
Santa Clara University Santa Clara University

Scholar Commons Scholar Commons

Electrical and Computer Engineering Senior
Theses Engineering Senior Theses

Spring 2021

Attacking Logic Locked Circuits Using Reinforcement Learning Attacking Logic Locked Circuits Using Reinforcement Learning

Allen Shelton

Jake Mellor

Follow this and additional works at: https://scholarcommons.scu.edu/elec_senior

 Part of the Electrical and Computer Engineering Commons

https://scholarcommons.scu.edu/
https://scholarcommons.scu.edu/elec_senior
https://scholarcommons.scu.edu/elec_senior
https://scholarcommons.scu.edu/eng_senior_theses
https://scholarcommons.scu.edu/elec_senior?utm_source=scholarcommons.scu.edu%2Felec_senior%2F58&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=scholarcommons.scu.edu%2Felec_senior%2F58&utm_medium=PDF&utm_campaign=PDFCoverPages

SANTA CLARA UNIVERSITY

Department of Electrical Engineering

I HEREBY RECOMMEND THAT THE THESIS PREPARED
UNDER MY SUPERVISION BY

Allen Shelton and Jake Mellor

ENTITLED

ATTACKING LOGIC LOCKED CIRCUITS USING
REINFORCEMENT LEARNING

BE ACCEPTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF

BACHELOR OF SCIENCE
IN

ELECTRICAL AND COMPUTER ENGINEERING

Thesis Advisor(s) Dr. Sara Tehranipoor date

Department Chair(s) Dr. Shoba Krishnan date

1

06/02/2021

June 4th 2021

ATTACKING LOGIC LOCKED CIRCUITS USING
REINFORCEMENT LEARNING

By

Allen Shelton and Jake Mellor

SENIOR DESIGN PROJECT REPORT

Submitted to
the Department of Electrical Engineering

of

SANTA CLARA UNIVERSITY

in Partial Fulfillment of the Requirements
for the degree of

Bachelor of Science in Electrical and Computer Engineering

Santa Clara, California

Spring 2021

Abstract
Logic Locking is an emerging form of hardware obfuscation that is intended to be a

solution to many of the trust issues associated with the modern globalized IC supply chain. By

inserting extra key-gates into a circuit, the functionality of the circuit can be locked until the

correct order of bits or “key” is applied to the key gates. To assess the strength of new logic

locking techniques, we propose a new attack that uses deep reinforcement learning. This attack

aims to test logic locking as well as evaluate reinforcement learning as a possible attack against

logic locking. By using a deep Q-learning neural network, Q-values can be approximated and the

model can be trained much faster than using traditional Q-learning. By allowing the model to

change a single bit in the key each timestep, simulations of the circuit with the key produced can

be run and the outputs can be compared to that of the unlocked version of the circuit, called an

oracle. A reward is calculated based on how many bits of the locked circuit are correct and is

used to reinforce the learning of the model. During the training phases of the model, the

relationship between a highly correct key and how correct the outputs are for some random

inputs is not strong, causing the model to struggle to learn quickly.

Acknowledgements
We would like to acknowledge Dr. Sara Tehranipoor and Micheal Yue for their support

and advice during the duration of this project.

Table of Contents
Introduction………………………………………………………………………………………..1

Problems and Objective…………………………………………………………………………...3

Project Plan………………………………………………………………………………………..5

Project Outcomes………………………………………………………………………………...11

Final Design……………………………………………………………………………………...13

Professional Issues and Constraints……………………………………………………………...16

Conclusions………………………………………………………………………………………18

References………………………………………………………………………………………..19

Appendix A: Presentation Slides…………………………………..…………………………….21

Appendix B: Software Used……………………………………………………………………32

Appendix C: Publications………………………………………………………………………33

qq

Introduction
In the age of globalized supply chains, electronics producers are in need of ways to

obfuscate their designs from untrusted foundries. Many design houses have shifted to

outsourcing the fabrication of their integrated circuits (IC) because of the economic feasibility of

using an offshore foundry. The trade-off is the decrease in security and privacy. The use of these

untrusted foundries has led to many security issues such as IC piracy, cloning, and

overproduction. The security flaws in ICs have also allowed attackers to extract sensitive

information from these systems. The ICs at this stage are vulnerable to Trojans, physical

tampering, and logic attacks.This has prompted researchers to develop security mechanisms to

include on circuits to counter these attacks.

Hardware obfuscation is the idea that the structure and logic of an IC are hidden to

prevent adversaries from accessing it [1]. Many forms of hardware obfuscation have been

devel-oped to hide the functionality of an IC. One form of hardware obfuscation is logic locking,

shown in Figure 1. Logic locking aims to protect the IC by inserting key gates to hide the logic in

a netlist. The Inserted key gate is usually in the form of a logic component like an XOR, XNOR,

or MUX. These key gates are inserted between logic components of a netlist and have an input of

a key bit. When multiple key gates are inserted into the design,only a correct key will unlock the

circuit. The key gates actas a buffer when the proper key value is provided. Otherwise,the key

gate will change the logic of the system and generate different output for the IC. This idea adds

an extra layer of security by hiding away the logic and functionality of the design and only

providing trusted entities with the correct keyvalue.

Figure 1: Logic Locking Example

Logic locking provides extra security, but most of these schemes have been broken by

more advanced attacks. Researchers have developed strong logic locking techniques in an effort

to increase security in ICs. These techniques usually provide some type of key or have a golden

1

circuit that represents the true design of the system. An attack on logic locking will try to

decipher the key or the golden circuit.There are many types of attacks that have been developed

against logic locking. An oracle refers to an unlocked circuit or a functionally correct circuit

where an input would provide the correct output. Oracle-guided attacks use IO information to

generate an algorithm while an oracle-less attack doesn't rely on an oracle. Structural attacks are

based on using structural analysis to identify components of the system. The information

gathered is used to create an algorithm for the attack. Functional attacks use functional analysis

to determine various properties of the system. The basis of functional and structural analysis is

used in many modern attacks on logiclocking. Over the past several years, various attacks have

been applied to logic locking obfuscation techniques. These attacks are all unique, with some

being simply functional like DoubleDIP [8] or are designed to observe the design structure like

SAIL [6]. Multiple attacks combine both structural and functional concepts. For example, SURF

[2] uses SAIL [6] to predicate a key that is used as the starting point of the key refinement

algorithm. Similarly, FALL [9] uses comparators to identify key gates and their inputs for the

algorithms that solve for the key. Other algorithms take less common approaches, like the Novel

Bypass Attack [3], which uses an extra circuit to bypass the logic locking and fix corrupted

outputs.

We seek to develop our own attack method to further the field of logic-locking attacks,

which is a relatively new area of research. To the best of our knowledge, This is the first use of

reinforcement learning being used in a logic-locking attack. We would like to explore the

viability of reinforcement learning in exploiting hardware security measures in order to publish

our work and allow other researchers to find more robust ways to secure hardware.

2

Problem and Objectives
Logic locking is a proposed solution to the trust issues associated with having a

globalized IC supply chain. By having many different companies be involved in the entire

process of designing and manufacturing IC’s, there is opportunity for IP theft, overproduction,

counterfeiting, and piracy. These trust issues end up taking millions from the profits of IC

designers, so a solution is highly sought after. By using logic locking to essentially lock down the

functionality of a circuit so that those who have the key can use it is a promising solution to the

trust issues that are currently faced. As long as the keys are secure and their distribution is

controlled, the IC’s created with logic locking implemented should be unusable by unauthorized

parties. That is unless they are able to determine the key of the given IC. Preventing this will

require a strong and robust logic locking scheme, which needs to be found. Research on logic

locking is split between developing new mechanisms and strategies for implementing key gates,

and new ways to attack logic locked circuits. Eventually, this field will reach a point where a

strong logic locking technique has been developed and is very difficult to defeat, much like RSA

and AES in cryptography.

Our project aimed to help the field of hardware security and logic locking advance by

evaluating a new kind of attack on logic locking as well as test the strength of logic locking and

analyze its strengths and weaknesses. Our first objective was to review existing literature on

logic locking attacks so we could get an idea of how attacks are usually executed and what works

well and what does not, as well as performance metrics that we can use to evaluate our attack.

Once we did this, we were able to write a paper surveying the attacks we researched and had it

accepted into the International Conference on Consumer Electronics 2021.

Our next objective was to choose an attack that was new and hadn’t been done before,

and develop it so that we could get an idea of its performance. Our initial goal was for the attack

to successfully extract the key from a logic locked circuit. We also wanted the attack to execute

quickly. Knowing that reinforcement learning takes a lot of time to train, we didn’t expect the

execution time of the attack to be on the scale of minutes or seconds like other attacks we

reviewed, but had set a target of 2 hours. Our final goal was to look at the data from our attack

and reach some conclusions about it. We wanted to be able to decide if reinforcement learning is

well suited as a logic locking attack and to see how strong logic locking is as a defense

mechanism.

While we did not reach some performance oriented goals, we were able to reach our final

3

goal of being able to come to a clear conclusion about the viability of reinforcement learning for

this kind of application, and were able to make some decisions about how strong logic locking is

currently.

4

Project Plan

As mentioned earlier, we will be using a reinforcement learning algorithm in order to

carry out our hardware attack. Reinforcement learning is an area of machine learning that seeks

to train intelligent agents to take actions in an environment that maximizes its cumulative

reward. This iterative process is illustrated in Figure 2. At each time step, an agent receives an

observation, which includes the current state and reward. Then the agent chooses an action from

the set of available actions and it is sent to the environment. Then the environment changes in

some way as a result of that action and moves to a new state and the next reward associated with

that transition is determined. This feedback loop continues as the agent learns more information

about its environment and how to make the best actions. For our project, we needed to define our

problem, a logic locking hardware attack, in the context of a reinforcement learning model in

order for this method to work, since reinforcement learning has never been used before in a

hardware attack. At the very least, we needed to define our agent, our environment, what

constitutes an action, how we define a state, and a reward function. These definitions are shown

here:

Agent - Key bits (or the algorithm for finding the key bits)

Environment - Circuit trying to be deobfuscated

Action - Flipping 1 key bit

State - The values of the key bits

Reward - Output accuracy from a fixed number of inputs with the current key value

compared to the correct outputs with correct key value

Our plan for this project was to design our own logic locking attack using reinforcement

learning. We would then implement this attack on various benchmark circuits using an existing

logic locking technique. For our attack, we were to design and train a reinforcement learning

model, as well as an algorithm around it that will be able to extract the correct key bits from

logic locked circuits. After developing this algorithm, we will need to fine tune the

hyperparameters of this algorithm in order to increase its performance, both in terms of accuracy

and time. We would then collect data from the attacks we run on these benchmarks and compare

5

our results to other known logic-locking attacks. We hoped to achieve 100% key accuracy with

this attack, as well as have an execution time that competes with other existing state-of-the-art

attack methods. All of our code was written in Python.

Figure 2: Reinforcement learning feedback loop

Our first task was to obtain the obfuscated benchmark circuits that we would be using to

test the performance of our attack. These benchmarks were provided to us by a colleague, written

in Verilog and already obfuscated. These benchmarks were obfuscated using random, logic cone

analysis, and SLL methods [13].

Our algorithm required the creation of a number of different components that would all

work together. The next task was to create a netlist parser component for our benchmarks. This

netlist parser will be used to extract the input signals, output signals, and key bits from the netlist

files. This parser will be used in conjunction with the simulation manager so that our algorithm

can pass inputs into the benchmark circuits along with the key values that it generates and

capture the outputs.

The next component was the simulation manager. As mentioned, this component acts as

an intermediary between our attack algorithm and the netlist circuit. As our hardware attack

continues to run, it will generate new key values that need to be tested on the benchmark circuit.

The simulation manager will take this key value, along with a number of random inputs, and

generate a Verilog testbench to pass these inputs into the circuit and capture the outputs.

The next component is the oracle comparison. This will take the circuit outputs that were

obtained with a given set of inputs and the key generated from the algorithm and compare them

to the outputs from those same set of inputs with the correct key value in order to generate a

reward for our algorithm. The higher the percentage of output bits that are correct, the higher the

reward will be. Since this initial reward scheme that was generated is a percentage, it’s value will

be between 0 and 1. As you will see later, we slightly modified our reward scheme to try to

6

improve the performance of our reinforcement learning model.

The next and most important component of our algorithm is our reinforcement learning

model. The model will be trained by generating key values, deciding actions to take, generating

rewards based on these actions, and passing these experiences into a neural network to learn how

to find the correct key value. This part of the project was created using PyTorch, an open source

machine learning library that allows users to create neural networks for AI applications. All data

that was used by PyTorch’s library functions have a special data type called a tensor. This data

type is very similar to an array or matrix, and it’s used to encode the inputs, outputs, and

parameters of any model created.

There were three main sections of our reinforcement learning model, the deep Q-network,

the epsilon greedy strategy, and the replay memory. In traditional reinforcement learning,

specifically in the type used in our project called Q-learning, how an agent learns about its

environment is by using what is known as a Q-table, where an example with a car moving

through a grid is shown in Figure 3. In this example, one axis has all possible states, which in

this example correspond to the car being in any of the six squares on the grid, and the other axis

has all possible actions, which are the directions up, down, left, and right. As an agent gains

experience by taking actions from different states, a Q-value is determined for each state-action

pair, where a Q-value denotes the future return of taking an action from a given state. The values

in this table will be iteratively updated as the agent continues to explore its environment and find

the optimal path to achieve its goal, reaching the trophy square.

As the state space becomes too large, however, traditional Q-learning becomes infeasible.

The benchmark circuit we’re trying to attack has anywhere from 32 to 256 key bits. Even with

32 bits, that maps to 2^32 possible states, so trying to store a Q-table for this attack, if possible,

would make it extremely slow and inefficient. So we have decided to use deep reinforcement

learning, which combines deep learning and reinforcement learning. Instead of using a Q-table to

store and update Q-values, a neural network is used to approximate the Q-function, and this

network is trained on the experiences of the agent in its environment. The network takes in the

current state, which is the key value, as input, and each output neuron will be the approximate

Q-value for every action that can be taken from the state that was passed into it.

7

Figure 3: Reinforcement learning example

Note that in traditional Q-learning, the Q-table is updated by finding the loss between the

calculated Q-value from the current state-action pair and the optimal Q-value, which is given by

Equation 1:

Equation 1

This equation can be interpreted as saying the optimal Q-value for a given state action pair is

equal to the expected value of the sum of the immediate reward from that state-action pair and

the scaled maximum Q-value of the next state among all possible next actions. This scaling

factor is called a discount factor, which takes into account how much the reinforcement learning

algorithm will take into account future returns, which is what the Q-value represents, in relation

to immediate return. In deep reinforcement learning, the loss between the current and optimal

Q-values is used to train the network weights through gradient descent and backpropagation.

Both the current Q-value and the “optimal” Q-value require a pass through the Q-network in

order to be calculated, since we do not actually know the optimal q-values ahead of time. Using

the same neural network to find both values will cause network optimization to be chasing its

own tail, since both the current Q-values and the optimal q-values are being changed at each

training step. We want the optimal Q-values to be somewhat fixed. Therefore, we are using two

neural networks for our reinforcement learning algorithm. The policy net will have weights that

8

are trainable based on the calculated loss. The target net will have fixed weights and are used to

find the optimal Q-values, and every certain number of timesteps, the target net weights will be

updated to match the policy net weights. This removes the instability introduced in using only

one network for both values.

We chose to incorporate an epsilon greedy strategy in order to mitigate how the agent

chooses actions, where as mentioned earlier, an action is flipping one bit in the current key value.

This strategy tries to find an optimal balance between two concepts of agents taking actions

called exploration and exploitation. Exploration is the act of exploring the environment to find

out information about it. Exploitation is the act of exploiting the information that is already

known about the environment in order to maximize the return. Both are useful for the agent to

navigate its environment, and using only one of them will not lead to good results. If only

exploration is used, the agent wouldn’t be able to take advantage of the information learned to

optimally achieve its goal, and if only exploitation is used, it might only seek immediate reward,

even though its behavior is suboptimal in trying to achieve its ultimate goal. The epsilon greedy

strategy incorporates both through a parameter called an exploration rate, and the pseudo code

for the strategy is given in Figure 4. At every timestep of the algorithm, a random number is

generated between 0 and 1. If the number is less than the exploration rate, a random action is

chosen (exploration), else the action that promises the highest immediate return is chosen

(exploitation). In our algorithm specifically, determining the action that gives the highest

immediate reward is found by passing the current state into the policy net, and choosing the

action that corresponds to the output neuron with the highest value. To reiterate, each output

neuron in the policy net represents the approximate Q-value, or long-term return, of taking each

action from a given input state.

Figure 4: Action decision pseudocode

The last component of our reinforcement learning model is the replay memory. With a

concept known as experience replay, the agent's experiences at each time step is stored in a data

9

structure called the replay memory. An experience is defined as the tuple shown in Equation 2:

et = (st, at, rt+1, st+1)

Equation 2

where st represents the current state, at represents the action taken from that state, rt+1 represents

the reward for taking that action, and st+1 is the new state. A batch of these experiences will be

sampled and used to train the Q-network at each timestep of the algorithm. The main advantage

of using experience replay instead of providing the sequential experiences to the Q-network as

they occur in the environment is to break the correlation between consecutive samples. If only

consecutive samples are passed into the network, the sample would be highly correlated and lead

to inefficient learning.

A complete flowchart of a single timestep of our algorithm is shown in Figure 5. At the

start, the epsilon greedy strategy decides an action for the agent to take in its current state. Then,

that action is executed, and both a reward and a new state are determined. This process

constitutes an experience, and is stored in replay memory. After that, a random batch of

experiences is sampled from replay memory. These experiences are passed into the policy net

and target net in order to calculate the loss. This loss is then used to perform stochastic gradient

descent and backpropagation to train the policy net. We then check if a certain number of

timesteps have passed since our last update of the target net. If it has, we change the weights of

the target net to match those of the policy net. We then move on to the next timestep.

Figure 5: Deep Q-Learning training loop

10

Project Outcomes
One of the first things we did to prepare for this project was to read and synthesize

several academic papers about the state-of-the-art hardware obfuscation attacks that exist in the

hardware security industry today. Learning about these attacks not only gave us more knowledge

about the hardware security industry, but many of the techniques used in these papers inspired

aspects of our own attack. After reading about these different attacks, we wrote our own paper, a

survey of all the logic-locking attacks we read about, and submitted this paper to the

International Conference on Consumer Electronics (ICCE). Our paper was accepted to this

conference, and we were able to present our work at this conference virtually in winter of 2021.

Once all of the individual components of our algorithm were made, they had to be

combined together as a full working system. This process involved a bit of modification to how

we initially coded our individual components. Because for the most part many of these

components were created in parallel between each of us, there were some inconsistencies at first

with the data types the modules we created accepted as input and the data types it gave as output.

We tried to be in communication with each other as much as possible as we were creating these

modules to try to avoid these issues. Eventually we were able to make sure the data being passed

around to the different components of our algorithm were consistent and in a state where the

components could actually perform operations on it, allowing us to be able to safely combine all

components in our systems. The block diagram of our full design is shown in Figure 6. The

diagram shows all the major components of our attack and the data that is being passed between

them.

Figure 6: Block diagram of reinforcement learning attack

11

There are two phases to our attack: the training phase and the testing phase. The training

phase is what we’ve already explained and requires all components of our system to function.

Through training, the reinforcement learning model should gain more knowledge about the

circuit and the key value as the agent continually performs actions and gains rewards, and this

information is used to modify the network weights in a way that reinforces this knowledge. The

testing phase requires only the deep Q-network and a key confirmation program that calculates

the accuracy of a determined key relative to the correct key value of our benchmark circuits. The

basic flow of the testing phase is shown in Figure 7. Once the policy net finishes training, we

freeze its weights and generate a random starting state. We pass that state into the policy to get its

outputs. We choose the action that corresponds to the output neuron with the highest value, or the

action that has the highest Q-value, and perform that action on the state, which will flip a specific

key bit and give a new state. This new state is passed back into the network, and this process

continues. At each iteration, the key value is passed into the key confirmation program to test its

accuracy, and the testing phase should stop automatically when the key is 100% accurate. A

discussion of further improvements made to our algorithm and the results we obtained are

discussed in the subsequent sections.

Figure 7: Testing phase loop

12

Final Design
We had made many improvements to our model and algorithm since when we first

combined our code and initially developed the modules. While many of our improvements were

made with the hopes of enabling our model to learn, they still had fundamental benefits and

reasons for being added. Once we squashed all the initial bugs with our code, the first and most

important improvement we made was changing our reward generation structure. Originally, the

reward that reinforced the neural network was just the average percent of correct output bits from

the batch of simulations that was run in each timestep. However, we noticed that the distribution

of reward and how correct the current key is for that timestep had poor correlation. This can be

seen below in Figure 8.

Figure 8: Key Accuracy vs Reward before new reward function

In order for the model to train effectively, we needed this reward scheme to have a

stronger correlation between the model being in a state that is mostly correct and it receiving a

strong reward. To accomplish this, we combined two new strategies. The first was to increase the

number of simulations per time step. Since the input stimulus for each pair of unlocked and

locked circuit simulations were random, the outputs would also be random. Therefore, for any

simulation regardless of how correct the key being used is (unless that key is 100% correct) then

the circuit’s outputs can be correct to a widely varying degree, as shown by the data in the figure

above. Increasing the number of simulations meant that each timestep would receive a reward

13

that is closer to the true correctness of the key. However, this solution still allowed for the

problem of a key that is not very correct, generating a reward that is almost as great as the reward

generated by a key is almost entirely correct.

To mitigate this, we needed a reward scheme that would give out much greater rewards

when the model was in a very correct state, and very small rewards for when the model was in a

largely incorrect state. After some experimenting, we decided to use the following exponential

function to generate a reward: , where is the reward, and is the𝑅 = 𝑒
6𝑇

𝑎𝑐𝑐
−3

− 0. 05 𝑅 𝑇
𝑎𝑐𝑐

average accuracy of the outputs of the simulations in that timestep. This gave a curve that was

more rewarding when the model was in a more correct state, and skewed rewards to be much

greater as state accuracy increased. Below in Figure 9 shows the results of these changes.

Figure 9: Key Accuracy vs Reward with new reward function

This data shows that while we did begin to get a better correlation between the state

accuracy and the reward, we still were not getting exactly the curve we hoped for. One big issue

is that the key-state that is almost entirely correct generates weak rewards. This is due to the

randomness of the outputs. It could be mitigated with more simulations per time step but that

would just add time to our already lengthy training process. We could also just increase the

steepness of the exponential function we are using to generate the reward, but we are unsure

what effect having such a wide range of reward values could have on the training process. But

we believe that we will never get a truly strong correlation between key-state accuracy and the

14

reward, due to logic locking and how it unpredictably impacts the circuit outputs. We believe that

this may be one of the larger reasons our model was unable to train and believe that this is a

major reason why the model couldn’t learn.

The second major improvement was changing our activation functions. During our

research we learned about something called the “Dying ReLU Problem”. We originally had built

our neural network using Rectified Linear Units (ReLU) for our activation functions. These units

output a 0 for all values less than or equal to 0, and have a linear function for all values greater

than 0. ReLU has become the most commonly used activation function for deep learning due to

its capability to output a true 0 value. However, this can also cause certain paths of the network

to “die” where they never get updated because they are often 0. This prevents backpropagation

from updating the weights of these nodes and thus the model fails to learn. To remedy this issue,

we changed our ReLU’s to be Leaky ReLU’s. Leaky ReLU’s have a small negative slope for all

values less than or equal to 0, which helps back propagation recover the dead nodes and help

their weights update. In Figure 10 below these two activation functions are compared.

Figure 10: Left: ReLU Activation Function Right: Leaky ReLU Activation Function

15

Professional Issues and Constraints
Due to this project being done entirely in software with no hardware components at all

except computers to train the model on, we were largely unconstrained. Our biggest issue was

the lack of facetime due to COVID. Not being able to work together on the project slowed down

progress. We encountered some other issues due to the nature of the project. Since our project is

research based and is using deep learning in a way that has never been done before, finding help

when things went wrong was difficult. Experts we know who are familiar with deep learning or

reinforcement learning were unable to figure out why our model failed to learn. As neither of us

were experts on reinforcement learning before this project, many of the issues we faced we had

to figure out ourselves instead of finding the solution online.

Another issue we faced was the power of our hardware limiting how much we could

train. We originally were using SCU’s Linux machines to train the model, but these machines

were quite slow. We decided to try using one of our personal PC’s had a dedicated GPU with

Tensor cores within it, and a higher speed processor than the Linux machines. Using GPU

acceleration and overall faster PC, we saw a 47x speed up in training over the Linux

workstations. This helped us save a lot of time with training, but reducing training time more

would also have been helpful. There is always a possibility that with more training the model

would eventually learn, but with the current hardware we have that would have taken far too

long to be feasible.

In addition to needing faster hardware, a faster Verilog simulator could have also been of

benefit. We originally started with Synopsys VCS to simulate the circuits, but this was severely

limiting how fast we could train. When moving from the Linux workstations to our personal PC,

we had to install a new Verilog simulator since we couldn’t install VCS locally without paying

for a license. We found Icarus Verilog, which is an open-source Verilog simulator. This simulator

was much faster than VCS and also helped in the massive speedup we saw over the Linux

workstations. Even though Icarus Verilog did speed up the training process, it was still the

limiting factor in how fast we could train. Per timestep of the algorithm, most of the time was

spent waiting for the simulator to respond with circuit outputs, instead of doing operations that

are training the model. Overall, this speedup was massively helpful in working on this project as

it greatly reduced the amount of time we had to wait during training before we could analyze the

data we logged and make improvements to try and get the model to function as desired.

There were no safety concerns associated with our project. Hardware obfuscation attacks

16

like these are usually done entirely in software, and that is what we chose to do for our project.

There was no use of any hardware for this project besides the computers we were running the

code on, and so there were no real hazards associated with our work. None of the circuits we

tested our attack on were fabricated ICs. They were all circuit netlists written in Verilog. In a real

hardware attack, however, one would need to use the real ICs if that is all they had access to.

The entire field of hardware security is addressing ethical concerns. The field is seeking

to stop malicious third parties with the intent to steal the intellectual property of chip designers

using hardware attacks. The intent of the hardware attack we developed is purely for research

purposes. Our goal was always to find vulnerabilities in logic locking techniques through our

attack in order to publish those findings so that other researchers can develop more robust

security measures that address those vulnerabilities. We are simply following in the footsteps of

others who have developed strong logic-locking attacks for the purpose of further adding to the

body of knowledge in the hardware security field, and not further complicating the field with

malicious intent.

17

Conclusions
With this project, we sought to design and implement our own logic-locking circuit attack

in order to assess the effectiveness of reinforcement learning on this type of hardware security

technique. This was the first use of reinforcement learning as a means of implementing a

hardware attack.

We learned current hardware attacks that have already been developed by researchers to

become more knowledgeable on the field, and we compiled that knowledge into a survey paper

that was accepted to ICCE 2021. Inspired by the papers we read, we designed a new hardware

attack using reinforcement learning. We obtained obfuscated benchmark circuits to test our

attack on, programmed the individual components of our algorithm, and combined them into a

complete system. We spent a considerable amount of time fine-tuning the hyperparameters of our

systems as well as making small fundamental improvements to the algorithm with the purpose of

increasing its performance in regards to time and accuracy. Ultimately, this attack was unable to

accurately extract the correct key value from any of our benchmark circuits, showing that

logic-locking is an effective security measure against reinforcement learning-based hardware

attacks.

18

References

1. Forte, D., Bhunia, S. and Tehranipoor, M.M. eds., 2017. Hardware protection through

obfuscation. Springer International Publishing.

2. P. Chakraborty, J. Cruz and S. Bhunia, "SURF: Joint Structural Functional Attack on

Logic Locking," 2019 IEEE International Symposium on Hardware Oriented Security

and Trust (HOST), McLean, VA, USA, 2019, pp. 181-190, doi:

10.1109/HST.2019.8741028.

3. Xu, X., Shakya, B., Tehranipoor, M. and Forte, D., 2017. "Novel Bypass Attack And

BDD-Based Tradeoff Analysis Against All Known Logic Locking Attacks," Lecture

Notes in Computer Science, volume 10529.

4. Y. Lee and N. A. Touba, "Improving logic obfuscation via logic cone analysis," 2015

16th Latin-American Test Symposium (LATS), Puerto Vallarta, 2015, pp. 1-6, doi:

10.1109/LATW.2015.7102410.

5. K. Shamsi, M. Li, T. Meade, Z. Zhao, D. Z. Pan and Y. Jin, "AppSAT: Approximately

deobfuscating integrated circuits," 2017 IEEE International Symposium on Hardware

Oriented Security and Trust (HOST), McLean, VA, 2017, pp. 95-100, doi:

10.1109/HST.2017.7951805.

6. P. Chakraborty, J. Cruz and S. Bhunia, "SAIL: Machine Learning Guided Structural

Analysis Attack on Hardware Obfuscation," 2018 Asian Hardware Oriented Security and

Trust Symposium (AsianHOST), Hong Kong, 2018, pp. 56-61, doi:

10.1109/AsianHOST.2018.8607163.

7. Fatemeh Tehranipoor, Nima Karimian, Mehran Mozaffari Kermani, and Hamid

Mahmoodi. 2019. Deep RNN-Oriented Paradigm Shift through BOCANet: Broken

Obfuscated Circuit Attack. In Proceedings of the 2019 on Great Lakes Symposium on

VLSI (GLSVLSI '19). Association for Computing Machinery, New York, NY, USA,

335–338. DOI:https://doi.org/10.1145/3299874.3318031

8. Yuanqi Shen and Hai Zhou. 2017. Double DIP: Re-Evaluating Security of Logic

Encryption Algorithms. In Proceedings of the on Great Lakes Symposium on VLSI 2017

(GLSVLSI '17). Association for Computing Machinery, New York, NY, USA, 179–184.

DOI:https://doi.org/10.1145/3060403.3060469

9. D. Sirone and P. Subramanyan, "Functional Analysis Attacks on Logic Locking," in IEEE

19

Transactions on Information Forensics and Security, vol. 15, pp. 2514-2527, 2020, doi:

10.1109/TIFS.2020.2968183.

10. F. Yang, M. Tang and O. Sinanoglu, "Stripped Functionality Logic Locking With

Hamming Distance-Based Restore Unit (SFLL-hd) – Unlocked," in IEEE Transactions

on Information Forensics and Security, vol. 14, no. 10, pp. 2778-2786, Oct. 2019, doi:

10.1109/TIFS.2019.2904838.

11. M. Yasin, J. J. Rajendran, O. Sinanoglu and R. Karri, "On Improving the Security of

Logic Locking," in IEEE Transactions on Computer-Aided Design of Integrated Circuits

and Systems, vol. 35, no. 9, pp. 1411-1424, Sept. 2016, doi:

10.1109/TCAD.2015.2511144.

12. M. Yasin, B. Mazumdar, J. J. V. Rajendran and O. Sinanoglu, "SARLock: SAT attack

resistant logic locking," 2016 IEEE International Symposium on Hardware Oriented

Security and Trust (HOST), McLean, VA, 2016, pp. 236-241, doi:

10.1109/HST.2016.7495588.

13. F. Brglez, H. Fujiwara, "A Neutral Netlist of 10 Combinational Benchmark Circuits and a

Target Translator in Fortan," in Proc. of the International Symposium on Circuits and

Systems, 1985, pp. 663-698.

20

Appendix A: Senior Design Presentation Slides

A-1

A-2

A-3

A-4

A-5

A-6

A-7

A-8

A-9

A-10

A-11

Appendix B: Software Used

● PyCharm IDE

● Icarus Verilog

● PyTorch Library

● Subprocess Library

● CUDA Toolkit

● Synopsys VCS

● Python

● Verilog

B-1

Appendix C: Publications

J. Mellor, A. Shelton, M. Yue and F. Tehranipoor, "Attacks on Logic Locking Obfuscation

Techniques," 2021 IEEE International Conference on Consumer Electronics (ICCE), 2021, pp.

1-6, doi: 10.1109/ICCE50685.2021.9427730.

https://ieeexplore-ieee-org.libproxy.scu.edu/document/9427730

C-1

https://ieeexplore-ieee-org.libproxy.scu.edu/document/9427730

	Attacking Logic Locked Circuits Using Reinforcement Learning
	Project Report

