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ABSTRACT

Digital services are increasingly becoming cyber-physical

and osmotic, combining Cloud resources with Fog, Edge,

and IoT devices. This trend can be observed in the e-health

domain or in smart city applications where the location of

software deployments and data processing matters. Before

such applications go live, careful planning with real system

emulation is necessary. We claim that the OsmoticToolkit,

although in the early stages, is the first emulation environ-

ment designed to address this challenge. In this paper, we

introduce the emulator’s functionalities and validate exper-

imentally with an e-health scenario, using a reference de-

ployment of a microservice-based hospital application. The

experimental results carried out show its effectiveness pro-

viding valuable support for understanding the impact on

resources, workloads, and Quality of Service requirements

within Cloud-Edge/Fog-IoT scenarios while preserving the

users’ Service Level Agreements (SLAs).

CCS CONCEPTS

• Networks → Network services; Network reliability; •

Computing methodologies → Simulation tools; • Com-

puter systems organization→Dependable and fault-tolerant

systems and networks.
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1 INTRODUCTION

Internet of Things (IoT) is a profound technology evolu-

tion incorporating billions of devices (sensors, RFIDs, smart-

phones, and wearables) owned by different organizations

and people who are deploying and using them for pervasive

digital services. IoT-Business-News forecasts 24 billion con-

nected things generating $1.5 trillion in 2030 [1]. Their num-

ber, capabilities, scope of use and data volume, keep growing

& changing rapidly. This leads to higher complexity in IoT

applications. Thus, new distributed computing paradigms,

such as Edge Computing or IoT-Cloud Computing, have been

investigated to extend IoT resources into centralized data

centers (e.g., clouds) or at the edge of IoT systems (e.g., edge

micro datacenters). Among the most promising ones is Os-

motic Computing (OC), motivated by the lack of a scalable,

interoperable, configurable solution for delivering IoT appli-

cations in complex, heterogeneous and dynamic computing

environments. The OC paradigm [3] looks at the opportunis-

tic management of IoT MicroELements (MELs), i.e., MELs

running on IoT, to improve the Quality of Service (QoS) and

networking management, interoperability, and efficiency of

next-generation IoT applications.
The main issue arising in using such combined computing

models to support IoT applications is the management of

different physical/virtual infrastructures (e.g., data centers,

edge devices, IoT devices & gateways) according to specific

application/service requirements (e.g., latency, data volume,

responsivity, processing delay, privacy). In particular, it is

hard to determine a priori how to deploy the MELs com-

posing IoT applications into different infrastructures ś since

resource availability, system load, and connectivity features

can unpredictably vary over time. OC provides convergence
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and holistic planning for IoT, Edge, Fog, and Cloud Com-

puting technologies in this scenario. It allows to manage

resources available across such systems driven by specific

application requirements.
In this paper, we present an OC emulation tool called

OsmoticToolkit that executes workflows based on MELs in

particular conditions where the edge has limited computa-

tion and networking capabilities. We evaluate the work with

the case of a rural medical lab with limited processing power

and infrequent ability to use a cloud service. The toolkit

provides valuable support for understanding the impact of

processing power, workloads, and QoS requirements while

preserving the users’ Service Level Agreements (SLAs).
The paper is organized as follows. After the background

and related work of Sec. 2, we provide motivations (Sec.

3) and explain the tool design in Sec. 4, followed by the

implementation in Sec. 5 and performance evaluation in Sec.

6. Finally, Sec. 7 highlights the advantages of OsmoticToolkit

and reasons about future directions.

2 BACKGROUND AND RELATEDWORK

Planning and testing applications in distributed computing

environments that involve a high level of heterogeneity and

complexity is costly since the provisioning and management

of needed hardware are very expensive. In recent years, sim-

ulation techniques have been proven to be a partial solution

for investigating different aspects of complex osmotic sys-

tems, e.g., service configuration and deployment, resource

placement, or management strategies. Cost-effective emula-

tion tools based on controlled service execution further align

results with reality. To evaluate the current state of the art, we

define four key criteria: (i) Hybrid Cloud-Edge/Fog-IoT Ar-

chitecture, (ii) Dynamic Infrastructure Topology (modeling

of physical networks and virtual topologies), (iii) Resource

Provisioning Approach, and (iv) Real Application execution.

Tool Hybrid Dynamic Resources Execution

CloudSim | | allocation |

iFogSim iot/fog | alloc+mon |

EdgeCloudSim edge mobility alloc+mon |

myiFogSim fog migration alloc+mon |

IoTSim iot/cloud | allocation |

YAFS fog app alloc+fail |

Sphere edge workloads orchestration |

EmuFog fog | placement containers

Fogbed fog volatility | containers

MockFog fog | allocation VM-based

Table 1: Summary of simulation and emulation tools

2.1 Simulation Tools

While simulators cannot execute real applications, their de-

signs are of interest to ensure that our emulator meets func-

tional expectations on expressible scenarios. They simulate

hybrid Cloud Computing and Edge based on simplified mod-

els. Many Edge Computing simulators extend CloudSim [4],

such as iFogSim [8]. It provides an evaluation platform for re-

source allocation policies. A limitation of iFogSim is that the

location of end devices is static and cannot be updated; fur-

ther, it is limited to the Discrete Event Simulators (DES) and

has poor scalability because of the CloudSim characteristics.
Similarly, EdgeCloudSim [18] extends CloudSim. In con-

trast to iFogSim, it is focused on a more dynamic and realistic

investigation of service usage and implements mobility mod-

els for mobile devices. MyiFogSim [13] extends iFogSim to

support mobility through the migration of VMs between

cloudlets. IoTSim [21] also extends CloudSim. It emphasizes

the processing performance of large IoT applications that

process huge amounts of data. As a result, it adds storage

and big data processing layers with map-reduce cloudlets to

CloudSim. EdgeCloudSim and IoTSim both inherit the same

scalability and DES limitations as iFogSim.
Yet Another Fog Simulator (YAFS) [11] is a DES for Cloud

& Fog networks. Its primary focus is the performance evalu-

ation of placement, scheduling, and routing strategies. Ap-

plications are modeled as a set of modules that run services,

following the concept defined by iFogSim. Sphere [7] extends

SCORE [6] and allows creating a cloudlet network based

on graphs, generating dynamic and parallel workloads, and

specifying the geographic location, resource density, and

deployment requirements. However, it does not support the

nodes’ mobility and lacks the migration model of a workload.
Simulators such as iFogSim, CloudSim, and YAFS sup-

port the dynamism and on-demand requirements of Fog

services/applications via VM elasticity and migration, fed-

eration policies, and computational clustering nodes. Edge-

CloudSim only supports federation and scalability between

nodes of the same tier (only Cloud or only Fog), which means

that it is impossible to achieve a proper orchestration along

with the Cloud to Fog continuum.

2.2 Emulation Tools

EmuFog [14] is an emulation framework for Fog Comput-

ing built on top of MaxiNet [19]. It emulates Fog nodes and

makes use of Docker to run applications. EmuFog is more

realistic than simulation tools, implementing a Fog node

placement algorithm based on arbitrary latency costs to the

connections between hosts and switches. It does not support

the mobility of clients and fog nodes. Fogbed [5] extends the

Mininet network emulator. In contrast to EmuFog, it uses

Docker containers to run virtual nodes and allows develop-

ers to dynamically add, connect, and remove nodes from the

topology. This feature allows investigating real-world Fog

infrastructures, where Cloud services are provided closer

to the network edge. It does not support mobility, security,
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fault tolerance, scalability, and reliability and does not im-

plement any resource providing model for the application

services. The application used to evaluate the emulator is

not faithful to real-case scenarios and lacks configurability

and extensibility. It is strongly-coupled with the virtual node

code. EmuFog and Fogbed have scalability support regard-

ing the communication and topology infrastructure but lack

strategies to deal with applications’ on-demand requirements

inside computational nodes.
Finally, MockFog [9] allows the emulation of a Fog Com-

puting infrastructure in arbitrary Cloud environments. It

creates a VM for every node lacking scalability and being

expensive when implementing an infrastructure model with

a large number of nodes. It also has problems when smaller

devices are involved, as they cannot be accurately emulated.
Concerning the service execution plan and resource pro-

visioning in hybrid Cloud-Fog-IoT environments, several

optimization solutions for service deployment have been in-

vestigated, each of them focusing on different target variables.

In [17], the authors investigate a solution for maximizing

the number of services deployed on Fog devices by applying

heuristics to solve their service placement problem based

on collected response times. The approach proposed by the

authors is not realistic as they assume that each service of an

application can be executed independently from workflow

structures with chained output-input links. In [12], the au-

thors address service provisioning as a Delay and Payment

optimization problem, which is the trade-off among energy

consumption, delay performance, and payment cost when

deploying services. In [20], the authors propose a distributed

alternating direction method of multipliers to approach the

allocation as a trade-off between the users’ Quality of Expe-

rience (QoE) and the fog nodes’ power efficiency.
Table 1 summarises the capabilities of related simulation

and emulation approaches regarding the four key criteria

mentioned before.

3 MOTIVATIONS AND REQUIREMENTS

Osmotic capabilities are of increasing importance when con-

sidering the growing digitalization of life. To counter the

pandemic in 2020, several national governments have re-

leased software applications with workflows encompassing

mobile phones, telecom carriers and cloud services. The de-

gree to which processing logic has been placed on one side

depends on political strategies. Due to their volatility, en-

gineering effort can be saved from a technical perspective

when mechanism and policy are properly separated and the

placement gains flexibility. The mechanism then entails a

decomposition of the application into either resource-bound

or portable parts, the MELs, that can be implemented as

cloud functions, containers, other MicroService technologies

(MS) and associated MicroData (MD) representations. The

assignment of MELs to computing resources can become dy-

namic at deployment time. It requires osmotic management,

where MELs can move across different infrastructures, based

on several potential triggers (e.g., performance, networking,

security/privacy, or cost-oriented). The Software-Defined

Membrane (SDMem) in OC enforces these concepts filtering

the MELs flows in the system.
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Figure 1: Scenario of osmotic e-health application

Let us consider the case of a rural medical lab with limited

processing power and network access. The application de-

ployment needs to prioritize which MELs can be deployed lo-

cally if there are resource contentions and otherwise needs to

optimize within the given degrees of freedom among all the

portable MELs. Hence, the application consists of a manda-

tory on-site part on health testing, a portable part on image

detection that can run either on-site or in the cloud, and an

optional part on recommending further tests that run in a

particular cloud environment. Figure 1 explains this scenario.

It involves descriptors of application requirements, includ-

ing deployment priorities (P3), and corresponding hosting

capabilities (C3), facilitating deployment dynamics.
In contrast to the streamlined onboarding of software ap-

plications in clouds, the decomposition and description of

applications for such dynamic scenarios is currently a chal-

lenging engineering task. To give application engineers the

ability to prepare, using an emulator will save precious time

and effort and facilitate resource planning. To overcome the

limitations of existing emulation tools, we require Osmotic-

Toolkit to provide the following technological advances:

(1) Combined inherent support for all of the four key cri-

teria outlined in Table 1 by design.

(2) Well-defined usage procedure with explicit infrastruc-

ture and application modeling, infrastructure instanti-

ation and application pipeline deployment.

(3) Service-oriented integration with APIs/CLIs to fit into

automated osmotic and cloud-native systems.
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4 OSMOTICTOOLKIT WORKFLOW
DESIGN

This section highlights OsmoticToolkit’s features and overviews

a high-level designworkflow outlining the emulation abstrac-

tions, the toolkit core components and their interactions.

4.1 Design Principles

OsmoticToolkit should support four main features:

Hybrid Topology. OC ecosystems consist of hybrid com-

plex IoT-oriented computing systems where both resource-

constrained Edge/Fog nodes and Cloud-hosted services in

public/private, hybrid or multi-cloud are involved. The gen-

eration of such topologies should be realistic with a high

degree of confidence, allowing to assign capacities (e.g., CPU,

memory) and capabilities (e.g., hosted services, applications)

for each infrastructure component trivially.

Dynamicity. In OC, computation is dynamically distributed

across nodes based on QoS requirements and available infras-

tructure resources. Particularly, services with short lifecycles

are frequently instantiated and offloaded. It also occurs at the

lowest level of the infrastructure, where Edge and IoT nodes

may join and permanently leave the network according to

service usage, failures, policies, and maintenance operations.

OsmoticToolkit should provide a holistic approach for man-

aging the network infrastructure and application.

Resource Provisioning andOrchestration. Applications range

from simple IoT-based sensing to complex data processing

inherent to e-health or smart city systems with different

QoS and SLA (e.g., location/latency awareness, security lev-

els, heterogeneity, interoperability), processing (e.g., batch,

real-time), mobility. OsmoticToolkit should consider these as-

pects during the orchestration allowing dynamic and flexible

resource provisioning and monitoring mechanisms.

Execution. OsmoticToolkit should allow the execution of

realistic applications on top of the infrastructure topology.

This feature should minimize the effort in preparing applica-

tions, avoiding costly changes in stack and tools.

4.2 OsmoticToolkit Infrastructure Model

Figure 2 illustrates the high-level design workflow of Os-

moticToolkit. In this scenario, the DevOps Engineer (DOE)

is involved in several phases, as explained in the following.

Phase #1: Infrastructure Modeling. An OC ecosystem com-

prises Infrastructure Elements (IEs) such as compute nodes,

Network Elements (NEs) such as switches and routers, and

Application Elements (AEs) deployed on top of the infras-

tructure, at different levels. The infrastructure topology is

modeled as directed graph T = (V, E) where V is a set whose

elements are called vertices (e.g., IE), and E is a set of paired
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Figure 2: OsmoticToolkit general workflow.

vertices, whose elements are called links. Each IE is character-

ized by different computing properties (e.g., CPU, memory),

while different network parameters characterize each link

and thus NEs (e.g., latency, bandwidth, packet loss). As exem-

plified in Figure 2, if the link between N1 and S1 (N1-S1) has a

delay of 3ms, S1-S2 has 5ms, and S2-N2 has 2ms, the overall

delay is 10ms. During this phase, the DOE starts with such

a graph specification before assigning properties to vertices

and links using a template primitive. OsmoticToolkit relies

on pre-configured container images, e.g., Cloud, Fog, Edge,

and IoT, retrieved as IEs the toolkit’s registry. Thus, each IE

in the emulated network executes in an independent and iso-

lated way, increasing the emulation’s realism and affording

behavior similar to that in production infrastructures.

Phase #2: Application Modeling. Similar to Infrastructure

Modeling, applications deployed in an osmotic ecosystem

are structured as graph P = (V, E), where V =MELs and E = in-

terconnections. OsmoticToolkit associates the concept of the

pipeline to an application. Namely, the pipeline’s anatomy

describes MELs properties and how they are interconnected.

The DOE defines independent pipelines inside the toolkit

and interacts with each separately. Each pipeline is described
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within a template primitive. For eachMEL inside the pipeline,

the DOE can specify different resource requirements, con-

straints, and scheduling policies.

Phase #3: Infrastructure Instantiation. During this phase,

the Initializer Middleware loads the template primitive con-

taining the infrastructure description and instantiates it by

deploying instances, e.g., for Cloud (CI), Fog (FI), Edge (EI)

and IoT (IoTI), as well as Compute or Managed Nodes (MNs),

switches, and links into an emulated environment. An exam-

ple of a running environment with 9 instances is shown in

Figure 2.
The instance abstraction allows the management of MNs

and switches as a single entity. Generally, each instance

involves one or more switches and MNs. An instance con-

taining more of those is called a colony, e.g., Cloud Colony

(see Figure 2). This colony composes a new and isolated

network slice. It is relevant in mobile networks, where the

limited radio resources are shared among multiple users that

experience variable radio quality conditions over time. To

properly control and manage the QoE in the network slice,

the NEs are adapted to the different service requirements,

and the applications adjust the configuration to the network

capabilities over time dynamically.
Each instance has associated a resource model defining

the amount of computing resources distributed among its

MNs. Each MN in the infrastructure model is mapped to

a running container. The resource model allows the DOE

to apply limitations that impose each instance’s available

resources according to a specific scenario.
To efficiently control and manage this complex osmotic

ecosystem, an effective control system becomes essential.

The Orchestrator Node (ON) handles this system. During

this phase, the ON is instantiated within an Orchestrator

Instance (OI) and it is the point of entry for DOE via API

endpoints and automation handlers. Thus, it manages the

entire infrastructure, deploys pipelines or offloads MELs,

spawns new nodes, and forwards configuration details.

Phase #4: Pipeline Deployment. The application is deployed

on the emulated infrastructure through ON’s Instance API

endpoint for this phase. The ON firstly evaluates the MEL’s

predefined constraints and scheduling policies specified by

the DOE within the template. This filtering step allows se-

lecting a set of nodes obeying the specified restrictions. Next,

it evaluates the computation requirements for each MEL.

It generates an optimal execution plan for the pipeline for

describing the MELs contextualization across the Cloud, Fog,

Edge, Fog, and IoT MNs through an optimization algorithm.

Namely, it assigns each MN satisfying the computation re-

quirements of one or more MELs by minimizing a specific

cost function. It is assumed that the ON has full control over

which MELs are executed on each instance. Finally, the MELs

are instantiated and run in Docker containers on top of the

MNs (i.e., Docker-in-Docker) according to the previously

generated optimal scheduling plan. The DOE interacts with

the pipeline using the orchestrator APIs by controlling the

MELs status, performing updates, tearing down the pipeline,

or deploying a new one.

5 EMULATOR IMPLEMENTATION

This section discusses the architectural components, along

with their interactions (illustrated in Figure 3), and motivates

the set of technologies used to implement OsmoticToolkit.

The technological choices are constrained by several non-

functional requirements such as flexibility, ease of use, cost-

effectiveness, scalability, extensibility.

5.1 Core Components and APIs

OsmoticToolkit core. The toolkit is based on Container-

net [15] that extends the Mininet emulation framework by

adding Docker containers at runtime as compute instances

within the emulated topology.We chose Containernet/Mininet

because they are highly prevalent in the distributed comput-

ing community, open-source, scalable, easily extensible, and

flexible. The core offers three convenient APIs.

Topology API. This API is based on the Mininet Python

API. It interacts with the core to allow the DOE to generate

different topologies straightforwardly. Switches are imple-

mented leveraging Open vSwitch. Standard SDN controllers

configure the switches as part of the Mininet emulation envi-

ronment, e.g., OpenFlow. Other advanced network protocols

and forwarding setups can be implemented by the DOE.

Instance API. It provides an Infrastructure-as-a-Service

(IaaS) endpoint allowing to manage MNs within instances

in an adaptable way. The core interacts with this API to

control the instance semantics. The default approach adds

one specific Instance API to each type of instance. With this

kind of abstraction, an instance can be managed in different

ways, e.g., as a colony with different resource allocation or

placement policies for each MN. The Instance API can be

easily extended, and DOEs can implement their management

interfaces on top.

Resource API. This API lets the DOE apply resource limits

for each instance, such as constrained CPU and memory,

and specify additional parameters such as a pricing model.

OsmoticToolkit supports two kinds of resource models:

(1) Predefined Resource Model: It assigns predefined re-

sources to each instance; in particular, there are 7 fixed

models, e.g., m1.small (CPU: 1 and memory: 512MB),

m1.medium (CPU: 1 and memory: 1024MB) and so on.

If no resource model is specified, the m1.medium is
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Figure 3: OsmoticToolkit architecture

applied for all instances by default, while the OI uses

m2.medium.

(2) Customized Resource Model: Conversely, this model

allows defining custom resource limitations for each

kind of instance. For Cloud-based instances, some real

resource limitations and pricing models can be con-

figured through a Python-based script that scrapes

current container pricing data from different service

providers, e.g., AWS, Azure.

InitializerMiddleware. It is implemented as a Python-based

script and runs either on the DOE host system or within the

build pipeline. Its primary purpose is to load the infrastruc-

ture topology definition template and start the emulation.

5.2 Emulated Environment

The ON is the central component serving RESTful API, as an

MN with additional responsibilities. The ON extends Mae-

stroNG [2] by implementing dynamic scheduling, monitor-

ing, service offloading, and policy management. Specifically,

MaestroNG is a simple and easily extensible orchestrator for

Docker-based, multi-host environments that offer service-

level and container-level controls that rely on declared ser-

vice dependencies static placement.
As shown in Figure 3, the ON in the topmost level exposes

an API through which the DOE interacts with the emulated

ecosystem. In the lower levels, there are several agents, each

one dealing with specific tasks. We use Celery, a simple,

flexible, and reliable distributed task queue system, to roll

up these agents. Celery is configured to use the local Redis

database as a message broker. The main agents instantiated

on every MNwithin the emulated environment are described

below.

Monitoring Agents. One Monitoring Agent (MonA) is the

Resource Monitoring Agent (RMA). It is responsible for peri-

odically collecting utilization metrics from the MNs, allow-

ing the VON at every level to be aware of the capabilities of

the MNs present within the topology. RMA has been imple-

mented through a non-intrusive Python library, e.g., psutil,

and resides on each VN. Another MonA is Healthcheck Mon-

itoring Agent (HMA). It is responsible for maintaining the

infrastructure’s topology by regularly monitoring the health

of the MNs.

Management Agents. Management Agents (MAs) interface

with deployment and control interaction within the infras-

tructure components. The Node Management Agent (NMA)

is the most crucial component residing on the ON. It is re-

sponsible for handling every interaction with DOE through

ON’s APIs. It also deals with two primary operations, MEL

scheduling and offloading. According to the pipeline’s de-

ployment requirements set by DOE, the NMA generates a

resource provisioning plan via an optimization algorithm for

describing the MELs contextualization across the MNs. Its

implementation is extensible to allow the DOE to plug other

resource provisioning strategies. OsmoticToolkit supports

two provisioning approaches natively: a) static - inherited

from MaestroNG and b) dynamic.
Using a static provisioning strategy, the DOE has to know

a priori the network topology, e.g., the IP addresses of the

MNs on which to schedule the MELs. The static approach

does not use any optimization algorithm for resource provi-

sioning; consequently, the nodes can result in over-/under-

provisioned. In OsmoticToolkit, dynamic scheduling is treated

as an assignment problem. Because of its simplicity and abil-

ity to find the optimal solution without requiring validation,

we choose Kuhn’s Hungarian algorithm [10] to solve the
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assignment problems for generating the optimal scheduling

plan for MELs.
Each assignment problem is associated with a cost matrix.

The rows contain the workers or MNs we wish to assign,

and the columns comprise jobs or MELs we want to assign

to them. The cost function 𝑐𝑖 𝑗 used to compute the cost ma-

trix used is given in Equation 1 [16] and is defined as the

weighted sum of the following five parameters: (i) number

of containers running on each MN (𝑛𝑐 ), (ii) percentage of

memory used (𝑛𝑚𝑒𝑚), (iii) average CPU utilization (𝑛𝑐𝑝𝑢 ),

(iv) amount of CPU the MEL requires and finally (𝑎𝑐𝑝𝑢 ) (v)

amount of memory the MEL requires (𝑎𝑚𝑒𝑚). Where i varies

from 1 to the number of VN N, j varies from 1 to the number

of parameters 5.𝑤𝑖 𝑗 is a weight between 0 and 1, 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑖
is an array containing the values of the parameters as men-

tioned above, and 𝑓𝑗 (𝑡) represents that these parameters vary

in time. The weights used are𝑤1 = 0.4,𝑤2 = 0.04, and𝑤3 =

0.01 (see [16] for further details).

𝐶 =

𝑁∑︁

𝑖=1

5∑︁

𝑗=1

𝑤𝑖 𝑗 × 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑖 𝑗 × 𝑓𝑗 (𝑡) (1)

Kuhn’s Hungarian algorithm treats the Optimal Assign-

ment Problem (OAP) as a combinatorial problem to efficiently

solve an 𝑛 × 𝑛 task assignment problem in O(𝑛3) time. It a

complete bipartite graph, G = {V, U, E}, where V and U are the

sets of nodes in each partition of the graph, and E is the set of

edges. The cost estimations become edge weights and each

node and MEL becomes a vertex. Starting with an empty

matching, Kuhn’s Hungarian algorithm’s basic strategy is

to search for augmenting paths in the equality subgraph

repeatedly.
If an augmenting path is found, the current set of matches

is augmented by flipping the matched and unmatched edges

along this path. Because there is one more unmatched than

a matched edge, this flipping increases the cardinality of the

matching by one, completing a single stage of the algorithm.

If an augmenting path is not found, additional edges are

added into the equality subgraph by making them admissible,

and the search continues. n such stages of the algorithm

are performed to determine n matches, at which point the

algorithm terminates.
It should be noted that the orchestrator has to be also

able to recognize situations when a MEL on the Edge must

be offloaded on a Cloud MN or vice-versa. The Osmotic

Orchestrator Agent (OOA) is aMA that periodically performs

an orchestration by running the Hungarian algorithm to

check whether the actual scheduling plan is optimal. If it is

not, a new optimal scheduling plan is generated. The OOA

contacts an NMA’s API to update the new scheduling plan

and perform the necessary MEL’s offloading.
The offloading is implemented as live migration to limit

the service downtime. This technique used is based on lazy or

post-copy memory migration using Checkpoint-Restore in

Userspace (CRIU). Another NMA is represented by the Node

Agent (NA) as the main component of the VNs, exposing

the necessary APIs to communicate with it, e.g., healthcheck

endpoint, resource monitoring, migration, as previously ex-

plained. It is implemented as Python Flask service.

Container Agent. On every Cloud, Fog, Edge, and IoT MN,

the Docker engine is installed. The Container Agent (CA)

is represented by the persistent process that exposes the

Docker API. It is used for communication with the Docker

daemon, allowing it to control the status of containers. The

ON contacts remotely the MNs’ Docker daemon via this API

every time it needs to deploy a new MEL.

Network Agents. The Network Agents (NA) collect flow

statistics on each MN by running flow monitors for each net-

work interface on virtual nodes and virtual switches. These

data are stored in the Redis local instance for future analysis.

Database Instances. Our system involves two Redis DB

instances. The local instances are used to store the config-

uration parameters and VN statistics, such as resource uti-

lization. The shared Redis instance is for the versioning of

the scheduling plan. It is also used to store the infrastruc-

ture topology description. There are also store the resource

utilization metrics gathered from the RMA.

6 EXPERIMENTS AND EVALUATION

In this section, we present experiments and evaluations that

we undertook to quantify the efficiency of OsmoticToolkit in

modeling and simulating Osmotic Computing environments.

6.1 Methodology

The evaluation criteria leverage a set of metrics that can be

used to evaluate the proposed emulator’s effectiveness in

terms of a) Responsiveness, b) Reactiveness and c) Agility.

Responsiveness. Assures that the system continues to have

adequate response times even when the load rises. Generally,

a system that strives to handle many requests with accept-

able latency requires more computation resources. Hence,

the system can be over-provisioned to keep system respon-

siveness. Such resources are expensive and a system should

always optimize the use to be cost-effective. One of the re-

sponsiveness properties is SLA preservation. The guarantees

provided by the SLA concern the fact that response times to

user requests should never exceed a certain threshold.

Reactiveness. Indicates the reaction time of an environ-

ment composed of multiple individual applications blending

into one unit while staying aware of each other to produce a

workflow execution.
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Figure 4: Hospital Application MEL’s Average Response Times (s)

Agility. Indicates the ease in applying changes in the en-

vironment. One helpful metric in this context is the system

downtime when there is a dynamic reconfiguration. It repre-

sents the amount of time that the system or a portion of the

system is not working correctly.

6.2 Application Use Case Scenario and
Infrastructure Setup

To validate the effectiveness of the toolkit, we implemented

the microservice-based rural hospital application illustrated

in Figure 1. Its workflow involves each patient in several

steps. The patient is initially examined, with preliminary

clinical trials conducted to identify possible pathologies. The

"MEL Pathology" manages these trials. It updates the pa-

tient’s Electronic Medical Record (EMR) with the collected

health data. Then, he passes through admission for recovery.

"MEL admission" handles this by updating the EMR with

the recovery information. Through continuous monitoring,

health data are collected and stored within the EMR for local

processing during the recovery phase. In the case of abnor-

mal values, the EMR is submitted to offloaded processing.
All MELs composing the e-health application are imple-

mented with Java 12 and SpringBoot 5. To discover MELs,

we use the REST-based Eureka server. The patient’s actions

are simulated using JMeter and with periodic requests. We

configure a test plan with 100 threads (equivalent to 100 pa-

tients), a duration of 8 minutes (480 s), and ramping-up over

2 minutes with 3 minutes of hold time. Hold time confirms

that the system handles the load and its performance stays

stable and does not deteriorate. There is a tunable interarrival

time between one API call and the next one. It is managed

by setting up a Gaussian random timer with a deviation of

500ms, and a constant delay offset of 1000ms.
The infrastructure topology used to run the MELs con-

sists of 1 VCI, 1 VFI (connected to VCI), 1 VEI (connected

to VFI), and a VIoTI (connected to VEI). We consider two

resource models for the experimental investigation: (i) de-

fault: all the VIs have minimal hardware resources (e.g., 1

CPU and 1024GB of memory), (ii) custom: different user-

defined hardware resources characterize each VI, such as

cloud (CPU: 1, memory: 4096MB), fog (CPU: 1, memory:

2048MB), edge (CPU: 1.4, memory: 1024MB) and IoT (CPU:

1, memory: 512MB). The experiments have been conducted

on an OpenStack cluster instance by CloudLab1. The in-

stance has 16GB RAM, 8VCPU and 240GB of storage and

runs Ubuntu 18.04 LTS.

6.3 Results and Findings

Network Parameters Selection. For the emulated infrastruc-

ture, wemodeled the described scenario with suitable latency

and packet loss values for the links to reflect as much as possi-

ble a real site. To do so, we conducted a series of experiments

to measure the latency and packet loss in three different

setups: (i) Edge to Cloud and (ii) Fog to Edge, and (iii) IoT to

Fog by performing 3000 ping requests.
As Cloud node, we used the OpenStack instance previously

listed. As Edge node, we used a Raspberry Pi 3 with 4 cores @

1.4 GHz and 1GB RAM with Raspberry Pi OS Lite connected

to a router via Ethernet and, as an IoT device, an iPhone

7+ with iOS 14.1 connected via WiFi with the same router.

As Fog node, we used a MacBook Pro 3.3 GHz Dual-Core

Intel Core i7 with 16GB RAM and MacOS Catalina 10.15.7

connected via WiFi with the same router. The router, Edge,

Fog, and IoT devices are physically located in the same room.
First, we ran a ping on the Cloud to measure the Round

Trip Time (RTT) from the Edge node. We found the average

RTT is 67.56ms and 4.0% of packet loss. Then, we ran a ping

on the Edge to measure the RTT from the Fog. We found the

average RTT is 42.189ms and 0.2% of packet loss. Finally, we

1CloudLab: info.cloudlab.zhaw.ch
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ran a ping on the IoT to measure the RTT from the Edge. We

found an average RTT of 7.57ms and 0.0% of packet loss. We

used the measured average RTTs from the real experiment

and provided that as an input parameter for the emulated

links in our model (see Figure 1).

Responsiveness. To ensure the SLA preservation, it is help-

ful to see the MEL’s average response times when the load is

low and use them as a reference for checking the degraded

performance when the load increases. As shown in Figure 4a,

we note the average response times increase with the num-

ber of patients. The three endpoints have different requests

over time; JMeter periodically performs a set of requests

to different API endpoints over time. Figure 4a shows that

the response time per each API endpoint. In particular, the

results obtained by applying a custom resource model rev-

els lower average response times and show a more stable

trend when the number of patients increases. The average

response times obtained with both configurations are accept-

able (around 0.125 s using a default resource model and 0.1 s

using a custom resource model when the maximum number

of patients is reached), preserving the SLA. The trend is even

more evident in Figure 4b.
In conclusion, the slowdowns are not particularly severe,

and the responsiveness results when both resource models

are applied show that the application remained responsive

throughout all executions.

Reactiveness. To assess the proposed system’s reactive-

ness, we evaluated the workflow from the infrastructure

bootstrap/tear down and pipeline deploy/undeploy sides. We

collected these results using both resource models default

and custom and dynamic and static resource provisioning

approaches. According to Figure 5, we notice the infrastruc-

ture bootstrap with a custom resource model requires, on

average, 22.5 s, while the default one takes on average 24 s.

A similar trend is obtained when the infrastructure is torn

down. This is because the nodes initialized with the custom

resource model have a higher amount of resources assigned

and require more time to instantiate them. The same is also

applied when the infrastructure is torn down and all allo-

cated resources are released.
For the pipeline deployment, we used both static and dy-

namic provisioning approaches. Figure 5 shows the obtained

response times when a static resource provisioning approach

has been used. In the case of a dynamic approach, the re-

sponse times must be summed up the time the Kuhn’s Hun-

garian algorithm takes to provide the scheduling plan. That

is, on average, 4.29ms. As we can see, Kuhn’s Hungarian

algorithm’s execution time is almost negligible and does not

impact response times. We notice the opposite trend with

respect to the bootstrap/tear down response times in terms

of deploy and undeploy response times. We notice that de-

ploy/undeploy operations performed on top of the nodes

initialized with the custom resource model require less time

respect when the default resource model is used.
This is because the nodes initialized with the custom re-

source model are more powerful in terms of hardware re-

sources than those instantiated with the default resource

model. In this way, all the processes run more fluently are

quicker to initialize components and respond. Similar behav-

ior is obtained when the status of the pipeline is checked by

calling the corresponding API. The response times collected

for deploying the pipeline do not consider the time necessary

to download the MEL’s images. To download all the images,

there are required almost 50 s on average more. Therefore,

the overall response times are acceptable and in line with

what we were expecting.
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Figure 5: Infrastructure and pipeline instantiation

Agility. Evaluation of the system’s agility is done by dy-

namically performing a MEL offloading from a Cloud node to

an Edge node. MEL’s offloading allows minimizing cost and

energy consumption of services to end-users by improving

QoE leveraging the awareness of their location, network, mo-

bility, and context information. The main objective is to show

that the offloading of a MEL causes no system downtime min-

imizing as much as possible the application’s downtime in

case of reconfiguration. We performed the MEL’s offload-

ing when both resource models were used to initialized the

nodes. We therefore used for this evaluation two MELs of

different sizes to understand how the image size impacts the

overall times. In particular, one of 75.3MB and another of

182,41MB.As explained, offloading is implemented as live migra-

tion consisting mainly of two phases: (i) checkpoint and (ii)

restore. We performed 30 subsequent executions and gath-

ered the average response, checkpoint/restore and downtime

times. The response time measures the elapsed time between

the first POST call on the /offload endpoint and the MEL

restore phase’s start on the destination node. Figure 6 show
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that the average response time is greater when a default

resource model is applied. The same behavior is obtained

for the checkpoint/restore times. The mean MEL downtime

during the offloading is 0.5 s when the default model is ap-

plied and 0.35ms with the custom one. This fact highlights

that the service has been offloaded with minimum downtime.

This is because, with the custom model, the nodes are more

powerful and perform faster operations. However, for an

image of 75.3MB, the timings are higher than with an image

size of 182.41MB. The image size impacts heavily on the

checkpoint/restore performances. Thus, the offloading oper-

ations can be performed dynamically and asynchronously

while the system is running, introducing zero downtime for

the system and improving the overall agility.

7 CONCLUSIONS AND FUTUREWORK

With this work, we contributed and evaluatedOsmoticToolkit,

emulating resources and network connections for distributed

applications deployment to IoT devices and Fog, Edge and

Cloud resources. As the emulation approximates real de-

ployments and eases their planning, it exceeds simulation

approaches. Moreover, it is the first emulator to combine

four key characteristics: hybrid topologies, dynamicity with

service offloading, resource provisioning/orchestration, and

realistic container execution.
Based on the achieved toolkit, we intend to conduct broader

studies on integrating commercial cloud providers and min-

imizing the runtime behavior differences between real de-

ployments and emulation by supporting further cloud-native

MELs and SDMems.
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