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Abstract

Breast milk is considered the gold standard of infant nutrition, but some infants around the world

lack access to it due to maternal health complications or other considerations. Human breast milk

banks do exist to try to alleviate this problem, but most are underfunded and have high

operational costs, making it difficult for some infants to obtain safe, reliable donated breast milk.

Existing methods of testing breast milk are expensive, so the MilkGuard project was

conceptualized in 2017 as a fast, economical, and highly usable bacterial contamination detection

system. Prior to this year, previous MilkGuard teams had developed a system that was faster and

more affordable than prior methods, but its main drawbacks were that it was difficult to use and

that it lacked the sensitivity to detect low Escherichia coli (E. coli) contamination levels. To

ameliorate these drawbacks, our goals for this year were 1) to improve MilkGuard’s sensitivity to

the Human Milk Banking Association of North America’s (HMBANA) lower limit of detection

standard of 104 CFU/mL, 2) to increase the ease of the assay process, and 3) to achieve these

objectives in an economical and environmentally-friendly way.

Through COMSOL Multiphysics software simulations, we proved the possibility of

realistically optimizing biosensor parameters on a computer. Since the simulations were virtual,

we discovered an optimal biosensor configuration without the need to purchase, manufacture,

and test hundreds of physical sensors. Future teams can quickly confirm these results by building

a physical sensor in the lab. We also developed the MilkGuard app, which greatly simplifies the

colorimetric analysis process for the user. This mobile app uses our improved color-analysis

algorithm which improves detection sensitivity around the HMBANA’s lowered limit of

detection standard, given the same image data to analyze. The efficacy of our new color analysis

algorithm can be confirmed by future teams in the lab, and our current regression curve can be

made more robust with a larger sample size.

Taken together, our developments this year have increased the usability and sensitivity of

the MilkGuard system, which can improve bacterial contamination testing by milk banks and

move one step closer to equitable access to safe breast milk for infants around the world.

Key Words: [milk bank], [breast milk], [infant health], [infant safety], [bacteriological testing],

[E. coli detection], [hydrogel biosensor], [alginate hydrogel]
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Chapter 1: Introduction

1.1 Importance of Breast Milk

Breast milk is considered the gold standard of infant nutrition worldwide [1]. Breast milk

provides infants with nutrients and energy needed during their early life, and contains antibodies

that help guard against common childhood illnesses [3]. Breastfeeding has been linked to

enhanced cognitive development and decreased infant mortality. However, access to breast milk

remains a challenge for many mothers and babies worldwide. The World Health Organization

estimates that 820,000 children around the world could have been saved if optimally breastfed

[4].

1.2 Lack of Access to Breast Milk

Some mothers are advised against, or unable to breastfeed. This includes women infected

with HIV or human T-lymphotropic virus (type I or type II). Women taking HIV medication or

cancer chemotherapy agents should also avoid breastfeeding their infant. Other conditions, such

as diabetes and thyroid conditions make it challenging for women to produce or pump enough

milk for their infants [5]. This challenge has led to the emergence of breast milk banks

worldwide that aim to provide mothers and infants with sufficient, reliable, and safe access to

donated human breast milk (DHBM).

1.3 Milk Bank Operation and Challenges

To ensure infant safety, milk banks should maintain rigorous pasteurization and

bacteriological testing procedures [4]. The Human Milk Banking Association of North America’s

(HMBANA) standards requires that a milk bank’s medical director, staff, and board of directors

include healthcare professionals. All staff must have food safety, food processing, Preventive

Controls Qualified Individual (PCQI) training, and must participate in continuing education.

Breast milk donors must be screened verbally for (at minimum) HIV-1 and -2, HTLV-1 and -2,

hepatitis C, hepatitis B, and syphilis and must be instructed on safe expression techniques.

DHBM is accepted only if it was been expressed in the previous 36 hours or was placed in a

freezer within 36 hours of expression. All milk banks should follow applicable safety and
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quality-assurance processing procedures as defined by the Current Good Manufacturing Practice,

FDA, and other governing bodies. Milk banks maintain calibrated pasteurizers, freezers,

refrigerators, dish machines, and thermometers. Upon receiving milk from a donor, the donation

is recorded, thawed (if necessary), pooled, and mixed under aseptic technique. Pooled DHBM is

then strained with a food-grade filter and stored in food-grade plastic bottles. Each bottle is

pasteurized at 62.5°C for 30 minutes then rapidly chilled. At this point, one bottle from each

batch must be sent to an external lab for bacteriological testing. The remainder of the batch must

be placed under refrigeration while awaiting test results. Once the bottle sent for testing passes,

the entire batch can be distributed to mothers and infants [6].

The rigorous bacteriological testing procedures makes the DHBM at milk banks safer

than the milk purchased from internet sources or from informal exchanges [7]. However,

bacteriological testing is also expensive ($35-81 plus additional labor costs to test 100-200 oz of

DHBM [8]) and time consuming [9]. These high costs limit infant access to breast milk [2].

1.4 The MilkGuard Solution

To address current shortcomings and improve infant health through enhanced access to optimal

nutrition (human breast milk), MilkGuard has developed a biodegradable, alginate hydrogel

biosensor that colorimetrically detects the presence of Escherichia coli (E. coli) in DHBM [3].

The goal of the MilkGuard biosensor and associated analysis is to create a safe, reliable,

affordable, environmentally-friendly, and intuitive way for milk banks to perform bacteriological

testing on donated human breast milk within their facilities. In-house testing with an affordable

product that does not require lab-access will cut the cost of milk bank operation and therefore

reduce the price tag that is currently placed on the safest, most reliable option for mothers who

are unable to breastfeed their infants.
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Chapter 2: Review of Field

2.1 Current Solutions for Bacteriological Testing

Currently, few available options for the bacteriological testing of breast milk. In addition to the

standard bacteriological testing regiment at external laboratory facilities, there are two

commercially available testing products. These are discussed below.

Lactation Labs offers a breast milk analysis service for lactating mothers. Lactation Labs

markets their product to mothers as a convenient way to analyze the nutritional content of their

milk from home. A mother receives a Lactation Labs sample collection kit at home. She then

uses the kit to collect a sample of her milk. This sample is then shipped back to Lactation Labs

where it is analyzed in a laboratory. Once lab tests are completed and results are compiled, the

mother receives a full report of her analysis in her email inbox. Results are typically available in

1–3 weeks, depending on the type of test ordered. Kits are available in basic, standard, and

premium options, and cost between $99 and $349. While this model of testing is novel for its

direct involvement with mothers, Lactation Labs does not currently offer bacteriological testing

[4].

My Milk Lab Mylee is known for its electrochemical breast milk sensor. Released to

market in 2019, Mylee analyzes the composition of HBM and uploads this information to a

mobile application. The device uses a few drops of breast milk to analyze the electrochemical

properties of the mother’s milk. These properties are correlated to existing HBM nutritional data,

gathered and generated by Mylee. Results of the analysis are posted to the Mylee mobile

application for the mother to view. The Mylee microdevices cost $349 each, but can be reused by

a mother repeatedly. The device does not currently offer bacteriological testing of breast milk.

However, My Milk Lab does offer separate breast milk bacteriological testing kits. The process

of breast milk collection and analysis for these testing kits is similar to that of Lactation Lab’s

model. The testing of the sample is conducted at an external lab facility at a rate of $249 per

sample [5].
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2.2 Literature Review

Biosensor computer-aided design (CAD) modeling has been previously used in bacterial

detection applications, such as COMSOL Multiphysics modeling of graphene field-effect

transistor biosensors for bacterial detection [6], electrochemical impedance spectroscopy

detection for polarizable bacteria [7], and bioluminescent sensors for both Aliivibrio fischeri [8]

and foodborne bacterial ATP [9]. COMSOL models have also been used to explore the optimal

geometry of microfluidic biosensors for detecting food-bourne salmonella [10] and interdigitated

electrode sensors [11], which can be used for detection of S. aureus [12] and E. coli [13].

General colorimetric analysis methods have applications in food safety [14], specifically

of dairy products [15]; point-of-care diagnostics [16] such as the diagnosis of kidney failure from

levels of creatinine [17]; and environmental monitoring [18]. Biomedical applications of

smartphone-based technologies include rapid blood hemocytometry and analysis [19-21],

parasite detection [22], histological classification [23], skin tumor diagnostics [24],

ophthalmology [25], hepatology [26], and other global health applications [27]. Biomedical

smartphone applications specifically using colorimetry include ones for methamphetamine [28]

or salivary glucose detection. Smartphone applications also exist that test for milk tetracycline

residues [29] or hormone levels in milk [30].
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Chapter 3: Previous Achievements & Current

Challenges

3.1 Colorimetric Reaction

The MilkGuard biosensor is an alginate-based hydrogel biosensor with encapsulated

5-bromo-4-chloro-3-indolyl-β-D-galactopyranoside (x-gal). In low glucose, high-lactose

environments like DHBM, E. coli produces β-galactosidase for the hydrolysis of lactose..

β-galactosidase will also hydrolyze X-gal. The product of the X-gal hydrolysis spontaneously

dimerizes into an intense, visible blue precipitate that can be used for colorimetric analyses [See

Figure 1].

Figure 1: Reaction schematic for X-gal hydrolysis in the presence of β-galactosidase. The blue precipitate product is

used in our assay for colorimetric analysis.

The reaction between β-galactosidase and X-gal is usually used in blue-white colony screening

in recombinant DNA techniques, but previous MilkGuard teams chose to use this reaction to

develop a colorimetric assay to detect the presence of E Coli in breast milk. If present in a

donated milk sample, E. coli will produce beta galactosidase, which in turn hydrolyzes X-gal and

produces a visible blue precipitate that can be quantified.

3.2 Alginate Hydrogel

Previous teams developed a cost-effective, biodegradable alginate hydrogel biosensor for the

MilkGuard system. The hydrogel microcapsules are fabricated with a autoclaved 3% (w/v)
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solution of alginate and 0.9% (w/v) NaCl as a solvent. Previous observation indicates that

sterilization of the alginate materials is necessary to eliminate yeast contamination that produces

false positive results [3]. After sterilization and mixing, 1 mL aliquots of the alginate solution are

spiked with X-gal. The concentration of X-gal has varied throughout the history of MilkGuard

and will need to be finalized in future work. The solution is then stirred and extruded through a

standard 304 SS 18 gauge needle based on principles of ionotropic gelation [31]. The

microcapsules are dropped into a CaCl2 solution to facilitate cross linking and washed after 30

minutes of incubation with an NaCl solution.

3.3 Biosensor Geometry

The MilkGuard biosensors were originally paper-based. The porous, filter-paper sensor with

reagents deposited onto its surface is an extremely low-cost model [32]. However, alginate

hydrogel is much easier to manufacture and uniformly produce. Alginate hydrogel is also

extremely low-cost, biodegradable, and can be mixed with X-gal before extrusion [33]. Once

alginate hydrogel was selected as the sensor material, ionotropic gelation-based extrusion

emerged as the most cost-effective and easily manufacturable mechanism for producing the

biosensor. This project, in part, focuses on optimizing the size of spherical capsules produced

through ionotropic gelation.

3.4 Colorimetric Analysis

Previous teams obtained colorimetric images using mobile phone photography and analyzed

these images using ImageJ computer software. ImageJ returns RGB (red, green, blue) values  of

selected pixels in an image. Several pixels from each well plate were averaged and analyzed. The

blueness index was calculated as “the ratio between the B value for each well and the average of

the G and R values.”

3.5 Image Analysis Challenges

Aftering struggling with consistent image analysis due to background lighting changes, previous

teams developed a custom-built photography lightbox to minimize the effects of outside light.

The lightbox is constructed from black acrylic sheets, with an aperture at the top of the box for a

smartphone camera and an LED light unit inside the lightbox to illuminate the sample [34].
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Although the custom-built lightbox considerably improved the consistency of the lighting

in the images captured for colorimetric analysis, the existing method for image analysis was still

unable to differentiate between lower concentrations of bacterial contamination. Figure 3 shows

the correlation between color intensity (“blueness”) and bacterial concentration using the

imaging methods described above. Notice that 104 and 105 CFU/mL color intensity values were

statistically indistinguishable.

(a) (b)

Figure 2: Colorimetric ladders generated by previous teams to compare sensor sensitivity. Varying concentrations of

E. coli were induced with (a) DHBM and (b) whole bovine milk. We also used these same images to test our

colorimetric algorithm.

(a) (b)

Figure 3: Graphs depicting the calculated RGB ratio for various concentrations of E. coli induced with (a) DHBM

and (b) whole bovine milk.
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3.6 Lower Limit of Detection Challenges

Although previous work [3] has demonstrated the viability of the X-gal alginate hydrogel

detection method, the accepted lower limit of detection (LOD) requirement for bacterial

pathogens of 104 CFU/mL [6] has not been reliably achieved for E. coli in this system. The

senior design team that first used an alginate hydrogel system with X-gal and β-galactosidase

reported their lower LOD as 106 CFU/mL [33]. Optimizing various system parameters using

Taguchi designs allowed for a 102 CFU/mL lower LOD, however this LOD was binary. The

system could not differentiate between 102 and 103 CFU/mL, making it ineffective for rejecting

breast milk samples with 104 CFU/mL while accepting 103 CFU/mL [3]. Using an updated image

analysis mechanism, last year’s senior design team achieved a 104 CFU/mL lower LOD, but this

was only for pathogens in water [35]. It is imperative that MilkGuard consistently achieves a 104

CFU/mL (and ideally lower) LOD to be acceptable for usage at milk banks.

3.7 Rationale for Current Work

To address current challenges of the MilkGuard system, our project focuses on the development

of a computer-aided design (CAD) model, a simulation-aided geometry optimization, a

colorimetric analysis algorithm, and a mobile phone application. Our work aims to improve the

sensitivity and usability of the X-gal alginate hydrogel system to more precisely and accurately

detect E. coli in donated breast milk at milk banks. A realistic, dynamic CAD model allows for

cost-savings and waste-reduction compared to an equivalent amount of physical laboratory

experiments. The CAD model additionally allows for the easy collection and storage of

experimental data, and can be used, as demonstrated below, to optimize subsystems. Automating

colorimetric analysis with a computer algorithm programmed into a mobile application is a

reliable, cost-effective way to achieve highly sensitive results. Due to the prevalence of

smartphones, use of mobile phone applications in low-resource conditions is common [36-39],

and suggests that the MilkGuard system may be adapted in the future for use in such settings.
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Chapter 4: Materials & Methods

4.1 MilkGuard Subsystems

To reach the target sensitivity of 104 CFU/mL, MilkGuard was split into two subsystems. First,

the optimization of the biosensor parameters would improve the color-producing efficacy of our

system, which would bring us closer to our goal. Computer simulations were determined to be

the most effective way to optimize the MilkGuard biosensor.

Another way to reach our target sensitivity was to improve the color-analysis component

of the MilkGuard system. A mobile application was developed to improve the ease of analysis.

The mobile application utilized a color-analysis algorithm that was improved upon to increase

sensitivity. Several approaches were considered, but the final improvements are listed in

following sections.

4.2 Simulation Materials

4.2.1 Chemical & Biological Reagents

E. coli strain SCU-104, Luria Bertani broth, N,N-Dimethylformamide, medium-viscosity

alginic acid, and β-galactosidase were purchased from Sigma-Aldrich (St. Louis, MI,

USA). The B-PER Direct Bacterial Protein Extraction Kit and X-gal were procured from

Thermo Fisher Scientific (Waltham, MA, USA). All other reagent grade chemicals were

provided by the Bioengineering Department at Santa Clara University, (Santa Clara,

California, USA). Further details and lot numbers are described in previous literature [3].

4.2.2 COMSOL Multiphysics

COMSOL Multiphysics v.5.5 was used to develop a 2D virtual model of our biosensor

based on parameters established in previous experiments. A space-dependent Transport

of Diluted Species module to model diffusion and a Chemistry module to model the

reaction of beta-galactosidase and X-gal were incorporated into the COMSOL

simulation.

18



4.2 Simulation Methods

4.2.1 Laboratory Methods

As described in detail in previous literature [3], E. coli were cultured, grown to

appropriate optical density (OD), and induced for lac operon expression using breast milk

samples. After incubating the breast milk-induced E. coli samples overnight, the bacteria

were harvested, resuspended, and used to create ladders of known bacterial

concentrations in breast milk. Samples were then lysed with B-PER protein extraction

solution to extract β-galactosidase from the E. coli.

The alginate hydrogel microcapsules were fabricated as described in section 3.2.

4.2.2 Simulation Geometry

The geometry in our simulation is a 2D representation of the alginate hydrogel biosensor

previously developed. A 2D simulation was chosen for reduced computational

complexity and for compatibility with available data. The spherical capsule alginate

hydrogel biosensor is represented by two concentric circles (“capsule”). The space

between the concentric circles is an explicitly defined reaction space (“membrane”).

Previous research [3] suggests that X-gal is sparingly or insoluble in breast milk. Thus,

the hydrolysis reaction of X-gal is isolated primarily to the surface of the hydrogel

capsule represented by the space between the concentric circles.

4.2.3 Simulation Parameters

A transport of diluted species model of existing biosensor data was created in COMSOL

Multiphysics v.5.5. The transport is governed by Fick’s Second Law of Diffusion, given

in Eq. 1.  Michaelis menten kinetics for enzymatic reactions given in Eq. 2 are used to

model the hydrolysis of X-gal. The reaction rate Ri from Eq. 2 is then substituted into the

reaction rate term Ri in Eq. 1 to yield Eq 3. Various model parameters are defined in Eq.

4. The gradient term in Eq. 1 is expanded and parameters from Eq. 4 are then substituted

into Eq 1 to yield Eq. 5

The terms in Eq. 5 can be rearranged to contain the Thiele Modulus for spherical

capsules given in Eq. 6. Substituting the Thiele Modulus for spherical capsules into Eq. 5

then yields Eq. 7.
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The Thiele modulus for spherical capsules relates the kinetic (V”m / Km), diffusive (De)

and geometric (R) parameters. While Eq. 7 can be used to effectively model diffusion, the

individual components of the Thiele modulus cannot be effectively experimentally

determined, and therefore cannot be used to effectively model the reaction velocity.

Instead, an alternative mechanism is used to relate kinetic, diffusive, and geometric

parameters. Data for Michaelis-Menten kinetics of the hydrolysis of X-gal with

β-galactosidase were collected for free, un-encapsulated X-gal. These experimentally

derived values Vm and Km are used to approximate the model’s kinetic parameters. To

account for the diffusion-limiting effect of X-gal encapsulation, values relating hydrogel

capsule radius r and the reduction in reaction velocity η (“effectiveness factor”) were

collected experimentally. MATLAB Curve Fitting was used to generate a relationship

between capsule radius and effectiveness factor η. The resulting curve is power function

where A = 0.2429, B = 0.1243, and C = 1.033. Figure 4 gives a model of the

effectiveness function. Thus, the complete reaction rate in the model is given by
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Figure 4: Effectiveness constant as a function of capsule radius, from experimentally derived values.

The diffusion constants and initial concentrations in the model are given in Table 1.
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Table 1: Simulation inputs for COMSOL biosensor model.

X-gal blue precipitate

Dmembrane (m2/s) 1 x 10-12 (DA) 5 x 10-10 (DB)

Dcapsule (m2/s) 1 x 10-12 (DA) 5 x 10-10 (DB)

Dbulk (m2/s) 0 1 x 10-6

Initial concentrationmembrane (mol/m3) 1 0

Initial concentrationcapsule (mol/m3) 1 0

Initial concentrationbulk (mol/m3) 0 0

Mass balances around the control volume with membrane thickness δ are shown in Eq.

10 and Eq. 11.

There were no Dirichlet nor Neumann boundary conditions explicitly defined in the

COMSOL simulation to solve the transient concentration profiles. Rather, the boundary

conditions were driven by fluxes.

Since X-gal solubility is low in the aqueous bulk solution (breast milk), the bulk diffusion

coefficient was set to zero. This forced a zero flux condition at the outer membrane

interface. Although the reaction rate is a lumped rate of two-phase (solid substrate/liquid

enzyme) and one-phase (solubilized substrate/liquid enzyme) reaction mechanisms, the

rate was simplified in the model to assume the reaction rate occurs in one phase. The

two-phase system and insolubility of X-gal in the bulk solution are reflected in the

differences in substrate diffusivity between the membrane and capsule domain; X-gal

substrate diffusivity is set two orders of magnitude lower than that of the water-soluble

blue reaction precipitate.
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4.2.4 Geometry Optimization

A geometry-optimization experiment was conducted with the completed COMSOL

model to develop a theoretical basis for future laboratory experiments. This model allows

this research team to streamline laboratory experimental trials to reduce the cost and

production of hazardous waste.

The optimization explored three variables: 1) the radius of each alginate hydrogel

capsule (“biosensor radius”), 2) the number of capsules per sample (“capsule count”), and

3) the total alginate hydrogel volume (“biosensor volume”). Capsule radii were varied

from 200 to 1,500 µm, approximately the range of microcapsules that can be reliably

produced with extrusion-based microfluidics. Capsule counts examined were 1, 5, 10,

and 25 capsules. Raising the capsule count above 25 results in long computation times

and lowers the cost-effectiveness of the manufacturing process. The optimization

examined total alginate hydrogel volumes of 1 µL, 10 µL, 20 µl, 30 µL, etc. up to a

maximum of 100 µL. A spherical alginate hydrogel biosensor geometry was retained

throughout the optimization for ease of production.

To reduce the total number of computations while maintaining investigative

results, a total biosensor volume was selected first. Then, the radii required to additively

achieve that total volume with 1, 5, 10 and 25 capsules were calculated. These radii

values were rounded to the nearest multiple of 5, based on the limitations of the level of

precision of extrusion-based coaxial jetting processes. All values tested in COMSOL are

provided in Table 2.
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Table 2: Radius values (µm, shown in white) tested in COMSOL, calculated to fit into specific volume categories

(light blue) for each capsule count (dark blue).

4.4 Mobile App Materials

A mobile application, Milkguard, was developed for Android smartphones. The Android

Operating System was chosen over Apple's iOS since Android devices are usually more

cost-effective [40], and are more widely available to our target consumers.

Since the app was implemented in the cross-platform React Native language, small

modifications to the source code would allow iPhone users to use the MilkGuard app as well

[41]. Besides being readily adaptable for both iOS and Android operating systems, the React

Native language is also the best choice for starting app development from scratch [42]. Its

combined simplicity, computational efficiency, and compatibility with JavaScript [43] make

React Native the ideal choice as our mobile application development language.

Most of the application features (buttons, navigation menu, and design & user interface

elements) were implemented from the Expo Software Development Kit [44], but the color

analysis software component was downloaded as a Native Module from npm.js [45]. The chosen

react-native-image-colors module was the most user-friendly and highest rated color

analysis module on the NPM open source repository [45].

The react-native-image-colors module returns RGB values for the selected portion of the

image by accessing the palette class on Android [46], and can return the “dominant,”
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“average,” “muted,” “vibrant,” color scheme for a selected image, but the Milkguard app

only uses the “average” result. The getColor() function averages every n pixels in the

selected image.

4.5 Mobile App Methods (long section)

4.5.1 RGB Color Balance

Since every brand of smartphone captures color slightly differently [47], our mobile

application performs color balance before continuing with colorimetric analysis. Humans

have a psychological ability to maintain color constancy in different lighting

environments [48], but computers require additional processing to do the same [49].

Several color balance algorithms exist, such as those for improving diagnosis via

color-stained tissue in anatomic pathology [50] for computer vision applications. The

MilkGuard app uses a simple linearization color balance algorithm designed for general

use [51]:

The returned RGB values display R = 255, G = 255, and B = 255 for the designated

standard white.

4.5.2 Conversion to HSL Color Space

We then convert the color balance from RGB to HSL (defined below) for improved

colorimetric analysis. Because the RGB color space was designed for the now-prevalent

tri-color LCD displays [52], it is the most common way to represent color digitally, but it

is not ideal for biological image analysis [53]. The RGB values are converted to HSL

according to the following algorithm [54]:
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In the HSL color space, HSL is an abbreviation for Hue, Saturation, Lightness (or

Luminance, or Luminosity). HSL is interchangeably known as HSB, which stands for

Hue, Saturation, Brightness, but the values are identical.

● Hue: identifies the base color, independent of shade or tone. In optics, hue is

directly correlated to the wavelength of light. Under white lighting circumstances,

adjusting the brightness does not affect the hue [55].

● Saturation: identifies the pureness and intensity of a color. As saturation

decreases, that color looks more and more like gray. A black and white image has

a saturation value of 0 (zero) [55].

● Lightness: identifies the brightness of a color. A lower value corresponds to a

color that is closer to black, and a higher value is closer to white [55].
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Figure 5: An HSL color cylinder model showing the corresponding dimensions for Hue, Saturation, and Lightness

[56].

The HSL color space is superior to RGB for color analysis, because RGB is often “unable

to produce sufficient information for Digital Image analysis” [57]. HSL provides the

most consistent numerical regression information [58], which our app needs. Other

colorimetric analysis diagnostic tools also prefer the HSL color space, such as an

algorithm for melanoma detection [59].

Finally, the HSL color space is more scientifically intuitive for our assay. In the

presence of E. coli, and therefore the β-Galactosidase enzyme, X-Gal is cleaved into

colorless galactose plus 5-bromo-4-chloro-3-hydroxyindole, which oxidized into

5,5'-dibromo-4,4'-dichloro-indigo. The indigo product has maximum absorbance at 650

nm, and thus it appears blue [60]. Against our white wellplate, differing concentrations of

the indigo-colored substrate directly affect the Saturation and Lightness of the sample

color, but not the Hue, since the reflectance and absorbance wavelength values of the

5,5'-dibromo-4,4'-dichloro-indigo do not change. Therefore, our color regression only

depends on the S and L of the HSL colorspace (the lightness/darkness and intensity of the

given 5,5'-dibromo-4,4'-dichloro-indigo blue). The RGB color space unnecessarily

complicates this relationship through varying proportions of the red, green, and blue

components of the sample color, which are not easy to decipher.
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4.5.3 HSL Distance

The obtained HSL values are then used to calculate the Euclidean distance between the

sample color and pure white. Since the identity of the target chemical product does not

change, Hue is assumed to hold constant. Thus the Euclidean distance is calculated from

the Lightness and Saturation components only.

Calculating the Euclidean distance in color spaces (including RGB [61]) is a

common technique to obtain single numerical results to be used in analytical regression

[62]. This technique is effective for small color differences, such as for determining the

level of tomato ripeness [63], but ineffective for large color differences [64]. Fortunately,

our app only needs to differentiate between various shades of blue which are relatively

close in the HSL color space.

The logarithm of calculated distance value is obtained to consolidate range. Then, the

transformed color distance values are plotted against E. coli concentrations. The same

procedures applied to other sets of laboratory data.
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Chapter 5: Results

5.1 Simulation Outcomes

5.1.1 Comparison to Experimental Results

The generated COMSOL model reflects behavior observed in experimental data. In

laboratory experiments, visualization of X-gal with phase-contrast microscopy showed

that X-gal crystal concentration appears to decrease only near the surface of the

microcapsules after 2 hours of reaction time. Additionally, the intensity of the blue

precipitate continues to increase up to around 24 hours of incubation [65]. This suggests

that the diffusion of X-gal through the hydrogel capsule is relatively slow, and that X-gal

concentration at the center of the capsules should not change much throughout the six

hour simulation. Parameters were selected to maintain initial X-gal concentration of 1

g/m3 at the center of capsules of 1500 µm radii. For capsules of smaller radii

(approximately <700 µm) the concentration at the center of the bead begins to decrease

by six hours of reaction time.

Figure 6 shows bisected hydrogel capsules removed from breast milk samples

spiked with E. coli after specific incubation times are shown with corresponding frames

from the COMSOL model. Capsules removed and bisected after about 5 minutes of

incubation show no visible blue precipitate. After 30 minutes of incubation, a light hue is

observed at the surface of the capsule with a very faint hue present at the center of the

capsule. After 60 minutes of incubation, precipitate concentration has become more

uniform throughout the capsule.
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Figure 6: Comparison of experimental data and COMSOL model surface concentration outputs for blue reaction

precipitate. a) Experimental after 30 mins incubation, b) COMSOL output at 30 minutes reaction time, c)

Experimental after 60 mins incubation, d) COMSOL output at 60 minutes reaction time. Figure 6a and 6c from

Madamba, 2019 [65].

5.1.2 Geometry Optimization

The simulation results suggest that the reaction progression is most efficient (i.e. when

blue color change for a given volume of X-gal/alginate hydrogel capsule is most rapid) in

capsules with smaller radii. In other words, if total capsule volume is fixed, the system’s

time-to-result decreases when that total volume is divided up into a greater number of

capsules (see Figure 7). This trend was observed across all time indices and for all fixed

capsule volumes.
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Figure 7: Reaction precipitates concentration in milk samples (i.e. outside of the biosensor capsule) as a function of

capsule radius at selected time indices. The total capsule volume is held constant at 50 μLfor all data points in this

figure. Capsule radii are varied with fixed capsule volume by modulating the number of capsules used per sample.

From left to right, capsules counts for corresponding radii values are 25, 10, 5, and 1 capsules per sample. The

results suggest that spherical capsules with smaller radii have the most efficient reaction progression.

When capsule count is held equal and volume is varied by modulating capsule

radius, greater total capsules volumes produce the most rapid color change (see Figure 8).

This finding was consistent across all capsule counts.
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Figure 8: Reaction precipitate concentration over time for capsules of selected radii. Results indicate that greater

total capsule volumes produce more rapid results.

Taken together, the geometry simulation suggests that ideal biosensor geometry

for this system would be a high number of alginate hydrogel capsules (and therefore high

total biosensor volume) with the smallest radii that can be reasonably manufactured. The

total capsule volume will be limited by the cost of X-gal. The size of the capsule radii

will be limited by manufacturing costs.

5.1.3 Future Work

More research is needed to determine more precise diffusivity constants for the

transportation of X-gal and the blue reaction precipitate product. Once determined, these

values can easily be added to the COMSOL model. In-lab experiments, informed by the

results of the COMSOL model, should be performed to confirm biosensor geometry

optimization. The results of in-lab experiments should then be considered against
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material and manufacturing cost considerations to produce a product that is sensitive,

rapid, and affordable for breast milk banks.

The existing COMSOL model can be iterated to incorporate additional factors

that potentially impact bacteriological results. For example, it was determined that

alginate hydrogel bulk degradation was negligible over the time period studied in this

application [66], but degradation may become an important variable to include if the

hydrogel material is altered to reach the required lower limit of detection [6].

5.2 Color Analysis / Mobile App Results

Images of colorimetric ladders obtained from previous teams are shown in Figure 2. The

corresponding HSL values are marked on the HSL color cylinder model. As predicted by theory,

Hue stays relatively constant, while Saturation and Lightness vary, producing points that lie on a

line, which can be analyzed via obtaining the color distance value.

Figure 9: Induced blue color represented on the HSL color space cylinder model for (a) 104 CFU/mL, (b) 105

CFU/mL, (c) 106 CFU/mL, (d) 107 CFU/mL, (e) 108 CFU/mL. (f) All concentrations shown, with the black circle

representing pure white.
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The combination of colorimetric analysis strategies yielded the following graphical

results, as seen in Figure 10.

(a) (b)

Figure 10: Graphs depicting the calculated Color Distance Values for various concentrations of E. coli induced with

(a) DHBM and (b) whole bovine milk. Image data obtained from previous MilkGuard Team’s laboratory results.

The two graphs demonstrate differentiable colorimetric sensitivity from 104–107 CFU/mL range.

See further analysis on the graphs in Section 6.2.
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Figure 11: Graph depicting the calculated Color Distance Value for various concentrations of E. coli induced with

DHBM in clear wellplates. Image data obtained from previous MilkGuard Team’s laboratory results (n = 3).

The graph above demonstrates differentiable colorimetric sensitivity between 104 and 105

CFU/mL, and beyond 106 CFU/mL. See further analysis on the graphs in Section 6.2.

Figure 12 shows a series of screenshots that depicts the workflow of the MilkGuard app,

which makes it intuitive for the user to access the color-analysis algorithm described above.

From the home screen (a) the user can choose to view history or run a test. After the instructions

screen (b), the user chooses an image to analyze from images stored in local memory (not

shown) or from the in-app camera (c). The user then chooses a specific area of the selected

picture (d) to analyze by moving the corners of the box to focus on the area of interest. The

confirmation page (f) allows the user to check the image quality before proceeding. Steps (b–f)

are repeated for choosing the “Standard White” for color balance (selection of standard white not

shown). The results screen (g) displays the bacterial concentration. The user can edit the date of

the sample and include extra notes for reference, before storing into history (h). Steps (a–g) are

repeated for a new milk sample.
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Figure 12: Diagram showing screenshots from the MilkGuard app. (a) Home screen with options to run a test or see

history of tests. (b) Instructions screens with options to obtain image via camera or image library. (c) Screenshot of

camera. (d) Selection box for focusing on area of interest. (e) Selection box correctly placed over color. (f)

Confirmation screen shows selected image to be analyzed. (g) Results screen with options to change or enter

information. (h) History screen with information on previous test results.
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Chapter 6: Discussion and Recommendations

6.1 Biosensor Simulation & Optimization

COMSOL simulation of biosensor parameters provided a low-cost method to optimize

MilkGuard’s color-producing speed and efficacy. Through the rounds of simulations, we

discovered that biosensor capsules with greater volume produce more rapid results, which faster

detection of E. coli contamination. More rapid results can also be observed by increasing the

surface area of the biosensor, with all other factors held constant, which can be achieved by

dividing the biosensor hydrogel into as many portions of micro-encapsulated spheres as

manufacturing technologies allow. Future teams would have to find an optimization between

biosensor volume and individual size to achieve the goals of MilkGuard, while staying within the

constraints of chemical reagent and manufacturing costs.

Perhaps the most significant contribution of COMSOL simulation is the proof of concept

that computer-aided modeling could be used to optimize for the MilkGuard sensor. Running

simulations on a computer is much more economical and environmentally friendly than

producing hundreds or thousands of physical sensors with varying parameters, and testing each

one. Costs have been especially reduced in avoiding the use of X-gal in physical sensors, due to

the high cost of the reagent. By running simulations, instead of producing, testing, then disposing

of multiple batches of biosensors, production of hazardous waste has been avoided. We have

built a simulation framework that future teams can utilize to further improve on the

color-producing efficacy of the MilkGuard sensor. The simulation gives MilkGuard the

information and tools to effectively and efficiently create a product that achieves our required

lower limit of detection to improve the health and safety of infants.

6.2 Mobile App & Color Analysis Algorithm

The addition of several algorithmic improvements to the previous team’s color-analysis

algorithm resulted in more sensitive and consistent results. Figure 13 compares the graphical

results of last year's and this year's color analysis algorithm. The two algorithms were applied to

the exact set of images, but they yielded different results. When comparing the results of

analyzing the 3D printed white well plate (Figure 2), we can see a difference between the graphs
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of this year and last year, for both the DHBM and whole bovine milk images. In the graph from

last year, we see an insignificant difference between the 104 and 105 CFU/mL values. However,

our new algorithm yielded a noticeable difference between those two values, and presented

linearity between 104 and 107 CFU/mL values, which is very useful for building linear regression

curves.

Figure 13: Graphs depicting the calculated color values for various concentrations of E. coli induced with (a) whole

bovine milk, analyzed using previous algorithm, (b) whole bovine milk, analyzed using new algorithm, (c) DHBM,

analyzed using previous algorithm, (d) DHBM, analyzed using new algorithm. Analysis performed on the same set

of image data obtained from previous MilkGuard Team’s laboratory results.

In analyzing the series of clear well plates (not shown), our new algorithm also increased

the sensitivity in our region of interest (104 CFU/mL). Whereas the previous algorithm yielded

an insignificant difference between 103 and 104 CFU/mL values, our new algorithm shows a

38



significant difference, as indicated by the error bars. The increased sensitivity of our new

algorithm around the target region (the HMBANA’s recommended lower limit of detection

standard of 104 CFU/mL) shows the improved efficacy of our system. The improved detection of

low but still potentially harmful concentrations of E. coli in DHBM at milk banks may promote

the health of infants who need a safe milk source.

Figure 14: Graphs depicting the calculated color values for various concentrations of E. coli induced with DHBM in

clear wellplates (a) before and (b) after applying color balance, HSL conversion, and color-distance regression.

Analysis performed on the same set of image data obtained from previous MilkGuard Team’s laboratory results (n =

3).

The development of the mobile app greatly simplifies the process of colorimetric analysis

for the end user. Before, the user would need to take a picture of the resulting milk sample,

upload the image onto a computer, use the ImageJ software to obtain the RGB values, and

calculate the color intensity ratio before comparing it with the standardized regression curve.

This was a complicated process. With the app, the milk bank technician can now perform all

these tasks right on a smartphone within minutes, guided by the instructions and workflow

provided by the app. The app contains a user interface that is minimalistic and attractive to use,

and the buttons are big and easy to tap. The mobile app is a product that could be highly

distributable via Apple App Store or the Google Play Store. Altogether, the MilkGuard app

greatly increases the usability of the milk system and removes obstacles the user may face when
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trying to utilize our novel color analysis algorithm. We are hopeful that this improvement

increases the accessibility of our product to milk banks in need.

6.3 Cost Considerations

The system discussed in this paper may offer milk banks a cost-effective alternative to the

current practice of bacteriological testing at external laboratories [67]. Estimates of assay cost

vary based on biosensor geometry, X-gal concentration, and B-PER bacterial extraction

concentration but all yield cost-per-sample estimates of less than $1. This suggests that the

MilkGuard technology could significantly reduce the costs of bacteriological testing at milk

banks, which currently range from $35-81 per 100-200 oz of breastmilk [8]. Multiple studies

[68-70] have documented the cost-effectiveness of point-of-care testing, particularly when

testing mechanisms are low-cost and reliable.

6.4 Next Steps

6.4.1 Remaining Challenges

Despite our accomplishments this year, there are still important improvements to be made

on the MilkGuard System. Through processes described above, both the biosensor

geometry and improved image analysis algorithm developed this year bring MilkGuard

closer to achieving the HMBANA’s 104 CFU/mL lower limit of detection requirement.

However, due to the lack of lab access this year, we have not been able to physically test

and confirm whether the suggested geometry optimization and algorithmic improvements

will consistently allow us to reach this level of sensitivity. Similarly, a related challenge

remains—that of achieving consistent lighting while capturing images of milk samples.

Previous teams have developed a light box as described in Section 3.5. However, we have

yet to test whether that will still be necessary, given our implementation of the

color-balancing algorithm. Future teams must perform tests on a large number of samples

to confirm that it will adequately provide consistent image analysis in a low-resources

setting. Otherwise, the light box will continue to be required as part of the MilkGuard

system.

A few challenges were not addressed in this paper. The MilkGuard team had

observed a batch-to-batch variation in β-galactosidase expression in E. coli. In other
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words, different strains of E. coli produce different quantities of β-galactosidase, the

enzyme that reacts with X-gal in our assay. Batch-to-batch variation could make it

difficult to correlate blue precipitate concentration with E. coli concentration, but the

effects of this variation may be negligible. Another probable explanation for the observed

batch-to-batch variation in β-galactosidase is a batch-to-batch variation in the lactose

concentration in breast milk. It is well-known that the nutrients found in breast milk vary

from mother to mother [71,72]. Breast milk with higher lactose expression may cause

enhanced induction of the lac operon, which may cause enhanced expression of

β-galactosidase. Further investigation is needed to determine whether additional controls

or assay components are necessary to achieve consistently accurate results.

A final challenge for future teams to address is the supposed necessity of an

incubator for sample testing. In the current MilkGuard protocol, milk samples should be

placed under incubation at 37℃ after the alginate hydrogel biosensor is added. This

protocol exists because of previous work suggesting that 37℃ produces the most rapid

color change results [3]. However, with optimal biosensor geometry, benchtop reactions

may be sufficient in low-resources settings where incubation is unavailable. Whether this

is possible remains to be tested in-lab.

6.4.2 Immediate Next Steps

Immediate next steps consist of confirming the results of the geometry optimization

experiment performed virtually in COMSOL Multiphysics once labs are again readily

available. At this time, it will also be important that future MilkGuard teams collect more

data with both cow’s and human breast milk to test the accuracy of the MilkGuard

algorithm and app. Observations from this data will additionally help future teams

investigate the impact of batch-to-batch β-galactosidase expression discussed above.

After the app is tested with more in-lab data, it will need to be pilot tested at milk

banks and improved for usability. We want the app to be usable with minimal training so

that milk bank technicians can seamlessly transition to in-house bacteriological testing.

Feedback from pilot testing will be crucial to achieving this goal. Related to the goal of

usability, an additional immediate next-step is to determine whether or not bacterial lysis

with B-PER bacterial extraction solution is necessary to reach the required lower limit of
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detection. Removing this step from the MilkGuard assay (see section 4.2.1) would greatly

increase the usability of our product. Given the high cost of bacterial extraction reagents,

excluding bacterial lysis would also decrease the cost per sample for MilkGuard.

6.4.3 Long Term Next Steps

After the biosensor geometry and assay are optimized, the lower limit of detection is

consistently reached, and batch-to-batch variabilities are addressed, future reams will

need to focus on pilot testing of the MilkGuard system at breast milk banks.

Concurrently, future teams should focus on the logistics of scaling-up the manufacturing

process while keeping product cost low.

Milk banks are the target customer base for the MilkGuard project. Thus, the

needs of milk banks are of primary consideration at our current stage of development.

That said, we envision MilkGuard becoming a product that could be marketed directly to

mothers who desire to ensure the milk they are giving their infants is free of pathogens.

Long term, we hope to increase the usability of MilkGuard even further so that it can be

used by consumers without training.

If the model for bacteriological testing of E. coli presented in this paper proves to

be accurate, sensitive, low-cost, and highly usable, we hope to expand the system to

additional pathogens commonly found in donated human breast milk, such as strains of

Streptococcus and Staphylococcus, and Bacillus [73] . Incorporating tests for multiple

bacteriological pathogens in one system would allow milk banks to further cut production

costs, further expanding infant access to optimal nutrition.
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Chapter 7: Ethics and Engineering Standards

7.1 Ethical Justification

Achieving infants’ equitable access to human breast milk is a worthwhile goal because of the

significant potential impact that early-life breastfeeding could have on children. To lower the

barrier to infants’ access to breastmilk would be to promote the health and safety of infants

worldwide. The MilkGuard system has the potential to make a lasting and significant impact on

the availability of DHBM to infants whose mothers cannot provide breast milk. Once fully

functional and distributable, MilkGuard has the potential of greatly increasing the operating

efficiency at milk banks.

The MilkGuard project pushes the boundaries of biotechnology. Currently, there are no

existing affordable, intuitive, and rapid diagnostic devices for DHBM. In the process, our

biosensor optimization and mobile application development incorporated state-of-the-art

technologies. The resulting product aims to bring about great service and benefit to our primary

stakeholders—milk banks for DHBM. Other stakeholders in our project include the mothers and

infants who are in need of DHBM. These are vulnerable populations who will benefit from the

success of our project. With the full optimization and development of MilkGuard, we can serve

milk banks, infants, and mothers in need. In this manner, the MilkGuard project encourages us to

become engineers who approach our profession with competence, conscience, and compassion.

By lowering the cost of the bacterial assay of breast milk, we make the process more

accessible. By developing a user-friendly smartphone application for the process, we simplify the

job of milk bank technicians and thus lower the entry barrier for this position. By running

computer simulation for the optimization of biosensor parameters, we pave the way for the ease

of improvement of future teams. By improving on the color analysis algorithm, we improve the

sensitivity and consistency of our detection method, which contributes to detecting the lower, yet

still harmful levels of bacterial contamination in DHBM.

The following engineering standards delineate additional reasons for and benefits of

MilkGuard.
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7.2 Engineering Standards

7.2.1 Economic:

As described in section 6.3, MilkGuard offers milk banks a more affordable way to

conduct bacteriological testing that is necessary for optimal infant health. In-house

bacteriological testing at milk banks provides a “point-of-care” model that has the

potential to reduce the cost of donated human breast milk.

7.2.2 Manufacturability

The alginate hydrogel biosensor capsules used in the MilkGuard biosensor can be easily

manufactured at industrial scale. The selection of spherical alginate hydrogel geometry

greatly increases the viability of mass production, as microfluidic extrusion using coaxial

needles is widely used in biotechnology manufacturing. Using a mobile app for image

analysis “increases” the manufacturability of our product in the sense that little

manufacturing is needed for image analysis. The MilkGuard app can be widely

distributed given the global prevalence of smartphones. Though this year’s MilkGuard

team did not focus on the use or production of the lightbox used for smartphone image

capture, we are aware that the lightbox is an additional component of the MilkGuard

system that will need to be custom manufactured. Future teams could consider finding a

comparable 3rd party option for image analysis to eliminate the need to contract through

an additional production plant.

7.2.3 Health & safety

Literature research suggests that rigorous bacteriological testing increases the safety of

donated human breast milk [3]. Thus, affordable, efficient testing methods are crucial to

improving the health and safety of infants who would not otherwise have access to

human breast milk. Our efforts throughout the past year have moved MilkGuard one step

closer to offering milk banks a system that is affordable, efficient, and sensitive enough

to detect HMBANA’s lower limit of detection standard of 104 CFU/mL [2].
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7.2.4 Usability

A key consideration during the mobile app development was that it be highly usable by

milk bank technicians. Using a mobile application for image analysis, rather than

requiring milk banks technicians to master additional image analysis tools, decreases the

duration of training required to use MilkGuard and suggests that our system may be

usable in lower resource settings internationally.

7.2.5 Environmental impact

The alginate hydrogel sensor used in MilkGuard is readily biodegradable, biocompatible,

and biointert [74]. Thus, the disposal of waste produced during testing with MilkGuard

should not cause environmental harm. Furthermore, the X-gal product used to detect E.

coli via reaction with beta-galactosidase has no hazardous classifications on the Globally

Harmonized System of Classification and Labelling of Chemicals [75]. However, when

dissolved in dimethylformamide (DMF), X-gal powder’s safety classification increases to

“harmful”. Since the existing MilkGuard protocol utilizes DMF, future MilkGuard teams

may want to consider dissolving X-gal in a solution with a more favorable safety rating,

both for the health of the environment and for the health of milk bank technicians, who

are unlikely to be working in chemical safety hoods.

7.2.6 Social

The big picture goal of MilkGuard is to lower barriers to infant access to breast milk.

Increasing access to donated human breast milk through low-cost bacteriological testing

that can potentially be used in low-resource settings may lower infant mortality rates

[76]. Though not necessarily causal, lower infant mortality rates are correlated with lower

income inequality [77] and greater political gender equity [78]. While we cannot

guarantee that MilkGuard will create a more socially equitable society, our efforts to

make DHBM accessible to more infants are rooted in a desire to reach under-served

populations.
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7.2.7 Civic Engagement

In the US, the Food and Drug Administration officially recommends the use of DHBM

under the direction of a physician [79]. The FDA does not directly regulate milk banks.

Instead, the Human Milk Banking Association of North America (HMBANA) provides

milk banks with regulatory standards [80]. Our efforts to achieve a 104 CFU/mL lower

limit of detection requirement are based on HMBANA’s official recommendations.
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Chapter 8: Conclusions

Fast, affordable and accurate methods of testing breast milk for breast milk banks is crucially

needed throughout the world, and the MilkGuard system was developed to address that. Previous

team had achieved a low-cost biosensor that produces results in approximately four hours. Yet at

the beginning of this year, MilkGuard was unable to achieve the HBMANA’s lower limit of

detection standard of 104 CFU/mL, and the assay process was difficult and unintuitive.

To reach this bacterial contamination detection level, we explored two methods:

improving the MilkGuard biosensor and developing a better color analysis system.

By running COMSOL simulations while varying several parameters, we discovered the

optimal geometry for MilkGuard biosensors—high volume and high surface area. Future teams

would need to confirm this in physical laboratories, while keeping the manufacturing and

chemical reagent costs relatively low. Our series of COMSOL simulations prove the possibility

of realistically optimizing biosensors in a computer-based simulation environment, which is

more economical and environmentally friendly than building hundreds of physical biosensors to

test. We also developed a simulation platform that future teams can use to further improve on the

MilkGuard biosensor.

By developing the MilkGuard app, we have allowed the user to easily utilize our new

color analysis algorithm for the colorimetric determination of E. coli contamination levels. Our

algorithm uses color balance, HSL conversion, and color-distance regression to improve

sensitivity around the target contamination level of 104 CFU/mL. Future teams would need to

confirm the effectiveness of our algorithm with in-lab testing, and build a more robust linear

regression curve based on a larger sample size. Our improved detection sensitivity means better

breastmilk testing for better infant health.

This year, our testing and developments have improved the MilkGuard system. With our

developments, testing breast milk with MilkGuard is now easier and more sensitive than before.

Through our simulations, we have also provided a way for future teams to improve the biosensor

even more. Through our team’s contribution to MilkGuard, we have striven towards infants’

equitable access to breastmilk, as we try to achieve a more humane, just and sustainable world

through bioengineering innovation. We look forward to when MilkGuard is fully optimized and

functional as it improves infant health around the world.
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Chapter 10: Appendix

10.1 Team Members and Roles

Emma McCurry: Lead Contact Person, Simulation and Geometry Optimization Lead

Emma served as the lead contact person for the project, submitting various official documents

and handling correspondence with Santa Clara University’s School of Engineering. Before the

team pivoted to a fully virtual senior design project, Emma created experimental protocols and

timelines for lab-based work. After the pivot, Emma learned to use COMSOL Multiphysics and

created a realistic computed-aided design simulation of the MilkGuard biosensor. Emma

designed, executed, and analysed the COMSOL biosensor geometry optimization experiment.

Beau Hsia: Mobile Application and Colorimetric Algorithm Developer, Visual Design Lead

Beau served as the MilkGuard mobile application developer, coding the app from scratch (while

self-learning the React Native app programming language through the process). Beau also

improved upon last year’s color-analysis algorithm through the addition of color balance, HSL

colorspace conversion, and color-distance calculation and regression, methods he discovered

through research and experimentation. Additionally, Beau designed the MilkGuard logo and

colorway, which were uniformly implemented in the smartphone application and in the Senior

Design Presentation package.

10.2 Key Acronyms and Abbreviations

B-PER = Bacterial Protein Extraction Reagent

CC = Microfluidic Capillary Circuit

CFU = Colony Forming Units

CFU/mL = Colony Forming Units per milliliter

COMSOL = Not an acronym, but a program title. COMSOL Multiphysics software

DHM = Donor Human Milk or Donated Human Breast Milk

DMF = Dimethylformamide

FDA= Food and Drug Administration

GHS = Globally Harmonized System of Classification and Labelling of Chemicals

HMBANA = Human Milk Banking Association of North America
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HSL = Hue, Saturation, Lightness (or Luminance, or Luminosity) (Color space model)

IEEE = Institute of Electrical and Electronics Engineers

IPTG = Isopropyl β-ᴅ-1-thiogalactopyranoside

LOD = Limit of Detection

OD = Optical Density

RGB = Red, Green, Blue (Color space model)

WHO = World Health Organization

X-Gal = 5-bromo-4-chloro-3-indolyl-β-ᴅ
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