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A novel gyrokinetic formulation is presented by including collisional effects into the Lagrangian variational
principle to yield the governing equations for background and turbulent electromagnetic fields and gyrocen-
ter distribution functions which can simultaneously describe classical, neoclassical, and turbulent transport
processes in toroidal plasmas with large toroidal flows on the order of the ion thermal velocity. Noether’s
theorem modified for collisional systems and the collision operator given in terms of Poisson brackets are
applied to derivation of the particle, energy, and toroidal momentum balance equations in the conservative
forms which are desirable properties for long-time global transport simulation.

PACS numbers: 52.25.Dg, 52.25.Fi, 52.25.Xz, 52.30.Gz, 52.35.Ra, 52.55.Dy, 52.55.Fa

Profiles of background E × B and toroidal flows are
regarded as key factors which influence magnetic plasma
confinement although severe accuracy requirements for
theoretically predicting those flow profiles are sometimes
controversial among recent studies based on the low-flow
ordering1–5 in which the background flow velocity V0 is
assumed to be ofO(δvTi). Here, vTi is the ion thermal ve-
locity and δ ∼ ρTi/L≪ 1 represents the ordering param-
eter defined by the ratio of the ion thermal gyroradius ρTi

to the background gradient scale length L. On the other
hand, under the high-flow ordering V0 = O(vTi)

6–14, the
toroidal momentum transport equation which determines
the background radial electric field profile can be derived
with the same-order accuracy as the particle and energy
transport equations. As a modern theoretical technique,
the Lagrangian variational principle10,11,15,16 is used for
deriving the gyrokinetic equation to investigate transport
processes in magnetized plasmas. However, useful prop-
erties of this principle such as Noether’s theorem are orig-
inally applied only to collisionless systems15–17 although
our previous work18 clarifies how Noether’s theorem can
be modified to evaluate collisional effects on conserva-
tion laws. In this study, we present a novel formulation
of collisional and turbulent transport in toroidal plasmas
under the high-flow ordering by generalizing the previ-
ous study to derive governing equations for background
and turbulent electromagnetic fields and gyrocenter dis-
tribution functions which satisfy conservation laws for
particles, energy, and toroidal momentum.

We here use the gyrocenter coordinates denoted by
Za = (Zi

a)i=1,··· ,6 = (Xa, Ua, µa, ξa) where Xa, Ua, µa,
and ξa represent the gyrocenter position, parallel veloc-
ity, magnetic moment, and gyrophase angle, respectively.
The single-particle Lagrangian La for species a with the
mass ma and the charge ea is written as

La = Pc
a · Ẋa +

mac

ea
µaξ̇a −Ha, (1)

where ˙≡ d/dt represents the time derivative and Ha is
the single-particle Hamiltonian [see Eq. (2)]. The canon-
ical momentum is denoted by Pc

a ≡ (ea/c)A
∗
a and A∗

a is
defined by A∗

a ≡ A0 + (mac/ea)(Uab +V0), where A0,
b ≡ B0/B0, and V0 ≡ Vζ∇ζ ≡ V ζeζ are the vector po-
tential for the equilibrium magnetic field B0 = ∇×A0,
the unit vector parallel to B0, and the background
toroidal flow, respectively, and they are all regarded as
functions of (Xa, t). The contravariant basis vector in
the toroidal direction is given by eζ ≡ R2∇ζ with the
toroidal angle ζ and the major radius R = |∇ζ|−1. Under
the high-flow ordering, we have E0+V0×B0/c = 0 where
the zeroth-order electric field E0 is given by E0 = −∇Φ0

and the zeroth-order potential Φ0 is a flux-surface func-
tion6. Then, the component of V0 perpendicular to B0

is written as (V0)⊥ = VE0 ≡ (c/B0)(E0×b), and we ob-
tain V ζ = −c∂Φ0/∂χ where χ = −A0ζ gives the poloidal
flux of the equilibrium field B0 divided by 2π.

The single-particle Hamiltonian Ha is written as

Ha = eaΦ0+
1

2
ma|Uab+V0|2+µaB0+H

V
a1+eaΨa, (2)

where eaΦ0 is the dominant term of O(δ−1) while
1
2ma|Uab+V0|2 and µaB0 are ofO(δ0). The toroidal flow
V0 also induces the O(δ) part of Hamiltonian defined
by HV

a1 ≡ (mac/ea)µa[
1
2b · (∇ × VE0) + V ζWζ ], where

Wζ ≡ −(RB0)
−1(∇R ·∇χ)+ 1

2bζb ·(∇×b) is included to

take account of Littlejohn’s gyro-gauge-dependent term19

and reproduce the equations for the parallel acceleration
dUa/dt and the change rate of the kinetic energy cor-
rectly up to O(δ). The turbulent fields are included in
Ψa which is defined in terms of the first-order potential
fields ϕ1 and A1 as

Ψa ≡ ⟨ψa⟩ξa +
ea

2mac2
⟨
|A1|2

⟩
ξa
− ea

2B0

∂

∂µ
⟨(ψ̃a)

2⟩ξa , (3)

where ψa ≡ ϕ1(Xa + ρa, t) − c−1(V0 + v′
a) · A1(Xa +
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ρa, t) and ρa ≡ b × v′
a/Ωa. The velocity v′

a ob-
served from the rotating frame is written as v′

a =
Uab− [2µaB0/ma]

1/2[sin ξa e1+cos ξa e2], where the unit
vectors (e1, e2,b) form a right-handed orthogonal sys-
tem at (Xa, t). The gyrophase-average and gyrophase-
dependent parts of an arbitrary periodic function Q(ξa)

are denoted by ⟨Q⟩ξa ≡
∮
dξaQ(ξa)/(2π) and Q̃ ≡

Q− ⟨Q⟩ξa , respectively.
Now, the Lagrangian for the whole system is given by

L =
∑
a

∫
d6Z0Da(Z0, t0)Fa(Z0, t0)La|Za=Za(Z0,t0;t)+Lf ,

(4)

where
∫
d6Z0 ≡

∫
d3X0

∫∞
−∞ dU0

∫∞
0
dµ0

∫ 2π

0
dξ0 repre-

sents the integral with respect to the initial gyrocenter
coordinates, Fa(Z0, t0) is the particle distribution func-
tion at the initial time t0, and La|Za=Za(Z0,t0;t) is given
by Eq. (1) with Za = Za(Z0, t0; t) which represents the
gyrocenter phase space trajectory at the time t satisfy-
ing the initial condition, Za(Z0, t0; t0) = Z0. The Jaco-
bian is given by Da ≡ B∗

a∥/ma where B∗
a∥ ≡ B∗

a · b and

B∗
a ≡ ∇ ×A∗

a. The Lagrangian associated with electro-
magnetic fields is defined by Lf ≡

∫
d3X Lf with

Lf =
1

8π

[
|∇(Φ0 + ϕ1)|2 − |∇ × (A0 +A1)|2

]
+

Λ

4π
· (B0

− I∇ζ −∇ζ ×∇χ) + α

4πc
∇ ·A0 +

λ

4πc
∇ ·A1. (5)

The variational principle, δI ≡ δ
∫ t2
t1
Ldt = 0, yields

the gyrocenter motion equations and the equations for
the background and turbulent electromagnetic fields.
The Lagrangian undetermined multipliers Λ, α, and λ
are introduced in Eq. (5) to impose constraint conditions
B0 ≡ ∇ × A0 = I∇ζ + ∇ζ × ∇χ, ∇ · A0 = 0, and
∇ ·A1 = 0, respectively. The gyrokinetic Poisson equa-
tion is obtained from the condition δI/δϕ1 = 0 as17

∇ · (EL + 4πP(pol)) = 4π
∑
a

ean
(gc)
a , (6)

where the longitudinal part of the electric field E ≡
−∇(Φ0 + ϕ1) − c−1∂(A0 + A1)/∂t is denoted by EL ≡
−∇(Φ0 + ϕ1) ≡ E0 + EL1 (the subscript L represents
the longitudinal part of the vector), the gyrocenter den-

sity is given by n
(gc)
a (X, t) ≡

∫
d3v(gc) Fa(Z, t), and the

polarization density is written as17

P(pol) =
∑
a

ea

∞∑
n=0

(−1)n

(n+ 1)!

×
∑

i1,··· ,in

∫
d3v(gc)

∂n(DaF
∗
aρaρai1 · · · ρain)

∂Xi1 · · · ∂Xin

. (7)

Here,
∫
d3v(gc) ≡

∫
dU
∫
dµ
∫
dξ Da(Z, t) represents the

integral over the gyrocenter velocity space, ρai is the
ith Cartesian component of ρa, and F ∗

a ≡ Fa +

(eaψ̃a/B0)(∂Fa/∂µ). From δI/δΦ0 = 0, we obtain the

surface-averaged gyrokinetic Poisson equation,

⟨∇ ·EL⟩
4π

=
∑
a

ea

⟨
n(gc)a −∇ ·

[∫
d3v(gc)Fa

{
b

Ωa

×
(
Ẋa −V0 −

ea
ma

∂Ψa

∂V0

)
+

2cµ

eaΩaR
∇R

}
− ∇χ

|∇χ|2
∇ ·
(∫

d3v(gc)
cµFa

2eaΩa
∇χ
)]⟩

, (8)

where ⟨· · · ⟩ represents the flux-surface average. Equa-
tions (6) and (8) give two conditions to determine ϕ1 and
Φ0. Instead of Eq. (8), we can also use the toroidal mo-
mentum balance given later in Eq. (21). The equations
necessary for determining the other fields A0, A1, I, χ,
Λ, α, and λ are derived from the conditions δI/δA0 =
δI/δA1 = 0, δI/δI = δI/δχ = 0, ∇ ·A0 = ∇ ·A1 = 0,
and B0 ≡ ∇×A0 = I∇ζ +∇ζ ×∇χ.17

The gyrocenter motion equations is derived from
δI/δZa = 0 as

dZa

dt
= {Za,Ha}+ {Za,Xa} ·

ea
c

∂A∗
a

∂t
. (9)

Here, nonvanishing Poisson brackets between the gy-
rocenter coordinates are obtained from Eq. (1) as
{Xa,Xa} = c(b× I)/(eaB

∗
a∥), {Xa, Ua} = B∗

a/(maB
∗
a∥),

and {ξa, µa} = ea/(mac). We now consider the gyroki-
netic Boltzmann equation for the distribution function
Fa(Z, t),(

∂

∂t
+
dZa

dt
· ∂

∂Z

)
Fa =

∑
a

⟨Cab[Fa, Fb]⟩ξ + Sa ≡ Ka,

(10)
where Cab[Fa, Fb] represents the rate of change in Fa due
to Coulomb collisions between particle species a and b
and Sa is an external source term. Here, Fa is assumed
to be independent of the gyrophase ξ. When Ka = 0,
Eq. (10) reduces to the gyrokinetic Vlasov equation for
which Noether’s theorem can be applied to derive con-
servation laws of energy and toroidal momentum from
symmetry properties17. However, even if Ka ̸= 0, we can
still derive the energy and toroidal momentum balance
equations from Noether’s theorem modified using the cor-
respondence relation between ∂FV

a /∂t and ∂Fa/∂t−Ka

where FV
a and Fa represent the solution of Eq. (10) for

Ka = 0 and that for Ka ̸= 0, respectively18.
In Ref.18, a gyrokinetic collision operator is con-

structed under the low-flow ordering such that collisional
terms in the particle, energy and momentum equations
are represented by the divergences of the classical trans-
port fluxes. To obtain similar representations for the
high-flow case, we here follow Burby et al.20 and use Pois-
son brackets to write the collision operator as

Cab[Fa, Fb] = −αab

3∑
i=1

{xai, γabi }, (11)

where αab ≡ 2πe2ae
2
b lnΛ and lnΛ is the Coulomb loga-

rithm. Here, xai and γabi are the ith Cartesian compo-
nents of the particle position vector xa = Xa + ρa and
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the vector γab, respectively, the latter of which is defined
by

γab(Za) ≡
∫
d6ZbDb(Zb)δ[xa(Za)−xa(Za)]U(uab)·Aab,

(12)
with uab ≡ {xa,Ha} − {xb,Hb}, U(u) ≡ (u2I− uu)/u3,
and Aab ≡ Fa(Za){xb, Fb(Zb)} − Fb(Zb){xa, Fa(Za)}.
Then, we can show that the integral of the collision op-
erator with respect to the gyrocenter velocity variables
(Ua, µa, ξa) at the fixed gyrocenter position Xa = X does
not vanish but it is given in the divergence form as∫

d3v(gc)a Cab[Fa, Fb] = −∇ · ΓC
ab(X), (13)

where ∇ ≡ ∂/∂X and

ΓC
ab ≡ −αab

∫
d3v(gc)a {Xa,xa} · γab (14)

represents the classical particle flux due to finite gyro-
radii and collisions between the species a and b18. In ad-
dition, Eq. (11) can be used to derive the integral formu-
las representing the divergences of energy, toroidal mo-
mentum, and entropy fluxes at the gyrocenter position
Xa = Xb = X as∫
d3v(gc)a CabHa +

∫
d3v

(gc)
b CbaHb = −∇ · (QC

ab +QC
ba),∫

d3v(gc)a CabP
c
aζ +

∫
d3v

(gc)
b CbaP

c
bζ = −∇ · (ΠC

abζ +ΠC
baζ),

−
∫
d3v(gc)a Cab(logFa + 1)−

∫
d3v

(gc)
b Cba(logFb + 1)

= σC
ab −∇ · (JC

Sab + JC
Sba). (15)

Here, the energy flux QC
ab is defined by

QC
ab ≡ −αab

[∫
d3v(gc)a Ha{Xa,xa} · γab +

∞∑
n=0

(−1)n

(n+ 1)!

×
∑

i1,··· ,in

∂n
(∫

d3v
(gc)
a ρai1 · · · ρainρaγ

ab · {xa,Ha}
)

∂Xai1 · · · ∂Xain

 . (16)
The toroidal momentum flux ΠC

abζ and the entropy flux

JC
Sab are defined by the right-hand side of Eq. (16) with
Ha replaced by P c

aζ and −(logFa + 1), respectively, and

the entropy production rate σC
ab is given by

σC
ab(X) = αab

∫
d6Za

∫
d6ZaDaDbδ(xa − xb)δ(xa −X)

× (FaFb)
−1Aab ·U(uab) ·Aab. (17)

With the formula a ·U(u) · a = u−3[a2u2 − (a · u)2] ≥ 0,
Eq. (17) proves σC

ab ≥ 0 which represents the second law
of thermodynamics.
Now, using Eqs. (10) and (13), we obtain the particle

balance equation,

∂n
(gc)
a

∂t
+∇ · (Γ(gc)

a + ΓC
a ) =

∫
d3v(gc) Sa, (18)

where Γ(gc)
a ≡ n

(gc)
a u

(gc)
a ≡

∫
d3v(gc) Fav

(gc)
a , v

(gc)
a ≡

dXa/dt, and ΓC
a ≡

∑
b Γ

C
ab. Flux-surface-averaging

Eq. (18) gives

∂

∂t
(V ′⟨n(gc)a ⟩) + ∂

∂s
(V ′⟨(Γ(gc)

a + ΓC
a − n(gc)a us) · ∇s⟩)

= V ′
⟨∫

d3v(gc) Sa

⟩
, (19)

where s is an arbitrary label of a flux surface, V ′ ≡
∂V (s, t)/∂s, V (s, t) is the volume enclosed by the flux
surface, and us is defined by us ≡ ∂X(s, θ, ζ, t)/∂t with
the flux coordinates (s, θ, ζ). In the same manner as
in Ref.18, we use the modified Noether’s theorem and
the collision term in Eq. (11) to derive the energy and
toroidal momentum balance equations written as

∂

∂t
(V ′⟨E∗⟩) + ∂

∂s
(V ′ ⟨(Q− E∗us) · ∇s⟩)

= V ′
∑
a

⟨∫
d3v(gc) Sa(Ha − eaΦ0)

⟩
(20)

and

∂

∂t

(
V ′
⟨
P∥V ζ +

1

c

(
P

(pol)
L +

EL

4π

)
· ∇χ

⟩)
+
∂

∂s

[
V ′
{
Πs

∥V ζ +Πs
Rζ + (ΠC∗)s − 1

4π
⟨A1ζ(∇×B1) · ∇s⟩

− 1

4π
⟨EL1ζE

s
L1 +B1ζB

s
1⟩+

1

4πc

⟨
∂λ

∂ζ
As

1

⟩
− 1

c

∂χ(s, t)

∂t

⟨(
P

(pol)
L +

EL

4π

)
· ∇s

⟩
−
⟨
P∥V ζus · ∇s

⟩}]
= V ′

∑
a

⟨∫
d3v(gc) Sama(Ubζ + Vζ)

⟩
, (21)

respectively. In the particle, energy, and toroidal momen-
tum balance equations given by Eqs. (19)–(21), effects of
the time-evolving background magnetic field are included
through us · ∇s which represents the radial motion ve-
locity of the flux surface. The energy density E∗ and the
toroidal momentum density P∥V ζ are defined by

E∗ ≡
∑
a

∫
d3v(gc) Fa

(
ma

2

∣∣∣∣V0 + v′
a −

ea
mac

A1

∣∣∣∣2 +HV
a1

+
e2a
2B0

∂

∂µ

⟨
ψ̃a

(
2ϕ̃1 − ψ̃a

)⟩
ξ

)
−P(pol) · ∇Φ0

+
1

8π

(
|∇(Φ0 + ϕ1)|2 + |B0 +B1|2

)
, (22)

and P∥V ζ ≡
∑

a

∫
d3v(gc) Fama(Ubζ + Vζ), respectively.

In Eq. (21), Πs
∥V ζ ≡

∑
a⟨
∫
d3v(gc) Fama(Ubζ + Vζ)v

(gc)
a ·

∇s⟩ represents the radial flux of the toroidal momen-
tum due to gyrocenter motion and contains both colli-
sional and turbulent effects while the residual turbulent
and collisional fluxes of the toroidal momentum are de-
noted by Πs

Rζ and (ΠC∗)s, respectively, which are both
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caused by finite gyroradii18. In Eq. (20), Q contains col-
lisional and turbulent energy transport fluxes as well as
the Poynting energy flux. The classical energy flux QC∗

included in Q and the radial flux (ΠC∗)s of the toroidal

momentum are written as QC∗ ≡
∑

a(Q
C
a −eaΦ0Γ

C
a ) and

(ΠC∗)s ≡
∑

a⟨[Π
C
aζ+(ea/c)χΓ

C
a ]·∇s⟩, respectively, where

QC
a ≡

∑
b Q

C
ab and ΠC

aζ ≡
∑

b Π
C
abζ . Equations (19),

(20), and (21) have the external source terms on the
right-hand sides and take the conservative forms on the
left-hand sides where collisional effects are included.
To compare the present results with those from the

conventional recursive and WKB techniques6–8,12, we
represent an arbitrary physical variable Q by the sum
of the average and fluctuation parts, Q = ⟨Q⟩ens + Q̂,
where ⟨· · · ⟩ens represents the ensemble average. We

here write A0 = ⟨A⟩ens, A1 = Â, Φ0 = ⟨Φ⟩ens, and

ϕ1 = ⟨ϕ⟩ens + ϕ̂. The lowest-order distribution function
is given by fa0 ≡ Na(ma/2πTa)

3/2 exp(−ϵ/Ta), where
Na and Ta are flux-surface functions and ϵ ≡ 1

2maU
2 +

µB0 + ea⟨̃ϕ⟩ens −
1
2maV

2
0 .

6–8 The fluctuation part of Fa

is written as F̂a = −fa0ea⟨ψ̂a⟩ξ/Ta + ĥa. Then, the fluc-
tuation part of Eq. (10) is found to agree, to O(δ), with

the gyrokinetic equation for ĥa obtained from using the
WKB representation12 while the linearized drift kinetic
equation for the neoclassical transport theory 6–8 can be
derived from the average part of Eq. (10).
The ensemble-averaged particle, energy, and toroidal

momentum balance equations derived from Eqs. (19),
(20) and (21) are all consistent with the results from the
conventional recursive formulations12. As an example,
the ensemble average of Eq. (21) is written as

∂

∂t

(
V ′
⟨
ρm

(
1 +

v2PA

c2

)
Vζ

⟩)
+

∂

∂s

(
V ′

[∑
a

{
Πa −

⟨
ρm

(
1 +

v2PA

c2

)
Vζ(us · ∇s)

⟩}
− 1

4π

⟨⟨
∇s ·

[
⟨E⟩ens⟨E⟩ens + ÊLÊL + B̂B̂+ (∇× B̂)Â

]
· eζ
⟩⟩])

= V ′
∑
a

⟨∫
d3v Sama(Ubζ + Vζ)

⟩
, (23)

where ρm ≡
∑

a na0ma ≡
∑

ama

∫
d3v fa0, vPA ≡

R−1|∇χ|/(4πρm)1/2, and ⟨⟨· · · ⟩⟩ represents a double av-
erage over the flux surface and the ensemble. The trans-
port ordering ∂/∂t = O(δ2) and Sa = O(δ2) are used in
Eq. (23) where all terms are of O(δ2) and other higher-
order terms are neglected. The momentum flux Πa in-
cluding collisional and turbulent effects is written as

Πa =
cma

χ′

⟨
−naVζE(A)

ζ − ma

2ea

∫
d3v Cav

2
ζ

+

∫
d3v vζ

⟨
ĥa
∂ψ̂a

∂ζ

⟩
ens

⟩
, (24)

where E
(A)
ζ ≡ −c−1(∂A0/∂t) · eζ , Ca ≡

∑
b Cab, and

vζ ≡ eζ ·(V0+v′). The toroidal momentum balance given
by Eqs. (23) with (24), which describes the evolutions
of the toroidal flow and background radial electric field
profiles, agrees with the result from the recursive method
in Ref.12 except that, in Ref.12, the background field B0

is assumed to be stationary and us does not appear.

In summary, the Lagrangian variational principle and
the collision operator represented in terms of Poisson
brackets are combined for presenting the new gyroki-
netic formulation to derive governing equations of back-
ground and turbulent electromagnetic fields and gyro-
center distribution functions for toroidally rotating plas-
mas. They satisfy the particle, energy, and toroidal mo-
mentum balance equations which, except for the exter-
nal source terms, are written in the conservative forms
suitable for long-time global transport simulation21–23 to
pursue evolutions of the background density, tempera-
ture, and flow profiles. These balance equations contain
all classical, neoclassical, and turbulent transport fluxes
which, in the scale-separation limit, coincide with those
derived from conventional recursive formulations. Espe-
cially, in the present high-flow case, the background ra-
dial electric field can be determined from the toroidal
momentum balance equation of the second order, which
is in contrast with the low-flow axisymmetric case where
higher-order accuracy is required to determine the radial
electric field.
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