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The Eulerian variational principle for the Vlasov-Poisson-Ampere system of equations in a general coordinate
system is presented. The invariance of the action integral under an arbitrary spatial coordinate transformation
is used to obtain the momentum conservation law and the symmetric pressure in a more direct way than using
the translational and rotational symmetries of the system. Next, the Eulerian variational principle is given for
the collisionless drift kinetic equation, where particles’ phase-space trajectories in given electromagnetic fields
are described by Littlejohn’s guiding center equations [R. G. Littlejohn, J. Plasma Phys. 29, 111 (1983)].
Then, it is shown that, in comparison with the conventional moment method, the invariance under a general
spatial coordinate transformation yields a more convenient way to obtain the momentum balance as a three-
dimensional vector equation in which the symmetric pressure tensor, the Lorentz force, and the magnetization
current are properly expressed. Furthermore, the Eulerian formulation is presented for the extended drift
kinetic system, for which, in addition to the drift kinetic equations for the distribution functions of all particle
species, the quasineutrality condition and Ampere’s law to determine the self-consistent electromagnetic fields
are given. Again, the momentum conservation law for the extended system is derived from the invariance
under the general spatial coordinate transformation. Besides, the momentum balances are investigated for the
cases where the collision and/or external source terms are added into the Vlasov and drift kinetic equations.

PACS numbers: 52.25.Dg, 52.25.Xz

I. INTRODUCTION

So far, a large number of numerical simulations have
been performed to investigate neoclassical and turbulent
transport in toroidal plasmas.' As a modern theoreti-
cal technique for deriving basic kinetic model equations
of such simulations, the variational principle*” is used
because the derived equations possess favorable conser-
vation properties for long-time simulations to pursue evo-
lutions of plasma profiles resulting from transport pro-
cesses. Also, useful numerical schemes for plasma simula-
tion satisfying the conservation properties have been de-
veloped by directly utilizing the variational formulation
rather than numerically approximating the basic equa-
tions derived from the variational principle.® ! In recent
years, background flow profiles are regarded as one of
key factors which influence magnetic plasma confinement
and large-scale gyrokinetic simulations are actively done
to investigate momentum transport processes which de-
termine the flow profiles.'>"1® Thus, pressure tensors or
momentum transport fluxes need to be accurately evalu-
ated because they play a critical role for the momentum
balance in both neoclassical and turbulent transport the-
ories. 1624

In Ref.%, the Lagrangian variational formulation for
the electromagnetic gyrokinetic system is presented from
an approximate reduction of the Vlasov-Poisson-Ampere
system which is equivalent to the Vlasov-Darwin sys-
tem?® in which such rapid phenomena as the electromag-
netic waves with the speed of light ¢ can be removed from

the system (the terminology ‘Vlasov-Poisson-Ampere
system’ has been customarily used instead of ‘Vlasov-
Darwin system’ in the literature on the gyrokinetic the-
ories®26). Tt is shown for the Vlasov-Poisson-Ampere
system that, in the presence of the magnetic field, the
canonical momentum conservation law derived from the
space translational symmetry contains the asymmet-
ric pressure tensor. In Ref.?”, the angular momentum
conservation law derived from the rotational symmetry
and additional complicated procedures of the Belinfante-
Rosenfeld type?® were used to obtain the symmetric pres-
sure tensor from the asymmetric canonical pressure ten-
sor and to derive the same momentum conservation law
as given in Ref.?®.

In this work, the variational formulations for the
Vlasov-Poisson-Ampere system and the drift kinetic sys-
tem are presented in the invariant forms under general
spatial coordinate transformations in analogy with the
theory of general relativity.2? For this purpose, the vari-
ational formulations here are completely based on the
Eulerian picture®*34 in which the spatial-coordinate de-
pendence of the particle and field parts of the Lagrangian
density can be more equally treated than in another type
of formulation using the Lagrangian picture partially for
the particle part.5273% Detailed descriptions about La-
grangian and Eulerian variational formulations are found
in a recent paper by Brizard and Tronci®®. The Eulerian
method, which was pioneered by Newcomb?° to formu-
late the magnetohydrodynamics equations and is used in
the present paper, is also called the Euler-Poincaré reduc-



tion procedure recently3!32:34:36 Here, in our Eulerian

formulation, all the governing equations for these sys-
tems also take the invariant forms and the invariance of
the action integrals can be utilized to derive the momen-
tum conservation laws and/or the momentum balances
as three-dimensional vector equations. The resultant mo-
mentum balance equations contain the symmetric pres-
sure tensors which have 3 x 3 symmetric matrix compo-
nents. These symmetric pressure tensor components are
derived from taking the variation of the Lagrangian den-
sity with respect to the metric tensor components which
appear due to the use of the general spatial coordinate
system. The symmetry of the resultant pressure ten-
sor is a natural result because the metric tensor is sym-
metric. Thus, the derivation of the symmetric pressure
tensors shown in the present paper is more direct than
the Belinfante-Rosenfeld-type technique and other pre-
vious methods. Furthermore, for all systems considered
here, not only the momentum conservation laws but also
the Belinfante-Rosenfeld type formulas®”-?® relating the
symmetric pressure tensors to the asymmetric canoni-
cal pressure tensors are simultaneously derived from the
invariance of the action integrals under general spatial
coordinate transformations.

It is also found that the formulation presented here for
deriving the momentum conservation law is more con-
venient than the conventional method based on taking
moments of the basic kinetic equation especially for the
drift kinetic system.?” Normally, only the component of
the momentum balance equation in the direction parallel
to the magnetic field is derived from the parallel moment
of the drift kinetic equation although it is not trivial what
moment should be taken for the gyrophase-averaged dis-
tribution function to obtain the perpendicular momen-
tum balance. On the other hand, the method based on
the invariance with respect to the general spatial coordi-
nate transformation can be applied to derive the momen-
tum balance equations in both parallel and perpendicular
directions simultaneously even for the drift kinetic sys-
tem.

Normally, based on Noether’s theorem,® the momen-
tum conservation law in a certain direction is derived
when a given system has a translational symmetry in
that direction. Here, it should be noted that the in-
variance under the general spatial coordinate transfor-
mation holds more generally than the translational sym-
metry. Even in the case where the latter property is
not satisfied, the former property can be valid and used
to derive the momentum balance equation which does
not take a conservative form. As shown in Sec. III, the
drift kinetic system in given electromagnetic fields cor-
responds to the above-mentioned case. Thus, the mo-
mentum balance equation can be obtained for the drift
kinetic system with general magnetic geometry. When
self-consistent electromagnetic fields are treated as the
solutions of the equations given simultaneously with the
drift kinetic equations from the variational principle, the
explicit dependence on the spatial coordinates is removed

from the action integral, and accordingly the momentum
conservation law is derived for the total system consisting
of the charged particles and fields [see Sec. IV].

The rest of this paper is organized as follows. In Sec. II,
the Eulerian formulation of the variational principle for
the Vlasov-Poisson-Ampere system is presented. There,
the same results as in Ref.?” are reproduced although
the general coordinates are used to write the equations
in the invariant form and derive the momentum con-
servation law in a more direct way than in Ref.2”. In
Sec. III, the Eulerian variational principle is applied to
the drift kinetic system, for which the collisionless drift
kinetic equation and the momentum balance equation
are obtained. In this system, which is immersed in the
strong magnetic field, trajectories of charged particles
are described by Littlejohn’s guiding center equations.*
In Sec. IV, the variational principle for the drift kinetic
system is extended so that the quasineutrality condition
and Ampere’s law can be derived simultaneously with
the drift kinetic equations for all particle species to de-
termine the electromagnetic fields self-consistently with
the distribution functions. The momentum conservation
law for this extended drift kinetic system is derived as
well. In Sec. V, it is shown how the momentum con-
servation and balance derived in Sec. II-IV are modified
when the collision terms are added into the basic kinetic
equations there. Finally, conclusions are given in Sec. VI.
In Appendix A, the Eulerian variational principle is pre-
sented for the Vlasov-Poisson system and its momentum
balance is derived. The energy conservation law in the
Vlasov-Poisson system is also obtained in Appendix B. In
Appendix C, the energy balance equation and the energy
conservation law are shown for the drift kinetic systems
described in Secs. IIT and IV.

Il. VLASOV-POISSON-AMPERE SYSTEM

Here, the Vlasov-Poisson-Ampere system?” is consid-

ered as an example of kinetic systems, for which the Eu-
lerian variational principle is presented. Also, it is shown
for this system how to obtain the momentum conserva-
tion law from the invariance of the action integral under
general coordinate transformations.

A. Eulerian formulation of the variational principle in
general coordinates

The distribution function on the phase space for par-
ticle species a is denoted by Fy(x%,v%,t) where (z%);—1 2 3
and (v');—123 are the position and velocity coordi-
nates of the particle, respectively, and the number
of particles of species a in the phase-space volume
element d*zd®v = daldr?dz3dvidv?dv® is given by
Fy(zt, v t)d3xd®v. Here, (x');—1 23 represent a general
spatial coordinate system which can be either a Cartesian
or any other curved coordinate system. However, in the



present paper, we assume that the position vector r is a
function of only the spatial coordinates (z%);—1 2 3 and it
is independent of time ¢. In the given spatial coordinate
system, (Ui)i:1’213 are defined as contravariant compo-
nents of the velocity vector by using (9r/0z%);—1 23 as
the basis vectors.

In the Lagrangian picture, the motion of a particle of
species a in the phase space is described by representing
the position and velocity of the particle at time ¢ as the
functions,

U;L($g7vgat0;t)]7 (1)

which satisfy the initial conditions at time %,

[xZLL (1'8, Uga tOv t)7

Tor (25,05 tosto) = 20, var (25,05, tosto) = 5. (2)

Using the Lagrangian representations of the particle’s
motion given in Eq. (1), the distribution function at time
t is related to that at time ty by

Fu(z',v't) = /d3m0/d3vo Fo(xit, vl to)

X 53[1"1 - xiL(l‘glavglvtO;t)]
X 53[Ui - vtizL(xz)nv ’U(7Jn7 to; t)] (3)

We next represent the particle’s velocity and accelera-
tion in the Eulerian picture by

U (2™, 0™ 1), g, (2™, 0™, 1), (4)

which are related to those in the Lagrangian picture by
ufzx(x;nL(xga Ugv to; t)v UITL(:‘C87 Ug’ to; t)v t)
= J.?ZL(JIS', Ug, tOv t)7
u(lw (xZLL(‘r6L7 USL, tO; t)v ’ng(xga Uga tO; t)v t)
= Vo120, 00, L3 1)- (5)

Here, f = &f(xl", v, t)/dt stands for the time derivative
of an arbitrary function f(zf",v{",t) with (27", v7") kept
fixed. Using Eqs. (3) and (5), we can show that the
distribution function F,(x% v%,t) satisfies the continuity
equation in the six-dimensional phase space,

OF, 0 , 0 -
ata w(Faulszm) + w(Faqu) =0. (6)
In the present paper, we use the summation convention
that an index repeated in a term [such as seen in Eq. (6)]
represents summation over the range {1,2,3}.
The action integral I to describe the Vlasov-Poisson-
Ampere system is written as

t2 t2
IE/ dth/ dt/dsxﬁ, (7)
tl t1 \%

where the Lagrangian L is defined by the spatial integral
of the Lagrangian density £ over the volume V and L is
given by

EEZ/d?’v Fo(z', v t)Lo + L. (8)

Ly [ 33:1'7

Here, the single-particle Lagrangian L, for species a is
written in the Eulerian picture as

La[’l}i, Uﬁm(xna Unv t)7 (b(xnv t)> Ai(mna t)7 9ij (xn)]

= [magij(x")vi + e—aAj (m",t)} ul (x™ 0", 1)
c

1 o
- [gmags it + easten0)]. 9)
Note that the single-particle Lagrangian given by Eq. (2)
in Ref. 27 is reproduced from Eq. (9) when replacing z°,
v', and !, in Eq. (9) Wlth the corresponding Lagranglan
representatlons xl vl and dgp.
The field Lagrangian density £y on the right-hand side

of Eq. (8) is given by

Op(x",t 0A;(x",t n n

(7)u 3 L)v)\(x at)agzj(x )7

z;(xn) 8¢(Inat) ad)(xnvt) _ Gij (In)
8T ox’ Oz’ 8

Az™, t) 4
Mty wiayeno).

9gjk(z")
ozt

x B (z™,t)BI (x",t) +

Equation (10) is obtained by using the general phase-
space coordinates (z%,v%) to express the field Lagrangian
density given by Eq. (3) in Ref.?7.

The contravariant components (B%);—1 2 3 of the mag-
netic field are expressed in terms of the covariant com-

ponents (A;);=1,2,3 of the vector potential as

k- 9A (2"t

< k(@) (11)
g(zm) O

and the components V;A; (4,5 = 1,2, 3) of the covariant
derivative of the covariant vector A; are defined by

Bi(z",t) =

ViA;(z",t) = W — Ffj(:t”)Ak(xn,t), (12)
where the Levi-Civita symbol is denoted by
ik = €ijk
L ((65,k) = (1,2,3),(2,3,1),(3,1,2))
=<¢ -1 ((4,5,k) =(1,3,2),(2,1,3),(3,2,1)) (13)

0 (otherwise),
the determinant of the metric tensor matrix is given by
g(a") = detlgi; («")], (14)

and the Christoffel symbols I‘fj (i,5,k = 1,2,3) are de-
fined by3®

I (z") = g"(a™)Tu (")
_ 1o ony [0gi(a™) | Ogui(2™)  Ogiz(z")
=59 (") ozt + ozI ox! (15)

The covariant and contravariant components of the met-
ric tensor components are denoted by g;; and g/, respec-
tively, and they satisfy

9% gr; = &, (16)



where 5; represents the Kronecker delta defined by

i1 (=)
i={s (7)) o

We now consider the virtual displacement of the parti-
cle’s trajectory in the phase space, which is represented
by the variations of the Lagrangian representations of the
particle’s position and velocity in Eq. (5) as

~—

St (2, vl tost),  Svl L (xht, vl tost). (18)
The variations in the position and velocity are repre-
sented in the Eulerian picture by

Sz (2™, 0™, 1), ugg(z™ V™), (19)

which are related to those in the Lagrangian picture by
6‘rsz(‘erL (l’g, Ug? to; t)7 (71’2 (330 ) UO ) tOv t)u t)
= 5‘rgL(‘r87 Ugv th t)a
6”2E(ITL(I33 Ug)lv to; t)? UTL(I()l’ ’Ug, lo; t)v t)
— Gt (a3, v tos ). (20)

Making use of Eq. (5) to consider the variations in the
particle’s velocity and acceleration which result from the
virtual displacement denoted by Eq. (18), we obtain

Sy = (3 + ey + e ) D2k
<5xaE aaj + 00l ;j) U

Oty = ( ; + Zm% +ul, 5‘1) Vg
(5%,3 88] + (snga‘Zj) Ul (21)

where Eq. (20) is used as well. Here, ul, and dul,
represent the variations in the functional forms of ul
and uav, respectively, and the parts of variations in u’,,
and u,, caused by the changes in their arguments are
not included in Sul . and du’,. W also find from Egs. (3)
and (20) that the variation in the distribution function
due to the virtual displacement of the trajectory shown
in Eq. (18) is given by

0

0F, = ——
Bmi(

F,02) ) — E.ovl ). (22)

a (

We further consider that the spatial functional forms
of the electrostatic potential ¢, the covariant components
A; of the vector potential, and the field A associated with
the Coulomb gauge condition [see Eq. (36)] are virtually
varied by d¢, 0A;, and A in addition to the virtual dis-
placement of the particle’s phase-space trajectory. Con-
sequently, the action integral defined by Eq. (7) with

Eq. (8) is varied by

6l = t2d 3z | d*v F, |6t OLq
_Z : t x UV Lg ToE ang
B d OLa \\ , 5 dL,
oul, vaE vt v
/ dt/d3 [5(;5( Zea/d?’vF A¢>
ty
(sea [ gy g - €708
+04; (2{; - /d v Fyul, i Dai

VI i 0N f
— E e — A?/ I 2
47rcg D +6/\ V + 1y, (23)

where (0L,/0z"),,, and (8La/8v Vua, Tepresent the
derivatives of L, in z° and v?, respectively, with u’  kept
fixed in L,. The definitions of the operators (d/ dt) and
A are shown later in Egs. (30) and (37), respectively, and

to
3 3 0« A
=3 [ [ [ o[ (i)
0 oL 0 0L,
F ool @ 5t Foul
*aﬂ<a“a$azﬂ )*aﬂ(””a% o)

3 8¢ gk A ik
+/ [ [ 0 ¢+<\f ")
xéAkng(;gjgz—lBﬂB + VAJ>H (24)

is the part which can be determined from the values of
the variations 0z’ , d¢, and §A4; on the boundaries of
the integral region because of the divergence theorem.

We now show that the Vlasov-Poisson-Ampére system
obeys the Eulerian variation principle. Namely, F,, ¢,
and A; are determined from the condition that 1 = 0 for
arbitrary variations 6z 5, dv’ 5, 0@, 6A;, and SA which
vanish on the boundaries of the integral region. First, it
is found from Eq. (23) that 61/6vi , = 0 gives

La . .
Fa <€; = ) = Famagij(u{zr - vj) = Oa (25)
L Uax

which is rewritten as
Fou! = Fu'. (26)

Here, we should note that u!, = o' is derived from
Eq. (26) under the condition that F,, # 0. However, since

ul . enters Eq. (6) in the form of the product Fyul,, it
doesn’t cause any trouble to simply write
ul, =, (27)

from now on instead of Eq. (26) even without assuming
F, # 0. This simplification of omitting F, will also be
done below in the processes where the equation for u’,
[see Eq. (34)] is derived.



We next use 61/0z’ ; = 0 to obtain

@)

ax

where the covariant vector component p,; of the canoni-
cal momentum and the time derivative (d/dt), along the
motion of the particle of species a in the phase space are

defined by
oL . oe
— @) = o 2 A
Dai = <auéx> = magijv’ + - A, (29)
and
d 0 r 0O s 0
<dt> = o1 T leaggr Tl B0)

respectively. From Eq. (30), we also have

d i i d i i
(dt)ax =u,., (dt)av =up,. (31)

Equation (28) can be rewritten as the covariant form of
Newton’s motion equation in the general coordinate sys-
tem,

My, (u,wi + Fi,jkvjvk) = e, (Ez + *ﬁGiijjBk
C

(32)
where the covariant component E; of the electric field is
defined by

0 10A;
oxt ¢ Ot

EiE—

(33)

The contravariant form of Newton’s motion equation is
obtained from Eq. (32) as

( + F j ) (El + 1 eijk
mg (U, JTRI) €q <
It should be noted that the Levi-Civita symbol €7* = ¢,
[see Eq. (13)] can be regarded as either a contravariant
tensor density of weight 1 or a covariant tensor density
of weight —1. Then, |/ge;;, and eijk/\/g represent co-
variant and contravariant tensors, respectively, which are
used in the Lorentz force terms on the right-hand side of
Egs. (32) and (34).

Substituting Eqgs. (27) and (34) into Eq. (6) yields the
Vlasov kinetic equation,

vj13k> . (34)

0F, 0

ot 8 ( o)
0 . 1evk
i i d iy 25T . —
8 [ { T P + e <E + - \/Evak> H 0.

(35)

As noted after Eq. (27), F, appears as a factor in the
equations 61 /0x! , = 61/6v’ = 0 although it is omitted

in writing Eqgs. (27), (28), (32) and (34). This omission
of F, does not make a difference in deriving the Vlasov
equation in Eq. (35) by substituting the motion equa-
tions, Eqgs. (27) and (34), into Eq. (6) because ug, and
u?,, enter Eq. (6) in the forms of the products F,u’, and
Fauzv.
We use 6I/0A = 0 to obtain the Coulomb (or trans-
verse) gauge condition,
; 1 9(/gA!
VA" = VLS = 0. (36)
\f Ox?

Poisson’s equation is derived from 67/6¢ = 0 as

_ 9 ij 09
py (\/ﬁgj > = 747TZea/d v Fy,

(37)
and 01/0A; =0 gives
€iF OBy gl ON  4r
V0wt oo = ¢l 38

where j? represents the ith contravariant component of
the current density vector defined by

jt= ﬁZea/dSU Foul,. (39)

The transverse (or solenoidal) part of Eq. (38) is written
as Ampere’s law,

ijk

< OB iy (40)
V9 0xI c
where j%. represents the ith contravariant component of
the transverse part of the the current density vector.
Note that an arbitrary vector field a can be written as
a = ay, + ay, where the longitudinal (or irrotational)
part ar and the transverse (or solenoidal) part ar sat-
isfy V x ar, =0 and V - ap = 0, respectively.*?

Equations (35), (37), and (40) are the governing equa-

tions for the Vlasov-Poisson-Ampere system. Thus, the
same system of equations as shown in Ref.?” are re-
produced in the present work although the equations
here are represented using the general spatial coordinates
(xi)i:1)273 and the contravariant velocity vector compo-
nents (v');—1,2,3. Using Eq. (37), the longitudinal part of
Eq. (38), and the charge conservation law obtained from

Eq. (35), we obtain
oA . OFL;
A = — 41
5t = 4miL py (41)

where Er; = —0¢/0x" represents the longitudinal elec-
tric field given by the electrostatic potential. Then, we
can put27

9¢
ot’
which is used hereafter. Then, we find that Egs. (37),

(38), (40), and (41) give the Darwin model®® as noted in
Refs.6:27

A= (42)



B. Transformation of spatial coordinates

We now consider the transformation of the spatial co-
ordinates written as

o' =gt + € (a"), (43)

where the infinitesimal variation in the spatial coordi-
nate z° is denoted by &‘(z™) which is regarded as an
arbitrary function of only the spatial coordinates. Under
the transformation of the spatial coordinates, the velocity
components (v*);—1 2,3 are transformed as the contravari-
ant vector components. Thus, the velocity component v
in the transformed coordinate system is written as

ax/’b( n)
oI

v/i

v ="+ o', (44)

where the infinitesimal variation év* in the velocity com-
ponent is given by

< 08 (@)
5'[} = W?}]. (45)
Here and hereafter, we use 6 --- to represent the varia-
tion associated with the infinitesimal spatial coordinate
transformation which should be distinguished from the
variation ¢ - - - due to the virtual displacement treated in
Sec. I1.A.

The electrostatic potential is a scalar which is invariant
under the transformation of the spatial coordinates,

¢ (2" t) = p(a",1). (46)

Here, we define the variation d¢ in the functional form
of ¢ due to the spatial coordinate transformation by

Sp(x™,t) = ¢/ (2™, ) — p(a™, t). (47)

Note that the spatial arguments of ¢’ and ¢ are the
same as each other on the right-hand side of Eq. (47)
while they are different in Eq. (46). Then, substituting
B(a™, 1) = (o™, £) + €1 (570 (", £) 0t = of (27, 1) +
&z )8(;5(33 t)/(f?as into Eq. (46) and using Eq. (47) we
obtain

O¢(z", 1)

B, t) = —€(a") s

= _(L§¢) (xn’ t)v (48)
where L¢ denotes the Lie derivative®® associated with
the vector field (£*). In the same way as in Eq. (48), the
variation A in another scalar variable A is written as

< n (M aA(‘rn7 t) n

In the transformed spatial coordinates, the covariant
vector components of the vector potential are written as

Oxd

A{L (:L./n7 t) 6 17

—A;(z",1). (50)

In the same way as in Eq. (47), we define the variation
0A; in the functional form of A; due to the spatial coor-
dinate transformation by

gAi(xln» ) t) = A;(xnv t) - Ai(xn7 t)' (51)

Substituting the formulas Aj(2™,t) =~ Aj(a"t) +
& (x™)0A;(z",t) /027 and dx? /Ox"t ~ §! — OEI (a™) /O
into Eq. (50) and using Eq. (51), we obtain

gAi(xn’t) = _§j<xn)8Ai3<§;,t) - 8£;§3fn)Aj($n’t)
= _(LEAi)(xnat)a (52)

where we see that the Lie derivative L¢ can be used again
to represent 0 A;.

The contravariant vector components E?, the covari-
ant metric tensor components g;;, and the contravariant
tensor components gij are transformed as

a/’L

1% m
B ) = OB 1),
" oxk 9z!
géj(xl 1) = 927 0 gkl(x .1,
i m Ox' Oz’ n
g/j('r/ 7t) = awk 8.’,Cl gkl(‘23 7t) (53)

Then, following the procedures similar to those used in
deriving Eqgs. (48) and (52), the variations in the func-
tional forms of £, g;;, and g% due to the spatial coordi-
nate transformatlon are derived as
Soi i OB o¢
OE' = —L¢ B = =¢ 927 + 927
9gi; 3 3
ozk Oz 9kj — @gik

EJ

3gij = —Legi; = —&"
=—Vi§ — V&,

agm afi

ozk axkg 81:kg

_Vigh 4 Vg (54)

The transformation of the spatial coordinates given by
Eq. (43) changes the Lagrangian representations of the
trajectory of the particle’s motion in the phase space as

IL’ZL(ZL'gL,U(/)n,tO;t) - ZL’ZL((ES,’U(T)L,tO;t) + gi(xZLL(xga v(r)LatO;t))a
U(/J,ZL (xénvvénato;t) = U;L(x87vgat0;t)
+ nl(x?L(xg,vg,to;t),vﬁ(xg,vg,to;t)), (55)

where the particle’s position and velocity at time tqg are
written in the transformed coordinates as

o = 950 + fz( 0)s
g = v+ 1’ (g, vgh).- (56)
Since v is the contravariant vector component, its varia-

tion n® caused by the change £ in the spatial coordinate
" can be written as

n n) _ 861((5”)@]

wamo) = 20 (57



In the transformed coordinate system, the distribution
function is given by

Fl(2" 0" t) /d3 /d3 " (zgt, vt to)
X 63[ ] - qu('rO 71}(/)n7t0;t)]
x 8" —vgp (2", vt tost)]- (58)

Here, the initial distribution functions F.(xf*, v(",to)
and Fy(xf,v§,tp) in the transformed and original
coordinate systems are related to each other by
Fl(af, ot to)d3xhd3vh = Fu(al, vl to)d>zod3vg, from
which we obtain

ax/i a,U/i
Fl(xf v to) = Fu(zl, vl to) |det 9 det u
a(O 0 0) (0 0 0)[ <8xf)> (81}6

_ (59)
The variation 6 F, in the functional form of the distribu-
tion function due to the spatial coordinate transforma-
tion is defined by

Fl (2™ 0" t) = F, (2", 0", t) + 0F,(z",v™,t).  (60)

Then, using Egs. (55), (58), (59), and (60), we obtain

0 0
— s (Fat?) =

The relations between the Eulerian and Lagrangian
representations of the particle’s velocity and acceleration
shown in Eq. (5) are rewritten in the transformed coor-
dinate system as

OF, = F.n?). (61)

u:ziz (xZYLI (x()nﬂ U(I)nv lo; t)v vffz (xé]n» U6n7 lo; t)v t)
= @, (25", 05", tos 1),
Ug (21 (20", 00" o3 1), v (20", V5" T3 ), 1)

= 0)p (20", vy o3 t). (62)
We also write
= ufw (™0™, 1) + guzw
= ufw (™, o™, t) + gufw

u:zi:v(xnavnat) (ZCn,Un,t)

uffv (", 0", 1) (™, 0", 1), (63)

to define du’ , and du’, as the variations in the Eulerian
functional forms of the particle’s velocity and accelera-
tion, respectively. Using Egs. (55), (62), and (63), we
find that du’, and dul, are written as

. - fg b _
C— J__ ?
5’& w; (5 BZ‘J 67)J> Uga>

axr axr axj

. 0 0 ; - .0 ;
5’“’?1'0 = (utjzxaj+ (sza j) ,'71_ <§J('9xﬂ+n]8vﬂ) u;LZ’U'

C. Derivation of the momentum conservation law

We can use F/(z'™, 0™ t), ull ('™, 0™ t), ¢'(z',1),
Al(x™,t), and g”( m t) in Egs. (7)—(10) to define the ac-
tion integral I’ in the transformed coordinates (z'™,v™).

Then, using Eqs. (48), (49), (52), (54), (61) and (64), we
find that the variation 07 = I’ — I in the action integral
is written as

- k2 OPJ y
I = 3 X c .
= [ f e (G ve)

b y g g
+os {& (117 — 04 — ka”k)}} ., (65)

where the canonical momentum vector density PJ and
the canonical pressure tensor density II¥/ are defined by

o oL,
Fe gjk;/d?) a(’)u’;go
. Ca .
= ;/d% F, (mavj + ?AJ) , (66)

and

H? = 9Jk<H0)k

. s o i 0L Z.
= g]k (Z/dd’(}Fauamaugaj + [’fék'
oLy 9¢ oLy

" 9(06/0x") 0F  9(04;/0x)

= Z/dngavi mavj + ?GA])

Y950 (BE B, - BB + \f( EiE)
87r
ikl 1
+ < BlVJAk - f?f

VkAl>

V1A1> (67)

respectively. The symmetric tensor density ©% and the
third-rank tensor density F** are defined by

pOLa 0L O oL
i = 3 I oLy
o= [Z/ o “Ogy | Dgy 0ot <5(89ij/8x’“)>]

= Z/d?’v Fomav'v? + NZ Z— ELEL;€ + BkBk)

1 i gy L [ OB OB}
47T(ELEL+BB) 4re (A ot +4 ot
OEL
z]Ak
b .
and
Fik = _ 47 0Ly — — 0Ly -
0(0Ay/0xt) 0(0g;k/0x?)
_ﬁjik_kilaﬁijk_jki
—47TA(VA VA)+CBt(gA g"A"Y) |, (69)

respectively. In deriving Eq. (65), Eqgs. (27), (28), (36),
(37), and (38), which are derived from the variational
principle in Sec. II.A; are also used.

The symmetry condition,

0" = o7, (70)



is naturally confirmed in Eq. (68) because the symmetric
metric tensor density components g;; are used for differ-
entiating the Lagrangian density £ in the definition of
©%. Tt should be noted that, in Eq. (68), partial deriva-
tives with respect to g;; need to be carefully done because
3 x 3 metric tensor components g;; are not completely in-
dependent of each other due to the constraint g;; = g;;.
Here, for an arbitrary function f of g;;, the notation
0f/0gi; is defined such that the infinitesimal variations
dgi; in g;; give rise to the variation 6f = (9f/0¢:;)9i;
in f where both dg;; and 0f/0g;; must be symmetric
under exchange of the indices i and j,?° For example, we
have dgj1/9g;; = (0107 + 676}) according to the above-
mentioned definition. In the same manner, derivatives
with respective to dg;;/0z* shown in Egs. (68) and (69)
are defined taking into account the symmetry under ex-
change of the indices ¢ and j.

We see from Eq. (69) that the third-rank tensor den-
sity components F*/* is anti-symmetric with respect to
exchanging the superscripts ¢ and k,

Fiik — _phkit, (71)
Using Eq. (71) and the commutation condition,

ViVi = ViV, (72)
we obtain

V;V.FI% = 0. (73)

Note that the commutation condition in Eq. (72) is valid
because the three-dimensional real space considered here
is a flat one with no curvature. For a general curved
space, the Riemann curvature tensor Rimk is used to
write3®

ViViVl -V, YV Vi =RL V™, (74)

where V™ is the mth contravariant component of an ar-
bitrary vector field. Then, we find

V.V, Fi9* — v, V,F7*
= =Ry F™* 4+ Ry F9™ = 0, (75)

where Eq. (71) and the properties of the Riemann tensor
(Ry.; = —RYy., Roe = RY., = Rep) are used. Thus, we
find the interesting fact that Eq. (73) is valid even in the
curved space when Eq. (71) is satisfied.

Since the action integral is invariant under an arbitrary
transformation of the spatial coordinates, 61 shown in
Eq. (65) vanishes for any {; so that we obtain the mo-
mentum conservation law,

P
ot

and the relation of the symmetric pressure tensor density
©% to the asymmetric canonical tensor density II}/,

+ V07 =0, (76)

O =111 — vV, Fi¥. (77)

Equations (76) and (77) are derived from the conditions
that the integrands at the interior and boundary points
shown on the right-hand side of Eq. (65) should vanish,
respectively. Combining Eq. (73) with Eq. (77) leads to

V,09 = V,11Y, (78)

which can be used to rewrite the momentum conservation
law in Eq. (76) as

oP!

ot

+ V119 = 0. (79)

In Ref.?”, the momentum conservation law, Eq. (79), in-
cluding the asymmetric canonical momentum tensor den-
sity, II¥/, is derived from the space translational sym-
metry of the action integral I before the relation of the
Belinfante-Rosenfeld type symmetric pressure tensor ©%
to I1¥ in Eq. (77) is obtained from the rotational symme-
try of I to derive the other momentum conservation law,
Eq. (76). On the other hand, in the present work, both
the momentum conservation law, Eq. (76), and the rela-
tion of O to 1%, Eq. (77), are derived at once from the
invariance of I under general spatial coordinate transfor-
mations including the space translation and rotation. We
should also note that Eq. (76) can be further modified
into a more physically familiar form of the momentum
conservation law as shown in Eq. (33) of Ref.?7.

It is shown in Appendix A that, reducing the field La-
grangian density given by Eq. (10) to the more simplified
one defined in Eq. (A3) and regarding the vector poten-
tial in Eq. (9) as a fixed time-independent field, the gov-
erning equations for the Vlasov-Poisson system can be
obtained from the Eulerian variational principle in the
same manner as shown for the Vlasov-Poisson-Ampere
system. As pointed out by Qin et al.,3® when governing
equations for a simplified system are obtained by apply-
ing a certain approximation to a Lagrangian for another
system, the exact energy and momentum conservation
laws in the simplified system should be derived from the
symmetry properties of the approximate Lagrangian and
they generally disagree with those obtained by just mak-
ing a similar approximation to the conservation laws in
the original system. The momentum balance and the en-
ergy conservation law in the Vlasov-Poisson system are
derived in Appendices A and B, respectively, where they
are found to agree with those given by Qin et al.?°

IIl. DRIFT KINETIC SYSTEM

In this section, the Eulerian variational principle is pre-
sented for the collisionless drift kinetic equation which
governs the time evolution of the phase-space distribu-
tion function of guiding centers of charged particles in
the strong magnetic field. The invariance of the drift ki-
netic system under an arbitrary spatial coordinate trans-
formation is used to obtain the momentum balance as a



three-dimensional vector equation in which the symmet-
ric pressure tensor, the Lorentz force, and the magneti-
zation current are properly included.

A. Eulerian variational principle for derivation of the
collisionless drift kinetic equation

We here start with defining the action integral for the
drift kinetic system by

1o to
IDKE/ dtLDKE/ dt/ d3$ £DKa (80)
t1 ty \%4

where the Lagrangian density is written as
L:DK E/d?’v F(Zi,vn,u,ﬂ,t)[xgc. (81)

The guiding center position is represented in terms of
the general spatial coordinates (x%);—1 23, for which the
metric tensor is given by g;;. The velocity component
of the guiding center along the magnetic field line, the
magnetic moment, and the gyrophase angle are denoted
by v, i, and ¥, respectively. The integral with respect
to the velocity space variables (v, 1, 19) is denoted by

/d?’vz/_o;dm /Ooodufdﬁ (82)

and the Lagrangian for the single guiding center is given
by

) 0A,
Lgc |:U| ) Ky U;, Uy, ¢7 Aia 873737 gU:|
e . . mc
(Ao
1 n 0
- gt + uBan 0+ estan )] (53)

Here, the unit vector parallel to the magnetic field is
written as

bi(a"t) = (84)

where the field strength is given by

B(a",1) = \/gij (@) Bi(an, ) B (an, 1), (85)

and the ith contravariant component B? of the mag-
netic field is expressed in Eq. (11). The Lagrangian Lgco
shown in Eq. (83) represents Littlejohn’s guiding-center
Lagrangian? written using the general spatial coordinates
and the Eulerian picture.

We now describe the particle’s motion in the La-
grangian picture by representing the guiding cen-
ter position coordinates, parallel velocity, magnetic
moment, and gyrophase at time ¢ as the func-
tions % (z§,v)0, o, Yo, tost), vyL(2F, V)0, o, Yo, tos t),

ML($87 Vloy H0> 7907 to; t)7 and ﬁL(x617 Vloy K0 7907 to; t)7 re-
spectively, where z(, v|o, po, and Jg denote their values
at the initial time t3. Then, the distribution function
F(at, v, 1,9, ) at time ¢ is related to that at time o by

F(‘riuvHvﬁLa 197 t)
:/ d3x0/d3v0 F(zg", )0, H0, Yo, to)
Vo
X 6 [xl - xL(xO aUH07,U/071907t07 )]
[UH - ’UHL(:L.O av”Oa/j’OvﬁOatO; )]
X 53[# — pr(xg", V)0, Ho, Vo, to; t)]
x 8319 — V(20" V)0, Ho, Yo, to; t) (mod 27)], (86)

where [d3vy = [7_dvjo fooo dpo § ddo. In the Eule-
rian picture, the temporal change rates of the guid-
ing center position, parallel velocity, magnetic mo-
ment, and gyrophase are denoted by the functions
wy (™, vy, 9, t), wy (2™ v, 1,9, 1), w3 vy, w9, 1),
and wuy (2™, v, p, Y, t), respectively, and they are related
to those in the Lagrangian picture by

u (x vy po, O, t) = &7 (2, vy o, Yo, o3 t),
Uy (27, 0Ly pL, V1, t) = Oy L0, V)05 Ho, Vo, to; t),
u (27, v Ly pL, Vs t) = (26, vjo, pos Yo, toi t),
uy (27 v L, pr,9,t) = 19L(%W\|o;uo,ﬁmto,t) (87)

where f = af(xg,v)0, o, Vo, t) /Ot represents the time
derivative of an arbitrary function f(xf,v)0, to,Jo,t)
with (2§, v)0, o, Y0) kept fixed. It can be shown from
Egs. (86) and (87) that F satisfies

OF 0 j 0 0 0
BN +8w3 (Ful)+ a0, (Fuq,H) o —(Fu,)+ 61g(Fqu) =0.
(88)
The virtual displacement of the particle’s tra-
jectory in the (a',v,u,9) space is represented

by the variations of the Lagrangian representations
of the particle’s motion as 5a:iL(x8,v||0,u0,190,to;t),
5UHL(£C8'7’U”0,M0,’l90,t0;t), 5ML(5587UH07M07?907150;75), and
SYL(xF,v)0, o, Vo, to;t). The variations in the guid-
ing center position, parallel velocity, magnetic mo-
ment, and gyrophase are represented in the Eule-
rian picture by 5xfg(x”,v||,u,19,t), ovg(x", v, 1, 9, 1),
Sup(x", vy, p,9,t), and 09 g (2", vy, p, 9, t), which are re-
lated to those in the Lagrangian picture by

6$ZE 6$L($07U\|Oau051907t07 )7

ov HL(I.OvaOv/*LOvﬁUat(% )
5/$L(x0av||07ﬂ071903t07 )7
519L('1:(7)L? Vo Mo, 1907 to; t) (89)

m
Tr,V|Ls ML, len
m
ove(xL v L, pr, 9L,
m
ope(ay
m
L>

0

7', pr, IL,
X

—~ o~~~

t) =
t) =
t) =
VL, B, VL, t) =

Using Egs. (87) and (89), the variations in the functional
forms of ug, uy, uyu, and uy due to the virtual displace-



ment of the particle’s trajectory are given by
0 0 g i
+u ””8 —|—u#8 +u19619 0x%y

(0 .0
D j
o (aﬁ“zaw
B 9

0 8
(5:5E8]+5U|Ea +5uEa
Oy, = Q+uji+u iqtu a+u 0 ov
T\t T o T ey T Mo an) I
0

0 0 0
(&5}58 v +51)HE6 ol +5ME8,LL+&9E619) (o

ouy, = thujiqtu iqtu 0 +u 0 )
w= ot T o T o T o T o ) 1
0 0 0 0]
(5$E8 7 +5’UHE8 o +5HE8M+619E819) Uy

o 0 9 o 0
bup = 2+ ud =2 oy 59
" <8t+um83ﬂ+u8v|+ "o +Waﬁ) g
9 9 0 9
(51’E8 v Jr(SvHEa o +5/LE8’U +519E819) Uy .-

(90)

The variation in the distribution function due to the vir-
tual displacement of the particle’s trajectory is written
by using Eqgs. (86) and (89) as

0

OF = ——(F&UE)

0

9]
(F(s’UHE) a

e o9

(91)

Using Egs. (88), (90), and (91), we find that the vari-

ation in the action integral Ipgx due to the virtual dis-
placement of particle’s trajectory is written as

MDK:/tQ dt/ d%/d% [F{(aLG.C)

A ort ),
_Z(aglzc)} xg+F<8§§C>u6v“E
o (5e) e { (555,
-5 () o

o ( (0Loc . 8LGC

s (B, -2z
E G )
+ % {Fuqy (agzc&vﬁg + 8;50 5'19E> H , (92)

where (OLgc/0xt), (OLac/0v))u, (OLgc/Op)w, and
(OLgc/09)., denote the derivatives of Lgc in xf, V), My

O (Foop).

10

and 9, respectively, with (u’,uy) kept fixed in Lgc, and
the time derivative along the particle’s trajectory is rep-
resented by

0 0 1o} 0
’;8 - —I—uvHa gt U g (93)

We now use the Eulerian variation principle which im-
plies that the collisionless drift kinetic equation for the
distribution function F' can be derived from the condition
that 6Ipx = 0 for arbitrary variations dz%;, oV, OpE,
and §¥g which vanish on the boundaries of the integral
region. We first use §1pg /dx’; = 0 to obtain

d  (0JLgc

at’ =\ oa w
where p; represents the covariant vector component of
the canonical momentum defined by

(94)

OLgc _ ¢, noy =
B = EAl(x 1) +mubi(2",t) =

ol

A;k (x”, UH s t).

(95)
We should note that the distribution function F' is in-
cluded as a factor in (5IDK/(5333§ = 0 although it is omit-
ted from Eq. (94) for simplicity in the same way as done
in Sec. II.A. This omission of F' is also done in the other
equations obtained below from §Ipx = 0 although it
does not make a difference in deriving the resultant col-

pi =

lisionless drift kinetic equation in Eq. (109). We can
rewrite Eq. (94) as
muy b; = e (El + E\/geijkuva ) Bt (96)

where the modified electric and magnetic fields are de-
fined by

96 10A;

Ef=——-—- 97
‘ Oxt ¢ Ot (97)
and
) ijk A*
v o €04k (98)
Vg Ox)
respectively.
Next, 6Ipx /évjp = 0 is used to obtain
oL )
( 85(;)” =m (ulb; —v)) =0, (99)
from which we have
ulb; = vj. (100)

Furthermore, 0Ipgk/0ur =0 and §Ipk /0¥g = 0 yield

(101)



and

d 8LGC mc 8LGC
dt(@w) euH (819 )u 0, (102)
respectively.

Equations (96), (100), (101), and (102) are rewritten
as

, 1 ok (,u 0B )]
u, = — |y B* +c—b; | —=— — E; ||, 103
T Bﬁ |: ” \/g J eawk; k ( )
B* N 0B
My, = B—lT <eEi - M@Jﬂ) , (104)
u, =0, (105)
and
B
wg = 2 =Q, (106)
mc
where
1= B*'b,. (107)

Equations (103) and (104) are obtained by taking the
vector and scalar products between the magnetic field
and Eq. (96), respectively. Also, using Eq. (93), we can
write

dri dvy dy d9
i e ) (108)

(umvuvuauu7u’ﬂ) = ( dt 7%7%7%

Then, with the help of Eq. (108), it is clearly confirmed
that Eqgs. (103)—(106) represent the same guiding center
motion equations as derived by Littlejohn from the guid-
ing center Lagrangian. We can verify that the right-hand
sides of Egs. (103)—(106) are all independent of ¥ and that
the magnetic moment p is an invariant of motion as seen
from Eq. (105).

Substituting Eqgs. (103)-(106) into Eqgs. (88) and tak-
ing its average with respect to the gyrophase 9, the col-
lisionless drift kinetic equation is derived as

-5)])

OF 0 (=1 o €Ik w OB
E + 63:1 (F |:’U|B +c bj ( -
(109)

B; V3 7 \e dzk

9 (= B* 0B
2 \F B2 ) =
Jr@vH ( mB; (e ¢ uaxl)) 0

where F denotes the gyrophase-averaged distribution
function,

— dv
F=¢ —F. 11
2m (110)

11
B. Transformation of spatial coordinates

Here, in the same way as in Sec. II.B, the infinitesi-
mal transformation of the spatial coordinates is given by
Eq. (43) and the infinitesimal variation ¢¢ in the spatial
coordinate x’ is again regarded as an arbitrary function of
only the spatial coordinates. However, it should be noted
that the other variables (v), 1,7) are independent of the
choice of the spatial coordinates because they are defined
from the relation of the velocity vector to the direction
of the local magnetic field. This is in contrast to the case
of Sec. IL.B where the velocity components (v');—1 2 3 are
transformed as the contravariant vector components un-
der the spatial coordinate transformation.

The spatial coordinate transformation given by
Eq. (43) changes the Lagrangian representation of the
guiding center position as

'rl[l/(xé)nv vHOa Ho, 1907 tO? t) = ‘TZL(IZ)L? vHOa Ho, 1907 tO? t)
+ gl(x?(fg, UHOv Ho, 1907 th t))a (111)
where zff = z{ + £'(z})) represents the guiding center
position at time ¢y in the transformed spatial coordinates.

The distribution function is written in the transformed
coordinates as

F'(2" vy, 1,9, 1)
:/ dsxé)/dsvﬂ F/(‘Tém,’l)”(),ﬂo,ﬁo,to)
i

x 6° [xli - x/Li(xi)m, V)0, Mo, Yo, to; t)]
X 5[UH - U\|L(x/0nl7 vHO)HO,ﬂOatO;t)]

X 5[/’L - .UJL(xE)mv’UHOHU‘Oa 1907t07t)]
X [0 — D (xg™, v)j0, po, Do, to; t) (mod 2m)]. (112)

The initial distribution functions F'(zg",vjo, to, Yo, to)
and F'(xg,v)0, Ho, Yo, to) in the transformed and orig-
inal coordinate systems are related to each other by
F’(x(}ﬂv|‘0,u07190,t0)d3x6 = F(xgavHO?,u'OvﬁOvtO)d?)an
which is rewritten as

17
F' (", v)j0 pt0, Do, to) = F(2,v)0, 10, Yo, to) ldet (83:2 >] .
0z
(113)
The variation 6F in the functional form of the distribu-
tion function F' due to the spatial coordinate transfor-
mation is defined by

F/(‘ria UH s My 195 t) = F(:L‘Z, UH s My 19’ t) + SF(:EZ? vH 5 1y 193 t)

(114)
Then, it is shown by using Eqgs. (111), (112), (113), and
(114) that 0F can be represented by

0

oxI

(). (115)
In the same way as seen in Sec. I1.B, the variations in

the functional forms of u, Uy s Uy, Up, P, A;, and g;;



due to the spatial coordinate transformation are denoted
by dug, duy,, duy, duy, 00, 0A;, and dg;;, respectively.
They can be represented by using the Lie derivative L
as

(116)

The expressions of d¢, 64;, and ggij in terms of the Lie
derivative are shown in Eqgs. (48) (52), and (54), respec-
tively.

C. Derivation of the momentum balance equation

We can use Eqgs. (80)—(83), (115), and (116) to derive
the action integral I, = Ipx+9Ipk in the transformed

spatial coordinates. Here, the variation 6Ipx in the ac-
tion integral due to the spatial coordinate transformation
is written as

5IDK—/t2dt/ o {ngngu (18 )]
(117)

where the vector density J f) x and the tensor density Tg}(
are defined by

j Jk/dg [ Fmv”bk)-i-feklm

w0 (p OLoc
X {CF“I B (F (8Am/3x”))}

oL
—eFE), + 2V, (ngm gGC>] , (118)
Im
and

i oL OL OL
T ]k 3, F GC cc _ 9Lcc
/dv [“’6’“ gklagu DA, k

. OLec (04 0A
9(0A;/0x1) \ 9zl 9zF )|’

(119)

respectively. In deriving Eq. (117), we also need to use
Egs. (94), (99), (101), and (102) obtained from the Eu-
lerian variational principle in Sec. ITT.A.

Note that the action integral Ip is invariant under the
spatial coordinate transformation and accordingly 0px
shown in Eq. (117) vanish for any &;. Then, the inte-
grands at the interior and boundary points on the right-
hand side of Eq. (117) must vanish separately. Thus, we
obtain J},, = 0 and T3, = 0. Substituting Eq. (83) into
Eq. (118), the momentum balance equation is obtained

12

from Jjij =0 as

é(mNV V) = EJ+1iMVB — VP
It I \[ kD1 i )
) (120)
where
Z\/VE/CZSUFV7 N‘/QH E/d3UFU”, (121)
and

NVF = /d% Fub+°

Ui 3v£
e </ S
X [—ubj + — { Uz); — (Ug lb b; }D (122)

are used. We see that the inertia term in the momentum
balance equation, Eq. (120), contains only the parallel
momentum component while the electric current eNV*
in the Lorentz force term consists of the guiding-center
current and the magnetization current?® as shown in
Eq. (122). The symmetric pressure tensor density P%
on the right-hand side of Eq. (120) is defined by

. L
P”E2/d3vFa Ge
agij

where PéjGL is given in the Chew-Goldberger-Low (CGL)
form,

= P’ car, T 7r/\ , (123)

Pl = /d%F[mvaW +puB(g" — b)),  (124)

and 7% is the non-CGL part written as

T = /dgv Frmo[b*(ug ), + (ug)’ V] (125)
Here, the perpendicular component of the guiding center
velocity is represented by (ug)’ = u’, —ufbyb’. The sym-
metric pressure tensor given by Eq. (123) with Egs. (124)
and (125) agrees with that given by Eq. (19) in Ref.?".
The CGL pressure tensor shown in Eq. (124) contains
the scalar (or isotropic) part, which represents back-
ground pressure, and the anisotropic part, the magnitude
of which is considered to be smaller than the background
pressure by the factor ~ p/L in the neoclassical trans-
port theory. Here, p and L represent the gyroradius and
the equilibrium gradient scale length, respectively. On
the other hand, the magnitude of the non-CGL pressure
tensor defined in Eq. (125) is regarded as ~ (p/L)?.

We next substitute Eq. (83) into Eq. (119). Then, the
other condition, T}y, = 0, derived from putting §Ipx =
0 in Eq. (117) can be written as

P =P + DY, (126)
where P% is the symmetric pressure tensor given by
Eq. (123) and P¥ is define by

8LGC’ . . e .
] 3 7 _ 3 7
P = /d v Fug, uF —/d vFur(mv“b]-l-EAJ).
(127)




Here, P is an asymmetric tensor density representing
the transport of the canonical momentum. The difference

D" between PY and P/ is written as

y ; OLgc
D =gi* [ BvF|-—5%A _
g / @ { o4, kT 904, Jor)

= /dng [fgu;AJ + mu b’ (ug ), + pB(g" — b’bJ)} . (128F ( o

IV. DRIFT KINETIC SYSTEM WITH
SELF-CONSISTENT FIELDS

In this section, not only the drift kinetic equations but
also the equations for self-consistently generated electro-
magnetic fields are treated as constituents of the govern-
ing equations of the extended drift kinetic system. The
Eulerian variational principle is used to present all the
governing equations and to derive the momentum con-
servation law satisfied by them. The energy conservation
law in the extended drift kinetic system is derived in Ap-
pendix C where the energy balance in the drift kinetic
system considered in Sec. III is also obtained.

A. Quasineutrality and Ampeére’s law combined with drift
kinetic equations

We here combine the quasineutrality condition and
Ampere’s law with the drift kinetic equations in order to
simultaneously determine the electromagnetic fields and
the distribution functions for all particle species. The
action integral Ip g for deriving all the governing equa-
tions is written as

tz t2
IDKFE/ dt LDKFE/ dt/ d3x EDKF, (129)
t1 t1 14

where the Lagrangian density Lpkp is given by

Lokr=)Y / Pv FyLocs — Y252 (130)
a

8w

Here, the subscript a represents the particle species. It is
seen from Eq. (130) that Lpxp contains the summation
of the drift kinetic Lagrangian densities [see Eq. (81)]
over all species and the magnetic energy density with
the minus sign.

We now virtually let the trajectories of particles for
all species, the electrostatic potential, and the vector po-
tential vary infinitesimally. Then, the resulting variation

dLoc (DAL A
ozt Ozk
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0Ipkr in the action integral Ip g is expressed as

to
5IDKF :Z/ dt/ ddl‘/ddv Fa [{(agifa)
e “h \4 u

d aLGCa i aLGCa
F (), () Jose = (555), e

OL¢g

N\ s+ OLgca (4 OLgca
w faki oY “ ), Ougy
to
cttnel + [t [ #2865 e, [0,
ty a
+0A; Zei/d3vFui S0
z - c a%ax

P 4“””}]
+0IpKkry,

(131)

where (d/dt), denotes the time derivative along the tra-
jectory of the particle of species a [see Eq. (93)], 0Ipkrp
represents the part which is written as the boundary in-
tegrals, and M), = g M" is the kth covariant component
of the magnetization vector. The kth contravariant com-
ponent of the magnetization vector is defined by

M= 2 [ (it P k) (132)

The magnitude of the second term in the integrand on
the right-hand side of Eq. (132) is smaller than that of
the first term by the factor ~ p/L. Except for this small
correction, Eq. (132) agrees with the well-known expres-
sion of the magnetization vector.*?

For each particle species a, the same motion equa-
tions as shown in Egs. (103)-(106) are derived from
6Ipkr/dxly = O0lpkr/0vjer = Olpkrp/dpes =
0Ipkr/d¥,r = 0 and accordingly the same collision-
less drift kinetic equation as Eq. (109) is obtained
for the gyrophase-averaged distribution function F, =
§ F,dv/(2m).

The remaining governing equations of the system,
namely, the quasineutrality condition and Ampere’s law
are derived from 0Ipxr/d¢d = 0 and 0Ipxr/dA; = 0,
respectively, as

D eaNa=) ea/d3v F,=0 (133)
and
P 8Bk 47 .
gkZZE — g 134
e 7 (134)

where the ith contravariant component of the electric
current vector density is defined by

. . . OM,
Ji= NV = o | @v Ful ik Z 2
za:e i za:e / VU Follg, + CE€ Oz
(135)
It is noted that the definitions of the density N, and the
flow velocity V! which appear in Egs. (133) and (135) are
already shown in Egs. (121) and (122), respectively.



B. The momentum conservation law

We now consider the transformation of the spatial co-
ordinates given by Eq. (43) again. Under the spatial
coordinate transformation, the variables (v, u,?) are
kept fixed as noted in Sec. III.B. In the same way as
in Egs. (115) and (116), the spatial coordinate transfor-
mation causes the variations in the distribution function
F, and the functional forms of (g, wy, , Uay, Uas) Which
are written as

- 0
oF, = N 1
— (R, (136)
and

=i _ g 08 Ouy, s ;OUay
5uam - utjuv 8(EJ - §]Wa 5ua’U” — _gj 8xﬂ )
- B Ougy, - B OUgs
gy = =&’ py OUgy = —& v (137)

The variations in ¢, A;, and g;; due to the spatial coor-
dinate transformation are shown in Egs. (48) (52), and
(54), respectively.

Using the expressions of these variations described
above, we find that the variation 6Ipgp in the action
integral Ipkr caused by the spatial coordinate transfor-
mation is written in the form,

(6T

to a
0IpKF —/ dt/ d*z [5] pkrt 35 oz
(138)

Here, JéKF is given by

6Pgot

JJDKF— ot + ViOi,

(139)

where Ptjot and G)Zt represent the total momentum vector
density and the total symmetric pressure tensor density
defined by

Lcca ,
pi, fgij/de’ 3 GC Z/dngamavaj’
(140)
and
Oip = O} + 67, (141)

respectively. It should be noted that, in Eq. (140), the
vector potential part of the canonical momentum does
not contribute to the total momentum because of the
quasineutrality condition, Eq. (133). The first term on
the right-hand side of Eq. (141) is the particle part of the
pressure tensor density defined by

oy = QZ/dS aLGC“

which consists of the CGL part,

=PI, 470, (142)

Pl =) / v Fy[ma 30 + uB(g" — b)), (143)
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and the non-CGL part,
7T’A] = Z/d% Famavu[bi(uax)i_ + (uaz) V], (144)

Equations (142), (143), and (144) are just the species
summation of Eqs. (123), (124), and (125), respectively.
The second term on the right-hand side of Eq. (141) is
given by

2
o =990 (_V9p2\ _ VI (B i pipi
f 8gij 8 47 2 ’
(145)
which represents the Maxwell stress tensor due to the
magnetic field with the opposfce sign. It is clear that
0y, 0y, @” Py, and 7 are all symmetric with
respect to the interchange of the superscripts ¢ and j.
The contravariant (i, j)-component T3 . » of the tensor
density appearing on the left-hand side of Eq. (138) is
written as
_ "
TgKF = Hzot @%t - katzét ) (146)
where the total asymmetric canonical pressure tensor

density IT, and the third-rank tensor density Fi’F are
defined by

y La oL
Y7, = ¢'* / F, A
=t |2 [ (vhe e ~ Vo)
0 VI o i VI 2
Aj———— (¥IB?)| —¢"¥XIB
Ve 5 A, o) (SW 9" 8n
= Z/d?’v Ful, (mava-j + efaAj)
C
ilm
€ _ i iV g
+——(Bn 4 M, )WIA — g < B (147)
and
. , oL
ijk — A5 | _ 3 a
R = |3 [ e
9 VY 2
— ([ ¥=B
t 90AL o) (87r
Eik)m )
= J —
A (B — AwM.), (148)

respectively. We can immediately see that F; ”t satisfies

ijk kji
Ftét = _Fto]t ) (149)

from which we have

ViVeF =0, (150)
in the same way as in Eq. (73)

Since the action integral Ipgp is invariant under
the spatial coordinate transformation, 6Ipxr written in
Eq. (138) vanishes for any &;. Thus, the integrands at the
interior and boundary points shown on the right-hand



side of Eq. (138) should vanish separately so we obtain
Jhep =0 and TH, » = 0. We find from Egs. (139) and
(146) that J%,KF = 0 represents the total momentum
conservation law,
OP;,,
ot

and T = 0 gives the relation of the total symmet-
DKF g y

+ V04, =0, (151)

ric pressure tensor density ©;, to the total asymmetric
. A ij
canonical pressure tensor density II,/,,

@gt = Hgt - VkFng (152)
Combining Egs. (150) and (152) shows
V0, = VI, (153)

We clearly see that the relations between the two types of
the pressure tensors shown in Egs. (152) and (153) take
the same forms as those given by Eqs. (77) and (78) in
Sec. I1.C, respectively.

It is noted that the momentum conservation law sim-
ilar to Eq. (151) was derived by Brizard and Tronci®®
for the guiding-center Vlasov-Maxwell system. In their
model, the electromagnetic fields are determined by the
full Maxwell equations including the Maxwell displace-
ment current so that their system contains such rapid
phenomena as the electromagnetic waves with the speed
of light and the Maxwell stress due to the electric field.
They also derived the symmetric pressure tensor includ-
ing the same particle part as given by Eqgs. (142)—(144)
although they modified the magnetization term in the
canonical momentum conservation law to transform the
asymmetric pressure tensor to the symmetric one. Thus,
their derivation is different from our direct derivation of
the symmetric pressure tensor by taking the variation
with respect to the metric tensor.

It is instructive here to consider momentum conserva-
tion law, Eq. (151), in the the equilibrium limit where
the distribution functions are assumed to take the local
Maxwellian form, F, = N, (m,/27T,)%/? exp[—(%mavﬁ—k
uB)/T,] (note that, precisely speaking, this local
Maxwellian distribution function is not the exact sta-
tionary solution but the zeroth-order one of the drift ki-
netic equation in the gyroradius ordering and that the
deviation from the local Maxwellian appears in the first-
order solution). Then, it is found from Eqs. (142)—(144)
that @;7 = Pg"l where P =3 N,T,. We now use the
conventional vector notation to rewrite Eq. (151) in the
equilibrium state (9/9t = 0) as

VP—L(VXB)XBZO, (154)
4
where Eqgs. (141) and (145) are used. In addition,
Ampere’s law in Eq. (134) is used to obtain the famil-
iar force balance equation in the magnetohydrodynamics
(MHD) equilibrium,

vrp=15xB, (155)
&
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where the current density is given by Eq. (135) as

J= Zea/d3v Fou,, +cV x M. (156)

This formula is called the magnetization law*?; the cur-
rent is represented by the sum of the flow of guiding
centers and the curl of the magnetization M [Eq. (132)],
which are given by the first and second terms on the
right-hand side, respectively. As shown in Ref.4?, it is
found from using the local Maxwellian distribution func-
tions that the sum of the perpendicular components of
the first and second terms on the right-hand side of the
above magnetization law gives the diamagnetic current,
(¢/B?*)(B x VP). Recall that the perpendicular com-
ponent (ug;), of the guiding center velocity and the
magnetization M are both produced from gyrations of
particles around magnetic field lines. Even though finite
gyroradius effects are not described by the guiding center
distribution functions Fy, alone, such effects are partly in-
cluded in (u4;)1 and M which help express the current
properly and recover the familiar force balance equation
in the MHD equilibrium as shown above.

V. EFFECTS OF COLLISIONS

We here investigate how collisions influence the mo-
mentum conservation laws and the momentum balance
equation shown in Secs. I1.C, III.C, and IV.B when the
collision term is added into the right-hand sides of the
Vlasov and drift kinetic equations. Effects of the col-
lision term added into the right-hand side of Eq. (35)
were already studied in Ref.** where it was shown how
to evaluate the correction of the energy and momentum
conservation laws due to the collision and other source
terms. According to the prescription given in Ref.#4, the
modified conservation laws are obtained from the original
ones with the time derivative of the distribution function
being replaced as

OF, . OF,
ot ot @

where IC, is the term added into the the right-hand side
of the kinetic equation to represent the rate of change
in the distribution function F, due to Coulomb collisions
and it may also include other parts representing external
particle, momentum, and/or energy sources if any.

When K, is added into the right-hand side of Eq. (35),
Eq. (157) is applied to the momentum conservation law
in Eq. (76), where the term 0P7 /9t contains Y., 9F, /0t
as seen from Eq. (66). Then, we find that the resulting
momentum balance equation is given by Eq. (76) with
making the replacement,

i - 8;;‘? - Za:/d% Ka (mavj + %’Aj) .

(157)

ot
(158)



In the case where K, is given by the Coulomb collision op-
erator (such as the Landau operator) which satisfies the
conservation laws of the particles’ number ( [ d*v K, = 0)
and the momentum (3}, [ d3vK,mqv? = 0), the veloc-
ity space integral vanishes in Eq. (158) and we have the
momentum conservation law in the same form as that for
the case of IC;, = 0. Also, it is noted in Ref.** that, even
if I, contains some external source parts other than the
collision term, the charge conservation law requires the
condition Y, e, [ d*vK, = 0 which implies the correc-
tion term proportional to A7 vanishes in Eq. (158).
Next, let us consider the case where K is added into the
right-hand side of the drift kinetic equation, Eq. (109),
for a given particle species, in which the subscript rep-
resenting the particle species is omitted. Here, K is re-
garded as gyrophase-averaged. Applying Eq. (157) to
this case, we find the momentum balance equations is
derived from Eq. (120) with the following replacement,

% (mMNVyt/) — % (mMNVyb') — /d% Koy

(159)
The parallel component of this derived momentum bal-
ance equation agrees with Eq. (18) in Ref.?” where its
perpendicular components are not derived. We see from
Eq. (159) that the effect of £ on the momentum bal-
ance equation for the single particle species is written as
J d®v Kmuyb?. When K is given by the Coulomb collision
operator, [ d3v ICmvaj represents the collisional transfer
of the parallel momentum from the other particle species
to the given species.

Since the momentum balance equation obtained by
applying Eq. (159) to Eq. (120) is always valid for the
distribution function which is the solution of the drift
kinetic equation including K, it is also valid for each
particle species even when the quasineutrality condition
and Ampere’s law are additionally imposed for the self-
consistent fields as in Sec. IV. Furthermore, we can use
Eq. (157) in Eq. (151) to see how the total momentum
conservation law for the drift kinetic system in the self-
consistent fields are modified by adding K, into the drift
kinetic equation for the particle species a. The resultant
momentum balance equation is given from Eq. (151) by
putting

0Py,
ot

oP}, 5 ,
— # - ;/d v Kamau)b’. (160)

This corresponds to the species summation of Eq.(159).
When K, represents the Coulomb collision operator in
the zero-gyroradius limit, it satisfies >, [ d®v Kamgv) =
0 and the momentum conservation law takes the same
form as in Eq. (151). Note that the momentum conser-
vation in Coulomb collisions is satisfied locally at the col-
liding particles’ position which differs from the guiding-
center position. Therefore, if the finite gyroradius effect
is taken into account, ), Ik d3v Kamqv) does not gener-
ally vanish for the gyrophase-averaged collision operator
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K. at the fixed guiding-center position, which includes
the classical transport processes.**

VI. CONCLUSIONS

In this work, Eulerian variational formulations for ki-
netic plasma systems are presented. As examples, the
Vlasov-Poisson-Ampere system and the drift kinetic sys-
tems are investigated. For the drift kinetic system, the
additional case is also considered in which the quasineu-
trality condition and Ampere’s law are included as sup-
plementary governing equations to describe the self-
consistent fields.

For all cases treated here, general spatial coordinates
are used to represent the action integrals and the gov-
erning equations which take the forms being invariant
under an arbitrary (time-independent) transformation of
spatial coordinates. Furthermore, the invariance of the
action integral under the spatial coordinate transforma-
tion is made use of to derive the momentum conserva-
tion laws and/or the momentum balance in which the
functional derivatives of the Lagrangians with respect to
the metric tensor components yield the proper symmet-
ric pressure tensors more directly than conventional tech-
niques using translational and rotational symmetries or
taking the moments of the kinetic equations.

It is also clarified how the momentum balances are in-
fluenced by adding the collision and/or external source
terms into the kinetic equations. Since the invariance
under the spatial coordinate transformations is valid in-
dependently whether the system has symmetric geometry
or not, the present formulation can be applied to kinetic
studies of plasmas confined in general magnetic configu-
rations including nonaxisymmetric systems such as stel-
larators and heliotrons.*> For example, the momentum
balance equation derived here for the drift kinetic sys-
tem are considered useful for verifications of accuracy
of numerical simulations using Littlejohn’s guiding cen-
ter equations to study neoclassical transport processes
in various magnetic geometries. The extension of the
present study to the gyrokinetic system is now in progress
and the results will be reported elsewhere.

ACKNOWLEDGMENTS

This work is supported in part by JSPS Grants-in-
Aid for Scientific Research Grant Number 16K06941 and
in part by the NIFS Collaborative Research Program
NIFS16KNTTO035.

Appendix A: MOMENTUM BALANCE IN THE
VLASOV-POISSON SYSTEM

We here consider the Vlasov-Poisson system, in which
the electrostatic approximation holds; the magnetic filed



is externally given as a time-independent one, By(x) =
V x Ag(x), and the electric field is written in terms of
the electrostatic potential ¢(x,t) as E(x,t) = —Vo(x,1).
The action integral Iy p to describe the Vlasov-Poisson
system is given by

t2 t2
Ivp = / dt Lyp = / dt / d*z Lyp, (A1)
tl tl v

where the Lagrangian density Ly p is written as
Lyp= Z/d?’v F (2", v, t)Lo + Lypy.  (A2)

Here, the single-particle Lagrangian L, for species a
is defined by Eq. (9) where the covariant components
Aj(z™,t) of the vector potential are replaced with the
time-independent ones Ag;(z™). The field Lagrangian
density Ly py is written in the general spatial coordinates
(2")i=1,2,3 as

g(a:")gij (™) Op(x™,t) Op(x™,t) .

8 ozt oI (A3)

ﬁvpf =

In the same way as in Sec. II.A, we now consider the
virtual displacement of the particle’s trajectory, for which
the variations in the particle’s position and velocity are
represented in the Eulerian picture as dz’ ,, and §v’ ;, re-
spectively [see Eq. (19)]. The electrostatic potential field
¢ is also virtually varied by d¢. However, since the vector
potential Ag; is fixed, its virtual variation 0 Ag; does not
appear. Then, the variation in the action integral Iy p is

given by
i oL,
5$aE { ( Ort >uam

to
STy p :Z/ dt/d3x/d3v F,
a t1
(4 OLq + 69, 9La
dt ), \ out, B\ ovi wos

+/:dt/d3x6¢ (—za:ea/d?’v Fa—£A¢>

+ 01v po, (Ad)

where 0l pp represents the part which is determined
from the values of 6z, and d¢ on the boundaries of
the integral region. In deriving Eq. (A4), Eqgs. (21) and
(22) are used. Imposing the condition that 6Iyp = 0
for arbitrary variations dz’ , dv’ and ¢ which van-
ish on the boundaries, the same equations as those in
Egs. (35) and (37) are obtained in the same manner as
shown in Sec. II.A. Recalling that, in the present case,
E; = —0¢/0z" because of dAg;/0t = 0, we confirm the
fact that Eqgs. (35) and (37) resulting from 61y p = 0 form
the governing equations of the Vlasov-Poisson system.
To derive the momentum balance in the Vlasov-
Poisson system, we next consider the infinitesimal spa-
tial coordinate transformation as shown in Eq. (43) of
Sec. II.B. In the same way as in Sec. I1.B, the variations
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in vi7 ¢7 Fa7 uzz7
transformation are denoted by 6v?, 6¢, 0F,, dul,,
Su’,, respectively, which are defined by Eqs. (45), (48),
(61), and (64). We should note that the spatial coor-
dinate transformation also causes the variations in the
metric tensor components [see Eq. (54)] as well as the
variation d Ag; in the functional form of the contravariant
component Ag; of the externally given vector potential

where §Ag; is written in the same form as in Eq. (52),

and u’, due to the spatial coordinate
!z, and

;0Ag;  0¢
J — — -Ag; = —Lc A i
Oxi Ozt ¢so
This is contrast to the case that § Ay; does not appear in
considering the virtual variations to derive the governing
equations of the Vlasov-Poisson system from 61y p = 0.
Using Eqs. (48), (54), (61), (64), and (A5), it is found

that the variation §Iy p in the action integral Iy p due to
the spatial coordinate transformation is written as

0Ag; = —¢ (A5)

_ t2 ; o g
olvp :/ dt/ d’x [fjJXJ/P + -(ij\z/jP)} , (A6)
th v 8171
where J‘j/ p and T‘i,jp are given by

; OP] ;0 oL iy 4
J e c J 3 a JT1Y J
Jvp =5 T Aoy % (Ea,/d UFaaA0k>+V1H Iy

(A7)

oPJ g .
— - Z,HZJ _ F]
5 +V %
and
iy y g . oL
7 — 1T i 3 a
T, =10% — 1% _A{)Eu:/d vFaaTOi7 (A8)

respectively. The conditions, §1/dz’, = 61/6v, = 0
and §1/6¢ = 0, from which the Vlasov kinetic equation
and Poisson’s equation are derived, are also used in de-
riving Eq. (A6). In Eq. (A7), P/ and P/ are the kinetic
and canonical momentum densities which are defined by

Pl = Z/d% Famavj,
a

(A9)

and

PJ Egij/d3vFa

oL 3 e
L J 4 22 A0
k. —Z/dvFa<maU + cAO)’
' (A10)
respectively, and FY represents the Lorentz force given

by
(0Ag OAn 5 o 0L,
i LI F,
g < oxt  Oxk ) Za:/d "9 Ao

Ejkl €a 3
:% Z?/dvFavk— BO[,

where By, = gi;B), By = (€9%/,/9)(0A0r/027), and
OL,/0Aor = (eq/c)v® are used. Using the continuity

Fiz

(A11)



equation derived from the Vlasov kinetic equation, we
can confirm that the right-hand side of the first line in
Eq. (A7) equals the last line. In addition, Egs. (A7) and
(A8) contain the symmetric pressure tensor 11/ and the
canonical pressure tensor I1% which are defined by

.. . 5‘La 5£vpf
7 =2 d*v F, —
<Za:/ " Dgis " 99ij
o ij .
_ Z/d&v Famavlvj + @ <g2EEELk — EEEi> ,

47
(A12)
and
. , - OL, 0¢ OLvpy
19 = g7k d3v Fv' - ,
¢ =9 <Z / VY Buk T ak 9(0¢) )
\/g ikl a(b 8¢
+ ’r 9 Bk ol
= Z/dgv Fat mavj + eiAé)
- c
G (g .
+ % (QEEEM — ELEi> , (A13)
respectively, where Ef = ¢YEy; and Ep; = —0¢/0z"
are used.

Because of the invariance of the action integral Iy, p un-
der the general spatial coordinate transformation, é/y p
vanishes for any &; , and accordingly, we have J7,p, = 0

and T‘i,j p =0 from Eq. (A6). The momentum balance in
the Vlasov-Poisson system is obtained from J{,, = 0 as

o, VI = F},

= (A14)

which agrees with that shown by Qin et al.3 Another
condition TVJP = 0 gives the relation between the sym-
metric pressure tensor II' and the canonical pressure
tensor I1%. The validity of T{/p = 0 is also easily verified
from Egs. (A8), (A12), (A13), and IL,/0An; = (eq/c)v’

Appendix B: ENERGY CONSERVATION IN THE
VLASOV-POISSON SYSTEM

In this Appendix, we consider the energy balance in the
Vlasov-Poisson system. The energy conservation laws for
the Vlasov-Poisson-Ampere system and the Boltzmann-
Poisson-Ampeére system are shown in Refs.?” and**, re-
spectively. In contrast to the case in Appendix A where
the momentum balance in the Vlasov-Poisson system is
derived, we do not need to use the general spatial coor-
dinate system here. So we now use only the Cartesian
coordinate system and represent three-dimensional vec-
tors in terms of boldface letters. Either a Lagrangian or
an Eulerian variational formulation can be used for the
derivation of the energy balance although we here follow
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the Eulerian formulation to treat the variation of the ac-
tion integral under translation in time. The infinitesimal
time translation is represented by transforming the time

coordinate as
' =t+e, (B1)

where € is an infinitesimal constant. The time translation
causes the variations §,/yp in the action integral Iy p,
where Iy p is defined in Eq. (A1) and 6;/y p is written as

ta
Mvp:/ /d3x aﬁ‘”’ +Z/d3
t1 1%

X 5tFa : La + Fa aL 6tuaw + aL 6tuav
6‘uam auav
L 0L OLvpy
+ 59 ¢>> } v V(MS} . (B2)

In this Appendix, we use §; - - - to represent the variations
associated with the time translation. The variations in

Uor = (ul)iz1,2.3, Uaw = (Uh,)iz1,2,3, ¢, and F, due to
the time translation are written as
auam aua'u (9
5tuax = —¢€ ot ' 5tua1; = —€ ot 6t¢ = 7687(223
(B3)
and
oF 0 0
OF = —e— =¢|— - (Fug, — - (Fug)|, (B4
= e = g (Pu) + 5 (Fuw)| (B9

respectively, where Eq. (6) is used. Then, substituting
Egs. (B3) and (B4) into Eq. (B2) and using Iy p/dxg =
0Ivp/éve =0 and 6y p/d¢ = 0, we obtain

t2 0fvp. O
5tIVP - / /Cl3 < v>E +87X 'QVPC); (B5)

where the canonical energy density £y p. and the canon-
ical energy flux Qv p. are defined by

_ 3 1, B
gvpc;/d v F, <2mv + e, Fynt (B6)
and
10
QVPc—Z/dBUF ( mu +€a¢)v—4a(f L
(B7)

respectively. Here, the electrostatic electric field is rep-
resented by E;, = —V¢.

Since the Lagrangian density Ly p defined in Eq. (A2)
for the Vlasov-Poisson system depends on time t only
through the functions u,,, F,, and ¢ which are all deter-
mined by the variational principle (see Appendix A), the
action integral Iy p given in Eq. (Al) is invariant under
the time translation. Therefore, 6.1y p vanishes for an
arbitrarily chosen integral region [¢1,t2] X V and accord-
ingly, the integrand in Eq. (B5) also vanishes. Thus, we
obtain the local energy conservation law written as

O&y re | 35VP
ot ot

0
= Qvpe = 67x -Qvp =0, (Bg)



where the energy density £y p and the energy flux Qv p
are defined by

_Z 3, L |EL|
5vp /d ’UF 787'{' y (Bg)
and
=y [ 1 .2 ¢ 9B
Qvp = . /d'UFa (2’/77/[} + €qP +47r ot '
(B10)

respectively. Poisson’s equation shown in Eq. (37) is also
used for deriving Eq. (B8). The local energy conservation
law shown in Eq. (B8) agrees with that obtained by Qin
et al.3®

Appendix C: ENERGY BALANCE IN THE DRIFT
KINETIC SYSTEM

The energy balance in the drift kinetic system is con-
sidered in this Appendix. The infinitesimal time trans-
lation shown in Eq. (B1) causes the variations §;Ipg in
the action integral Ipk, where Ipk is defined in Eq. (80).
and §;Ipg is written as

ta
5tIDK:/ /d%[ OLpK /d3 { (6LGC Sy
t1 1%
oL
;%tuﬁ) + 6,F - LGCH . (C1)
9

In the same way as in Appendix B, we here use d; - -+ to
denote the variations associated with the time transla-
tion. We also use the Cartesian coordinate system and
represent three-dimensional vectors in terms of boldface
letters. The variations in u, = (ul);=1,2.3, Uy, Uy, U,
and F' due to the time translation are written as

du, = 76%, Spuy, = ag:” ,
Oy, = 76%, Oruy, = 76%7 (C2)
and
P = e = | g (P 5 (P
+ ;u(FuM) 8819 (FUﬂ):| (C3)

respectively, where Eq. (88) is used. Substituting
Egs. (C2) and (C3) into Eq. (C1) and using dIpk /dxg =
0 [Eq. (94)], 5IDK/5UHE =0 [Eq. (99)], 5IDK/(5/AE =0
[Eq. (101)], and 0Ipk /39 = 0 [Eq. (102)], we can
rewrite ;Ipk as

to a
_ 3 -~ 3
0lpr = e/lt1 /Vda:{at</dvF5>
—+—E (/dsuFSum,)],
ox
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where the guiding center velocity u, is given by Eq. (103)
and & represents the energy of the single particle (or the
guiding-center Hamiltonian Hg ) defined by

OLcc

5EchEaT-ux+
€T

1
= imvﬁ + uB + eo.

Since the Lagrangian density Lpg = f d*v FLgo de-
pends on time ¢ through not only the functions (F, u, uy)
determined by the variational principle but also the given
electromagnetic fields, 6;Ipx does not vanish but it
should be equal to

) foe e (U5).

where (0Lgc/0t),, represents the derivative of Lgeo in
time ¢ with the variables (u;,uy) kept fixed. Then, the
local energy balance equation is derived from equating
Eq. (C4) with Eq. (C6) and noting that the integral re-
gion [t1,t2] x V can be chosen arbitrarily. Besides, in
the same way as explained in Sec. V, we can see how the
energy balance is modified when the term /C representing
collisions and/or external sources is added into the drift
kinetic equation. The resultant energy balance equation
including the effect of I is written as

8 3 a 3
8t(/CZUFS)—l—ax~(/dvFé'ugv)
_ / v (F5'+/ce>

where the rate of change in the particle’s energy is given
by

(C6)

(C7)

(C8)

8LGC _ 8¢+ 8B_Eu 8A*
ot ot HFar T o

The energy balance equation shown in Eq. (C7) agrees
with Eq. (11) in Ref.37.

We now consider the case of Sec. IV where not only
the distribution functions for all particle species but also
the electromagnetic fields are determined by the govern-
ing equations which obey the variation principle. Then,
the variation in the action integral Ipxr [see Eq. (129)]
under the time translation is written as

0.1 —/tQ/dSz eﬁEDKF—FZ/dB’U
tIpkF = . ot a

X {5tFa : LGCa + Fa <8LGCO« : 5tuax + %(stuaﬂ
8ua$ U9
OLGca OLGca o(B%/8m) 0(6:A)
96 Tt oA ‘5tA) } 200A/0r)  ox |
(C9)

where d;u,,, 01y, and 0, F, are given by using Egs. (C2)
and (C3) for the particle species a while d;¢ and 6; A are



given by

9¢ A
2 A=,
at, (St €

09 = —e ot

(C10)
In the same way as in deriving Eq. (C4), we use the con-
ditions for the particle’s trajectory given by Egs. (94),
(99), (101), and (102) for each species a as well as the
additional conditions for the self-consistent fields given
by §IDKF/6¢ =0 [Eq. (133)} and 6IDKF/5A1‘ =0
[Eq. (134)] in order to rewrite Eq. (C9) as

bz o€ 0
_ 3 tot .
0tlpxr = G/tl /vd x( 5 + % Qtot) , (C11)

where the total energy &;,; and the total energy flux Q¢
are defined by

1 B?
— E 3 2
5tot = . /d ’UFa (2m'l}| + /LB) + 87, (012)

and

1 c
Qtot = Z/dg’U Fa (27’7“]'2 + /.lB) Ugr + E(E X H)7

(C13)
respectively. Here, the magnetic intensity field H is de-
fined by H = B —47M with the magnetic induction field
B and the magnetization vector field M = (Mi)i:m,g
[see Eq. (132)] associated with the gyromotion of par-
ticles. It is noted that, in Eq. (C12), the contribu-
tion of the electrostatic energy does not appear because
>uf d3v Fyeq¢ = 0 holds due to the quasineutrality con-
dition. We also see from Eq. (C13) that the total energy
flux Q4o contains the kinetic energy flow due to the guid-
ing center motion and the Poynting vector (¢/47)(ExH).

Since the Lagrangian density Lpgxp for the present
system depends on time ¢ only through the distribution
functions and the electromagnetic fields which are de-
termined by the variational principle, the action inte-
gral Ipgp given in Eq. (129) is invariant under the time
translation. Therefore, noting that the integral region
[t1,t2] X V can be arbitrarily chosen in Eq. (C11), it fol-
lows that the integrand should vanish, which leads to the
local energy conservation law. Furthermore, when the
term /C, representing collisions and/or external sources
is added into the drift kinetic equation for each particle
species a, we can follow the procedure described in Sec. V
again to obtain the total energy balance equation,

° 1

82; L+ % cQiot = ;/dg’vlCa <2mv|2 +;LB> ,
(C14)

where the condition ) e, f d3v I, = 0 described after

Eq. (158) in Sec. V is used as well. The right-hans side of

Eq. (C14) vanishes when /C, represents the collision op-

erator which satisfies the conservation law of the kinetic

energy.
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