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Abstract
Hardware security is essential in keeping sensitive information private. Because of this, it’s

imperative that we evaluate the ability of cryptosystems to withstand cutting edge attacks. Doing

so encourages the development of countermeasures and new methods of data protection as

needed. In this thesis, we present our findings of an evaluation of the Advanced Encryption

Standard, particularly unmasked and masked AES-128, implemented in software on an

STM32F415 microcontroller unit (MCU), against machine learning-based side-channel analysis

(MLSCA). 12 machine learning classifiers were used in combination with a side-channel leakage

model in the context of four scenarios: profiling one device and key and attacking the same

device with the same key, profiling one device and key and attacking a different device with the

same key, profiling one device and key and attacking the same device with a different key, and

profiling one device and key and attacking a different device with a different key. We found that

unmasked AES-128 can be very vulnerable to this form of attack and that masking can be

applied as a countermeasure to successfully prevent attacks in 2 out of the 4 tested scenarios. In

addition to providing our experimental results on the following pages, we also plan to release a

public GitHub repository with all of our collected side-channel data along with sample analysis

code shortly after the time of writing this. We hope that doing so will allow for complete

reproducibility of our results and encourage future research without the need for purchasing

hardware equipment.

Keywords: Side-channel analysis, machine learning, AES-128, microcontroller
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Chapter 1 - Introduction
1.1 Motivation
With hundreds of billions of dollars lost each year due to hackers and the likelihood that attacks

will continue to get stronger being high, staying on top of what is secure and what may leave

data at risk is of utmost importance. Anything from login details and private messages to credit

card and bank account numbers has the potential of being exposed to hackers if not properly

secured, which is why cryptanalysis, or “the art or process of deciphering coded messages

without being told the key,” can often be necessary [1]. When employed by an ethical hacker

instead of someone who uses it maliciously, attempting to break cryptosystems with methods of

cryptanalysis can be a positive endeavor in the sense that it can reveal vulnerabilities that can

then be accounted for, even though it’s ultimately what we’d like to protect against.

All cryptographic algorithms, while ideally mathematically secure, are almost certain to have

flaws when implemented in hardware, and an important question is whether or not the effort

required to break them is worth the reward an attacker would gain in doing so. Attempting to

break them non-maliciously allows us to gain a sense of this trade-off and decide whether or not

a method of data protection will be secure enough for a proposed use case, along with potentially

resulting in the future development and implementation of preventative countermeasures to

various forms of attack.

1.2 Contributions
To summarize our work, we evaluated the resistance of AES-128 implemented on an

STM32F415 MCU in four different scenarios against MLSCA. 12 machine learning classifiers

including both classical and deep learning algorithms were used in combination with a

side-channel leakage model to do this. We found that without implementing SCA-specific

countermeasures (such as masking in our case), secret encryption keys can be vulnerable to this

form of attack. In addition to providing the details of our process and results in this paper, we

plan to publish a GitHub repository with all of our collected and analyzed power traces from two

microcontrollers along with a Jupyter Notebook to allow for reproducibility of our results and

encourage expansion upon our work.
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Figure 1: Example power trace from an STM32F415 MCU, consisting of 2,000 samples of the

voltage measured across a shunt resistor in the device’s power supply rail
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Chapter 2 - Background

2.1 Side-Channel Analysis
One method of attacking cryptographic algorithms by attempting to exploit hardware

vulnerabilities is side-channel analysis (SCA), which involves analyzing device information

associated with the internal workings of an algorithm. More specifically, side-channel analysis

entails learning information about a system through analyzing things like device power

consumption, electromagnetic radiation, timing, and sound, and in doing so attempting to reveal

information that was intended to remain unknown to unauthorized parties. In a sense,

side-channel information can be thought of as the side effects of a device’s operation. While

SCA has been around since before the start of the 21st century, only in the past couple decades

has a surge of interest been seen in its potential as a cheap, non-invasive or semi-invasive method

of attack. It’s pairing with machine learning is even more recent, and has been the focus of our

research, with device power consumption being our chosen type of side-channel information (as

seen in Figure 1).

2.2 Machine Learning
Machine learning is an area of computer science that involves using algorithms to learn from and

identify patterns in datasets - the goal being to make a computer learn something on its own

without any (or with little) human intervention. In our project, we used 12 different types of

machine learning classification algorithms:

AdaBoost: An ensemble learning method that improves or “boosts” the performance of weak

binary classifiers such as Decision Stumps. This algorithm uses an iterative approach when

making the classifiers more efficient [2].

Convolutional Neural Network: A model created using multiple layers of neurons which are

mathematical functions that output a value based on the calculated weights of each neuron. This

mathematical process is also known as convolution [3].
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Decision Tree: A prediction model that uses statistics to predict the end result given a set number

of inputs. Decision trees have branches as the observational values and leaves as the targeted

values [4].

Gaussian Naive Bayes: An algorithm that assumes that the data fits a Gaussian distribution and

makes predictions of the output value using the probability of appearing in the distribution. The

closer to the tail end of the distribution, the less likely [5].

K-Nearest Neighbors: Out of a set of data points, this algorithm classifies the test set based on

the nearest neighbors where “K” represents the amount of data points the algorithm considers

that are closest to the test point [6].

Linear Discriminant Analysis: This statistical analysis algorithm uses the dataset given and

separates the data into one or more classes using a linear combination of the features [7].

Logistic Regression: An algorithm that uses a logistic model to calculate the probability of a

result occurring and makes a prediction based on its probability [8].

Long Short-Term Memory Network: A model with a neural network architecture that utilizes

feedback connections which allows for information to persist throughout the training process [9].

Multilayer Perceptron Network: A model with a neural network architecture where every node in

one layer connects to every node in the previous and next layer. The activation function at each

node is used to calculate the weights for each layer that influence the output [10].

Restricted Boltzmann Machine: A two-layered network where all nodes in the input layer are

connected to all the nodes in the hidden layer. Once an output is obtained, it tries to reconstruct

the input data from the output and then compares the divergence of the input differences. It

makes adjustments based on how well the input is reconstructed [11].
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Random Forest: An algorithm that uses multiple deep decision trees and trains all of them on the

dataset and then takes the average of all the tree predictions as the final output [12].

Support Vector Machine: This algorithm distinguishes between two or more classes within the

dataset by using a linear combination of the features. The way it optimizes this is by using the

points of different classes that are closest to each other as support vectors then making a linear

boundary at the center of those support vectors [13].

2.3 Advanced Encryption Standard (AES-128)
AES, or the Advanced Encryption Standard, known originally as Rijndael, is one of the most

widely used symmetric-key algorithms (where the same key is used for both encryption and

decryption) today. Along with being popular in private industry, it serves as the U.S.

government’s primary method of encrypting and decrypting sensitive data (initially approved for

use in 2001) [14]. AES can operate with 128, 192, or 256-bit keys, which is a significant step up

from what is commonly regarded as its predecessor, DES (the Data Encryption Standard), which

was developed by IBM in the 1970s [15]. AES became a replacement for DES because the

effective key size of 56 bits for DES eventually became too susceptible to brute force (or

exhaustive search) attacks as computer processing power improved [15]. The smallest AES key

size offers 2^128 = 3.4e+38 possible combinations, which is considerably larger than the 2^56 =

7.2e+16 key space offered by DES.

AES is a block cipher, which means that chunks of bits are operated on together instead of each

bit being dealt with separately. It operates on 16 byte-sized chunks (128 total bits) of data

regardless of key size, and a series of operations is performed on the 4x4 state array of this data a

certain number of times depending on the key size. AES-128 has 10 rounds, AES-192 has 12,

and AES-256 has 14. AES-128 was the variant we focused on, and its general flow of encryption

operations can be seen in Figure 2.
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Figure 2: AES-128 encryption flow (decryption is a similar process with inverse operations)

The “add round key” operation takes the XOR of the state array bytes (which are initially loaded

with the plaintext byte values along with any necessary padding) and the corresponding round

key bytes, which will be discussed more later [15]. It should be noted that the XOR operation is

common in symmetric-key cryptography because it’s invertible. As a simple example, with 1100

as our plaintext and 0101 as our key, plaintext ⊕ key = 1100 ⊕ 0101 results in the ciphertext 1001,

and ciphertext ⊕ key = 1001 ⊕ 0101 gets us back to our plaintext of 1100.

The “substitute bytes” or S-box operation substitutes each of the 16 bytes in the state array with a

value in the Rijndael S-box [15]. The values of the bytes prior to the substitution are used as

indices to determine what values to substitute them with from the S-box lookup table [16]. The

table itself is static across AES implementations and there are 256 values in it because a byte has

2^8 = 256 possible values, thus allowing for indices from 0 to 255. One countermeasure

commonly used to protect cryptographic algorithms against SCA is masking, and this technique

was applied in one of the two AES-128 implementations we evaluated. Specifically, the masked

AES-128 implementation XORed each of the S-box output bytes with an additional mask value

in an attempt to disrupt the first-order relationship between the power consumption spike
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resulting from this operation and the S-box output byte values [16]. As stated previously, XOR is

invertible, and the mask can later be removed so long as its value can be recalled.

The “shift rows” operation applies circular left shifts to the rows of the state array. The first row

is not shifted, the second row is shifted once to the left, the third row twice to the left, and the

fourth row three times to the left [15]. Because it is circular, a value on the far left of a given row

will become the value on the far right after the next shift.

The “mix columns” operation consists of taking the matrix-vector product of a Maximum

Distance Separable (MDS) circulant matrix and each of the columns of the state array [15]. An

MDS circulant matrix is specially designed to hide the relationship between the plaintext and

ciphertext - the details of which we won’t discuss here [17]. It should be noted that this operation

does not show up in the final round, as it was determined when the algorithm was developed that

including it would not significantly add to the algorithm’s security in the final round [15].

To generate “round keys,” an AES key schedule routine is used to expand the primary key into

10 additional 128-bit subkeys. To obtain the first column of the first round key’s array, you take

the far right column of the original key array, upward circular shift it by one, perform an S-box

substitution of the bytes, XOR the column with first column of the key array, and XOR the result

of this with a 4x1 vector whose first value is a predefined constant dependent on the round

number (which can be found in the AES round constant table), and whose second, third, and

fourth values are zero [15]. The result of the second XOR (note that XOR is commutative and

associative, so the order doesn’t actually matter) makes up the first column of the first round

key’s array and can be visualized as being placed in a new fifth column of the key array [15].

The next three columns that will make up the rest of the first round key’s array are found in a

similar manner, but the role that first column of the original array played in the generation of the

first column of the first round key’s array will be played by the column to its right in the

generation of the second column of the first round key’s array, and the newly generated column

will play the role that the far right column of the original key array played in its generation [15].

In short, the index of the columns used in the subkey column generation routine will continue to

increment by one until all four columns of all round key arrays have been generated. Note that
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there are actually 11 instances of the “add round key” operation in AES-128 as shown in Figure

2, or the number of rounds plus one in general [15]. The first of these “add round key” operations

typically uses the original key itself, which is often referred to as the zeroth round key.
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Chapter 3 - Methodology

3.1 Experimental Setup
To perform our evaluation of the MLSCA resistance of AES-128 implemented on an

STM32F415 MCU, we first needed to collect power consumption data associated with

encryptions performed by two STM32F415 targets. More specifically, we measured the voltage

across a shunt resistor inserted in the power supply rail of a target with the help of a CW1173

ChipWhisperer-Lite. As stated on their site, “The ChipWhisperer® ecosystem presents the first

open-source, low-cost solution to expose weaknesses that exist in embedded systems all around

us” [18]. The ChipWhisperer-Lite essentially operates like an oscilloscope, while also allowing

for communication between a laptop and a target board using an open-source Python package for

control. Our evaluation setup consisting of a MacBook Pro, ChipWhisperer-Lite, and two

STM32F415 MCUs capable of being mounted on a CW308 UFO Board to facilitate connections

can be seen in Figure 3. On the software side, we used Python packages including but not limited

to the ChipWhisperer, Keras/TensorFlow, Scikit-learn, NumPy, Pandas, and Matplotlib libraries

in combination with a Jupyter Notebook to carry out our data processing and analysis.

Figure 3: Evaluation setup with a MacBook Pro, ChipWhisperer-Lite, and STM32F415 targets

with a CW308 UFO Board
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3.2 Evaluation Procedure
Beginning with a standard unmasked software implementation of AES-128, we downloaded the

program to the first of our two MCUs and triggered a series of encryptions in order to capture

enough power consumption traces for a profiling set for our machine learning classifiers. We

decided to collect 60,000 traces consisting of 2,000 samples each, corresponding to 60,000

different encryptions of randomly generated 128-bit plaintext with a static 128-bit key. Through

trial and error, 2,000 samples turned out to be enough to capture the operation of interest to us in

the first round of an encryption. We also collected four additional sets of 10,000 traces each to

serve as our attack sets. The first two of these four sets were collected from the same device that

was profiled, with one set of encryptions using the same key that was used in the profiling set

and the other using a different key. The second two attack sets were collected from the second

STM32F415 MCU, with one set again using the same key that was profiled on the first device

and the second using a different key. This same general process was used when collecting traces

for datasets associated with a masked software implementation of AES-128 on the STM32F415

MCUs. We saved the total 100,000 collected traces for each implementation along with the

associated 128-bit key, plaintext, and ciphertext values from each encryption for later analysis.

After collecting our datasets for the evaluation, we then applied a side-channel leakage model to

a profiling set in an attempt to determine which samples in our collected traces may correspond

to the processing of an operation of interest to us as attackers. For attacking both the unmasked

and masked software implementations of AES-128 on the MCUs, the operation of interest to us

was the “substitute bytes” or S-box operation in the first round. Only a few operations occur

prior to this in the encryption process - those being the generation of the round keys derived from

the original key and an “add round key” operation that consists of an XOR between the bytes of

the zeroth round key (or the key itself) and the input plaintext. It’s been shown prior to us that the

power consumption corresponding to the processing of the S-box operation may be correlated to

its output values, and that if you’re able to predict what those values are, it’s possible to work

backwards to the secret key used. This is assuming that as an attacker you kept track of what

random plaintext you used for each encryption, as there is only one value out of 256 possible

values for the first key byte that when XORed with the first plaintext byte will result in the

predicted first output byte of the S-box operation and so forth. A quick for loop can be used to
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figure out what the value is for each of the 16 key bytes. Figure 4 shows a general flow of the

operations involved in this leakage model.

Figure 4: Flow of the “add round key” and “substitute bytes” operations in the first round of

unmasked AES-128

A signal-to-noise ratio (SNR) calculation was performed on information from a profiling set in

order to actually locate the samples of interest to us that corresponded to the processing of the 16

bytes. While we won’t go into detail on all of the steps of that calculation in this thesis, the full

code used to do this will be provided in the Jupyter Notebook hosted on our GitHub repository.

Figure 5 shows the result of the SNR calculation for the unmasked software profiling set in plot

form. As seen by the peaks in the bottom plot, it’s clear what samples are related to the 16 S-box

output bytes in the first round, with the top plot being one of the 60,000 collected power

consumption traces. Figure 6 shows the same thing for the masked implementation.
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Figure 5: Result of a leakage model SNR calculation on the unmasked software AES-128
profiling set, revealing samples associated with the processing of the 16 S-box output bytes
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Figure 6: Result of a leakage model SNR calculation on the masked software AES-128 profiling
set, revealing samples associated with the processing of the 16 S-box output bytes
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Having identified 16 sample values of interest based on the peaks found with our leakage

model’s SNR calculation, we then created 16 different training and test sets from our profiling

and attack sets that would be examined by 12 different machine learning classifiers. For the first

byte’s training set, we zoomed in on the sample of interest in each of the 60,000 profiling traces,

or in some cases several samples centered around the peak SNR index, and used that voltage

value or group of voltage values as the predictor in the training set for each observation. Each

predictor was labeled with the correct S-box output value we hoped a machine learning classifier

would learn to predict. For the corresponding test set, the predictor was also the voltage value(s)

associated with the first S-box output byte in each of the 10,000 attack traces, and while we

labeled each of them as well in order to check our classifiers’ prediction accuracy for the sake of

evaluation purposes, in reality we would assume an attack set would not be labeled, as we

wouldn’t actually know the key ahead of time to check our test predictions against.

For the masked software implementation of AES-128, there are only two real differences in the

process described above. The first is that 3,000 samples were collected per trace in order to

capture all S-box substitutions in the first round. The second is that an additional mask value was

XORed with the S-box output bytes themselves in an attempt to throw off a first-order

relationship between the measured voltage value corresponding to the S-box operation and the

values we trained our machine learning classifiers to predict. Again, Figure 6 shows the result of

the SNR ratio calculation for the masked software AES-128 profiling set in plot form.

3.3 Rank Metric
The method we used to determine whether or not a machine learning classifier was successful in

predicting the key we were looking for was by using a metric known in the side-channel analysis

research community as “rank” or “byte rank.” As stated previously, our training and test sets for

the 16 bytes were labeled with the correct S-box output bytes for each encryption, but the

accuracy of correct prediction based on a single trace was found to be unreliable. Rather, the

predictions from many traces needed to be taken into account in order to have a fighting chance

at determining the correct key.
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In the case of a byte, there are 256 values it can take, so we asked our machine learning

classifiers to return an array of 256 probabilities corresponding to each of the potential S-box

output values (0-255). Then, we looped over all of the traces’ returned probability arrays, and for

each one we determined what key byte value was associated with each of the possible S-box

values using the plaintext associated with each trace. Once we figured out what S-box value

probability was associated with each of the 256 possible key byte values, we added the

probabilities to an array of sums corresponding to key byte value probabilities. As we looped

over all of the traces’ probability arrays and continued to add up probabilities, we hoped (as an

attacker) that eventually the key byte with the highest total value after summing up all

probabilities would be the correct one. We also kept track of where the correct value stood in

relation to the 255 incorrect values over the course of this process. That way we could plot how

its rank changed over time, and how many trace predictions it took before reaching the top rank

or highest likelihood. In our case, we chose 0 to represent the highest rank and 255 the lowest.

Figures 7 and 8 display example results of a rank calculation for a successful and failed attack in

plot form. As with all other steps discussed, the code for computing rank will be provided in our

project’s GitHub repository.
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Figure 7: Byte rank plot showing a successful attack, as all 16 bytes converge to a rank of 0

before running out of attack traces

Figure 8: Byte rank plot showing a failed attack, as all 16 bytes do not converge to a rank of 0

before running out of attack traces
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Chapter 4 - Results
The following section discusses what we found in performing our evaluation of the MLSCA

resistance of AES-128 implemented on an STM32F415 MCU. A summary of our results can be

found in Table 1.

Table 1: Attack results for unmasked and masked software AES-128 on an STM32F415 MCU

4.1 Unmasked AES-128
To begin with the unmasked software implementation of AES-128, we found that in all four

attack scenarios previously discussed (involving two devices and two keys), we were able to

recover the full encryption key with all 12 of our chosen machine learning classifiers in

combination with a first round S-box leakage model. The classifiers were easily able to do this

with little to no tuning, rendering this combination of device and AES variant very vulnerable to

this form of attack.

17



4.2 Masked AES-128
Concerning the masked software implementation of AES-128, we found that in two out of the

four attack scenarios, the machine learning classifiers in combination with the same leakage

model were again easily able to recover the secret key. However, in the two scenarios involving a

different attack key than profiling key, all classifiers failed at predicting it. In rare cases we were

able to recover partial keys, but never the full 16 bytes. Given that these two scenarios (attacking

the same device that was profiled with a different key and attacking a different device than what

was profiled with a different key) are likely the most realistic scenarios out of the four, we think

that masking can indeed be an effective countermeasure against MLSCA.

4.3 Classifier Comparison
In terms of how the 12 machine learning classifiers compared to each other performance-wise,

Table 2 displays the average number of attack traces required per byte before reaching a rank of

0 for all 12 classifiers in the various scenarios. It should be noted that for the results in this table

we used reduced profiling and attack sets (20,000 and 1,000 traces, respectively). This table

should not be considered an end-all for determining which classifier is the best for MLSCA in

general, but in context of evaluating AES-128 on the STM32F415, our long short-term memory,

k-nearest neighbor, and support-vector machine classifiers tended to require the least number of

traces to rank the correct key byte values as most-probable. The support-vector machine

classifier did however take considerably longer to run than any of the others, so while it did

produce a low rank convergence, it wasn’t nearly as time-efficient as the rest.

18



Table 2: Average byte rank 0 convergence for classifiers

Interestingly, for the successful attacks on masked software AES-128, the average rank 0

convergence was higher when the attacked device was not the same as what was profiled, as one

might expect, but this was not the case for unmasked software AES-128. Instead, for all 12

classifiers the average rank 0 convergence was lower when the attacked device was not the same

as the one that was profiled. Why this is, we are unsure at the time of writing this thesis, but it

may be a topic that’s worth investigating in future work. Had the same thing occurred for both

unmasked and masked implementations, we would be inclined to believe that the second device

just had more obvious leakage (a stronger correlation between the voltage measurements and the

S-box output values), but because this was not the case, there is likely a different reason.
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Chapter 5 - Professional Issues and Constraints

5.1 Ethical, Science, Technology, and Society
At first glance, it may seem that our project is unethical because we successfully proved that

AES-128 can be vulnerable to MLSCA. However, this research provides greater understanding

of the need for precautions against such attacks. Without research like this, there would be no

improvements to the hardware security field. With knowledge gained by doing this sort of work,

we become aware of where the issues and vulnerabilities lie in cryptosystems and are able to

focus on making the necessary changes to protect against attacks that target them in the future.

5.2 Civic Engagement
Our project wasn’t a product, but rather involved research in the realm of hardware security.

Since there are so many microcontrollers out there running AES, this may pose a challenge for

implementing widespread hardware countermeasures against MLSCA. Instead improvements

may have to remain purely software-based (such as masking) in the short term if people are

willing to use them. This is because it would be nearly impossible to change all of the

microcontrollers currently in the hands of customers. There’s no law out there that would require

people to use a device with new countermeasures.

5.3 Economic
The cost of carrying out our research was relatively low. We only needed to buy the equipment

discussed previously, which is also listed in Appendix B.

5.4 Health and Safety
There were no serious safety precautions that we needed to take in completing our project due to

voltage and current levels being relatively low.

5.5 Manufacturability
As our project is not a product, there’s nothing to manufacture on our end. All of the equipment

required for our evaluation setup was not manufactured by us.
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5.6 Usability
Our research shows that MLSCA is a viable form of attack when no SCA-specific

countermeasures are taken, and can be performed without the need for extremely high-end

laboratory equipment.

5.7 Sustainability
Our work will be relevant in the future for guiding other research in hardware security for

microcontrollers and embedded systems. We’re sure that there will be further research and

development within this area that will prove to be beneficial in helping with preventing MLSCA

going forward.

5.8 Environmental Impact
There’s no serious environmental impact from our research besides us using some electricity to

power the equipment needed to conduct our experiments, which was no more than what would

be needed to power an everyday laptop.
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Chapter 6 - Conclusions

6.1 Summary
With hardware security attacks being prevalent in our digital age, it’s important to look for

vulnerabilities in cryptosystems used to protect sensitive information. In keeping with this idea,

the goal of our senior design project was to evaluate the machine learning-based side-channel

attack resistance of unmasked and masked software AES-128 implemented on an STM32F415

MCU. We did this using 12 machine learning classifiers in combination with a side-channel

leakage model that targeted the first round S-box operation of the encryption algorithm. In

completing our evaluation, we found that unmasked software AES-128 on the MCU is very

vulnerable to this form of attack, but that masking can protect against it when the attacked key is

different than what was profiled. We also found that while all 12 of the machine learning

classifiers used were capable of predicting the secret key when at least one of them was able to,

some required more power consumption traces than others to do so.

6.2 Future Work
Regarding future work, we hope that providing our collected power consumption side-channel

data on GitHub along with a Jupyter Notebook to get started with will more easily allow others

along with ourselves to conduct further research in this area. Topics of further investigation

could include in-depth optimization of the machine learning classifiers and attempting to better

understand why some generally performed better than others in this context. As noted previously,

it could also involve investigating why the average rank 0 convergence for unmasked AES-128

was lower when attacking a second device that was not profiled as compared to attacking the

same device that was profiled. And one other topic of exploration could be to try out alternate

forms of attack not discussed in this thesis on the power consumption data collected. In addition

to the MCU data, our research group also plans to provide side-channel data collected from

FPGAs on GitHub. A link to our future public repository can be found in Appendix C.
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Appendix A: Senior Design Conference Slides
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Appendix B: Hardware and Software
● Apple MacBook Pro

● CW1173 ChipWhisperer-Lite

● CW308 UFO Board

● 2x STM32F415 MCU targets

● Jupyter Notebook

● Python with packages including

○ ChipWhisperer

○ Keras/TensorFlow

○ Scikit-learn

○ NumPy

○ Pandas

○ Matplotlib
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Appendix C: GitHub Repository
A GitHub repository with the side-channel data and code associated with our thesis will be found

at this link once public: https://github.com/jsedmonds/cosi
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