
Copyright IEEE. The final publication is available at IEEExplore via https://doi.org/10.1109/DAPPS49028.2020.00010.

A Study on --DApps Characteristics

Ilham Ahmed Qasse

RISE / OpenUAE Research Group

University of Sharjah

Sharjah, United Arab Emirates

iqasse@sharjah.ac.ae

Josef Spillner

Service Prototyping Lab

Zurich University of Applied Sciences

Winterthur, Switzerland

josef.spillner@zhaw.ch

Manar Abu Talib

RISE / OpenUAE Research Group

University of Sharjah

Sharjah, United Arab Emirates

mtalib@sharjah.ac.ae

Qassim Nasir

RISE / OpenUAE Research Group

University of Sharjah

Sharjah, United Arab Emirates

nasir@sharjah.ac.ae

Abstract—Repositories are important indicators for liveness
and maturity in software development communities. They host
user-facing applications or re-usable artefacts to build such
applications. While rarely decentralised themselves, they are
important for hosting code for decentralised applications. In
this study, we investigate public repositories dedicated to de-
centralised applications, or --DApps, executing on heterogeneous
blockchain platforms. The study is the first to report aggregated
metrics on the repository-level and application-level character-
istics including --DApps metadata, associated smart contracts
composition and inconsistencies between repositories in both
schema and content. The main contributions are data acquisition
tools and an evolving public dataset along with an initial analysis
to derive key metrics in a reproducible way. Insights provided
encompass the dominance of Ethereum, the absence of smart
contracts for a significant portion of applications, and unused
application advertisement potential by absence from popular
repositories. The insights can be exploited by developers to
build high-quality and highly popular applications and set up
corresponding quality checks.

Index Terms—decentralised computing, cloud computing,
blockchain, repository, artefacts

I. INTRODUCTION

Software application development has shifted to interfac-

ing convenient sets of application programming interfaces.

In recent years, most of these APIs have evolved around

managed platforms, primarily in the domain of cloud comput-

ing where Platform-as-a-Service (PaaS) has become a major

paradigm spanning development, deployment and operation of

applications [GDB19]. Following the trend towards smaller

computing units, flavours such as Function-as-a-Service (FaaS)

have emerged in which each function is executed in a rarely

configurable environment in isolation but connected to stateful

backends. The resulting simplicity and re-use factor resonates

well with developers.

More recently, blockchains have been proposed as at-

tractive application platforms in a similar vein. On top of

Research partially supported by a Young Scientists Mobility Grant ’Quality
Assessment of Digital Artefacts for Decentralised Software Applications’ of
the Swiss Leading House for the Middle East and North Africa, with funds
of the Swiss State Secretariat for Education, Research and Innovation (SERI).

blockchains, small decentralised applications are engineered

in conventional or chain-specific programming languages, ex-

ecuted in isolation apart from a stateful backend, and made

available for potential re-use [GD19]. Most global cloud

service providers introduced Blockchain-as-a-Service (BaaS or

occasionally BCaaS), fully managed on behalf of the users,

primarily the application providers. Similar to PaaS, the BaaS

model allows to access the blockchain services without the

need to maintain the blockchain networks and nodes [OM19].

This lowers the cost required to access the technology and

provides better scalability. However, BaaS models are subject

to centralisation where any transactions will first go through

the blockchain services host platform, thus reducing the ad-

vantages typically associated with decentralised platforms. The

pricing and business models are also different, including per-

node hosting cost and network traffic fees. Still, cloud and

blockchain technologies are increasingly fused, such as using

cloud elasticity for proofs [PNBT19] and emulation of large-

scale public blockchains in few-node clouds [WAYZ19]. This

raises questions on how to develop blockchain applications

with the same re-use and simplicity advantages known from

modern cloud delivery models.

A DApp uses the same technology and programming lan-

guages in traditional applications to build the application front

end. One difference is that the DApp uses smart contracts to

access the blockchain as stateful backend while the traditional

application uses APIs to access the database or other backend

services.

We study five public repositories for DApps in this paper

to produce knowledge on this application model. We also

investigate the quality and other characteristics of the available

DApps in the market nowadays. Moreover, we will discuss

the key challenges in developing DApps. The remainder of

the paper is organised as follows. Section 2 discusses the

background of DApps. The research method is provided in

Section 3. Section 4 gives an inside about the extracted data

and metrics on a repository, application and smart contract

level. Finally, Section 5 concludes the paper.



II. BACKGROUND ON DAPPS

A. Application Model

After defining the goal of the application and identifying the

actors, the system is divided into two parts, the smart contract

system and the front end of the decentralised application.

Building the smart contract system includes defining the

required data structure, messages, actors and assessing the

security of the system. The front end of the DApp consists

of designing the UI, architecture, models and the database

structure. The main characteristics of the DApp are [LXCL17]:

• DApps are multiparty, where more than one party are

participating in the application.

• DApps do not require trusted authority.

• The DApps data are immutable and non-repudiable.

• The DApps data are transparent, but they are not confi-

dential.

In the following, the typical lifecycle of a DApp (design,

development, deployment and operation) will be briefly pre-

sented.

a) Design and architecture: Lu et al. [Lu19] and Wang

et al. [WYW+18] discussed the architecture of blockchain

ecosystems. They have divided them into layers. From the

proposed blockchain architecture, Zeng et al. [ZZ19] defined

the architecture of the DApps into three layers, as shown

in Figure 1: Service layer (blockchain platform), contract

layer (transaction code referring to blocks), application layer

(frontend).

Fig. 1: DApp architecture – refinement of [ZZ19]

DApps can run single or multiple smart contracts to achieve

specific functionality. Bartoletti et al. [BP17] and Daniel et

al. [DG19] introduced the different design patterns of smart

contracts. Bartoletti et al. [BP17] concluded that 80% of smart

contracts in Ethereum [W+14] at least used one of the des-

ignated design patterns such as oracle pattern or termination

pattern. The data from our study will allow for data-driven

identification of further patterns and similarities.

b) Development: DApps can be engineered in differ-

ent programming languages and be deployed and executed

on multiple blockchains. The most common combination is

represented by DApps written in Solidity, a JavaScript-like

language, executing on the Ethereum blockchain. Not all

the blockchain platforms support the concept of libraries,

inheritance and other complex user-defined types. Ethereum

supports importing libraries which are calling other predefined

smart contracts and reuse them in the current smart contract.

Libraries in Ethereum are stateless where internal variables are

not stored. However, deploying libraries will add to the cost of

implementing the smart contract or the DApp. The metadata on

the DApp level does not differ much from the one in the web

applications, as it contains the page’s content description, as

well as keywords that are linked to the content. DApps showed

some vulnerabilities and issues in their code, causing damage

[PD+18]. The vulnerabilities are due to that the developers

are not mature enough to write a bug-free smart contract.

Parizi et al. [PD+18] and Bartoletti et al. [BP17] showed that

Solidity programming language has many bugs and security

issues compared to other programming languages such as Pact

[pac] and Liquidity [liq]. However, Solidity has much support

and used by many developers. Angelo and Salzer compared

27 tools for analysing smart contracts in Ethereum [AS19],

and improved tooling can be expected.

c) Deployment: In contrast to PaaS, where providers

determine the deployment and runtime cost, Ethereum charges

a certain amount of gas in proportion to the DApp’s public

portion size, encompassing public functions but not private

or constructor functions. The cost of deploying the DApp

varies from one blockchain platform to another. Unlike the

cloud application, it does not cost anything to keep the DApp

in the blockchain. In general, there is a required cost to

deploy, update and use the DApp in most of the blockchain

platforms. In Ethereum, the developer needs to pay for the

gas cost to deploy the DApp. Furthermore, the users need

to pay the gas cost to use the application, except for read-

only operations. In Ethereum, gas is a transaction fee that

measured based on the work required for action to perform.

Unlike Ethereum, in EOS [io218], the DApp users do not

need to pay for using the application. However, the DApp

owner needs to pay to receive storage, bandwidth and CPU for

their DApp. Some blockchain platforms have fixed costs for

deploying DApps such as Neo blockchain [NEO]. BaaS helps

the developers to build their applications without setting up the

blockchain network and save them the maintenance that the

nodes require regularly. The cost needed to set up the network

is reduced using the BaaS. Moreover, BaaS models provide

pre-configured infrastructures and networks, which will reduce

the development time. However, it does not save the cost of

deploying and using the application.

d) Operation: Many DApps support different interaction

features using message-based protocols [DG19]. The sup-

ported interaction features are transactions, events, message

calls and delegate calls. Transactions are used by blockchain

users (clients) to create or use existing smart contracts. If the

transaction is approved, it will be added to the blockchain

and can be accessed publicly. Events are used as response to

a transaction to send information to the outside blockchain.

Once the transaction is available publicly, the event will also

become publicly accessible. Message calls are an interaction

protocol where contracts can send messages and interact with

each other. The calls are locally executed in the blockchain



node without cryptocurrency. Delegate calls are used by the

contracts to deploy and use libraries. These calls are also lo-

cally executed in the blockchain node without cryptocurrency.

B. Application Repositories

For any software application technology, there is a need

to find the most suitable application based on the functional

and non-functional requirement. Marketplaces, hubs, applica-

tion stores and software repositories have already proliferated

for mobile phone applications as well as for microservices

in cloud environments. Consequently, repositories are also

used to categorise and advertise DApps. In addition to the

smart contract implementation, they are characterised by

developer-provided and runtime-augmented metadata, includ-

ing a human-readable name, author and development status

information, social media contacts, associated transactions and

potentially a logo or representative image. Among the most

popular DApps repositories are the following ones:

1) State of the DApps with around 2100 DApps, primarily

for Ethereum but also for minority target platforms

including EOS and Steem.

2) DApp Radar with around 2800 DApps, primarily again

for Ethereum but also EOS and TRON among others.

3) DApp.com with around 2700 DApps from seven major

blockchain platforms including TomoChain, IOST and

Blockstack.

4) DApp Store which is a store for only Ethereum DApps.

Currently, the store has over 1500 Ethereum DApps.

5) Universal DApp Store (App.co) with around 310 DApps

from multiple blockchain platforms.

The numbers correspond to the last observation on Nov 29th

2019.

III. RESEARCH METHOD

Given the activity on blockchain platforms, cloud

blockchain offerings and application repositories, a systematic

study will assist software developers in making appropriate de-

sign and implementation decisions. We follow an information-

centric applied research path by combining public data scrap-

ing over a long period of time with automated statistical

inference and manual extraction of findings. Our research

aims at three levels of information: repositories, applications

(DApps) and implementation units (smart contracts).

Figure 2 demonstrates the flow of acquiring the insights into

DApps by scraping repositories, aggregating and correlating

raw metrics, and performing additional manual analysis. The

public repositories for the DApps are dynamic websites which

load data after executing JavaScript code. Scraping these

websites necessitates to automate the interaction with the

browser to perform tasks like scrolling and hovering. We

have used Selenium software to automate the interaction, an

open-source automation testing software that can be used to

automate web pages and applications for testing purposes, in

repository-specific Python scripts. After extracting the data

from the repositories, the scripts analyze the extracted data

and generate plots and figures that describe them. Moreover,

the script will compare newly extracted data with previous

records to highlight the changes and define newly added and

removed DApps.

Fig. 2: Repositories website scraping flow

IV. DATA AND METRICS

All study scripts1 and raw results2 from which the following

metrics and findings have been derived are publicly available.

A. Repositories Analysis

We investigate five public DApps repositories (State of the

DApps, DApp Radar, DApp.com, DApp Store and Universal

DApp Store) to gain insight into the production and con-

sumption trends as well as technical characteristics of a broad

set of DApps and associated smart contracts. Table I shows

the different public repositories and the number of DApps

in each covered major blockchain platform. Minor platforms

(WAVE, ThunderCore, VeChain, NEO, Waves, xDai, ONT

among others with only one repository presence) are omitted

from the table. The dominance of Ethereum as blockchain

platform of choice for most application developers, accounting

for about 74.5% of all DApps, is evident. It should be noted

that while State of the DApps does not contain multi-platform

listings, DApp Radar includes 2.7% and DApp.com 1.9%

multi-platform DApps.

Additionally, owing to the dominance of Ethereum, we

investigate the authoritative Ethereum database on smart con-

tracts, Etherscan, to gain insights into smart contract imple-

mentations. Our preliminary analysis focuses not only on the

volume of entries per repositories, but also on the consis-

tency. Comparing the two largest ones, ’DApp Radar’ and

’DApp.com’, we note that the intersection of unique entries

1DApps Scraping: https://github.com/serviceprototypinglab/dapps-scraping
2DApps Dataset: https://github.com/serviceprototypinglab/dapps-dataset



Media

Social

Art

Game

High risk

Finance

OthersTools

Games

Gambling

Exchange

MarketplacesWallet

Insurance

Exchanges

Energy

Governance Property

Storage

Development

HealthSecurity

Identity

collectiblesothermarketplaces high-risk games exchangesgambling

Fig. 3: Differences in categorisation between the ’DAppRadar’, ’State of the DApps’ and ’DApp.com’ websites

TABLE I: Public DApps repositories and blockchain platforms

[on Aug 16th 2019]

Blockchain platform SotD DR Dcom DS UDS

Ethereum 1855 1557 1384 1516 309

EOS 255 462 336 37

Steem 81 86 29

TRON 407 385 6

LOOM 8 8

IOST 30 26

is 1699, or 62.3/64.6% relative to the respective totals. This

means that in each of the repositories, around one third of

the DApps listed on the respective other one is missing,

and a multi-repository abstraction is necessary to gain a full

view of available DApps. When including the third-largest

repository, ’State of the DApps’, the intersection set in DApps

is 9.4%. This means that nine out of ten DApps are not

properly registered in all of these repositories. Moreover, the

use of categories is not consistent. For 1015 DApps of the

intersection set of only the two largest repositories (59.1%),

different categories are used. Fig 3 shows the mismatches

where thicker associative lines mean more DApps are affected.

The red categories represent ’DApp Radar’, the blue ones

’State of the DApps’, and the green ones ’DApp.com’. Dark

blue are categories for DApps appearing in ’State of the

DApps’ but not ’DApp Radar’ despite the latter’s larger set of

entries. Evidently, there is a high correlation between ’Game’

and ’Games’, but also a high split between ’collectibles’,

’gambling’ and ’high-risk’ to the same ’Games’ category. This

means that often users will not find the right application even

when using multiple portals due to habits on which keyword to

use for searching. Moreover, assuming the microservice view

on DApps to foster re-use of the underlying smart contract

services, software developers will equally be affected.

B. DApp Analysis

In this section, we discuss the extracted data from the

repositories. The informal schema for metadata provided in

most of the repositories are shown in Table II. We note

that the comparison between repositories is thus restricted to

metadata keys present in all or at least a qualified majority of

repositories. Based on the acquired metadata per repository

across blockchain platforms, we have transposed the view

to metrics per platform across repositories to identify the

platform activity. Specifically, we have calculated the total

number of users, transactions, and the total amount of volume,

as shown in Table III. We have only covered the blockchain

platforms that have more than 20 DApps to eliminate bias. The

resulting observation is that there is no proportional relation

between the metrics per platform. Although Ethereum has

the most significant number of DApps, the number of daily

active users and the number of transactions daily are very low

compared to the other platforms. The number of active daily

users and transactions in EOS are the largest.

We also studied the current DApps status which represents

the maturity level specifically for the ’State of the DApps’

repository, although it relies on self-proclamation by submit-

ters. Figure 4 illustrates the status. Most DApps are marked as

’live’ or usable in commercial operation. The remaining codes

are ’prototype’, ’work in progress’ (WIP), ’beta’, and ’con-

cept’, with no clear semantics on when which status should

be given. Additional codes include ’broken’ and ’abandoned’

which clearly imply unsuitability for production use but with-

out visible reasoning. Therefore, a deeper analysis in terms of

DApps behaviour and reliability would be needed to automate

setting a meaningful status. Further, we have aggregated the

different categories of DApps within a single repository, again

’State of the DApps’, thus notwithstanding the mentioned

inconsistencies between repositories. Figure 5 demonstrates

the number of DApps in each major category. The dominance

of leisure applications (games, gambling, social) over business

applications (finance, exchanges, governance) is apparent.

C. Smart Contract Analysis

We also investigated DApps at the level of smart contracts,

independently from the repositories, by extracting all the

blocks in the Ethereum blockchain and filtering the created

contracts from these blocks. The size of the extracted contracts

is 23.5GB. Table IV demonstrates the structure of the dataset.

We have cleaned the dataset from any irrelevant smart contract

such as duplicate, destroyed and token exchange contracts. The

count after cleaning is 102,010 as of Aug 16th 2019.



TABLE II: Public DApp repository metadata

Attribute Description

DApp Name The name of the DApp

Category The category of the DApp

Balance Total amount of cryptocurrencies held in the DApp

Users The number of daily unique active users

Volume Total amount of cryptocurrencies transferred to the DApp within the last 24 hours or 7 days

Transactions The number of transactions made to the DApps within the last 24 hours or 7 days

Development activity The number of events generated by the project repository in GitHub in the last 30 days (such as code pushes, pull requests, issues, etc)

Status The status of the DApp

Date The launch date of the DApp

Social media links The social media links provided by the DApp

TABLE III: Quantitative analyses for the extracted data

Blockchain platform # of DApps Users Volume Transactions

Ethereum 1,863 23,832 34,701,610 33,803

EOS 452 29,574 11,564,355 2,531,519

TRON 384 19,803 12,319,051 391,005

Steem 87 16,676 16,582 238,596

IOST 27 5,296 149,512 208,441

Fig. 4: DApps maturity status

Moreover, we studied the smart contracts of the top 10

ranked DApps, according to DApp Radar on the basis of

number of users, on Ethereum in order to combine the analysis

of the blockchain network with the one of the repository. The

total number of contracts in these DApps is 58, or 5.8 contracts

per DApp, although with significant deviation. The top-ranked

DApp, ’My Crypto Heroes’, has 25 smart contracts. Drilling

down further into the smart contracts requires either direct

access to the code, which is provided by some DApps, or

decompilation. Etherscan offers built-in decompilation based

on the Panoramix decompiler, bytecode to UML transforma-

tion and other tools, although the decompilation is limited and

lossy. Either way, further analysis is then made possible on the

code level, referring to the Solidity programming language

in the case of Ethereum-based smart contracts. The average

number of actual language-level contracts (classes in object-

Fig. 5: Number of DApps in each category

TABLE IV: Ethereum smart contracts dataset

Name Description

Address Address of the contract

Bytecode Bytecode of the contract

Function-sig# 4-byte function signature hashes

is erc20 Whether this is an ERC20 contract

is erc72 ... and/or an ERC721 contract

Block

timestamp

Timestamp of the block where this

contract was created

Block number ... and corresponding block number

Block hash ... and corresponding hash sum

oriented programming, resulting from using separate .sol files)

in each contract block is around 10, again with deviations

such as 24 for the first smart contract (0x946048A7) of ’My

Crypto Heroes’. Some contracts contain libraries. However, the

number of imported libraries is small, as they cost more gas.

Each language-level contract is again subdivided into a number

of functions as lowest-level units of execution apart from



Fig. 6: Number of smart contracts for each blockchain plat-

form

Fig. 7: Number of smart contracts in each DApp

individual statements. Beyond the Ethereum-specific analysis

we have studied the total number of smart contracts across all

DApps for each blockchain platform, as shown in Figure 6.

We also investigated the related number of smart contracts in

each DApp, again across all platforms. Figure 7 demonstrates

that most of the DApps have far less than 10 contracts.

The assumption here is that along with rising maturity of an

application, the implementation gains complexity, yet many

DApps are for test purposes or in initial development. It also

shows that many of the existing DApps do not have any smart

contracts, which is surprising given the general architecture of

the DApps, but can equally be explained with the immaturity.

V. CONCLUSION

In this study, we have explored five public repositories of

DApps and the characteristics of the available DApps, and dis-

cussed the challenges of developing and using DApps. DApps

are not mature enough to be adopted like traditional applica-

tions. There is a massive difference in active users between

DApps, traditional and cloud applications. This discrepancy is

due to the lack of promotion tools and the lower user expe-

rience provided by blockchain platforms. This decreases the

number of potential users and developers. Moreover, there are

some issues in blockchain application performance, scalability

and security. A negative trait common to blockchain, cloud and

cloud-hosted blockchain applications is the vast heterogeneity

of technologies, which is typical for a pre-consolidation phase.

As future direction for DApps, blockchain platforms should

address scalability and performance issues to reduce the entry

barrier by not requiring full initial replicas. Moreover, the

platforms should improve the available user experience and

provide more promotion tools for developers, leading to a

higher integration with repository websites.

REFERENCES

[AS19] Monika Di Angelo and Gernot Salzer. A survey of tools for
analyzing ethereum smart contracts. In IEEE International

Conference on Decentralized Applications and Infrastructures,

DAPPCON 2019, Newark, CA, USA, April 4-9, 2019, pages
69–78, 2019.

[BP17] Massimo Bartoletti and Livio Pompianu. An empirical analysis
of smart contracts: platforms, applications, and design patterns.
In International conference on financial cryptography and data

security, pages 494–509. Springer, 2017.

[DG19] Florian Daniel and Luca Guida. A service-oriented perspective
on blockchain smart contracts. IEEE Internet Computing,
23(1):46–53, 2019.

[GD19] Luca Guida and Florian Daniel. Supporting reuse of smart con-
tracts through service orientation and assisted development. In
IEEE International Conference on Decentralized Applications

and Infrastructures, DAPPCON 2019, Newark, CA, USA, April

4-9, 2019, pages 59–68, 2019.

[GDB19] David Gesvindr, Jaroslav Davidek, and Barbora Buhnova. De-
sign of scalable and resilient applications using microservice
architecture in paas cloud. In Proceedings of the 14th Intl.

Conf. on Software Technologies, ICSOFT 2019, Prague, Czech

Republic, July 26-28, 2019, pages 619–630, 2019.

[io218] Eos.io technical white paper v2. https://github.com/EOSIO/
Documentation/blob/master/TechnicalWhitePaper.md, 2018.

[liq] liquidity Programming Language. https://www.liquidity-lang.
org. Accessed: 2019-07-15.

[Lu19] Yang Lu. The blockchain: State-of-the-art and research chal-
lenges. Journal of Industrial Information Integration, 2019.

[LXCL17] Sin Kuang Lo, Xiwei Xu, Yin Kia Chiam, and Qinghua Lu.
Evaluating suitability of applying blockchain. In 2017 22nd

International Conference on Engineering of Complex Computer

Systems (ICECCS), pages 158–161. IEEE, 2017.

[NEO] NEO White Paper. http://docs.neo.org/en-us/. Accessed: 2019-
07-15.

[OM19] Md Mehedi Hassan Onik and Mahdi H Miraz. Performance
analytical comparison of blockchain-as-a-service (baas) plat-
forms. In International Conference for Emerging Technologies

in Computing, pages 3–18. Springer, 2019.

[pac] Pact Programming Language. https://docs.pact.io. Accessed:
2019-07-15.

[PD+18] Reza M Parizi, Ali Dehghantanha, et al. Smart contract pro-
gramming languages on blockchains: An empirical evaluation
of usability and security. In International Conference on

Blockchain, pages 75–91. Springer, 2018.

[PNBT19] Matthias Pohl, Abdulrahman Nahhas, Sascha Bosse, and Klaus
Turowski. Proof of provision: Improving blockchain technology
by cloud computing. In Proceedings of the 9th Interna-

tional Conference on Cloud Computing and Services Science,

CLOSER 2019, Heraklion, Crete, Greece, May 2-4, 2019, pages
523–527, 2019.

[W+14] Gavin Wood et al. Ethereum: A secure decentralised generalised
transaction ledger. Ethereum project, 151(2014):1–32, 2014.

[WAYZ19] Xinying Wang, Abdullah Al-Mamun, Feng Yan, and Dongfang
Zhao. Toward accurate and efficient emulation of public
blockchains in the cloud. In Cloud Computing - CLOUD 2019

- 12th International Conference, Held as Part of the Services

Conference Federation, SCF 2019, San Diego, CA, USA, June

25-30, 2019, Proceedings, pages 67–82, 2019.

[WYW+18] Shuai Wang, Yong Yuan, Xiao Wang, Juanjuan Li, Rui Qin, and
Fei-Yue Wang. An overview of smart contract: architecture,
applications, and future trends. In 2018 IEEE Intelligent

Vehicles Symposium (IV), pages 108–113. IEEE, 2018.

[ZZ19] Yue Zeng and Yue Zhang. Review of research on blockchain ap-
plication development method. Journal of Physics: Conference

Series, 1187(5):052005, 2019.


