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RESUME

Le modele du comportement dynamique d'un émetteur est un outil utile dans la
simulation au niveau systéme pour les concepteurs de systémes de communication
puisque le modéle du comportement peut réduire considérablement la complexité et le
temps alloué dans les procédures de conception et d'optimisation. En outre, le mode¢le du
comportement peut fournir une approche rapide et efficace pour valider la performance
des différents schémas de prédistorsion pendant le processus d'extraction de parametres
du dispositif de prédistorsion, et peut &tre utile pour déterminer la topologie du dispositif
de prédistorsion et ainsi compenser la non-linéarité dynamique de l'émetteur a large
bande. Dans cette thése, nous rapportons un nouveau modele a deux boites basées sur le
modeéle du comportement dynamique pour caractériser un émetteur a large bande et les
dispositifs de prédistorsion correspondants pour pré-corriger la non-linéarité dynamique
de I'émetteur. D'ailleurs, un réseau de neurones de délai de valeurs en temps réel est
présenté afin de modéliser le comportement dynamique non linéaire d'un amplificateur
de puissance de la troisiéme génération (3G) pour les stations de base.

Tout d’abord, un algorithme moyen en mouvement a pondération exponentielle
dynamique est développé pour établir un modéle de Wiener non linéaire, basé sur table a
correspondance (LUT), pour les émetteurs a large bande sans mémoire. Afin d'identifier
précisément les effets de mémoire, un algorithme d'évaluation de temps de délai basé sur
l'interpolation de Lagrange et le calcul de covariance crois¢e est développé pour aligner

les vecteurs de données en bande de base d'entrée et de sortie capturée a I'avance.
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D'ailleurs, pour évaluer l'exactitude et la robustesse des différents modéles de Wiener,
on a propos¢ une nouvelle méthode de validation. Cette méthode est basée sur
’annulation de la croissance du spectre qui est provoquée par la non-linéarité statique,
avec l'aide de cascader linverse du modele sans mémoire complexe. Pour améliorer
l'exactitude relativement limitée du modéle conventionnel de Wiener, un nouveau
modele augmenté de Wiener est proposé. L'efficacité du modele augmenté de Wiener
proposé et son procédé d'identification ont été évalués en utilisant un emetteur basé sur
un amplificateur ACPRa base de GaAs FET de 60-watt conduit par un signal a deux
porteuses WCDMA. La supériorit¢ du modele augment¢ de Wiener au modele
conventionnel de Wiener est validée en comparant les spectres mesurés des deux
comportements a celui de l'émetteur.

Ensuite, basé sur l'excellente performance du modele augmenté de Wiener, on
propose pour la premiére fois, un dispositif de prédistorsion augmentée de Hammerstein,
basé sur la table de correspondance, pour améliorer plus loin la performance de
précompensation du dispositif de prédistorsion traditionnelle de Hammerstein pour les
émetteurs a large bande. Un prototype d'émetteur sans fil, qui inclut un amplificateur
"push-pull” ex cent un puissance de 60-Watt opérant dans la bande L, est utilisé pour
évaluer la performance du dispositif de prédistorsion nouvellement proposce. La
performance de précompensation du dispositif de prédistorsion augmentée proposée en
supprimant la croissance du spectre sera illustrée en comparant les spectres de sortie de
I'émetteur linéarité par les différents dispositifs de prédistorsion a celui de I'émetteur

sans prédistorsion.
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Finalement, un nouveau réseau neurologique a temps de délai de valeurs en temps
réel est également proposé pour construire un modele de comportement dynamique pour
les amplificateurs de puissance de station de la base 3G. Comparé aux modeles de base
sur des réseaux de neurones précédemment proposés, une complexité sensiblement
réduite et une durée de traitement plus courte dans l'analyse et les procédures
d'apprentissage sont obtenues avec ce modele d’un réseau neuronal a valeurs reelles a
délai (RVTDNN). Apres la formation du RVTDNN avec les données mesurées en bande
de base, le modele de la AP basée sur le comportement de RVIDNN est obtenu et
différents signaux d'essai sont appliqués a ce modele pour valider son exactitude et sa
généralité. Les résultats de validation dans le domaine temporel, fréquentiel et de
puissance sont présentés pour démontrer l'exactitude du modele de RVIDNN en

prévoyant les effets de mémoire.



ABSTRACT

The dynamic behavioral model of a transmitter is a useful tool in the system
simulation for designers of communication systems since the behavioral model can
greatly reduce complexity and time-consuming for design and optimization procedures.
In addition, the behavioral model can provide a fast and effective approach to validate
the performance of the different predistortion schemes during the predistorter parameter
extraction process, and can be helpful for determining the topology of the predistorter
for pre-compensating the dynamic nonlinearity of the broadband transmitter. In this
thesis, a novel two-box model based dynamic behavioral model for characterizing a
broadband transmitter and the corresponding predistorters for pre-correcting the
dynamic nonlinearity of the transmitter is reported. Moreover, a real-valued time delay
neural network is presented for modeling the dynamic nonlinear behavior of a 3G base-
station power amplifier.

At first, a dynamic exponential weighted moving average algorithm is developed to
establish a LUT-based nonlinear Wiener model for memoryless wideband transmitters.
To improve the relatively limited accuracy of the conventional Wiener model, a new
augmented Wiener model is proposed. The superiority of the augmented Wiener model
to the conventional Wiener model is validated by comparing the measured spectra of the
two behavioral with that of the practical transmitter.

Then, an augmented look-up-table-based Hammerstein predistorter is proposed for

the first time to further improve the pre-compensation performance of the traditional
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Hammerstein predistorter for the broadband transmitters. A wireless transmitter
prototype, which includes an L-band push-pull GaAs FET 60-Watt peak-envelope-power
amplifier, is utilized to evaluate the performance of the newly proposed predistorter. The
pre-compensation performance of the proposed augmented predistorter in suppressing
the spectrum regrowth will be illustrated by comparing the output spectra of the
transmitter linearized by the different predistorters with that of the transmitter without
predistortion.

Finally, a novel real-valued time delay neural network is also put forward to construct
a dynamic behavior model for 3G base station power amplifiers (PA). Compared with
the previously published neural network based PA models, a significantly reduced
complexity and shorter processing time in the analysis and training procedures is
obtained with this RVTDNN model. After training the RVTDNN with the measured
baseband data, the RVTDNN behavioral model of the PA is obtained and different test
signals are applied to this model to validate its accuracy and generality. The time-,
frequency- and power-domain validation results are presented to demonstrate the

accuracy of the RVTDNN model in predicting the memory effects.
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CONDENSE EN FRANCAIS

MODELISER LE COMPORTEMENT DYNAMIQUE ET
LA PRECOMPENSATION DE NON-LINEARITE POUR

LES EMETTEURS A BANDE LARGE

0.1 INTRODUCTION

Les systémes de communication sans fil 4 large bande moderne ont appliqué des
conditions strictes aux émetteurs dus 2 l'utilisation de schémas de modulation de haute
capacité, tels que l'accés multiple par répartition en code (CDMA), de l'accés multiple
par répartition en code & large bande (WCDMA), de multiplexage fréquentiel orthogonal
(OFDM), de l'interopérabilité mondiale pour I'accés en micro-onde (WIMAX) et, etc..,
pour tirer profit des ressources limitées précieuses de fréquence. Certaines des
conditions sont contradictoires. Par exemple, la réalisation simultané de linéarité
supérieure et d’efficacité en puissance élevée est une condition de conflit et devient un
grand défi pour les concepteurs. 11 est bien connu que ces sighaux modulés mentionnés
ci-dessus général des enveloppes non constantes avec les rapports Créte sur Moyenne de
puissance (PAPR) élevés, qui peuvent étre aussi élevés que les 12 dB dans certains cas.
En conséquence, I'amplificateur de puissance (PA) dans l'émetteur doit étre congu pour
fonctionner pres de sa région de saturation, afin de fournir une efficacité du systeme en

puissance plus élevée, ou a une grande remontée de sa région non lincaire afin de
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rencontrer la linéarité exigée. En conséquence, la PA finit avec une efficacité €levee et
une mauvaise linéarité ou vice-versa. Par conséquent, pour répondre a I'exigence de
linéarités en fonctionnant le PA dans sa région non linéaire, on doit corriger toutes les
différentes sources de distorsion le long de la chaine entiére d'émetteur.

Pour cette raison, on a proposé différentes techniques de linéarisation telles que la
rétroaction, post-compensation, et la prédistorsion, pour améliorer les linéarités de
I'émetteur. Parmi les diverses techniques de linéarisation, la prédistorsion numérique de
bande de base est 'une des techniques de linéarisation les plus prometteuses et les plus
rentables dues a son exécution numérique qui offre une exactitude et une flexibilité
significative.

Pour un systéme non linéaire de bande de base, un modele du systeme non linéaire
peut étre obtenu en formant un réseau ou en extrayant les parametres du modele en
utilisant l'entrée du systéme comme entrée désirée du modeéle et la sortie du systéeme
comme sortie désirée du modele directement. Un tel modele s'appelle un modele de
comportement (ou le modéle "de boite noire") du systéme non linéaire.

D'autre part, un modéle inverse du systéme non linéaire peut étre facilement réalisé si
nous prenons la sortie normalisée du systéme non linéaire comme entrée désirée du
modéle tandis que l'entrée du systéme est prise comme sortie désirée du modele. En fait,
un tel modéle inverse est généralement référé comme dispositif de prédistorsion, qui est
largement utilisé pour compenser la non-linéarité du systéme en le précédant au systeme
non linéaire comme décrit ci-dessus.

Puisque le modéle de comportement réduit considérablement la complexité et le
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temps alloué aux procédures de conception et d'optimisation, c'est un outil utile dans la
simulation de systéme et aide beaucoup le concepteur des systemes de communication,
en particulier, des émetteurs et des amplificateurs de puissance. En outre, le modele de
comportement peut fournir une approche rapide et efficace pour valider la performance
de différents schémas des prédistorsion durant le processus d'extraction de parametre du
dispositif de prédistorsion. Ce modele de comportement est également utile pour
déterminer la topologie du dispositif de prédistorsion. En d'autres termes, le modele de
comportement joue également un role important pour étudier les techniques de
précompensation du systtme non linéaire. Par conséquent, cette dissertation se
concentrera d'abord sur modélisation comportementale de I'émetteur 4 bande large.
Ensuite, basé sur le modéle comportemental, la topologie de prédistorsion est
développee.

L'objectif de cette dissertation est de développer un modéle de comportement precis
et stable de I'émetteur sans fil & bande large, et en outre d'obtenir une topologie
dynamique efficace de précompensation de non-linéarité pour supprimer la croissance de
spectre dans I'émetteur, qui est provoqué par les effets de mémoire et la non-lin¢arité de
I'émetteur. Les efforts de recherches sont concentrés sur les sections suivantes :

» Modele de comportement dynamique en utilisant un modéle de deux boites;

» Schémas de précompensation de la non-linéarité en utilisant un modele de
deux boites;

» Modeéle de comportement dynamique en utilisant un réseau neuronal.

Puisque le modele conventionnel de deux boites ne peut pas modéliser exactement les
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effets de mémoire ou précompenser efficacement la non-linéarit¢ dynamique dans
I'émetteur di a la limitation du filtre linéaire inclus, on propose un modele augmenté de
deux boites en cette dissertation. Dans ce modele augmenté de deux boites, le filtre
linéaire dans le modéle conventionnel de deux boites est remplacé par un filtre
faiblement non linéaire. Au meilleur de notre connaissance, c'est la premiere fois qu'un
tel modeéle non linéaire de deux boites est présenté et mis en application pratique. Basé¢
sur l'excellente performance du modele augmenté de Wiener, on propose un dispositif de
prédistorsion augmenté de Hammerstein pour précompenser la non-linéarité dynamique
de 'émetteur sans fil a large bande. D'ailleurs, comme une nouvelle tentative, un réseau
neuronal a valeurs réelles a délai (RVTDNN) est présenté en cette dissertation pour
simuler la non-linéarit¢ dynamique d'un amplificateur de puissance de la troisieme
génération (3G), qui est le plus important composant non linéaire dans 1'émetteur. Avec
ce réseau neuronal a valeurs réelles, une variété d’algorithmes de propagation en arriére
peut &tre mise en application pour extraire les paramétres du modéle. De cette fagon,
l'algorithme complexe d’apprentissage pour le réseau neuronal complexe est évite et la

vitesse d’apprentissage peut étre en grande partie améliorée.

0.2 EXCLUSION DES NON LINEARITES STATIQUES ET
MODELISATION ET IDENTIFICATION EXACTES DES EFFETS DE

MEMOIRE DES EMETTEURS RF A LARGE BANDE
Un modéle non linéaire de Wiener se compose d'un filtre linéaire dynamique suivi
d'un bloc non linéaire statique, est adopté pour construire un modele de comportement

d'un émetteur RF & large bande. La non-linéarité statique peut étre caractérisée par les
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tables de correspondance basées sur les courbes de AM/AM et de AM/PM de I'émetteur.
Ces courbes peuvent étre extraites directement a partir des données de mesure en bande
de base au moyen d'un procédé de moyenne mobile. En conséquence, le probleme
complexe de non linéaire dynamique original est simplifi¢ 4 un ensemble de problemes
dynamiques linéaires. De cette fagon, l'identification du modéle non linéaire de Wiener
devient plus facile que les solutions traditionnelles, ol tous les paramétres linéaires et
non linéaires du modéle de Wiener sont résolus concurremment au moyen d'algorithmes
compliqués.

Pour extraire la non-linéarité statique de I’émetteur, une moyenne mobile
exponentiellement pondérée est appliquée aux données dynamiques de AM/AM et de
AM/PM pour enlever la dispersion. L'algorithme moyen mobile exponentiellement

pondéré est basé sur I'équation suivante :

y(n) = ay(n-1)+(1-a)x(n) (1)

Ou « est le facteur de pondération avec une valeur entre 0 et 1. Considérez la
dispersion significative dans les caractéristiques AM/AM et AM/PM du I'émetteur, una
fixe sur la gamme dynamique du signal d'entrée ménera & une qualité moyenne mobile
faible. En fait, une grande valeure produit des traces douces (aucune dispersion) mais
incorrectes en raison de la propagation d'erreur moyenne. De méme, une petite valeur
finie par une courbe déchiquetée. Par conséquent, pour adapter une valeur « 4 la
variation de AM/AM et de AM/PM, un arrangement dynamique de o est essentiel. Pour

cette raison, la valeur « doit étre exprimée en fonction de la puissance d'entrée, c.-a-d
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a=F(x(n|) . Les entrées de table de correspondance sont déterminées & partir des

courbes de AM/AM et de AM/PM de I'émetteur obtenu en lissant les caractéristiques
dynamiques en utilisant cette moyenne mobile exponentiellement pondérée. Ces entrées

entourent les composants en phase G, et en quadrature G, de la compression complexe

du gain correspondant a différentes valeurs de grandeur x(n) .

Le tracé des caractéristiques AM/AM et AM/PM que I’on considere «(rn) comme
entrée et x(n) comme sortie, indique le déplacement de la non linéarité. Par conséquent,
le probléme original compliqué modélisant la non linéaire est simplifi¢ & un probléme
linéaire d'identification. Afin d'éviter l'instabilité potentielle d'un filtre de réponse
d’impulsion infinie, un filtre FIR est adopté pour construire le modéle lin€aire
dynamique en cet article. L'identification des poids du filtre FIR peut étre faite en
utilisant 1'algorithme des moindres carrés récursifs.

Les sources a effet de mémoire d'un émetteur RF sont habituellement attribuées aux
effets thermiques et/ou de dispersion électrique. Dans le contexte d'un émetteur a large
bande, les effets de mémoire électriques sont les sources dominantes de dispersion
puisque la constante de temps thermique est trop grande comparée a linverse de la
largeur de bande de signal. Vuolevi et autres, Ku et autres, et Remley et autres, ont
attribué les effets de mémoire électriques a différentes sources comprenant : les effets de
piégeage, l'ionisation d'impact, la réponse en fréquence du AP autour de la fréquence
porteuse, aux conditions d’adaptation, aux fréquences harmoniques et aux conditions

d’adaptation d'impédance a la fréquence d'enveloppe (conception de circuit de
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polarisation). Les effets des deux demniéres sources sont responsables des vecteurs
supplémentaires de distorsion d'intermodulation d'ordre impair. En effet, les non-
linéarités d'ordre pair aprés le mélange avec les fréquences porteuses menent aux
produits d'intermodulation d'ordre impair, qui sont dedans ou tres pres du canal
principal.

Le filtre linéaire de FIR dans le modele de Wiener tient compte de la réponse
fréquentielle autour de la fréquence porteuse (distorsion lin€aire) et pas des sources non
linéaires de déformation d’ordre pair. En fait, les caractéristiques extraites de AM/AM et
de AM/PM du modéle dynamique a effet de mémoire ne sont pas complétement
symétriques autour de I'axe des abscisses. Ceci suggere que les non-linéarités faibles
existent toujours méme aprés extraction de la non-linéarité statique et forte a partir de
données mesurées. C’est pourquoi, il n'est pas suffisant pour modéliser ces non-faibles
linéarités avec un filtre linéaire comme il est normalement fait dans les mod¢les
conventionnels de Wiener. Ceci explique également les possibilités relativement limitées
du modele conventionnel de Wiener pour prévoir la réponse de 1'émetteur.

Par conséquent, on propose un nouveau modele complet a effet de mémoire, ou une
nouvelle branche paralléle est ajoutée au filtre linéaire de FIR. Dans cette nouvelle
branche paralléle, le signal d'entrée est multiplié par son amplitude et appliqué a un
autre filtre de FIR. De cette facon, le filtre linéaire de FIR dans le mod¢le conventionnel
de Wiener est remplacé par un filtre basé sur FIR de faible non linéaire dynamique. Les
termes du second ordre sont introduits au modele dynamique a effet de mémoire de

facon a le rendre capable d’imiter plus exactement les effets de mémoire.
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En utilisant le nouveau modele incluant l'effet de mémoire, on propose un modele
augmenté de Wiener pour modéliser exactement les émetteurs RF a large bande. Ce
modéle augmenté de Wiener est une cascade d'un modéle non linéaire faible dynamique
et d'un modele non linéaire statique fort. Le modele non linéaire fort, basé sur des
caractéristiques douces de AM/AM et de AM/PM des émetteurs, est normalement mis en
application en employant des tables de correspondance. Le modéle non linéaire faible
dynamique se compose du nouveau modéle incluant I'effet de mémoire, qui tient compte
des propriétés dynamiques des émetteurs en présence du signal de communication
modulé. Ce modele augmenté de Wiener peut également étre identifié avec le proceédé
d'extraction du modele conventionnel de Wiener décrit ci-dessus en faisant quelques
réarrangements.

L'efficacitté du modéle augmenté proposé de Wiener et de sa procédure
d'identification a été évaluée en utilisant un émetteur basé sur amplificateur "push-pull”
de 60-watt PEP GaAs FET excitée par un signal WCDMA a deux porteuses. Les
résultats de comparaison des spectres entre les différents modéles d'émetteur et le
prototype d'émetteur indique que le modéle augmenté proposé d'émetteur de Wiener
surpasse d'autres modeles en prévoyant la croissance de spectre provoquée par les effets

de mémoire de 'émetteur a large bande.
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0.3 DISPOSITIF DE PRE-DISTORSION HAMMERSTEIN AUGMENTE
POUR LA LINEARISATION DES EMETTEURS SANS FIL A BANDE

LARGE

D'abord un dispositif de prédistorsion de Hammerstein est utilisé pour établir une
fonction de prédistorsion pour un émetteur sans fil 2 bande large. En conséquence, le
dispositif de prédistorsion est décomposé en sous-ensemble sans mémoire statique non
linéaire et dynamique linéaire. Le sous-ensemble sans mémoire statique est prévu pour
pré compenser la non-linéarité statique de I'émetteur tandis que le filtre dynamique
linéaire est concentré sur la suppression la croissance de spectre provoquée par les effets
de mémoire. Le dispositif de prédistorsion sans mémoire peut étre mis en application en
utilisant la table traditionnelle de correspondance (LUT). Cette LUT est construite en se
basant sur les caractéristiques AM/AM et AM/PM de I'émetteur qui sont extraites
directement a partir des données de mesure en bande de base au moyen d'un procedé
moyen mobile comme expliqué ci-dessus. En conséquence, le probleme dynamique
complexe de prédistorsion est simplifié & un probléme dynamique linéaire relativement
facile. De cette facon, la résolution de prédistorsion de Hammerstein devient plus
commode que les solutions traditionnelles, ou tous les paramétres lin€aires et non
linéaires du modele de Hammerstein sont résolus concurremment au moyen
d'algorithmes €laborés.

L'identification du paramétre de Hammerstein est effectuée en utilisant un
programme d’apprentissage en différé. Pour identifier les paramétres du dispositif de

prédistorsion, la sortie de I'émetteur z,(n) est normalisée par le gain linéaire
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G

linear

indiqué de 1'émetteur et prise comme séquence d’apprentissageu(n) a l'entrée du

dispositif de prédistorsion, c.-a-d.,

u(m) = 2 @

linear
L'entrée de I'émetteur y,, (n) est employée comme séquence d’apprentissage y(n) de

sortie du dispositif de prédistorsion, c.-a-d.,

y(n)=y., (n) €)

Alors la méthode pondérée exponenticlle dynamique de la moyenne mobile
(DEWMA) est appliquée aux séquences d’apprentissage u(n) et y(n) du dispositif de
prédistorsion et afin d'enlever la dispersion des caractéristiques dynamiques AM/AM et
AM/PM. Les courbes lissées extraites AM/AM et AM/PM sont alors employées pour
construire la LUT du dispositif de prédistorsion. Ensuite, le groupe de données
d’apprentissage intermédiaire x(n) est déduit par l'intermédiaire de I'application des
données d’apprentissage d'entrée 4(n) au LUT précédemment construit. Ici un filtre fini
de réponse d'impulsion (FIR) est choisi, au lieu d'un filtre infini de la réponse
d'impulsion (IIR), pour construire le filtre linéaire dynamique afin d'éviter I'instabilité
potentielle d'un filtre IIR. L'identification des paramétres du filtre de FIR peut étre
effectuée en utilisant I'algorithme récursif des moindres carrées (RLS), ou les valeurs
déduites x(n) et mesurées u(n) sont prises comme signal d'entrée et signal désiré,

respectivement.
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Dans le dispositif de prédistorsion traditionnel de Hammerstein discuté ci-dessus, les
effets de mémoire sont précompensés & l'aide d'un filtre linéaire FIR. Ce filtre linéaire
corrigerait les effets électriques de mémoire attribués principalement a la reponse en
fréquence non constante de 'émetteur autour de la fréquence porteuse. En consequence,
il ne précompense pas complétement les effets électriques de mémoire diis a la variation
d'impédance des circuits polarisés et aux charges harmoniques des transistors de
puissance. Pour cette raison, on propose un dispositif de prédistorsion augmente de
Hammerstein pour accroitre les possibilités de correction dans le contexte des émetteurs
sans fil a large bande. Ce dispositif de prédistorsion augmentée de Hammerstein est une
cascade d'un sous-ensemble statique fortement non linéaire et d'un sous-ensemble
faiblement non linéaire dynamique. Le sous-ensemble fortement non linéaire, qui est
basé sur des caractéristiques AM/AM et AM/PM du dispositif de prédistorsion ramenees
A une moyenne, peut étre mis en application en utilisant les Tableaux de correspondance
(LUT). Cependant, le sous-ensemble faiblement non linéaire dynamique se compose de
nouveau filtre FIR dynamique qui annule la croissance du spectre produite par les
sources dynamiques de déformation a la sortie de I'émetteur quand celui-ci est attaque
avec un signal modulé. Pour ce nouveau filtre FIR dynamique, une branche paralléle

supplémentaire est ajoutée au filtre linéaire de FIR. Dans cette branche paralléle, le
signal d'entrée x(n) est multiplié par son amplitude |x(n)| afin de produire des
distorsions d'ordre pair qui seront appliquées a un deuxiéme filtre de FIR. En

conséquence, le nouveau dispositif de prédistorsion inclut les sources de distorsions qui

sont pres de celles produites dans le vrai émetteur a linéariser. Ainsi, une performance
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supérieure a celle obtenue avec un filtre linéaire simple de FIR est prévue. Ce dispositif
de prédistorsion augmenté de Hammerstein peut également étre identifié avec le procédé
d'extraction des parametres du dispositif de prédistorsion conventionnel de Hammerstein
décrit ci-dessus en faisant quelques réarrangements.

Le dispositif de prédistorsion basé sur LUT de Hammerstein et le nouveau dispositif
de prédistorsion augmenté basé sur LUT de Hammerstein sont examinés en utilisant un
prototype d'émetteur basé sur amplificateur 60-Watt de "push-pull” excitée par des
signaux 3GPP-FDD d'une seule porteuse et de trois porteuses. Le spectre de sortie
linéarisé et les résultats de comparaison d'ACPR démontrent que le dispositif de
prédistorsion proposée, augmenté basé sur LUT de Hammerstein, surpasse le dispositif
de prédistorsion conventionnel, basé sur LUT de Hammerstein, en supprimant la
croissance du spectre provoquée par les effets de mémoire de I'émetteur sans fil 4 bande

large.

0.4 MODELISER LE COMPORTEMENT DYNAMIQUE DES
AMPLIFICATEURS DE PUISSANCE 3G EMPLOYANT LES RESEAUX
NEURONAUX A DELAI TEMPORELLE A VALEURS REELLES

RESEAUX NEUROLOGIQUES
Dans les procédures artificielles conventionnelles de développement de modéle de
réseau neuronal, les signaux mesurés d’entrée-sortie complexe sont d’abord convertis en
représentation polaire (amplitude et phase) ou rectangulaire (les composants en phase
Iet en quadrature @ ). Ensuite, deux réseaux neuronaux a valeurs réelles sépares et

désaccouplés sont employés pour modéliser les variations de I'amplitude et de la phase
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de la sortie (ou les composants /et ¢ de sortie) en fonction de l'amplitude de puissance
d'entrée (ou les composants /et 2 d'entrée). Les coefficients réels des deux réseaux sont
identifiés pendant un procédé d’apprentissage en utilisant l'amplitude et la phase
mesurées (ou I et ¢ composantes) de I'entrée et de la sortie. Cette topologie souffre des
probléemes de convergence du procédé d’apprentissage puisque les deux réseaux sont
formés séparément. En outre, Benvenuto et Ibnkahla ont proposé d'appliquer
directement au signal complexe un réseau neuronal basé sur des valeurs complexes.
Dans un tel cas, les poids et les fonctions d'activation du réseau sont complexes. Ce type
de réseau neuronal rend nécessaire un algorithme complexe encombrant d'opérationnelle
tel que l'algorithme complexe d’apprentissage de propagation en arricre. Ainsi, les deux
topologies de réseaux neuronaux décrites ci-dessus meénent a un temps d’apprentissage
prolongé et a des ressources ¢élevées de calcul.

Dans ce chapitre, nous proposons un nouveau réseau neurologique a délai temporel
réel (RVTDNN) pour construire un modele & comportement dynamique approprié pour
3G PAs en état dopération réelle. Contrairement aux méthodes présentées
précédemment, cette approche emploie seulement un réseau neuronal a valeurs réelles
au lieu de deux réseaux séparés. Le RVTDNN nouvellement proposé, qui se compose
des deux couches, emploic des paramétres a valeurs réelles (des poids et des
polarisations) avec des composants des signaux réels a 'entrée et a la sortie. Le modele
de RVTDNN utilise les deux composants du signal d'entrée afin de prévoir les deux
composants correspondants du signal de sortie. Le RVTDNN proposé est basé sur le

réseau neuronal a couplage vers I’avant (FFNN), avec I'addition de deux lignes de retard
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tapées (TDLs) dans ses deux entrées en bande de base. Les TDLs sont employés afin de
considérer I'histoire du signal d'entrée, qui est nécessaire pour modéliser I'effet de
mémoire. Ainsi, les entrées de FFNN incluent non seulement la valeur courante du
signal d'entrée mais également sa précédente. La profondeur de mémoire du Dispositif
Sous Essai (DUT) sera réfléchie sur la longueur des piquages de TDL. En conséquence,
la structure de TDL, incluse dans le RVTDNN, méne a modéliser des effets de mémoire
A court terme présenté par l'amplificateur de puissance. Cependant, la mémoire a long
terme est établie dans le RVTDNN par un apprentissage dirigé. Ce genre de mémoire a
long terme peut étre employé pour simuler les changements dynamiques lents, des
caractéristiques non linéaires du AP, avec le temps. L’extraction des paramétres du
modele de RVTDNN, généralement dénoté comme le procédé d'apprentissage, est

exécuté en raccordant les composants 7 et Q mesurée a ’entrée et a la sortie. En outre,

le modele de RVIDNN peut étre converti en réseau neuronal a couplage vers I’avant
commun (FFNN) ou Perceptron multicouche (MLP) avec p+g+2 entrées et deux
sorties. Ainsi, le probléme dynamique devient un probléme statique et l'algorithme
standard d’apprentissage & propagation en arriére peut étre utilisé pour le former. Une
fois que le RVTDNN est formé, tous les paramétres du modele sont connus et il devient
le modele 4 comportement dynamique de I'amplificateur de puissance.

L'évaluation de la validation et de I'exactitude du modele développé de RVIDNN
dans le domaine temporel a montré un accord entre les données de sortie des modeles de
comportement RVIDNN et celles mesurées pour les signaux 3G. La validation dans le

domaine fréquentiel du modéle a également montré une bonne concordance entre le



XXV1

spectre calculé 2 la sortie du PA en utilisant les formes d'onde prévues par le modele
RVTDNN et le spectre mesuré pour IS 95, signaux a une seule porteuse CDMA2000-
SR3 et trois porteuses CDMA2000-SR3.

Les résultats de la simulation dynamique de AM/AM et de AM/PM précisent que le
RVTDNN peut trés bien expliquer les effets de mémoire (effets dépendant du temps) de
la PA LDMOS. D'ailleurs, les caractéristiques dynamiques de AM/AM et de AM/PM
suggérent également que la faible valeur du signal exahertz le PA de LDMOS soit
fortement affectée par les effets de mémoire pour les applications 3G. Les résultats
satisfaisants de validation du signal IS95, qui a été appliqué a un modele RVIDNN
formé par un signal d’une seule porteuse CDMA2000-SR3, montrent que les modeles
RVTDNN obtenus ont la bonne généralité pour les signaux semblables ayant des
caractéristiques et des facteurs de créte statistiques proches. Dans ce cas, les modeles
RVTDNN montrent qu’ils sont compatibles et peuvent étre employés pour prévoir la
réponse de la PA avec des signaux ayant une plus petite largeur de bande de modulation.

D'ailleurs, une RVTDNN 2 trois couches est également utilisée pour établir un
modéle de comportement non linéaire dynamique, qui peut prévoir la réponse d'un
amplificateur de puissance 3G a large bande avec une meilleure exactitude. Un autre
amplificateur de puissance de 90-Watt LDMOS opérant a 2.110-2.170 GHz est utilisé
comme dispositif sous essai. Les résultats d'essai dans le domaine temporel, de
puissance et spectraux illustrent I'excellente exactitude de prévision du comportement
dynamique de bande de base de l'amplificateur de puissance opérant avec un signal a

deux porteuses 3GPP.
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0.5 CONCLUSION

Cette dissertation a présenté un nouveau modele de deux boites, ou on a proposé pour
la premiere fois un filtre dynamique faiblement non linéaire pour remplacer le filtre
linéaire dans le modéle conventionnel de deux boites pour caractériser les effets de
mémoire en émetteur 4 bande large. Ce nouveau modele de deux boites peut Etre
employé pour simuler ou pré compenser la non-linéarit¢ dynamique de I'émetteur sans
rien changer dans la topologie du modéle.

Les résultats de validation indiquent que le nouveau modele proposé peut imiter
I'émission hors bande provoquée par les effets de mémoire plus exactement que le
modele conventionnel de deux boites. La supériorit¢ du nouveau dispositif de
prédistorsion, basé sur le modeéle de deux boites, par rapport au dispositif de
prédistorsion conventionnelle, basée sur le modele de deux boites, pour pré compenser
la non-linéarité dynamique de I'émetteur est également démontrée par les résultats du
spectre et par la comparaison du ACPR. D'ailleurs, ce nouveau modele de deux boites et
le dispositif de prédistorsion, basée sur lui, montrent une stabilité numérique meilleure
que celle du modéle de mémoire polynomial et le dispositif de prédistorsion
correspondant.

En outre, la dissertation a également illustré comment un nouveau réseau neuronal, a
valeurs de délai temporel en temps réel, proposé peut étre utilisé pour simuler la non-
linéarité dynamique d'un amplificateur de puissance de station de base 3G. Les résultats
de la validation dans le domaine temporel, fréquentiel et de puissance prouvent

l'efficacité de ce nouveau modele pour modéliser les effets de mémoire.
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Les contributions principales de cette dissertation sont récapitulées comme suit :

>

Un modele de Wiener 4 comportement augmenté, avec sa procédure
d’identification des paramétres, a été propos€ ;

On a proposé un dispositif de prédistorsion de Hammerstein augmente basé
sur la table de correspondance, ainsi que le procédé d'évaluation dispositif de
prédistorsion ;

On a développé une technique de modélisation robuste pour les émetteurs RF
sans mémoire de la bande large, en utilisant un algorithme moyen mobile a
pondération exponentielle dynamique ;

On a présenté une méthode de validation du modele basé sur un pre
compensateur sans mémoire pour identifier facilement les possibilités des
différents comportements des modéles pour prévoir les effets de mémoire ;

On a proposé un nouveau réseau neuronal a valeurs de délai temporel en
temps réel pour établir un modele de comportement dynamique pour
caractériser les comportements non linéaires en bande de base des

amplificateurs de puissance de station de base 3G.
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CHAPTER 1
INTRODUCTION

1.1 MOTIVATION

Modern wideband wireless communication systems applied strict requirements to the
transmitters due to the utilization of the high capacity modulation schemes, such as Code
Division Multiple Access (CDMA), Wideband Code Division Multiple Access
(WCDMA), Orthogonal Frequency Division Multiplexing (OFDM), Worldwide
Interoperability for Microwave Access (WiMax) and etc, to take advantage of the
precious limited frequency resources. For these wireless systems, the transmitters are
required to have ultra-high linearity as well as high efficiency. The ultra-high linearity of
the transmitter is essential since the nonlinearity existing in the power amplifier will
cause the out-of-band emission, which will interference the adjacent channels, and also
produce additional code-errors for the channels themselves. Moreover, the RF signals
modulated using one of the above high capacity modulation schemes are not the constant
envelope any more. The Peak-to-Average Ratio (PAR) could be as high as 10 dB. In this
way, in order to transmit the peak signals without clipping, the power amplifier of the
transmitter has to be back-off at least 10 dB. However, such a back-off value cannot
satisfy the linearity requirements of the transmitter yet since the peak power still will
drive the PA to nearby its saturated area. To avoid that, a much larger back-off value is

needed to satisfy the linearity requirements for such a highly varying envelope signal. In



addition, with a statistical analysis to a WCDMA signal, it is found that the modulated
signal is under a small signal condition for most of the time. In other words, the PA
operates in small signal conditions for most of the time. Consequently, the PA will
exhibit extremely low power efficiency. In such a case, in order to provide enough large
linear output power to satisfy the requirements of the practical wireless network design,
the PA must have very high saturated output power. It is well-known that the high power
transistors are expensive. In this way, the cost of the transmitter will increase dramatically.
Moreover, such a design will cause serious heat dissipation problem since the PA
operates under a condition with high output power and low efficiency. As a result, the
reliability of the system will be reduced and the system operation cost will largely
increase.

In addition, if we don’t take additional linearization measures, the power amplifier
(PA), which is the most power consuming component in the transmitter, should operate in
class A with back-off so as to meet the linearity requirements of the system. In this way,
the power efficiency of the transmitter will be further decreased. To improve the
efficiency of the transmitter, the PA should be designed to work in a constantly driven
mode such as class AB, class B, or switching mode such as class D, class E etc. Of
course, the PA will have a poor linearity and a strong spectrum regrowth when it operates
in such kinds of operating modes. In other words, high power efficiency and high linearity
are two conflicting requirements for power amplifier design. Consequently, in order to
employ these high efficiency PAs in the wideband transmitter, the additional linearization

techniques have to be applied to these PAs to suppress the spectrum regrowth so as to



meet the high linearity requirements of the wideband transmitter.

There are varieties of linearization techniques that were proposed and have been
widely used to improve the linearity of the transmitters. The most common linearization
techniques can be roughly categorized into four types: feedback, feedforward, LINC, and
predistortion.

Among these linearization techniques, predistortion is the most promising technique
that can improve the linearity of the PA and keep that the PA still works under high
efficiency conditions at the same time. Predistortion is conceptually the simplest form
among the variety of linearization techniques for linearizing an RF transmitter or an RF
power amplifier (PA). It is a technique in which the inverse nonlinearities of the known
amplitude and phase nonlinearities of a transmitter or a PA are cascaded in front of the
transmitter or the PA to compensate for its nonlinearities so as to eliminate its original
nonlinear distortion. The predistortion can be implemented in RF, IF or baseband with the
digital technique or the analog technique. On the one hand, based on the inverse
nonlinearities of the nonlinear system, which are extracted and implemented with analog
technique or digital technique, the predistortion technique can be divided into the analog
predistortion and the digital predistortion. On the other hand, depending whether the
predistortion is implemented in RF, IF or baseband, the predistortion can be categorized
as RF/IF predistortion or baseband predistortion. In addition, the digital predistortion can
be further classified as the RF/envelope digital predistorter and the baseband digital
predistorter. It should be noted that generally the RF predistortion is suitable for pre-

correcting the nonlinearity of the PA while the baseband predistortion technique is



independent on the type of the power amplifier and can pre-compensate for the
nonlinearity of the whole transmitter, including the digital-to-analog converter, the
modulator, the up-converter and the PA. Moreover, the baseband predistortion can fully
take advantage of the modern digital signal processing techniques to provide a more
accurate and flexible pre-compensation scheme, and can be implemented in a large scale
integrated circuit with other baseband function block to form a system on chip.

Therefore, among the variety of predistortion schemes, the adaptive baseband
predistortion [1], shown in Fig. 1-1, is getting more and more attentions of the researchers
in both academic and industry fields all over the world in recent years. In this pre-
compensation scheme, all of the nonlinearities in the transmitter, including the quadrature
modulator and the power amplifier, can be pre-compensated by the digital predistorter in
baseband. The baseband predistortion predicts the needed correction using past
knowledge about the characteristics of the nonlinearity of the transmitter rather than using
feedback from the current signal. In this way, the loop delay limitations associated with
Cartesian feedback [2] is avoided so that a much wider bandwidth can be obtained with
the baseband predistortion. In this particular technique, the feedback from the power
amplifier output is demodulated by a quadrature demodulator and then digitally sampled
with an A/D converter. The output of the A/D converter is fed into the predistortion
estimator, which is implemented in a digital signal processor (DSP). The predistortion
estimator will extract the parameters of the predistorter from the feedback baseband
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the baseband input signals 7, and Q, of the A/D converter (the output of the

predistorter). Finally, the parameters of the predistorter in the main path are updated with

the parameters solved in the predistortion estimator.
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Fig. 1-1. Principle diagram for adaptive baseband predistortion scheme.

In fact, generally speaking, for a baseband nonlinear system, a forward model of the
nonlinear system can be obtained by training a network or extracting the model
parameters using the input of the system as the desired input of the model and the output
of the system as the desired output of the model directly. Generally, such a model is
called a behavioral model (or “black box” model) of the nonlinear system. On the other
hand, a reverse model of the nonlinear system can be easily achieved if we take the
normalized output of the nonlinear system as the desired input of the model while the
input of the system is taken as the desired output of the model. In fact, such an inverse
model is generally referred as a predistorter, which is widely used to pre-compensate the

nonlinearity of the system by preceding it to the nonlinear system as described above.



Since the behavioral model provides greatly reduced complexity and time-consumption
for design and optimization procedures, it is a useful tool in the system simulation and
provides great help for the designer of communication systems, in particular, transmitters
and power amplifiers. In addition, the behavioral model can provide a fast and effective
approach to validate the performance of the different predistortion schemes during the
predistorter parameter extraction process. This behavioral model is also helpful for
determining the topology of the predistorter. In other words, the behavioral model also
plays an important role for studying the pre-compensation techniques of the nonlinear
system. Therefore, this dissertation will concentrate on the behavior modeling of the
broadband transmitter at first. Then, based on the behavioral model, the predistortion

topology is developed.

1.2 BRIEF REVIEW OF THE MAIN BEHAVIOR MODELING AND THE
CORRESPONDING NONLINEARITY PRE-COMPENSATION

TECHNIQUES
The most popular behavioral model and nonlinearity pre-compensation technique is
look-up table (LUT). For this technique, two LUTs are constructed from the measured
AM/AM and AM/PM data for the nonlinear system [1]-[6]. Then, these LUTs are used to
represent the nonlinear system or to pre-compensate the nonlinearity of the nonlinear
system. This is a simple and effective way to characterize or pre-correct the nonlinearity
of the nonlinear system, but it is only limited to memoryless or quasi-memoryless

nonlinear system, where the output of the system is fully determined by the current input



of the system. However, for the wideband wireless communication systems, the output of
the system depends on not only the current input of the system, but also the previous
input of the system. Such a nonlinear system is referred as a nonlinear system with
memory. For a nonlinear system with memory, the simple LUT cannot well characterize
its dynamic nonlinearity and a predistorter based on LUT cannot effectively suppress the
out-of-band emission caused by its dynamic nonlinearity [7].

In order to accurately characterize and effectively pre-correct the dynamic nonlinearity
of the system with memory, a variety of schemes have been proposed in the last few years.
In the following sub-section, several most popular baseband behavior modeling and pre-
compensation techniques such as Volterra series, memory polynomial and two-box model,
which can characterize and pre-correct both of the memory effects and the nonlinearity,

will be summarized.

1.2.1. Volterra series
A nonlinear system with memory can be expressed by a Volterra series, which is a

generalization of the Taylor series, as follows [8]:

y(n)=iy,,(n) (1.1)

Where
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Where x(n) is the system input, y(n)is the system response and y,(n) is the p-th order

component of the system response. The coefficient 4, , . is referred as p-th order

Volterra kernel, which is used to characterize the nonlinear system. When the order of the
model increases above third order, it becomes very complicated to extract these
coefficient values. In addition, in such a case, the convergence speed becomes very slow
when trying to model strong nonlinearities. Therefore, the Volterra series is generally
limited to describe weakly nonlinear systems, where all higher order terms are negligible
in the system representation and the first two or three order terms can represent the

system in a satisfactory accuracy.

1.2.2. Memory polynomial
To more accurately mimic the memory effects, a memory polynomial dynamic
nonlinear model [9], as shown in Fig. 1-2, is utilized to characterize both of the memory
effects and the static memoryless nonlinearity in the transmitter. This is a time delay line
based multi-branch polynomial model. The memory depth is determined by the number

of the taps of the time delay line. The output x(n) can be expressed as follows:

x(n)ziu(n—i)(iaij lu(n—j)ljJ (1.3)



Where m stands for the tap number and p is the order of the polynomial. This

memory polynomial model can be identified by applying the measured input and output
data of the nonlinear system as the desired input and output data of the model. Its
corresponding pre-compensator can be directly obtained by using the normalized
measurement output of the transmitter as the desired input of the model and the
measurement input of the transmitter as the desired output of the model to extract the
model parameters. This memory polynomial model can accurately characterize the
dynamic nonlinearity of the transmitter and provide an excellent nonlinearity pre-
compensation performance, but it may suffer from potentially instability problems while

involving a strongly nonlinear problem [10].
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u(n - 1)(alo + an lu(n - l)l oot al,p~l |u(n - I)VH ) x@

N 1 N

| un-miiXa,, +a,, [n-mel)+-+a,,  lp-mr”)

Fig. 1-2. Memory polynomial model.

1.2.3. Two-box model

As pointed out above, a conventional memoryless nonlinear pre-compensator cannot
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effectively suppress the out-of-band emission of the transmitter due to the memory effects
[7]. Consequently, a linear filter has been utilized to characterize the memory effects of
the transmitter. This linear filter can be preceded or followed by a memoryless nonlinear
block to construct a so-called Hammerstein dynamic nonlinear system or Wiener dynamic
nonlinear system, as shown in Fig. 1-3 [11]-[13]. Since this model consists of a nonlinear
block and a linear block, it is also directly referred as a two-box model. For the two-box
model, the memoryless nonlinear model can be anyone of the traditional nonlinear
models such as LUT, polynomial, Bessel function and etc. The linear filter can be a Finite
Impulse Response (FIR) filter, an Infinite Impulse Response (IIR) filter or an Auto-
Regressive Moving Average (ARMA) filter. Consider the potential instability for the TIR
and ARMA filters, FIR filter is the most popular linear filter used in this configuration. It
is well-known that such a linear filter acts as an adequate equalizer to compensate for
device frequency response variations. Therefore, the linear filter could be a good
candidate to characterize or compensate for the memory effects caused by the frequency
response of the transmitter around the carrier frequency. For the memory effect
components attributed to the other sources such as trapping effect, impact ionization,
impedance matching conditions at harmonic frequencies and the envelope frequency (bias
circuit design) [14]-[16], such a simple linear filter cannot handle them. In other words,
the linear filter can only partially mimic or suppress the spectrum regrowth caused by the
memory effects. It should be noted that if a nonlinear system can be well characterized by
a Wiener model, the corresponding nonlinearity pre-compensator should be a

Hammerstein system. In other words, if a Hammerstein model can accurately model a
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nonlinear system, the corresponding nonlinearity pre-compensator should be a Wiener

system.

Memoryless Linear filter —
: nonlinear model ’ model

(a) Hammerstein dynamic nonlinear model

—_— Linear filter Memoryless
model ' 1 nonlinear model »

(b) Wiener dynamic nonlinear model

Fig. 1-3. Two-box nonlinear model.

1.3 OBJECTIVES AND OUTLINE OF THE DISSERTATION

1.3.1. Objectives

The objective of this dissertation is to develop an accurate and stable behavioral model
of the broadband wireless transmitter, and furthermore to obtain an effective dynamic
nonlinearity pre-compensation topology to suppress the spectrum regrowth in the
transmitter, which is caused by the memory effects and the nonlinearity of the transmutter.
The research efforts are concentrated on the following areas:

» Dynamic behavioral model using a two-box model;
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» Nonlinearity pre-compensation scheme using a two-box model;
> Dynamic behavioral model using a neural network.

As discussed early, the conventional two-box model cannot accurately model the
memory effects or effectively pre-compensate for the dynamic nonlinearity in the
transmitter due to the limitation of the linear filter included. To solve this problem, an
augmented two-box model is proposed in this dissertation. In this augmented two-box
model, the linear filter in the conventional two-box model is replaced by a weakly
nonlinear filter. Based on the excellent performance of the augmented Wiener model, an
augmented Hammerstein predistorter is proposed to pre-compensate the dynamic
nonlinearity of the wideband wireless transmitter.

Moreover, as a new attempt, a real-valued time-delay neural network (RVTDNN) is
presented in this dissertation to simulate the dynamic nonlinearity of a 3G power
amplifier, which is a most important nonlinear component in the transmitter. With this
real-valued neural network, a variety of the back-propagation algorithms can be
implemented to extract the model parameters. In this way, the complicate complex
training algorithm for the complex neural network is avoided and the training speed can

be improved.

1.3.2. Outline

The remainder of the dissertation is organized as follows:
In Chapter 2, a dynamic exponential weighted moving average algorithm is developed

to establish a LUT-based nonlinear Wiener model for memoryless wideband transmitters.
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To improve the relatively limited accuracy of the conventional Wiener model, a new
augmented Wiener model is proposed. The superiority of the augmented Wiener model
on the conventional Wiener model is validated by comparing the measured spectra of the
two behavior with that of the practical transmutter.

Based on the excellent modeling accuracy of the proposed augmented Wiener model
in Chapter 2, an augmented look-up-table-based Hammerstein predistorter is to further
improve the pre-compensation performance of the traditional Hammerstein predistorter
for the broadband transmitters in Chapter 3. A wireless transmitter prototype, which
includes an L-band push-pull GaAs FET 60-Watt peak-envelope-power amplifier, is
utilized to evaluate the performance of the newly proposed predistorter. The pre-
compensation performance of the proposed augmented predistorter in suppressing the
spectrum regrowth will be illustrated by comparing the output spectra of the transmitter
linearized by the different predistorters with that of the transmitter without predistortion.

In the subsequent Chapter 4, a novel real-valued time delay neural network (RVTDNN)
is put forward to construct a dynamic behavior model for 3G base station power
amplifiers (PA). Compared with the previously published neural network based PA
models, a significantly reduced complexity and shorter processing time in the analysis
and training procedures is obtained with this RVIDNN model. After training the
RVTDNN with the measured baseband data, the RVTDNN behavioral model of the PA is
obtained and different test signals are applied to this model to validate its accuracy and
generality. The time-, frequency- and power-domain validation results are presented to

demonstrate the accuracy of the RVTDNN model in predicting the memory effects.
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Finally, Chapter 5 summaries the main contributions of this dissertation and gives

suggestions for further research work.



15

REFERENCES

[1] Jeckeln, E., “An L Band Adaptive Digital Predistorter for Power Amplifiers using Direct IQ
Modem,” IEEE MTT-S Digest, May 1998, pp. 719-722.

[2] J. K. Cavers, “A linearizing predistorter with fast adaptation,” in 40th IEEE Vehicular
Technology Conf., pp.41-47, 1990.

[3]1 S. Boumaiza, J. Li, and F.M. Ghannouchi, “Adaptive digital/RF predistortion using a
nonuniform LUT indexing function with built-in dependence on the amplifier nonlinearity,”
IEEE Trans. Microwave Theory Tech., vol. 52, pp. 2670-2677, Dec. 2004.

[4] J. K. Cavers, “Optimum indexing in predistorting amplifier linearizers,” in Proc. IEEE 47th
Vehicular Tech. Conf., vol. 2, pp. 676-680, May 1997.

[5] Q. Ren and I Wolff, “Improvement of digital mapping predistorters for linearising
transmitters,” in Proc. IEEE MTT-S Int. Microwave Symp. Dig., vol. 3, pp. 1691-1694, June
1997.

[6] K. J. Muhonen, M. Kavehrad, and R. Krishnamoorthy, “Look-up table techniques for
adaptive digital predistortion: a development and comparison,” IEEE Trans. Vehicular Tech,,
vol. 49, pp. 1995-2002, Sept. 2000.

[7]1 1. S. Kenney, W. Woo, L. Ding, R. Raich, H. Ku, and G. T. Zhou, “The impact of memory
effects on predistortion linearization of RF power amplifiers,” in Proc. 8th Intl. Symposium
on Microwave and Optic Technology, pp. 189-193, June 2001.

[8] M. Tummla, M. T. Donovan, B. E. Watkins, R. North, “Volterra series based modeling and
compensation of nonlinearities in high power amplifiers,” in /997 IEEE Int. Conf. on
Acoustics, Speech, and Signal Processing, vol.3, pp. 2417-2420, April 1997.

[9] J. Kim and K. Konstantinou, “Digital predistortion of wideband signals based on power
amplifier model with memory,” Electronics Letters, vol. 37, pp.1417-1418, Nov. 2001.

[10] R. Raich, H. Qian, and G. T. Zhou, “Orthogonal polynomials for power amplifier
modeling and predistorter design,” [EEE Trans. Vehicular Tech., vol. 53, pp. 1468-1479,
Sept. 2004.

[11] M. Schetzen, The Volterra and Wiener Theories Nonlinear Systems, New York: Wiley,
1980.



16

[12] C. . Clark, G. Chrisikos, M.S. Muha, A.A. Moulthrop, and C.P. Silva, “Time-domain
envelope measurement technique with application to wideband power amplifier modeling”,
IEEE Trans. Microwave Theory Tech., vol.46, pp. 2531-2540, Dec. 1998.

[13] P. Crama and Yves Rolain, “Broadband measurement and identification of a Wiener-
Hammerstein model for an RF amplifier”, ARFTG Conference Digest, vol.60, pp.49-57, Dec.
2002.

[14] 1. H. K. Vuolevi, T. Rahkonen, and J. P. A. Manninen, “Measurement technique for
characterizing memory effects in RF power amplifiers,” IEEE Trans. Microwave Theory
Tech., vol. 49, pp. 1383-1389, Aug. 2001.

[15] H. Ku and J. S. Kenney, “Behavioral modeling of nonlinear RF power amplifiers
considering memory effects,” IEEE Trans. Microwave Theory Tech., vol. 51, no. 12, pp.
2495-2504, Dec. 2003.

[16] K. A. Remley, M. M. P. Schreurs, D. F. Williams, and J. Wood, “Extended NVNA
bandwidth for long-term memory measurements,” in 2004 [EEE MTT-S Int. Microwave
Symp. Dig., Fort Worth, TX, Jun. 6-11, 2004, pp. 1739-1742.



17

CHAPTER 2

DE-EMBEDDING STATIC NONLINEARITIES AND
ACCURATELY IDENTIFYING AND MODELING MEMORY
EFFECTS IN WIDEBAND RF TRANSMITTERS

In this chapter, a robust modeling technique for memoryless wideband radio frequency
transmitters using a dynamic exponential weighted moving average algorithm is
developed and tested. To improve the relatively limited accuracy of the conventional
Wiener model in predicting the response of dynamic nonlinear transmitters, a new
augmented Wiener model is proposed along with its parameter-identification procedure.
The accuracy of the augmented Wiener model is compared with that of the conventional
Wiener model by using an L-band 60-watt peak-envelope-power GaAs field-effect-
transistor push-pull amplifier based transmitter, which is driven by a two-carrier

wideband code-division multiple access signal.

2.1 INTRODUCTION

The design of the radio frequency (RF) front-end of third generation (3G) and beyond
wireless communications transceivers is currently an extremely complicated task since it
involves numerous criteria that are usually inconsistent. Although the main objective
remains ensuring a good quality of signal at the receiver side, the optimization of the
channel capacity (bit/Hz) is also a challenging assignment. This is particularly relevant in

the context of wideband and highly varying envelope signals, as in the cases of multi-
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carrier code-division multiple access and orthogonal frequency-division multiplexing,
where the coexistence of linear and nonlinear distortion sources in the RF transmitter
chains compromises their performances in terms of error vector magnitude and adjacent
channel power ratio. The minimization of the effects of such distortion sources relies
primarily on accurate modeling of the RF transmutters.

In the literature, one can distinguish several topologies that were applied to the
modeling of dynamic nonlinear systems. For example, Schetzen [1] utilized Volterra
series to model nonlinear power amplifiers with memory effects. However, the use of
such series-based models is restricted to weak nonlinear systems. Since the models
require a high-order kernel which, in turn, yields high computational complexity,
difficulties are often encountered during the model identification procedure when systems
are driven by wideband signals. Although the truncated Volterra series model is
considered a good means of resolving the computational complexity [2], this model
suffers from the difficulty of real-time implementation. Liu et al. [3] proposed a real-
valued time-delay neural network to establish a dynamic behavioral model of 3G power
amplifiers. Although this new architecture largely simplifies the model topology, it
undergoes a relatively slow convergence of the back-propagation algorithm, which was
employed to extract the model parameters.

Silva et al. presented a nonlinearity filter structure to model a wideband power
amplifier, and applied a polyspectral technique for its identification [4], [5]. The principal
part of such a model consists of either a filter-nonlinearity or a nonlinearity-filter in

parallel with another linear filter. The authors mentioned the superiority of this model
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over a conventional two-box Wiener model (linear + nonlinear) in predicting the response
of traveling wave tube amplifiers. Despite the closed form expressions used in the
identification of the model parameters, the required measurement data are difficult to
collect in an adaptive context. Indeed, it requires a vector network analyzer (VNA) for
determining the memoryless part of the model and the frequency transfer function of one
of the linear filters. In addition, the memoryless characteristics of the power amplifier
under a modulated signal with a high peak-to-average differ from the measured
characteristics under a continuous wave signal [6].

Clark et al. in [7] reported a two-box model approach — a Wiener system [1] that
consists of a two-block structure. The first block represents a linear auto-regressive
moving average filter that accounts for the memory effects, and the second block denotes
a conventional Bessel series model that is used to represent the memoryless nonlinearity.
Such a topology can easily deal with strong nonlinearity, but the identification procedure
suggested by the authors is difficult to implement under real field conditions, since it
requires an initial estimation of the auto-regressive moving average filter coefficients
through a frequency domain measurement under a small signal condition using a VNA.
Alternatively, Crama et al. in [8] proposed a method that estimates the Wiener and
Hammerstein structures based on a frequency domain identification procedure using
special multi-sine signals. However, the accuracy of the identification method is greatly
compromised by the phase difference between the two channels used to sample the input
and the output of the device-under-test. Although a relative calibration can be applied

with the assumption that one of the two channels is perfect, the identified model suffers
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from a lack of accuracy due to the residual phase error.

Ku et al. [9] presented a parallel Wiener system that established a behavioral model for
RF power amplifiers with memory. The model parameters are extracted using two-tone
inter-modulation distortion measurements with different tone frequency spacings and
power levels. The authors claimed that this model is able to predict accurately adjacent
channel power ratio (ACPR) levels close to the carrier frequency for high-power
amplifiers. Recently, Jantunen et al. [10] developed a nonlinear model with memory
based on the Hammerstein structure (static nonlinearity + linear filter) to predict the
behavior of a power amplifier for a fourth generation mobile communications system.
They employed a polynomial model for the nonlinearity and a finite impulse response
filter with a bulk delay for the linear component. However, the model is extracted based
on single-tone measurement data instead of realistic modulated signal data. Even though a
satisfactory result was reported for the single-tone test signal, its performance under
modulated signals is unknown.

The common difficulty for the previous models is in the identification procedure of the
parameters of their different modules. The above-mentioned models and procedures
encounter high complexity and/or low accuracy. In most cases, they are not appropriate
for implementation in adaptive communications systems.

In this chapter, a new augmented Wiener model that is capable of accurately modeling
wideband RF transmitters in a 3G context, as well as its related identification procedure,
is presented. The remainder of this chapter is organized as follows. Section II briefly

depicts the wideband RF transmitter prototype used in this work. Section III explains the
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newly proposed procedure and method to de-embed the strong nonlinearity from the
transmitter response and to identify and quantify accurately the memory effects originally
exhibited by the transmitter [11]. Then, the identification procedure and the algorithm
needed to identify the parameters of the Wiener nonlinear system chosen to model
wideband RF transmitters are explained in detail. In Section IV, an accurate time-delay
estimation procedure, which is needed for modeling purposes in the context of broadband
transmitters, is presented to align precisely the I and Q streams at the input and output of
the transmitters. Section V introduces and verifies an elaborate validation method, in
terms of annulling the spectrum regrowth caused by the static nonlinearity, so as to
validate the performance of the Wiener models in the prediction of memory effects. In
Section VI, a new comprehensive memory effect model is proposed. This model is able to
account for linear distortion (frequency response near the carrier) and weak nonlinear
distortion due to baseband frequency response, harmonic loading conditions, and trap
effects that might occur in semiconductor devices. Based on this new memory effect
model, an augmented Wiener model is established and found to be much more accurate
than the conventional Wiener model in predicting ACPR levels of a wideband 60-watt
peak-envelope-power (PEP) GaAs field-effect-transistor (FET) push-pull amplifier based
transmitter driven by multi-carrier wideband code-division multiple access (WCDMA)
signals. Section VII gives the description of the test-bed used in the experimental
validation of the different models involved in this chapter. Finally, Section VIII is
dedicated to the validation of the proposed augmented Wiener model and to the

discussion of the measurement results.
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2.2  WIDEBAND RF TRANSMITTER PROTOTYPE

As shown in Fig. 2-1, the wideband RF transmitter prototype consists of two digital-
to-analog converters (DAC), an RF vector modulator and a power amplifier. The last
amplification stage of the power amplifier built for this work, in the band of 1930-1990
MHz, is based on a 60-watt PEP push-pull FET transistor (FLL600IQ-2) from Eudyna
Devices USA [12]. As shown in Fig. 2-2, a driver amplifier, based on an MRF19045
LDMOS transistor and an MHL19936 gain block both from Freescale Semiconductor, is
used as the driver stage. The whole line-up has 53 dB gain and 45 dBm saturated power.
Furthermore, an electronic signal generator (ESG: Agilent E4438C) is utilized in this
work to emulate the rest of the transmitter. Hence, both the ESG and the power amplifier
(PA) constitute the transmitter prototype.

It should be pointed out that the power amplifier (last stage) used in this work is based
on an FLL600IQ-2 FET transistor, which is of a dual transistor push-pull configuration.
This transistor is designed for use in personal-communications-services/networks base
station amplifiers instead of the third generation partnership projects (3GPP) base station
amplifier. Therefore, the frequency response is relatively poor for 3GPP applications,
especially around the center frequency of 1.96GHz, as can be seen in its datasheet [12].
Moreover, it should be noted that all of the measured transmitter data in the following
sections were captured using this transmitter prototype. These data will generally be
referred to as transmitter measurements or raw measurement data in the figures of the
subsequent sections. Since the output of the memoryless transmitter model only depends

on the magnitude of the current input signal, this model is represented by the transmitter
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amplitude-modulation / amplitude-modulation (AM/AM) and amplitude-modulation /

phase-modulation (AM/PM) look-up table model in this work.

DAC RF Vector b 9
; Modulator I

Fig. 2-1 Wideband RF transmitter prototype.

MRF19045 FLL600IQ-2

Fig. 2-2 FLL600IQ-2 power amplifier line-up.

2.3  WIENER BEHAVIORAL MODEL CONSTRUCTION

A Wiener nonlinear model, shown in Fig. 2-3, consisting of a dynamic linear filter
followed by a static nonlinear block, is adopted to construct a behavioral model of a
wideband RF transmitter. The static nonlinearity can be characterized by the look-up
tables based on the AM/AM and AM/PM curves of the transmitter. These curves can be
extracted directly from the baseband measurement data by means of a moving average

procedure, as explained below. Accordingly, the complex original dynamic nonlinear
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problem is simplified to a set of linear dynamic problems. In this way, identifying the
Wiener nonlinear model becomes easier than the traditional solutions [13], [14], where all
of the linear and nonlinear parameters of the Wiener model are resolved concurrently by

means of complicated algorithms.

G, ]
“(”)l i x(n)} —> :
Ll.near ( ):)lx(n)l N AM/AM and G i
Filter . AM/PM LUT — i

' Complex :y(n)

: Y
Memory effect 1§ N multiplier :
model ] x(n) '
1 :
i i

XX L xxr xr xxr ¥y YYY FYY FRY TYY TRE XXX EXN g

Memoryless nonlinearity

Fig. 2-3 Wiener transmitter model diagram from [8].

Assuming that the linear filter in Fig. 2-3 is a finite impulse response (FIR) filter, then

the input and output signals of the two blocks in Fig. 2-3 can be related as follows:

x(n)= Mz_:laiu(n—i) (1)

y(n) =(G, + jG, )x(n) = Gx(n) (2)

where G = G, + jG, denotes the memoryless complex gain of the transmitter that depends
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only on the instantaneous magnitude of x(n) , M stands for the taps of the FIR filter, and q,

are the FIR filter coefficients.
According to (1) and (2), the knowledge of the static nonlinear part of the transmitter

model turns the identification of the coefficients a, of the FIR filter into a simple task.

Contrary to previous papers in the literature, the memoryless behavior of the transmitter is
represented by a tabulated model (AM/AM and AM/PM) in this work. It allows us to
alleviate the burden of the identification procedure of the analytical model’s parameters,
such as the high-order (even and odd) polynomial function’s coefficients [15] and the
Bessel series model’s coefficients [7], particularly when the power amplifier (PA)
operates in Class AB. Therefore, this modeling approach is robust, and it is independent

of the PA technology and its operation class.

2.3.1 Static Nonlinearity De-embedding with Dynamic Exponentially
Weighted Moving Average

Given the instantaneous measurements of the in-phase and quadrature input and output
waveforms of the transmitter, the dynamic AM/AM and AM/PM characteristics are firstly
plotted. These plots are assessed under a two-carrier WCDMA signal, which is
synthesized according to 3GPP test model 3 with a separation of 5 MHz [16]. Fig. 2-4
and Fig. 2-5 give evidence of the significant dispersion of the AM/AM and AM/PM
curves of the current transmitter and consequently confirm the presence of important
memory effects. As a result, the construction of the corresponding model, which is

capable of predicting transmitter behavior, necessitates the identification of the
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parameters of the two blocks shown in Fig. 2-3. To extract the transmitter static
nonlinearity, an exponentially weighted moving average is applied to the dynamic

AM/AM and AM/PM data to remove the dispersion. The exponentially weighted moving
average algorithm is based on the following equation:

y(n)=ay(n-1)+1-a)x(n) 3)

where « is the weight factor with a value between 0 and 1.

60

Gain (dB)

- Raw measurement data
* AM/AM curve smoothed

30 20 10 0
Pin (dBm)

45

Fig. 2-4. The smoothed AM/AM curve vs. the raw measurement AM/AM data of the

transmitter prototype.

Considering the significant dispersion in the AM/AM and AM/PM characteristics of

the transmitter, a fixed « over the input signal dynamic range will lead to a poor moving
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average quality. In fact, a large value of a will produce smooth (no dispersion) but
incorrect traces because of the average error propagation. Similarly, a small value of «
ends with a jagged curve. Consequently, to adapt a «'s value to the AM/AM and AM/PM
variation, a dynamic setting of « is essential. For that reason, the o's value must be

expressed as a function of the input power, 1.€. a = F(|x(n)|2) .
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Fig. 2-5. The AM/PM curve smoothed vs. the raw measurement AM/PM data of the
transmitter prototype.

The look-up table entries are determined from the AM/AM and AM/PM curves of the
transmitter obtained by smoothing the dynamic characteristics using this exponentially

weighted moving average. These entries encompass the in-phase ¢ and the

quadrature G, components of the complex compression gain corresponding to different
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magnitude values of x(n) .

2.3.2 Identification and Modeling of Memory Effects

2.3.2.1 Memory effect identification

The identification of the static nonlinear model on the basis of the dynamic
characteristics of the transmitter allows us to fulfill the measured variables listed in Fig.
2-3. Indeed, the identification of the memory effect model necessitates the time records of

u(n) and x(n), but transmitter characterization does not provide access directly to x(n). In
this way, the memoryless block initially identified will be utilized to deduce the time
record of x(n) on the basis of the output time record y(n) . Therefore, an inverse function

of the static nonlinear model is numerically constructed and applied to the measured

output signal y(n) in order to get the dynamic linear filter output signal x(n).

2.3.2.2 Modeling of the linear distortion

The plot of the AM/AM and AM/PM characteristics while considering u(n) as input
and x(n) as output, as given in Fig. 2-6 and Fig. 2-7, indicates the removal of the
nonlinearity. Therefore, the complicated original nonlinear modeling problem is
simplified to a linear identification problem. In order to avoid the potential instability of
an infinite impulse response filter, a FIR filter is adopted to construct the dynamic linear
model in this chapter.

If both lengths of the training sequences u(n) and x(n)are N, then (1) can be rewritten
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in matrix format as follows:

X =AW (4)
where
X =[x(M), x(M +1),--,x(N)] )
W =[aga, - ay.,] (6)
A=[Uu) UM+ - U] (7

U:[u(n) u(n-1 - u(n—M+1)]

8
n=M,M+1,--- N

Therefore, the identification of FIR filter weights can be made using the recursive
least-squares algorithm [17]. Here, the measured u(n) and the deduced x(n)are taken as
the input signal and the desired signal, respectively. The detailed recursive least-squares

algorithm statement 1s given as follows.



-30 20 10 0
Pin (dBm)

Fig. 2-6 Dynamic AM/AM characteristics of the linear filter extracted
measurement data of the transmitter prototype.

At first, F(n), K(n)and P(n) are calculated in terms of following equations:

F(n) = P(n-)U(n)

F(n)

KO = 07 mFm

P(n) = %(P(n ~1)-K(mU" (nP(n-1))

30

from the

€)

(10)

(11)
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Fig. 2-7 Dynamic AM/PM characteristics of the linear filter extracted from the
measurement data of the transmitter prototype.

where P(n) is a M xM matrix. Both F(n) and K(n) are M =1 matrices. A is a scalar

and denotes the forgetting factor. Then the output x,(n) of the filter at the current instant

1s
x,(n)= W' (n-DU(n) (12)
Thus, the output error of the dynamic filter at the current instant is
e(n) = x(n) = x,(n) (13)

Finally, the weights of the dynamic filter are updated by:
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W(n)=W(m-1)+K(n)e (n) (14)

The recursive least-squares algorithm is initialized by setting

w({0)=0 (15)

PO)=6""1

where § is a small positive constant, and 7 is the M xM identity matrix.

24 INFLUENCE OF TIME DELAY ON MEMORY EFFECT

IDENTIFICATION

The time delay that exists between the input and the output baseband data waveforms
of the transmitter has to be accurately estimated so as to align input and output I-Q
streams prior to identifying the transmitter behavioral model. In fact, the time-delay
estimation becomes more critical when wideband transmitters are concerned, since any
time-delay misalignment induces an extra dispersion of AM/AM and AM/PM
characteristics of the transmitter. To illustrate the contribution of time delay to the
dispersion of AM/AM and AM/PM characteristics of the transmitter, a 0.63 ns delay
under a 61.44 MSPS sample rate condition was added while capturing the output of a

memoryless transmitter model, which was constructed by the transmitter AM/AM and
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AM/PM look-up table. The AM/AM and AM/PM characteristics of the memoryless
models with and without a 0.63 ns delay are shown in Fig. 2-8 and 9, respectively. One
can clearly observe the dispersion attributed to the time-delay offset. A similar
experiment was also carried out to further demonstrate the influence of the time-delay
mismatch on memory effect identification. As shown in Fig. 2-10 and 11, a 3.0 ns time
delay causes strong additional dispersion and scattering in the AM/AM and AM/PM
curves. Therefore, inaccurate time-delay estimation and misalignment will conceal the

genuine memory effects.
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Fig. 2-8 The simulated AM/AM characteristic comparison between the memoryless
models with and without 0.63 ns delay.

To accurately estimate the time delay between the input sequence u(n) and the output

sequence y(n) , a cross-covariance of u(n) and y(n) is calculated as follows [18]:



34

(u(n+m)—ﬁ)(y*(n)—y*) m>0
» o (16)
(u'(n—m)—t_t*)(y(n)—i) m<0

=0

3

where, N is the length of the sequence. # and 7 represent the average values of u(n)

and y(n) respectively, which are given by:

N-1
E:ﬁ;u(i) (17)

_ 1 N-1
=~ 2.0 (18)
i=0
Therefore, the time delay can be determined by:
T=m_.X— (19)

where, /. denotes the sampling rate and m,_,,_is the index of the maximum covariance.

X
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Fig. 2-9 The simulated AM/PM characteristic comparison between the memoryless
models with and without 0.63 ns delay.

According to (20), the time-delay estimation accuracy is mainly determined by the

sample rate /.. For example, when the sample rate f, equals 61.44 MSPS, the time

resolution is 16.3 ns. However, in practical situations, the time delay of a PA is generally
lower than 15 ns. Thus, the resolution is even larger than the time delay caused by the PA.
Consequently, this sample rate cannot meet the requirement of time-delay estimation and
should be increased. Indeed, the sample rate fully depends on the speed of the analog-to-
digital converters (ADC) of the feedback path. One possible solution to circumvent this
limitation is to update the hardware. Nevertheless, this solution is not always possible due
to the currently available ADC speed, as well as related expenses. An alternative solution
is to use digital signal processing (DSP) techniques. The Lagrange interpolation [19] has,
therefore, been adopted in this work to increase the sample rate by 20-30 times. Finally, a

higher resolution can be obtained and a satisfactory time-delay estimation achieved. The
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cross-covariance calculation results with a 26-times interpolation for a two-carrier

WCDMA signal are shown in Fig. 2-12. It is clear that the maximum cross-covariance

can be found easily and accurately.

60
o P
z ¢
£ i
[s2] <,
50f ;
e with 3ns delay
o *_without delay
30 20 10 0
Pin (dBm)

Fig. 2-10 Measured transmitter AM/AM characteristic comparison with different time
delays.
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Fig. 2-11 Measured transmitter AM/PM characteristic comparison with different time
delays.
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Fig. 2-12 Cross-covariance calculation results with 15.8ns delay.

It should be pointed out that this time-delay estimation method will use more resources

and take longer processing times, while having a higher rate interpolation under long
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time-delay conditions. To overcome this shortcoming, a two-step strategy is adopted for
practical implementation. In the first stage, coarse time-delay estimation is performed
without interpolation. In the second stage, fine time-delay estimation is carried out by

having a higher interpolation rate on a very short data sequence.

2.5 WIENER MODEL VALIDATION AND LIMITATION ASSESSMENT

2.5.1 Wiener Transmitter Model Validation Method

The validation of the Wiener model, which is identified using the procedure explained
above, was initially carried out through a comparison of the output spectra obtained from
the actual transmitter-under-test, the memoryless transmitter model and the Wiener
transmitter model, where a two-carrier WCDMA signal was applied directly to the two
transmitter models and to the transmitter prototype. According to Fig. 2-13 (A), the
Wiener transmitter model with a 64-tap FIR filter produced an output spectrum that
seemed to be close to the measured one. However, to further investigate this matter, the
spectrum differences between the two transmitter models and the actual transmitter are
illustrated in Fig. 2-13 (B). From this figure, one cannot assert that the Wiener transmitter
model performs better than the memoryless transmitter model.

At first glance, such a result seems ambiguous. In fact, the strong static nonlinearity of
the transmitter dominates most parts of the emergence of the out-of-band spectrum
emission at the transmitter and the model outputs. Consequently, the spectrum regrowth

caused by the memory effects is obscured by the spectrum emission produced by the
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static strong nonlinearity. The contribution of the memory effects in the spectrum
regrowth acts as a kind of perturbation; therefore, with such a validation approach, it 1s
very difficult to distinguish the influence of the memory effects on the spectrum
regrowth. For that reason, a more appropriate approach has to be applied in order to prove
the superiority of the Wiener model over the memoryless behavioral model in mimicking

the memory effects of wideband transmitters.
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Fig. 2-13 Spectrum comparison among the spectra of memoryless model, 64-tap Wiener
model and transmitter measurement. (a) Transmitter measurement. (b) Memoryless
model. (c) Wiener model with a 64-tap FIR filter. (d) Spectrum differences between the
memoryless transmitter model and the actual transmitter. (€) Spectrum differences
between the 64-tap Wiener transmitter model and the actual transmitter.

As mentioned earlier, the Wiener model consists of a dynamic linear block and a static
nonlinear block. Thus, a pre-compensation of the static nonlinearity of the transmitter by
applying its inverse function permits the decoupling of the out-of-band emission, which is
caused by the memory effects, and the spectrum regrowth resulting from the memoryless
nonlinearity. In this way, the spectrum regrowth produced by the static nonlinearity is
numerically removed from the output spectrum of the transmitter. As a result, the output
spectrum observed in the spectrum analyzer is strongly dominated by the memory effects
of the wideband RF transmitter.

With this new model validation method, the output spectrum of the transmitter
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memoryless model will be almost free of spectrum regrowth. However, the Wiener model
and the transmitter prototype output spectrum will include a spectrum regrowth which

can be attributed to the memory effects.

2.5.2 Wiener Model Validation

For the purpose of the validation of the Wiener transmitter model, a 1024-entry look-
up table and FIR filters with different numbers of taps were constructed by using the in-
phase and quadrature components of the input and output signals of the transmitter. As
mentioned earlier, the look-up table was constructed first, by using the proposed static
nonlinearity de-embedding procedure with Matlab® software. Then, the recursive least-
squares algorithm was applied to determine the weights of the FIR filter. The constructed
Wiener model was implemented in Agilent advanced design system (ADS) for validation
purposes. It is worth noting that, in order to check the generality of the Wiener model, a
frame of WCDMA signal different from that used in the model identification step was
applied during the validation phase.

Fig. 2-14 illustrates the capacity of the Wiener models to predict the output spectrum
of the transmitter. Here the transmitter and the Wiener models were cascaded with the
inverse of the static nonlinearity block. Compared with the measurement spectrum, the
Wiener model with 64-tap FIR filter allows for better prediction of the output spectrum of
the transmitter than the Wiener models using five- or ten-tap FIR filters. Furthermore,
ACPRs for the different Wiener models and the transmitter prototype output were

assessed at several frequency offsets (-15MHz, -10MHz, -5SMHz, 5SMHz, 10MHz and
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15MHz) from the center frequency within 3.84MHz bandwidth as shown in Fig. 2-15.
ACPR results also demonstrated that the Wiener model with 64-tap FIR filter produced
the best results among the three different Wiener models. However, a relatively large
difference between the spectrum of the 64-tap Wiener model and the spectrum of the
transmitter prototype still existed, especially with the out-of-band spectrum components
nearby the two main channels. Therefore, one can conclude that the Wiener model cannot
accurately predict the memory effects of the actual wideband transmitter used in 3G

applications.

PSD (dB/Hz)

1.896 1.97 1.98
Frequency (GHz)

Fig. 2-14 Spectrum comparison of different Wiener transmitter models and the
transmitter prototype. (a) Transmitter measurement. (b) Wiener model with a 64-tap FIR
filter. (c) Wiener model with a 10-tap FIR filter. (d) Wiener model with a 5-tap FIR filter.
(e) Memoryless model.
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Fig. 2-15 ACPR comparison of different Wiener transmitter models and the transmitter
prototype.

2.6 AUGMENTED WIENER BEHAVIORAL MODEL

2.6.1 Inclusive Memory Effect Model

The memory effect sources of an RF transmitter are usually attributed to thermal
and/or electrical dispersion effects. In the context of a wideband transmitter, electrical
memory effects are the dominant sources of dispersion since the thermal time constant is
too large compared to the inverse of the signal bandwidth [20]. Vuolevi ez al. [21], Ku et
al. [22] and Remley et al. [23] attributed the electrical memory effects to different

sources including: trapping effects, impact ionization, the frequency response of the PA
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around the carrier frequency, matching conditions at harmonic frequencies and the
impedance matching conditions at the envelope frequency (bias circuit design). The
effects of the last two sources are responsible for extra odd-order inter-modulation
distortion vectors. Indeed, even-order nonlinearities after remixing with the carrier
frequencies lead to odd-order inter-modulation products, which are in or very close to the
main channel.

The linear FIR filter in the Wiener model, as presented previously, takes into account
the frequency response around the carrier frequency (linear distortion) and not the
nonlinear even-order distortion sources. In fact, the extracted AM/AM and AM/PM
characteristics of the dynamic memory effect model, as shown in Fig. 2-6 and Fig. 2-7,
are not completely symmetric around the X-axis. This suggests that weak nonlinearities
still exist even after de-embedding static and strong nonlinearity from the measured data.
For this reason, it is not sufficient to model these weak nonlinearities with a linear filter
as is normally done in conventional Wiener models. This also explains the relatively
limited capability of the conventional Wiener model to predict the response of the
transmitter.

Consequently, a new comprehensive memory effect model is proposed. As shown in
Fig. 2-16, one can see that a new parallel branch is added to the linear FIR filter. In this

new parallel branch, the input signal «(r)is multiplied by its magnitude |u(»)| and applied

to another FIR filter. In this way, the linear FIR filter in the conventional Wiener model,
as described in the previous section, is replaced by a weak nonlinear dynamic FIR-based

filter. The second-order terms are introduced to the dynamic memory effect model in such
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a way as to make it able to mimic memory effects more accurately.

FIR1

u(n) — x(n)

— Iu(n)‘ u(n)»| FIR2

Fig. 2-16 Dynamic memory effect model.

Using the new inclusive memory effect model, an augmented Wiener model, as given
by Fig. 2-17, is proposed to model wideband RF transmitters accurately. This augmented
Wiener model is a cascade of a dynamic weak nonlinear model and a strong nonlinear
static model. The strong nonlinear model, based on the smoothed AM/AM and AM/PM
characteristics of the transmitters, is normally implemented by using look-up tables. The
dynamic weak nonlinear model is composed of the new inclusive memory effect model,
which takes into account the dynamic properties of the transmitters in the presence of the

modulated communications signal.

1)

Memoryless static
nonlinearity model

Memory effect model

Fig. 2-17 Augmented Wiener transmitter model diagram.



46

2.6.2 Augmented Wiener Model Identification

Assuming that the two FIR filters have M,and M, taps respectively, the input signal
u(n) and the output signal x(n) of the dynamic filter block in Fig. 2-17 can be written as

follows:

M, -1 M, -1
x(n) = Z au(n—i)+ Z b, ‘u(n — i)lu(n —1i) (20)
i=0 i=0

where M, and M, stand for the memory depth of the model. (2) can also be used for

the identification of the augmented Wiener model. After removing the strong static

nonlinearity using (2), the identification of the coefficients ¢, and b, of the nonlinear filter

can be simplified. Let

vin—i)= |u(n—i)|u(n—i) (21)

Then, (21) can be rewritten as

M, -1 M, -1
x(n) = Z au(n—i)+ z bv(n—1) (22)
i=0 i=0

Consequently, (23) can be solved with recursive least-squares algorithm, if (6) and (8)
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are modified as follows:

T
W:|:a0’al7“"aM,—l’bO’bl"“’sz‘l] (23)

U=[u(n), u(n-1, -, u(n-M +1),

v(n), v(n-1), -, v(n—M2+l)]
(24)

n=M,M+1,---,N

M =max(M,,M,)

where M is the larger one of ar, and A, . Since only the first- and second-order

terms of the input signals are included in this new model, the algorithm has good

numerical stability.

2.7 EXPERIMENTAL SETUP AND NEWLY PROPOSED MODEL

VALIDATION
The wideband RF transmitter characterization platform used in this work is shown in
Fig. 2-18. A personal computer (PC) was utilized as the host digital signal processor
(DSP) to synthesize the test signal and to capture the feedback signal. The //Q signal
source was initially synthesized using Agilent ADS and the arbitrary waveform generator
in the ESG. The test signal had two neighboring WCDMA carriers (carrier spacing
SMHz), which were configured according to 3GPP test model 3 with 32 code channels

[16]. The test signal synthesized using the ADS 3GPP library had a crest factor of 7.96
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dB. The dynamic link between ADS and the ESG was utilized for dynamically uploading
the test signal from the host DSP to the I/Q arbitrary waveform generator of the ESG.
Then, the signal was modulated and up-converted to an RF carrier in the ESG, and the RF

output of the ESG was fed to the PA.

— o _ _ _FeebaokPah_ _ _ _ _
|( I l Digital D RF/IF Down )
H igital Down (255 -
| ostbs? Converter (XADCH " overter
| o — y
]
| : t 10 MHz ref
[ ]
I i im——————— N e m .
|
l

| !
1/Q | — —{DAC>— RF Vector !
Signal Source ——">IDAC Modulator PA !
) ' _ V=
Fig. 2-18 Wideband RF transmitter characterization platform.

Having the baseband input waveform directly recorded in the host DSP during the
signal synthesis step, the baseband waveform at the output of the transmitter was captured
by a RF receiver. This receiver consisted of a RF/IF down-converter, a high-speed ADC,
a digital down-converter and the host DSP, as shown in Fig. 2-18. In this work, the
receiver prototype was physically formed by a spectrum analyzer (Agilent E4446A), a
vector signal analyzer (VSA: Agilent 89611A) and a PC. The Agilent E4446A spectrum
analyzer, which was fed with the output RF signal of the PA, translated the RF signal to a
70 MHz intermediate frequency (IF). Then, the IF signal was digitized by means of the

high-speed digitizer module (Agilent 1439C) and was down-converted to baseband / and
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QO signals. Finally, the baseband 7 and Q data were sent to the PC through a high-speed
IEEE1394 interface for further processing. The delay calibration function of the vector
signal analyzer was employed to compensate for the time delay caused by the group delay

of the transmitter and the output waveform acquisition subsystem.

2.8 VALIDATION RESULTS AND DISCUSSION

As suggested earlier, the validation of the newly proposed model was carried out by
preceding the transmitter with its memoryless nonlinear inverse function. Thus, one can
concentrate on the capability of the new model in predicting memory effects. For that
reason, the identification of the augmented Wiener model parameters was firstly
performed according to the method explained in Section VI. A 1024-entry look-up table
was constructed, and two three-tap FIR filters were subsequently identified. To illustrate
the improved accuracy of this new model, the results obtained previously with the 64-tap
Wiener model and the memoryless transmitter model were used as references in the
validation process. Both the spectrum comparison results shown in Fig. 2-19 and the
ACPR comparison results shown in Fig. 2-20 indicate that the augmented Wiener model
can predict the memory effects of the transmitter more accurately than the conventional
Wiener model. As expected, the memoryless transmitter model cannot predict the

memory effects of the wideband transmitter at all.
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PSD (dB/Hz)
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Frequency (GHz)

Fig. 2-19 Spectrum comparison of different transmitter models and the transmitter
prototype. (a) Transmitter measurement. (b) Augmented Wiener model with two 3-tap
FIR filter. (c) Wiener model with a 64-tap FIR filter. (d) Memoryless model.
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Fig. 2-20 ACPR comparison of different transmitter models and the transmitter prototype.
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2.9 CONCLUSION

In this chapter, a non-analytical modeling technique for the memoryless static
nonlinear behaviors of RF transmitters, based on a dynamic exponential weighted moving
average algorithm, was developed and validated. This technique is inherently so robust
that it can be used for any type of RF transmitters exhibiting any complex gain shape
variations. In order to deduce an intermediate set of data that could be used in the
identification of the dynamic (memory effects) sub-model of the Wiener model, the
resulting memoryless AM/AM and AM/PM characteristics were utilized to de-embed the
raw measurement data. Subsequently, to identify the memory effects accurately, a time-
delay estimation algorithm based on Langrage interpolation and cross-covariance
calculation was developed to align the input and output raw baseband data captured
beforehand.

Moreover, to evaluate the accuracy and robustness of the different Wiener models, a
novel validation method was proposed. This method is based on annulling the spectrum
regrowth that is caused by the static nonlinearity, with the help of cascading the inverse of
the complex memoryless model. To improve the relatively limited accuracy of the
conventional Wiener model, an augmented Wiener model has been proposed, where the
linear FIR filter is replaced with a weak nonlinear filter structure. To the best of the
authors’ knowledge, this is the first time such a nonlinear model has been presented and
implemented in practical applications. Finally, the effectiveness of the proposed
augmented Wiener model and its identification procedure was assessed using a 60-watt

PEP GaAs FET push-pull amplifier based transmitter driven by a two-carrier WCDMA



52

signal. The spectrum comparison results between the different transmitter models and the
transmitter prototype reveal that the proposed augmented Wiener transmitter model
outperforms other models in predicting the spectrum regrowth caused by the memory

effects of the wideband transmitter.
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CHAPTER 3

AUGMENTED HAMMERSTEIN PREDISTORTER FOR
LINEARIZATION OF BROADBAND WIRELESS
TRANSMITTERS

In this chapter, an augmented look-up-table-based Hammerstein predistorter is
proposed for the first time in order to further improve the pre-correction capability of the
traditional Hammerstein predistorter in the context of broadband high power wireless
transmitters. As the predistorter scheme consists of two separate modules, its parameters
are determined in two steps: (i) static predistorter identification, and then (ii) dynamic
part identification. The performance assessment of the newly proposed predistorter is
carried out on a wireless transmitter prototype, which includes an L-band push-pull GaAs
FET 60-Watt peak-envelope-power amplifier. Moreover, one-carrier and three-carrier
3GPP-FDD signals are used as test signals to verify the robustness of this novel
predistorter under different bandwidth signals. The linearized transmitter prototype output
spectrum demonstrate noticeable superiority of the proposed augmented predistorter in
suppressing the spectrum regrowth caused by the memory effects in comparison to the

traditional Hammerstein predistorter.

3.1 INTRODUCTION
High efficiency wideband transmitter design for modern high speed wireless

communication systems, such as Worldwide Interoperability for Microwave Access
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(WIMAX), 3" Generation (3G) and beyond systems and etc., is a tricky task since it
involves numerous inconsistent requirements. Particularly, in such contexts,
accomplishing simultaneously high linearity and high power efficiency 1s a great
challenge. In fact, to efficiently utilize the precious limited spectrum resources, several
complicated modulation schemes have been widely used in the modern wideband
wireless communication systems. These modulated signals lead to a non-constant
envelope with large Peak-to-Average Power Ratios (PAPRs), which can be as high as 12
dB in some cases. Consequently, the power amplifier (PA) in the transmitter has to be
designed either to operate near its saturated area so as to provide higher system power
efficiency or at large back-off from its nonlinear region in order to meet the required
linearity. Accordingly, the PA ends with either high efficiency with bad linearity or vice-
versa. Therefore, to satisfy the linearity requirement while operating the PA at its
nonlinear area one has to correct for the different sources of distortion all along the entire
transmitter chain.

For this reason, different linearization techniques such as feedback [1], feed-forward
[2], and predistortion [3], [4], have been proposed to improve the linearity of the
transmitter. Among the various linearization techniques, digital baseband predistortion is
one of the most promising and cost effective linearization techniques due to its digital
implementation that offers a significant accuracy and flexibility.

Consider its simplicity and relative ease of implementation, look-up-table (LUT) is by
far the most adopted means for the construction of the inverse of the Amplitude-

Modulation /Amplitude-Modulation (AM/AM) and Amplitude-Modulation /Phase-
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Modulation (AM/PM) characteristic curves of the transmitter or PA [5]-[8]). However,
such type of predistorters is only valid for memoryless nonlinear cases such as the
traditional narrow band wireless communication systems. For wideband transmitter/PA
context, the memory effects exhibited by the transmitter/PA limit significantly the ability
of the memoryless predistorter to suppress the spectrum regrowth [9]. These electrical
memory effects are mainly attributed to the non-constant frequency response of the
transmitter around the carrier frequency, the impedance variation of bias circuits at
baseband as well as the harmonic loading in the PA power stage [10]-[12]. Therefore,
different predistorter architectures, which are intended to compensate for the nonlinearity
as well as the memory effects, have been reported in the literature. For example, a
memory polynomial model was proposed in [13], or utilized in [14]-[16], to address these
effects. However, such a memory polynomial based predistorter suffers from a numerical
instability when higher order polynomial terms are included since a matrix inversion is
needed for the determination of the polynomial coefficients [17]. Alternatively, Raich et
al. [17] employed the orthogonal polynomials to alleviate the numerical instability
problem associated with the traditional polynomials.

Two-box based predistorters, which are called Hammerstein or Wiener predistorter
according to the cascading order of the nonlinear block and the linear block, are another
type of common predistorter architectures in the literature. For example, a Hammerstein
predistorter, which is a cascade of a memoryless nonlinear block followed by a linear
filter, was utilized to compensate for the nonlinearity as well as the memory effects of a

PA [18], [19]. Recently, Wang and Ilow [20] demonstrated the compensation
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performance using a Wiener predistorter to linearize the high power amplifier (HPA) with
memory effects in an Orthogonal Frequency-Division Multiplexing (OFDM) transmitter
while considering the HPA as a Hammerstein nonlinear system. In these two examples,
the memoryless nonlinearity is represented by a complex high-order memoryless
polynomial. In addition, the identification of the coefficients of the memoryless nonlinear
block and the taps of the linear filter are concurrently resolved by means of complicated
algorithms that are applied either in time domain [18], [19] or in frequency domain [20].
In this chapter, a LUT-based Hammerstein predistorter is initially developed to
compensate for the nonlinearity and the memory effects that occur in a broadband
wireless transmitter. To further improve the compensation performance of the
predistorter, an augmented Hammerstein predistorter is proposed. The remainder of this
chapter is organized as follows. The section II elucidates the details of the LUT-based
Hammerstein predistorter and its corresponding identification procedure. Then, in section
I1l, a new augmented Hammerstein predistorter is proposed in order to improve the
correction performance for the nonlinearity and the memory effects in the context of the
broadband wireless transmitter. Section IV describes the test bed used in the experimental
validation of different predistorters involved in this chapter. Finally, in section V, the
validation results of the Hammerstein predistorter and the augmented Hammerstein
predistorter with different configurations under one-carrier and three-carrier the 34 _
Generation-Partnership-Projects Frequency-Division-Duplex (3GPP-FDD) signals are
illustrated and discussed using an L-band 60-Watt GaAs FET push-pull PA based

transmitter.
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3.2 LUT-BASED HAMMERSTEIN PREDISTORTER AND

IDENTIFICATION

3.2.1 LUT-Based Hammerstein Predistorter

A Hammerstein predistorter, as illustrated in Fig. 3-1, is utilized to build a
predistortion function for a broadband wireless transmitter. Accordingly, the predistorter
is decomposed into a nonlinear static memoryless subsystem and a linear dynamic one.
The static memoryless subsystem is intended to pre-compensate for the static nonlinearity
of the transmitter while the linear dynamic filter is focused on suppressing the spectrum
regrowth caused by the memory effects. The memoryless predistortion can be
implemented using the traditional look-up table (LUT). This LUT is constructed based on
the AM/AM and AM/PM characteristics of the transmitter that are extracted directly from
the baseband measurement data by means of a moving average procedure as explained in
[21]. Consequently, the complex dynamic predistortion problem is simplified to a
relatively easy linear dynamic problem. In this way, resolving the Hammerstein
predistortion becomes more convenient than the traditional solutions [18]-[20], where all
of the linear and nonlinear parameters of the Hammerstein model are resolved
concurrently by means of elaborate algorithms.

The identification of the static memoryless predistorter on the basis of raw measured

baseband data, u(n) and y(n) , permits the extraction of the non-measurable variable,
x(n) shown in Fig. 3-1, which is required in the identification of the linear filter

subsystem. For this reason, the input signal u(n)of the predistorter is applied to the
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memoryless predistorter subsystem so as to get the dynamic linear filter input signal x(n) .

i GI i [ m s
u(n) AM/AM and [ R :
T [u(m)| 1 amPM LUT L] Complex ix(n)y [ Linear | )(n
i G, | muttiptier [ Filter :
; > D e ;
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........................................................... subsystem

Memoryless static nonlinear subsystem

Fig. 3-1 Hammerstein predistorter diagram.

The input and output signals of the two blocks in Fig. 3-1 can be related as follows:

x(n) = [G,. (|u(n)|)+ JjG, (Iu(n)l)] u(n) = G(|u(n)|)u(n) (1)

y(n) = f(x(n)) (2

Where G(ju(m)|) =G, (ju(m)])+ jG, (|ju(n)]) refers to the memoryless complex gain of the

predistorter that depends only on the instantaneous magnitude ofu(n); f(x) is a linear

transfer function of the linear filter.

3.2.2 Hammerstein Predistorter Identification
Hammerstein parameter identification is performed using an offline training scheme as

shown in Fig. 3-2. To identify the parameters of the predistorter, the output z,, (n) of the
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transmitter is normalized by the designated linear gain G, of the transmitter and taken

inear

as the input training sequence u(n) of the predistorter, i.e.,

Zyy (1)

u(n) = 3)

linear

«
Hammerstein Predistorter (Copy of A)

L U P N e T L

uTX {n) Memo X (n)' i
\ ryless 7x \'¥J  Linear
[ LUT i Filter

e e e e e e et e s et 4 e 4 s s s s .

ig(n) Linear |X(n) Memoryless

i
1
Fiter [ LUT ]
'

u(n)

Hammerstein Predistorter Training (A)

Fig. 3-2 An offline training scheme for Hammerstein predistorter identification.

The input y,,(n) of the transmitter is used as the output training sequence y(n) of the

predistorter, i.€.,

y(n)=y (1) )
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Then the dynamic exponential weighted moving average (DEWMA) method [21] is
applied to the predistorter training sequences u(n) and y(n) in order to remove the
dispersion of the dynamic AM/AM and AM/PM characteristics. The extracted smoothed
AM/AM and AM/PM curves are then used to construct the LUT of the predistorter. Fig.
3-3 and Fig. 3-4 show typical extracted AM/AM and AM/PM curves, which are based on
the measurement data when the transmitter is driven with a three-carrier 3GPP-FDD

signal. This latter is synthesized according to 3GPP test-model-3 with a carrier separation

of 5 MHz each other [24].
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Fig. 3-3 Predistorter AM/AM curve smoothed with DEWMA vs. the raw measurement
AM/AM data.
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Fig. 3-4 Predistorter AM/PM curve smoothed with DEWMA vs. the raw measurement
AM/AM data.

After that, the intermediate training data set x(n) is deduced via the application of the
input training data 4(») to the previously constructed LUT. Based on the data set x(n) and
y(n), the AM/AM and AM/PM characteristics of the memory effect subsystem in Fig. 3-1

are traced and shown in Fig. 3-5 and Fig. 3-6. The two figures illustrate the removal of

the strong static nonlinearity.
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Fig. 3-5 Dynamic AM/AM characteristics of the linear filter extracted from the
measurement data.
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Fig. 3-6 Dynamic AM/PM characteristics of the linear filter extracted from the
measurement data.
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Here a Finite Impulse Response (FIR) filter is chosen, instead of an Infinite Impulse
Response (IIR) filter, to build the dynamic linear filter in order to avoid the potential

instability of an IIR filter. Thus, (2) can be expressed as:

y(n) = Z‘:—l a.x(n—i) (5)

Where M stands for the number of the FIR filter taps, and a, denotes the coefficients

of the FIR filter taps. Then again, (5) can be rewritten in matrix format as follows:

Y = AW (6)
where
Y = [y(M), y(M +1),-+, p(N)] (7)
W:[a09a1""3aM—l]T (8)
A=[X(M) X(M+1) - XN (9)
X= [x(n) x(n-1) --- x(n—M+1)]
(10)

n=M,M+1-,N

The FIR filter parameter identification can be performed using the Recursive Least-
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Squares (RLS) algorithm [25], where the deduced x(n) and the measured u(n) are taken

as the input signal and the desired signal, respectively.
Once the memoryless LUT and the linear filter parameters are identified, the offline
training procedure is ended and the Hammerstein predistorter parameters are updated

accordingly.

3.3 AUGMENTED HAMMERSTEIN PREDISTORTER

As discussed in the previous section, the memory effects are pre-compensated by
means of a linear FIR filter in the traditional Hammerstein predistorter. This linear filter
would correct for the electrical memory effects attributed mainly to the non-constant
frequency response of the transmitter around the carrier frequency. Consequently, it failed
to completely pre-compensate for the electrical memory effects due to the impedance
variation of the bias circuits and harmonic loading of the power transistors. For that
reason, an augmented Hammerstein predistorter, as given by Fig. 3-7, is proposed to
enhance the correction capability in the context of broadband wireless transmitters. This
augmented Hammerstein predistorter is a cascade of a strong nonlinear static subsystem
and a dynamic weak nonlinear subsystem. The strong nonlinear subsystem, which is
based on averaged AM/AM and AM/PM characteristics of the predistorter, can be
implemented using Look-Up Tables (LUT). However, the dynamic weak nonlinear
subsystem is composed of a new dynamic FIR-based filter, which is responsible for
annulling the spectrum regrowth produced by the dynamic distortion sources at the

transmitter output when the transmitter is driven with a modulated signal. For this new
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dynamic FIR-based filter, an extra parallel branch is added to the linear FIR filter. In this

parallel branch, the input signal x(n) is multiplied by its magnitude |x(»)| in order to

generate even-order distortions that will be applied to a second FIR filter. Accordingly,
the new predistorter includes distortions sources that are close to those encountered in the
real transmitter to be linearized. Thus, a superior performance to that obtained with a

simple linear FIR filter is anticipated.

i
iu(n)‘ AM/AM and

Memoryless static nonlinear subsystem Memory effect subsystem

Fig. 3-7 Augmented Hammerstein predistorter diagram.

Assuming that the two FIR filters in the dynamic FIR-based filter have M,and M, taps
respectively, the input signal x(») and the output signal y(n) of this predistorter, given in

Fig. 3-7, can be correlated as follows:

y(n) = Mz_ll a,.x(n—i)+Mi_:1bi |x(n—i)|x(n—i) (11)



68

Where M, and M, denote the memory depth of the predistorter. o, and b represent

the tap coefficients of the two FIR filters - FIR1 and FIR2, respectively.
The memoryless static nonlinear module in the augmented Hammerstein predistorter

can also be expressed by (1). Based on the training sequence u(n) and x(n), the moving

average procedure proposed in [21] can be utilized to extract the AM/AM and AM/PM
LUT to construct a memoryless predistorter. After removing the strong static nonlinearity

using the obtained LUT, the identification of the coefficients g, and 5, can be largely

simplified. Let
v(n—i) =|x(n-i)|x(n-i) (12)
(11) can be rewritten as
M1 M, -1
y(n) = Z(; ax(n—i)+ Z(; bv(n—i) (13)

Consequently, (13) can be resolved with RLS algorithm if (8) and (10) are modified as

follows:
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W:[amav”'a by, by, b 1]T (14)

>MM, 12 SV M,—

X=[x(n), x(n-1), -, x(n—-M, +1),
v(n), v(n-1), -, v(n—M2+1)]

(15)
n=M,M+1,--,N

M =max(M,,M,)

Where u is the largest value of prand s, . Since only the first and the second order

terms of the input signals are involved in this new predistorter scheme, the RLS algorithm

exhibits good numerical stabilities.

3.4 VALIDATION EXPERIMENTAL SETUP

The experimental set-up used to evaluate the compensation performance of the
different predistorter schemes, namely conventional Hammerstein and augmented one, is
shown in Fig. 3-8. The broadband wireless transmitter prototype includes a radio
frequency (RF) vector modulator, two digital to analog converter (DAC) and a RF PA at
the frequency band of 1930-1990 MHz. The RF PA is a cascade of three stages. The first
stage contains a 12-Watt linear LDMOS power amplifier MHL-19936 with 29 dB gain
from Freescale Semiconductor. The second stage is based on a Freescale MRF19045
LDMOS transistor. The final stage comprises a 60-Watt peak-envelop-power push-pull

FET transistor (FLL600IQ-2) from Fujitsu. The whole line-up of the RF PA has 53 dB



70

gain and 45 dBm saturated power. Moreover, the RF vector modulator and two digital to
analog converters (DAC) are emulated with an Electronic Signal Generator (ESG:
Agilent E4438C). Therefore, the transmitter prototype is physically constructed with the
ESG and the power amplifier.

The host DSP is implemented with a personal computer (PC), where the I/Q signal is
initially synthesized using the 3GPP library in Agilent Advanced Design System (ADS).
In this work, the I/Q test signals have one 3GPP-FDD carrier and three neighboring
3GPP-FDD carriers (carrier spacing 5SMHz for every two neighboring carriers), which are
configured according to 3GPP test-model-3 with 32 code channels [24]. The baseband
I/Q signal is firstly pre-processed by the predistortion function and then downloaded to
the I/Q arbitrary waveform generator of the ESG via the GPIB interface with the help of
the dynamic link existing between ADS and the ESG. After that, the predistorted
baseband signal is modulated to an RF carrier in ESG and fed to the PA. In this way, the
ADS in the host DSP, the ESG, and the power amplifier work together to form a
baseband linearized transmitter prototype. The baseband data at the output of the
transmitter is captured by an RF receiver. As shown in Fig. 3-8, this receiver consists of a
RF/IF down-converter, a high-speed analog to digital converter, a digital down-converter,
and the host DSP. In this work, the receiver prototype is physically constructed by a
spectrum analyzer (PSA, Agilent E4446A), a Vector Signal Analyzer (VSA, Agilent
89611A) and a PC. The spectrum analyzer PSA serves as down-converter, which
transforms the RF signal to a 70 MHz intermediate frequency (IF). The IF signal is then

digitized by means of the high speed digitizer module Agilent-1439C and digitally down-
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converted to baseband I and Q signals. After that, the VSA software in the PC captures
the baseband I and Q data via the high-speed IEEE1394 interface.

The captured baseband data at the input and output of the prototype transmitter are
processed in Matlab® so as to deduce the parameters of the predistorter. Finally, the
obtained predistorter parameters are sent to the ADS to update the corresponding
predistorter parameters. The performance of the different predistorters can be evaluated

by comparing the output spectra of the transmitter obtained with the various predistorter

schemes.
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Fig. 3-8 Experimental set-up for verifying digital predistorters.

3.5 VALIDATION RESULTS AND DISCUSSION
To validate the pre-compensation ability of the predistorter, a 1024-entries LUT and

the dynamic FIR filter are constructed using the offline training method introduced in the
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previous section. At first, the LUT is built using the DEWMA method in Matlab®. Then,
the RLS algorithm is applied to determine the coefficients of the dynamic filter. After
that, the constructed predistorter is implemented in ADS to synthesize the predistorted
version of the test signal that will be fed to the wideband transmitter. To test the
generality of the predistorter, a frame of 3GPP-FDD signal, which is different from the
frame used in the predistorter identification stage, is applied to the predistorter during the

validation phase.

3.5.1 Hammerstein Predistorter

To optimize the Hammerstein predistorter, the dynamic FIR filter is configured with
different number of taps so as to evaluate the variation of the residual spectrum regrowth.
Fig. 3-9 illustrates the ability of the Hammerstein predistorters with different FIR taps to
suppress the output spectrum regrowth of the transmitter while applying the predistorted
one-carrier 3GPP-FDD signals. The spectrum of the Hammerstein predistorter having
128-taps FIR filter shows the larger side-lobes suppressing. In comparison to the
spectrum of the transmitter obtained using a memoryless predistorter, one can conclude
that to some extents all of the different Hammerstein predistorters are able to partially
suppress of the spectrum regrowth caused by the memory effects. Fig. 3-10 shows the
adjacent channel power ratio (ACPR), at the output of the transmitter for different
predistorters, which are assessed at several frequency offsets (-15 MHz, -10 MHz, -5
MHz, 5 MHz, 10 MHz and 15 MHz) from the center frequency within 3.84 MHz

bandwidth. The improved ACPR value at 5 MHz offset for the transmitter with the
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Hammerstein predistorter having 128-taps FIR filter is as high as 15 dB when compared
to the ACPR value of the non-linearized transmitter.

Furthermore, Fig. 3-9 clearly exemplifies all of these Hammerstein predistorters
cannot effectively suppress the spectrum regrowth close to the main channel. The best
ACPR value at 5 MHz offset for the transmitter with the Hammerstein predistorters is
about -55.5 dBc. In comparison to -54.2 dBc of the ACPR obtained with the memoryless
predistorter, there is no obvious improvement for further suppressing the spectrum
regrowth using these traditional Hammerstein predistorters. Consequently, based on the
results obtained, one can conclude that in actual transmitter systems the ability of the
Hammerstein predistorter for reducing the transmitter spectrum regrowth caused by the
memory effects is limited. This might be due to the fact that real broadband transmitters
can not be accurately characterized by and do not obey a Wiener nonlinear model. This 1s
in agreement with the simulation results and conclusion reached in [19] where a
perturbed Wiener PA model was simulated and further linearized using a Hammerstein

predistorter.
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Fig. 3-9  Spectrum comparison of the transmitter with different Hammerstein
predistorters. (a) Without predistorter. (b) With memoryless predistorter. (c)
Hammerstein predistorter with a 10-tap FIR filter. (d) Hammerstein predistorter with a
64-tap FIR filter. (¢) Hammerstein predistorter with a 128-tap FIR filter.
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Fig. 3-10 ACPR comparison of the transmitter with different Hammerstein predistorter.
(a) Without predistorter. (b) With memoryless predistorter. (c) Hammerstein predistorter
with a 10-tap FIR filter. (d) Hammerstein predistorter with a 64-tap FIR filter. ()
Hammerstein predistorter with a 128-tap FIR filter.

3.5.2 Augmented Hammerstein Predistorter

The parameter identification of the augmented Hammerstein predistorter is firstly
carried out in terms of the procedure explained in section III. A 1024-entries LUT is
constructed and two FIR filters with ten or twenty taps are identified. To illustrate the
superior accuracy of this new predistorter scheme, the spectrum and ACPR results
obtained while cascading the transmitter with a 128-tap Hammerstein predistorter or a
memoryless predistorter are used as references in the validation process. In addition, the

spectrum and ACPR of the transmitter without predistorter are also added in the result
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comparison to illustrate the performance improvements under the conditions of with and
without predistortion. To verify the robustness of the proposed new Hammerstein
predistorter, one-carrier and three-carrier 3GPP-FDD signals are chosen as the test signals.

Both the spectrum comparison results shown in Fig. 3-11 and Fig. 3-13, and the ACPR
comparison results shown in Fig. 3-12 and Fig. 3-14 for one-carrier and three-carrier
3GPP-FDD signals indicate that the novel augmented Hammerstein predistorter can
suppress the memory effects of the transmitter much better than the conventional
Hammerstein predistorter. Although the memory effects are not strong for one-carrier
3GPP-FDD signal as shown in Fig. 3-11, the augmented Hammerstein predistorter still
provides obvious improvement for suppressing the spectrum regrowth caused by the
memory effects. When the transmitter is applied with the three-carrier 3GPP-FDD signal,
the transmitter exhibits strong memory effects as illustrated in the curve (b) in Fig. 3-13.
The curve (c) in Fig. 3-13 reveals that the traditional Hammerstein predistorter cannot
efficiently stifle the spectrum regrowth attributed to the memory effects. Nevertheless, the
curve (d) in Fig. 3-13 clearly demonstrates that the new augmented Hammerstein

predistorter can successfully compensate for the memory effects.
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Fig. 3-11 Spectrum comparison of different predistorters for one-carrier WCDMA signal.
(a) Without predistorter. (b) Memoryless predistorter. (¢) Hammerstein predistorter with a
128-tap FIR filter. (d) Augmented Hammerstein predistorter with two twenty-tap FIR

filter.
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Fig. 3-12 ACPR comparison of different predistorters for one-carrier WCDMA signal.
(a) Without predistorter. (b) Memoryless predistorter. (¢} Hammerstein predistorter with a
128-tap FIR filter. (d) Augmented Hammerstein predistorter with two twenty-tap FIR

filter.
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Fig. 3-13 Spectrum comparison of different predistorters for one-carrier WCDMA signal.
(a) Without predistorter. (b) Memoryless predistorter. (c) Hammerstein predistorter with a
128-tap FIR filter. (d) Augmented Hammerstein predistorter with two twenty-tap FIR
filter.
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predistorter with a 128-tap FIR filter. (d) Augmented Hammerstein predistorter with two
ten-tap FIR filter.
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Fig. 3-15 Spectrum comparison of different predistorters for one-carrier WCDMA signal.
(a) Without predistorter. (b) Memoryless predistorter. (c) Hammerstein predistorter with a
128-tap FIR filter. (d) Augmented Hammerstein predistorter with two twenty-tap FIR
filter.
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Fig. 3-16 ACPR comparison of different predistorters for three-carrier WCDMA signal.
(a) Without predistorter. (b) Memoryless predistorter. (c) Hammerstein predistorter with a
128-tap FIR filter. (d) Augmented Hammerstein predistorter with two ten-tap FIR filter.

3.6 CONCLUSION

In this chapter, a LUT-based Hammerstein predistorter is employed to suppress the
spectrum regrowth caused by the nonlinearity and the memory effects in a wideband
wireless transmitter. The identification procedure of this predistorter is discussed in
details. Consider the limitation of the traditional Hammerstein predistorter in pre-
compensating for entire memory effects, an augmented LUT-based Hammerstein
predistorter is proposed. In this augmented Hammerstein predistorter, a weak nonlinear

FIR-based dynamic filter is utilized to compensate for the memory effects of the
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transmitter instead of a linear FIR filter as in the conventional Hammerstein predistorter.
To the best of the authors’ knowledge, this is the first time such a dynamic nonlinear
predistorter is proposed and implemented to compensate for the dynamic nonlinearity
existing in a broadband wireless transmitter. Finally, the LUT-based Hammerstein
predistorter and the new augmented LUT-based Hammerstein predistorter are tested using
a 60-Watt PEP GaAs FET push-pull amplifier based transmitter prototype driven by a
one-carrier and a three-carrier 3GPP-FDD signals. Both the linearized output spectrum
and the ACPR comparison results demonstrate that the proposed augmented LUT-based
Hammerstein predistorter outperforms the conventional LUT-based Hammerstein
predistorter in suppressing the spectrum regrowth caused by the memory effects of the

broadband wireless transmitter.
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CHAPTER 4

DYNAMIC BEHAVIORAL MODELING OF 3G POWER
AMPLIFIERS USING REAL-VALUED TIME DELAY
NEURAL NETWORKS

In this chapter, we propose a novel Real-Valued Time Delay Neural Network
(RVTDNN) suitable for dynamic modeling of the baseband non-linear behaviors of 3G
base station Power Amplifiers (PA). Parameters (weights and biases) of the proposed
model are identified using the back-propagation algorithm, which is applied to the input
and output waveforms of the power amplifier recorded under real operation conditions.
Time and frequency domain simulation of a 90-Watt LDMOS PA output using this novel
neural network model exhibit a good agreement between the RVTDNN behavioral
model’s predicted results and measured ones along with a good generality. Moreover,
dynamic AM/AM and AM/PM characteristics obtained using the proposed model
demonstrated that the RVTDNN can track and account for the memory effects of the PAs
well. These characteristics also point out that the small signal response of the LDMOS
PA is more affected by the memory effects than the PA’s large signal response when it is
driven by 3G signals. This RVTDNN model acquires a significantly reduced complexity
and shorter processing time in the analysis and training procedures, when driven with
complex modulated and highly varying envelope signals such as 3G signals, than

previously published neural network based PA models.
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4.1. INTRODUCTION

System-level behavioral modeling consists of constructing a black-box analytic
function that admits alike responses to those obtained at the output of a real device or a
sub-system driven by the same input signal. Such models are of great help for designers
of communication systems, in particular, transmitters and Power Amplifiers (PAs), since
they provide them with greatly reduced complexity and time-consuming design and
optimization procedures. However, these advantages could be achieved providing the
capacity of the model to predict the PA output under realistic conditions.

In the literature [1] the non-linear behavioral models were classified as three
categories: memoryless, quasi-memoryless behavioral models and those with memory.
Polynomial and Saleh [2] functions for a long while have been involved for respectively
solid state and traveling wave PAs modeling that admit AM/AM and AM/PM conversion
characteristics and belong to the first two categories. However, the continuously growing
modulation bandwidth of the new communication multi-carrier signals has triggered new
challenging issues in the design of PAs due, namely, to memory effects. These effects are
commonly defined as the frequency dependency of inter-modulation distortion levels at
the output of PAs on the modulation frequency bandwidth [3]. In time domain, memory
effects cause the outputs of the small signals of the power amplifier deviate from the
linear output when the signal changes. This results in the deterioration of the whole
system signal to noise ratio since the linearity of the PA at small signals is compromised.

Modeling of PAs with memory is the research focus of many authors in last few years

that yields to various model topologies. As an example, authors in [4] employed Volterra
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series for modeling non-linear PAs with memory effects. However, the use of such series
based models is restricted to weak non-linear devices. Solid State power amplifiers
(SSPAs) used in the 3G base station transceivers require high order Volterra kernels. In
spite of the fact that truncated Volterra series were pursued as a good means of getting rid
of the computational complexity [5] of high order Volterra kernels, this model still suffers
from the difficulty of its real-time implementation. Authors in [6] reported a cascade of
linear ARMA filter and a conventional polynomial memoryless function in order to take
into account the frequency dependent distortion at the output of the PA.

Traditionally, the extraction of the behavioral model parameters of power amplifiers
was performed with fitting the measured static AM/AM and AM/PM characteristics
obtained using power sweep continuous wave at the operation center frequency [2]. In
order to handle the frequency response of the amplifier, authors in [7] proposed to extract
the behavioral model parameters by fitting static AM/AM and AM/PM characteristics at
several carrier frequencies that fall within the signal bandwidth. This method was pursued
as a solution to the modeling of PA driven with wideband signals. However, this latter
approach still suffers from the lack of accuracy since the static PA characterization
technique was performed at each carrier frequency. Thus, researchers in [8]-[10] have
chosen to extract model parameters while fitting concurrently measured amplitude and
phase of the spectrum components at the PA output such as: fundamentals, third order
inter-modulation (IMD3) and fifth order inter-modulation (IMDS5) obtained under two-
tone excitation signal with varying power and frequency-spacing.

In the last decade, artificial neural network (ANN) technology has been successfully
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applied to RF and microwave applications [11] since they can approximate any
continuous function arbitrarily well [12]. By profiting from their potential to learn the
circuit behavior based on simulated or measured records of its input and output signals,
they were used in non-linear transient modeling and digital high-speed interconnects for
computer-aided design (CAD) of VLSI modules [13]. They were employed also for the
modeling, simulation and design of microwave circuits [14]-[16]. Hence, the ANN based
models are seen as a potential alternative to model RF PAs having medium to strong
memory effects along with high order non-linearity. This chapter represents an attempt to
extend further the use of neural network technology to the dynamic modeling of RF PAs
of wireless communication transmitters operating under wideband modulation and highly
varying envelope signals such as CDMA 2000, W-CDMA, TD-SCDMA, and

WLANSO02.11x.

4.2. RVTDNN BEHAVIOR MODEL OF POWER AMPLIFIERS

Many topologies of ANNs were reported in the literature for the modeling of different
types of circuits and systems that exhibit different kinds of linear and nonlinear
behaviors. In conventional artificial neural network model development procedures,
complex input-output measured signals are initially converted to either polar
representation (magnitude and phase) or rectangular one (in-phase / and quadrature
components). Then, two separate and uncoupled real-valued neural networks are used to
model the output amplitude and phase (or the output 7 and 2 components) variations as a

function of the input power amplitude (or the input / and ¢ components), as shown in
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Fig. 4-1 [17]. The real coefficients of the two networks are identified during a training
procedure using the measured amplitude and phase (or / and ¢ components) of the input
and output. This topology suffers from the convergence problems of the training
procedure since the two networks are trained separately. Furthermore, authors in [18],
[19] proposed applying a complex value based neural network to the complex signal
directly, as shown in Fig. 4-2. In such case, both the weights and the activation functions
of the network are complex. This type of ANN necessitates a cumbersome complex
training algorithm such as the complex back-propagation training algorithm [20]. Thus,
the two neural networks topologies described above lead to a lengthy training time and

elevated computation resources.

Phase/lmage part NN

Fig. 4-1 Complex signal processing models of the conventional real-valued neural
network.
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As a specific ANN, Time Delay Neural Network (TDNN) has been used to learn and
represent dynamic systems. It was successfully utilized in the signal processing, speech
recognition, system identification and control to solve the temporal processing
problems[12], [21]. However, in the case of complex input signals the TDNN was
implemented according to Fig. 4-1 or Fig. 4-2 topologies. Therefore, it suffers from the
limitations mentioned earlier. In this chapter, we propose a novel Real-Valued Time
Delay Neural Network (RVTDNN) to construct a dynamic behavioral model suitable for
3G PAs in real operation conditions. Contrary to previous presented methods, this
approach uses only one real valued neural network instead of two separate networks. The
newly proposed RVTDNN, which is made up of two-layers, uses real-valued parameters
(weights and biases) along with the real components of the input and output signals. As
shown in Fig. 4-3, the RVTDNN model utilizes the two components of the input signal
t»-2» in order to predict the correspondent two components ¢o-%u) of the output signal.
The proposed RVTDNN is based on the FeedForward Neural Network (FFNN) [22], with
the addition of two Tapped Delay Lines (TDLs) in its two baseband inputs. TDLs are
used so as to consider the history of the input signal, which is needed for memory effects
modeling. Thus, the FFNN entries include not only the current value of the input signal
but also its previous ones. The memory depth of the Device-Under—Test (DUT) will be
reflected on the length of the TDL taps. Consequently, the TDL structure, included in the
RVTDNN, leads to the modeling of the short-term memory effects exhibited by the

power amplifier. However, the long-term memory is built into the RVIDNN through a
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supervised learning. This kind of long-term memory can be used to simulate the slow

dynamic changes of non-linear characteristics of the PA over time.

Fig. 4-2 Complex signal processing models of the complex-valued neural network.

Fig. 4-3 Block diagram of new two-layers RVTDNN PA behavioral model.

Considering the memory effects of the PA, the baseband output ‘o« and Qour
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components of the PA at instant » are a function of # past value of the baseband input /s

and ¢ past values of the baseband input 2~ according to (1) and (2).

Iout(n) = f] [Iin(n)’]in(n—1)"""Iin(n_ p)’

(1)
Qin(n): Qin(n - 1),...., Qin(n - q)]
Q,,(n)= fQ [Iin(n),lm(n -1),.....,I,,(n—-p), .
Qtn(n)’Qin(n - 1)9"'" Qin(n - q)]
Based on the RVTDNN shown in Fig. 4- 3, (1) and (2) can be rewritten as follow:
L,,(n) =2, wi0;(n)+b! ©)
k=1
0, ()= Wy, 0, (n) +b; ©)
k=1
Where
Oy (n) = f(net;(n)) 5)

14 q
net,'((n)z Z v,lu.lin(n—i)+z w,lu.Qm(n—i)+b,: (6)
i=0 i=0
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(1-e™)

k=1,2,...m,and f(x)=tanh(x)= 1+ _2x) is the activation function.
e

When p =g =0, i.e., the length of TDL is zero. Then the RVTDNN regresses to a

Real-Valued FeedForward Neural Network (RVFFNN) and hence it will be limited to a

memoryless or quasi-memoryless model.

4.3. EXTRACTION OF RVTDNN BEHAVIORAL MODEL PARAMETERS

Parameter extraction of the RVTDNN model commonly denoted as learning procedure
is performed with fitting the measured input and output / and ¢ components.
Furthermore, as one observes in Fig. 4-3 the RVTDNN model can be converted to a
common Feed-Forward Neural Network (FFNN) or Multi-Layer Perceptron (MLP) with
r+¢+2 inputs and two outputs. Thus, the dynamic problem becomes a static problem and
the standard back-propagation training algorithm [12] can be employed to train it. The
algorithm adjusts the network parameters so as to minimize the cost function E, over an

epoch, defined below:

E=3 £, =25 ()= 0)) +(00m -0 ) | %

where g 1s the instantaneous error. ; .(») and ¢ (n) represent the outputs of
RVTDNN at instant », ;_,(») and O (m) ATE the desired outputs at instant n. N denotes the

length of the training sequence.
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In this work, the training procedure of the real-valued neural network is performed
based on a realistic dynamic characterization of an amplifier under test fed with a
modulated input signal instead of one-tone or two-tone signals. Thus, the characterization
of the PA is made without any induction of self-heating effects due to signal excitation as
the case of continuous wave based measurement techniques. Moreover, the behavioral
model will yield to enhanced prediction accuracy since its parameters are identified using
characterization data captured when the DUT is fed with a modulated input signal that
implies a real operation condition. Experiments conducted for the training and validation

of the neural network used a real time two-channel time domain sampling system. 1;, and
Qi, components of the equivalent complex baseband input signal of the PA are used as

two independent inputs of the RVTDNN. The RVTDNN also has two outputs

corresponding to ;. and g, , components of the equivalent complex baseband output

signal respectively. In such a way, measured / and ¢ components of the complex
baseband input and output signals are directly exploited to train the RVTDNN.

The initialization of the network is an important issue for training the RVTDNN with
the back-propagation algorithm. The initial weights were chosen randomly from a
suitable range, such as (-0.8, 0.8). They were uniformly distributed inside this range and
symmetric around zero. After the RVTDNN training procedure converges, the RVITDNN
model parameters are found. Since the model is derived directly from the time domain
sampled data emerging for the PA driven by the real signal, it is possible to update the

model parameters when the performance of the PA changes due to any internal or



97

external factors or important changes in the nature and/or statistics of the driving signal.
Once the RVTDNN is trained, all of the model parameters are known and it becomes
the dynamic behavioral model of the power amplifier. The generality is an important
specification to evaluate the performance of the trained neural network model. Good
generality requires that the neural network must perform well on new test data set distinct
from the one used in the training sequence. Thus, a very small value of the cost function
reached by the trained network does not imply that a good model is obtained and it can
generalize well to new inputs. Moreover, it has been observed, during this work, that
excessive training on the training sequence decreases occasionally the performance on the
test data. This phenomenon, called over fitting, could be avoided through a constant
evaluation of the network using a set of test data, i.e. making cross-validation, as learning
proceeds. If there is a succession of training epoch in which performance improves only
for the training data and not for the test data, over fitting is considered to have occurred
and the training process should be terminated. Hence, the learning process should be
controlled carefully so as to obtain good performance neural network behavioral models

of PAs.

4.4. MEASUREMENTS OF BASEBAND DATA OF A 3G PA

The baseband / and ¢ waveforms at the input and the output of the DUT needed in the
different steps of this work were captured using the complex behavior PA instantaneous
characterization test bed shown in Fig. 4-4 [23], [24]. For that, the vector signal generator

(SMIQ) in combination with the (/Q) arbitrary waveform generator (AMIQ) was used for
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generating test signals. These signals are synthesized using the software WinIQSIM
(version 3.6) from Rohde and Schwarz and Advanced Design System from Agilent
Technologies. RF signals at the input and output of the DUT are first translated, in the
frequency domain, to an intermediate frequency using a double channel down-converter.
The IF1 and IF2 outputs of the down-converter feed the two channels of the baseband
vector signal analyzer (VSA) 89610B. The dynamic range of this dual-channel receiver is
better than 70 dB. A laptop in this test bed is used to run the vector signal analysis
software for the acquisition of the two-channel waveform signals. The delay calibration
function of the VSA is exploited to compensate for the time delay lag between the

receiver’s two channels caused by the group delay of the DUT.

Double Channel Vector Signal
Analyzer

Signal Generator IF1 9 CH1

IF2 =P CH2

RF2

y |EEE1394

RF1 N} !

Double Channel Down-converter -

Attenuator 2

& E 50€2 Load
Vector Signal Generator

Fig. 4-4 An accurate complex behavioral test-bed block diagram.
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4.5. RVTDNN MODEL: TRAINING AND VALIDATION RESULTS (I)

A 90-Watt peak class AB LDMOS PA [23] was used at first for model validation
purposes. It is a three-stage PA suitable for 3G wireless base station transmitter operating
at the band of 1930-1990 MHz. The overall small-signal gain of the lineup is 58 dB. The
PA peak output power at 1dB gain compression is approximately 49 dBm.

The system described above was used to collect the instantaneous baseband input and
output signals for training and validation purposes of the RVITDNN. Three tests signals
were used for validation purposes of the RVTDNN model: (i) an IS 95 signal, (ii) a one-
carrier CDMA-2000-SR3 signal, and (iii) a three-carrier CDMA-2000-SR3 signal. All
these signals have been synthesized with the ADS CDMA2000 library. TABLE 4-1 gives
the main characteristics of these signals. The crest factors of the synthesized signals are
defined at 0.001% of the Complementary Cumulative Probability Density Function
(CCPDF). Fig. 4-5 shows the envelope waveforms of the three-carrier CDMA2000-SR3
signal at the input and the output of the PA, where the input signal was multiplied by the
small signal gain of the PA. The gain compression can be easily seen in Fig. 4-5a. The

variation of small signal gain due to memory effects can be illustrated as shown in Fig. 4-

5b.
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TABLE 4-1 TRAINING AND VALIDATION SIGNAL CHARACTERISTICS

Signal IS95 CDMA2000-SR3 Three-Carrier
CDMAZ2000-SR3
Frequency 1.2288 MHz 3.6864 MHz 13.6864 MHz
Bandwidth
Crest Factor 10.73 dB 9.70 dB 12.75 dB
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Fig. 4-5 Envelope waveforms of the three-carrier CDMA2000 signal. (a) Normalized

input and output signals magnitude vs. time. (b) Zoom-in of the input and output
waveforms.

4.5.1. Training and validation of the RVIDNN Model with three-carrier
CDMA2000-SR3 signal

A two-layer RVTDNN, as shown in Fig. 4-3, was used to illustrate the performance of
this behavioral model. It contained two neurons in the input layer and output layer
respectively. The number of the neurons in the hide layer and the number of taps in the
two nput tapped delay lines were determined by an optimization program. A RVTDNN
model having fifteen neurons and five taps was found, through optimization procedure, to
be appropriate for the LDMOS PA driven by 3G signals.

Ten thousand (10K) sample data from the three-carrier CDMA-2000-SR3
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measurements were used to train the RVIDNN. Five thousand (5K) sample data from
measurements at another period of time were used to make cross-validation during the
training process to ensure the generality of the model. Thirty thousand (30K) sample data
from other period of measurements were used to test the behavioral model trained.

Fig. 4-6 shows a typical convergence curve of the RVTDNN training process using a
three-carrier CDMA-2000-SR3 signal. The test set of the validation data (30k data),
which had never been used during training process, was used to validate the model
obtained. Fig. 4-7 and Fig. 4-8 show the time domain validation results of / and ©
components of the neural behavioral model for a three-carrier CDMA-2000-SR3 signal.
The behavioral model matches the measurement data well even though the validation data
have never been used in training. Therefore one can state that the extracted RVTDNN
model exhibits good generality for the three-carrier CDMA2000 signal. The Power
Spectral Density (PSD) comparison between the results of the RVIDNN behavioral
model and the measurement results is shown in Fig. 4-9. It demonstrates that the

RVTDNN behavioral model also has good performance in frequency domain.



103

20 ; -
“— training NMSE |
ol -~ Cross-Validation NMSE ||
O 5
—-10

P

0 1000 2000 3000 4000 5000
Epoch

Fig. 4-6 A typical convergence curve of the training process.

-60r
70t ' — Measurement
~ x RVTDNN Model
-88.5 3.505 3.51 3.515 3.52
Tlme (S) X 10'4

Fig. 4-7 Validation results of I component in time domain.
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Fig. 4-9 PSD comparison between the RVTDNN behavioral model and the measurement
data of the three-carrier CDMA2000 signal.
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4.5.2. Dynamic AM/AM and AM/PM Curves for RVIDNN and RVFFNN
Models

In order to demonstrate the merit of the proposed RVTDNN model, a conventional
Real-Valued FeedForward Neural Network (RVFFNN) model is utilized to characterize
the equivalent baseband behavior of the power amplifier. The output of a RVFFNN is
dependent only on the inputs at the same instantaneous. The RVFFNN has two layers, in
which there are fifteen neurons in the hide layer and two neurons in the input and the
output layer. These two models were trained using a three-carrier CDMA-2000-SR3
signal. The training performance for RVFFNN and RVTDNN models are listed in TABLE
4-2. MSE, NMSE and R represent the mean square error, the normalized mean square
error and the correlation coefficient [25] respectively. Based on this table, both of the
correlation coefficient R obtained for the two kinds of neural network models are higher
than 0.997 (=1). This suggests that outputs of these two models almost covary with the
measurement data, which means that they vary nearly by the same amount with the
measurement data for both networks. However, one can clearly observe that the proposed
RVTDNN model offers better accuracy than the RVFFNN one since it allows a lower
value of the MSE and NMSE in the prediction of the PA output.

With the time domain validation results of the RVFFNN and RVTDNN behavioral
models, the comparison between the dynamic AM/AM and AM/PM characterizations of
the behavioral models and those of the measurement data can easily be given, as shown in
Fig. 4-10 and Fig. 4-11 respectively. Herein, the measured dynamic AM/AM and AM/PM

conversion characteristics are no longer smooth curves as those we see generally for a
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memoryless/quasi-memoryless PA. These kinds of deviation reveal the time dependent
relations of the outputs to the inputs of 3G PAs. It is this time dependent relation that
stands for the memory effects of 3G PAs. The outputs of the 3G PAs, corresponding to
the inputs with same amplitudes, will vary at different instantaneous. As we anticipated,
the RVTDNN behavioral model represents the memory effects (time-dependent effects)
of the power amplifier. However, the RVFFNN model cannot express this kind of time-
dependent effects of the power amplifier and it is only a statistical mean result because
RVFFNN’s structure determines RVFFNN will try to learn the average between different

outputs when the current inputs are the same.

TABLE 4-2 COMPARISON OF TRAINING PERFORMANCES FOR RVFFNN AND RVTDNN

Model RVFNN RVTDNN
Method Training Cross- Training Cross-
Validation Validation
MSE 5.01x10™ 4.64x10™ 1.39x10* 1.14x10™

NMSE 1.81x107 1.71x10 5.03x10> 3.98x10°
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Fig. 4-10 Dynamic AM/AM and AM/PM characteristic comparison between the
RVFFNN behavioral model and the measurement data. (a) Dynamic AM/AM
characteristics. (b) Dynamic AM/PM characteristics.
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Fig. 4-11 Dynamic AM/AM and AM/PM characteristic comparison between the
RVTDNN behavioral model and the measurement data. (a) Dynamic AM/AM
characteristics. (b) Dynamic AM/PM characteristics.
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The dynamic AM/AM and AM/PM characteristics also suggest that the small signal
response of the PA 1s strongly affected by the memory effects for 3G applications
contrary to the PA’s large signal response, which is caused by the high peak-to-average
ratio of 3G signals. At first view this looks like strange since the traditional narrow band
system with constant envelope signals should present linear properties for small signals,
1.e., there is no AM/AM and AM/PM conversion for small signals. But for 3G power
amplifiers the output of a small signal will be strongly affected by the nearby previous
large signals because of the memory effects when the signal. The relative variation
(scattering) range of the small signals is larger than that of the large signal. It is easy to
see that this kind of relative variation becomes larger and larger with the signal becoming
smaller and smaller from the measured AM/AM and AM/PM conversion characteristics.

This is in agreement with the results previously published in [6].

4.5.3. Validation with IS95 and CDMA-2000-SR3 signals

With the purpose of proving the effectiveness of the RVTDNN model for other
signals, a one-carrier CDMA2000 signal was used to train the same RVTDNN as
described above. A different set of data of the one-carrier CDMA2000 signal and a new
set of data of the IS95 signal, which was never used before, were applied to the RVTDNN
model obtained. Fig. 4-12 and Fig. 4-13 show the Power Spectral Density (PSD)
comparison between the results predicted by the RVTDNN model and the measurement
results for both signals. Even though IS95 signal was not used to train the RVTDNN, the

validation still gave satisfactory results. Hence the RVTDNN model does have good
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generality for similar signals having close statistical characteristics and it is back

compatible with signals having a smaller bandwidth.

/ -~ RVTDNN Model
5t —— Measurement

-10}

Power Spectral Density (dB/Hz)
N
o

) L L

-1 0 1 2 3 4 5
Frequency (MHz)

Fig. 4-12 PSD comparison between the RVTDNN behavioral model and the
measurement data of the one-carrier CDMA2000 signal.
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Fig. 4-13 PSD comparison between the RVTDNN behavioral model and the
measurement data of IS95 signal.

4.6. RVTDNN MODEL: TRAINING AND VALIDATION RESULTS (II)

The second PA used for experiment in this work is built for 3G wireless base station
transmitters operating at the band of 2110-2170 MHz. It has a small signal gain and a
saturated power equal to 51 dB and 49 dBm respectively. The whole line-up of the PA
includes three stages that use three Laterally Diffused Metal-Oxide-Semiconductor
(LDMOS) transistors operating in Class-AB. The test signal has two neighboring 3GPP-
FDD carriers (carrier spacing SMHz). Each carrier is configured according to 3GPP test
model 3 with a 32 code channels [26]. The test signal synthesized using the Agilent
Advanced Design System (ADS) 3GPP library has a crest factor of 9.4 dB.

A three-layer RVTDNN is used to illustrate the performance of this behavioral model.
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It contains two neurons with a pure linear activation function in the output layer. A
RVTDNN model, having six neurons in the two hidden layers and three taps in the two
input TDLs, is chosen according to the optimization procedure as mentioned early.

The lengths of both of the training sequence and the validation sequence for training
the RVTDNN are 2560. Both of them are extracted at different period of a record of the
envelope of the input and output of the DUT driven with a modulated signal. The
application of the SCGM algorithm implemented in Matlab (MathWorks Inc.) permits the
determination of the model parameters. Finally, the identified RVIDNN model is
implemented in ADS and the synthesized two-carrier 3GPP signal is applied to this
model to test its accuracy by comparing the output of the RVITDNN model with the
output of the PA prototype.

The demonstration of the accuracy of the RVIDNN behavioral model for predicting
the output signal of the DUT is carried out through several stages. First, the simulated
output spectrum of the trained model is compared to the output spectrum of the power
amphfier. Based on Fig. 4-14, a very good agreement between the predicted Power
Spectral Density (PSD) and the one measured at the output of the power amplifier is
achieved. Then, based on the baseband components of the output of DUT captured via the
VSA, the accuracy of the model is proven both in time and power domain. Fig. 4-15 and
Fig. 4-16 confirm the excellent agreement between the measured and the simulated in-
phase and quadrature components obtained at the output of the DUT and RVTDNN
model, respectively. This demonstrates the good generality of the extracted RVTDNN

model. Based on the time domain capture of the input and output envelopes of both of the



113

trained RVIDNN model and the DUT, a power domain validation is completed by
comparing the dynamic Amplitude Modulation—-Amplitude Modulation (AM/AM) and
Amplitude Modulation—Phase Modulation (AM/PM) characteristics. Fig. 4-17 and Fig. 4-
18 corroborate the ability of the RVTDNN to reproduce the dispersive dynamic AM/AM
and AM/PM conversion characteristics of the DUT and consequently to predict the

memory effects (time-dependent effects) of the 3G power amplifier.
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4.7. CONCLUSION

In this chapter a RVTDNN that has the capability to learn and to predict the dynamic
behavior of non-linear PAs is proposed. This real-valued neural network model largely
reduces the complexity of the neural network in the presence of complex modulated
signals having highly time varying envelopes. The back-propagation algorithm is used to
train the neural network so as to extract the model parameters. Validation and accuracy
assessment of the developed RVTDNN model in time domain showed an agreement
between the RVIDNN behavioral model output data and measurement ones for 3G
signals. The frequency domain validation of the model also showed a good agreement

between the PA’s output spectrum calculated using the RVTDNN model predicted
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waveforms and the measured spectrum for IS 95, one-carrier CDMA2000-SR3 and three-
carrier CDMA2000-SR3 signals.

The dynamic AM/AM and AM/PM simulation results point out that the RVITDNN can
account for the memory effects (time-dependent effects) of the LDMOS PA very well.
Moreover, the dynamic AM/AM and AM/PM characteristics also suggest that the small
signal response of the LDMOS PA is strongly affected by the memory effects for 3G
applications. The satisfactory validation results of IS95 signal, which was applied to a
RVTDNN model trained by a one-carrier CDMA2000-SR3 signal, proved that the
RVTDNN model obtained does have good generality for similar signals having close
statistical characteristics and crest factors. In such a case the RVTDNN model shows it is
back compatible and can be used to predict the response of the PA with signals having
smaller modulation bandwidth.

Moreover, a three-layer RVIDNN 1s also utilized to build a dynamic nonlinear
behavioral model, which is able to predict the response of a wideband 3G power
amplifier in better accuracy. Another 90-Watt LDMOS power amplifier operated at 2110-
2170 GHz is used as a device-under-test. Time-domain, power-domain and spectral
domain test results illustrate the excellent prediction accuracy of the baseband dynamic

behavior of the power amplifier driven with a two-carrier 3GPP signal.
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CHAPTER 5
CONCLUSIONS AND FUTUTRE WORKS

This dissertation introduced a novel two-box model, where a dynamic weakly
nonlinear filter was proposed for the first time to replace the linear filter in the
conventional two-box model to characterize the memory effects in the broadband
transmitter. The dynamic weakly nonlinear filter is constructed by adding a new parallel
branch to the linear FIR filter. In this new parallel branch, the input signal is multiplied by
its magnitude and applied to another FIR filter. This new weakly nonlinear filter can
characterize the memory effects more accurate than a linear filter. Hence this novel two-
box model can be used to accurately simulate or pre-compensate the dynamic nonlinearity
of the transmitter without changing anything in the model topology.

Based on the novel two-box model, an augmented Wiener model was proposed to
mimic the dynamic behaviors of a wideband transmitter, which consists of two digital-to-
analog converters (DAC), an RF vector modulator and a power amplifier. The power
amplifier (last stage) used in this work is based on an FLL600IQ-2 FET transistor, which
1s of a dual transistor push-pull configuration. The validation results with a two-carrier
WCDMA signal reveal that the new proposed model can mimic the out-of-band emission
caused by the memory effects more accurately than the conventional two-box model.

Similarly, an augmented Hammerstein predistorter was presented to pre-correct the

dynamic nonlinearities of the wideband transmitter mentioned above. The superiority of



122

this augmented Hammerstein predistorter to the conventional Hammerstein predistorter in
pre-compensating the dynamic nonlinearity of the transmitter is also demonstrated by the
spectrum and ACPR comparison results while applying a one-carrier and a three-carrier
3GPP-FDD signals to the transmitter.

For the two-box model involved in this work, a Look-Up-Table (LUT), which is based
on the baseband AM/AM and AM/PM curves of the transmitter, is employed to take into
account for the memoryless nonlinearity. The two blocks are obtained directly from the
real-time measurement data in a real work conditions by initially de-embedding the
nonlinearity via a new dynamic exponential weighted moving average (DEWMA) and
identifying the memory effects afterward. This parameter extraction method allows us to
alleviate the burden of the identification procedure of the analytical model’s parameters,
such as the high-order (even and odd) polynomial function’s coefficients and the Bessel
series model’s coefficients, particularly when the power amplifier (PA) operates in Class
AB. Therefore, this technique is inherently so robust that it can be used for any type of RF
transmitters exhibiting any complex gain shape variations. Both of the augmented Wiener
model and the augmented Hammerstein predistorter exhibit much better numerical
stability than the memory polynomial model and the corresponding predistorter.

The time delay that exists between the input and the output baseband data waveforms
of the transmitter has to be accurately estimated so as to align input and output /-Q
streams prior to identifying the transmitter behavioral model. In fact, the time-delay
estimation becomes more critical when wideband transmitters are concerned, since any

time-delay misalignment induces an extra dispersion of AM/AM and AM/PM
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characteristics of the transmitter. To identify the memory effects accurately, a time-delay
estimation algorithm based on Langrage interpolation and cross-covariance calculation
was developed to align the input and output raw baseband data captured beforehand.

In order to evaluate the accuracy and robustness of the different Weiner models, a
novel validation method was proposed in this work. This method is based on annulling
the spectrum regrowth that is caused by the static nonlinearity, with the help of cascading
the inverse of the complex memoryless model. In this way, the spectrum regrowth
produced by the static nonlinearity is numerically removed from the output spectrum of
the transmitter. As a result, the output spectrum observed in the spectrum analyzer is
strongly dominated by the memory effects of the wideband RF transmitter.

In addition, in this dissertation, a RVTDNN that has the capability to learn and to
predict the dynamic behavior of non-linear PAs is proposed. This real-valued neural
network model largely reduces the complexity of the neural network in the presence of
complex modulated signals having highly time varying envelopes. In this way, the general
back-propagation algorithm can be used to train the neural network so as to extract the
model parameters. Validation and accuracy assessment of the developed RVTDNN
model in time domain showed an agreement between the RVIDNN behavioral model
output data and measurement ones for 3G signals. The frequency domain validation of
the model also showed a good agreement between the PA’s output spectrum calculated
using the RVTDNN model predicted waveforms and the measured spectrum for IS 95,
one-carrier CDMA2000-SR3 and three-carrier CDMA2000-SR3 signals.

The dynamic AM/AM and AM/PM simulation results point out that the RVTDNN can
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account for the memory effects (time-dependent effects) of the LDMOS PA very well.
Moreover, the dynamic AM/AM and AM/PM characteristics also suggest that the small
signal response of the LDMOS PA is strongly affected by the memory effects for 3G
applications. The satisfactory validation results of IS95 signal, which was applied to a
RVTDNN model trained by a one-carrier CDMA2000-SR3 signal, proved that the
RVTDNN model obtained does have good generality for similar signals having close
statistical characteristics and crest factors. In such a case the RVTDNN model shows it is
back compatible and can be used to predict the response of the PA with signals having

smaller modulation bandwidth.

5.1 CONTRIBUTIONS
The major contributions of this dissertation are summarized as follows:

e Proposed an augmented Wiener behavioral model along with its parameter-
identification procedure;

e Proposed an augmented Hammerstein predistorter as well as the predistortion
estimation procedure;

e Presented a new dynamic exponential weighted moving average algorithm to
remove the dispersion in the AM/AM and AM/PM characteristics of the
wideband transmitter so as to get the memoryless LUT model of the transmitter;

e Developed a robust modeling technique for wideband RF transmitters based on
de-embedding the strong memoryless nonlinearity first and identifying the

parameters of the memory subsystem afterwards;
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e Introduced a memoryless pre-compensator based model validation method to
easily identify the capabilities of the different behavioral models in predicting
the memory effects;

e Implemented a time-delay estimation algorithm based on Langrage
interpolation and cross-covariance calculation to accurately calculate the time
delay between the input and the output baseband data waveforms of the
transmitter;

¢ Proposed a novel real-valued time-delay neural network to establish a dynamic
behavioral model for characterizing the baseband nonlinear behaviors of 3G

base station power amplifiers.

5.2 FUTURE WORKS

In the dissertation, the augmented Wiener model and the augmented Hammerstein
predistorter was proved to be an accurate model for characterizing the memory effects
and an effective baseband predistortion architecture to pre-compensate for the dynamic
nonlinearities of a wideband transmitter, respectively. The validation was carried out in a
wideband transmitter prototype, which consists of two digital-to-analog converters
(DAC), an RF vector modulator and a power amplifier. The transmitter prototype is
physically constructed by an ESG and a power amplifier. The augmented Wiener model
and the augmented Hammerstein predistorter were built in ADS and then downloaded to
the ESG to synthesize the wanted signals. Therefore, the next step for this research work

is to implement the augmented Wiener model in DSP to demonstrate the model accuracy
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of this new model and the numerical stability of the parameter identification procedure
when the fixed-point number is adopted during the calculation process. Then the
augmented Hammerstein predistorter will be implemented in a Field Programmable Gate
Array (FPGA) to test the pre-compensation performance for the dynamic nonlinearity of a
wideband transmitter. The parameters of the augmented Hammerstein predistorter will be
extracted in DSP and uploaded to FPGA to update the parameters of the predistorter in
FPGA accordingly.

Moreover, the RVTDNN has been demonstrated that it can accurately simulate the
dynamic behaviors of a 3G power amplifier. Therefore, a predistorter based on RVTDNN
is expected to be able to suppress the dynamic nonlinearity of the broadband transmitter
as well. In the next step, such a predistorter should be constructed with the experimental

set-up used in this work and the future DSP-FPGA platform.
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