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Abstract  

Integrated physics analysis of plasma operation scenario of the compact helical reactor FFHR-c1 has been 

conducted. The DPE method, which predicts radial profiles in a reactor by direct extrapolation from the reference 

experimental data, has been extended to implement the equipartition effect. Close investigation of the plasma 

operation regime has been conducted and a candidate plasma operation point of FFHR-c1 has been identified 

within the parameter regime that has already been confirmed in LHD experiment in view of MHD equilibrium, 

MHD stability and neoclassical transport. 
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1. Introduction 

Helical systems with net current-free plasma have an intrinsic advantage over a steady-state operation 

and are expected to be an alternative to tokamak systems as a fusion DEMO reactor and a commercial 

power plant. In the past six years, conceptual design activity of the helical fusion reactor FFHR-d1 has 

been conducted based on the achievement of the Large Helical Device (LHD) experiment [1]. This 

design activity has shown the design feasibility of a 1 GWe-class (with a 3 GW-class fusion output) 

commercial-scale power plant with the LHD-type heliotron configuration and the ITER-relevant 

technology. Integrated physics analysis of the core plasma performance of FFHR-d1 has been conducted 

with consideration of MHD equilibrium, MHD stability, neoclassical transport and boot-strap current. 

This analysis has shown that a fusion gain of Q ~ 10 is achievable within the physics parameter regime 

that has already been confirmed in the LHD experiment in the case of the high magnetic field option of 

FFHR-d1, called FFHR-d1B [2].  

In the meantime, several innovative engineering design concepts have been proposed through the design 

activity. Among them, NITA coils [3], a pair of supplementary helical coils that have the minor radius 

of about 2 times that of main helical coils and have opposite-directed current of about −10%, provides 

a new prospect for the LHD-type helical reactor design. The NITA coils can enlarge the distance 

between the helical coils and the plasma, which is used as a space for the blanket modules, with almost 

no change in the plasma geometry. This enlargement indicates the design possibility of a smaller size 

reactor with keeping the blanket thickness. Recently, the target of a tokamak DEMO reactor has changed 

in both Japan and the EU. The target fusion output has been reduced to < 2 GW [4, 5]. In the EU roadmap 

of the Wendelstein stellarator line, an experimental machine called a burning stellarator has been 

proposed as an intermediate step before a stellarator commercial plant [6]. By considering such trends 

of the reactor design strategy, a new design option called FFHR-c1 has been proposed as an intermediate 

step to FFHR-d1. FFHR-c1 aims at a steady-state electric power generation over one year and satisfies 

the requirements on the Japanese DEMO reactor, i.e., electricity self-sufficiency, tritium self-

sufficiency, and practical availability, with as small a reactor size as possible. According to the 

parametric scan by the systems code HELIOSCOPE [7], design point with the major radius of the helical 

coils Rc = 10.92 m and the magnetic field at the winding centre of the helical coils Bc = 7.3 T has been 

selected as a candidate of FFHR-c1. HELIOSCOPE predicts that a fusion gain of Q > 10 and positive 
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net electric output can be achieved at this design point. However, HELIOSCOPE adopts a quite simple 

gyro-Bohm-type scaling for the estimation of the energy confinement of the core plasma, i.e., the same 

plasma performance is assumed if the value of Rc
4Bc

3 is kept. Therefore, the viability of Q > 10 

achievement should be examined in more detail. In order to conduct a detailed physics analysis at a 

specified design point, information regarding radial profiles of plasma density and temperature are 

necessary. In this study, the model used for the prediction of radial profiles in the previous study was 

extended to deal with the equipartition effect. Using the modified model, integrated physics analysis of 

the possible operation regime of FFHR-c1 has been conducted by considering critical physics 

conditions: MHD equilibrium, MHD stability and neoclassical transport. Brief reviews of the calculation 

model and prerequisites of the calculation are given in Section 2. The results of calculation are given in 

Section 3. Finally, these are summarised in Section 4. 

2. Calculation method 

2.1. Implementation of equipartition effect to the direct profile extrapolation method 

In order to predict radial profiles in a reactor, the method called Direct Profile Extrapolation (DPE) has 

been proposed [8]. In LHD experiment, gyro-Bohm type parameter dependence has been widely 

observed not only in global energy confinement but also in local relationship between the electron 

pressure and the electron density pe()∝ne()0.6 ( is normalised minor radius). This means that gyro-

Bohm normalised pressure profile  

 𝑝̂(𝜌) =
𝑝𝑒,exp(𝜌)

𝑃abs,exp
0.4 𝐵exp

0.8  𝑛𝑒,exp(𝜌)0.6  (1) 

is kept constant during a discharge. In Eq. (1), Pabs and B are the absorbed power and the magnetic field 

strength, respectively. The subscript ‘exp’ denotes that the parameters are obtained from the reference 

LHD experimental data. In the DPE method, the electron pressure profile of the reactor is estimated by 

using this normalised pressure profile  

𝑝𝑒,reactor(𝜌) = 𝛾DPE∗𝑝̂(𝜌) 𝑃abs,reactor
0.4 𝐵reactor

0.8  𝑛𝑒,reactor(𝜌)0.6,  (2) 

where the subscript ‘reactor’ denotes that the parameters are those of the reactor. DPE* in Eq. (2) is the 

confinement improvement factor related to the peakedness of the heating profile [9] 

𝛾DPE∗ = {
(𝑃dep/𝑃dep1)

avg,reactor

(𝑃dep/𝑃dep1)
avg,exp

}

0.6

,   (3) 

(𝑃dep/𝑃dep1)
avg

= ∫
𝑃dep(𝜌)

𝑃dep(1)

1

0
d𝜌  ,   (4) 

𝑃dep(𝜌) = ∫ 𝑃abs(𝜌′) (
d𝑉

d𝜌′)
𝜌

0
d𝜌′,   (5) 

where Pdep() is the deposition profile of the absorbed power. 

In the previous study for FFHR-d1, temperature equality (Te = Ti) was assumed and the total plasma 

pressure was assumed to be twice the electron pressure. However, alpha heating becomes predominant 

in the reactor condition with a high fusion gain. Regarding the auxiliary heating, electron cyclotron 

heating (ECH) is considered to be the most promising method for the following reasons: small influence 

on the blanket coverage because of its small port size, high core heating efficiency and capability of the 

protection of the device from fusion neutrons by using remote steering system. Therefore, electron 

heating will be dominant in any operation phase of FFHR-c1 and the temperature equality is not 

necessarily satisfied. To deal with such conditions with dominant electron heating, the DPE method has 

been modified as follows: 

𝑝𝑒,reactor(𝜌) = 𝛾DPE∗,𝑒𝑝̂(𝜌) 𝑃abs,𝑒
0.4 𝐵reactor

0.8  𝑛𝑒,reactor(𝜌)0.6, (6) 

𝑝𝑖,reactor(𝜌) = 𝛾DPE∗,𝑖𝑝̂(𝜌) 𝑃abs,𝑖
0.4 𝐵reactor

0.8  𝑛𝑖,reactor(𝜌)0.6, (7) 
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𝑃abs,𝑒 = 𝜂𝛼𝑃𝛼 + 𝜂aux,𝑒𝑃aux,𝑒 − 𝑃rad − 𝑃𝑒𝑖,  (8) 

𝑃abs,𝑖 = 𝜂aux,𝑖𝑃aux,𝑖 + 𝑃𝑒𝑖,  (9) 

where  aux,e and aux,i are absorption efficiency of the alpha heating power, auxiliary heating power 

to electrons and auxiliary heating power to ions, respectively. 

The terms of the heating power and the power loss PX (X = , aux, rad, ei) are calculated from the radial 

profiles QX(): 

𝑃𝑋 = ∫ 𝑄𝑋(𝜌)
d𝑉

d𝜌
d𝜌

1

0
. (10) 

The equipartition power from electrons to ions is calculated by 

𝑄𝑒𝑖(𝜌) =
1.5𝑘𝐵{𝑇𝑒(𝜌)−𝑇𝑖(𝜌)}𝑛𝑒(𝜌)

𝜏𝑒𝑖
𝜀 (𝜌)

,   (11) 

where kB and 
ei

are Boltzmann constant and 

electron-ion energy relaxation time, respectively. To 

confirm the validity of the developed model, 

comparison with the experimental results has been 

carried out. The experimental data is from the NB 

heated hydrogen discharges (PNBI ~ 4 MW) 

superposed by ECH of ~ 4.8 MW with a different 

electron density (corresponds to the shots #126570, 

126573, 126574 and 126576 at t = 4.64 s). In the 

calculation, the electron density profile and the 

normalised pressure profile were given as fitting 

functions of the experimental data. Confinement 

improvement factors DPE*,e and DPE*,i in Eqs. (6) and 

(7) were calculated from the profiles of NB heating 

power, EC heating power and equipartition power 

using Eq. (3). Regarding the NB heating profile, 

calculation results of FIT3D code [10] were used. 

Regarding the EC heating, perfect absorption of the 

injected power with the Gaussian profile that has a 

peak at the magnetic axis was assumed. The calculation results show a reasonable agreement with the 

experimental data as shown in Fig. 1.  

2.2. Prerequisites of the calculation 

In the design study of FFHR-d1, magnetic configuration with a high plasma aspect ratio with helical 

pitch parameter c = 1.2 (where c = mac/(ℓRc) and m, ac and ℓ are toroidal pitch number (m = 10 in this 

case), helical coil minor radius and the number of helical coils (ℓ = 2 in this case), respectively) and 

inward-shifted magnetic axis position (with the ratio between the magnetic axis position Rax and Rc is 

3.55/3.9) were selected for the following reasons. The first reason is that the space between the helical 

coil and the plasma increases with increasing the plasma aspect ratio. The second reason is the existence 

of the MHD equilibrium with a high beta. 3D equilibrium calculation by HINT2 code [11] has shown 

that MHD equilibrium with a similar shape of the flux surfaces to those in the vacuum condition can be 

 

Figure 1. Comparison of the electron 

temperature (red circles) and ion temperature 

(blue squares) calculated by the developed 

model (closed symbols) with the LHD 

experimental data (open symbols). 
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achieved by controlling the vertical field in the case 

of this configuration at the high beta up to 0 ~ 8%. 

In this study, the same magnetic configuration and 

the same reference experimental data as that in the 

previous study (#115787, t = 3.90 s) were selected. 

The gyro-Bohm normalised pressure profile of most 

of the LHD experimental data can be fitted by a 

single zero-order Bessel function   

𝑝̂(𝜌) = 𝛼0𝐽0 (
2.4𝜌

𝛼1
).   (12) 

In this case, 0 = 1.42 and 1 = 1.12. Using the 

normalised pressure profile, the relation between the 

electron temperature and the required amount of the 

auxiliary heating power is calculated with the 

following assumptions. Regarding the electron 

density, the very flat profile with a shoulder structure 

around  = 0.7 was assumed. This profile 

corresponds to that obtained by the calculation with 

the condition of no inward transport and particle 

source profile which is exactly the same as the 

ablation profile of the pellet calculated by the neural 

gas shielding (NGS) model [12]. Calculation with a 

typical reactor condition (e.g., ne0 ~ 2×1020 m−3, Te0 

~ 10 keV, the size and injection velocity of the 

pellets are 5 mm and 1.5 km/s, respectively) gives 

the radial position of the ablation front around  = 

0.7 as shown in Figs. 4 and 9 in Ref. [2]). Regarding 

the ion density profile, helium ash fraction of 5% is 

assumed and absolute value of the density of 

deuterons and tritons are given to be 0.45 times that 

of electrons at any radial position. No other impurity was considered in the calculation. The profiles 

used in the calculation are summarised in Fig. 2. Regarding the heating power, deposition profile of the 

alpha heating power is assumed to be the same as the alpha particle birth profile calculated from sthe 

radial profiles of the ion density and temperature. The absorption efficiency of the alpha heating power 

 = 85 % was assumed according to the result of alpha particle orbit calculation by MORH code for 

the high beta operation point of FFHR-d1 [8]. Assuming the use of ECH with the frequency adjusted to 

the magnetic field strength on the axis, the deposition profile of the auxiliary heating power to electrons 

is given as the Gaussian profile  

𝑃aux,𝑒(𝜌) =
𝑃ECH

√2𝜋𝜎2
exp (−

𝜌2

2𝜎2),  (13) 

with  = 0.05 and no heating power to ions is considered (Paux,i =0). As described in the above, existence 

of the MHD equilibrium with a similar shape of the magnetic flux surfaces to those in the vacuum 

condition has been confirmed by HINT2 code. It has also found that VMEC [13] calculation with a fixed 

boundary shape that obtained from the HINT2 calculation gives a result consistent with that by HINT2 

code. It means that the existence of MHD equilibrium is assured by VMEC calculation with a fixed 

boundary shape obtained from the HINT2 calculation. In the calculation of the radial profile of the 

heating power and the power loss, therefore, the volume of the flux surface at each radial position is 

obtained from the 3D equilibrium calculation by VMEC with a fixed boundary shape similar to that of 

high-beta equilibrium obtained in the previous study. Though ECH can generate anisotropic pressure 

and can affect the equilibrium [14], this effect is ignored in this study. As described in the next section, 

the central electron density and temperature considered as the operation regime of FFHR-d1 are ~2×
1020 m−3 and ~10 keV, respectively. The anisotropy will decrease at this parameter range. MHD stability 

 

Figure 2. Radial profile of (a) the electron 

and ion density, (b) the electron temperature, 

and (c) the gyro-Bohm normalised pressure 

used in the calculation. 
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is evaluated by Mercier index DI [15] and neoclassical transport is evaluated by GSRAKE [16] using 

the VMEC equilibrium.  

3. Calculation result 

Using the calculation model described in the previous section (Eqs. (3)–(13)), plasma operation regime 

of FFHR-c1 was examined. In the LHD experiment, plasma operation regime is limited mainly by MHD 

instability and energy confinement. For the former condition, it has been found that the operation regime 

of the LHD is limited when Mercier index DI at low order rational surfaces exceeds a certain value. In 

the case of the magnetic configuration of this calculation (high plasma aspect ratio and inward-shifted 

magnetic axis position), rotational transform, /2at plasma centre is larger than 0.5 and monotonically 

increases outward. Therefore, DI at m/n = 1/1 rational surface (corresponding to the radial position with 

/2 = 1), which is a typical rational surface at the plasma edge, is of particular importance in this 

calculation. In high-beta discharges in the LHD experiment, it has been observed that a low-n MHD 

mode that causes core pressure collapse emerges when DI at m/n = 1/1 rational surface exceeds 0.2–

0.25, and this condition corresponds to the theoretical prediction [17, 18]. On the other hand, the growth 

rate of the instability decreases with increasing magnetic Reynolds number [19], which becomes larger 

in the reactor condition. Some experimental 

results indicate that the MHD stability is 

maintained with further larger value of the 

Mercier index. Thus, we selected DI = 0.3 at 

m/n = 1/1 rational surface as an index of the 

MHD stability. For the latter condition, the 

estimated electron heat conduction 

coefficient corresponds to the 2-3 times of the 

prediction by the neoclassical theory 

according to the transport analysis of a typical 

LHD plasma [20]. Then we assume that the 

upper limit of the energy loss is estimated by 

neoclassical calculation with a deterioration 

factor of 2–3 here. In this study, the 

dependence of the operation regime on these 

critical physics parameters was analysed.  

Figure 3 shows the calculated ion 

temperature as a function of electron density 

and temperature. Though the difference 

between electron temperature and ion 

temperature becomes large in the region with 

low density and high temperature, 

temperature equality is almost satisfied 

within the region considered as a reactor 

condition: ne0 ~ 2×1020 m−3, Te0 ~ 10 keV. On 

the other hand, the required power to sustain 

the plasma with the same electron density and 

electron temperature becomes large 

compared with the case in which temperature 

equality is assumed, as shown in Fig. 4. 

Because no direct heating power to ions is 

considered (Paux,i = 0), total absorbed power 

to ions is equal to the equipartition power 

(Pabs,i = Pei). That is because the heating 

profile of ions by equipartition power has a 

broader profile compared with alpha heating 

 

Figure 4. The ratio of the required power calculated 

by Eqs. (3)–(13) to the required power calculated 

with the assumption of temperature equality.  

 

Figure 3. Core ion temperature of FFHR-c1 

calculated by the developed model as a function of 

electron density and electron temperature.  
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and auxiliary heating. As described by Eqs. 

(3)–(5), broader heating profile leads to 

smaller confinement improvement factor of 

ions, DPE*,i, resulting in the requirement of 

larger power to sustain the plasma with the 

same central ion temperature. Figure 5 shows 

the plasma operation contour (POPCON) 

plot. The contours of Mercier index DI at m/n 

= 1 rational surface, the maximum value in 

the radial profile of the ratio of the 

neoclassical transport loss to the volume 

integrated absorbed power (QneoS/Pabs)max 

(Pabs is the total absorbed power, i.e., the sum 

of alpha heating power and auxiliary heating 

power subtracted by Bremsstrahlung loss), 

the peak beta value, the fusion power and the 

fusion gain are plotted. If the operation 

regime is limited by the condition of DI < 0.3 

and (QneoS/Pabs)max < 0.5 (corresponds to the 

condition that the energy loss is twice that 

predicted by neoclassical theory), fusion gain 

of Q = 10 can be achieved in FFHR-c1 with 

ne0 ~ 2.3×1020 m−3 and Te0 ~ 11.5 keV. On 

the other hand, it has been observed that the 

achievable peak beta value 0 is limited due 

to the core pressure collapse especially in the 

condition with inward-shifted magnetic axis position. In this operation point with Q = 10, the calculated 

magnetic axis position is Rax/Rc ~ 3.67/3.9. In the LHD experiment, 0 is limited up to ~2.5% at this 

magnetic axis position [21]. This upper limit of the peak beta value is quite sensitive to the magnetic 

axis position. The magnetic axis position depends on the magnetic configuration (i.e., winding law of 

helical coils and current of poloidal coils in the case of the LHD-type heliotron devices). Therefore, a 

slight change in the winding law of helical coils or current of poloidal coils might provide a solution.  

4. Summary 

Integrated physics analysis of the plasma operation regime for an LHD-type compact helical fusion 

reactor FFHR-c1 was examined by detailed physics analysis tools with consideration of the equipartition 

effect. It has been shown that steady-state operation with a fusion gain of Q ~ 10 can be achieved within 

a plasma operation regime that is consistent with the LHD experiment in view of MHD equilibrium, 

MHD stability, neoclassical transport and alpha energy loss. The modified model also enables a 

quantitative analysis of the operation regime with various reference profiles and magnetic 

configurations. Although additional quantitative analysis of anomalous transport and boot-strap current 

as well as optimum selection of the magnetic configuration is required, this study shows the design 

feasibility of a compact LHD-type helical reactor as an intermediate step to the LHD-type helical 

commercial power plants.  
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Figure 5. POPCON plot at the steady-state operation 

point of FFHR-c1. Contours of the fusion power (thin 

solid green curve), the fusion gain (thick solid 

magenta curve), the peak beta value (dashed-dotted 

maroon curve), the Mercier index (broken blue 

curve) and the ratio of the neoclassical energy loss to 

the total absorbed power (dotted orange curve) are 

plotted. The region without shading corresponds to 

the operation regime with the physics conditions that 

have already been confirmed by the LHD 

experiment.  
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