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ABSTRACT Tailings were used to prepare cemented paste backfill (CPB) reinforced with polypropy-
lene (PP) fiber, and fiber content and fiber length were 0-20 % and 3-12 mm, respectively. The Brazilian
indirect tensile strength tests, macrostructural and microstructural (SEM) failure mode analyses and nuclear
magnetic resonance (NMR) tests were performed. The results demonstrate that PP fiber with high tensile
strength can substantially enhance the tensile strength and ductility of CPB specimens. The fiber-reinforced
CPB exhibits superior performance during the pre-peak and post-peak stages and can retain its residual
strength after being broken. The fiber-reinforced CPB provided a higher secant Young’s modulus and strain
at peak stress than that of the unreinforced CPB. From the failure mode analysis, fiber was used to bridge
the CPB microelements and combine these effectively with calcium silicate hydrate gelling. The governing
failure mode of fiber is pulled out or pull off, through which fiber absorbs the tensile stress and energy.
However, fiber is also believed to have confusion distribution in CPB because fiber cannot reach their full
strain capacity, especially at the later curing stage. And the weak structural layers in the CPB can also be
formed, and the higher tensile strength is not achieved with the additional fiber content or longer fiber length.
The optimal fiber content in this study is recommended to be 0.15 %, and it’s better to choose 6 or 9 mm
fiber. Moreover, fiber can reduce the original porosity by 10.72 %, but only has a slight influence on the pore
size. The decrease in porosity helps increase the tensile strength of the fiber-reinforced CPB.

INDEX TERMS Tailings, fiber-reinforced, cemented paste backfill, Brazilian indirect tensile strength.

I. INTRODUCTION
Cement-based materials are used extensively worldwide in
building and construction, and are also applied in mining
engineering as cemented paste backfill (CPB), owing to its
excellent compressive strength [1]–[5]. However, in usual
cases, the tensile strength of a cement-based material is sig-
nificantly lower than its compressive strength. Its poor tensile
strength and strain capacity make the tensile failure to be
one of the basic forms of cement-based-material failure and
limit its applications [6]–[9]. Particularly for CPB in mining
engineering, an increasing number of fine tailings need to be

The associate editor coordinating the review of this manuscript and
approving it for publication was Bo Sun.

disposed of, because the ore is crushed into finer particles
to improve mineral recovery [3], [10], [11]. However, as a
result of its unreasonable gradation, tailings used in CPB
preparation can easily lead to the low strength, especially the
tensile strength [10], [12], Besides, sulfur tailings containing
sulfide minerals or treated by sulfide cause acid attack to
CPBmatrix [13], [14]. Sulfate will promote secondary hydra-
tion products which can lead to the expansion, low strength
and failure of CPB. Besides, CPB made of fine tailings has
higher porosity than that of the ordinary CPB [13], and the
research shows that high porosity will decrease the compres-
sive strength in an exponential trend [15]. According to the
research, CPB containing maple-wood filler with a relatively
low porosity can improve the compressive strength [16].
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Few studies are focused on the porosity related to tensile
strength. Thus, improving the use of tailings to help improve
the tensile strength of CPB remains an important research
topic.

In order to overcome the shortcomings of cement-based
materials, numerous studies have been carried out on
mixing different types of fiber that have high tensile
strength, excellent mechanical performance and engineer-
ing performance, such as steel, polypropylene, glass, and
carbon fiber [17]–[21]. Various researchers have indicated
that fiber-reinforced concrete exhibits superior mechanical
properties [22]–[24]. With its wide dissemination throughout
the construction industry, there has recently been increasing
interest in the use of fiber in fiber-reinforced cemented sand
and soil [25]–[32]. Polypropylene (PP) fiber can improve
indirect tensile strength and stiffness [26]. And the post-
peak behavior is also strongly affected by PP fiber con-
tent and length. The reinforcement of CPB with PP fiber
demonstrated that fiber restrained the growth of crack by
means of CT scans [33]. A great deal of work is required
to study the tensile properties of cement-based materials,
because conventional tests such as compressive and shear
tests cannot precisely explain the crack phenomena [34].
The Brazilian test is widely accepted as an effective indi-
rect tensile strength (ITS) test method to test the ITS of
samples [35], [36]. It can overcome the special requirements
of the direct tensile strength test for specimens and the study
of the tensile strength characteristics of cement-based mate-
rials provides extensive benefits [37]. Therefore, significant
work is still required on fiber-reinforced CPB, because the
CPB properties differ from those of concrete, cement sand,
soil, particularly in tailings CPB because of its poor backfill
performance.

Therefore, in this project, Brazilian ITS experiments were
carried out on tailings CPB to study the tensile behavior of
CPB after adding PP fiber, including tensile strength (σtB),
secant Young’s modulus (E50), and strain at peak stress (ε).
Moreover, the crack development, porosity and structure
change of the CPB failure mode were tested and analyzed by
scanning electron microscopy (SEM) and Nuclear magnetic
resonance (NMR).

II. MATERIALS AND METHODS
A. MATERIALS CHARACTERIZATION
Additional geotechnical, tailings particle size distribution
and PP fiber properties have been reported refer to [38].
The following is the essential information presented in the
aforementioned publication and some additions. The tailings
were produced from mineral processing tailings by means
of classification and concentration in the Fan Kou lead-zinc
mine [39]. The particle size distribution of tailingswere tested
by LS particle size analyzer, and the results were shown
in Fig. 1. With proportions of more than 47.15 % for particle
sizes less than 20 µm diameter, the tailings were classified
as medium [13]. Based on the geotechnical characterization

FIGURE 1. The particle size distribution of the tailings.

FIGURE 2. The micro shapes of PP fiber.

of tailings, the tailings were similar to CL – lean clay [40].
By the XRF and XRD tests, the total content of main oxides
amounted to 81.98 %, and pyrite are the main mineralogical
compositions of the tailings. Additions, the sulfur content in
tailings is 11.9 %.

Portland cement PO 42.5R was used as the binder in the
CPB, and PP fiber was used to reinforce the CPB. Following
mixing with tap water, fascicular PP fiber was dispersed into
monofilament fiber, benefiting from the effective dispersion
properties. The tensile strengths and elastic modulus values
are all larger than 350 MPa and 3.5 GPa, respectively. The
length of PP fiber used in this study is approximately 3 mm
to 12 mm. In addition, the micro shapes of PP fiber is tested
by SEM (Fig. 2).

B. SPECIMEN PREPARATION
The orthogonal table of L16 (44) was selected to imple-
ment the backfill tests [3], [38], as identified in Table 1.
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TABLE 1. Orthogonal table L16 (44) of all mixtures fabricated.

FIGURE 3. CPB specimens: fiber-reinforced and unreinforced.

The material proportion of CPB mainly have 4 factors and
4 levels in this study, including cement content (A1-A4: 25-
14 %), solid mass concentration (B1-B4: 60-66 %), fiber
content (C1-C4: 0.05-0.20 %), and fiber length (D1-D4: 3-
12mm). The detailed preparation process and curingmethods
have been described in the previous publication [38]. The
molds used to prepare the specimens for tensile strength
test are different from the molds used for UCS tests. In this
study, as shown in Fig. 3, the CPB samples were shaped by
cylindrical plastic molds with a diameter of 50 mm diameter
and a height of 50 mm.

The slump of fresh slurry was tested before the ITS test,
and the slump of unreinforced backfill and fiber-reinforced
backfill are 19.5–21.6 cm and 19.8–22.9 cm, respectively.
The results indicated that the effect of adding fiber on the
fluidity of fresh slurry is slight, and it can be transported by
pumping methods [38].

C. ITS TESTS
Brazilian tests were used to overcome the shortcomings
of direct tensile strength tests, including sample processing

difficulties and eccentricity existing during the loading
process [37], [41], [42]. Because ITS tests can be conducted
using conventional compressive test equipment, and 3 speci-
mens per mixture were tested for each curing time. As illus-
trated in Fig. 4 [43], in the Brazilian ITS test, the specimens
are placed between the machine plates, and the line load was
formed in the interior of specimens by two hard steel strips.

D. FAILURE MODE ANALYSIS
During the development of tensile stress applied on the CPB
specimens, the inner part of the CPB specimens began to
get damaged, with micro-cracks forming and developing.
Finally, forming through cracks, the specimens underwent
tensile failure. Images recording the process of the ITS tests
and crack features during the tests were analyzed to study the
CPB macroscopic failure mode. The fiber distributions in the
specimens could be clearly reflected.

E. MICROSTRUCTURE ANALYSIS
The microscopic materials composition, the contact modes
between fiber and CPB matrix and the failure modes of fiber
were tested with SEM [16]. SEM is also useful to analyze the
force of CPB microelements.

The pore structure of the CPB specimens was tested by
NMR method. T2 distribution of transverse relaxation time
is the key index to evaluate the pore structure of CPB, and it
can be referred to Equation (1). Therefore, the change of T2
spectrum can reflect the distribution and size of the pores in
CPB [11].

1
T2
= ρ2

(
S
V

)
pore

(1)

where T2 is the transverse relaxation time, ms; ρ2 is the
transverse surface relaxation strength,µm/ms; and S/V is the
ratio of the surface area to the volume of pore.

III. RESULTS AND DISCUSSION
A. INFLUENCE OF FIBER ON INDIRECT TENSILE
BEHAVIOR
In order to predict the tensile stress distribution in specimen
theoretically, it’s assumed that the mechanical behaves of
CPB elastically during both the tensile and compressive pro-
cesses, and the stress distribution at the specimen center is
unaffected by the loading damaged zone, and crack initiation
occurs at the center. As suggested by the classical theory
of the International Society for Rock Mechanics (ISRM)
[37], the Brazilian ITS (σtB) of CPB can be calculated using
Equation (2) [37], [44].

σtB = −2P/πdt (2)

where P is the applied vertical load, d is the CPB disc
specimen diameter, and t is the CPB disc specimen thickness.

As show in Fig. 4, the surface load is converted into
line load and compressed on the CPB by the action of the
experimental device. Assume that the CPB is a homogeneous
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FIGURE 4. ITS test setup [43].

FIGURE 5. ITS of fiber-reinforced and unreinforced and their Re1 with different curing times.

material and the upper and bottom contact angles of the CPB
and the experimental device are the same, tensile stress and
compressive stress maximize at the center of the CPB, which
cause the initiate crack at the same position. Studies have
shown that the strength ratio of compressive to tensile of the
materials is 3 under those conditions, and this ratio of CPB
is 10-20 [37]. Therefore, splitting failure of the CPB which
is a kind of low strength cement-based material in Brazilian

ITS test, and Equation (2) can be used to express the tensile
strength of the CPB.

The results of the Brazilian ITS tests and relative
error between the fiber-reinforced and unreinforced tensile
strength are presented in Fig. 5. The addition of PP fiber
improves the ITS of CPB significantly. More than 80% of
the mixture fiber-reinforced specimens exhibited increased
tensile strength. The mixture T3 exhibited that the tensile

69018 VOLUME 7, 2019
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FIGURE 6. Tensile stress-strain curves of fiber-reinforced and unreinforced CPB.

TABLE 2. Secant Young’s modulus and strain at peak stress of the corresponding curves in Fig. 6.

strength of the fiber-reinforced CPB can increase maxi-
mum by 360 % than that of the unreinforced specimens at
7 days of curing. These demonstrate that, with the addition
of the PP fiber, the CPB specimens can resist higher tensile
loads. Furthermore, Fig. 5 indicates that cementitious binder
with strong bonding properties can provide a cohesive force
against the imposed tensile stress, and high concentration can
improve the stability of CPB after consolidation [45].

In this study, the tensile strength of unreinforced CPB
exhibits a significant decrease when compared to the tensile
strength of the fiber-reinforced CPB at 28 days of curing. Two
reasons are presented as following:

1) The CPB matrix exhibits significantly higher ductility
during the early stages, and the friction between the viscous
cement matrix and fiber is stronger, which is beneficial to
the fiber enhancement. At the later curing stage, some of the
fiber will be pulled off and pulled out with the development
of cracks in the CPB matrix, which lead to those fiber cannot
fully exert the tensile effect.

2) There is 11.9 % sulfate in the tailings forming the
secondary products (gypsum and ettringite) that have expan-
sibilityĄCwhich leads to the generation of cracks inside of
CPB, and the final failure of CPB. Therefore, tensile strength
was improved at the beginning of curing, but decreased at the
28 days curing time.

Fig. 6 depicts the tensile stress-strain curves of the
fiber-reinforced and unreinforced CPB obtained during the
Brazilian ITS tests. Prior to reaching the peak stress, all
the specimens experienced obvious elastic or elastic-plastic
deformation [46], [47]. Thereafter, the specimens underwent
fracture failure under the load higher than ultimate tensile
strength. The addition of fiber can increase the peak tensile
strength, and corresponding strain and secant Young’s modu-
lus (E50) (Table 2). The increase of E50 of the fiber-reinforced
CPB is significant except for T11 (Re2 = 9.64 %), while the
E50 values of mixtures T3, T11, and T15 are more than twice
those of the unreinforced CPB. Moreover, the peak stress
strain also increased, and the highest strain growth ratio of
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TABLE 3. Orthogonal range results of the ITS of fiber-reinforced CPB.

mixture T11 was 42.65 %. All these positive effects of fiber
on mechanical properties (σtB, E50, and ε) in the pre-peak
stage illustrate that fiber has a positive effect on the tensile
properties of CPB. Furthermore, the fiber-reinforced CPB
with greater values of E50 and ε exhibits a superior ability
to resist the elastic deformation and displacement, which
means that fiber-reinforced CPB exhibits higher stiffness and
ductility than that of the unreinforced CPB.

Fiber can also enhance the post-peak strength and ductility
of CPB. Fig. 6 (a) and (b) indicated that the crack width
decreased with the addition of PP fiber when reaching the
peak stress. The transfixion crack on the unreinforced CPB
indicated that the matrix experienced fracture failure and
completely lost its bearing capacity. And the strength dropped
to 0 MPa (Fig. 6 (d)), which also illustrates this viewpoint.
In contrast, the fiber-reinforced CPB was not completely bro-
ken and retained a certain residual strength, which provides a
certain pressure-bearing capacity of CPB during failure. This
is because of the intact structure that fiber provides, and the
decrease in the CPB brittleness because of its strong fracture-
resisting strength ability. As indicated in image (c) in Fig. 6,
a large number of fiber, uniformly distributed in the CPB
matrix, were pulled out or broken during the CPB matrix
fracture failure. The ductility improvement also benefited
from the fiber absorbing the tensile stress during the fiber pull
out or pull off process, which is described in publication refer
to [25].

B. INFLUENCES OF CEMENT, TAILINGS AND FIBER
As shown in Table 3, based on the orthogonal range anal-
ysis principle [48]–[50], the importance weight ranking of
the influential factors is: A > B > C > D. As illustrated
in Fig. 7 (a) and (b), the tensile strength basically increased
monotonously with an increase in cement content and solid
mass concentration. In many cases, fiber-reinforced CPB

FIGURE 7. The influences of cement content (a), solid mass concentration
(b), fiber content (c) and length (d) on average ITS.

with a low cement content could achieve the same strength
level as unreinforced CPB with a high cement content.
At 28 curing days, the tensile strength of the fiber-reinforced
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TABLE 4. Tensile strength induced by PP fiber.

CPB with a cement content of 17 % is 0.283 MPa, which
is higher than the tensile strength of the unreinforced CPB,
at 0.225MPawith a cement content of 20%. Therefore, fiber-
reinforced CPB can be used as a type of energy saving in
backfill materials with low cement consumption.

The correlations between the tensile strength σtB and fiber
at each curing time are illustrated in Fig. 7 (c) and (d). As the
fiber content increased from 0.05 % to 0.20 %, the tensile
strength first increased and then decreased. The relationship
between ITS and fiber was not monotonic linear, and the
tensile strength reached the maximum peaks when the fiber
content was 0.15 %.

This is a consequence of the fact that the tensile strength
doesn’t always increase with increasing the fiber content.
This conclusion can play an important guiding role in the
improved fiber reinforcement effect and superior fiber cost
control. At different curing times, the tensile strength first
increases and then decreases with increasing the fiber length.
When curing 3 and 7 days, the maximum tensile strength
of the specimen occurred when the 9 mm fiber was added.
However, after 28 days, when the fiber length was 6 mm,
it was more helpful in improving the tensile strength.

To summarize, the better fiber parameters of fiber content
of 0.15 % and fiber length of 6 or 9 mm can be obtained.
Those conclusions can be explained as following:

1) Firstly, PP fiber can be effectively combined with
the CPB matrix. A certain content and length of fiber
acts as the bridge among the CPB matrix microstructures.

This effectively controls the crack development and enables
the fiber-reinforced CPB to endure a higher peak tensile load.

2) However, weak structural layers are formed, combined
with the fiber and hydrated products during the cement hydra-
tion reaction. Prior to the destruction of the cement matrix,
the CPB will first be broken along the weak structural layers.

3) Furthermore, with the certain fiber content and density,
longer fiber length and fewer quantity of fiber will lead
to nonuniform distribution of fiber in the CPB matrix and
weaken the fiber reinforcement effect. In summary, an opti-
mal value exists for the fiber content and length.

In previous study, fiber was considered to provide final
tensile stress after CPB matrix failure, and Equation (3)
was proposed to estimate the tensile strength provided by
fiber [51]. The tensile strength provided by PP fiber was
shown in Table 4. Comparing with the ITS of CPB when
curing 7 days, the tt value is higher than the σtB value, which
means that the CPB is not taking full advantage of the tensile
strength of PP fiber. This is due to the confusion distribution
of fiber in the CPB matrix, and the direction of fiber is not
uniform. As shown in Fig. 8 and Fig. 9, some fiber was only
pulled out but not pulled off, those fiber not reaching their
full strain capacity. Moreover, too many fiber will lead to the
generation of some weak structural planes in the CPB, and
can also reduce the strength of CPB.

tt = χ · σf ,ult (3)

where tt is the tensile strength induced by fiber; χ is the fiber
volume content; σf ,ult is the ultimate tensile strength of an
individual fiber.

Fig. 8 illustrates the macrostructural failure mode of CPB
with different fiber contents and lengths. The unreinforced
CPB specimens underwent complete brittleness failure to
bear the external load. As illustrated in Fig. 8 (a), the spec-
imen was divided into two parts along the fracture surface.
In contrast, the fiber-reinforced CPB retained a residual
strength and maintained its integrity with the effect of fiber.
From Fig. 8 (b), (c), (d), and (e), the CPB ductility was

FIGURE 8. Macrostructural failure mode of CPB specimens with different content and fiber length. (a) No fiber.(b) PP fiber:
0.05%, 6 mm. (c) PP fiber: 0.10%, 12 mm. (d) PP fiber: 0.15%, 9 mm. (e) PP fiber: 0.20%, 3 mm.
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FIGURE 9. Stress distribution and microelement structure of fiber-reinforced CPB specimen.

FIGURE 10. SEM micrographs of fiber-reinforced CPB specimen in different precision level. (a) 50 µm. (b) 10 µm.

significantly enhanced, and the fiber was widely distributed
in the CPB interior and also on the fracture surfaces. Every
fiber monofilament could use its fracture-resisting ability to
counteract the CPB tensile stress in the interior generated by
external loads, and also tended to bridge these cracks and
prevented crack propagation, as illustrated in Fig. 8 (b) and (c)
in particular. Therefore, the fiber reduced the crack numbers
and widths, and reinforced the CPB tensile strength and duc-
tility. It is worth mentioning that, because the fiber-reinforced
CPB specimens still maintained an integrative structure after
ITS tests, the researchers had to divide the specimens by
hand to capture the images. Furthermore, the processing
was it was more difficult to process the specimens with
more or longer fiber transverse distribution, which also
reflected the fact that fiber can reinforce both strength and
ductility.

C. SEM RESULTS
As illustrated in Fig. 9, during Brazilian ITS tests, two out-
ward tensile stresses (σt ) from the center line of the specimen
were generated inside the specimen under the external loads.

FIGURE 11. Porosity of fiber-reinforced CPB and unreinforced CPB.

Meanwhile, an opposite reaction (σ ′t ), composed of cohesive
stress among the CPB microelements and tensile stress pro-
vided by the fiber (if it was added), was generated to prevent

69022 VOLUME 7, 2019
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TABLE 5. The difference of porosity between unreinforced CPB and fiber-reinforced CPB.

FIGURE 12. T2 distribution of CPB at 28 days curing time with solid mass concentration 64%.

the σt from breaking the specimens. However, after the speci-
mens experienced fracture failure, only the fiber tensile stress
could support the opposite reaction to CPB. The connection
relationship between the CPB and fiber was determined with
SEM technology (Fig. 9), and the stress relation between
these was clarified. SEM micrographs illustrates one piece
of one fiber-reinforced CPB specimen. It is obvious that two
separated parts A and B were still bridged by PP fiber as a
result of the σt effect.

The SEM depicting the fiber-reinforced CPB specimens
at 50 µm and 10 µm are provided in Fig. 10. These
images demonstrated that a significant amount of cal-
cium silicate hydrate (C-S-H, chemical formula: mCaO
·SiO2·nH2O) gelling was generated by the hydration reaction
which provided load-bearing capacity [52]. Fig. 10 provides
clear views of the contacting schemes among the particles,

C-S-H gelling, and PP fiber, indicating that all of them
formed a whole structure. In the part of fiber that was
pulled out, a certain amount of C-S-H remained trapped
on the fiber surface. It can be seen that there were signifi-
cantly more cloud C-S-H productions in the fiber-reinforced
CPB specimens.

D. NMR RESULTS
Fig. 11 and Table 5 present the results of the NMR analysis,
the porosity of unreinforced CPB ranges from 25.01 % to
33.03 %, and the porosity of fiber-reinforced CPB ranges
from 23.01 % to 28.66 %. It is noteworthy that the CPB
reinforced by PP fiber shows smaller porosity than that of the
unreinforced CPB. PP fiber helps to enhance the compactness
of CPB matrix, which is in a good agreement with the ITS
results. In this study, PP fiber can reduce the original porosity
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by 10.72 %, as shown in Table 5. In addition, the porosity
decreases with the increase of solid mass concentration, but
keeps increasing as the cement content decreases from 25 %
to 14 %.

The results indicate that the increased cement content
can lead to the generation of additional hydration products,
which can fill the voids among tailings aggregates. Increas-
ing solid mass concentration is also an effective way to
decrease the porosity. This is because increasing the solid
mass concentrationmeans reducing thewater content of CPB.
When water is used or evaporated, a relatively few voids are
formed.

Fig. 12 shows the T2 distribution of CPB at 28 days curing
time with solid mass concentration 64%. It is also proved
that increasing the cement content and adding PP fiber can
decrease the porosity of CPB. The change of T2 spectrum
can qualitatively describe the pores structure in CPB, and
the pore size increases with T2. Beside, fiber has only a
slight influence on the pore size. It can be seen that the
T2 distribution curves of CPB are presented by the single
wave peak images, and exhibit the same outlines between
the unreinforced CPB and the fiber-reinforced CPB when the
main wave peak ranges from 0.06ms to 5.94 ms.

IV. CONCLUSIONS
The ITS response and failure mode of tailings cemented paste
backfill with PP fiber were analyzed and presented in this
paper. Based on the Brazilian ITS tests, and the character-
ization of the macrostructure and microstructure, the main
results of this study can be summarized as follows:

1) PP fiber with high tensile strength could substantially
enhance the tensile strength, stiffness and ductility of the
CPB specimens. Furthermore, the tensile stress-strain curves
demonstrate that fiber could enhance the CPB tensile proper-
ties during both the pre-peak and post-peak stages.

2) The fiber-reinforcedCPB retained residual strength after
being broken, and its higher secant Young’s modulus and
strain at the peak stress helped to improve its ability to endure
larger loads, elastic deformation and displacement.

3) The confusion distribution of fiber in CPB due to not
all fiber not reaching their full strain capacity. The governing
failure modes of fiber are pull out or pull off, through which
fiber absorbs the tensile stress and energy.

4) The addition of fiber can reduce the porosity of CPB,
but do not have significant influence on the pore size.

Moreover, the addition of PP fiber could help to reduce
the financial cost by means of decreasing the cement cost.
Future work could focus on the study on the effect of the
wider ranges of fiber content and length on the behavior
of CPB.
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