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Emotional Maps for User Experience 
Research in the Wild

Abstract 

While most traditional user experience (UX) evaluation 

methods (e.g., questionnaires) have made the 

transition to the “wild”, physiological measurements 

still strongly rely upon controlled lab settings. As part 

of an ongoing research agenda, this paper presents a 

novel approach for UX research which contributes to 

this transition. The proposed method triangulates GPS 

and physiological data to create emotional maps, which 

outline geographical areas where users experienced 

specific emotional states in outdoor environments. The 

method is implemented as a small portable recording 

device, and a data visualization software. A field study 

was conducted in an amusement park to test the 

proposed approach. Emotional maps highlighting the 

areas where users experienced varying levels of arousal 

are presented. We also discuss insights uncovered, and 

how UX practitioners could use the approach to bring 

their own research into the wild. 
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Introduction 

In controlled lab settings, physiological signals can be 

used to infer users’ emotional states during system 

interaction. Physiological and behavioral signals (e.g., 

electrodermal activity, heart rate, or facial expressions) 

can provide UX researchers and practitioners insights 

as to what users are experiencing without interference 

[11, 13]. These signals can also be used to uncover 

emotional states which the user himself is unaware of 

or cannot recall when asked using traditional evaluation 

methods, such as questionnaires and interviews [9]. 

While traditional UX evaluation methods have made the 

transition to the “wild”, physiological measurements 

have yet to do so. This raises the question: How can we 

facilitate the transition of physiological measures from 

lab to their use “in the wild” for user experience 

evaluation? To meet this challenge, researchers have 

developed methods to infer users’ emotional state and 

behavior using various sensors, such as GPS, 

accelerometers and facial expressions. For example, 

the Feel-o-meter project [18] used a digital camera to 

capture the facial expressions of passersby to produce 

a giant smiley face whose expression would reflect 

users’ aggregated data. Also, using facial recognition 

software, Hernandez et al. [8] developed the Mood 

Meter, a vision-based computer system which 

generates affective portraits of various areas around 

the MIT campus.  

Building on prior research contribution, we present a 

new approach which aims to facilitate the use of 

physiological measures in field evaluations. While UX 

heatmaps triangulates users’ gaze data with inferred 

users’ cognitive and emotional states to produce user 

experience (UX) heatmaps [33], the proposed method 

triangulates GPS and physiological data to create 

emotional maps, which outline areas where users 

experienced specific emotional states in outdoor 

environments. As part of the approach, a recording 

device and data visualization software were 

implemented. 

 

Method 

In the wild studies often entail a balancing act between 

experimental control and ecological validity. As such, 

researchers have argued that the concept of ecological 

validity should be regarded as a continuum [10]. 

Therefore, the minimal degree of experimental control 

that guarantees sufficient data quality should be aimed 

for.  

Physiological measures 

To validate the effectiveness of the proposed method 

arousal, which contrast states of low (e.g., calm) and 

high (e.g., surprise) intensity [20] was chosen as the 

physiological state of interest. Therefore, two main 

criteria guided the selection of physiological signals for 

our field study: 1) psychophysiological relevance with 

emotion intensity, and 2) readiness for deployment “in 

the wild” (motion artefacts robustness and 

intrusiveness). Respecting those requirements, we 

selected two signals that are indicators of the 

autonomic nervous system response to intense 

emotional state; electrodermal activity (EDA) and 

electrocardiography (ECG) signals [12].  

EDA is composed of two different components: tonic 

skin conductance level (SCL) and phasic skin 

conductance response (SCR). The latter is known to 

reflect short-term responses of the autonomic nervous 

system and is a reliable indicator of emotional arousal 

[3]. In our experimental setup, EDA was recorded using 



  

two electrodes placed on the wrist of participants’ non-

dominant hand. Numerous studies showed valid 

measurements of skin conductance with sensor 

placement on the wrists and forearm [14]. To obtain 

clean phasic data, signal preprocessing steps were 

executed as follows. Data was recorded at 100 Hz and 

resampled to 25 Hz, before applying a low-pass 2nd 

order Butterworth filter and a 50 Hz cut-off. Signal was 

then decomposed in tonic and phasic components using 

the convex optimization algorithm described in [7]. 

ECG measures the electrical activity associated with 

contraction of the heart muscles by recording the 

potential difference it generates between two 

electrodes and a ground reference [2]. In our study, 

ECG was recorded using three electrodes placed on the 

participants’ torso. ECG r-peaks were identified using 

the Biosppy python library for biosignal processing 

(https://biosppy.readthedocs.io/en/stable/), and 

interbeat intervals and heart rate (HR) were computed 

with pyhrv, an open-source Python toolbox for Heart 

Rate Variability (https://pypi.org/project/pyhrv/). To 

ensure high synchronicity and precise data 

triangulation, a recording device which acquires GPS 

and physiological data simultaneously was developed 

(see Figure 1).  

Heatmap Generation 
Heatmap generation consists of three main steps: 

accumulation, normalization, and colorization. In the 

accumulation step, an empty matrix is first created 

having dimensionalities corresponding to one of the 

original data space. In our approach, the accumulation 

matrix has the size of the image on which the heatmap 

is rendered, and the original space consist of the actual 

GPS coordinates of the participants (see Figure 2). The 

display image, a high-resolution satellite view of the 

amusement park, was extracted from Google Maps 

(http://www.mappuzzle.se) with a resolution of 2956 x 

2585 pixels, corresponding to an actual surface of 

635m x 559m. We computed the correspondence 

between spherical and planar coordinates using a 

pseudo-Mercator projection 

(https://tinyurl.com/yycr85lv). For small areas, such as 

the amusement park used in this study, linear curve 

fitting may have been sufficiently precise for location 

mapping. However, we used pseudo-Mercator 

projection to ensure that the method is applicable for 

studies taking place in larger areas (e.g. state or 

country level). 

In our context, a data point consists of a GPS 

coordinate obtained at time t along with the average 

HR and phasic EDA values around time t (from 500ms 

before to 500ms after). For each data point, the 

corresponding matrix cell’s (x, y) value is incremented 

by the signals’ mean value. 

           
Figure 2: Height map illustrating participants’ arousal 
distribution over the satellite image of the amusement park. 

Figure 1: Portable device used to 
simultaneously record GPS data, 
electrodermal activity, and heart 
rate. 

 

The device consists of a 

Bitalino (r)evolution Freestyle 

Kit (PLUX Wireless Biosignals 

S.A.) [1] set into a 3D-

printed enclosure box. The 

enclosure box also includes a 

GPS module, a Lithium Ion 

Polymer (lipo) battery and a 

GPS antenna. Data is 

recorded on a micro-SD 

memory card. 

https://biosppy.readthedocs.io/en/stable/
https://pypi.org/project/pyhrv/
http://www.mappuzzle.se/
https://tinyurl.com/yycr85lv


  

GPS data was recorded at 1Hz, collecting one data 

point per second. As illustrated in Figure 2, after the 

processing of all data points, the cell’s values 

summation forms a height map with a topology 

proportional to emotion distribution. High peaks 

correspond to a high level of arousal.  

In the case of physiological heatmaps, the 

normalisation step’s goal is to account for inter-subject 

variations. As physiological signals are subject to 

significant interpersonal variations, values need to be 

corrected to account for the subject’s baseline [17]. In 

our approach, the HR and phasic EDA values are 

normalised using z-score with the following equation: 

V’ = (V - μ) / s 

where V is the raw signal value, V’ is the normalised 

value, and μ and s are respectively the participant’s 

mean and standard deviation over the entire recorded 

period for each signal. Therefore, for a data point at 

coordinates (x, y), the matrix cell’s value is 

incremented by V’EDA + V’HR. With multiple participants, 

the accumulation matrix is the sum of each 

participant’s z-score at this coordinate. As movement 

artefacts didn’t always occur at the same time in the 

two signals, if one of the measures was missing for that 

data point, we use the other one alone. For more 

details on the accumulation and normalisation 

algorithms, readers can refer to [6]. 

The last step in creating a heatmap is colorization. We 

overlaid on the satellite image a semi-transparent layer 

that reflects the height of each accumulation matrix’s 

cell and showed the emotional variations. Accumulation 

matrices can be mapped to different color properties 

using a colorization function, resulting in various types 

of visualizations [5]. In this work, a four-colour rainbow 

gradient (blue, yellow, red and black) was used, where 

black indicates the highest emotional peak (see Figures 

4, 5, and 6. 

Experimental Validation 

To validate the approach, a 42-participent field study 

was conducted at a theme park. While an amusement 

park is an ideal setting to measure a wide range of 

emotions at various intensity levels, this type of activity 

involves ample movements causing motion artefacts 

(e.g., walking from ride to ride, residual vibrations from 

the rides). Therefore, data from five participants were 

rejected due to insufficient data quality. Data from 37 

participants were thus used in the analyses, of which 

21 were female, for an average age of 26. Participants 

were pre-screened for cardiovascular diseases, 

epilepsy, motion sickness, vertigo as well as 

neurological and psychiatric diagnoses. Data was 

recorded during the amusement park's first four hours 

of operations in order to avoid overcrowding. During 

the experiment, participants were asked to complete 

five pre-selected amusement rides of three distinct 

thrill levels (i.e., high, moderate and low intensity 

levels) and of various movement categories (i.e., Ferris 

wheel, roller coaster ride, pendulum ride, drop tower 

and swing ride). The order in which to complete these 

rides was left up to participants. Participants wore 

lightweight protective gloves and wristbands to ensure 

electrodes would remain in place throughout the 

experiment (see figure 3). Electrodes were changed at 

the halfway point of the experiment to ensure adequate 

data quality over time. In addition to physiological 

data, self-reported data was also collected using 

questionnaires.  

Figure 3: Equipment set-up. The 
sensor enclosure box was placed 
inside a belt bag and attached to 
participants’ hip. 

 



  

Self-reported arousal was obtained using a 9-point SAM 

scales [4]. Participants were asked to evaluate their 

experience at three different times: in the waiting line 

before every ride, during the ride (in low intensity 

rides) and immediately after each ride. In high and 

moderate thrill level rides, participants completed the 

form after the experience, indicating the quality and 

intensity of the emotion felt during the ride. Beginning 

and ending questionnaires were also used to assess 

overall user experience.  

Preliminary Results and Discussion 

Data was analyzed in order to evaluate the capacity of 

emotional maps to capture experienced arousal 

variance over the entire amusement park area We 

compared the max and mean arousal (area under the 

curve) of the height maps (see Figure 2) with the 

corresponding user ratings for both waiting lines and 

rides. Height maps were generated on a participant 

basis. The results presented in Table 1 show that 

participants’ experienced arousal levels were 

significantly correlated to emotional maps’ max values 

using ECG measurements (r=4.034, p-value=.055). 

However, the mean arousal was not significant (r=8.66, 

p-value=.183).This could be explained by the context 

of the experiment itself, i.e. words short and intense 

emotional experiences, as user ratings were most 

probably based on the single most intense arousal felt 

at any given point during the ride as opposed to the 

overall experience. Results for EDA were non-significant 

(r=-4.95, p-value=.422 and r=-3.11, p-value=.223), 

however empirical data are positively correlated. For a 

qualitative tool in its first iteration, we find these 

results very encouraging. The remaining questionnaire 

data have yet to be analyzed.  

Emotional Maps 

Two emotional maps are presented in Figure 4: the first 

one generated using participants’ data during low traffic 

days and the second during high traffic. High traffic 

level may impact user experience in various ways: long 

queues for rides and concession stands, lack of seating 

at lunch, parking, etc. Figure 4 clearly shows that 

participants who visited the amusement park during 

low traffic days (10 800 visitors on average) 

experienced higher arousal levels throughout the site  

 
Figure 4: Above, arousal experienced during low traffic days. 
Below, arousal experienced during high traffic days. 

compared to visitors during high traffic days (15 300 
visitors on average). Here we used emotional maps to 
explore different phenomena, and hope to uncover 
more insights as data analysis continues. This type of 

 Mean Max 

ECG 
8.66 

(.183) 

4.034 

(.055) 

EDA 
-4.95 

(.422) 

-3.11 

(.223) 

Table 1: Correlation between 
mean and max arousal user 
ratings for waiting lines and rides.  

 

Due to low turnout, data 

collected at the Ferris wheel 

were not included in the 

analysis. Therefore, data from 

4 out of 5 rides were used in 

the analysis.  

P-values were corrected to 

account for the potential 

correlation between each 

repeated measure coming 

from the same subject by 

using a mixed linear 

regression model [16]. 

 



  

targeted investigation, where practitioners can explore 
and understand how specific elements (e.g. traffic, 
population subsets, etc.) can impact user experience, in 
this case how traffic levels influence experienced 
arousal, may lead to a better comprehension and 
development of user experiences.  

Figure 5: Emotional map generated using triangulated GPS 
and ECG data from 37 participants at an amusement park.  

The robustness of the tool also allowed us to collect 

reliable emotional data in a context of high-intensity 

activities, which can be hard to achieve in the 

evaluation of user experience in the wild. Looking at 

Figure 5, we can not only locate the rides which 

generated the highest arousal, but also quantify the 

intensity of the emotion each ride generated relative to 

one another. Ride 1 was rated 8.9 by participants on an 

arousal scale of 9, followed by rides 4 (rated 7), 2 

(rated 4.9) and 3 (rated 4.8). These results are 

consistent with the above visualization. The level of 

granularity that the approach enables allowed us to dig 

deeper into various emotional patterns, for example, 

the relationship between arousal and appreciation of 

the ride (see Figure 6).  

The contextualisation of physiological signals and their 

application to user experience evaluation in the wild 

can offer some new opportunities to design innovative 

and engaging experiences. For example, emotional 

maps can help researchers and practitioners identify 

problematic areas in the user journey, and help 

uncover insights as to what users are feeling. Although 

there is more work left to be done to enable the use of 

physiological measurements in the wild, we hope this 

paper exemplifies the potential that these methods 

have in the evaluation of user experience in outdoor 

contexts.  

Conclusion  

This work aimed to develop an approach which would 

facilitate the use of physiological measures in user 

experience evaluation in the wild. In the future, we 

intend to adapt the approach to indoor contexts by 

acquiring localization data via Bluetooth beacons 

trilateration [15]. This would open up the approach to 

new contexts of use, including experiential or 

immersive environments. The inclusion of other 

physiological signals to the approach would also allow 

us to measure a broader range of emotional and 

cognitive states.  
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Figure 6: Above, participants 
who least appreciated this ride. 
Below, participants who most 
appreciated this ride. 

 

Participants who rated this 

ride poorly (n=19, mean 

rating of 2 out of 7) 

experienced lower levels of 

arousal, compared to 

participants who appreciated 

the ride (n=18, mean rating 

of 4.5). 
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