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The self-consistent particle flows in a filamentary coherent structure along the mag-

netic field line in scrape-off layer (SOL) plasma (plasma blob) have been investigated

by means of a three-dimensional electrostatic particle-in-cell (PIC) simulation code.

The presence of the spiral current system composed of the diamagnetic and parallel

currents in a blob is confirmed by the particle simulation without any assumed sheath

boundary models. Furthermore, the observation of the electron and ion parallel ve-

locity distributions in a blob shows that those distributions are far from Maxwellian

due to modification with the sheath formation and that the electron temperature on

the higher potential side in a blob is higher than that on the lower potential side.

Also, it is found that the ions on the higher potential side are accelerated more in-

tensively along the magnetic field line than those on the lower potential side near

the edge. This study indicates that particle simulations are able to provide an exact

current closure to analysis of blob dynamics and will bring more accurate prediction

of plasma transport in the SOL without any empirical assumptions.

PACS numbers: 52.55.-s, 52.40.Hf, 52.65.Rr, 89.75.Fb
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I. INTRODUCTION

Early experimental studies of scrape-off layer (SOL) plasmas in magnetic confinement fu-

sion devices implied the existence of fast convective plasma transport to the main chamber

wall.1 Recent experimental investigations of boundary layer plasmas have observed intermit-

tent spikes of the plasma density fluctuation and intermittent filamentary coherent structures

along the magnetic field lines.2–5 Such observations are thought to be evidence of the convec-

tive transport across the magnetic field lines. The propagation mechanism of such coherent

structures, which are called “blobs,” was suggested6 and many theoretical, numerical, and

experimental investigations of the blob dynamics have been performed.7–21 However, most

theoretical and numerical studies are based on two-dimensional reduced fluid models and

closures for the parallel currents and kinetic effects (such as sheath formation between a

SOL plasma and a divertor plate, velocity difference between ions and electrons, and other

issues) are treated under some assumed and parameterized models in such fluid limits. Thus,

we have developed a three-dimensional electrostatic particle-in-cell (PIC) code with particle

absorbing boundaries in order to study blob dynamics.22 Preliminary PIC simulations have

shown that blobs propagate to the first wall across the magnetic field lines and that a blob

evolves into a mushroom-shaped object.23

In this study, we have investigated self-consistent particle flows in a blob by means of

a three-dimensional (three space coordinates and three velocity components) electrostatic

(electric field is solved and magnetic field is constant in time) PIC simulation code. In the

code, full plasma particle (electron and ion) dynamics including the Larmor gyration motion

for all particles in a blob and background plasma and the self-consistent electric field formed

by the charge density which is obtained from all particles are solved with the equation of

motion and Poisson’s equation, respectively.24

In Sec. II, we briefly describe the configuration and parameters of simulation. Also

we compare results of preliminary simulations with the fluid theory. In Sec. III, we present

results of the particle simulation. The results show that the self-consistent and self-organized

structures of potential, flows, and current are formed in a blob. We then investigate the

properties of particle velocity distributions in a blob. Finally, a summary of our work is

given in Sec. IV.
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FIG. 1. Configuration of the simulation. The slab simulation box shown on the left side describes

the scrape-off layer (SOL) of magnetic confinement devices (as shown on the right side).

II. SIMULATION METHOD

A. Configuration and parameters

We study self-consistent particle flows in a blob by a three-dimensional electrostatic

particle simulation code with full electron and ion dynamics. A slab geometry with x the

counter radial direction, y the poloidal direction, and z the toroidal direction (parallel to

the magnetic field B) is applied to the code, as shown in Fig. 1. The external magnetic field

strength B increases in the positive x direction as

B(x) =
2LxBLx

3Lx − x
, (1)

where Lx, Ly, and Lz are the system size in the x, y, and z directions and BLx is the

magnetic field strength at x = Lx. At z = 0, Lz (corresponding to the divertor plates),

and x = 0 (corresponding to the first wall) (i.e., shaded plates in Fig. 1), the particle

absorbing boundary where the electric potential ϕ is set as ϕ = 0 is placed. On the other

hand, periodic boundary condition is applied in the y direction. At x = Lx, the reflecting

boundary condition, in which ∂ϕ/∂x = 0, is used. Although the system has no poloidal flows

at the core side boundary under this boundary condition, we apply such a simple condition

in order to study fundamental mechanisms on blob dynamics.

The initial plasma density distribution which includes the blob and background plasma
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is given by

n(x, y) = n0 + nb0 exp

(
−(x− xb0)

2

2δ2bx
− (y − yb0)

2

2δ2by

)
, (2)

where n0 is the density of the background plasma, nb0 is the initial density amplitude

of the blob, and δbx and δby are the blob sizes in the x and y directions. Equation (2)

means that the blob is initially located as a column along the ambient magnetic field at

around (x, y) = (xb0, yb0). The initial temperature in the blob is equal to that of the

background plasma. Though the initial velocity distribution is given by Maxwellian, the

velocity distribution after the start of calculation will be self-consistently modified according

to sheath formation. This system has no particle and heat sources. Although the initial

density distribution (also density at any time) is not in equilibrium with the magnetic field,

this assumption is appropriate in the low beta limit.

The common simulation parameters are as follows. The number of spatial cells in the

system is set as Nx × Ny × Nz = 64 × 64 × 256 (in the preliminary simulations shown in

Sec. II B) or 64 × 64 × 512 (in the main simulation shown in Sec. III), where Nx = Lx/∆g

and ∆g is the grid spacing whose size is approximately equal to ρs in this study. Here, ρs

is defined as ρs = cs/Ωi, cs is the ion acoustic speed given as cs =
√

Te/mi, Ωi is the ion

cyclotron frequency at x = Lx, Te is the initial electron temperature, and mi is the ion

mass. There are 64 electrons and an equal number of ions per cell on the average. The

ion-to-electron mass ratio is mi/me = 100. The initial ion-to-electron thermal velocity ratio

is vT i/vT e = 0.05. Thus, the initial ion-to-electron temperature ratio is Ti/Te = 0.25. The

external magnetic field strength is given as Ωi/ωpi = 1 where ωpi is the ion plasma frequency

in the background plasma. The initial density ratio of the blob to the background plasmas

is nb0/n0 = 2.7. The initial blob size in the x direction is δbx = 4 ∆g. The initial position

of the blob is (xb0, yb0) = (3Lx/4, Ly/2). Using the above configuration and parameters,

we find that this blob is in the sheath-interchange (Cs) regime shown in Ref. 15 because

collisionless plasma is considered.

B. Comparison with fluid theory

We have performed some preliminary simulations in order to compare particle simulation

results with the fluid theory of blob dynamics. The simulation parameters are shown in

Table I. Here, ∆t found in this table is the time step. Figure 2 shows the time variations of
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TABLE I. Parameters of preliminary simulations.

∆g/ρs Ωi∆t δbx/ρs δby/ρs

Run 1 (•) 0.976 2.44× 10−3 3.90 2.93

Run 2 (▲) 0.968 2.42× 10−3 3.87 3.87

Run 3 (■) 0.953 2.38× 10−3 3.81 5.72

Run 4 (▼) 0.939 2.35× 10−3 3.76 7.51

Run 5 (♦) 0.913 2.28× 10−3 3.65 10.96
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FIG. 2. Time variations of position of the electron center of mass, xnec, on the x–y plane at

z = Lz/2. The circles (•), triangles (▲), squares (■), inverse triangles (▼), and diamonds (♦)

represent results of Runs 1–5, respectively.

xnec on the x–y plane at z = Lz/2. Here, xnec is the x component of position of the electron

center of mass, which is obtained in the area where the electron density, ne, is higher than

n0 + nb0/10. That is, xnec represents the position of a blob. Also, we show the relation

between the poloidal blob size, δby, and the blob propagation speed in the −x direction, vb,

in Fig. 3. Here, vb is calculated from xnec from Ωit = 80 to 140. The solid line in Fig. 3

represents the theoretical radial blob propagation speed given by

vb =
cs
2

(
ρs
δby

)2
Lz

B(xb0)

∂B(x)

∂x

∣∣∣∣
x=xb0

. (3)
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FIG. 3. Relation between the poloidal blob size, δby, and the blob propagation speed in the −x

direction, vb. The circle, triangle, square, inverse triangle, and diamond represent the observed

propagation speeds in Runs 1–5, respectively. The solid line shows the theoretical speed estimated

by the fluid model.

Equation (3) is obtained from the blob dynamics equation (see Eq. (4) in Ref. 20) and

the current closure of sheath–limited model (see Eq. (7) in Ref. 20). In the derivation of

Eq. (3), we assumed that the potential term and the poloidal derivative are approximated as

∼ vbB(x)δby and∼ δ−1
by , respectively. Figure 3 indicates that the observed radial propagation

speeds are in good agreement with the fluid model.

III. SIMULATION RESULTS

In this section, we now show simulation results where the number of spatial cells in the

system is set as Nx×Ny×Nz = 64×64×512. Although we have given a small value to Nz of

the preliminary simulations shown in Sec. II B to save the computation time and computer

resources, that of the simulation described in this section has a larger value in order to

enable a long calculation because particles escape to the end plate along the magnetic field

with a velocity of ∼ cs, i.e., the time of escape is estimated at ∼ Lz/2cs. Other parameters

(∆g, ∆t, δbx, and δby) are the same as those in Run 2 in Sec. II B. Thus, the system size is

given as Lx × Ly × Lz = 61.97 ρs × 61.97 ρs × 495.74 ρs.
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FIG. 4. Distributions of the electron density on the x–y plane at z = Lz/2 at various times. Each

distribution is averaged over 1.94 Ω−1
i .

A. Blob propagation

Figure 4 presents the electron density distributions on the x–y plane at z = Lz/2 at

various times. From Fig. 4, we find that the blob propagates to the first wall and that the

blob evolve to steepened shape and lower amplitude. The reason why the amplitude of blob

is decreased is that plasma particles escape to the end plates.

In Fig. 5, we show the time variation of position of the electron center of mass. Figure 5

indicates that the blob propagates in the radial direction with vb = 0.0551 cs which is

calculated from xnec from Ωit = 80 to 250 and that the poloidal velocity of the blob is quite

small.
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FIG. 5. Time variation of position of the electron center of mass. The thick and thin lines show

the x and y components, respectively

B. Structures in a blob

Figure 6 shows the electron density ne, potential ϕ, and current density j distributions

at t = 87.14 Ω−1
i when the calculation achieves the formation of self-consistent structures in

the blob and the concentric blob shape in the density is still kept. In Fig. 6 (a), the position

of maximum electron density is (xnemax, ynemax) = (39.99ρs, 31.08ρs), that is, the blob moves

for ∼ 6.5 ρs from the initial position. From Fig. 6 (b), we find that the potential in the

blob has maximum, ϕmax = 1.55 Te/e, and minimum, ϕmin = 0.77 Te/e, at (xϕmax, yϕmax) =

(42.81ρs, 36.98ρs) and (xϕmin, yϕmin) = (43.96ρs, 23.95ρs), respectively, and that the potential

difference between the maximum and minimum is ∆ϕ = 0.78 Te/e. This fact indicates that

the self-consistent dipolar potential structure is formed in the blob by the charge polarization

induced by the grad–B drift.

In Figs. 6 (c) and (d), we show the distributions of x (radial) and y (poloidal) components

of the current density. It is found that the diamagnetic current flows in the blob from

these panels. Although the current by the grad–B drift also exists since the potential

structure by the charge separation is created, it is indistinct in Figs. 6 (c) and (d) because

its absolute value is much smaller than that of the diamagnetic current. In the fluid theory,

the diamagnetic current and the current by the grad–B drift are given as

jd = Te

(
1 +

Ti

Te

)
B ×∇n

B2
, (4)

and

jg = −2 Te

(
1 +

Ti

Te

)
∇B ×B

B3
n, (5)
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FIG. 6. Electron density, potential, and current density distributions at t = 87.14Ω−1
i . Top panels

show distributions of electron density (a), potential (b), x (radial) component of current density

(c), and y (poloidal) component of current density (d) in the x–y plane (poloidal cross section) at

z = Lz/2. Bottom panel (e) presents distribution of z (toroidal) component of current density in

the z–y plane at x = 42.60 ρs. The solid contour lines in each panel indicate the electron density

distribution. Each distribution is averaged over 1.94 Ω−1
i .

respectively. From Eqs. (1), (2), (4), and (5), we estimate the maximum values of the y

components of those currents at

jdymax ≈ e n0 cs

(
1 +

Ti

Te

)
nb0

n0

ρs
δbx

, (6)

and

jgymax ≈ e n0 cs

(
1 +

Ti

Te

)(
1 +

nb0

n0

)
ρs
Lx

. (7)

In the case of this simulation, jgymax/jdymax ≈ 0.09. However, the net poloidal current con-

tributed by jgy along the radial direction is larger than that of jdy because of the integrations∫ x1

x0

jdy(y = yb0) dx = e n0 cs ρs

(
1 +

Ti

Te

)
nb0

n0

δbx
Lx

√
π

2
, (8)
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and ∫ x1

x0

jgy(y = yb0) dx = e n0 cs ρs

(
1 +

Ti

Te

)
×
(
x1 − x0

Lx

+
nb0

n0

δbx
Lx

√
2π

)
, (9)

where we assumed that n is given by Eq. (2) and that x0 ≪ xb0 ≪ x1. On the other hand,

the polarization current is approximated as

jpy ≈ e n cs
v2b
c2s

ρs
δbx

. (10)

Therefore, the polarization current is also much smaller than the diamagnetic current.

Figure 6 (e) represents the distribution of z (toroidal) component of the current density

in the z–y plane at x ∼ xϕmax. This panel demonstrates that the toroidal current streams

from the middle to the divertor plates in the higher potential side in the blob and that the

current in the lower potential side flows in the counter direction.

C. 3D flows and current structures

In order to understand three-dimensional structures of flows, we show three-dimensional

streamlines of the electric current, j, and the electron and ion fluxes, Fe and Fi, in Figs. 7–9.

Here, the flux and the current are defined by

Fs(x, y, z)

=

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
vfs(x, y, z, vx, vy, vz) dvx dvy dvz, (11)

and

j(x, y, z) =
∑
s

qs Fs, (12)

respectively, where the subscript s refers to electrons (e) or ions (i), v is the velocity, f is

the distribution function in the six-dimensional phase space, and q is the charge. In the

simulation, Fs is calculated by

Fs(xα, yβ, zγ) =
∑
i

vs,i S(xs,i − xα, ys,i − yβ, zs,i − zγ), (13)

where xα, yβ, and zγ are the components of position of grid whose number is (α, β, γ), xs,i,

ys,i, and zs,i are the components of position of a particle whose species and number are s
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FIG. 7. Streamlines of electric current at t = 87.14 Ω−1
i . The color map on streamlines represents

the absolute value of electric current. Here, the color contour on the back side represents the

electric potential distribution at z = Lz/2. Each quantity is averaged over 1.94 Ω−1
i . The region

displayed in the panel is 3/8 ≦ x/Lx ≦ 1, 3/16 ≦ y/Ly ≦ 13/16, 1/2 ≦ z/Lz ≦ 1. Thus, the end

plate is placed at the front boundary lines of the box (z = Lz).

and i, respectively, and S is the form–factor of the finite–size particle.24 Thus, Fs includes

almost all particle motions and drifts.

The electric current in the blob draws trajectories like two-dimensional vortices, as shown

in Fig. 7. Such a configuration is caused by the composition of the parallel current and the

poloidal current dominantly due to the diamagnetic current. The angle between the plane

on which the vortex exists and the x–y plane becomes larger as z closes to the edge.

Figures 8 and 9 indicate that the electron and ion fluxes stream to the divertor plate

with drawing spiral trajectories and that their z component is enhanced to ∼ n0cs as they

close with the divertor plate. Comparing Figs. 8 and 9, we find that the ratio of the toroidal
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FIG. 8. Streamlines of electron flux at t = 87.14 Ω−1
i . The color map on streamlines represents

the absolute value of electron flux. Here, the color contour on the back side represents the electron

density distribution at z = Lz/2. Each quantity is averaged over 1.94 Ω−1
i . The region displayed

in the panel is the same as that in Fig. 7. The flux streams to the divertor plate (i.e., from the

back to the front sides in the panel).

component to other components of the ion flux is larger than that of the electron flux near

the edge. This is because the electron diamagnetic drift speed is faster than that of the ion

(i.e., the electron temperature is larger than the ion temperature). Furthermore, end points

of streamlines of the electron and ion fluxes tend to concentrate in the lower and higher

potential sides, respectively. This difference causes the inclination of the current vortex

mentioned above.

To confirm the presence of the net poloidal current in the blob, which includes the dia-

magnetic, grad–B drift, and polarization currents, we calculate the net poloidal currents Iy0
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and Iy1 from the simulation result, where

Iy0(z) =
2

πδbxδby

×
∫ z

Lz/2

∫ Lx

xl

jy(x, ynemax − Ly/2, z
′) dx dz′, (14)

and

Iy1(z) =
2

πδbxδby

∫ z

Lz/2

∫ Lx

xl

jy(x, ynemax, z
′) dx dz′, (15)

that is, (πδbxδby/2) Iy1(z) means the total of the poloidal current jy(x, ynemax, z
′) which pass

through the area xl ≦ x ≦ Lx, Lz/2 ≦ z′ ≦ z (see the schematic diagram in Fig. 10 (a)).
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FIG. 10. Net poloidal and toroidal currents as functions of z. The panel (a) shows the schematic

diagram of Iy0, Iy1, and Iz. The thick and thin lines in the panel (b) represent Iy1 and Iy0,

respectively. The panel (c) presents the Iy1 − Iy0 and Iz denoted by the thick and thin lines,

respectively. Here, t = 87.14 Ω−1
i .

Also, (πδbxδby/2) Iy0(z) is considered as the total of the poloidal current on the background

plasma. Here, xl = Lx/4. In Fig. 10 (b), we show Iy1(z) and Iy0(z) at t = 87.14 Ω−1
i . From

the curve of Iy1(z) which is represented by the thick line, it is found that the net poloidal

current flows from the lower to the higher potential sides. This net current is thought to be

brought mainly by the grad–B drift current because of the discussion in Sec. III B.

Then, we compute the net toroidal current in the lower potential side,

Iz(z) = − 2

πδbxδby

∫ ynemax

ynemax−Ly/2

∫ Lx

xl

jz(x, y, z) dx dy, (16)
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i.e., (πδbxδby/2) Iz(z) is the total of the toroidal current jz(x, y, z) that penetrates the area

xl ≦ x ≦ Lx, ynemax −Ly/2 ≦ y ≦ ynemax, as shown in the schematic diagram in Fig. 10 (a).

Thus, Iz(z) is considered as the averaged toroidal current density on the lower potential side

in the blob. The curve of Iz(z) is also presented as the thin line in Fig. 10 (c). The thick line

in Fig. 10 (c) represents Iy1(z)− Iy0(z). The panel (c) in Fig. 10 and the current continuity

equation indicate that the toroidal current from the divertor plates is almost converted to

the poloidal current. Also, the magnitude of the averaged toroidal current density is ∼ en0cs

near the edge.

D. Kinetic properties in a blob

Although we have reduced kinetic particle data to the macroscopic (fluid) quantities

and mentioned their properties regarding flows on the blob in the above discussion, we

should see some kinetic properties in order to investigate kinetic effects on blob dynamics.

Then, we calculate the parallel velocity distributions on various parts in the blob. The

thick line in Fig. 11 (a) represents the electron parallel velocity distribution on the higher

potential side around z = Lz/2 (averaged in the partial volume: 9/16 ≦ x/Lx ≦ 13/16,

1/2 ≦ y/Ly ≦ 11/16, 63/128 ≦ z/Lz ≦ 65/128). On the other hand, the thin line in Fig. 11

(a) shows that on the lower potential side around z = Lz/2 (averaged in the partial volume:

9/16 ≦ x/Lx ≦ 13/16, 5/16 ≦ y/Ly ≦ 1/2, 63/128 ≦ z/Lz ≦ 65/128). Although both lines

in Fig. 11 (a) indicate the loss of the fast particles, it is found that the electron temperature

on the higher potential side is higher than the lower potential side. We obtain the effective

parallel electron temperature on the higher and lower potential sides as Tez+ = 0.70 Te and

Tez− = 0.58 Te, respectively, from these distributions. Since the electrons on the higher

potential side are more strongly prevented from running away to the divertor plate by the

electric potential, this temperature difference arises.

Figure 11 (b) shows the ion parallel velocity distributions on the higher potential side

(the thick line) and the lower potential side (the thin line) around z = Lz [averaged in the

partial volumes: (9/16 ≦ x/Lx ≦ 13/16, 1/2 ≦ y/Ly ≦ 11/16, 63/64 ≦ z/Lz ≦ 1) and

(9/16 ≦ x/Lx ≦ 13/16, 5/16 ≦ y/Ly ≦ 1/2, 63/64 ≦ z/Lz ≦ 1), respectively]. Figure 11

(b) indicates that the ions on the higher potential side are accelerated more intensively than

those on the lower potential side. From these distributions, we get the averaged ion parallel

15
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FIG. 11. Electron (a) and ion (b) parallel velocity distributions at t = 87.14 Ω−1
i . The panel (a)

shows the electron distributions around z = Lz/2, while the panel (b) presents the ion distributions

around z = Lz. Here, the thick and thin lines represent the distributions on the higher and lower

potential sides, respectively, in each panel.

velocities on the higher and lower potential sides as ⟨viz+⟩ = 1.06 cs and ⟨viz−⟩ = 0.97 cs,

respectively. Because the sheath potential difference on the higher potential side is larger

than that on the lower potential side, this property appears. Furthermore, we obtain the

effective parallel ion temperatures on each side as Tiz+ = 0.28 Ti and Tiz− = 0.25 Ti.

IV. SUMMARY AND DISCUSSION

In this paper, we have studied self-consistent particle flows in a plasma blob with a first

principle 3D calculation including particle parallel dynamics and Larmor motions. The

16



simulation has self-consistently demonstrated the formation of the potential structure, the

particle flows, the electric current, and the temperature structure in a blob without any

artificial sheath boundary models. In most of the previous works about blob dynamics,

the current closure in a blob is provided from simple and ideal models.20 However, this

study shows that particle simulations have the possibility of giving an exact current closure

to the investigation of blob dynamics. Furthermore, the temperature structure and the

velocity difference between the higher and lower potential sides (i.e., velocity shear) have

the probabilities of inducing blob spin13 and some kind of instability,25,26 respectively. These

problems are topics for future research.

Though we show the obvious self-consistent structures in a blob in this paper, we will

investigate temporal dynamics of coherent structures (e.g., some instabilities) in the following

works. Although the code does not include any additional collision models (e.g., additional

Coulomb collision,27,28 collision with neutrals,29 etc.) and the smaller mass ratio mi/me,

the smaller connection length Lz, the smaller temperature ratio Ti/Te, the larger grad–B

than those in typical SOL, and the identical temperatures between the blob and background

plasma are applied in the present work in order to investigate fundamental kinetic dynamics

caused by particle motion, we plan to study the dependence on those parameters and perform

more specific simulations where the parameters of real devices, additional collision models,

and detachment dynamics will be employed. The direct comparison between the simulation

results and experiments (including consideration of methods to compare) is also an important

topic in future work.
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