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Abstract: In this paper,wederive a posteriori bounds of the di�erence between the exact solution of an elliptic
boundary value problem with periodic coe�cients and an abridged model, which follows from the homog-
enization theory. The di�erence is measured in terms of the energy norm of the basic problem and also in
the combined primal–dual norm. Using the technique of functional type a posteriori error estimates, we ob-
tain two-sided bounds of the modeling error, which depends only on known data and the solution of the
homogenized problem. It is proved that the majorant with properly chosen arguments possesses the same
convergence rate, which was established for the true error. Numerical tests con�rm the e�ciency of the esti-
mates.
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1 Introduction
Boundary valueproblemswithperiodic structures arise in various applications.Homogenization theory is the
major tool used to quantitatively analyze media with periodic structures. Within the framework of the theory
(see, e.g., [9, 14]), the behavior of a heterogeneousmedia is described with the help of a certain homogenized
problem,which is typically a boundary valueproblemwith smooth coe�cients, and the solutionof a specially
constructed problemwith periodic boundary conditions. It has been proved that the functions reconstructed
by this procedure converge to the exact solution as the cell size ε tends to zero.Moreover, knownapriori error
estimates qualify the convergence rate in terms of ε. The goal of this paper is to derive two-sided estimates of
themodeling error generated by homogenization. In other words, we wish to estimate the di�erence between
the exact solution of the original problemand its approximation obtained by the corresponding homogenized
model.

Let Ω ⊆ ℝd be a bounded domain with Lipschitz boundary ∂Ω, such that Ω = ⋃i Πεi , where

Πεi = xi + ε Π̂ = {x ∈ ℝ
d !!!!!!

x − xi
ε ∈ Π̂}

is the basic ‘cell’ (repeating element of the periodic structure, see Fig. 1), which is a simply connected domain
with Lipschitz boundary, xi is the reference point of Πεi , and ε is a small parameter (geometrical size of a
cell). Here and later on, x denotes the global (Cartesian) coordinate system in ℝd and i = (i1, i2, . . . , id)
denotes the counting multi-indices for the cells. The notations ⋃i and ∑i are shorthands for the union and
summation over all cells. It is assumed that the overall amount of Πεi in Ω is bounded from above by the
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Figure 1. Periodic structure (left) and its basic cell (right).

quantity
c0 ε−d , c0 = O (1) (1.1)

and the diameter of Πεi satis�es the relation

diamΠεi = ρ ε (1.2)

where ρ is a parameter depending on the geometry of the cell. Usually, ρ is easy to �nd (e.g., for a cubic cell
ρ = √d ).

In the basic cell (see Fig. 1), we use local Cartesian coordinates y ∈ ℝd . For any Πεi , local and global
coordinates are joined by the relation

y = x − xiε ∈ Π̂ ∀x ∈ Πεi , ∀ i.

On Π̂, we de�ne a matrix function Â ∈ L∞(Π̂, ℝd×dsym), where ℝd×dsym denotes the set of symmetric d × d-
matrices. We assume that

c1|ξ|2 ⩽ Â(y)ξ ⋅ ξ ⩽ c2|ξ|2 ∀ ξ ∈ ℝd , ∀ y ∈ Π̂ (1.3)

where 0 < c1 ⩽ c2 <∞ and introduce the ‘global’ matrix

Aε(x) := Â (
x − xi
ε ) ∀x ∈ Πεi , ∀ i (1.4)

whichde�nes the periodic structure on Ω. In viewof (1.3), Aε (and its inverse counterpart A−1ε ) satisfy similar
two-sided estimates for any ε.

Consider the second-order elliptic equation

− div (Aε∇uε) = f in Ω, f ∈ L2 (Ω) (1.5)

with homogeneous Dirichlet boundary conditions. The corresponding generalized solution uε ∈ H1
0(Ω) is

de�ned by the relation
∫
Ω
Aε∇uε ⋅ ∇w = ∫

Ω
fw ∀w ∈ H1

0 (Ω) . (1.6)

For any ε > 0, the solution uε exists and is unique.
For a function ζ ∈ L1(ω), where ω is a measurable subset of Ω, we de�ne the mean value by

⟨ζ⟩ω := 1
|ω| ∫ω

ζ. (1.7)

If no confusion may arise, we omit in integrals the symbol of the corresponding Lebesque measure (e.g., dx).
However, we write the measure explicitly if it is necessary to distinguish between integration over the global
and local coordinates (as in Lemma 2.1).
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If we write ∫ω⟨ζ⟩ω , then the average is considered as a constant function on ω (for vector-valued func-
tions, we apply this de�nition componentwise). The error caused by the averaging (1.7) is denoted by

δωζ := ‖ζ − ⟨ζ⟩ω‖ω

where ‖ ⋅ ‖ω denotes the standard L2−norm on ω.
For a vector µ = (µi)di=1 ∈ (ℝ>0)

d and s ∈ ℝ, µs denotes the componentwise application of the power s,
i.e., µs = (µsi )

d
i=1. For vector-valued functions ζ = (ζk)dk=1 ∈ L

1 (ω,ℝd) and φ = (φk)dk=1 ∈ L
1 (Ω,ℝd) , we

de�ne the local and piecewise constant averages by means of the relations

δωζ := (‖ζk − ⟨ζk⟩ω‖ω)
d

k=1
, δpwΩ φ := εd/2 (∑

i
‖φk − ⟨φk⟩Πεi ‖Πεi )

d

k=1

and

(δωζ )2 := (‖ζk − ⟨ζk⟩ω‖2ω)
d

k=1
, (δpwΩ φ)2 := εd ((∑

i
‖φk − ⟨φk⟩Πεi ‖Πεi )

2

)
d

k=1

.

Within the framework of homogenization theory, an approximation of uε is constructed by the following
procedure (see, e.g., [7, 9, 14]). First, we de�ne (for k = 1, 2, ..., d) the solutions Nk of ‘cell problems’

div( Â ∇Nk) = (div Â)k in Π̂

Nk is periodic in Π̂

∫̂
Π
Nk = 0.

(1.8)

With the help of them, the homogenized matrix

A0 = ⟨Â ( I − ∇N) ⟩
Π̂

(1.9)

is de�ned. The function u0 ∈ H1
0(Ω) such that

∫
Ω
A0∇u0 ⋅ ∇w = ∫

Ω
f w ∀w ∈ H1

0(Ω) (1.10)

provides a “coarse” approximation of uε . It is known that (see, e.g., [7]),

uε → u0 in L2(Ω), uε ⇀ u0 in H1
0(Ω) for ε → 0.

However, it is necessary to construct a sequence of more accurate approximations, which converges in a
stronger sense. For this purpose, the homogenization theory suggests to use advanced approximations

w1
ε (x) := u0(x) − εψε(x)Nk (

x − xi
ε )

∂ u0(x)
∂xk

∀x ∈ Πεi , ∀ i (1.11)

where ψε := min{1, dist(x, ∂Ω)/ε} is a cuto� function.
To prove optimal a priori convergence rates for the modeling error

emod
ε := uε − w1

ε (1.12)

we need some extra assumptions (see [14], p.28), namely,

u0 ∈ W2,∞(Ω) (1.13)

and
∂ Nk
∂yj
∈ L∞(Π̂). (1.14)

Then, it can be proved (see, e.g., [7], Remark 5.13; [10]; [14], p. 28) that the modeling error satis�es the asymp-
totic estimates:

‖uε − w1
ε ‖H1(Ω) ⩽ c̃√ε (1.15)
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and
‖Aε ∇ uε − v0 − ε v1‖ ⩽ ĉ√ε (1.16)

where
v0 := (I − curlyÑ) µ
µ := ⟨A−10 (I − curlyÑ)⟩−1Π̂ ∇u0

v1 := −curlx(Ñ µ)

(1.17)

the d × d matrix Ñ with columns Ñk is the solution of the auxiliary problem

curl A−10 ( curl Ñk(y)) = curl ( A−10 )
k

in Π̂

div Ñk = 0
Ñk is periodic in Π̂

∫̂
Π
Ñk = 0

(1.18)

and the columns of the matrix curlyÑ are given by curlyÑk, k = 1, 2, . . . , d.
Numerical methods for homogenized problems are actively studied. Such questions as adaptivity and

error indication are among the most important questions arising in quantitative analysis of periodical struc-
tures. Here, we �rst of all mention residual type error indicators that develop the ideas suggested in [2, 3]
for �nite element approximations. Since our approach is based on a di�erent technique, we will sketch here
only brie�y some relevant literature on residual based estimation and refer for a detailed review, e.g., to [13].
A posteriori error estimates for the heterogeneous multiscale discretization (HMM) of elliptic problems in a
periodic setting can be found in [12, 17]. In [1], an a posteriori estimate of residual type for general, possibly
non-periodic, di�usion tensors with micro-scales is presented while a residual-type a posteriori error esti-
mate for more general di�usion tensors has been developed in [13]. Also, wemention the papers [4, 5, 29, 30],
which are closely related to the topic.

Our goal is to deduce estimates of emod
ε of a di�erent type, which provide guaranteed and fully com-

putable bounds of the modeling error. The corresponding error majorant uses the solution of the homoge-
nized problem and, in addition, involves free functions and a function η de�ned on the cell of periodicity.
This freedom can be utilized for improving the e�ciency of the corresponding error bounds. Besides, the
functions obtained in this way provide e�cient reconstructions of the �ux. In general, the estimates have the
form

M⊖ (w1
ε ; Θ) ⩽ ‖∇ (uε − w1

ε )‖Aε ⩽ M⊕ (w1
ε ; η, λ, s) (1.19)

where
‖q‖Aε := (∫

Ω
Aε q ⋅ q)

1/2
. (1.20)

The majorant M⊕ and a minorant M⊖ are derived in Sections 2 and 3, respectively. Numerical tests are
exposed in Section 4. They con�rm the e�ciency of the estimates.

2 Upper bound of the modeling error
First, we prove a subsidiary result, which states an upper bound of the L2-product of a globally de�ned func-
tion and a periodic function de�ned on the cell.

Lemma 2.1. For all g ∈ L2(Ω)d, η ∈ L2(Π̂)d, and all λ = (λd)dk=1 ∈ (ℝ>0)
d it holds

∑
i
∫
Πεi
g(x) ⋅ η(x − xiε )dx ⩽ |Ω| ⟨g⟩Ω ⋅ ⟨η⟩Π̂ +

λ
2
⋅ (δpwΩ g)2 + λ

−1

2
⋅ (δΠ̂η)

2. (2.1)
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Proof. For any g ∈ L2(Ω)d , we have

I :=∑
i
∫
Πεi
g(x) ⋅ η(x − xiε )dx =

d
∑
k=1

∑
i
∫
Πεi
gk(x) ηk(

x − xi
ε )dx

=
d
∑
k=1

∑
i
∫
Πεi
(gk(x) − ⟨gk⟩Πεi ) ηk(

x − xi
ε )dx +

d
∑
k=1

∑
i
∫
Πεi
⟨gk⟩Πεi ηk(

x − xi
ε )dx.

Since
∑
i
∫
Πεi
⟨gk⟩Πεi ηk(

x − xi
ε )dx = εd (∫̂

Π
ηk(y)dy)∑

i

1
|Πεi |

∫
Πεi
gk(x)dx

= εd (∫̂
Π
ηk(y)dy)∑

i

1
εd |Π̂|

∫
Πεi
gk(x)dx

= ∫̂
Π
ηk(y)dy

1
|Π̂|

∫
Ω
gk(x)dx = |Ω| ⟨gk⟩Ω ⟨ηk⟩Π̂

(2.2)

and for any (ck)dk=1 ∈ ℝ
d

∑
i
∫
Πεi
(gk(x) − ⟨gk⟩Πεi ) ηk(

x − xi
ε )dx = ∑

i
∫
Πεi
(gk(x) − ⟨gk⟩Πεi ) (ηk(

x − xi
ε ) − ck) dx

⩽ (∑
i
‖gk − ⟨gk⟩Πεi ‖Πεi ) (∫

Πεi
(ηk(

x − xi
ε ) − ck)

2
dx)

1/2

= (∑
i
‖gk − ⟨gk⟩Πεi ‖Πεi ) εd/2 ‖ηk − ck‖Π̂

(2.3)

we �nd that

I ⩽∑
k
(|Ω| ⟨gk⟩Ω ⟨ηk⟩Π̂ + (δpwΩ g)k ‖ηk − ck‖Π̂)

⩽∑
k
(|Ω| ⟨gk⟩Ω ⟨ηk⟩Π̂ +

λk
2

(δpwΩ g)2k +
1

2 λk
‖ηk − ck‖2Π̂)

= |Ω| ⟨g⟩Ω ⋅ ⟨η⟩Π̂ +
1
2
λ ⋅ (δpwΩ g)2 + 1

2 ∫̂
Π
∑
k

1
λk

(ηk − ck)
2
dy

for any arbitrary vector λ ∈ ℝd>0 . In particular, we set ck = ⟨ηk⟩Π̂ , and obtain (2.1).

In order to present the main estimate in a transparent form, we introduce the function

gτ0 (x) := Aε ∇w1
ε − τ0 (2.4)

where
τ0 ∈ H(Ω, div) := {ϑ ∈ (L2(Ω))d , div ϑ ∈ L2(Ω)} (2.5)

and the quantity

F(w1
ε ; τ0, η, λ, s) := ‖gτ0‖2A−1

ε
+ 2 εs |Ω| ⟨gτ0⟩Ω ⋅ ⟨η⟩Π̂

+ εs(λ−1 ⋅ (δΠ̂η)
2 + λ ⋅ (δpwΩ (gτ0 ))

2) + c0ε2s ‖η‖2Â−1 ,Π̂ (2.6)

where λ ∈ ℝd>0, s ∈ ℝ>0 , and

η ∈ H0(Π̂, div) := {ϑ ∈ H(Π̂, div), ⟨div ϑ⟩Π̂ = 0}. (2.7)

Now, we can deduce the �rst (general) form of the majorant M⊕. It is presented in Theorem 2.1 (see also [25]),
which proof uses the technique developed in [19–27].
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Theorem 2.1. Let the cell of periodicity Π̂ be convex and the conditions (1.1), (1.3), (1.9), (1.11), and (1.13) be
satis�ed. Then, for any λ ∈ ℝd>0, s ∈ ℝ>0 , τ0 ∈ H(Ω, div) and η ∈ H0(Π̂, div) we have the estimate

‖∇(uε − w1
ε )‖Aε ⩽ M⊕(w1

ε , τ0, η, λ, s) := F1/2(w1
ε ; τ0, η, λ, s)

+ C̃FΩ ‖divτ0 + f‖ + εs C̃ ‖div η‖Π̂
(2.8)

where F, C̃FΩ and C̃ are de�ned by (2.6) and (2.13), respectively.

Proof. For any v, w ∈ H1
0(Ω) and τ ∈ H(Ω, div), we have

∫
Ω
Aε∇(uε − v) ⋅ ∇w = ∫

Ω
(−Aε∇v ⋅ ∇w + f w) = ∫

Ω
(τ − Aε∇v) ⋅ ∇w + ∫

Ω
(divτ + f)w. (2.9)

We set w = uε − v and estimate the �rst term in (2.9) as follows:

∫
Ω
(τ − Aε∇v) ⋅ ∇(uε − v) ⩽ ‖∇(uε − v)‖Aε ‖Aε∇v − τ‖A−1

ε
. (2.10)

Henceforth, we select τ in a special form, namely,

τ(x) = τ0(x) − εsη (
x − xi
ε ) on Πεi (2.11)

where
η ∈ H0(Π̂, div).

Since
div τ (x) = div τ0 (x) − εs div η (

x − xi
ε ) ∀x ∈ Πεi , ∀ i

and
⟨div η ( ⋅−xiε )⟩

Πεi
= εd−1 ⟨div η⟩Π̂ = 0

we obtain

∫
Ω
(div τ + f) (uε − v)dx = ∫

Ω
(div τ0 + f) (uε − v)dx − ∑

i
∫
Πεi
εsdiv η ( ⋅−xiε ) (uε − v)dx

⩽ CFΩ ‖divτ0 + f‖ ‖∇(uε − v)‖ + εs∑
i
εd/2−1‖div η‖Π̂ CΠεi ‖∇(uε − v)‖Πεi

where CFΩ is a constant in the Friedrich’s inequality for Ω and CΠεi is a constant in the Poincare’s inequality
for Πεi . It is known (cf. [18]) that for convex Πεi

CΠεi ⩽
diamΠεi

π ∀ d ⩾ 1.

We use (1.1) and (1.2) and arrive at the estimate

∫
Ω
(divτ + f) (uε − v)dx ⩽ CFΩ ‖divτ0 + f‖ ‖∇(uε − v)‖ + εs εd/2−1 ‖div η‖Π̂ √c0 ε−d/2 ε

ϱ
π ‖∇(uε − v)‖

= CFΩ ‖divτ0 + f‖ ‖∇(uε − v)‖ + εs
ϱ
π

√c0 ‖div η‖Π̂ ‖∇(uε − v)‖.

In view of (1.3), we obtain

∫
Ω
(divτ + f) (uε − v) ⩽ C̃FΩ ‖divτ0 + f‖ ‖∇(uε − v)‖Aε + εs C̃ ‖div η‖Π̂ ‖∇(uε − v)‖Aε (2.12)

where
C̃FΩ :=

CFΩ
√c1

, C̃ := ϱπ
√ c0
c1

. (2.13)

Now (2.9), (2.10), and (2.12) imply the estimate

‖∇(uε − v)‖Aε ⩽ ‖Aε∇v − τ0 + εsη‖A−1
ε
+ C̃FΩ ‖divτ0 + f‖ + εs C̃ ‖div η‖Π̂ . (2.14)
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Consider the �rst term in the right-hand side of the estimate (2.14). We have

‖Aε∇v − τ0 + εsη‖2A−1
ε
=∑

i
∫
Πεi
Â−1 (x − xiε ) (Â (

x − xi
ε )∇v(x) − τ0(x) + εs η(

x − xi
ε ))

× (Â (
x − xi
ε )∇v(x) − τ0(x) + εs η(

x − xi
ε )) dx.

We set v = w1
ε and obtain with the help of (2.4)

‖Aε∇w1
ε − τ0 + εsη‖2A−1

ε
=∑

i
∫
Πεi

(ε2s Â−1(x − xiε ) η(x − xiε ) ⋅ η(x − xiε )

+ 2 Â−1 (x − xiε ) εs gτ0 (x) ⋅ η(
x − xi
ε ) + Â−1 (x − xiε ) gτ0 (x) ⋅ gτ0 (x)) dx.

Nowwe apply Lemma 2.1 to the second term in the right-hand side of the above relation and arrive at (2.8).

We note that the estimate (2.14) also holds in a more general setting and can be applied to any reconstruction
v (including numerical one) of uε with the requirement that v ∈ H1(Ω).

Remark 2.1. It is not di�cult to show that themajorant has the same convergence rate as the a priori estimate
(cf. (1.16)) provided that the parameters are selected as is recommended by the theory [14].

Indeed, let us choose
τ0 := v0 − ε v⋆1 (2.15)

where v0 and v1 are de�ned by (1.17) and ⋆ means periodi�cation of a function, i.e.

w⋆ (x) := w(x, x − xiε )

for any x ∈ Πεi and for any i. Then,

divτ0 = divv0 − ε div v⋆1 =div v0 − ε ((divx v1)⋆ + ε−1 (divy v1)⋆) .

Since v1 := −curlx(Ñ µ), (cf. (1.17)), the �rst term in the brackets vanishes and for the second one we use the
fact that

(divy v1)⋆ = f + divx v0

(see, e.g., [7], p. 65). Then, we obtain

div τ0 = div v0 − f − div v0 = −f. (2.16)

Therefore,

‖∇(uε − w1
ε )‖Aε ⩽ M⊕(w1

ε , τ0, η, λ, s) = F1/2(w1
ε ; τ0, η, λ, s) + εs C̃ ‖div η‖Π̂ (2.17)

where F is de�ned by (2.6) and
gτ0 (x) = Aε ∇w1

ε − (v0 − ε v1).

Then, with the help of (1.15), (1.16), and the triangle inequality, we �nd that

‖gτ0 (x)‖A−1
ε
= ‖Aε ∇(w1

ε − uε + uε) − (v0 − ε v1)‖A−1
ε

⩽ ‖Aε ∇(w1
ε − uε)‖A−1

ε
+ ‖Aε ∇uε − (v0 − ε v1)‖A−1

ε
⩽ c√ε.

We set η = 0, tend all components of λ to zero and �nd that

M⊕ ⩽ c ε1/2. (2.18)

It is worth noting that in some special cases this asymptotic result can be proved in a simpler way. For
example, if

A0 = ⟨Â−1⟩−1Π̂
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(which is always the situation in the one-dimensional case or if curl Â−1 = 0 ), then the simplest choice

τ0 = A0 ∇u0

implies div τ0 = −f. In this case,

‖∇(uε − w1
ε )‖Aε ⩽ M⊕(w1

ε , τ0, η, λ, s) := F1/2(w1
ε ; τ0, η, λ, s) + εs C̃ ‖div η‖Π̂ (2.19)

where F is de�ned by (2.6) and
gτ0 (x) = Aε ∇w1

ε − A0∇u0

for all y ∈ Π̂, x ∈ Πεi . Choosing again η = 0 in (2.19), we obtain (2.18).

Remark 2.2. The right-hand side of the majorant (2.8) is the sum of three non-negative terms, which include
a global function τ0 and a function η de�ned on the cell of periodicity. This re�ects the speci�cs of the
considered class of problems.Hence, the computation of themajorant is based on the�uxof thehomogenized
solution and a proper selection (cf. Section 4) of the function η de�ned on the cell of periodicity. The scalar
parameters λi and the power s can be selected in order to minimize the overall value of the majorant. We
emphasize that the computation of the majorant does not require an approximation of the �ux associated
with the original (global) periodic problem.

The choice
τ0 = A0∇u0, η = 0

leads to the simpli�ed error estimator

‖∇(uε − w1
ε )‖Aε ⩽

!!!!!!!!!!
∑
i

∫
Πεi
Â−1 (x − xiε ) gτ0 (x) ⋅ gτ0 (x) dx

!!!!!!!!!!

1/2

= ‖Aε∇w1
ε − A0∇u0‖A−1

ε
=: M⊕(w1

ε , u0).

(2.20)

It is easy to show that this simpli�ed majorant is equivalent to the combined primal–dual norm

[uε − w1
ε , Aε∇uε − τ0] := ‖∇(uε − w1

ε )‖Aε + ‖Aε∇uε − τ0‖A−1
ε

(2.21)

Indeed, from one hand

[uε − w1
ε , Aε∇uε − τ0] = ‖∇(uε − w1

ε )‖Aε + ‖Aε∇uε − A0∇u0‖A−1
ε

⩽ ‖∇(uε − w1
ε )‖Aε + ‖Aε∇uε − Aε∇w1

ε ‖A−1
ε
+ ‖Aε∇w1

ε − A0∇u0‖A−1
ε

⩽ 3 ‖Aε∇uε − A0∇u0‖A−1
ε
= 3M⊕(w1

ε , u0).
(2.22)

From the other hand,

M⊕(w1
ε , u0) = ‖Aε∇w1

ε − τ0‖A−1
ε
⩽ ‖Aε∇w1

ε − Aε∇uε‖A−1
ε
+ ‖Aε∇uε − τ0‖A−1

ε

= [uε − w1
ε , Aε∇uε − τ0].

(2.23)

Hence, we obtain

M⊕(w1
ε , u0) ⩽ [uε − w1

ε , Aε∇uε − τ0] ⩽ 3M⊕(w1
ε , u0). (2.24)

We note that this result is similar to that has been obtained in [22] for errors of mixed approximations of
elliptic partial di�erential equations.

Remark 2.3. One can show that in the one-dimensional case, (2.20) holds as equality provided that

∫
Ω
(A−1ε ∫

x

0
f) = ∫

Ω
(A−10 ∫

x

0
f) . (2.25)
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Remark 2.4. In certain cases, wemay know only numerical approximations to the solutions Nk , Ñk and u0
of the auxiliary cell problems (cf. (1.8), (1.18)) and of the homogenized equation (cf. (1.10)). The correspond-
ing approximation errors can be estimated by error majorants of similar types (see [19–24] and references
therein). Then, the overall error majorant will include both, approximation andmodeling errors. A combined
modeling-discretization strategy is suggested in [24] (where the modeling error is generated by defeaturing
of a complicated structure) and in [28] (where the modeling error is generated by dimension reduction) and
should be used in this case. This topic deserves a separate investigation and lies beyond the framework of this
paper which is focused on the principal structure of the guaranteed error bound for homogenized problems.

3 Lower bound of the modeling error
Lower bounds of the modeling error allows us to estimate numerically the sharpness of the error majorant
and to evaluate the e�ciency of error estimation. A lower bound of the energy error norm can be derived by
means of the well known relation (see, e.g., [22], pp. 85–86):

‖∇(uε − v)‖2Aε = sup
w∈H1

0(Ω)
M2
⊖(v; w) := sup

w∈H1
0(Ω)

∫
Ω
(2 (f w − Aε ∇v ⋅ ∇w) − Aε∇w ⋅ ∇w ) . (3.1)

Clearly, for any w ∈ H1
0 (Ω) it holds ‖∇(uε − v)‖Aε ⩾ M⊖(v; w). Moreover, there exists a function w such that

the inequality holds as equality. We use (3.1) with v = w1
ε (cf. (1.11)) and represent w in the form w = ρmax z ,

where z ∈ H1
0 (Ω) is a certain specially selected function and the multiplier ρmax is de�ned by the relation

ρmax =
∫Ω (f z − Aε ∇w1

ε ⋅ ∇z)
∫Ω Aε∇z ⋅ ∇z

.

In this case, M2
⊖(w1

ε ; ρz) attains its maximum as a quadratic function with respect to ρ. Inserting this value
into M2

⊖(v; w), we obtain the following lower bound of the modeling error ‖∇(uε − w1
ε )‖Aε :

M⊖(w1
ε ; z) :=

!!!!!∫Ω (f z − Aε ∇w1
ε ⋅ ∇z)

!!!!!
‖∇z‖Aε

=
!!!!!∫Ω (A0 ∇u0 − Aε ∇w1

ε ) ⋅ ∇z
!!!!!

‖∇z‖Aε
. (3.2)

Below we consider two possible choices of the function z. Let

z(x) := w1
ε (x) − u0(x) − ε Θ(

x − xi
ε ) (3.3)

where Θ((x − xi)/ε) is a periodic function de�ned in Π̂, and

φ0
ε (x,

x − xi
ε ) := −ψε(x)N (

x − xi
ε ) ⋅ ∇u0(x). (3.4)

Then, we rewrite (1.11) in the form
w1
ε = u0 + ε φ0

ε (3.5)

and
z(x) = ε (φ0

ε(x,
x − xi
ε ) − Θ(x − xiε )) (3.6)

we see that in this case the test function z is a periodical function. The minorant is de�ned by the relation

M2
⊖(w1

ε , Θ) =
(∫Ω [q ⋅ ∇φ0

ε − q ⋅ ∇Θ])2

∫Ω Aε∇(φ
0
ε − Θ) ⋅ ∇(φ0

ε − Θ )
(3.7)

where
q := (A0 − Aε)∇ u0 − ε Aε ∇φ0

ε . (3.8)
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For this ansatz, the best lower boundwill be obtained if (3.7) is maximizedwith respect to the cell based func-
tion Θ and global function ψε. However, in general, �nding these (optimal) functions may require essential
computational e�orts. In the tests below, we used a much simpler choice, namely,

Θ = 0, ψε = min {1, 1ε dist(x, ∂Ω)} (3.9)

and the minorant (3.7) is reduced to

M
per
⊖ (w1

ε ; 0) =
!!!!! ∫Ω q ⋅ ∇φ0

ε
!!!!!

‖∇φ0
ε ‖Aε

. (3.10)

Also, we may try to �nd a suitable z represented aperiodically, for example in the form u0 plus small
quasi-periodical disturbances

z(x) = ρ (u0 (x) + ε ψε Θ(
x − xi
ε )) . (3.11)

In this case,

M2
⊖(w1

ε , Θ) =
(∫Ω [q̃ ⋅ ∇u0 + q̃ ⋅ ∇(ε ψε Θ)])

2

∫Ω Aε∇( u0 + ε ψ
ε Θ) ⋅ ∇( u0 + ε ψε Θ )

, (3.12)

where
q̃ := (A0 − Aε)∇ u0 + ε Aε ∇(ψε N∇u0). (3.13)

In general, the minorant should be maximized with respect to Θ. However, even the simplest choice Θ = 0
yields a lower bound

M
aper
⊖ (w1

ε ; 0) =
!!!!!∫Ω q ⋅ ∇u0

!!!!!
‖∇ u0‖Aε

. (3.14)

4 Numerical experiments
A general strategy of computing the majorant consists of minimizing M⊕ with respect to parameters λ, s,
vector function τ ∈ H (Ω, div) and vector function η ∈ H0(Π̂, div)using �nite dimensional subspaces Sh (Ω) ⊂
H(Ω, div) (e.g. a �nite element space) and Sh(Π̂) ⊂ H0(Π̂, div), respectively. The process can be started with

τ0 = A0∇u0, η = 0. (4.1)

In the numerical experiments discussed below, we set τ and η in accordance with (4.1) and use the sim-
plest error estimator M⊕(w1

ε , u0):

‖∇(uε − w1
ε )‖Aε ⩽

!!!!!!!!!!
∑
i

∫
Πεi
Â−1 (x − xiε ) gτ0 (x) ⋅ gτ0 (x) dx

!!!!!!!!!!

1/2

(4.2)

where gτ0 (x) is de�ned by (2.4). In most cases, this choice was enough in order to have su�ciently sharp
estimates. This is explainable because if the periodic structure is �ne and contains many cells, then the cor-
rection term is less signi�cant and its in�uence can be diminished by increasing values of s. However, if a
periodic structure is rather coarse (e.g., 25–50 cells) and/or the coe�cients of thematrix Â have jumps, sharp
oscillations, etc. then the term εs η may augment the homogenized �ux substantially and it may be required
to use the most general form of the majorant.

Below, we apply the estimates derived in Sections 2 and 3 to several one- and two-dimensional test prob-
lems. For this purpose, we select problems used in publications related to analysis of homogenized and inter-
face problems, e.g., see [8, 13, 15, 16, 30]. Our goal is to validate the sharpness of the two-sided error bounds
presented by M⊕ and two lower bounds introduced in Section 3 (i.e., M⊖ is computed by M

per
⊖ (w1

ε ; 0) or
M

aper
⊖ (w1

ε ; 0); cf. (3.10) and (3.14)).
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For the quantitative characterization of two-sided bounds, we use the number

û := M⊕M⊖
(4.3)

which can be also viewed as a computable upper bound of the e�ciency index

ie�⊕ := M⊕
‖∇(uε − w1

ε )‖Aε

and gives insights of the quality of the error majorant. Similarly, we de�ne the e�ciency index of the lower
bound

ie�⊖ := M⊖
‖∇(uε − w1

ε )‖Aε
.

In the �rst series of tests, we set d = 1 and Ω = (0, 1). Then, uε ∈ H1
0(Ω) is de�ned by the relation

∫
1

0
Aε u�ε v� = ∫

1

0
fv ∀ v ∈ H1

0 (Ω) . (4.4)

Example 4.1. Let

Â (y) :=
{
{
{

1, 0 < y ⩽ 1/2
2, 1/2 < y < 1

and Aε is de�ned as in (1.4). The right-hand side is given by f := sin (2 πx/ε). Here, the explicit forms of A0,
u�0, dN/dy and N are known (they can be found from (1.9) and (1.8)):

A0 (x) =
4
3

u�0 =
3 ε
8 π cos(2 π x ε−1)

dN
dy (y) =

{
{
{

−13 , 0 < y ⩽ 1/2
1
3 , 1/2 < y < 1

N (y) =
{
{
{

− y3 +
1
12 , 0 < y ⩽ 1/2

y
3 −

1
4 , 1/2 < y < 1.

Example 4.2. Let Aε(x) = 2 + cos (2 πx/ε), f := e10 x. Then, see (1.9) and (1.8):

A0 (x) = √3

u�0 = −
3−0.5

10
e10 x + 3

−0.5

100
e10

dN
dy (y) = 1 −√3 (2 + cos(2 π y))−1

N (y) = ∫(1 −√3 (2 + cos(2 π y))−1)dy.

In Example 4.1, f is a periodic function. Therefore, it is natural to expect that the minorant Mper
⊖ (in

which the periodicity is taken into account) will provide better results. In Example 4.2, the right-hand side
is represented by a non-periodical function, and, therefore, we expect that Maper

⊖ will be better (at least for
problems with relatively small amount of cells). The corresponding numerical results are depicted in Fig. 2
and con�rm the proposed choice of the lower error bound. We note that in Example 4.1 the equality (2.25)
holds and (cf. Remark 2.3) the majorant (4.2) coincides with the error. This fact is con�rmed numerically (see
Fig. 2 a, b). Example 4.2 shows that the majorant and minorants are quite sharp if the number of cells is
su�ciently large (regardless of the condition (2.25)).
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ε

ε ε

ε

κ

ε

ε ε

ε

κ

Figure 2. Error bounds (left) and efficiency indices (right) for Example 4.1 and Example 4.2.

Example 4.3. Let d = 2 , Ω = (0, 1)2, and uε ∈ H1
0 (Ω) be defined by the relation

∫
Ω
Aε∇uε ⋅ ∇v = ∫

Ω
fv ∀ v ∈ H1

0 (Ω) .

Here Aε is generated by the matrix Â := aI (cf. (1.4)), where

a :=
{{{
a1 > 0 in (0, 12)2 ∪ (12 , 1)2
a2 > 0 in (0, 1)2 \ ((0, 12)2 ∪ (12 , 1)2) . Π̂ :

a1

a1

a2

a2
(4.5)

Then (see, e.g., [14], pp. 35–39), A0 = √a1 a2.We choose

f = 2√a1 a2 (x1(1 − x1) + x2(1 − x2))
such that

u0(x) = x1 x2 (1 − x1)(1 − x2). (4.6)

Exact solutions of the cell problems

∂
∂yi

( Âij(y)
∂Nk(y)
∂yj

) = ∂
∂yi

Âik(y) in Π̂ = (0, 1)2

Nk is periodic in Π̂
⟨Nk⟩Π̂ = 0

(4.7)
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are found in [15] in the form
Nk(y) = ν (

y + 1
2 ) + yk , k = 1, 2. (4.8)

Here ν(y) is the unique solution of the problem

− div (a ∇ν) = 0 in (−1, 1)2 (4.9)

with homogenous Dirichlet boundary conditions and a is de�ned by (4.5). This solution is given in polar
coordinates (r, ϑ) centered at the origin by the relation

ν = rã µ(ϑ) (4.10)

where

µ(ϑ) :=

{{{{{{
{{{{{{
{

cos(αβ) cos((ϑ − π2 + α) ã), 0 ⩽ ϑ ⩽ π2
cos(αã) cos((ϑ − π + β) ã), π

2 ⩽ ϑ ⩽ π
cos(αβ) cos((ϑ − π − α) ã), π ⩽ ϑ ⩽ 3π

2

cos(( π2 − α)ã) cos((ϑ −
3π
2 − β) ã),

3π
2 ⩽ ϑ ⩽ 2π

(4.11)

is a continuous and piecewise smooth function and the numbers α, β, and ã depend on a1/a2 and satisfy
the relations

{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{
{

a1
a2 = tan(βã) cot(αã)
a2
a1 = − tan(αã) cot(βã)
a1
a2 = − tan(βã) cot((

π
2 − α)ã)

a2
a1 = tan((

π
2 − α)ã) cot(βã)

ã > 0
max{0, πã− π} < 2αã < min{πã, π}
max{0, π} < −2βã < min{π, 2π}.

(4.12)

It is known that ν has a restricted regularity (namely, ν ∈ H1+ã−ε(Π̂) for any ε > 0 ).
We use this fact in order to verify the e�ciency of the error majorant in di�erent situations, we consider

two cases, in which the ratio between a1 and a2 (and the regularity of Nk) are quite di�erent.
∙ Case 1: let a1 = 5.0, a2 = 1.0. In this case, the solution (4.9) has ã = 0.53544094560 and ϑ = π/2 (cf.

system (3.2) in [15]) so that ν ∈ H3/2(Ω).
∙ Case 2: now, we set ã = 0.1 and ϑ = π/2. By solving (4.11) and (4.12), we �nd that in this case a1 =

161.4476387975881 and a2 = 1.0. Here, ν ∈ H1+α(Π̂) with 0 < α < 0.1 , i.e., it is almost an H1

function.
To quantify the e�ciency of the estimates (4.2 ) and (3.10), we compare them with the exact error

e := ‖∇(uε − w1
ε )‖Aε . (4.13)

Since uε is unknown, we replace it by the ‘reference’ solution uref computed on a very �ne mesh (h ≪ ε).
The corresponding e�ciency indices are de�ned by the relations

ie�⊕ =
M⊕(w1

ε ; 0, 1, 1)
‖∇(uref − w1

ε )‖Aε
, ie�, per⊖ =

Mper
⊖ (w1

ε ; 0)
‖∇(uref − w1

ε )‖Aε
. (4.14)

In Table 1 (Case 1) and 2 (Case 2), we present these quantities together with the quantity û as in (4.3). We see
that the estimates adequately reproduce the modeling error.

It is quite predictable that the estimates are better in the �rst case (related to a more regular ν ). For the
�rst problem, e�ciency indices of the majorant and minorant are quite close to 1. However, the estimates
are also valid for the second case (minimal regularity). Indeed, the e�ciency index of the majorant does not
exceed 2.3 and the one of the minorant does not go below 0.7.
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Table 1. E�ciency of error majo-
rant and minorant for Example 4.3,
Case 1.

ε−1 ie�⊕ ie�⊖ û

8 1.0714 0.8824 1.2141
16 1.0874 0.8781 1.2384
32 1.0988 0.8591 1.2790
64 1.1633 0.8461 1.3749

Table 2. E�ciency of error majo-
rant and minorant for Example 4.3,
Case 2.

ε−1 ie�⊕ ie�⊖ û

8 1.7024 0.8291 2.0533
16 1.9701 0.7961 2.4750
32 2.1848 0.7370 2.9644
64 2.2771 0.7124 3.1964
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