polyethylenimine-mediated transfer of 

regulated genes in differentiated cells. Gene Ther4(8):808-14. 

Mitani K, Graham FL, Caskey CT, Kochanek S. 1995. Rescue, propagation, and 

partial purification of a helper virus-dependent adenovirus vector. Proc 

Natl Acad Sci USA 92(9):3854-8. 

Mittereder N, March KL, Trapnell BC. 1996. Evaluation of the concentration and 

bioactivity of adenovirus vectors for gene therapy. J Virol 70(11):7498-

509. 

Monica TJ, Montgomery T, Ayala JL, Schoofs GM, Whiteley EM, Roth G, 

Garbutt JJ, Harvey S, Castillo FJ. 2000. Monitoring adenovirus infections 

with on-line and off-line methods. Biotechnol Prog 16(5):866-71. 

Montgomery DC. 2005. Design and analysis of experiments. In: Wiley, editor. 

New York. p431-2. 



252 

Morsy MA, Caskey CT. 1999. Expanded-capacity adenoviral vectors-the 

helper-dependent vectors. Mol Med Today 5(1 ):18-24. 

Murakami P, McCaman MT. 1999. Quantitation of adenovirus DNA and virus 

particles with the PicoGreen fluorescent Dye. Anal Biochem 274(2):283-

8. 

Nadeau I, Gamier A, Cote J, Massie B, Chavarie C, Kamen A. 1996. 

Improvement of recombinant protein production with the human 

adenovirus/293S expression system using fed-batch strategies. 

Biotechnol Bioeng 51:613-23. 

Nadeau I, Gilbert PA, Jacob D, Perrier M, Kamen A. 2002. Low-protein medium 

affects the 293SF central metabolism during growth and infection with 

adenovirus. Biotechnol Bioeng 77(1 ):91 -104. 

Nadeau I, Jacob D, Perrier M, Kamen A. 2000. 293SF metabolic flux analysis 

during cell growth and infection with an adenoviral vector. Biotechnol 

Prog 16(5) :872-84. 

Nadeau I, Kamen A. 2003. Production of adenovirus vector for gene therapy. 

Biotechnology Advances 20(7-8):475-489. 



253 

National Institute of Health. 2002. Assessement of adenoviral vectors safety and 

toxicity: Report of the National Institutes of Health Recombinant DNA 

Advisory Committee. Hum Gene Ther 13(1 ):1 -13. 

Nevins JR. 1982. Induction of the synthesis of a 70,000 dalton mammalian heat 

shock protein by the adenovirus E1A gene product. Cell 29(3) :913-9. 

Ng P, Beauchamp C, Evelegh C, Parks R, Graham FL. 2001. Development of a 

FLP/frt system for generating helper-dependent adenoviral vectors. Mol 

Tfter 3(5 Pt1):809-15. 

Ng P, Evelegh C, Cummings D, Graham FL. 2002a. Cre levels limit packaging 

signal excision efficiency in the Cre/loxP helper-dependent adenoviral 

vector system. J W/-o/76(9):4181-9. 

Ng P, Parks RJ, Graham FL. 2002b. Preparation of helper-dependent adenoviral 

vectors. Methods Mol Med 69:371 -88. 

Nielsen SU, Bassendine MF, Burt AD, Martin C, Pumeechockchai W, Toms GL. 

2006. Association between hepatitis C virus and very-low-density 

lipoprotein (VLDL)/LDL analyzed in iodixanol density gradients. J Virol 

80(5):2418-28. 



254 

Nossen JO, Aakhus T, Berg KJ, Jorgensen NP, Andrew E. 1990. Experience 

with iodixanol, a new nonionic dimeric contrast medium. Preliminary 

results from the human phase I study. Invest Radiol 25 Suppl 1 :S113-4. 

Nyberg-Hoffman C, Shabram P, Li W, Giroux D, Aguilar-Cordova E. 1997. 

Sensitivity and reproducibility in adenoviral infectious titer determination. 

A/afMec/3(7):808-11. 

O'Reilly DR, Miller LK, Luckow VA. 1994. Baculovirus Expression Vectors: A 

Laboratory Manual. New York: Oxford University Press. 

Oka K, Chan L. 2005. Construction and characterization of helper-dependent 

adenoviral vectors for sustained in vivo gene therapy. Methods Mol Med 

108:329-50. 

Okada T, Nomoto T, Yoshioka T, Nonaka-Sarukawa M, Ito T, Ogura T, Iwata-

Okada M, Uchibori R, Shimazaki K, Mizukami H and others. 2005. Large-

scale production of recombinant viruses by use of a large culture vessel 

with active gassing. Hum Gene Tiber 16(10):1212-8. 

Palmer D, Ng P. 2003. Improved system for helper-dependent adenoviral vector 

production. Mol Tr;er 8(5) :846-52. 



255 

Palmer DJ, Ng P. 2004. Physical and infectious titers of helper-dependent 

adenoviral vectors: a method of direct comparison to the adenovirus 

reference material. Mol 777er10(4):792-8. 

Palmer DJ, Ng P. 2005. Helper-dependent adenoviral vectors for gene therapy. 

Hum Gene Ther 16(1 ):1 -16. 

Palomares LA, Lopez S, Ramirez OT. 2002. Strategies for manipulating the 

relative concentration of recombinant rotavirus structural proteins during 

simultaneous production by insect cells. Biotechnology and 

Bioengineering 78(6):635-44. 

Park MT, Lee GM. 2000. Rapid titer assay of adenovirus containing green 

fluorescent protein gene using flow cytometry analysis. Bioprocess 

Engineering 22:403-6. 

Park MT, Lee MS, Kim SH, Jo EC, Lee GM. 2004. Influence of culture passages 

on growth kinetics and adenovirus vector production for gene therapy in 

monolayer and suspension cultures of HEK 293 cells. Appl Microbiol 

Biotechnol 65(5):553-8. 

Parks RJ, Bramson JL, Wan Y, Addison CL, Graham FL. 1999. Effects of stuffer 

DNA on transgene expression from helper-dependent adenovirus 

vectors. J Virol 73(10):8027-34. 



256 

Parks RJ, Chen L, Anton M, Sankar U, Rudnicki MA, Graham FL. 1996. A 

helper-dependent adenovirus vector system: removal of helper virus by 

Cre-mediated excision of the viral packaging signal. Proc Natl Acad Sci U 

S 4 93(24):13565-70. 

Parks RJ, Graham FL. 1997. A helper-dependent system for adenovirus vector 

production helps define a lower limit for efficient DNA packaging. J Virol 

71(4):3293-8. 

Pearson S, Jia H, Kandachi K. 2004. China approves first gene therapy. Nat 

Biotechnol 22(1):3-4. 

Peng HH, Wu S, Davis JJ, Wang L, Roth JA, Marini FC, 3rd, Fang B. 2006. A 

rapid and efficient method for purification of recombinant adenovirus with 

arginine-glycine-aspartic acid-modified fibers. Anal Biochem 354(1 ):140-

7. 

Peng Z. 2005. Current status of gendicine in China: recombinant human Ad-p53 

agent for treatment of cancers. Hum Gene Ther 16(9):1016-27. 

Phillips B, Abravaya K, Morimoto Rl. 1991. Analysis of the specificity and 

mechanism of transcriptional activation of the human hsp70 gene during 

infection by DNA viruses. J Virol 65(11):5680-92. 



257 

Pierce WE, Rosenbaum MJ, Edwards EA, Peckinpaugh RO, Jackson GG. 1968. 

Live and inactivated adenovirus vaccines for the prevention of acute 

respiratory illness in naval recruits. Am J Epidemiol 87(1 ):237-46. 

Puntel M, Curtin JF, Zirger JM, Muhammad AK, Xiong W, Liu C, Hu J, Kroeger 

KM, Czer P, Sciascia S and others. 2006. Quantification of high-capacity 

helper-dependent adenoviral vector genomes in vitro and in vivo, using 

quantitative TaqMan real-time polymerase chain reaction. Hum Gene 

Therl 7(5) :531-44. 

Raper SE, Chirmule N, Lee FS, Wivel NA, Bagg A, Gao GP, Wilson JM, 

Batshaw ML. 2003. Fatal systemic inflammatory response syndrome in a 

ornithine transcarbamylase deficient patient following adenoviral gene 

transfer. Mol Genet Metab 80(1 -2):148-58. 

Rowe WP, Huebner RJ, Gilmore LK, Parrott RH, Ward TG. 1953. Isolation of a 

cytopathogenic agent from human adenoids undergoing spontaneous 

degeneration in tissue culture. Proc Soc Exp Biol Med84(3):570-3. 

Sakhuja K, Reddy PS, Ganesh S, Cantaniag F, Pattison S, Limbach P, Kayda 

DB, Kadan MJ, Kaleko M, Connelly S. 2003. Optimization of the 

generation and propagation of gutless adenoviral vectors. Hum Gene 

7/7er14(3):243-54. 



258 

Sandhu KS, Al-Rubeai M. 2008. Monitoring of the adenovirus production 

process by flow cytometry. Biotechnol Prog 24(1 ):250-61. 

Sandig V, Youil R, Bett AJ, Franlin LL, Oshima M, Maione D, Wang F, Metzker 

ML, Savino R, Caskey CT. 2000. Optimization of the helper-dependent 

adenovirus system for production and potency in vivo. Proc Natl Acad Sci 

USA97{3)-A 002-7. 

Santomenna LD, Colberg-Poley AM. 1990. Induction of cellular hsp70 

expression by human cytomegalovirus. J V/'ro/64(5) :2033-40. 

Sargent KL, Ng P, Evelegh C, Graham FL, Parks RJ. 2004. Development of a 

size-restricted pIX-deleted helper virus for amplification of helper-

dependent adenovirus vectors. Gene Ther 11 (6):504-11. 

Sato M, Suzuki S, Kubo S, Mitani K. 2002. Replication and packaging of helper-

dependent adenoviral vectors. Gene Ther 9(7):472-6. 

Schalk JA, de Vries CG, Orzechowski TJ, Rots MG. 2007. A rapid and sensitive 

assay for detection of replication-competent adenoviruses by a 

combination of microcarrier cell culture and quantitative PCR. J Virol 

Methods 145(2):89-95. 



259 

Schenk TE. 2001. Adenoviridae: The Viruses and Their Replication. In: Knipe 

DM, Howley PM, editors. Fundamental Virology. Lippincott Williams & 

Wilkinsed.p 979-1016. 

Schiedner G, Hertel S, Johnston M, Biermann V, Dries V, Kochanek S. 2002. 

Variables affecting in vivo performance of high-capacity adenovirus 

vectors. J Virol 76(4): 1600-9. 

Schiedner G, Hertel S, Kochanek S. 2000. Efficient transformation of primary 

human amniocytes by E1 functions of Ad5: generation of new cell lines 

for adenoviral vector production. Hum Gene Ther\ 1 (15):2105-16. 

Schoofs G, Monica TJ, Ayala J, Howtitz J, Montgomery T, Roth G, Castillo FJ. 

1998. A High-Yielding Serum-Free, Suspension culture Process to 

Manufacture Recombinant Adenoviral Vectors for Gene Therapy. 

Cytotechnology 28:81 -89. 

Segura MM, Gamier A, Kamen A. 2006. Purification and characterization of 

retrovirus vector particles by rate zonal ultracentrifugation. J Virol 

Methods 133(1):82-91. 

Shabram P, Aguilar-Cordova E. 2000. Multiplicity of infection/multiplicity of 

confusion. Mol Ther2(5)A20--\. 



260 

Shabram PW, Giroux DD, Goudreau AM, Gregory RJ, Horn MT, Huyghe BG, 

Liu X, Nunnally MH, Sugarman BJ, Sutjipto S. 1997. Analytical anion-

exchange HPLC of recombinant type-5 adenoviral particles. Hum Gene 

7/7er8(4):453-65. 

Simek S, Byrne BJ, Bauer SR. 2002. FDA perspectives on the use of the 

adenovirus reference material. Bioprocessing J1 (3):40-42. 

Subramanian S, Kim JJ, Harding F, Altaras GM, Aunins JG, Zhou W. 2008. 

Scaleable production of adenoviral vectors by transfection of adherent 

PER.C6 cells. (8756-7938 (Print)). 

Svaland MG, Haider T, Langseth-Manrique K, Andrew E, Hals PA. 1992. Human 

pharmacokinetics of iodixanol. Invest Radiol27(2): 130-3. 

Tamanoi F, Stillman BW. 1982. Function of adenovirus terminal protein in the 

initiation of DNA replication. Proc Natl Acad Sci USA 79(7):2221 -5. 

Tatsis N, Ertl HC. 2004. Adenoviruses as vaccine vectors. Mol Ther 10(4):616-

29. 

Transfiguracion J, Bernier A, Arcand N, Chahal P, Kamen A. 2001. Validation of 

a high-performance liquid chromatographic assay for the quantification of 

adenovirus type 5 particles. J Chromatogr B Biomed Sci Appl 761 (2):187-

94. 



261 

Umana P, Gerdes CA, Stone D, Davis JR, Ward D, Castro MG, Lowenstein PR. 

2001. Efficient FLPe recombinase enables scalable production of helper-

dependent adenoviral vectors with negligible helper-virus contamination. 

Nat Biotechnol 19(6):582-5. 

van Bergen BG, van der Ley PA, van Driel W, van Mansfeld AD, van der Vliet 

PC. 1983. Replication of origin containing adenovirus DNA fragments that 

do not carry the terminal protein. Nucleic Acids Res 11 (7):1975-89. 

Varga CM, Tedford NC, Thomas M, Klibanov AM, Griffith LG, Lauffenburger DA. 

2005. Quantitative comparison of polyethylenimine formulations and 

adenoviral vectors in terms of intracellular gene delivery processes. Gene 

TherA 2(13):1023-32. 

Varga CM, Wickham TJ, Lauffenburger DA. 2000. Receptor-mediated targeting 

of gene delivery vectors: insights from molecular mechanisms for 

improved vehicle design. Biotechnol Bioeng 70(6):593-605. 

Vasconcelos D, Norrby E, Oglesbee M. 1998. The cellular stress response 

increases measles virus-induced cytopathic effect. J Gen Virol 79 ( Pt 

7):1769-73. 

Voisard D, Meuwly F, Ruffieux PA, Baer G, Kadouri A. 2003. Potential of cell 

retention techniques for large-scale high-density perfusion culture of 

suspended mammalian cells. Biotechnol Bioeng 82(7):751-65. 



262 

von Groll A, Levin Y, Barbosa MC, Ravazzolo AP. 2006. Linear DNA low 

efficiency transfection by liposome can be improved by the use of cationic 

lipid as charge neutralizer. Biotechnol Prog 22(4): 1220-4. 

Wang F, Puddy AC, Mathis BC, Montalvo AG, Louis AA, McMackin JL, Xu J, 

Zhang Y, Tan CY, Schofield TL and others. 2005. Using QPCR to assign 

infectious potencies to adenovirus based vaccines and vectors for gene 

therapy: toward a universal method for the facile quantitation of virus and 

vector potency. Vaccine 23(36):4500-8. 

Wang Q, Greenburg G, Bunch D, Farson D, Finer MH. 1997. Persistent 

transgene expression in mouse liver following in vivo gene transfer with a 

delta E1/delta E4 adenovirus vector. Gene Ther 4(5) :393-400. 

Wang Q, Jia XC, Finer MH. 1995. A packaging cell line for propagation of 

recombinant adenovirus vectors containing two lethal gene-region 

deletions. Gene Ther 2(10):775-83. 

Weaver LS, Kadan MJ. 2000. Evaluation of adenoviral vectors by flow 

cytometry. Methods 21 (3):297-312. 

Wu SC, Huang GY, Liu JH. 2002. Production of retrovirus and adenovirus 

vectors for gene therapy: a comparative study using microcarrier and 

stationary cell culture. Biotechnol Prog 18(3):617-22. 



263 

Xie L, Metallo C, Warren J, Pilbrough W, Peltier J, Zhong T, Pikus L, Yancy A, 

Leung J, Aunins JG and others. 2003. Large-scale propagation of a 

replication-defective adenovirus vector in stirred-tank bioreactor PER.C6 

cell culture under sparging conditions. Biotechnol Bioeng 83(1):45-52. 

Xie L, Pilbrough W, Metallo C, Zhong T, Pikus L, Leung J, Aunins JG, Zhou W. 

2002. Serum-free suspension cultivation of PER.C6(R) cells and 

recombinant adenovirus production under different pH conditions. 

Biotechnol Bioeng 80(5):569-79. 

Xu Q, Arevalo MT, Pichichero ME, Zeng M. 2006. A new complementing cell 

line for replication-incompetent E1-deleted adenovirus propagation 

Cytotechnology 51 (3):x-x. 

Yeh P, Dedieu JF, Orsini C, Vigne E, Denefle P, Perricaudet M. 1996. Efficient 

dual transcomplementation of adenovirus E1 and E4 regions from a 293-

derived cell line expressing a minimal E4 functional unit. J Virol 

70(1):559-65. 

Yoshimura K, Rosenfeld MA, Seth P, Crystal RG. 1993. Adenovirus-mediated 

augmentation of cell transfection with unmodified plasmid vectors. J Biol 

Chem 268(4) :2300-3. 



264 

Youil R, Toner TJ, Su Q, Casimiro D, Shiver JW, Chen L, Bett AJ, Rogers BM, 

Burden EC, Tang A and others. 2003. Comparative analysis of the effects 

of packaging signal, transgene orientation, promoters, polyadenylation 

signals, and E3 region on growth properties of first-generation 

adenoviruses. Hum Gene Ther 14(10):1017-34. 

Yuk IH, Olsen MM, Geyer S, Forestell SP. 2004. Perfusion cultures of human 

tumor cells: a scalable production platform for oncolytic adenoviral 

vectors. Biotechnol Bioeng 86(6):637-42. 

Zhang C, Ferreira TB, Cruz PE, Alves PM, Haury M, Carrondo MJ. 2006. The 

importance of 293 cell cycle phase on adenovirus vector production. 

Enzyme and Microbial Technology 39:1328-32. 

Zhang WW, Koch PE, Roth JA. 1995. Detection of wild-type contamination in a 

recombinant adenoviral preparation by PCR. Biotechniques 18(3):444-7. 

Zhou H, Beaudet AL. 2000. A new vector system with inducible E2a cell line for 

production of higher titer and safer adenoviral vectors. Virology 

275(2):348-57. 

Zhou H, O'Neal W, Morral N, Beaudet AL. 1996. Development of a 

complementing cell line and a system for construction of adenovirus 

vectors with E1 and E2a deleted. J V//TO/70(10):7030-8. 



265 

Zhou H, Zhao T, Pastore L, Nageh M, Zheng W, Rao XM, Beaudet AL 2001. A 

Cre-expressing cell line and an E1/E2a double-deleted virus for 

preparation of helper-dependent adenovirus vector. Mol Ther 3(4):613-

22. 

Zhou HS, Zhao T, Rao XM, Beaudet AL. 2002. Production of helper-dependent 

adenovirus vector relies on helper virus structure and complementing. J 

Gene Med 4(5) :498-509. 

Zhu J, Grace M, Casale J, Chang AT, Musco ML, Bordens R, Greenberg R, 

Schaefer E, Indelicato SR. 1999. Characterization of replication-

competent adenovirus isolates from large-scale production of a 

recombinant adenoviral vector. Hum Gene Ther 10(1 ):113-21. 

Zolotukhin S, Byrne BJ, Mason E, Zolotukhin I, Potter M, Chesnut K, 

Summerford C, Samulski RJ, Muzyczka N. 1999. Recombinant adeno-

associated virus purification using novel methods improves infectious titer 

and yield. Gene Ther6(6):973-85. 


