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Abstract   
  
  

Exposure   to   developmental   toxins   during   gestation   have   been   shown   to   be   linked   to   neurological   
disorders   such   as   epilepsy,   schizophrenia,   and   dyslexia    [1] .   In   this   report   we   describe   efforts   that   
represent   the   ground   work   to   develop   a   predictive   neurotoxicity   model   to   test   developmental   
toxicity   on   early   neuronal   differentiation   from   drugs   and   toxins   for   human   consumption   or   
exposure.   Developmental   toxins   are   toxins   that   prevent   stem   cell   differentiation   into   neurons   by   
impacting   neural   development    [2] .   Currency   technologies   used   to   evaluate   a   compound's   
potential   as   a   developmental   toxin   are   centered   around   culturing   stem   cells   in   a   two-dimensional   
environment   or   exposing   animal   models   to   the   compound.   The   stem   cells   are   then   monitored   for   
changes   in    proliferation,   differentiation,   and   death.   These   classes   of   experiments   proved   not   
only   to   be   expensive,   but   also   extremely   time   consuming   and   ineffective   in   some   cases.   These   
technologies   do   not   accurately   mimic   the   in   vivo   environment,   which   uses   ECM   proteins   and   
cell-cell   interactions   to   regulate   cellular   functions   such   as   migration,   apoptosis,   and   gene   
expression.   Our   predictive   model   would   provide   a   more   biologically   accurate   alternative   of   the   
human   system   compared   to   two-dimensional   cell   culture   and   animal   models.   Our   model   would   
further   improve   the   quality   and   relevance   of   developmental   neurotoxicity   research,   reduce   the   
number   of   animal   experiments   and   overall   cost   to   evaluate   the   potential   for   a   compound   to   act   as   
a   developmental   toxin.     
  
  
  
  

Keywords :   Developmental   Toxicity,   Predictive   Model,   Three-Dimensional,   Stem   Cells     
  
  
  
  
  
  
  
  
  
  
  
  
  
  

   

  



 2   

Acknowledgments     
  

We   would   like   to   acknowledge   the   following   people   for   their   support:     
  

● Dr.   Prashanth   Asuri,   Santa   Clara   University   Department   of   Bioengineering,   for   the   initial   
project   idea   and   expertise   in   3D   cell   culture   and   in   vitro   toxicity   platforms.     
  

● Dr.    Maryam   Mobed-Miremadi,    Santa   Clara   University   Department   of   Bioengineering,   for   
her   expertise   in   biomaterial   characterization   and   statistical   analysis.     
  

● Santa   Clara   University   Library   for   access   to   research   literature   databases.   
  

● Santa   Clara   University   School   of   Engineering   for   access   to   MATLAB   for   our   statistical   
analysis.     
  

● Santa   Clara   University   Department   of   Bioengineering   for   their   support   and   guidance   
through   Senior   Design.     

  
  

   

  



 3   

Table   of   Contents   
  

Abstract 1   

Acknowledgments 2   

List   of   Figures 5   

List   of   Tables 6   

List   of   Equations 7   

List   of   Abbreviations 8   

CHAPTER   1:   Introduction 9   
1.1   Introduction 9   
1.2   Background   and   Literature   Review 9   

1.2.1   Why   3D   Culture? 9   
1.2.2   Existing   Technologies 10   

1.2.2.1   Cytotoxicity   and   Cell   Viability   Assays 10   
1.2.2.2   Functional   Assays 11   
1.2.2.3   Gene   and   Protein   Expression 11   
1.2.2.4   Morphology 12   

1.3   Proposed   Goals 12   
1.3.1   Mission 12   
1.3.1   Initial   Project   Goals 12   
1.3.2   Revised   Project   Goals   Due   to   COVID-19 13   

CHAPTER   2:   Project   Overview 14   
2.1   System   Overview 14   

2.1.1   2D   versus   3D 15   
2.1.2   Toxin 15   
2.1.3   Stiffness 15   

2.2   Systems   Integration 15   
2.3    Team   and   Project   Management 16   

2.3.2   Budget   and   Materials 16   
2.3.31   Challenges 16   

CHAPTER   3:   Subsystem   1:   2D   vs   3D 18   
3.1   Subsystem   Overview 18   
3.2   Materials   and   Methods 18   

3.2.1   Literature   Review   and   Data   Collection 18   
3.2.2   Statistical   Analysis 19   

3.2.3.1   Chi   Square   Test 20   
3.3   Results   and   Discussion 20   

  



 4   

CHAPTER   4:   Subsystem   2:   Toxin 21   
4.1   Subsystem   Overview 21   
4.2   Materials   and   Methods 21   

4.2.1   Literature   Review   and   Data   Collection 21   
4.2.2   Statistical   Analysis 22   

4.2.2.1   G   Test 22   
4.3   Results   and   Discussion 23   

CHAPTER   5:   Subsystem   3:   Stiffness 24   
5.1   Subsystem   Overview 24   
5.2   Materials   and   Methods 24   

5.2.1   Literature   Review   and   Data   Collection 24   
5.2.2   Statistical   Analysis 25   

5.2.2.1   Logistic   Regression 25   
5.2.2.2   Principal   Component   Analysis 26   

5.3   Results   and   Discussion 26   

CHAPTER   6:   Engineering   Standards 29   
6.1   Ethical   Justification 29   
6.2   Environmental   and   Sustainability   Implications 29   
6.3   Economic   Considerations 29   
6.4   Health   and   Safety   Implications 30   
6.5   Social   and   Political   Considerations 30   

CHAPTER   7:   Summary   and   Conclusions 31   
7.1   Summary   of   the   Project 31   
7.2   Systems   Integration   and   Future   Work 31   
7.3   Lessons   Learned 32   

CHAPTER   8:   Citations 33   

APPENDIX 37   
Appendix   A:   Observed   and   Expected   Tables   for   𝜒2-test   and   G-Test 37   

A.1   𝜒2-Test   Observed   and   Expected   Tables   for   2D   versus   3D 37   
A.2   𝜒2   and   G-Test   Observed   and   Expected   Tables   for   Toxin 38   
A.3   𝜒2   and   G-Test   Observed   and   Expected   Tables   for   Stiffness 39   

Appendix   B:   Principal   Component   Analysis   Dataset 41   
Appendix   C:   Proposed   Budget   and   Finalized   Budget 42   

C.1   Proposed   Budget 42   
C.2   Finalized   Budget 42   

Appendix   D:   Project   Schedule 43   
  
  

  



 5   

List   of   Figures   
  

Figure   1:   Typical   2D   and   3D   Polymer   Matrix   Culture   Systems   
Figure   2:   Diagram   of   the   Predictive   Models   
Figure   3:   Diagram   of   the   2D   versus   3D   Subsystem   
Figure   4:   Diagram   of   the   Data   Extraction   Method   Using   Gridlines   
Figure   5:   Diagram   of   the   Toxin   Subsystem   
Figure   6:   Impact   of   Stiffness   on   Fate   of   Stem   Cell   Differentiation   
Figure   7:   Graph   of   Logistic   Regression   Model   Compared   to   Observed   Values   Extracted   from   
Stiffness   Contingency   Table   
Figure   8:   Pareto   of   Effect   Representing   Unique   Clusters   in   PCA   Data   Set   from   Engler    et   al.   
Figure   9:   PCA   Biplot   Indicating   Important   Genes   
Figure   10:   Diagram   of   Two   Predictive   Models   to   Predict   Cell   Fate   and   Toxin   Type   
Figure   11:   Gantt   Chart   of   Senior   Design   Project   Progress   
  

   

  



 6   

List   of   Tables   
  

Table   1:   Outline   of   Subsystem   Data   Collection   and   Analysis.   
Table   2:   Summary   of   Articles   and   Statistical   Test   Performed   
Table   3:   Contingency   Table   for   2D   versus   3D   
Table   4:   Contingency   Table   for   Toxin   Type     
Table   5:   Contingency   Table   for   Stiffness   Data     
Table   7:   Observed   Values   for   2D   versus   3D   Contingency   Table   
Table   8:   Expected   Values   for   2D   versus   3D   Contingency   Table   
Table   9:   𝜒 2 -Test   Values   for   2D   versus   3D     
Table   10:   Observed   Values   for   Toxin   Contingency   Table   
Table   11:   Expected   Values   for   Toxin    Contingency   Table   
Table   12:   𝜒 2 -Test   Values   for   Toxin     
Table   13:   G-Test   Values   for   Toxin     
Table   14:   Observed   Values   for   Stiffness   Contingency   Table   
Table   15:   Expected   Values   for   Stiffness   Contingency   Table   
Table   16:   𝜒 2 -Test   Values   for   Stiffness     
Table   17:   G-Test   Values   for   Stiffness     
Table   18:   Expression   of   Neural   Lineage   Markers   due   to   Various   Culture   Stiffnesses   
Table   19:   Hydrogel   Materials   
Table   20:   Cell   Culture   and   Differentiation   Materials   
Table   21:   Finalized   Budget   and   Materials   Used   for   Senior   Design   2021   
  

   

  



 7   

List   of   Equations  
  

Equation   1:   Fold   Change   
Equation   2:   Expected   Values   
Equation   3:   Chi-Square   Value   
Equation   4:   Percent   Change   Relative   to   Negative   Control   
Equation   5:   G-Statistic   
Equation   6:   Logistic   Regression   Standard   Equation   
Equation   7:   Logistic   Regression   Model   
Equation   8:   PCA   Transformed   Equation   
Equation   9:   Logistic   Regression   Model   for   Stiffness   Data   

  
   

  



 8   

List   of   Abbreviations   
  

EPA:   Environmental   Protection   Agency     
NIH:   National   Institutes   of   Health   
SCU:   Santa   Clara   University   
COVID-19:   Coronavirus   Disease-19   
2D:   Two-dimensional  
3D:   Three-dimensional   
DNA:   Deoxyribonucleic   acid   
cDNA:   Complementary   deoxyribonucleic   acid   
mRNA:   Messenger   ribonucleic   acid   
qPCR:   Quantitative   polymerase   chain   reaction   
RT-PCR:   Reverse   transcription   polymerase   chain   reaction   
MTT:   (3-(4,   5-dimethylthiazolyl-2)-2,   5-diphenyltetrazolium   bromide)   
BCA:   Bicinchoninic   Acid   
PVDF:   Polyvinylidene   Fluoride   
ECM:   Extracellular   matrix   
P19   Cells:   Murine   cell   line   
MAP2:   Microtubule-associated   protein-2   
GFAP:   Glial   fibrillary   acidic   protein   
CAM:   Cell   adhesion   molecule   
NGF:   Nerve   growth   factor     
BLEBB:   Blebbistatin     
kPa:   Kilopascal     
MATLAB:   Matrix   Laboratory   
PCA:   Principal   component   analysis   
  
  
  

   

  



 9   

CHAPTER   1:   Introduction   
1.1   Introduction   
For   our   Senior   Design   project,   we   worked   towards   designing   a   predictive   model   to   identify   
neurotoxic   compounds,   particularly   focusing   on   developmental   neurotoxins.   Developmental   
toxins   prevent   stem   cell   differentiation   into   neurons   by   impacting   neural   development   through   
many   possible   avenues,   such   as   by   damaging   DNA,   impacting   gene   expression,   modifying   
signaling   proteins,   and   many   others    [2] .   This   type   of   toxicity   is   distinct   from   stem   cell   toxins,   
which   are   those   that   are   cytotoxic   to   stem   cells,   and   neurotoxins,   which   are   either   cytotoxic   or   
functional   toxins   to   neurons.   We   are   interested   in   studying   developmental   neurotoxins   due   to   
their   profound   impact   on   brain   development,   and   therefore   on   people’s   lives.   In   the   US,   about   
one   in   six   children   are   affected   by   developmental   disabilities,   many   of   which   are   related   to   
neurological   development    [3] .   The   exposure   of   the   brain   to   various   agents   can   lead   to   
developmental   neurotoxicity.   These   alterations   can   have   long-lasting   impacts,   such   as   causing   a   
number   of   other   neurological   disorders,   like   epilepsy,   schizophrenia,   and   dyslexia    [4] .   Many   
commonly-found   agents,   such   as   metals   like   lead   and   mercury,   pesticides,   nicotine   and   ethanol,   
are   known   developmental   toxins    [2] .   The   EPA   estimates   that   less   than   1%   of   chemicals   in   the   
environment   have   been   tested   for   developmental   neurotoxic   effects   due   to   slow   and   expensive   
testing    [1] .   The   prevalence   of   developmental   neurotoxins   in   our   environment,   along   with   the   
profound   impact   these   toxins   can   have   on   individuals   and   communities   highlights   the   need   for   an   
increased   understanding   and   awareness   of   developmental   neurotoxicity.   With   our   model,   we   
hope   to   make   it   easier   to   identify   and   study   developmental   neurotoxins,   thus   helping   to   reduce   
their   impact.   
  

Currently,   neurotoxicity   testing   uses   several   2D   assays   to   test   toxicity   of   compounds   for   human   
topical   use,   consumption   and   exposure    [5] .   Existing   assays,   such   as   cytotoxicity,   cell   viability,   
and   functional   assays   as   well   as   qPCR   and   cell   morphology,   utilize   stem   cells,   stem   cell   derived   
neurons   and   cultured   neurons   to   analyze   the   impact   of   toxins   on   cell   fates    [6–9] .    While   the   
previous   technologies   discussed   are   useful,   cell   culture   experiments   represent   a   very   costly   class   
of   experiments   that   do   not   always   produce   reliable   results.   For   this   reason,   we   propose   creating   a   
model   based   upon   data   collected   from   3D   culture   systems   in   order   to   predict   the   cellular   fate   of   
early   neurons.    By   studying   developmental   toxicity   in   3D,   we   can   overcome   the   limitations   of   2D   
culture,   which   does   not   mimic   in   vivo   cell-cell   and   cell-matrix   interactions    [10] .   This   would   
allow   the   production   of   data   that   better   represents   the   in   vivo   environment   in   order   to   make   more   
sound   predictions   about   the   microenvironmental   factors   that   influence   early   neuronal   
differentiation.   While   data   included   in   this   report   is   focused   on   neuronal   differentiation,   we   
postulate   that   the   methods   developed   could   be   applied   to   various   cell   types.   
  

1.2   Background   and   Literature   Review   
1.2.1   Why   3D   Culture?  
Cell   culture   is   an   indispensable   tool   in   areas   of   developmental   biology,   tissue   engineering,   and   
protein   pharmaceutical   production.   All   early   cell   culture   techniques   are   composed   of   
two-dimensional   environments,   where   cells   attach   to   plastics   or   extracellular   matrix   (ECM)   
attachment   molecules   shown   in   Figure   1.   In   vivo,   cells   are   in   constant   interaction   with   a   variety   
of   ECM   molecules   that   regulate   cellular   functions   (migration,   apoptosis,   gene   expression,   etc)   
which   cannot   be   fully   represented   in   the   2D   environment    [10] .   The   current   drug   development   
pipeline   costs   anywhere   from   $800   million   to   $2   billion   and   can   take   up   to   15   years   to   bring   to   
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market    [10] .   The   process   begins   with   a   screening   of   compounds   in   a   2D   cell   culture   
environment,   followed   by   animal   models   and   finally   human   clinical   trials.   This   pipeline   only   
brings   approximately   10%   of   initial   leads   through   clinical   development.   Additionally,   some   
therapeutics   make   it   all   the   way   to   phase   III   clinical   trials   before   proving   inefficacious,   at   which   
point   millions   of   dollars   have   already   been   allocated   to   research   and   development.   A   rapidly   
growing   field   of   literature   has   suggested   that   3D   cell   culture   systems   promise   to   address   these   
challenges   by   providing   cells   a   more   realistic   extracellular   environment   shown   in   Figure   1    [10] .     
  

  
Figure   1:   Typical   2D   (Left)   and   3D   (right)   polymer   matrix   culture   systems   (adapted   from    [11] )   

  
3D   culture   has   been   shown   to   produce   superior   and   more   relevant   results   compared   to   2D   in   a   
variety   of   applications.   One   example   is   when   cell   culture   systems   are   used   as   a   model   for   drug   
development,    various   studies   have   illustrated   that   pharmacaiduals   that   show   promise   in   2D   have   
reduced   or   no   efficacy   when   tested   in   3D   culture   systems.   For   example,   a   study   performed   by   
Edmonson    et.   al .    showed   that   an   anti   cancer   drug,   Melphalan,   killed   ~100%   of   an   intestinal   
cancer   cell   line   at   concentrations   of   100uM   but   when   the   same   concentration   of   the   drug   was   
tested   in   a   3D   spheroid   culture   system   only   ~20%   of   the   cells   were   killed    [12] .    These   results   
indicate   the   need   for   cell   culture   techniques   that   better   represent   the   invivo   environment.    As   3D   
culture   platforms   offer   a   more   robust   way   to   culture   cells   and   study   their   cellular   functions,   it   
represents   a   new   modality   to   understand   the   effect   of   compounds   on   the   differentiation   of   stem   
cells   to   early   neurons.   
  

1.2.2   Existing   Technologies   
Currently,   neurotoxicity   testing   uses   several   2D   assays   to   test   toxicity   of   compounds   for   human   
topical   use,   consumption   and   exposure    [5] .   Existing   assays,   such   as   cytotoxicity,   cell   viability,   
and   functional   assays   as   well   as   qPCR   and   cell   morphology,   utilize   stem   cells,   stem   cell   derived   
neurons   and   cultured   neurons   to   analyze   the   impact   of   toxins   on   cell   fates    [6–9] .   The   next   several   
subsections   will   elaborate   on   specific   examples   of   these   2D   neurotoxicity   assays   and   the   type   of   
data   collected.     
  

1.2.2.1   Cytotoxicity   and   Cell   Viability   Assays   
Succinate   dehydrogenase   activity   assay,   also   known   as   a   MTT   assay,   is   a   common   cytotoxicity   
colorimetric   assay   that   measures   cell   viability   and   proliferation   by   enzymatically   reacting   with   
succinate   dehydrogenase   in   the   mitochondria    [13] .   Essentially,   the   occurrence   of   mitochondrial   
respiration   catalyzes   the   reduction   of   the   MTT   dye   into   insoluble   crystals    [13] .   Color   produced   
from   the   cells   is   proportional   to   the   number   of   viable   cells   after   the   cells   are   lysed   and   processed  
[13] .   A   great   example   of   a   cell   viability   assay   is    dye   exclusion.   This   test   allows   researchers   to   
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determine   the   number   of   viable   cells   and   dead   cells    [14] .   Dyes,   such   as   trypan   blue,   eosin   or   
propidium,   are   introduced   into   a   cell   suspension   and   will   only   dye   cells   without   intact   cellular   
membranes    [14] .   Since   viable   cells   have   intact   membranes,   they   will   remain   clear   while   dead   
cells   are   dyed    [14] .   Using   a   hemocytometer,   researchers   can   count   a   small   fraction   of   the   overall   
cell   suspension   and   calculate   an   estimate   for   the   overall   number   of   viable   and   dead   cells    [14] .   
MTT   assays   and   dye   exclusion   allows   researchers   to   determine   the   dose-   and   time-dependent   
cytotoxic   effect   of   their   drug   or   compound   of   interest    [13,14] .     
  

1.2.2.2   Functional   Assays   
Functional   assays   measure   the   neuron’s   ability   to   function,   such   as   generating   action   potentials   
or   creating   calcium   influxes   to   release   neurotransmitters    [15,16] .   Two   commonly   used   functional   
assays   are   calcium   imaging   and   patch   clamp   recording.   Calcium   imaging   is   used   to   analyze   
neuronal   signaling   by   allowing   researchers   to   image   or   record   the   occurrence   of   action   potentials   
in   neurons    [15] .   Calcium   is   used   by   neurons   in   their   axon   terminals   to   trigger   exocytosis   of   
neurotransmitters,   releasing   them   into   the   synaptic   cleft   and   passing   the   signal   to   postsynaptic   
neurons    [15] .   In   order   to   capture   neuron   signaling,   a   bioluminescent   calcium   indicator   such   as   
aequorin,   derived   from   bioluminescent   marine   organisms,   or   chemical   calcium   dyes   are   used.   
Due   to   aequorin’s   large   size   it   must   be   loaded   into   each   cell   by   a   micropipette   or   transfected   into   
the   cells   via   genetic   engineering    [15] .   Similarly,   chemical   dyes   need   to   be   introduced   by   
micropipettes.   Once   introduced,   neuronal   signalling   can   be   imaged   by   high-speed   confocal   
microscopes    [15] .     

   
Patch   clamp   recording   is   another   type   of   functional   assay   to   measure   neuron   activity.   It   can   be   
performed   on   single   neurons,   brain   slices   or   live   brains   in   sedated   animals    [16] .   Researchers   
place   a   glass   micropipette   electrode   directly   on   a   small   area   of   the   cell   membrane   and   use   suction   
to   firmly   seal   the   tip   of   the   pipette   to   the   cell    [16] .   As   the   cellular   membrane   changes   voltage   
during   action   potentials,   the   electrode   will   be   able   to   record   the   change   in   voltage.   The   tight   seal   
creates   very   high   resistance,   allows   detection   of   small   voltage   changes   and   blocks   external   
currents   from   surrounding   cells    [16] .   This   method   allows   researchers   to   measure   the   neuronal   
activity   of   individual   cells    [16] .   
  

1.2.2.3   Gene   and   Protein   Expression   
Reverse   Transcription   Polymerase   Chain   Reaction   (RT-PCR),   Western   Blots   and   
Immunocytochemistry   allow   researchers   to   analyze   the   gene   and   protein   expression   of   cells   as   a   
result   of   exposure   to   drugs   or   environmental   compounds    [17,18] .   Researchers   can   identify   cell   
differentiation,   maturity   and   up/down   regulation   of   a   gene   or   protein   of   interest    [17,18] .     
  

RT-PCR   identifies   and   magnifies   the   presence   of   genes   of   interest   allowing   the   comparison   of   
gene   expression   pre-   and   post-exposure   to   the   compound    [17] .   After   cells   have   been   exposed   to   
the   compound,   mRNA   is   isolated   and   prepped   for   RT-PCR.   Primers   are   selected   to   identify   key   
genes   for   cell   fate,   such   as   beta   3   tubulin   which   is   a   marker   for   immature   neurons    [18]    or   MAP2   
which   is   a   marker   for   mature   neurons    [17] .   During   RT-PCR,   the   mRNA   is   reverse   transcribed   
into   cDNA,   which   is   then   amplified   by   taq   polymerase    [17] .   The   chosen   primers   will   only   bind   
to   complementary   sequences   on   the   cDNA,   amplifying   the   genes   of   interest   to   detectable   levels   
[17] .   Researchers   can   use   either   gel   electrophoresis   or   primers   with   a   fluorescent   tag   to   detect   the   
gene    [17] .     
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Western   Blots   are   used   to   detect   the   presence   of   a   protein   of   interest    [18] .   After   compound   
exposure,   the   cells   are   lysed   and   processed   to   isolate   protein.   A   BCA   protein   assay   is   used   to   
determine   overall   protein   concentration    [18] .   Then,   gel   electrophoresis   is   used   to   separate   the   
protein   mixture   and   transferred   to   a   PVDF   membrane   to   be   stained   with   antibodies   to   detect   the   
protein   of   interest    [18] .   To   detect   fluorescence   from   the   antibody   stain   a   fluorescence   
microscope,   such   as   a   confocal   microscope,   is   used    [18] .   Images   are   taken   of   the   membrane   and   
image   processing   software   is   used   to   analyze   protein   expression    [18] .   
  

Immunocytochemistry   is   another   technique   to   detect   the   presence   of   a   protein   of   interest.   After   
cells   are   exposed   to   the   toxin,   they   are   fixed   with   paraformaldehyde   and   stained   with   fluorescent   
primary   and   secondary   antibodies   for   specific   proteins   of   interest    [18] .   Multiple   proteins   can   be   
stained   at   the   same   time.   Similar   to   western   blots,   a   fluorescence   microscope   is   used   to   image   the   
cells   and   an   image   processing   software   is   used   to   analyze   protein   expression    [18] .   
Immunocytochemistry   produces   similar   results   as   western   blots   in   addition   to   allowing   
researchers   to   identify   the   protein   location   in   the   cell   and   morphology    [18] .   
  

1.2.2.4   Morphology    
Lastly,   morphology   can   be   used   to   identify   the   effect   of   the   neurotoxin   on   stem   cells   or   neurons.   
Researchers   can   measure   the   change   in   cell   size,   fragment   length   per   cell,   branches   per   cell,   and   
total   length   per   cell    [19] .   These   morphological   changes   indicate   the   impact   of   the   toxin   on   
cellular   differentiation   and   signs   of   cytotoxicity    [19] .   For   instance,   Crumpton    et.   al.    used   
morphology   in   their   study   to   identify   the   most   sensitive   period   during   differentiation   for   which   
the   toxin   had   the   greatest   effects   on   the   stem   cells    [19] .   They   concluded   that   lead   had   the   greatest   
effect   during   the   early   initiation   events   of   differentiation    [19] .   Although   morphology   is   the   
simplest   neurotoxicity   detection   platform   explored   in   this   section,   it   is   a   cheap   and   powerful   tool   
that   should   not   be   ignored.     
  

1.3   Proposed   Goals   
1.3.1   Mission     
Our   mission   is   to   develop   a   three-dimensional   neurotoxicity   platform   to   test   developmental   
toxicity   on   early   neuronal   differentiation   from   drugs   and   toxins   for   human   consumption   or   
exposure.   Our   model   will   provide   a   more   biologically   accurate   alternative   of   the   human   system   
compared   to   animal   models,   currently   used   for   clinical   and   pharmaceutical   research.   
  

1.3.1   Initial   Project   Goals   
During   the   spring   and   summer   of   2020,   we   designed   our   initial   project   to   be   performed   
completely   in   the   lab.   Our   goal   was   to   design   a   3D   cell   culture   system   to   test   the   developmental   
neurotoxicity   effect   of   acrylamide   on   neural   differentiation.   In   order   to   perform   this   experiment,   
we   would   culture   and   differentiate   P19   cells   in   3D   alginate   hydrogels.   At   various   time   points   
during   differentiation,   different   concentrations   of   acrylamide   would   be   added   to   the   system.   
Then,   we   would   analyze   the   morphological   changes   using   microscopes,   imaging   and   image   
analysis   as   well   as   cell   proliferation.   
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1.3.2   Revised   Project   Goals   Due   to   COVID-19   
As   a   result   of   COVID-19,   our   project   has   gone   through   a   number   of   revisions.   Our   initial   project   
would   have   been   largely   conducted   in   the   lab.   However,   we   realized   over   the   summer   prior   to   
our   senior   that   this   would   not   be   feasible   due   to   COVID-19,   so   we   created   the   initial   project   
goals   outlined   above.   These   goals   still   relied   on   some   lab   time,   though,   and   by   the   end   of   Fall   
2020,   it   became   clear   that   we   would   not   be   able   to   complete   any   meaningful   work   in   the   lab   due   
to   the   lab   restrictions.   At   this   time,   we   created   revised   project   goals.   The   revised   projects   goals   
are   as   follows:     

1. Collect   data   from   literature   on   how   various   factors   affect   neural   differentiation,   to   
identify   factors   that   have   an   impact   on   neural   differentiation.   

2. Analyze   the   combined   data   collected   from   literature   using   G-Tests,   χ 2 -tests   and   logistic   
regression   to   determine   significance   of   these   factors   to   show   the   effect   of   the   variables   on   
differentiation.   Analyze   large   data   sets   using   other   techniques   such   as   Principal   
Component   Analysis   (PCA).   

3. Combine   significance   tests   and   other   data   analysis   into   a   model   to   inform   future   research   
into   developmental   neurotoxicity   tests   in   3D   culture.   

  
  

   

  



 14   

CHAPTER   2:   Project   Overview     
2.1   System   Overview   
In   order   to   collect   data   to   use   in   our   model,   we   followed   a   general   procedure   that   took   place   in   
three   steps:   literature   review,   data   collection   and   unification,   followed   by   statistical   hypothesis   
testing.   An   initial   literature   review   and   data   collection   consisting   of   50   articles   regarding   7   
different   variables   known   to   influence   neural   differentiation   was   narrowed   down   to   14   articles   
regarding   three   different   variables:   2D   vs   3D   culture   environment,   toxin   presence,   and   matrix   
stiffness   outlined   in   Table   1.   The   final   data   set   used   for   statistical   analysis   was   chosen   due   to   
their   most   comparable   experimental   setups   and   data   collection   methods.   
  

We   performed   𝜒 2 -test(s),    G-Test(s)   of   Independence,   Logistic   Regression,   and   PCA   on   some   or  
all   of   the   subsystem   variables   depending   on   the   suitability   of   each   data   set   outlined   in   Table   1.   
All   of   the   statistical   tests   performed   were   used   to   determine   if   there   is   or   is   no   association   
between   the   subsystem   variable   and   neural   differentiation   with   the   exception   of   the   PCA   
analysis.   The   PCA   analysis   was   performed   to   reduce   the   dimensionality   of   one   of   the   datasets   
from   the   stiffness   subsystem   variable   (see   section   5.2.2.2).   
  

Table   1:   Outline   of   Subsystem   Data   Collection   and   Analysis   

  

  

Sub   System   Data   source   /   Number   of   Articles   
Used   

Statistical   Tests   
Used   

Hypotheses   

2D   vs   3D   
  

1.   Huang   et   al.,    Neuro   Regen   Res   
(2013)   
2.   Brannvall   et   al,    Journal   of   
Neuroscience   Research    (2007)   
3.   Zare-Mehrjardi   et   al.,    Int   J   Artif   
Organs    (2011)   
4.   Bozza   et   al.,    Biomaterials    (2014)   
5.   Oritinau   et   al.,    BioMedical   
Engineering   OnLine    (2010)   

1.   Chi   Square   Test   
(𝜒 2 -test)   

  
  
  
  

Null   Hypothesis:   
There   is   no   
association   between   
the   subsystem   
variable   and   neural   
differentiation.   
  
  
  
  

Alternative   
Hypothesis:   
There   is   an   
association   between   
the   subsystem   
variable   and   neural   
differentiation.   

Toxin   1.   Engstrom   et   al.,    Toxicol   In   Vitro   
(2016)   
2.   Lin   et   al.,    Chemosphere    (2021)   
3.   Tasneem   et   al.,    Toxicol   Lett    (2016)   

1.   𝜒 2 -test   
2.   G-Test   

Stiffness   
  

1.   Banerjee   et   al.,    Biomaterials    (2009)   
2.   Leipzig   et   al.,    Biomaterials    (2009)   
3.   Rammensee   et   al.,    Stem   Cells   
(2017)   
4.   Ali   et   al.,    Acta   Biomaterialia    (2015)   
5.     Her   et   al.,    Acta   Biomaterialia   
(2013)   
6.   Engler   et   al.,    Cell    (2006)   
  

1.   𝜒 2 -test   
2.   G-Test   
3.   Logistic   
Regression   
4.   PCA   
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2.1.1   2D   versus   3D   
One   factor   we   investigated   was   two-dimensional   versus   three-dimensional   matrices.   As   outlined   
in   section   1.2.1,   various   research   groups   have   found   that   cells   cultured   in   3D   matrices   have   a   
higher   rate   of   stem   cell   differentiation   as   well   as   cell   survival   and   proliferation    [20–25] .   We   
investigated   the   significance   of   the   impact   of   matrix   dimensions   on   stem   cell   differentiation   
using   a   𝜒 2 -test.   
  

2.1.2   Toxin   
Research   has   shown   that   compounds   that   do   not   act   as   cytotoxins   can   still   act   as   neural   toxins.   
However,   the   EPA   estimates   that   less   than   1%   of   chemicals   in   the   environment   have   been   
evaluated   for   their   potential   to   cause   developmental   neurotoxicity    [1] .   For   this   reason,   in   addition   
to   investigating   the   influence   of   2D   and   3D   matrices   on   neuronal   differentiation,   we   also   
investigated   the   effect   of   particular   toxins   on   neuronal   differentiation,   proliferation,   and   death.   
Data   was   collected   on   the   effect   of   Acrylamide   and   Lead   exposure   on   cellular   characteristics   
such   as   gene   expression   and   cellular   morphology   and   was   analyzed   for   significance   using   𝜒 2    and   
G-tests.   
  

2.1.3   Stiffness   
Another   factor   that   we   investigated   in   regards   to   neuronal   differentiation   was   matrix   stiffness.   A   
wide   variety   of   researchers   have   investigated   the   impact   of   stiffness   on   stem   cell   differentiation.   
Overall,   researchers   have   found   that   lower   stiffnesses,   like   that   of   the   brain,   cause   stem   cells   to   
differentiate   into   neurons    [26–34] .   Due   to   its   importance,   we   wanted   to   incorporate   the   impact   of   
stiffness   into   our   predictive   models.   We   investigated   the   impact   of   stiffness   on   differentiation   by   
combining   various   datasets   collected   from   literature,   analyzed   them   with   statistical   techniques   to   
determine   significance,   and   completed   Principle   Component   Analysis   (PCA).   
  

2.2   Systems   Integration   
The   overall   goal   of   this   project   was   to   create   two   models,   as   shown   in   Figure   2.   The   first   would   
input   microenvironment   cues   (2D   vs.   3D,   stiffness,   and   developmental   toxin),   and   output   cell   
fate.   The   second   would   input   cell   characteristics   (morphology,   cell   viability   and   proliferation,   
and   gene   or   protein   expression)   and   output   toxin   type   (developmental,   neuronal,   stem   cell   or   no   
toxin).   In   order   to   create   these   models,   we   would   need   to   do   further   data   collection   and   lab   work.  

  
Figure   2:   Diagram   of   the   Predictive   Models   
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2.3    Team   and   Project   Management   
2.3.1   Schedule   
Due   to   COVID-19,   we   had   to   shift   to   an   entirely   virtual   project   at   the   end   of   fall   quarter.   As   a   
result,   we   spent   time   during   the   fall   working   on   preparing   for   lab   work   as   well   as   developing   our   
model   before   pivoting   to   solely   working   on   modeling   in   the   winter   and   spring.   In   fall   2020,   we   
completed   literature   review,   applied   for   funding,   determined   materials   to   purchase,   and   began   
data   collection   from   literature.   In   winter   2021,   we   continued   to   collect   data,   began   to   analyze   our   
data   using   contingency   tables   (χ 2 -tests,   G-tests,   and   linear   regression),   and   PCA,   reviewed   
mathematical   models   in   biological   systems,   and   began   to   write   our   thesis.   In   spring   2021,   we   
completed   our   statistical   analyses,   senior   design   presentation   and   thesis.   See   the   Gantt   Chart   in   
the   Appendix   D   for   an   overview   of   our   progress   throughout   the   year   (Figure   11).   
  

2.3.2   Budget   and   Materials   
In   the   beginning   of   the   year,   we   planned   to   perform   lab   experiments   as   outlined   in   section   1.3.1   
and   submitted   our   proposed   budget   for   funding   from   Santa   Clara   University   School   of   
Engineering   located   in   Appendix   C   (Table   19   and   Table   20).   Due   to   COVID-19   restrictions,   we   
transitioned   our   project   Winter   quarter   2021   to   a   fully   virtual   format.   Table   21   in   Appendix   C   
outlines   the   finalized   list   of   materials   and   cost.   
  

2.3.31   Challenges   
Throughout   our   project,   we   have   run   into   issues   related   to   obtaining   raw   data   from   articles,   
determining   a   similar   metric   across   articles   and   the   COVID-19   pandemic.   The   largest   challenge   
was   determining   the   feasibility   of   our   original   project   due   to   COVID-19   restrictions.   We   
originally   wanted   to   perform   laboratory   experiments   on   the   effects   of   acrylamide   toxicity   on   
neuronal   differentiation   in   2D   versus   3D   culture   conditions   using   imaging   and   software   to   
quantify   differentiation.   During   Fall   quarter,   our   team   was   not   able   to   access   the   lab   but   focused   
on   collecting   protocols,   researching   background   information   for   our   project   and   collecting   data   
for   a   predictive   model.   Unfortunately,   a   second   stay-at-home   order   was   put   into   effect   in   
December,   preventing   Dr.   Asuri   from   beginning   to   culture   cells   for   our   experiments   and   
restricting   our   access   during   the   Winter   quarter.   We   transitioned   our   project   scope   to   a   fully   
computational   project   focusing   on   our   predictive   mathematical   models.    
  

To   formulate   our   model,   we   gathered   data   from   other’s   previous   research   on   our   variables   of   
interest.   Often   the   data   was   presented   in   graphs,   requiring   us   to   estimate   the   values   using   a   grid   
overlay,   mentioned   in   Chapter   3.   During   the   Fall   quarter,   we   emailed   numerous   laboratories   for   
access   to   their   raw   data,   but   only   one   replied,   proving   it   hard   to   obtain   raw,   high   quality   data   for   
our   model.   Of   the   data   we   did   collect,   the   metric   for   measuring   each   experiment   varied   by   paper.   
Some   researchers   used   normalized   mRNA   gene   expression   from   RT-PCR,   protein   expression,   
percent   cells   differentiated,   percent   cells   positive   for   a   marker,   fluorescence,   change   in   neuron   
cell   body   area,   number   of   neurite   branches   or   neurite   extension   length   to   analyze   the   change   in   
neuronal   differentiation.   We   struggled   to   find   a   common   metric   across   articles   to   be   able   to   
compare   data   between   the   papers   for   one   variable.   For   instance,   we   collected   papers   analyzing   
the   effect   of   matrix   stiffness   on   differentiating   stem   cells.   A   common   metric   among   several   of   
the   papers   was   the   normalized   expression   of   beta   3   tubulin.   That   selected   data   was   then   used   in   
our   contingency   tables   and   expected   value   tables   were   created   to   perform   𝜒 2 -test   and   G-test.   For   
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several   of   our   variables,   the   expected   values   were   less   than   5   going   against   the   general   rule   of   
thumb   for   a   successful   test.     
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CHAPTER   3:   Subsystem   1:   2D   vs   3D   
3.1   Subsystem   Overview   
A   number   of   researchers   have   found   that   cells   cultured   in   3D   matrices   have   a   higher   rate   of   stem   
cell   differentiation   into   neurons,   as   well   as   increased   cell   survival   and   proliferation,   making   
matrix   dimensions   an   ideal   microenvironmental   input   to   add   to   our   model    [20–25] .   
  

  
Figure   3:   Diagram   of   the   2D   versus   3D   Subsystem.    We   collected   data   from   articles   that   put   stem   cells   into   two   

dimensional   and   three   dimensional   matrices   and   measured   neuronal   differentiation   rates.   
  

3.2   Materials   and   Methods   
3.2.1   Literature   Review   and   Data   Collection   
For   each   subsystem,   we   started   our   process   with   literature   review   and   data   collection.   We   used   
various   tools   from   the   SCU   library   to   collect   data,   particularly   using   the   Interlibrary   Loan   system   
to   get   articles   not   owed   by   the   library,   and   library   database   subscriptions,   such   as   Engineering   
Village,   PubMed   and   ScienceDirect   and   Google   Scholar   to   access   other   articles.   We   also   used   
search   techniques   such   as   boolean   operators,   narrowing   down   article   types   and   years,   and   
specifying   keywords   in   the   title   and   abstracts   of   the   papers   to   find   the   articles.   
  

After   finding   the   articles,   we   then   extracted   data   from   the   articles.   If   the   data   was   present   in   
tables,   we   then   immediately   transferred   that   data   into   our   excel   spreadsheet.   However,   in   many   
cases   the   data   was   only   presented   in   graphs   and   figures.   In   that   case,   we   first   reached   out   to   the   
corresponding   author   of   the   paper   to   try   and   get   the   raw   data   from   them.   We   did   not   hear   back   
from   many   of   the   authors,   though.   As   a   result,   when   the   data   was   not   available   we   would   extract   
images   of   the   graphs,   import   the   images   into   Google   Drawings,   and   use   grid   lines   to   closely   
approximate   the   values   and   standard   deviation   (Figure   4).     A   similar   extraction   method   has   been   
used   by   other   researchers    [35–37] .   Using   this   process,   we   collected   data   from   six   papers   on   stem   
cell   differentiation   into   neurons   in   2D   and   3D   matrices    [20–25] .   
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Figure   4:   Diagram   of   the   Data   Extraction   Method   Using   Gridlines   (graph   from    [30] ).   
  

For   our   data   analysis,   we   used   five   out   of   the   six   papers.   These   five   papers   all   used   beta   III   
tubulin   expression,   a   common   neuronal   differentiation   marker,   as   the   measure   of   neuronal   
differentiation    [38] .   We   then   calculated   the   fold   of   beta   III   tubulin   expression   for   the   matrices   
versus   the   control,   using   the   following   formula:   
  

 (Eq.   1)  old change F = control value
experimental value  control value−  

  
We   set   a   two   fold   change   from   the   control   as   the   cut   off   between   differentiated   and   
undifferentiated   neurons.   We   made   this   cut-off   based   on   a   paper   by   Gurok    et   al .   who   studied   the   
expression   of   various   markers   over   the   course   of   stem   cell   differentiation   into   neurons    [39] .   They   
found   that   there   was   roughly   a   two   fold   increase   in   beta   III   tubulin   expression   between   stem   cells   
and   differentiated   neurons    [39] .   As   a   result,   we   said   that   samples   with   a   two   fold   or   greater   
increase   compared   to   the   control   were   differentiated,   and   samples   with   less   than   a   two   fold   
increase   were   undifferentiated.   Based   on   these   categories   and   available   data   from   literature   
review,   we   created   a   contingency   table   (Table   3)   for   statistical   analysis.   A   contingency   table   
showcases   the   distributions   of   multiple   variables,   in   this   case   depicting   the   distribution   of   
differentiated   and   undifferentiated   cell   samples   for   both   2D   and   3D   matrices.   
  

Table   3:   Contingency   Table   for   2D   versus   3D   

  
3.2.2   Statistical   Analysis   
We   completed   a   Chi   Square   Test   (𝜒 2 -test)   on   the   data   combined   in   the   contingency   table.   The   
resulting   observed   and   expected   tables   for   the   𝜒 2    -Test   are   located   in   Appendix   A.   We   were   
unable   to   complete   other   forms   of   analysis   that   we   completed   on   the   other   subsystems,   such   as   
the   G   Test   and   Logistic   Regression,   because   of   the   zero   in   the   2D-differentiated   box.   The   zero   
results   in   undefined   values   and   errors   in   the   G   Test   and   Logistic   Regression   computations.   

  

Dimensions   Differentiated   (>2   
fold   increase)   

Undifferentiated   (<2   
fold   increase)   

Total   

2D   0   10   10   

3D   21   7   28   

Total   21   17   38   
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3.2.3.1   Chi   Square   Test   
A   𝜒 2 -test   tests   whether   the   distributions   of   variables   differ   from   one   another.   In   our   case,   it   tests   
the   distributions   of   differentiated   and   undifferentiated   cells   for   2D   versus   3D   matrix   cultures.   
This   test   lets   us   know   if   there   is   a   significant   difference   between   the   experimental   group   and   the   
control   in   terms   of   differentiation    [40] .   The   null   hypothesis   is   that   there   is   no   relationship   
between   matrix   dimensions   and   neural   differentiation,   and   the   alternative   hypothesis   is   that   there   
is   a   relationship   between   dimensions   and   differentiation.     
  

To   complete   the   𝜒 2 -test,   we   compared   the   observed   and   expected   data.   The   observed   data   is   the   
data   in   the   contingency   table,   with   an   individual   value   designated   as   O ij    (observed   count   in   row   i   
and   column   j).   We   computed   the   expected   values   from   the   contingency   table   using   the   following   
formula:   

     (Eq.   2)   E ij = (table sum)
(row sum i)(column sum j)  

(expected   value   for   row   i,   column   j)     
  

The   expected   values   should   all   be   at   least   5   to   complete   a   𝜒 2 -test.   However,   one   of   our   values   
(2D-undifferentiated)   was   less   than   5,   at   4.5.   Even   so,   we   still   wanted   to   complete   a   𝜒 2 -test   to   get   
a   rough   estimate   of   whether   there   was   a   significant   difference   between   the   relationships   of   the   
variables.   However,   it   is   important   to   note   that   our   expected   values   did   not   entirely   meet   this   
benchmark.   The   resulting   observed   and   expected   values   are   found   in   Appendix   A.   
  

Next,   we   computed   the   𝜒 2 -value   using   the   following   formula:   
   

 (Eq.   3)   X 2 = ∑
 

iεrows
∑
 

jεcolumns
E ij

(O E ) ij− ij
2

 

  
Finally,   we   used   MATLAB   to   compute   the   p-value   of   the   𝜒 2 -value   using   the   following   code:   
p=1-chicdf(x 2    value,   degrees   of   freedom),    where    degrees   of   freedom=(i-1)(j-1)    and    i    and    j    are   the   
number   of   rows   and   columns   respectively.   

  
3.3   Results   and   Discussion   
The   p-value   from   the   𝜒 2 -test   is   4.2313*10 -5 .   The   p-value   of   4.2313*10 -5    is   much   lower   than   the   
cutoff   value   of   0.05,   so   we   can   reject   the   null   hypothesis   that   there   is   no   relationship   between   
matrix   dimension   and   neural   differentiation.   These   results   go   along   with   all   the   individual   
papers,   which   all   indicate   that   there   is   a   higher   rate   of   neural   differentiation   in   3D   matrices   
versus   2D    [20–25] .   However,   because   one   of   our   expected   values   does   not   meet   the   benchmark   
of   5,   we   would   want   to   do   further   statistical   analysis   to   confirm   these   results.   Nonetheless,   these   
results   are   promising,   indicating   that   3D   matrices   do   have   a   significant   effect   on   stem   cell   
differentiation   into   neurons.   We   would   want   to   keep   this   in   mind   in   the   development   of   our   
platform.   
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CHAPTER   4:   Subsystem   2:   Toxin   
4.1   Subsystem   Overview   
A   large   body   of   literature   has   shown   that   the   presence   of   particular   compounds   can   influence   
cellular   differentiation,   proliferation   and   death   (Figure   5),   therefore   toxins   are   a   variable   of   
interest   for   our   model   of   developmental   neuronal   toxicity.   Various   factors   such   as   the   
concentration   of   the   compound   and   the   time   at   which   cells   are   exposed   determine   the   
compound's   fate   on   cells   [ 17,40,41 ].     

  
Figure   5:   Diagram   of   the   Toxin   Subsystem.    Toxins   can   can   have   one   or   more   effect(s)   on   cells   

  
4.2   Materials   and   Methods   
4.2.1   Literature   Review   and   Data   Collection   
As   mentioned   in   section   3.2.1   the   first   step   of   each   sub   system   was   a   literature   review   and   data   
collection.   For   the   toxin   exposure   subsystem,   we   began   by   collecting   data   on   two   different   
compounds   previously   shown   to   cause   developmental   toxicity:   acrylamide   and   lead   [ 6,13,39 ].   
During   the   initial   phases   of   literature   review   and   data   collection,   data   was   collected   from   eleven   
papers   for   acrylamide   and   nine   papers   for   lead.     
  

Toxin   data   collected   ended   up   containing   many   different   markers   used   to   measure   the   
differentiation   of   cells,   for   example,   one   group   would   use   the   expression   of   a   particular   gene   
while   another   group   would   use   morphological   characteristics.   Because   different   cell   markers   
appear   at   different   periods   of   cellular   differentiation,   we   are   unable   to   combine   data   of   different   
gene   markers.   Furthermore,   the   timing   of   toxin   addition   proved   to   be   highly   variable   between   
different   groups   which   imposed   further   limitations   when   attempting   to   unify   the   data.     
  

The   changes   in   neurite   length   were   represented   as   percentage   changes   with   reference   to   negative   
control   and   positive   control,   along   with   calculating   fold   change   using   equation   1.   The   negative   
control   was   defined   as   0   uM   Lead    t=0   without   Nerve   Growth   Factor   (NGF)   and   the   positive   
control   was   defined   as   0   uM   Lead   t=0   with   NGF.   Nerve   growth   factor   has   been   shown   to   play   a   
critical    protective   role   in   the   development   and   survival   of   early   neurons,   so   a   culture   without   this   
factor   is   a   suitable   negative   control    [43] .    In   situations   where   negative   control   was   not   present   in   
the   data   set,   it   was   assumed   to   be   zero   fold   change.   

  
*100    (Eq.   4)  ercent Change P = positive control negative control−

experimental value  negative control−  

  
To   arrange   the   neurite   extension   data   into   contingency   tables,   we   set   a   one   fold   increase   as   the   
cut   off   between   differentiated   and   undifferentiated   neurons.   This   decision   was   made   because   a   
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one   fold   difference   was   equal   to   the   difference   between   the   positive   and   negative   control   (neurite   
extension   with   and   without   NGF   at   t=0).   This   means   that   any   neurons   that   had   over   a   one   fold   
increase   in   neurite   extension   compared   to   the   negative   control   were   considered   differentiated   and   
any   neurons   that   were   less   than   one   fold   increase   compared   to   the   negative   control   were   
considered   differentiated   for   the   purpose   of   our   contingency   table   (Table   4).     

  
Table   4:   Contingency   Table   for   Toxin   Type   

  
  

4.2.2   Statistical   Analysis   
For   the   toxin   data   that   we   collected   and   combined   into   a   contingency   table,   we   performed   a   
𝜒 2 -test   and   G-test.   For   the   𝜒 2 -test,   we   used   the   same   methodology   described   in   section   3.2.3.1.   
The   resulting   observed   and   expected   tables   for   both   the   𝜒 2    and   G-Test   are   located   in   Appendix   A.   
  

4.2.2.1   G   Test   
The   G-test   of   Independence   is   a   likelihood   ratio   test   that   is   used   to   determine   whether   the   
number   of   observations   in   a   specific   category   fits   the   theoretical   expected   value.   The   G-test   is   
used   when   you   have   one   minimal   variable   with   two   or   more   states   and   it   allows   you   to   see   if   the   
proportions   of   one   variable   different   for   different   values   of   another   variable    [44,45] .     
  

The   test   generates   a   G   statistic   which   can   be   used   to   calculate   a   p-value   to   determine   if   you   can   
accept   or   reject   the   null   hypothesis.   The   null   hypothesis   is   that   there   is   no   relationship   between   
the   presence   of   a   particular   toxin   and   neural   differentiation,   and   the   alternative   hypothesis   is   that   
there   is   a   relationship   between   presence   of   a   particular   toxin   and   neural   differentiation.   To   
perform   the   test,   a   contingency   table   (Table   4)   was   created   as   described   previously   in   section   
3.2.2     and   observed   and   expected   values   for   contingency   tables   for   analysis   along   with   degrees   of   
freedom   were   calculated   in   the   same   manner   as   for   the   𝜒 2 -tests   mentioned   in   section   3.2.3.1.   
Following   the   definitions   of     and   ,   the   G-statistic   was   calculated   as   shown   below   in   O ij  E ij  
equation   5.   

   (Eq.   5)  (  ln( ))G = 2 ∑
r

i=1
∑
c

j=1
O ij E ij

O ij  

  
Finally,   using   the   resulting   G-statistic,   a   p-value   is   calculated   in   MATLAB   by   applying   the   
chi-square   cumulative   distribution   function   as   previously   described   in   section   3.2.3.1.   
  

  

Toxin   Concentration   Differentiated   (>1   
fold   increase)   

Undifferentiated   (<1   
fold   increase)   

Total   

0-0.09uM   4   12   16   

0.1-2uM   1   5   6   

Total   5   17   22   
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4.3   Results   and   Discussion   
As   mentioned   in   section   4.2.1,   the   toxin   data   collected   contained   various   different   metrics   of   
differentiation   which   removed   the   option   of   combining   the   data   from   dissimilar   papers.   As   a   
result,   we   were   unable   to   create   a   contingency   table   for   any   of   the   data   collected   by   acrylamide   
papers   and   only   able   to   create   a   contingency   table   for   lead   from   three   of   the   nine   papers   that   we   
reviewed.     
  

The   p-value   from   the   G   test   was   0.6714   indicating   that   we   fail   to   reject   the   null   hypothesis.   The   
p-value   from   the   𝜒 2 -test   was   0.6801   indicating   that   we   fail   to   reject   the   null   hypothesis.   These   
results   are   not   in   agreement   with   published   results,   as   the   papers’   data   used   to   create   the   
contingency   table   found   that   there   was   an   effect   of   lead   on   neural   differentiation.   We   hypothesize   
that   the   differences   in   our   results   from   the   published   work   could   be   caused   by   the   process   of   over   
simplifying   differentiation   as   a   binary   when   creating   our   contingency   table   when   in   fact   there   are   
many   stages   of   differentiation   between   a   stem   cell   and   a   mature,   differentiated   neuron.   
Additionally,   As   mentioned   in   section   3.2.3.1,   the   expected   values   should   all   be   at   least   five   to   
complete   a   G   or   𝜒 2    test   so   the   small   sample   size   may   also   contribute   to   differences   between   the   
literature   and   our   findings.     
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CHAPTER   5:   Subsystem   3:   Stiffness   
5.1   Subsystem   Overview   
The   impact   of   stiffness   on   cell   differentiation   has   been   heavily   investigated   and   is   well   known   to   
influence   cell   fate    [26–33,46] ,   making   it   a   prime   variable   to   incorporate   into   our   predictive   
model.   In   general,   cells   differentiated   on   stiffnesses   less   than   1   kPa   will   express   neurogenic   
biomarkers,   while   those   cultured   on   10   kPa   surfaces   will   express   myogenic   biomarkers    [30]    as   
shown   in   Figure   6.   In   addition,   those   differentiated   on   34   kPa   surfaces   will   express   osteogenic   
biomarkers    [30] .     

  
Figure   6:   Impact   of   Stiffness   on   Fate   of   Stem   Cell   Differentiation   Adapted   from     [30]   

  
5.2   Materials   and   Methods   
5.2.1   Literature   Review   and   Data   Collection   
During   our   literature   review,   we   read   and   collected   data   from   9   papers   analyzing   the   impact   of   
various   2D   culture   stiffness   on   neural   differentiation.   The   same   methodology   for   literature   
review   and   data   extraction   from   graphs   was   followed,   mentioned   in   section   3.2.1.   Researchers   
measured   gene   expression   such   as   beta   III   tubulin,   MAP2   and   GFAP,   as   well   as   neurite   
branching   and   extension   to   analyze   the   impact   of   stiffness   on   neural   differentiation    [26–33,46] .  
For   our   data   analysis,   we   used   data   that   measures   beta   III   tubulin   expression   because   this   was   the   
most   common   metric   across   6   out   of   the   9   papers.   The   stiffness   categories   were   decided   based   on   
Engler    et   al. ’s   research   shown   in   Figure   6    [30] .   The   data   was   decided   if   it   was   differentiated   or   
undifferentiated   using   a   2-fold   threshold   using   the   same   methodology   mentioned   in   section   3.2.2   
[39] .   Based   on   these   categories   and   available   data   from   literature   review,   we   created   a   
contingency   table   (Table   5)   for   statistical   analysis.   
  

   

  



 25   

Table   5:   Contingency   Table   for   Stiffness   Data   

  
5.2.2   Statistical   Analysis     
For   the   stiffness   data   that   we   collected   and   combined   into   a   contingency   table,   we   performed   a   
𝜒 2 -test,   G-test   and   Logistic   regression.   We   performed   Principal   Component   Analysis   (PCA)   on   
an   extensive   dataset   provided   by   Engler    et   al.    in   their   supplementary   materials   that   measures   the   
gene   expression   of   21   neural   lineage   markers   over   various   stiffness   with   and   without   blebbistatin   
(BLEBB),   a   chemical   that   blocks   mechanical   signal   transduction    [30] .     
  

For   the   𝜒 2 -test   and   G-Test,   we   used   the   same   methodology   described   in   section   3.2.3.1   and   
4.2.2.1   respectively.   The   resulting   observed   and   expected   tables   for   both   the   𝜒 2    and   G-Test   are   
located   in   Appendix   A.   
  

5.2.2.1   Logistic   Regression   
Logistic   regression   analysis   examines   the   association   between   categorical   or   continuous   
independent   variables   and   with   one   binary   dependent   variable,   producing   an   odds   ratio   and   p   
value   that   indicates   the   strength   and   direction   of   association   between   the   two   variables    [47] .   This   
method   is   optimal   for   measuring   the   relationship   between   various   stiffnesses,   a   categorical   
independent   variable,   with   differentiation,   a   binary   dependent   variable.   In   order   to   perform   
logistic   regression,   we   used   the   link   function   and   standard   equation   shown   below    [48] .   

  

og xl pi
1 p− i

= β0 + β1 i (Eq.   6)   

 here i , 2, ... nw = 1  .  
  

After   performing   logistic   regression   and   solving   for    β₀    and    β₁,    equation   6   can   be   rewritten   as   
equation   7   to   solve   for   the   proportion   of   cells   differentiated   per   stiffness   category.     
  

p = exp(β₀ β₁x )− i
1+expβ₀ β₁x )− i

   (Eq.   7)   
  

We   used   MATLAB   to   perform   logistic   regression,   provided   by   Santa   Clara   University   Design   
Center.   The   data   from   the   contingency   table   was   input   into   MATLAB   as   a   stiffness   matrix   with   
1,   2,   and   3   representing   the   three   stiffness   categories,   the   number   of   data   points   considered   
differentiated   and   the   overall   sample   size   per   category.   Using   the   generalized   linear   model   

  

Stiffness   Differentiated   (>2   
fold   increase)   

Undifferentiated   (<2   
fold   increase)   

Total   

Low   (<1kPa)   3   1   4   

Medium   (1-10kPa)   5   5   10   

High   (>10kPa)   1   5   6   

Total   9   11   20   
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function,   b   values   for   equation   6,   standard   deviation   and   p-values   were   generated.   The   MATLAB   
code   is   private   domain   and   can   not   be   provided   in   this   report.   
  

5.2.2.2   Principal   Component   Analysis   
Principal   Component   Analysis   (PCA)   is   a   helpful   dimensionality   reduction   tool.   PCA   essentially   
identifies   which   variables   are   closely   associated   and   which   are   the   most   unique,   allowing   the   
preservation   of   as   much   variability   as   possible   while   reducing   dimensions    [49,50] .   We   performed   
this   test   to   identify   which   genes   in   Engler    et   al. ’s   dataset   were   the   most   unique   and   should   be   
focused   on   for   future   laboratory   research,   reducing   the   number   of   future   experiments   that   need   to   
be   run.     
  

In   order   to   conduct   PCA,   z-scores   are   computed   for   each   variable   (X k ),   the   covariance   matrix   is   
computed   from   the   z-scores,   eigenvectors   are   computed   from   the   covariance   matrix   (V(λ k )),   then   
reduced   dimensionality   is   computed   using   the   following   transformed   equation    [49,50] :     

  

    (Eq.   8)  CA (λ )P = ∑
n

K=0
V k * Xk  

  
We   analyzed   a   dataset   from   Engler    et   al.    that   measures   the   gene   expression   of   21   neural   lineage   
markers   over   various   culture   stiffnesses   ranging   from   0.1kPa   to   34kPa    [30] .   Engler    et   al.'s   
dataset   is   located   in   Appendix   B.   We   used   MATLAB   to   run   PCA.   The   code   is   private   domain   
and   is   not   provided   in   this   report.   Although   we   ran   several   iterations,   our   final   analysis   focused   
on   the   dataset   without   the   addition   of   BLEBB   since   we   are   interested   in   how   mechanical   signals   
influence   cell   fate.     
  

After   running   our   MATLAB   code,   two   graphs   were   generated.   The   first   graph   is   the   Pareto   of   
Effects,   a   bar   graph   which   graphs   percent   of   variance   over   variance.   This   graphic   indicates   how   
many   distinct   clusters   of   variables   exist   in   the   dataset   after   dimensionality   reduction   and   what   
percent   of   variance   the   corresponding   cluster   represents   in   the   dataset    [51] .   The   second   graph   is   a   
biplot,   which   graphs   each   gene   where   the   cosine   of   the   angle   between   the   gene   and   axis   indicates   
its   importance    [49] .   The   cosine   of   the   angle   between   pairs   of   genes   indicates   their   correlation   
[49] .   Genes   with   high   correlations   will   point   in   similar   directions   and   can   be   stacked,   while   
genes   with   low   correlations   will   have   large   angles   and   can   be   perpendicular   to   each   other    [49] .   
  

5.3   Results   and   Discussion   
The   𝜒 2 -test   had   a   p-value   of   0.1736,   while   the   G-Test   had   a   p-value   of   0.15.   Both   of   these   values   
are   well   above   the   level   of   significance   (p=0.05),   therefore   we   did   not   reject   the   null   hypothesis,   
which   states   that   there   is   no   association   between   stiffness   and   differentiation.     
  

Logistic   regression   yielded   the   following   model,   where   xi   corresponds   to   1,   2   or   3   depending   on   
the   stiffness   category   and   p   is   the   proportion   differentiated:   

       (Eq.   9)  p = exp(2.64 1.37x )− i
1+exp(2.64 1.37x )− i
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Equation   9   has   a   negative   slope,   indicating   an   inverse   correlation   between   the   variables.   As   
stiffness   increases,   the   odds   of   neural   differentiation   decreases,   as   seen   in   Figure   7.   This   trend   
was   expected   based   on   previous   literature    [26–31] .     

  
Figure   7:   Graph   of   Logistic   Regression   Model   (logit)   Compared   to   Observed   Values   Extracted   from   Stiffness   

Contingency   Table.     
  

MATLAB   generated   p-values   of   0.0847   and   0.1218   for   the   two   coefficients   incorporated   into   the   
logistic   regression   model.   Neither   of   the   p   values   are   significant   with   an   alpha   of   0.05,   therefore   
we   fail   to   reject   the   null   hypothesis.     
  

These   results   from   the   𝜒 2 -test,   G-test   and   logistic   regression   were   unexpected   because   all   
literature   incorporated   into   our   contingency   table   significantly   showed   that   stiffness   influences   
neural   differentiation    [26–31] .   As   mentioned   in   Chapters   1,   3   and   4,   the   expected   value   in   each   
category   must   be   greater   than   5   in   order   for   the   statistical   tests   to   accurately   reflect   the   data.    
  

After   running   our   PCA   script,   the   Pareto   of   Effects   bar   graph   identified   3   unique   clusters   of   
genes   shown   in   Figure   8.   Cluster   1   makes   up   roughly   80%   of   the   variance   in   the   dataset,   while   
cluster   2   and   3   consist   of   20%   of   the   variance.     

  
Figure   8:   Pareto   of   Effect   Representing   Unique   Clusters   in   PCA   Data   Set   from   Engler    et   al.     [30]     
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The   generated   biplot   identifies   which   genes   belong   to   the   three   significant   clusters   as   well   as   
their   importance   shown   in   Figure   9.   N-Cadherin   is   the   most   distinctly   unique   gene   with   the   
largest   cosine   of   the   angle   between   the   gene   and   x-axis.   N-Cadherin   is   commonly   known   as   an   
adhesive   protein,   but   it   is   also   used   by   cells   to   promote   neural   differentiation   and   stabilize   neural   
identity   by   dampening   anti-neural   signals    [52] .   The   middle   cluster   contains   13   genes,   indicating   
these   are   relatively   similar   and   only   one   from   this   cluster   needs   to   be   investigated   in   future   
research.   The   bottom   cluster   contains   3   genes,   Neural   Cell   Adhesion   Molecule   (CAM)   1   being   
the   most   significant   due   to   the   largest   cosine   angle   value.   Neural   CAM   1   influences   neuronal   
migration,   axonal   branching   and   synaptogenesis    [53] .   The   red   dots   represent   outliers   in   the   data   
set   identified   from   the   PCA.   Engler    et   al. ’s   dataset   did   not   have   any   replicates,   therefore   no   
formal   outlier   analysis   was   conducted.   In   future   experiments,   N-Cadherin,   Neural   CAM   1   and   
one   gene   of   choice   from   the   middle   cluster   should   be   focused   on.     

   

      

Figure   9:   PCA   Biplot   Indicating   Important   Genes     
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CHAPTER   6:   Engineering   Standards  
6.1   Ethical   Justification   
As   engineers,   we   understand   that   it   is   vital   to   consider   the   ethical   implications   of    our   work.   We   
have   three   main   ethical   justifications   for   our   project.   First,   by   consolidating   and   analyzing   a   wide   
variety   of   sources   on   the   impact   of   substrate   stiffness,   matrix   dimensions   and   neurotoxins   on   
neural   differentiation,   we   hope   to   help   others   reduce   the   number   of   experiments   that   they   need   to   
complete   on   neural   cells.   This   will   allow   more   researchers   to   complete   research   on   neurons,   as  
they   will   not   be   as   prohibited   by   cost,   which   in   turn   will   produce   more   data   on   developmental   
toxicity.   As   more   research   is   done   on   this   topic,   we   will   be   able   to   better   understand   the   impact   
of   these   toxins   on   the   brain,   and   reduce   exposure   to   such   toxins   in   commercial   products.   Further,   
reducing   the   number   of   experiments   will   reduce   the   number   of   stem   cells   that   need   to   be   used   for   
research   purposes.   
  

Second,   our   project   will   allow   researchers   to   begin   to   shift   away   from   animal   models.   This   shift   
allows   researchers   to   better   understand   the   workings   of   the   human   brain,   as   animal   models   do   
not   mimic   human   brain   development   well    [54] .   This   will   further   improve   the   quality   of   research   
being   done   on   brain   development   and   developmental   neurotoxicity.   Further,   moving   away   from   
animal   models   removes   the   ethical   quandaries   regarding   animal   research.   While   there   are   ethical   
justifications   for   using   animal   models,   such   as   the   benefits   to   human   health,   moving   away   from   
these   models   will   open   up   these   benefits   to   more   people   who   may   feel   repulsed   by   benefiting   
from   animal   research    [55] .     
  

Third,   we   believe   that   the   choice   of   project   itself,   studying   developmental   neurotoxicity,   is   
ethically   justified.   Developmental   neurotoxins   can   have   large   impacts   on   brain   development,   
resulting   in   various   neurological   disorders   later   in   life    [56] .   As   a   result,   we   believe   that   the   time   
and   energy   invested   in   this   project   will   have   benefits   for   many   people   because   it   will   help   open   
the   doors   for   more   research   and   understanding   on   developmental   neurotoxicity.   Further,   our   
findings   on   the   impact   substrate   stiffness   and   dimensions   on   neural   differentiation   can   aid   in   
other   neurological   research,   not   only   developmental   toxicity,   broadening   the   applicability   of   our   
research.   
  

6.2   Environmental   and   Sustainability   Implications   
As   mentioned   in   the   Ethics   section,   our   project   will   ideally   be   used   by   other   researchers   to   
reduce   the   number   of   experiments   and   animal   models   needed   to   be   completed   for   research   on   
developmental   neurotoxicity.   By   reducing   the   number   of   experiments   needed,   we   will   reduce   the   
environmental   impact   of   researching   developmental   neurotoxicity.   Further,   animal   research   has   a   
large   environmental   impact,   so   reducing   the   need   for   animal   models   will   make   developmental   
neurotoxicity   research   more   sustainable    [57] .   
  

6.3   Economic   Considerations   
By   reducing   the   need   for   animal   models   and   the   number   of   experiments,   it   will   make   
developmental   toxicity   research   more   economically   feasible.   Reducing   the   number   of   animal   
models   will   reduce   the   cost   of   developmental   toxicity   research,   as   animal   research   comes   with   
many   costs,   such   as   creation   of   facilities   to   house   and   care   for   the   animals    [58] .   Reducing   the   
number   of   experiments   will   decrease   the   cost   of   completing   research   as   well,   as   people   will   have   
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to   purchase   fewer   materials   and   spend   less   time.   As   a   result,   our   project   will   have   positive   
economic   impacts.   
  

6.4   Health   and   Safety   Implications     
As   discussed   in   section   1.1.1,   using   two-dimensional   cells   cultured   during   drug   development   has   
shown   to   be   ineffective   due   to   culturing   conditions   that   are   not   similar   to   the   in   vivo   
environment,   affecting   proliferation   and   differentiation.   Our   project   represents   a   more   relevant   
way   to   study   developmental   toxicity   than   currently   available   methods   by   using   
three-dimensional   cell   culture.   Which   in   turn   will   further   improve   safety   of   pharmaceutical   drugs   
and   other   biotechnology   products,   as   researchers   will   be   able   to   better   and   more   relevantly   
evaluate   if   materials   or   compounds   are   developmental   toxins.     
  

6.5   Social   and   Political   Considerations     
Federal   government   is   the   primary   source   of    research   and   development   funding;   the   NIH   alone   
invests   41.7   billion   dollars   each   year   into   medical   research,   much   of   which   is   related   to   drug   
development    [59] .   If   proved   effective,   our   model   could   serve   as   a   pre-screening   tool   for   drug   
development.   This   would   greatly   reduce   the   number   of   experiments   required   to   bring   a   product   
or   material   to   market   and   therefore   reduce   the   cost   of   research   and   development   to   taxpayers.   
Additionally,   as   many   developmental   toxicology   studies   make   use   of   stem   cells,   some   cell   lines   
have   ethical   sourcing   complications.   Our   project   has   additional   social   considerations   as   it   
reduces   the   use   of   these   types   of   cells   during   experimentation.     
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CHAPTER   7:   Summary   and   Conclusions   
7.1   Summary   of   the   Project   
Our   senior   design   project   had   three   main   stages.   The   first   stage   was   literature   review.   In   this   
stage,   we   researched   the   current   available   methods   to   study   developmental   toxicity   as   well   as   the   
different   microenvironmental   factors   that   impact   neuronal   differentiation.   From   this   initial   
search,   we   narrowed   down   our   pool   of   microenvironmental   inputs   to   three   main   inputs:   matrix   
stiffness,   matrix   dimensions,   and   toxin   addition.   The   next   stage   of   our   project   was   data   
collection.   We   extracted   data   from   over   fifty   papers   on   the   impact   of   various   factors   on   stem   cell   
differentiation.   We   then   combined   the   data   from   papers   with   comparable   experimental   methods   
into   contingency   tables.   After   data   collection,   we   moved   on   to   the   final   stage   of   our   project:   data   
analysis.   We   completed   𝜒 2 -   and   G-tests   to   determine   significance   of   the   microenvironment   
inputs.   We   also   completed   logistic   regression   to   determine   the   correlation   between   stiffness   and   
differentiation.   Further,   we   used   PCA   to   reduce   the   number   of   variables,   thus   simplifying   further   
experimentation   on   neuronal   differentiation.   However,   the   only   microenvironment   input   that   was   
significant   according   to   our   tests   was   matrix   dimensions.   This   result   was   surprising   because   our   
literature   review   indicated   that   both   stiffness   and   toxin   addition   have   an   impact   on   stem   cell   
differentiation   into   neurons    [26–31] .   We   believe   that   this   is   due   to   our   small   sample   sizes.   As   a   
result,   we   would   like   to   do   further   research   into   this   field.   
  

7.2   Systems   Integration   and   Future   Work   
In   order   to   integrate   the   aforementioned   subsystems,   future   work   will   need   to   be   done   to   increase   
the   sample   size   per   category   in   the   matrix   dimension,   toxin,   and   stiffness   contingency   tables.   For   
variables   that   have   a   statistically   significant   influence   on   neural   differentiation,   these   will   be   
incorporated   into   our   final   predictive   models.   The   goal   of   our   project   is   to   create   two   models   as   
diagrammed   in   Figure   10.     
  

  
Figure   10:   Diagram   of   Two   Predictive   Models   to   Predict   Cell   Fate   and   Toxin   Type   
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In   the   first   model,   researchers   will   input   data   on   selected   microenvironmental   cues   of   which   stem   
cells   will   be   subjected   to.   Then,   the   model   will   predict   cell   fate   such   as   differentiation   into   
neurons   or   other   cell   types,   no   occurrence   of   differentiation   or   occurrence   of   apoptosis   or   
necrosis.   In   the   second   model,   data   regarding   the   cell   fate   such   as   morphology,   cell   viability,   
proliferation   and   gene   or   protein   expression   will   be   inputed.   This   data   can   take   the   form   of   
neurite   length,   alive/dead   cell   counts   or   important   biomarkers   derived   from   literature   or   our   PCA   
analysis   such   as   beta   III   tubulin,   N-Cadherin   or   Neural   CAM   1.   Once   the   data   is   input   into   the   
model,   it   should   predict   the   toxin   type   added   to   the   system   which   can   include   developmental   
toxins,   neural   toxins,   stem   cell   toxins   or   no   toxins.   These   two   models   can   be   used   individually   or   
as   a   system   to   predict   the   influence   of   a   chemical   on   neural   differentiation,   each   providing   
important   information   on   cell   fate   and   toxin   type   respectively.     
  

In   order   to   complete   the   predictive   models,   there   is   more   work   to   be   done   in   the   future.   First,   we   
would   generate   more   data   in   the   lab   regarding   the   impact   of   stiffness   and   toxin   addition   on   stem   
cell   differentiation   to   fill   in   the   holes   in   our   data   collection   from   literature.   Additionally,   we   
would   like   to   collect   data   on   other   variables   such   as   diffusion   and   adhesion   sites   on   stem   cell   
differentiation   from   literature.   Then,   we   would   continue   to   fill   in   gaps   in   the   contingency   tables   
by   generating   data   from   the   lab.   Second,   we   would   begin   to   develop   the   predictive   models   using   
statistical   analysis   of   the   lab   generated   data   and   the   data   from   papers.   The   goal   is   to   have   two   
models:   one   where   researchers   input   microenvironmental   cues   and   the   model   predicts   the   stem   
cell   differentiation,   and   another   where   researchers   input   cell   characteristics   and   the   model   
outputs   toxin   type.   Finally,   we   would   validate   the   models   in   the   lab   to   ensure   that   they   accurately   
predict   stem   cell   differentiation   and   toxin   type.   
  

7.3   Lessons   Learned   
Our   team   learned   a   number   of   invaluable   lessons   from   this   project.   First,   we   increased   our   
proficiency   in   literature   research.   We   learned   how   to   use   various   search   techniques   and   data   
bases   to   get   a   wide   variety   of   sources   that   apply   to   our   research.   Second,   we   improved   our   data   
analysis   techniques.   We   were   able   to   practice   χ 2 -tests   and   logistic   regression,   which   we   had   
learned   in   prior   courses.   Further,   we   learned   new   techniques   such   as   G-tests   and   PCA,   which   we   
will   be   able   to   use   for   future   research   projects.   Finally,   throughout   this   process,   we   improve   our   
teamwork   and   communication   skills,   figuring   out   how   to   allocate   work   well.   All   of   these   skills  
will   be   indispensable   as   we   all   move   forward   in   our   careers.   
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APPENDIX   
  

Appendix   A:   Observed   and   Expected   Tables   for   𝜒 2 -test   and   G-Test   
  

A.1   𝜒 2 -Test   Observed   and   Expected   Tables   for   2D   versus   3D   
  

Table   7:   Observed   Values   for    2D   versus   3D   Contingency   Table   

  
Table   8:   Expected   Values   for    2D   versus   3D   Contingency   Table   

  
Table   9:   𝜒  2 -Test   Values   for    2D   versus   3D     

  
  
  

   

  

Observed   2D   3D   Total   

Differentiated   (>2   fold   
increase)   0   21   21   

Undifferentiated   (<2   
fold   increase)   10   7   17   

Total   10   28   38   

Expected   2D   3D   Total   

Differentiated   (>2   fold   
increase)   5.5   15.5   21.0   

Undifferentiated   (<2   
fold   increase)   4.5   12.5   17.0   

Total   10.0   28.0   38.0   

𝜒 2 -Test   2D   3D   

Differentiated   (>2   fold   increase)   5.53   1.97   

Undifferentiated   (<2   fold   increase)  6.83   2.44   

  𝝌²   16.76   

  p   4.23E-05   



 38   

A.2   𝜒 2    and   G-Test   Observed   and   Expected   Tables   for   Toxin   
  
  

Table   10:   Observed   Values   for    Toxin   Contingency   Table   

  
Table   11:   Expected   Values   for    Toxin   Contingency   Table   

  
Table   12:   𝜒  2 -Test   Values   for    Toxin     

  
   

  

Observed   0-0.09uM   0.1-2uM   Total   

Undifferentiated   (<1   
Fold)   12   5   17   

Differentiated   (>1   Fold)  4   1   5   

Total   16   6   22   

Expected   0-0.09uM   0.1-2uM   Total   

Undifferentiated   (<1   
Fold)   12.36   4.64   17   

Differentiated   (>1   Fold)  3.64   1.36   5   

Total   16   6   22   

𝜒 2 -Test   0-0.09uM   0.1-2uM   

Undifferentiated   (<1   Fold)   0.01   0.03   

Differentiated   (>1   Fold)   0.04   0.10   

  𝝌²   0.17   

  p   0.6801   
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Table   13:   G-Test   Values   for    Toxin     

  
A.3   𝜒 2    and   G-Test   Observed   and   Expected   Tables   for   Stiffness   
  

Table   14:   Observed   Values   for    Stiffness   Contingency   Table   

  
Table   15:   Expected   Values   for    Stiffness   Contingency   Table   

  
  

   

  

G-Test   0-0.09uM   0.1-2uM   

Undifferentiated   (<1   Fold)   -0.36   0.38   

Differentiated   (>1   Fold)   0.38   -0.31   

  G   0.18   

  p   0.6714   

Observed   Low   (<1kPa)   Medium   (1-10kPa)  High   (>10kPa)   Total   

Differentiated   (>2   fold   
increase)   3   5   1   9   

Undifferentiated   (<2   fold   
increase)   1   5   5   11   

Total   4   10   6   20   

Expected   Low   (<1kPa)   Medium   (1-10kPa)  High   (>10kPa)   Total   

Differentiated   (>2   fold   
increase)   1.8   4.5   2.7   9   

Undifferentiated   (<2   fold  
increase)   2.2   5.5   3.3   11   

Total   4   10   6   20   
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Table   16:   𝜒  2 -Test   Values   for    Stiffness     

  
Table   17:   G-Test   Values   for   Stiffness   

  
   

  

𝜒 2 -Test   Low   (<1kPa)   Medium   (1-10kPa)   High   (>10kPa)   

Differentiated   (>2   fold   
increase)   0.80   0.06   1.07   

Undifferentiated   (<2   
fold   increase)   0.65   0.05   0.88   

    𝝌²   3.50   

    p   0.1736   

G-Test   Low   (<1kPa)   Medium   (1-10kPa)   High   (>10kPa)   

Differentiated   (>2   fold   
increase)   1.53   0.53   -0.99   

Undifferentiated   (<2   fold  
increase)   -0.79   -0.48   2.08   

    G   3.76   

    p   0.15   
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Appendix   B:   Principal   Component   Analysis   Dataset   
  

Table   18:   Expression   of   Neural   Lineage   Markers   due   to   Various   Culture   Stiffnesses    [30] 
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Appendix   C:   Proposed   Budget   and   Finalized   Budget   
C.1   Proposed   Budget   
Table   19:   Hydrogel   Materials   

  
Table   20:   Cell   Culture   and   Differentiation   Materials   

  
C.2   Finalized   Budget   
Table   21:   Finalized   Budget   and   Materials   Used   for   Senior   Design   2021   

  

  

Material   Source   Quantity   Cost   

Alginate   Abcam   1   kit   (good   for   100   
tests)   

$505   

Crosslinker   -   Collagen   Sigma   Aldrich   30   mg   $241   

Acrylamide   Sigma   Aldrich   100   mL   $43   

Material   Source   Quantity   Cost   

P19   Cells   Dr.   Zhang’s   Lab       

Dissociation   Reagent   
trypsin-   EDTA   

Thermofisher   100   mL   $15   

  α-MEM   Thermofisher   1   L   $110   

T-75   Flasks   Thermofisher   100   flasks   $337   

Fetal   calf   serum   Thermofisher   100   mL   $171   

Newborn   calf   serum   Thermofisher   100   mL   $32   

Dulbecco’s   PBS   
without   calcium   and   
magnesium   

Thermofisher   1   L   $49   

All   trans-retinoic   acid   Sigma   Aldrich   100   mg   $47   

    Total   $1550   

Material   Source   Quantity   Cost   

MATLAB   SCU   Engineering   Design   Center   N/A   $0   

Journal   Databases   SCU   Library   N/A   $0   

Google   Suite   SCU   N/A   $0   

    Total   $0   



 43   

Appendix   D:   Project   Schedule   

Figure   11:   Gantt   Chart   of   Senior   Design   Project   Progress   
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