
Measuring Software Delivery Performance
Using the Four Key Metrics of DevOps

Marc Sallin1(B) , Martin Kropp1 , Craig Anslow2 , James W. Quilty2 ,
and Andreas Meier3

1 University of Applied Sciences and Arts Northwestern Switzerland,
Windisch, Switzerland
martin.kropp@fhnw.ch

2 Victoria University of Wellington, Wellington, New Zealand
{craig,james.quilty}@ecs.vuw.ac.nz

3 Zurich University of Applied Sciences, Wintherthur, Switzerland
meea@fhnw.ch

Abstract. The Four Key Metrics of DevOps have become very popular
for measuring IT-performance and DevOps adoption. However, the mea-
surement of the four metrics deployment frequency, lead time for change,
time to restore service and change failure rate is often done manually and
through surveys - with only few data points. In this work we evaluated
how the Four Key Metrics can be measured automatically and developed
a prototype for the automatic measurement of the Four Key Metrics. We
then evaluated if the measurement is valuable for practitioners in a com-
pany. The analysis shows that the chosen measurement approach is both
suitable and the results valuable for the team with respect to measuring
and improving the software delivery performance.

Keywords: DevOps · Agile · Metrics · Four Key Metrics ·
IT-performance · Case study

1 Introduction

More and more organizations are adopting DevOps to accelerate delivery speed
and improve quality of their software products [1]. The term DevOps first
appeared in 2009 in social media coined by Patrick Debois [2]. Bass et al. define
the term in their book as “a set of practices intended to reduce the time between
committing a change to a system and the change being placed into normal pro-
duction, while ensuring high quality” [3]. Companies state that the measurement
of DevOps progress is seen as important but also as very difficult [4]. The State
of DevOps report, first published in 2014, provides a view into the practices and
capabilities that drive high performance in software delivery [5]. The researchers
found that only four key metrics (FKM) differentiate between low, medium,
high, and elite performers: Lead time for change, deployment frequency, time to
restore service, and change failure rate [6]. These four metrics help organizations
c© The Author(s) 2021
P. Gregory et al. (Eds.): XP 2021, LNBIP 419, pp. 103–119, 2021.
https://doi.org/10.1007/978-3-030-78098-2_7

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ZHAW digitalcollection

https://core.ac.uk/display/475496159?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-78098-2_7&domain=pdf
http://orcid.org/0000-0002-5784-0655
http://orcid.org/0000-0002-7439-6517
http://orcid.org/0000-0001-8064-6300
http://orcid.org/0000-0002-0929-7539
http://orcid.org/0000-0001-7491-4129
https://doi.org/10.1007/978-3-030-78098-2_7


104 M. Sallin et al.

and teams to determine whether they are improving the overall IT-performance.
As they are strongly correlated with well-known DevOps practices they are also
known as DevOps metrics [5].

The FKM in the State of DevOps report is based on surveys. While a survey
approach has the advantage that you can raise highly focused questions, and
address a clear target audience, it also comes with several disadvantages: the
absence of a clear definition of the measurement, no continuous data, subjective
answers, offline data capture and analysis, and extra effort and cost to generate
the data. On the other side, using system data provides the advantage that
these data are instantly available (e.g. the number of User Stories done in a
Sprint), and can be captured and analysed automatically. However, these data
may not be complete with respect to the required DevOps aspects (e.g., cultural
measures) [7]. This work aims to address these disadvantages by automatically
measuring the FKM and evaluate if the automatic measurement of the FKM is
of value for practitioners with respect to improving their performance.

We defined two research questions to be answered by this study.

RQ1 How can the FKM be automatically measured?
RQ2 How valuable is the approach to automatically measure the FKM for soft-

ware development teams?

RQ1 was answered using a multivocal literature review [8] to include both
state-of-the-art and -practice literature. To answer RQ2 the findings of RQ1 were
operationalized using a prototype. The prototype was used by a development
team in an industrial context at Swiss Post and we asked the members of the
development team to participate in a survey.

2 The Four Key Metrics (FKM)

This chapter explains the origin of the FKM, describes their original definition
and explains why they gained a high popularity in industry. While DevOps has
become very popular in industry [1, p. 18] to bring development and operation
close together and deploy new software faster into operation, it was unclear how
you can measure the improvement in DevOps.

Forsgren et al. searched for a performance measurement of software teams
which focus on global outcome in DevOps. That means, in the basic sense of
DevOps, firstly, a measurement that does not pit development against opera-
tions, by rewarding development for throughput and operations for stability and
secondly, focus on outcomes, not output. That means, do not reward people for
putting in large amounts of work, but rather measure results that add business
value. They found that four key metrics differentiate between low, medium, high,
and elite performers [9]. Forsgren et al. defined the metrics as follows:

Deployment Frequency: addresses minimizing the batch size in a project
(reducing it is a central element of the Lean paradigm). As this is hard to
measure in software, they took the deployment frequency of software to pro-
duction as a proxy.



Measuring Software Delivery Performance 105

Lead Time for Change: defined as “the time it takes to go from code committed
to code successfully running in production”. Shorter time is better because it
enables faster feedback and course correction as well as the faster delivery of
a fix to a defect.

Time to Restore Service: as failure in rapidly changing complex systems is
inevitable the key question for stability is how long it takes to restore service
from an incident from the time the incident occurs (e.g., unplanned outage,
service impairment)?

Change Failure Rate: the percentage of changes for the application or service
which results in degraded service or subsequently required remediation (e.g.,
lead to service impairment or outage, require a hot fix, a rollback, a fix-
forward, or a patch).

In recent years, the FKM have gained large attention and popularity in
industry and are applied by many known companies, like Zalando, RedGate,
HelloFresh, PBS or Contentful. The publication of Forsgren’s book “Accelerate:
The Science of Lean Software and DevOps” in 2018 which summarizes their
research [10], and the recommendation of ThoughtWorks in 2019 to adopt the
FKM in their technology radar [11] has further increased the popularity of the
FKM. The DevOps Trends Survey for 2020 carried out by Atlassian shows that
nearly half of the respondents leverage the four key metrics [4, p. 24].

3 Multi-vocal Literature Review

Despite interest from industry [4], at the time of writing there is no research
which suggests/summarizes how to automatically measure the FKM. To be able
to define a broadly accepted definition for the automatic measurement we inves-
tigated what other researchers and practitioners did in this area. Usually sys-
tematic literature review (SLR) studies are conducted to capture the state of a
research topic. However, SLRs focus mainly on research contribution and do not
include grey literature from practice (GL) [8]. As a large majority of software
practitioners do not publish in academic forums, we also included GL to make
sure we get the result of the current state-of-practice in this field. Furthermore,
the very current perspective, the relevance for practitioners and the low volume
of published research indicates that not only formal literature should be used to
cover a topic [8].

The multivocal literature review was conducted according to the guideline of
Garousi et al. [8] which considers also the popular SLR guidelines by Kitchenham
and Charters [12]. Literature was included if any of the inclusion and none of
the exclusion criteria are met (see Table 1).

3.1 Systematic Literature Review

The publications of Forsgren et al. (i.e., the book “Accelerate” and the “State of
DevOps Reports”) are listed in Google Scholar and Research Gate. For the SLR,



106 M. Sallin et al.

Table 1. Multivocal literature review inclusion and exclusion criteria.

Inclusion Exclusion

Contains more detailed definition than
Forsgren et al.

Is not written in English or German

Contains information about automatic
measurement or tooling

Is not text (e.g., YouTube, or Webinar)

Contains experience report about the
automatic measurement

Is a book

the relevant/related research was identified using snowballing starting from their
publications. All 93 unique articles which cited the literature about the FKM
published by Forsgren et al. were retrieved by following the cited links. Citations
from books were not included. 21 articles are not written in English or German
and hence were excluded. Only 7 of the 72 remaining articles treated the topic
“metrics” and none of them contained more information about the FKM than
already presented by Forsgren et al. As no articles from the SLR were included,
no data could be extracted and used in the synthesis.

3.2 Gray Literature Review

For the gray literature review (GLR) Google was used as search engine because
pilot searches have shown that there is no more narrow scope for the source of
information (e.g. only StackOverflow or Medium) which returns results. A pilot
search was conducted to find which keywords are used when people are talking
about the FKM. This was done by retrieving articles which talk about one of
the four metrics (search for “deployment frequency”, “lead time for change”,
“time to restore service” and “change failure rate”) and screening the articles to
see how the authors bring them into the context of the FKM. As a result, the
following search terms were defined to be used for the GLR.

– DevOps metrics
– DevOps metrics accelerate
– DevOps metrics DORA
– four key metrics DevOps
– accelerate metrics definitions

In contrast to the searches within the formal literature, gray literature search
returns an exhaustive number of results. Thus, stopping criteria need to be
defined [8]. Google has a ranking algorithm which aims to return relevant articles
ordered by priority. That means, the most relevant articles are at the top and
the following stopping criteria were applied.

– Theoretical saturation: As soon five articles in a row did not match the “Is
about this topic & contains information” inclusion criteria, the next five arti-
cles were screened by only looking at their title. If they were not relevant, the
search was ended.



Measuring Software Delivery Performance 107

– Effort bounded: After reviewing 100 results for a search term, the search was
ended.

Initially, 115 articles/search results were retrieved and screened. 43 out of
those 115 were not about the topic and 5 were not in text form. 16 unique
articles remain which either include a definition or an experience report.

3.3 Results

This section presents the results of the multivocal literature review. The full list
of retrieved literature is provided online.1

Deployment Frequency: 7/16 articles contain a definition for deployment fre-
quency. As this metric is already well defined by Forsgren et al. as deployment of
software to production, the definitions do not widely diverge. They have in com-
mon that “number of deployments/releases in a certain period” are counted.
Some state that they only count successful deployment (but successful is not
defined) and some explicit mention that they count deployments to produc-
tion. For the purposes of automated measurement, a deployment is defined as a
new release2 As this is a speed metric, every deployment attempt is counted as
deployment even if it was not successful.

Lead Time for Change: 9/16 articles contain a definition for lead time for
change. Like the deployment frequency, the definition of Forsgren et al. does not
leave much room for interpretation although some deliberately took approaches
diverging from that of Forsgren et al. All suggestions based on the original FKM
definition measure the time a commit takes until it reaches production, the only
difference is how they aggregate (i.e., mean, median, p90 etc.). Today it is default
practice to use a version control system for source code. To make an adjustment
to the software system a developer has to alter source code and to put it under
version control. Hence, the commit3 is defined as the “change”. Thus, the lead
time is given by the time span between the timestamp of the commit and the
timestamp of the deployment, as defined in Sect. 3.3.

Time to Restore Service: 8/16 articles contain a definition for time to restore
service. Five of them define the time to restore service as mean time for clos-
ing an incident in a certain period. One suggests using chaos engineering (i.e.,
introduce a failure and measure how long it takes until it gets discovered and
resolved), there is a suggestion to periodically poll the “status” and record how
long it takes when the status indicates degradation until the degradation gets
restored (but do not mention from where the status is taken). The last sug-
gestion made by two articles assumes that the time to restore service should

1 https://1drv.ms/x/s!ApmGN3k-vuHI1ZxB8z9SnoO0r0t vw?e=qAuxgW.
2 A delivered version of an application which may include all or part of an application.

[13, p.296].
3 Depending on the used version control system this is called e.g. “commit” or “check-

in”.

https://1drv.ms/x/s!ApmGN3k-vuHI1ZxB8z9SnoO0r0t_vw?e=qAuxgW


108 M. Sallin et al.

be calculated for failed releases and thus suggests identifying “fix releases” and
measuring how long it takes from one release to the following “fix release”. The
reasons for a failure are manifold, and frequently rely on human interpretation of
what constitutes “failure” and “fix”, which makes it difficult to fully automate
this metric. Provided that a team has an incident management, the calculation
via incidents is an interesting approach. Since the incident creation could also
be automated, this approach allows a mixture of manual and automated failure
recognition. For this work, we define the time to restore as the time between
incident creation to closing the incident, like this is stated by the majority of
articles found. This choice was made because there is already an incident man-
agement in place, which can be used to gather the data and this seems so far to
be the most reliable source of data.

Change Failure Rate: 9/16 articles contain a definition for change failure rate.
The different suggestions are listed below.

– Percentage of releases that were followed by a “fix release”.
– Count of hot fixes in commit messages.
– Detect failures by using monitoring metrics and divided by deployments.
– Manually mark a deployment as successful or not.
– Count rollbacks divided by deployments.

To measure change failure rate, first, it has to be defined what a change is.
In all identified articles a change is indicated by a deployment. Accordingly, the
change failure rate is the ratio of change failures to deployments (see Sect. 3.3).
The next challenge is to identify a failure and attribute it to a change. Unlike for
the time to restore service, the incident management cannot be used for failure
detection as, according to Forsgren et al., a change failure includes all cases
where subsequent remediation was required.4 Especially for development teams
with a good software delivery performance, the team itself will be responsible
for the deployment and any resulting failures will be fixed immediately without
an incident ever existing. As we assume a low change failure rate in the context
of our case study of Swiss Post, we decided to use for our measurements the
manual classification of a deployment as a failure by the development team.

Summary: The velocity metrics are more precisely defined and thus the auto-
matic measurement is easier and more straightforward to derive. This is also
reflected in the articles found. With the toolchain used by the development
team, the measurement of the speed metrics can be completely automated. The
stability metrics are less well defined, and unlike the velocity metrics, the bound-
aries can be drawn less precisely. The literature provided various approaches, but
the approaches that would have allowed a fully automated measurement do not
capture all relevant aspects of the metrics. For this reason, we have chosen to
use only partial automation for measuring the stability metrics. We assume that
the change failures are less manifold than failures in general and thus suggest
4 This could be, for example, an automated rollback which is never visible in the

incident management system.



Measuring Software Delivery Performance 109

the creation of a taxonomy of change failures, which will be the enabler for tools
and concepts to automatically detect them.

4 Measure the Four Key Metrics

Based on the earlier definitions Sect. 3 an application was built to measure the
FKM automatically. The prototype application is divided into two main parts
(green) and several data sources (blue). One is the collector, and the other is
the aggregator. The collector is responsible to gather the necessary raw data,
transform them and write them in a not compressed manner to the storage of
the aggregator (i.e., do no calculations like average). The aggregator enables dif-
ferent calculations and visualizations. This separation aims to enable the usage
of different collectors (e.g., for applications which are built and deployment with
another toolchain) and to keep the flexibility of having different ways of calcu-
lating the metrics (e.g., use the median instead of the mean or use other time
periods). The Fig. 1 shows the components of the prototype.

The collector part was implemented using Jenkins5 (Host/Execute in regular
intervals) and PowerShell6 (collection logic). The aggregator part was Splunk7

(use an index as storage, do calculations using the Splunk Query Language and
visualization with a dashboard). The resulting UI is shown in Fig. 2.

Container Orchestration

Aggregator

Get History

Get Image Metadata

Send Events

Collector

Service Namespace

Storage

Calculation

Delivery Lead Time

VCS 

Service Repository

Container Registry

Service Container Images

Write

Visualization

Visualize

Look at

User

Deployment Frequency

Access

Issue Management 

Issues Get Issues
Mean time to repair

Change Failure Rate

Get Logs & Metrics

Log Aggregation

Index

Fig. 1. Concept of prototype to measure the FKM. (Color figure online)

Deployment Frequency: the deployments are detected by using the pulled
event from OpenShift, which is logged if a Docker image is pulled from a registry.
Those events are sent to Splunk from where the collector gets the data.

5 https://www.jenkins.io (25.04.2021).
6 https://github.com/PowerShell/PowerShell (25.04.2021).
7 https://www.splunk.com/ (25.04.2021).

https://www.jenkins.io
https://github.com/PowerShell/PowerShell
https://www.splunk.com/


110 M. Sallin et al.

Lead Time for Change: the deployments are collected like described in
“Deployment Frequency”. The logged event contains the name of the Docker
image and the version. The comm it hash from which the Docker image was
built is retrievable from Artifactory by using the Docker image name and ver-
sion. The source code repository URL is also attached as metadata to the Docker
image. With the commit hash of the current deployment and the last deploy-
ment, as well as the repository URL, all commits which were newly deployed to
production are retrieved and the lead time for each commit is calculated.

Fig. 2. Dashboard showing the automatic measured FKM.

Time to Restore Service: the Scrum team uses Jira for issue management.
Jira issues of type “incident” are retrieved and the time to restore service is
calculated by taking the time passed from creation of the incident until it was
resolved.

Change Failure Rate: how to collect the deployments was described in
“Deployment Frequency”. Additionally, failed changes are registered by the
team, using a web-based form (implemented with Jenkins). With those two
ingredients, the percentage of failed deployments is calculated.

5 Case Study

To investigate the RQ2 “How valuable is the approach to automatically measure
the FKM for software development teams?”, we conducted a survey after the
development team had worked with the prototype for three weeks. For this, the
prototype was presented and explained to the team. They decided to look at the
metrics once a week as part of an already existing meeting and discuss them.



Measuring Software Delivery Performance 111

5.1 Case Description

The study was conducted at the Informatics/Technology function unit of Swiss
Post Ltd. Swiss Post Ltd is the national postal service of Switzerland. The group
consists of strategic subsidiaries which operate in the core markets of Swiss Post
Ltd and function units which are affiliated to Swiss Post Ltd. [14].

In 2019 the Informatics/Technology function unit had around 1200 full-time
equivalent employees with about 330 software developers. The unit runs only
projects for internal customers i.e., the IT department does not offer services for
customers outside of the group. The Scrum team consisting of 10 people looked
at in this study is located in the Informatics/Technology function unit and works
for Logistics Services in the area of parcel sorting. Logistics Services is one of the
subsidiaries of Swiss Post Ltd and is among other things responsible for parcel
sorting and delivery. In 2020 Logistics Services delivered 182,7 million parcels
[15]. The Informatics/Technology function unit is under pressure, that new prod-
ucts should be delivered earlier to the customer, and IT must be able to react
faster to changes in the environment. At the same time, the customer expects
consistently high quality. To achieve these goals Informatics/Technology function
unit is undergoing an agile transformation. Beside adopting agile methodologies
like Scrum and Kanban, DevOps practices are being introduced as part of this
agile transformation. The Informatics/Technology function unit is mainly orga-
nized project driven but the Scrum team which participated in this study is a
stable product team. In 2020 they started to work on a new software system,
which is one of the core systems for the sorting of parcels. The team also started
to invest in their tool-chain (Fig. 3) and began adopting certain DevOps prac-
tices. However, so far, no actions have been taken by the management and the
team to measure the progress of the transformation process and the DevOps
practices with respect to its improvements; so the team is also not able to track
the progress of improvements.

Trigger

Commits reference issues

VCS
(Bitbucket)

Pull
Image

Send
Logs /

 Metrics

Container Orchestration
(OpenShift)

Container Registry
(Artifactory)

Trigger

Push Image

CI
(Jenkins)

Log-Aggregation
(Splunk)

Adjust deployment

CD
(Jenkins)

Issue Management
(Jira)

Fig. 3. The toolchain used by the Swiss Post Scrum team.

5.2 Methodology

The research question was divided into sub questions to be answered by the sur-
vey. In order to be valuable, a metric should be valid, this concern was addressed
by the sub questions one and two. A metric is considered valuable if the team



112 M. Sallin et al.

can act on it i.e. it leads to effects. This was addressed by sub question three.
The sub question four aimed to capture the subjective perspective of the team
onto the value of the automatically measured FKM.

1. Are the FKM a valid way of measuring the speed and stability for software
delivery?

2. Can the FKM be used as an indicator for advancing DevOps adoption?
3. What is the effect of measuring the FKM on the teams?
4. Does the development team find value in measuring the FKM?

The survey consisted of four parts: demographics, metric measurement, effect
of metric measurement and usefulness of metrics. In the metric measurement
part, the participants were asked for their opinion about the FKM and if they
think that the metrics as defined by Forsgren et al. measure what they claim
to. Furthermore, they were asked how good the automatic measurement imple-
mentation reflects what the metrics should measure. The effect of the metric
measurement part asked what effects, if any, they expect if the metrics would be
measured long term.8 Finally, the participants were asked how likely they would
recommend another team to use the automatic metrics measurement and what
metric they consider the most important to be automatically measured.9

The questions and our analysis is principally based on Likert scales, and is
therefore a quantitative approach based on self-reported experience and percep-
tion. After each Likert scale question, there was the possibility to optionally
explain the rating in free text.

Six out of ten team members participated in the survey. Among them are
four developers and two software architects, aged between 25 and 44. Four of
the participants stated that they already knew about the FKM before they were
introduced by us.

5.3 Results

This section presents the results of the survey about the automatic metrics
measurement. The results are provided online.10

Metrics Measurement. Figure 4 shows what the participants think about the
metrics defined by Forsgren et al. In general, the participants agree (statement
1: 2× strongly agree, 4× agree) that the FKM are a valid way of measuring the
speed and stability for software delivery. The two speed metrics are generally
seen as a valid way of measuring the software delivery performance (statement 2:
2× strongly agree, 3× agree, 1× disagree). There is slightly less agreement about
the stability metrics (statement 3: 1× strongly agree, 3× agree, 2× somewhat

8 The measurement period was to short to ask for effects that have already occurred.
9 The full survey can be retrieved here https://1drv.ms/b/s!ApmGN3k-vuHI1ZVZuj-

pZY76IvhC Q?e=AaxwMe.
10 https://1drv.ms/x/s!ApmGN3k-vuHI1ZtdjwlKBlPYInsY2g?e=V2aBMD.

https://1drv.ms/b/s!ApmGN3k-vuHI1ZVZuj-pZY76IvhC_Q?e=AaxwMe
https://1drv.ms/b/s!ApmGN3k-vuHI1ZVZuj-pZY76IvhC_Q?e=AaxwMe
https://1drv.ms/x/s!ApmGN3k-vuHI1ZtdjwlKBlPYInsY2g?e=V2aBMD


Measuring Software Delivery Performance 113

agree). The FKM were explicitly picked to make sure teams do not trade-off
quality for speed. However, it seems there is a piece missing as the participants
are sceptical about the stability metrics showing when a team does this trade-off
(statement 4: 1× strongly disagree, 1× somewhat agree, 2× agree, 1× strongly
agree).

For the implementation of the automatic measurement there was broad agree-
ment that the measurement of the speed metrics is sufficient and moderate agree-
ment about the stability metrics (see Fig. 5).

Fig. 4. Participants agreement about the validity of the FKM, as originally defined by
Forsgren et al.

Fig. 5. Participants agreement about whether the implemented automation is able to
capture the correct measurement.



114 M. Sallin et al.

Effect of Metric Measurement. Figure 6 the answers to the expected effects
are shown. The left part shows the answers to the question whether the partici-
pant expect an effect on the team and/or on the personal behavior. The left side
shows what kind of effect they expect.

The described effects expected for the personal behavior were: Pay more
attention to get the pull requests merged quickly, greater use of feature flags,
better root cause analysis, more team spirit, feeling more responsible for the
work, source of motivation to improve. The effects expected for the team behavior
were: More attention for the software delivery process, less deployment pain and
anxiety, more relaxed environment, encourage some technical practices, putting
some pressure to some team members, source of motivation to improve.

Fig. 6. Expected effects of long term measurement.

Usefulness of the Metrics. The question “On a scale from 1–10, how likely
are you to recommend the metrics measurement to another team?” was answered
with an average score of 8.3 (max: 10, min: 6, sd: 1.5). The participants ranked
the Lead Time for Change as the most important metric to be automatically
measured, followed by Change Failure Rate, Time to Restore Service and the
Deployment Frequency on the fourth rank. The participant with the value of six
explained this score in the free text answer. He wrote that he thinks the most
teams do not yet have the mindset nor the tools to start measuring.

6 Discussion

6.1 RQ1: How to Automatically Measure the FKM?

This question was addressed with a multivocal literature review. We identified no
scientific literature which investigated the automatic measurement of the FKM.
The gray literature review revealed sixteen articles which described aspects of
the automatic measurement. Nine of them were published in 2020, three in 2019
and one in 2018, which we explain with the growing interest in DevOps.

The definitions by Forsgren et al. for the stability metrics (change failure rate
and time to restore service) are not as clear as the definitions of the speed metrics



Measuring Software Delivery Performance 115

(deployment frequency and lead time for change) and therefore the suggestions
for how to perform the measurement are more diverse for the stability metrics
than for the speed metrics. How to automatically measure the speed metrics only
differs in detail but still, they are context sensitive i.e., some practices applied
by a team can have influence on the definition used and also the measurement
implementation (e.g., feature flags, canary releases or Blue/Green deployments).

Worth to mention is the fact that automatic measurement is only possible
if the processes are automated. That means only teams which already invest in
their automation will be able to use the automatic measurement. Thus, a team
might start with tracking their FKM with a survey to get a baseline [7] and as
they advance, they switch to an automatic measurement.

6.2 RQ2: How Valuable Is the Approach to Automatically Measure
the FKM for Software Development Teams?

We addressed this question with a prototype and a survey. The sub questions to
this research question are discussed in the following sections.

Are the FKM a Valid Way of Measuring the Speed and Stability for
Software Delivery? In general the participants agreed that the metrics defined
by Forsgren et al. are valid. There was slightly more agreement about the speed
than the stability metrics. This might be the case because the speed metrics are
easier to measure and more clearly defined. Participants are skeptical about the
stability metrics showing when a team trade-off quality against speed. A possible
reason is that the metrics will show this trade-off not in short but in long term.
If a team decides to not constantly refactor the code base, in the short term
they will be faster and not lose stability. However, in the mid to long term the
technical dept will lead to lower pace and to lower stability [16]. Another reason
is that change failure rate and time to restore service do not capture all quality
aspects. Lets imagine a team skips all regression test non-critical parts of the
system. They get faster but more bugs are discovered in production, which makes
the perceived quality of users lower. But the stability metrics will not show this
if the bugs do not lead to failures. Although the stability metrics are valid to
capture the stability of a system, each system has other quality attributes which
should not be traded-off for speed. As they are individual, each team might
define additional metrics to capture these attributes.

Can the FKM Be Used as an Indicator for Advancing DevOps Adop-
tion? This question was addressed with a statement with a Likert scale rating.
The participants generally agreed but not strongly. The reason gets unveiled
when looking at the free text answers. There is general agreement that the FKM
are good representatives of DevOps adoption but do not cover every aspect. One
aspect mentioned is the provisioning of infrastructure. A DevOps team might
be fast with existing services but slow when creating a new one. That might
be fine if it’s a very rare event, otherwise it should be optimized as well. In



116 M. Sallin et al.

his article, Cochran talks about his research about “developer feedback loops”
and mention metrics which might not be covered by the FKM like “Find root
cause for defect”, “Become productive on new team”, “Launch a new service in
production” [17]. However, there is a need to consider that Forsgren et al. do
not postulate that the FKM cover all aspects but say that they are sufficient to
divide the teams into clusters. Thus, it would have to be examined whether the
high/elite performers correlate with efficient developer feedback loops.

What Is the Effect of Measuring the FKM on the Teams? The partici-
pants mostly agreed that they see value in automatically measuring the FKM and
expect that the long-term measurement will lead to positive effects on the per-
sonal and on the team behavior. But they also state that the FKM do not cover
all aspects which are considered as important for quality, speed, and DevOps in
general (see also the sections above). It was mentioned that the intrinsic moti-
vation of getting better will let the team take the necessary actions to improve
the metrics. The intrinsic motivation is important because one should be well
aware of Goodhart’s law which states that “When a measure becomes a target, it
ceases to be a good measure.” [18]. It is not recommended to give a development
team the goal of improving metrics and rewarding them with external incentives.
Furthermore, a team might need to be guided to improve their FKM. The par-
ticipants who have a noticeable amount of experience in software engineering,
agile and some experience with DevOps only moderately agree that they are
able to influence the FKM (2× somewhat agree, 3× agree, 1× strongly agree)
and that they know which practices and techniques correlate with each of the
DevOps metrics (3× somewhat agree, 2× agree, 1× strongly agree).

Does the Development Team Find Value in Measuring the FKM?
From the stated expected positive effects and the high recommendation score the
conclusion follows, that the team sees value in measuring the FKM. However, this
have to be seen in the context of this team. One of the participants states that
he belief that a team has to have already the “right” mindset to get a value from
the measurement. If a development team which want to improve it’s software
delivery performance and/or DevOps adoption the automatic measurement of
the FKM are a valuable tool.

The metric with ranked with the highest priority to be measured was the
lead time for change. That one with the next was change failure rate. Which
indicates that there is the motivation to see how fast one can deliver, however,
stability should not suffer as a result.

6.3 Limitations

We are aware that the study has several limitations. The SLR part of the MLR
returned no results i.e., no scientific literature but only gray literature was
included. The lack of scientific literature is maybe due to the applied methodol-
ogy (i.e., there are articles, but they are not listed to cite the origin articles used



Measuring Software Delivery Performance 117

for snowballing). The definitions found are presented in gray literature, those
articles are usually less reliable as they do not apply scientific methods, not pro-
vide many details and are representing the subjective view of the author. Fur-
thermore, it is possible that important gray literature was not included because
a GLR is not exhaustive but certain the stopping criteria are applied.

The research was carried out as a case study. The sample size was small and
homogeneous. Participants of the survey were already high performers according
to FKM and had already invested into their CI/CD processes, else the automatic
measurement wouldn’t have been possible. Hence, the results of the study are
not representative and generalization is only possible to a limited extent. Fur-
thermore, the study is highly context specific to the Swiss Post environment,
which also limits the generalization. But might still be helpful to companies
with similar setups. Due to time constraints, the duration in which the team
made use of the metrics was too short to ask about perceived effects and we
asked about expected effects. It has to be considered that those effect might not
show up as expected.

6.4 Summary

The findings indicate that the suggested automatic measurement of the FKM
is a good starting point and a valuable tool for intrinsically motivated software
development teams, which want to improve software delivery performance and
show their DevOps adoption. But the FKM do not cover every aspect e.g. the
developer feedback loops are not covered. Hence, it is important that the devel-
opment team does not only focus on improving the measurements.

6.5 Outlook

The study found that it is possible to meaningful measure the FKM automati-
cally and the software developers team see it as valuable, the prototype going to
be rolled out for all development teams at Swiss Post (i.e., all teams which create
containerized applications will be able to use it). Professionals and researchers
outside of Swiss Post might adapt the suggested definitions and ways to auto-
matically measure the FKM, to build tools for measuring the FKM in their
context.

7 Conclusions

In this work we investigated how the four key metrics defined by Forsgren et al.
can be measured automatically and if practitioners think that the metrics are
valuable. We conducted a multivocal literature review to reveal how the four
key metrics are measured by different companies in the industry and in other
research projects. Based on those findings, we created a prototype to automat-
ically measure the metrics. The prototype was used by a Scrum team at Swiss
Post for three weeks. Afterwards, we collected their experience by using a survey.



118 M. Sallin et al.

The participants of the survey stated that they think that the FKM are a valid
measurement for software delivery performance and that they would recommend
the automatic measurement for another team. However, they also stated that the
FKM are not capturing every important aspect e.g. how fast can infrastructure
be provisioned. Despite of the maturity of the team in terms of experience with
Agile, DevOps, software engineering and their ranking according to the FKM,
it was discovered that the participants only moderately agreed that they think
they are able to influence the metrics and that they know what practices to
apply to improve. This finding suggests that especially less mature team need
guidance to be able to improve on the FKM as they are a lagging measurement
and do not directly suggest any actions.

References

1. StateOfAgile: 14th annual STATE OF AGILE REPORT. Technical report 14
(2020)

2. Mezak, S.: The Origins of DevOps: What’s in a Name? (2018)
3. Bass, L., Weber, I., Zhu, L.: DevOps: A Software Architect’s Perspective, 1st edn.

Addison-Wesley Professional (2015)
4. Atlassian: 2020 DevOps Trends Survey. Technical report, Atlassian (2020)
5. PuppetLabs: 2014 State of DevOps Report. Technical report, PuppetLabs (2014)
6. PuppetLabs: 2019 State of DevOps Report. Technical report, PuppetLabs (2019)
7. Forsgren, N., Kersten, M.: DevOps metrics. Queue 15(6), 19–34 (2017)
8. Garousi, V., Felderer, M., Mäntylä, M.V.: Guidelines for including grey literature

and conducting multivocal literature reviews in software engineering. arXiv (2017)
9. Forsgren, N., Smith, D., Humble, J., Frazelle, J.: Accelerate: State of DevOps.

Technical report, DORA (2019)
10. Forsgren, N., Humble, J., Kim, G.: Accelerate: The Science of Lean Software and

DevOps. 1st edn. IT Revolution Press (2018)
11. ThoughtWorks: ThoughtWorks Technology Radar - Four Key Metrics (2019)
12. Kitchenham, B.A., Charters, S.: Guidelines for performing Systematic Literature

Reviews in Software Engineering. Technical Report EBSE 2007–001, Keele Uni-
versity and Durham University Joint Report (2007)

13. ISO/IEC, IEEE: ISO/IEC/IEEE 24765:2010 - Systems and software engineering -
Vocabulary. Iso/Iec Ieee 2010 (2010). 410

14. Group Struture - Swiss Post (2020)
15. Swiss Post: Post verzeichnet Allzeitrekord von 182,7 Millionen Paketen (2021)
16. Behutiye, W.N., Rodŕıguez, P., Oivo, M., Tosun, A.: Analyzing the concept of

technical debt in the context of agile software development: a systematic literature
review. Inf. Softw. Technol. 82, 139–158 (2017)

17. Cochran, T.: Maximizing Developer Effectiveness (2021)
18. Strathern, M.: ‘Improving ratings’: audit in the British University system. Eur.

Rev. 5(3), 305–321 (1997)



Measuring Software Delivery Performance 119

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	Measuring Software Delivery Performance Using the Four Key Metrics of DevOps
	1 Introduction
	2 The Four Key Metrics (FKM)
	3 Multi-vocal Literature Review
	3.1 Systematic Literature Review
	3.2 Gray Literature Review
	3.3 Results

	4 Measure the Four Key Metrics
	5 Case Study
	5.1 Case Description
	5.2 Methodology
	5.3 Results

	6 Discussion
	6.1 RQ1: How to Automatically Measure the FKM?
	6.2 RQ2: How Valuable Is the Approach to Automatically Measure the FKM for Software Development Teams?
	6.3 Limitations
	6.4 Summary
	6.5 Outlook

	7 Conclusions
	References




