
© The author(s) 2020. This is the author’s version of the work. It is posted here for your personal use. Not for redistribution. The
definitive version was published in Middleware 2020, https://doi.org/10.1145/3429358.3429371.

Given 2n Eyeballs, All Quality Flaws Are Shallow

Panagiotis Gkikopoulos
pang@zhaw.ch

Zurich University of Applied Sciences

Winterthur, Switzerland

Josef Spillner
josef.spillner@zhaw.ch

Zurich University of Applied Sciences

Winterthur, Switzerland

Cristian Mateos
cristian.mateos@isistan.unicen.edu.ar

ISISTAN Research Institute

Tandil, Argentina

Alfredo Teyseyre
alfredo.teyseyre@isistan.unicen.edu.ar

ISISTAN Research Institute

Tandil, Argentina

Abstract

We demonstrate the capabilities of the Microservice Arte-

fact Observatory (MAO), a federated software quality as-

sessment middleware. MAO’s extensible assessment tools

continuously scan for quality flaws, defects and inconsisten-

cies in microservice artefacts and observe runtime behaviour.

The federation reduces bias and also increases the resilience

and overcomes per-site failures, leading to a single, merged

timeline of software quality. Already serving concurrently

by n = 3 observant operators in Argentina and Switzerland,

the federation is designed to become a community-wide

consensus voting-based ground truth repository with query

interfaces for large-scale software quality and evolution in-

sights. These insights can be exploited for excluding buggy

software before or after deployment, for optimised resource

allocation, and further software management tasks.

ACM Reference Format:

Panagiotis Gkikopoulos, Josef Spillner, Cristian Mateos, and Al-

fredo Teyseyre. 2020. Given 2n Eyeballs, All Quality Flaws Are

Shallow. In 21st International Middleware Conference Demos and

Posters (Middleware ’20 Demos and Posters), December 7ś11, 2020,

Delft, Netherlands. ACM, New York, NY, USA, 2 pages. https://doi.

org/10.1145/3429358.3429371

1 Problem Description and Goals

Understanding complex software, especially composite cloud

applications, means acquiring data via static analysis, testing,

monitoring, observation and chaos engineering. As this en-

ables data-driven software lifecycle management, engineers

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than the author(s) must

be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from permissions@acm.org.

Middleware ’20 Demos and Posters, December 7ś11, 2020, Delft, Netherlands

© 2020 Copyright held by the owner/author(s). Publication rights licensed

to ACM.

ACM ISBN 978-1-4503-8202-1/20/12. . . $15.00

https://doi.org/10.1145/3429358.3429371

should be able to rely on verified software-related data (e.g.

is a component affected by a vulnerability) as ground truth.

This allows for informed and automated decision making

(accept, reject, notify, commit, rollback) based on trusted

and reproducible metrics delivered on demand, instead of

spending their time with brittle experiments and finding

out failures after the fact. The goal of a federated software

artefact quality assessment framework is therefore to offer

reliable quality metrics as a service in the context of testing

and quality assessment. This service to highlight quality

issues (and security/consistency flaws, depending on metric-

producing assessment tools) is not performed by an untrusted

and potentially biased vendor, but by independent operators

(researchers, experts, companies) who are implicitly con-

nected in a web of trust with software framework support

by multiple nodes running the federated tools directed by or-

chestrators. For discrepancies among observations, confirmed

and resolved with a variation of the well-known resolution

all bugs are shallow by attentive eye pairs, consensus voting

is employed to resolve any diverging assessment automati-

cally, and in cases of persisting differences, researchers or

citizen scientists such as developers from the respective com-

munities inspect the deltas manually and make a decision

on merging results. The outcome is decentralised quantified

knowledge about software artefacts in the form of ground

truth which can be exploited to determine software com-

positions, builds, deployments and other lifecycle matters

through appropriate query interfaces. Fig. 1 summarises the

envisioned environment and interfaces of the framework.

Figure 1.Web-of-trust based quality metrics as service

https://doi.org/10.1145/3429358.3429371
https://doi.org/10.1145/3429358.3429371
https://doi.org/10.1145/3429358.3429371

Middleware ’20 Demos and Posters, December 7ś11, 2020, Delft, Netherlands P. Gkikopoulos, J. Spillner, C. Mateos, and A. Teyseyre

2 Research and Technical Approach

2.1 Contributions

The open source MAO framework1 consists of an orches-

trator with integrated scheduler for running artefact check-

ers (pluggable tools) and federation management based on

a decentralised key-value store. Based on streams of met-

rics generated by the checkers, MAO learns about the value

distribution and evolution. It contains generic detection of

outliers and regressions (spike detection) and gaps (missing

measurements, e.g. due to power failure), and furthermore

about discrepancies to other measurements in the federation

caused by different measurement methods, tools, parameters

or times. Discrepancies are discovered by the framework

on each node by iterating over all measurement streams of

a representative sample of the respective other nodes. For

each stream, both stream presence and timestamped met-

rics are compared. Deltas are expressed quantitatively. If for

instance one node’s Internet connection fails while retriev-

ing an artefact for assessment, the resulting gap is quickly

filled by the sample set of other nodes. These features offer

cloud-native resilience and scalability not present in most

long-term observation and testing frameworks. The frame-

work is provided along with around a dozen checkers for

assessing individual artefact types, covering primarily server-

less (Lambda, SAM) and container technologies (Docker im-

ages, Kubernetes manifests), but also blockchains (DApps).

Through software repositories, artefacts of those types are re-

trieved and assessed. Exemplary reference datasets spanning

multiple months are further contributions in this context,

representing joint observations as baseline for further nodes

to join and widen the research community impact.

As long-lasting impact of our work, scientific software

studies will become more comparable by standardising the

empirical evidence on software quality, and follow-up works

to already published papers on microservice quality can be

underpinned with artefact views. A video presentation of the

consensus algorithm acting in a realistic scenario is available

online2.

2.2 Capabilities and Maturity

We have performed regular artefact checks for over two

years, in the recent year with MAO. On a technical level,

the framework is entirely containerised, making it easy to

redeploy it into any managed runtime environment support-

ing container execution and basic network port access. On

a process level, the open federation ensures that upon invi-

tation by existing nodes, new nodes can join and thus the

research community at large can participate as trust anchor

over a long period of time. Yet a governance model still needs

to be found. Who owns the data when multiple nodes dis-

cover the same metrics? What happens in case of a split

1Code: https://github.com/serviceprototypinglab/mao-orchestrator
2Video: https://www.youtube.com/watch?v=6ELYkZijfu8

when two leaders emerge from the voting? According to

our preliminary results, MAO offers substantial potential to

conduct research on software quality assessment and man-

agement and to rethink the notion of reliable quality metrics

for software artefacts.

3 Related Work

MAO is not the first framework aiming to overcome repro-

ducibility and reliability limitations by automated checks.

The need to understand software quality has led to some

specialised tools, ranging from source code analysis (e.g.

SonarQube [5]) to runtime tracing and anomaly detection

(e.g. FRAP [4]). ARRESTT [2] covers reproducible software

testing methodologies, and Elastest [1] covers programmable

end-to-end testing with failure injection in the cloud. Further

techniques have been proposed to continuously monitor run-

time and security properties of composite cloud applications

but without capturing the observations as datasets [3].

All of these tools assume single ownership, and conse-

quentlymost studies present the results from single instances,

making them subject to potential bias. Moreover, their re-

sults are hard to compare because quality checks and studies

are tightly coupled; the checks end when the studies are pub-

lished, limiting comparability and reproducibility. In contrast,

MAO advocates for a merged view on multiple instances

running continuously and providing citeable observation

windows and trusted snapshots for empirical studies.

References
[1] Antonia Bertolino, Antonello Calabrò, Guglielmo De Angelis, Micael

Gallego, Boni García, and Francisco Gortázar. 2018. When the testing

gets tough, the tough get ElasTest. In Proceedings of the 40th International

Conference on Software Engineering: Companion Proceeedings, ICSE 2018,

Gothenburg, Sweden, May 27 - June 03, 2018. ACM, 17ś20. https://doi.

org/10.1145/3183440.3183497

[2] Iaron da Costa Araújo, Wesley Oliveira da Silva, José B. de Sousa Nunes,

and Francisco Oliveira Neto. 2016. ARRESTT: A framework to create

reproducible experiments to evaluate software testing techniques. In

Proceedings of the 1st Brazilian Symposium on Systematic and Automated

Software Testing, SAST 2016, Maringa, Parana, Brazil, September 19-20,

2016. ACM, 1:1ś1:10. https://doi.org/10.1145/2993288.2993303

[3] Holger Gantikow, Christoph Reich, Martin Knahl, and Nathan L. Clarke.

2019. Rule-based Security Monitoring of Containerized Workloads. In

Proceedings of the 9th International Conference on Cloud Computing and

Services Science, CLOSER 2019, Heraklion, Crete, Greece, May 2-4, 2019.

SciTePress, 543ś550. https://doi.org/10.5220/0007770005430550

[4] Xueyuan Han, Thomas F. J.-M. Pasquier, Tanvi Ranjan, Mark Goldstein,

and Margo Seltzer. 2017. FRAPpuccino: Fault-detection through Run-

time Analysis of Provenance. In 9th USENIX Workshop on Hot Topics

in Cloud Computing, HotCloud 2017, Santa Clara, CA, USA, July 10-11,

2017. USENIX Association.

[5] Diego Marcilio, Rodrigo Bonifácio, Eduardo Monteiro, Edna Dias

Canedo, Welder Pinheiro Luz, and Gustavo Pinto. 2019. Are static

analysis violations really fixed?: a closer look at realistic usage of Sonar-

Qube. In Proceedings of the 27th International Conference on Program

Comprehension, ICPC 2019, Montreal, QC, Canada, May 25-31, 2019. IEEE

/ ACM, 209ś219. https://doi.org/10.1109/ICPC.2019.00040

https://github.com/serviceprototypinglab/mao-orchestrator
https://www.youtube.com/watch?v=6ELYkZijfu8
https://doi.org/10.1145/3183440.3183497
https://doi.org/10.1145/3183440.3183497
https://doi.org/10.1145/2993288.2993303
https://doi.org/10.5220/0007770005430550
https://doi.org/10.1109/ICPC.2019.00040

